
CIS 110 Midterm I Mar 5, 2020

SOLUTIONS

1

1. Relaxation (3 points)

(a) Close your eyes

(b) Breathe in deeply through your nose

(c) Breathe out slowly through your mouth

(d) Repeat until you are told to start the exam

PennKey (letters, not numbers): 2

2. Variables, Types, and Iterations (10 points)

(a) What is the value of the following expression ’x’ - ’z’? (2 points)

(a) � 2

(b) � -2

(c) � -1

(d) � ’y’

(e) � This is not allowed in Java

(b) What is the only value of x that will make this expression true? (2 points)
x % 3 == 2 && x <= 9 && x > 2 && x / 6 == 1?

(a) � 5

(b) � 2

(c) � 6

(d) � 8

(e) � No such x exists

(c) Which of the following is the proper way to create a boolean array b of length 6? (2
points)

(a) � boolean[6] b = new boolean[];

(b) � boolean[] b = boolean[6];

(c) � boolean[] b = new boolean[6];

(d) � boolean[] = new boolean[6];

(e) � None of the above

(d) What is printed by the code below? (2 points)
int[] a = {9, 1, 7, 5, 3};
for (int i = 0; i < a.length; i++) {

if (a[i] > i) {
continue;

}
System.out.print(a[i] + " ");

}

(a) � 9 1 7 5 3

(b) � 1 7 3

(c) � 1 5 3

(d) � 9 7

(e) � None of the above

PennKey (letters, not numbers): 3

(e) Add the correct data type for the following variables. Pick only one if multiple data
types apply. (2 points)

boolean x = 6 % 2 != 3 /2;

String x = 4 + "4";

double x = 4 % 3 + 7.2 -1;

boolean x = 4 % 3 + 7.2 < 1 * 0.5;

3. Definitions, functions, recursion, String, and Iterations (22 points)

(a) This is a case of valid method overloading.
Yes � No � (2 points)

public static int imran(int x, int y) {...}
public static double imran(int a, int b) {...}

(b) This code snippet below prints The average on this exam is 88 out of 110.
Yes � No � (2 points)

String first = "The average on this exam is ";
String second = 8 + 8 + " out of " + 1 + 1 + 0;
System.out.println(first + second);

(c) A recursive function with return type double must have a return statement in the body
of its base case.
Yes � No � (2 points)

(d) A boolean variable can be implicitly cast (converted) into an integer variable.
Yes � No � (2 points)

(e) This is a case of valid method overloading.
Yes � No � (2 points)

public static int imran(int x, boolean y) {...}
public static int imran(boolean a, int b) {...}

(f) When passing an array variable to a function, a copy of the array is passed to the
functions. Any changes made to the array inside the function are not visible outside of
the function.
Yes � No � (2 points)

(g) A recursive function can only have one base case.
Yes � No � (2 points)

(h) Writing int[] arr = 1, 2, 3; is a valid way to initialize an array of integers of
length 3.
Yes � No � (2 points)

PennKey (letters, not numbers): 4

(i) All for loops can be written using a while loop.
Yes � No � (2 points)

(j) The code below will print i 5 times.
Yes � No � (2 points)

for (int i = 10; i > 0; i /= 2) {
System.out.println(i);

}

(k) Match each concept with the correct definition. Write the answer number next to the
concept definition answers.(2 points)

• Declaration statement: ____(3)______
• Variable: ____(2)______
• Assignment statement: ____(4)______
• Expression statement: ___(1)_______

(1) is a statement that evaluates to a value
(2) is a name that refers to a value
(3) associates a variable with a type
(4) associates a value with a variable

PennKey (letters, not numbers): 5

4. Debugging (12 points)
There are 6 errors in the code below including the command line call (in the interactions
pane in DrJava). Write the line number and a brief description (in your own words) of what
you think is causing the error.

public class BuggyAggregate{
/∗ a g g r e g a t e t a k e s i n a d oub l e a r r a y and a minimum v a l u e .
∗ I t f i n d s t h e sum o f a l l v a l u e s i n t h e d ou b l e a r r a y g r e a t e r than t h e
∗ minimum v a l u e .
∗ /

1. public static int aggregate(double[] arr, min){
2. int i = 0;
3. if(true){
4. sum = 0;
5. for(i; i < arr.length; i = ((i + 1 - 1) / 1) + 1){
6. if(input < arr[i]) {
7. sum += arr[i];
8. }
9. }
10. return sum;
11. }
12. }

13. public static void main(String[] args){
14. int input = args[0];
15. double[] arr = {0.0, 2.0, 3.0, 5.0, -10, ’a’, 1.0 / 0.0 };
16. String aggregated = aggregate(arr, input);
17. }
}

/ / ==== I n t e r a c t i o n Pane ====
18. java BuggyAggregate 2

Line number Error (description)

(1) _12________ _____ Missing return statement ________

(2) ____6_____ _____ Variable out of scope/not declared ______

(3) __4/5______ _____ Variable not declared ________

(4) ___16______ ____ Wrong assignment of return type __

(5) ___14______ _____ Data type mismatch ___________

(6) ____1______ _ Missing variable type in function declaration____

PennKey (letters, not numbers): 6

5. Recursion (24 points)

(a) Max vs Recursion (12 points)
Max wrote some code the other day, but he shook his computer too hard (Jules’s idea)
and many lines of code fell out of the DrJava file. He needs some help filling in the
blanks.
Max’s homework for CIS100 was to write a RECURSIVE FUNCTION that determines
whether or not a String is a subsequence of another String.
For instance:
"abcd" is a subsequence of "aebfcsd"
"" (empty string) is a subsequence of ""
""(empty string) is a subsequence of "abcde"
"abcde" is a subsequence of "abcde"
"abc" is a subsequence of "dabce"
"abc" is NOT a subsequence of "bca" "acbd" is NOT a subsequence of "aebfcsd"
Consider the following module definition

public static boolean isSubSequence(String substring, String search,
int subStringIndex, int searchIndex){

/ / base case f o r when we e x h a u s t t h e s u b s t r i n g s t r i n g

if(subStringIndex >= substring.length()){
return true;

}
/ / base case f o r when we e x h a u s t t h e s e a r c h s t r i n g

if(searchIndex >= search.length()){
return false;

}
/ / r e c u r s i v e c a l l : we found a match be tween s u b s t r i n g
/ / and t h e s e a r c h s t r i n g

if(substring.charAt(subStringIndex) == search.charAt(searchIndex)){

return isSubSequence(substring, search, subStringIndex + 1,
searchIndex + 1);

}
else { / / r e c u r s i v e c a l l

return isSubSequence(substring, search, subStringIndex,
searchIndex + 1);

}
}

PennKey (letters, not numbers): 7

(b) Tracing (12 points) Given the following recursive function:

public static void mystery(int x, int y) {
System.out.print(x + " " + y);
if (x < 0) {

mystery(-x, y);
} else if (y < 0) {

mystery(x, -y);
} else if (x < 10) {

System.out.print(" DONE ");
} else {

System.out.print("[");
mystery(x / 10 + y % 10, x % y);
System.out.print(x + y + "]");

}
}

i. What will be printed when running mystery(61, 22); (3 points)
61 22[8 17 DONE 83]

ii. What will be printed when running mystery(104, -43); (3 points)
104 -43104 43[13 18[9 13 DONE 31]147]

ii.a. How many recursive calls were executed (after the original method call)? (3
points)
3

ii.b List the parameters of each recursive call (3 points)
(104, 43) (13, 18) (9, 13)

PennKey (letters, not numbers): 8

6. Iteration (12 points)
After staying up all night answering piazza questions, Michael and the rest of his TA friends
were very tired when writing a program to demonstrate in recitation, and had a few bugs.

For example, given {1, 3, 4, 5, 6, 7, 8} and 3 as our inputs, we return the array:
{0, 7, 3} as 0 numbers are divisible by 0, 7 numbers are divisible by 1, and 3 numbers
are divisible by 2.

If given {12, 3, 5, 15, 5} and 6, we return {0, 5, 1, 3, 1, 3}.

The program takes in an integer array, and an integer which represents the length of our
return array. For each of the return array’s indices, we count how many numbers in the
original array are divisible by that index. We assume that 0 numbers are divisible by 0.

Can you help them fix the code before they have to show it during recitation (Fill in the
blanks)?

public static int[] divisibleArray(int[] arr, int outLength) {

int[] output = new int[outLength];
output[0] = 0;
for(int i = 1; i < output.length; i++) {

for(int j = 0; j < arr.length; j++) {

if(arr[j] % i == 0) {

output[i]++ ;
}

}
}
return output;

}

PennKey (letters, not numbers): 9

7. Sorting: Insertion Sort Puzzle(12 points)
You just learned about sorting and you excitedly copied the insertion sort code from the
lecture. But some people who are jealous of you jumbled up all the lines of code.

Write the full code in the space given below. You may not use any lines/code other than what
is given to you. However, you may use any number of opening/closing curly braces ({}).

public static void insSort(double[] A)
(1) for (int j=i; j>0; j--)
(2) A[j-1] = tmp;
(3) for (int i=1; i<A.length; i++)
(4) A[j] = A[j-1];
(5) double tmp = A[j];
(6) if(A[j] < (A[j-1])

}

public static void insSort(double[] A){
for (int i=1; i<A.length; i++){

for (int j=i; j>0; j--){
if(A[j] < (A[j-1]){

double tmp = A[j]; A
A[j] = A[j-1];
A[j-1] = tmp;

}
}

}
}

PennKey (letters, not numbers): 10

8. Coding (15 points)
Two of the Head TAs were wondering how many of the guests to the CIS110 party have
names that start with specific letters. Specifically, one of the head TAs thinks that more of the
guests will have names starting with the letters ’e’, ’r’, ’i’, or ’c’, but the other one
thinks more of the guests will have names starting with ’f’, ’o’, ’u’, or ’h’. Given a
String array containing names of the guests, write a function ericVsFouh(String[] guestList)

that returns true if there are strictly more names in guestList starting with ’e’, ’r’, ’i’, or ’c’

than names starting with ’f’, ’o’, ’u’, or ’h’.

You may assume that all Strings in guestList are lowercase and non-null.

Hint: You may find the function String.charAt(x) useful. Your function does not need
to be recursive
Examples:

If guestList is {"hanna", "ryan", "eddie", "alice"},

ericVsFouh(String[] guestList) should return true as 2 names start with ’e’, ’r’, ’i’, or ’c’

and 1 names starts with ’f’, ’o’, ’u’, or ’h’.

If guestList is {"olivia", "bob", "isabella", "peter"},

ericVsFouh(String[] guestList) should return false as only 1 name starts

with ’e’, ’r’, ’i’, or ’c’ and 1 name start with ’f’, ’o’, ’u’, or ’h’.

public static boolean ericVsFouh(String[] guestList) {
int ericCount = 0;
int fouhCount = 0;
for (int i = 0; i < guestList.length; i++) {

char c = guestList[i].charAt(0);
if (c == ’e’ || c == ’r’ || c == ’i’ || c == ’c’) {

ericCount++;
} else if (c == ’f’ || c == ’o’ || c == ’u’ || c == ’f’) {

fouhCount++;
}

}
return ericCount > fouhCount;

}

PennKey (letters, not numbers): 11

Feel free to use this page as scratch paper. (If you write anything here that you want us to
grade, make sure you clearly indicate this in the answer area earlier in the exam.)

PennKey (letters, not numbers): 12

