Unit Testing Code

Testing a unit of code

int findMax (int a, int b, int c¢) {

if (a > b) {
if (a > c¢) return a;
else return c;

}

else |
if (b > ¢) return b;
else return a; // should be c

Testing a unit of code

int findMax (int a, int b, int c¢) {

if (a > b) {
if (a > c¢) return a;
else return c;

}

else |
if (b > ¢) return b;
else return a; // should be c

}

|dentify:
1. INPUT, possibly including any state variables

2. Generate, manually or through means OUTSIDE of
your code an EXPECTED OUTPUT
3. Executed code to get an ACTUAL OUTPUT

Test Case

An Input
An EXPECTED output
And an ACTUAL output.

If an expected output doesn’t match the actual
output, one of the two is wrong

Usually, but not necessarily, the actual output is wrong

Testing a unit of code

int findMax (int a, int b, int c¢) {
if (a > b) {
if (a > c¢) return a;
else return c;

}

else |
if (b > ¢) return b;
else return a; // should be c

Test Case #1: Input = {3,2,1}; Expected output = 3; Actual output =3
PASS!!I
Test Case #2: Input = {1,2,3}; Expected output = 3; Actual output =1

FAIL!!

Testing is like potato chips

e They both contribute to my overall poor health

 Additionally, you can’t have just one

 One test passing may have no bearing on another test
passing

Why does Test 1 Pass and Not Test 2

e Test 1 does not cover/execute the underlying
FAULT in the code.

e A fault is a static defect in the code, or “bug”

Test Case #1: Input = {3,2,1}; Expected output = 3; Actual output =3
PASS!!I
Test Case #2: Input = {1,2,3}; Expected output = 3; Actual output =1

FAIL!!

JUnit

 An automatic testing tool that allows you to write
tests once and continue to use them again and
again

* In this way, if you change something later that
breaks code that worked previously, you will
immediately know because your tests fail

e Technically not built into Java

Import Statements

Start all Test files with the two important
statements below.

@ Counterjava fl CounterTestjava X

: org.junit.Assert.*;

org.junit.*;

Writing a test

@Test //This must be before every test function
public void testFindMax0() { //Notice — no static keyword

//inputs
inta=3;
intb=2;
intc=1;

//expected — generated manually

int expected = 3;

//actual — Execute the code with the above input

int actual = max(a, b, c);

//Assertion — if the two things below aren’t equal, the

// test fails. Always put expected argument first.
assertEquals(expected, actual).

This is not

Writ optional!

‘@Test //thi st be before every test function
public void testFindMax0() { //Notice — no static keyword
//inputs
inta=3;
intb=2;
intc=1;
//expected — generated manually
int expected = 3;
//actual — Execute the code with the above input
int actual = max(a, b, c);
//Assertion — if the two things below aren’t equal, the
// test fails. Always put expected argument first.
| assertEquals(expected, actual).

This is not

Write optional!

‘@Test \

public void testFindMaxO() {
//have a error message if test fails

String message = “ERROR: findMax(3,2,1) returned an
incorrect result”;

int expected = 3; //you manually find and enter this
int actual = findMax(3,2,1); //generated by your code
| assertEquals(message, expected, actual);|//the test

What a test failing means

e A test failing doesn’t always mean the code has a
bug

e The test could be written wrong (that is, the test writer
came up with the wrong expected output)

e A test passing doesn’t mean there is no bug
* The test code not execute a buggy statement

* The test could execute a buggy statement in a way that a
failure doesn’t manifest

Consider these test cases

int findMax (int a, int b, int c¢) {
if (a > b) {
if (a > c¢) return a;
else return c;

}

else |
if (b > ¢) return b;
else return a; // should be c

Test Case #3: Input = {1,1,1}; Expected output = 1; Actual output =1
PASS!!I
Test Case #4: Input = {4,5,6}; Expected output = 4; Actual output =4

PASS!!!

Consider these test cases

e Covering the fault doesn’t mean your test will fail.
 Your test could be erroneous!

Test Case #3: Input = {1,1,1}; Expected output = 1; Actual output =1
PASS!!I
Test Case #4: Input = {4,5,6}; Expected output = 4; Actual output =4

PASS!!!

False positive

e If your test is erroneous, you could get a false
positive.

e This test DOESN”T cover the fault, but still fails, due
to erroneous testing

Test Case #4: Input = {9,8,7}; Expected output = 7; Actual output=9

FAIL!!]

Testing Strategies

 Exhaustive Testing
e Attempt a test with every possible input
* Not even remotely feasible in most cases

e Random Testing
e Select random inputs

e Likely to miss narrow inputs that are special cases
(example, dividing by zero)

Testing Strategies

* Black-box Testing

e Select inputs based on the specification space
e “Assume the code can’t be seen”
 We focus on this one

e White-box Testing
e Select inputs based on the code itself
e Have every line of code covered by at least one test

The need for automatic testing

e Automatic testing (such as JUnit) allows for testing
rapidly after each update

 If an update breaks a test, a commit can be rejected

* Ensure you don’t break something that already
worked

* Not fool proof

Black-Box Testing Exercise

e Write tests based on the specification.

 |dentify “spaces” of solutions that should behave
similarly

e Equivalence partitioning (spaces that “behave” the
same)

 |dentify “edge cases”

Example, Power Function

 What are the spaces of inputs?
e What are the edge cases?

e What tests should we write?

Additional In-Class Exercise

public double calculateBill (

INt credits, double overdue,
boolean exempt)

e total is:
e 8000/credit if less than 3 credits
* 6000/credit if 3-6 credits
e 5500/credit if more than 6 credits

* increase total by 10% if overdue is more than 2000
* increase overdue by 10% if exempt is false
e return sum of total and overdue

Black-Box Testing

e |f we have a test for 4 credits, do we also need to
test 57

e |f we have a test for 8 credits, do we also need to
test 107

e |f we have a test for overdue = 2500, do we need
one for 30007

Equivalence Partitioning

e Assumption: “Similar” inputs, relative to the spec,
behave similarly.

* Therefore, divide the space of inputs into similar
groups and pick a representative example

	Unit Testing Code
	Testing a unit of code
	Testing a unit of code
	Test Case
	Testing a unit of code
	Testing is like potato chips
	Why does Test 1 Pass and Not Test 2
	JUnit
	Import Statements
	Writing a test
	Writing a test
	Write a test
	What a test failing means
	Consider these test cases
	Consider these test cases
	False positive
	Testing Strategies
	Testing Strategies
	The need for automatic testing
	Black-Box Testing Exercise
	Example, Power Function
	Additional In-Class Exercise
	Black-Box Testing
	Equivalence Partitioning

