CIS 110 Recitation

Linked Lists & Interfaces

July 31 2017

Agenda + Logistics
e Today:

o Interfaces
o Linked Lists

e Anyrequests?
o Homework 47?
o Lecture material?

e HW4 due Wednesday
e Final Exam Thursday

Linked Lists

Head

Overview |_)

01 | —> 02 | —> 03 | —> 04 | —r>nuu

e Linked data structure
e Made up of Nodes

e A Node stores two things:
o 1) Data (can be anything) TIP: Draw it out!
o 2) A pointer to the next Node in the list

e The last Node points to null
e Note itis a recursive structure!
o Every Node is the start of a linked list

e Generally we keep track of the head (and maybe tail) of the list
o We can access every other Node by following the pointers from the head

Arrays

Linked Lists

singly typed (only one type of data) e singly typed (only one type of data)

statically sized
each index only has a value

e dynamically sized
® cach node stores data & next pointer

constant-time item access - O(1) © More memory used than an array

® linear-time item access - O(n)

Applications

When would we want to use an array or linked list in
the following situations?

grocery list

office hour queue
arcade game’s high score
list of students currently enrolled in 110

Looping and Linked Lists

e We only have access to the head of a list, so how do we access other things?
o Answer: a loop!
o Note that loop variables can be Node’s, they don’t have to be ints
e Tracing is very important herel
o Let’s try trace the loop below
o Again, draw it out!

e Can manipulate the ending conditions and the update as needed

for (Node current = first; current != null; current = current.next) {
System.out.println (current.data);

}

Exercise

Create a LinkedList that stores doubles
Steps:
1.) create a private Node class

2.) write constructor, method signatures, determine field variables, write test cases

3.) fill in functions

4.) test LinkedList

Recursion and Linked Lists

e Recall linked lists are a recursive structure!

o Alinked list of size n is made up of a Node and a linked list of size n-1
e This means we can implement functions recursively as well as iteratively
e Tips for recursion:

o Remember to have a base case and recursive call

o Try work it out on a simple case first
o Test your solution!

