
Unit Testing Code

Testing a unit of code

Testing a unit of code

Identify:
1. INPUT, possibly including any state variables
2. Generate, manually or through means OUTSIDE of

your code an EXPECTED OUTPUT
3. Executed code to get an ACTUAL OUTPUT

Test Case

• An Input
• An EXPECTED output
• And an ACTUAL output.

• If an expected output doesn’t match the actual
output, one of the two is wrong
• Usually, but not necessarily, the actual output is wrong

Testing a unit of code

Test Case #1: Input = {3,2,1}; Expected output = 3; Actual output = 3

Test Case #2: Input = {1,2,3}; Expected output = 3; Actual output = 1

PASS!!!

FAIL!!!

Testing is like potato chips

• They both contribute to my overall poor health

• Additionally, you can’t have just one
• One test passing may have no bearing on another test

passing

Why does Test 1 Pass and Not Test 2

• Test 1 does not cover/execute the underlying
FAULT in the code.

• A fault is a static defect in the code, or “bug”

Test Case #1: Input = {3,2,1}; Expected output = 3; Actual output = 3

Test Case #2: Input = {1,2,3}; Expected output = 3; Actual output = 1

PASS!!!

FAIL!!!

JUnit

• An automatic testing tool that allows you to write
tests once and continue to use them again and
again

• In this way, if you change something later that
breaks code that worked previously, you will
immediately know because your tests fail

• Technically not built into Java

Import Statements
Start all Test files with the two important
statements below.

Writing a test
@Test //This must be before every test function
public void testFindMax0() { //Notice – no static keyword

//inputs
int a = 3;
int b = 2;
int c = 1;
//expected – generated manually
int expected = 3;
//actual – Execute the code with the above input
int actual = max(a, b, c);
//Assertion – if the two things below aren’t equal, the
// test fails. Always put expected argument first.
assertEquals(expected, actual).

}

Writing a test
@Test //This must be before every test function
public void testFindMax0() { //Notice – no static keyword

//inputs
int a = 3;
int b = 2;
int c = 1;
//expected – generated manually
int expected = 3;
//actual – Execute the code with the above input
int actual = max(a, b, c);
//Assertion – if the two things below aren’t equal, the
// test fails. Always put expected argument first.
assertEquals(expected, actual).

}

This is not
optional!

Write a test

@Test
public void testFindMax0() {

//have a error message if test fails
String message = “ERROR: findMax(3,2,1) returned an

incorrect result”;
int expected = 3; //you manually find and enter this
int actual = findMax(3,2,1); //generated by your code
assertEquals(message, expected, actual); //the test

}

This is not
optional!

What a test failing means

• A test failing doesn’t always mean the code has a
bug

• The test could be written wrong (that is, the test writer
came up with the wrong expected output)

• A test passing doesn’t mean there is no bug
• The test code not execute a buggy statement
• The test could execute a buggy statement in a way that a

failure doesn’t manifest

Consider these test cases

Test Case #3: Input = {1,1,1}; Expected output = 1; Actual output = 1

Test Case #4: Input = {4,5,6}; Expected output = 4; Actual output = 4

PASS!!!

PASS!!!

Consider these test cases

• Covering the fault doesn’t mean your test will fail.
• Your test could be erroneous!

Test Case #3: Input = {1,1,1}; Expected output = 1; Actual output = 1

Test Case #4: Input = {4,5,6}; Expected output = 4; Actual output = 4

PASS!!!

PASS!!!

False positive

• If your test is erroneous, you could get a false
positive.

• This test DOESN”T cover the fault, but still fails, due
to erroneous testing

Test Case #4: Input = {9,8,7}; Expected output = 7; Actual output = 9

FAIL!!!

Testing Strategies

• Exhaustive Testing
• Attempt a test with every possible input
• Not even remotely feasible in most cases

• Random Testing
• Select random inputs
• Likely to miss narrow inputs that are special cases

(example, dividing by zero)

Testing Strategies

• Black-box Testing
• Select inputs based on the specification space
• “Assume the code can’t be seen”
• We focus on this one

• White-box Testing
• Select inputs based on the code itself
• Have every line of code covered by at least one test

The need for automatic testing

• Automatic testing (such as JUnit) allows for testing
rapidly after each update

• If an update breaks a test, a commit can be rejected

• Ensure you don’t break something that already
worked

• Not fool proof

Black-Box Testing Exercise

• Write tests based on the specification.

• Identify “spaces” of solutions that should behave
similarly

• Equivalence partitioning (spaces that “behave” the
same)

• Identify “edge cases”

Example, Power Function

• What are the spaces of inputs?

• What are the edge cases?

• What tests should we write?

Additional In-Class Exercise

public double calculateBill (
int credits, double overdue,
boolean exempt)

• total is:
• 8000/credit if less than 3 credits
• 6000/credit if 3-6 credits
• 5500/credit if more than 6 credits

• increase total by 10% if overdue is more than 2000
• increase overdue by 10% if exempt is false
• return sum of total and overdue

Black-Box Testing

• If we have a test for 4 credits, do we also need to
test 5?

• If we have a test for 8 credits, do we also need to
test 10?

• If we have a test for overdue = 2500, do we need
one for 3000?

Equivalence Partitioning

• Assumption: “Similar” inputs, relative to the spec,
behave similarly.

• Therefore, divide the space of inputs into similar
groups and pick a representative example

	Unit Testing Code
	Testing a unit of code
	Testing a unit of code
	Test Case
	Testing a unit of code
	Testing is like potato chips
	Why does Test 1 Pass and Not Test 2
	JUnit
	Import Statements
	Writing a test
	Writing a test
	Write a test
	What a test failing means
	Consider these test cases
	Consider these test cases
	False positive
	Testing Strategies
	Testing Strategies
	The need for automatic testing
	Black-Box Testing Exercise
	Example, Power Function
	Additional In-Class Exercise
	Black-Box Testing
	Equivalence Partitioning

