
CIS 110 Recitation
Linked Lists & Interfaces

July 31 2017



Agenda + Logistics
● Today:

○ Interfaces
○ Linked Lists

● Any requests?
○ Homework 4?
○ Lecture material?

● HW4 due Wednesday
● Final Exam Thursday



Linked Lists



Overview 

● Linked data structure 
● Made up of Nodes
● A Node stores two things:

○ 1) Data (can be anything)
○ 2) A pointer to the next Node in the list 

● The last Node points to null 
● Note it is a recursive structure! 

○ Every Node is the start of a linked list

● Generally we keep track of the head (and maybe tail) of the list
○ We can access every other Node by following the pointers from the head

TIP: Draw it out!



Arrays

● singly typed (only one type of data)
● statically sized
● each index only has a value
● constant-time item access - O(1)

Linked Lists

● singly typed (only one type of data)
● dynamically sized
● each node stores data & next pointer

○ More memory used than an array

● linear-time item access - O(n)

Applications
When would we want to use an array or linked list in 
the following situations?

● grocery list 
● office hour queue 
● arcade game’s high score 
● list of students currently enrolled in 110



Looping and Linked Lists

● We only have access to the head of a list, so how do we access other things?
○ Answer: a loop!
○ Note that loop variables can be Node’s, they don’t have to be ints

● Tracing is very important here! 
○ Let’s try trace the loop below
○ Again, draw it out!

● Can manipulate the ending conditions and the update as needed 

for (Node current = first; current != null; current = current.next) {
System.out.println(current.data);

}



Exercise

Create a LinkedList that stores doubles

Steps:

1.) create a private Node class

2.) write constructor, method signatures, determine field variables, write test cases

3.) fill in functions

4.) test LinkedList



Recursion and Linked Lists

● Recall linked lists are a recursive structure! 
○ A linked list of size n is made up of a Node and a linked list of size n-1

● This means we can implement functions recursively as well as iteratively
● Tips for recursion:

○ Remember to have a base case and recursive call
○ Try work it out on a simple case first
○ Test your solution! 




