
Implementing an Array List

Once more into the breach







The ArrayList stub

0
size listArray

10
INITIAL_SIZE

StringArrayList l = 



Insert



Cases to Handle

Bad index

● Check that index is positive and fits inside 

of list; if not, throw exception

● Check that list isn’t full; if full, return false 

and do nothing

Good index

● Start at position size
● Copy over the element to the left into the 

current position and move to the left
● Keep going until all elements after the 

target index have been copied one position 
to the right

● Insert the element at index and increment 
the size



Inserting 

● Start at position size
● Copy over the element to the left into the 

current position and move to the left
● Keep going until all elements after the 

target index have been copied one position 
to the right

● Insert the element at index and increment 
the size

l.insert(2, “C”)

5
size

“A”

“B”

“D”

“E”

“F”

listArray

10
INITIAL_SIZE

StringArrayList l = 

Keep in mind: listArray is 
{“A”, “B”, “D”, “E”, “F”, 
null, null, null, null, null}



Inserting 

● Start at position size
● Copy over the element to the left into the 

current position and move to the left
● Keep going until all elements after the 

target index have been copied one position 
to the right

● Insert the element at index and increment 
the size

l.insert(2, “C”)

5
size

“A”

“B”

“D”

“E”

“F”

listArray

10
INITIAL_SIZE

StringArrayList l = 



Inserting 

● Start at position size
● Copy over the element to the left into the 

current position and move to the left
● Keep going until all elements after the 

target index have been copied one position 
to the right

● Insert the element at index and increment 
the size

l.insert(2, “C”)

5
size

“A”

“B”

“D”

“E”

“F”

“F”

listArray

10
INITIAL_SIZE

StringArrayList l = 



Inserting 

● Start at position size
● Copy over the element to the left into the 

current position and move to the left
● Keep going until all elements after the 

target index have been copied one position 
to the right

● Insert the element at index and increment 
the size

l.insert(2, “C”)

5
size

“A”

“B”

“D”

“E”

“E”

“F”

listArray

10
INITIAL_SIZE

StringArrayList l = 

listArray[i] = listArray[i - 1];



Inserting 

● Start at position size
● Copy over the element to the left into the 

current position and move to the left
● Keep going until all elements after the 

target index have been copied one position 
to the right

● Insert the element at index and increment 
the size

l.insert(2, “C”)

5
size

“A”

“B”

“D”

“D”

“E”

“F”

listArray

10
INITIAL_SIZE

StringArrayList l = 



Inserting 

● Start at position size
● Copy over the element to the left into the 

current position and move to the left
● Keep going until all elements after the 

target index have been copied one position 
to the right

● Insert the element at index and increment 
the size

l.insert(2, “C”)

6
size

“A”

“B”

“C”

“D”

“E”

“F”

listArray

10
INITIAL_SIZE

StringArrayList l = 



Unscramble!



Unscramble!



Append



Like with the 
LinkedList, 
appending is just 
inserting at the end.
Let’s just use that instead.

insert(l.size(), “END”) append(“END”)



Remove



Removing

● Do error checking for valid index; throw exception if 
index is invalid

● Copy the element at the index to be removed
● Start at the removal index
● Copy the element at index + 1 into the position index.
● Increment index and repeat until we’ve copied the 

last element in the List (lives at size - 1)
● Decrement size and return the removed element

l.remove(2)

6
size

“A”

“B”

“F”

“C”

“D”

“E”

“garbage”

“ignore”

“this”

“trash”

listArray

10
INITIAL_SIZE

StringArrayList l = 

“F”
toReturn



Removing

● Do error checking for valid index; throw exception if 
index is invalid

● Copy the element at the index to be removed
● Start at the removal index
● Copy the element at index + 1 into the position index.
● Increment index and repeat until we’ve copied the 

last element in the List (lives at size - 1)
● Decrement size and return the removed element

l.remove(2)

6
size

“A”

“B”

“F”

“C”

“D”

“E”

“garbage”

“ignore”

“this”

“trash”

listArray

10
INITIAL_SIZE

StringArrayList l = 

“F”
toReturn



Removing

● Do error checking for valid index; throw exception if 
index is invalid

● Copy the element at the index to be removed
● Start at the removal index
● Copy the element at index + 1 into the position 

index.
● Increment index and repeat until we’ve copied the 

last element in the List (lives at size - 1)
● Decrement size and return the removed element

l.remove(2)

6
size

“A”

“B”

“C”

“C”

“D”

“E”

“garbage”

“ignore”

“this”

“trash”

listArray

10
INITIAL_SIZE

StringArrayList l = 

“F”
toReturn



Removing

● Do error checking for valid index; throw exception if 
index is invalid

● Copy the element at the index to be removed
● Start at the removal index
● Copy the element at index + 1 into the position 

index.
● Increment index and repeat until we’ve copied the 

last element in the List (lives at size - 1)
● Decrement size and return the removed element

l.remove(2)

6
size

“A”

“B”

“C”

“D”

“D”

“E”

“garbage”

“ignore”

“this”

“trash”

listArray

10
INITIAL_SIZE

StringArrayList l = 

“F”
toReturn



“F”
toReturn

Removing

● Do error checking for valid index; throw exception if 
index is invalid

● Copy the element at the index to be removed
● Start at the removal index
● Copy the element at index + 1 into the position 

index.
● Increment index and repeat until we’ve copied the 

last element in the List (lives at size - 1)
● Decrement size and return the removed element

l.remove(2)

6
size

“A”

“B”

“C”

“D”

“E”

“E”

“garbage”

“ignore”

“this”

“trash”

listArray

10
INITIAL_SIZE

StringArrayList l = 

“E” (at position 5) 
was the last String 
in the List since size 
== 6



Removing

● Do error checking for valid index; throw exception if 
index is invalid

● Copy the element at the index to be removed
● Start at the removal index
● Copy the element at index + 1 into the position index.
● Increment index and repeat until we’ve copied the 

last element in the List (lives at size - 1)
● Decrement size and return the removed element

l.remove(2)

5
size

“A”

“B”

“C”

“D”

“E”

“E”

“garbage”

“ignore”

“this”

“trash”

listArray

10
INITIAL_SIZE

StringArrayList l = 

“F”
toReturn



Removing

● Do error checking for valid index; throw exception if 
index is invalid

● Copy the element at the index to be removed
● Start at the removal index
● Copy the element at index + 1 into the position index.
● Increment index and repeat until we’ve copied the 

last element in the List (lives at size - 1)
● Decrement size and return the removed element

l.remove(2)

5
size

“A”

“B”

“C”

“D”

“E”

“E”

“garbage”

“ignore”

“this”

“trash”

listArray

10
INITIAL_SIZE

StringArrayList l = 

“F”
toReturn

It’s OK that there’s all this 
extra stuff in the array, 
since the size field tells us 
the region of the array we 
consider part of the list.



The Rest



We’ve done the hard part. The 
rest is easy because of the 
underlying array.



clear



get



contains



size & isEmpty




