
21sp_midterm1_solutions.md 6/4/2021

1 / 8

Spring 2021 Exam 1 Answer Key

True/False

�. int x = 4.0; causes an error. (TRUE)

�. double x = '4'; causes an error. (FALSE)

�. The following code compiles: (FALSE)

int i = 0;
if (3 < 21) {
 i++;
} else {
 i = i - 2;
} else if (10 > 3) {
 i = 1 / 9;
}

�. The following code compiles: (FALSE)

int i = 0;
if (3 < 21) {
 i++;
} else (10 < 3) {
 i = i - 2;
}
if (10 > 3) {
 i = 1 / 9;
}

�. The following code would compile if sequence has type String but NOT if sequence has type

String[] (TRUE)

for (int i = sequence.length(); i >= 0; i--) {
 System.out.println(sequence.charAt(i));
}

�. Running the following code causes a white rectangle to be visibly drawn over a black background.

(FALSE)

PennDraw.setPenColor(PennDraw.WHITE);
PennDraw.filledRectangle(0.5, 0.5, 0.1, 0.3);
PennDraw.clear(PennDraw.BLACK);

21sp_midterm1_solutions.md 6/4/2021

2 / 8

�. A loop control variable must be updated with every iteration of a while loop. (FALSE)

�. "c" + "d" evaluates to "cd". (TRUE)

�. For a given array, arr, arr[arr.length] evaluates to the last element in the array. (FALSE)

��. If a test case for a unit of code passes, that means that there are definitely no bugs in that unit of code.

(FALSE)

Short Fill in the Blank

�. What is the return type of this function returnsBoolean? _____ (double)

public static double returnsBoolean(int character) {
 int x = 3 - character;
 int y = 4;
 int str = x + y;
 return str;
}

�. The _____ (base case) in a recursive function, unlike the recursive case, does not make any more

recursive calls and instead allows Java to start clearing activation frames off of the call stack.

�. Look at the following code snippet:

char b = ____;
if ('q' < b) {
 if (b > 's') {
 System.out.print("R");
 } else {
 System.out.print("C");
 }
 if ('s' > b) {
 System.out.print("U");
 } else if ('s' == b) {
 System.out.print("T");
 }
} else if (b > 'q') {
 System.out.print("Z");
}

�. What value of b would cause the program to print "RT"? If there is none, type none. ____ (none)
�. What value of b would cause the program to print "CU"? If there is none, type none. ____ ('r')
�. What value of b would cause the program to print "CT"? If there is none, type none. ____ ('s')
�. What value of b would cause the program to print "Z"? If there is none, type none. ____ (none)

We accepted r and s in addition to 'r' and 's'.

21sp_midterm1_solutions.md 6/4/2021

3 / 8

Long Fill in the Blank

SEAS just decided that they want to fix their servers but broke everything even worse by wiping the entire

mainframe! Theyʼve asked you to help them write a function to reset the servers before all their data is lost!

This function is supposed to take a single command line argument of an integer, add 7 and divide it by 2. Then

this function will determine if the calculated number is a multiple of 3. If it is, it will print “Success”. Otherwise, it

will print “Try again”. Fill in the blanks so that this program compiles and runs as specified.

Question:

public static void main(String[] args) {

 // Convert first command line argument to an int
 int x = ____1____; //#1

 // Add 7 and divide by 2
 int y = ____2____; //#2

 // Figure out what message to print
 ___3__ message; //#3
 if (y __4___ 3 == _5__) { //#4, #5
 message = "Success";
 } ___6__ { //#6
 message = "Try again";
 }

 System.out.println(message);
}

Answer:

1 = Integer.parseInt(args[0])
2 = (x + 7) / 2
3 = String
4 = %
5 = 0
6 = else

Niven Numbers

A niven number is a number that is divisible by the sum of its digits. Write a function that recursively returns the

minimum niven number given an integer array, or returns Integer.MAX_VALUE.

You are given a function, sumDigits, which takes an integer input n and returns the sum of the digits in n. For
instance, sumDigits(12) = 3, sumDigits(35) = 8, sumDigits(2) = 2.

Now, please write the following two functions:

21sp_midterm1_solutions.md 6/4/2021

4 / 8

public static boolean isNiven(int n) which, using the above sumDigits function, returns a

boolean if a number is a Niven number: isNiven(7) = true, isNiven(35) = false [35 is not divisible by

8], isNiven(36) = true [36 is divisible by 9]

public static int minNivenNum(int[] arr, int index) which, using recursion, returns the

smallest Niven number, or the value Integer.MAX_VALUE if the array contains no niven numbers. For

instance, minNivenNum({15, 7, 10}, 0) = 7, minNivenNum({35, 36, 51}, 0) = 36.

isNiven

 public static boolean isNiven(int n) {
 return n % sumDigits(n) == 0;
}

minNivenNum

public static int minNivenNum(int[] arr, int i) {
 if (i == arr.length - 1){
 if (isNiven(arr[i])) {
 return arr[i];
 }
 return Integer.MAX_VALUE;
 }
 if (isNiven(arr[i])) {
 return Math.min(arr[i], minNivenNum(arr,i + 1));
 }
 return Math.min(Integer.MAX_VALUE, minNivenNum(arr,i + 1));
}

We accepted slightly longer implementations of isNiven, but it needed to use sumDigits to receive

full credit. minNivenNum could be implemented in a few different ways, this is just one solution.

Buggy Code

Oh no! The University s̓ Covid Test Registration System got a virus and is no longer sending a message to

students if they donʼt get their Covid tests!!!! Help Penn protect us by fixing the bugs in the below function (and

by socially distancing, wearing masks, staying inside whenever possible)!

The below function is meant to take in a Boolean array where each index is true if person i has taken their Covid

test. It returns a string containing all of the people who havenʼt taken their test (they will all get a strongly

worded email by Amy Gutmann very soon). If there are more than 5 people who havenʼt taken their Covid test,

we want to print to the console saying "AHHHHHHH".

There are seven lines containing bugs in the following function; however, a line may include more than one bug.

For each bug, identify the line number, provide a very brief explanation of the bug(s), and rewrite the line to fix

the bug.

21sp_midterm1_solutions.md 6/4/2021

5 / 8

Please include all errors in the following format, with each error on its own line: Line Number / Description of

error / Correct code (Example: Line 42 / Doesn't parse string x for integer / Integer.parseInt(x))

Question:

public static String covidTests(boolean people) {
 int count = 0;
 String nonTesters;
 int len = people.length();
 for (int i = 0, i < len, i++) {
 if (people[i]) {
 count++;
 nonTesters = nonTesters + i + ", ";
 }
 }
 if (count > 5) {
 System.out.println(AHHHHHHHHHHH);
 }
 return count;
}

Answer

There were actually 9 things we considered valid bugs in this code. You still needed to find just 7 of

them for full credit. Here is the corrected solution with the bugs commented on their corresponding

lines.

public static String covidTests(boolean[] people) { //BUG on []
 int count = 0;
 String nonTesters = ""; //BUG, need to initialize instead of leaving
null
 int len = people.length; //BUG on .length, BUG on missing ;
 for (int i = 0; i < len; i++) { // BUG on , ; loop
 if (!people[i]) { //BUG on !
 count++;
 nonTesters = nonTesters + i + ", ";
 }
 }
 if (count > 5) {
 System.out.println("AHHHHHHH"); // BUG missing quotes, BUG on
wrong number of Hs
 }
 return nonTesters; //BUG wrong return value
}

Dino Run

Dinosaur Game is a small browser game built into the Google Chrome web browser. In the game, you play as a

tiny T-Rex running along a desert landscape, bravely jumping over perilous obstacles. The game has an avid

21sp_midterm1_solutions.md 6/4/2021

6 / 8

following among our TAs, and so they'd like to start making their own custom versions. You've been tasked with

using your programming skills to help them build the courses that the dinosaur has to run along.

To build Dinosaur Game, we'll implement the courses as arrays of doubles. Each position in the array indicates

the height of an obstacle inside that position on the course. For example, we might have the following example

of an array: double[] course = {0, 0, 0, 0, 0, 0, 4.0, 0, 0, 0, 0, 0, 0, 0, 2.6, 2.8,
2.4, 0, 0, 0};

If we were to visualize this course, we'd see mostly flat ground with two major obstacles. We define an obstacle

as a consecutive sequence of cells with non-zero heights. The first obstacle starts and ends at course[6].
The next obstacle is wider, ranging from course[14] to course[16].

pullSliceFromCourse

To generate a never-ending track for the dinosaur to run on, we'll implement a function

pullSliceFromCourse that returns a copy of a sequence (called a slice) from an array of doubles course
starting at index start with a length of length. Keep in mind, a slice can be as small as one item.
pullSliceFromCourse should wrap around the input array course if necessary. Wrapping around means

that when start + length >= course.length, then we start pulling indices from the beginning of the

array after we hit the end of it. For example, if double[] course = {0, 0.3, 0.4, 0, 1.2}:

pullSliceFromCourse(0, 1, course) should return the array {0}
pullSliceFromCourse(2, 3, course) should return the array {0.4, 0, 1.2}
pullSliceFromCourse(2, 5, course) should return the array {0.4, 0, 1.2, 0, 0.3} (this

is a wraparound case, and the sequence of elements we pull is {course[2], course[3],
course[4], course[0], course[1]})
pullSliceFromCourse(0, course.length, course) should return an array identical to course.

You can assume that length > 0, 0 <= start < course.length, and course.length > 0.

SOLUTION:

public static double[] pullSliceFromCourse(int start, int length, double[]
course) {
 double[] slice = new double[length];
 for (int i = start; i < start + length; i++) {
 slice[i - start] = course[i % course.length];
 }
 return slice;
}

Other correct solutions could implement the mapping differently by letting the loop control variable

range from 0 -> length - 1.

checkValidSlice

We also need some way to check to make sure that a particular slice input is valid. If any obstacle is too long or

too tall, then the dinosaur will never be able to jump over them! We say that an obstacle is too long if it takes up

more than three consecutive indices. For example:

21sp_midterm1_solutions.md 6/4/2021

7 / 8

if double[] slice = {0, 0.3, 0.4, 0, 1.2, 0, 2.0, 2.0, 2.0},
checkValidSlice(slice) returns true. There are three obstacles, and they take up only two, one,
and three consecutive positions in the array.

if double[] slice = {0, 0.3, 0.4, 0.9, 1.2, 0, 2.0, 2.0, 2.0},
checkValidSlice(slice) returns false. There are only two obstacles this time, but the first takes
up four consecutive positions in the array.

We say that a slice contains an obstacle that's too tall if any of the heights in slice are greater than 4.0. For

example:

if double[] slice = {0.4, 0, 1.2}, checkValidSlice(slice) returns true.
if double[] slice = {4.0, 4.1, 0, 1.0, 1.1}, checkValidSlice(slice) returns false
because slice[1] is 4.1.

You can assume that slice.length > 0.

SOLUTION:

public boolean checkValidSlice(double[] slice) {
 int currentLength = 0;
 boolean inObstacle = false;
 for (int i = 0; i < slice.length; i++) {
 if (slice[i] > 4.0) {
 return false;
 }
 if (slice[i] > 0) {
 if (!inObstacle) {
 inObstacle = true;
 }
 currentLength++;
 if (currentLength > 3) {
 return false;
 }
 } else if (inObstacle) {
 inObstacle = false;
 currentLength = 0;
 }
 }
 return true;
}

This solution is far from the most elegant, but it helps to illustrate the constituent steps of the algorithm:

check each position, rule out too-tall obstacles, start counting the length of obstacles when

encountered, and rule out too-long obstacles.

generateNextPortion

Now that you've written the previous two functions, you can complete the following function

generateNextPortion(int length, double[] course) to generate the next randomized sequence

of the course for the T-Rex to run across. Specifically, generateNextPortion should call

21sp_midterm1_solutions.md 6/4/2021

8 / 8

pullSliceFromCourse to choose a slice of course of length length starting at a random starting index

chosen uniformly between 0 and course.length - 1, inclusive. The slice should be checked for its validity
using checkValidSlice. If the slice is a valid one, return it. Otherwise, if the slice is not valid, print
"default" and return an array of length length containing just 0s. Make sure to use the functions you
already wrote to do this: you will lose points if you do not.

SOLUTION

public static double[] generateNextPortion(int length, double[] course) {
 int start = (int) (Math.random() * course.length);
 double[] candidate = pullSliceFromCourse(start, length, course);
 if (checkValidSlice(candidate)) {
 return candidate;
 } else {
 System.out.println("default");
 return new double[length];
 }
}

