
Mergesort and Analysis
Cis 110 Recitation 7/27/17

Big-Oh Analysis
● Describes the growth rate of a function for input size N.

○ Assume that all ‘simple’ operations (such as arithmetic operation or printing) take a constant time

step (O(1)).

○ Given a generalized integer N, how much time will it take to run an algorithm?

○ We care only about the largest term and ignore the smaller terms.

○ i. e. , 2N^2 + 5N + 3 = O(N^2)

● Use to compare the efficiency of two algorithms.

○ is not a specific number, therefore making the algorithm analysis general enough to do so.

Big-Oh Analysis: Selection Sort

● Input: array length N

● For each time the outer for-loop runs (total: N - 1 times), the inner for-loop runs

N - 2, N- 3, …, 1 times, respectively. 1+ … + (N-2) = O(N^2).

Mergesort
● A ‘Divide-and-Conquer’ algorithm:

○ Divide ordered list (such as an array) into two halves.

○ Recursively sort each half.

○ Merge two halves to make a whole.

● Analysis:

○ For an array of size N, merge sort is a O(N log N)

algorithm.

● Takeaway:

○ The intuitive solution is not always the most effective

one.

Mergesort and Big-Oh Analysis
● Selection Sort: O(N^2) (7/26 lecture slides pg. 16)

● Insertion Sort: (slides pg. 68-70)

○ Best case (array is already sorted): O(N)

○ Worst case (array elements are arranged in descending order): O(N^2)

○ Average case: O(N^2)

● MergeSort: O(N log N)

○ Since log(N) < N for all non-negative integers N, we know that N log N < N^2

○ Takeaway: The most intuitive solution is not always the most efficient solution.

Coding Exercise (Pt. 1): Mergesort on objects
Create a Person class, where the constructor takes in a firstName (String), lastName

(String), and age (int) in that order.

● Make the fields (same as constructor parameters) private and write the

corresponding methods to get the fields: getFirstName, getLastName, and getAge.

● void sort(Person[] arr): implement mergesort by to sort by last names.

○ You will need String’s compareTo(String s) method, which compares two strings lexicographically.

○ s1.compareTo(s2) returns a int value that is:

■ less than 0 if s1 would come before s2 (i.e. (“string1”.compareTo(“string2”)),

■ 0 if s1 and s2 are equal (i.e. (“example”.compareTo(“example”)),

■ greater than 0 if s2 comes before s1 (i.e. (“string2”.compareTo(“string1”)), .

Coding Exercise (Pt. 2): Mergesort on objects
Sometimes, it is not enough to sort by last name as it results in ties. Break the ties

using the following rules:

● If two Person objects have the same last name, break tie using first name.

● If two Person objects have the same last and first names, break tie using age

(youngest first).

Coding Exercise (Pt. 3): involved example for concept review
Try this challenge on your own. Create a Roster class with the field roster (a Person array of size

capacity) and currentSize. Write the following methods:

● boolean isFull(): return true if roster is full, false otherwise.

● boolean isEmpty(): return true if roster is empty, false otherwise.

● int currentSize(): returns the number of people in roster.

● void add(Person p): add p to end of the roster if it is not already full.

● void remove(): remove the Person object at the end of the roster, if such element exists.

‘Remove’ an object by setting its reference to null.

● Person getPerson(int index): return Person at given index (starting at 0).

● void sort(Roster arr): implement mergesort by to sort by last names.

