
3.1 Objects

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 7/28/2015 3:46:55 PM

2

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

any program you might want to write

conditionals and loops

Math text I/O

assignment statements primitive data types

create your own

data types

3

Data Types

Data Types: set of values and associated operations

Primitive Types:
• values map directly to the machine representation

• ops map directly to machine instructions

We want to write programs that handle other data types
 colors, piĐtures, striŶgs, iŶput streaŵs, …

 complex Ŷuŵďers, ǀeĐtors, ŵatriĐes, polyŶoŵials, …
 points, polygoŶs, Đharged partiĐles, Đelestial ďodies, …

Operations Set of Values Data Type

not, and, or, xor true, false boolean

double

int

add, subtract, multiply any of 264 possible reals

add, subtract, multiply -231 to 231 - 1

4

Objects

Objects: represent values and operations for more

complex data types
– Object variables are called fields

– Object operations are called methods

Objects are said to encapsulate (hide) its detail

– How an object is implemented is not important

– What it does is important

Objects can be created and referenced with variables

length, substring, compare sequence of characters String

Operations Set of Values Data Type

get red component, brighten 24 bits Color

Picture get/set color of pixel (i, j) 2D array of colors

5

Programming paradigm that views a program as a

collection of interacting objects
 In contrast, the conventional model views the program as a list

of tasks (subroutines or functions)

We͛ll talk aďout hoǁ to:
 Create your own data types (set of values and operations)

 Use objects in your programs (e.g., manipulate objects)

Why would I want to use objects in my programs?
 Simplify your code

 Make your code easier to modify

 Share an object with a friend

Object-Oriented Programming

The String Object

Fields:

???

Methods:
 boolean equals(String anotherString)

 int length()

 String substring(int beginIdx, int endIdx)

 String toLowerCase()

 String toUpperCase()

 ...

http://download.oracle.com/javase/1.4.2/docs/api/

7

Constructors and Methods

To construct a new object:
 Use keyword new (to invoke constructor)

 Use name of data type (to specify which type of object)

with associated parameters for the constructor

To apply an operation:
 Use name of object (to specify which object)

 Use the dot operator (to access a member of the object)

 Use the name of the method (to specify which operation)

Defining Your Own Objects with Classes

• Classes are blueprints or prototypes for new objects

• Classes define all field and method declarations

… ǁhiĐh are repeated for eaĐh Ŷeǁ oďjeĐt Đreated

• Using a class to create a new object is called

instantiating an object

… ĐreatiŶg a Ŷeǁ oďjeĐt instance of the class

• Classes often model real-world items

Constructors

• A special method that is used in order to instantiate

an object

 “triŶg s = Ŷeǁ “triŶg;͞Hello World͟Ϳ;

• If we made a Person class where you could create

people with different names then you create a new

person object by doing

 PersoŶ p = Ŷeǁ PersoŶ;͞Arvind͟Ϳ;

• Rule – Constructor has the same name as the name

of the class.

10

Bouncing Ball Object

• What do we want to have the ball do?

 (i.e., what methods should it have?)

• What initial parameters should we

specify in the constructor?

11

Bouncing Ball Object

• What do we want to have the ball do?

 (i.e., what methods should it have?)

– ǀoid draǁ;Ϳ : ͞Ball, draǁ thyself!͟

– ǀoid update;Ϳ : siŵulate the ďall͛s ŵotioŶ

• What initial parameters should we

specify in the constructor?

12

Bouncing Ball Object

• What do we want to have the ball do?

 (i.e., what methods should it have?)

– ǀoid draǁ;Ϳ : ͞Ball, draǁ thyself!͟

– ǀoid update;Ϳ : siŵulate the ďall͛s ŵotioŶ

• What initial parameters should we

specify in the constructor?

– Ball() : creates a ball at a random location

– Ball (int x, int y) : creates a ball at (x, y)

These ŵethods ĐoŶstitute the ďall s͛ API
(Application Programming Interface)

13

Bouncing Ball Object

Given only the API, we can use the object in a program:

Ball

Ball()

Ball(int x, int y)

void draw()

void update()

static Ball[] balls = new Ball[20];

public class BouncingBallStdDraw {

 public static void main(String[] args) {

 for (int i=0; i< balls.length; i++){

 balls[i] = new Ball();

 }

 for (int i =0; i <300; i++){

 StdDraw.clear();

 for (int j=0; j < balls.length; j++)

 balls[j].draw();

 StdDraw.show(200);

 for (int j=0; j< balls.length; j++)

 balls[j].update();

 }

 }
}

Declare

an array
of Balls.

New objects are

created with the

new keyword.

Methods of objects stored in the array

are accessed using dot-notation.

14

Where to Write Your Class

• Generally put each class in a separate file

• A class named MyClass is expected to be found in

a file named MyClass.java

• Declare the class to be public

• This Đlass ĐaŶ Ŷoǁ ďe used as a ͚data type͛ iŶ your
other programs

Comparing Declarations and Initializers

int i;

int j = 3;

float f = 0.1;

float[] f2 = new float[20];

String s1 = "abc";

String s2 = new String("abc");

Ball b = new Ball();

Ball[] b2 = new Ball[20];

for (int i = 0; i < b2.length; i++) {

 b2[i] = new Ball();

}

16

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0

C1 0

C2 0

C3 0

C4 0

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

addr value

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

17

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0

C1 0

C2 0

C3 0

C4 0

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

C0

registers

0.50

0.50

0.05

0.01

0.03

addr value

b1

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

18

0.50

0.50

0.05

0.01
Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0

C1

C2

C3

C4 0.03

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

C0

registers

0.55

0.51

addr value

b1

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

19

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0.55

C1 0.51

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

C0

registers

0.60

0.52

addr value

b1

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

20

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0.60

C1 0.52

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

C0

registers

C7 0.50

0.50

0.07

0.04

0.04

addr value

b1

b2

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

21

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0.60

C1 0.52

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0.50

C8 0.50

C9 0.07

CA 0.04

CB 0.04

CC 0

C7

registers

C0

0.57

0.54

addr value

b1

b2

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

22

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0.60

C1 0.52

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0.57

C8 0.54

C9 0.07

CA 0.04

CB 0.04

CC 0

C0

registers

C0

addr value

b1

b2

Object References

C7 – CB can be reused for other

variables. Known as garbage

collection in java.

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

23

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0

addr

0.60

value

C1 0.52

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0.57

C8 0.54

C9 0.07

CA 0.04

CB 0.04

CC 0

C0

b1

registers

C0

b2

0.65

0.53

Object References

Moving b2 also moves b1 since

they are aliases that reference

the same object.

24

Pass-By-Value

Arguments to methods are always passed by value.

 Primitive types: passes copy of value of actual parameter.

 Objects: passes copy of reference to actual parameter.

public class PassByValue {

 static void update(int a, int[] b, String c) {

 a = 7;

 b[3] = 7;

 c = "seven";

 StdOut.println(a + " " + b[3] + " " + c);

 }

 public static void main(String[] args) {

 int a = 3;

 int[] b = { 0, 1, 2, 3, 4, 5 };

 String c = "three";

 StdOut.println(a + " " + b[3] + " " + c);

 update(a, b, c);

 StdOut.println(a + " " + b[3] + " " + c);

 }

}
% java PassByValue

3 3 three

7 7 seven

3 7 three

25 25

Encapsulation

26

Access Control

• Encapsulation is implemented using access
control.
– Separates interface from implementation

– Provides a boundary for the client programmer

• Visible parts of the class (the interface)
– can be used and/or changed by the client

programmer.

• Hidden parts of the class (the implementation)
– Can be changed by the class creator without

impacting any of the client programmer’s code

– Can’t be corrupted by the client programmer

27

Access Control in Java

• Visibility modifiers provide access
control to instance variables and methods.

– public visibility - accessible by everyone, in
particular the client programmer

• A class’ interface is defined by its public methods.

– private visibility - accessible only by the
methods within the class

– Two others—protected and package—
outside the scope of this course

28

Good Programming Practice

• Combine methods and data in a single class

• Label all instance variables as private for
information hiding
– The class has complete control over how/when/if

the instance variables are changed

– Fields primarily support class behavior

• Minimize the class’ public interface

• Public interface should offer only those
methods that a client needs in order to
‘interact’ with the class

29

Using this

You can think of this as an implicit private reference to
the current instance.

Note that b1.year and b1.this.year refer to the same field

Date

=== public ====

Date()

int getYear()

 ...

=== private ===

int month

int day

int year

Date this

 ...

main memory
(64-bit machine)

C0 1

C1 1

C2 1900

C3 C0

C4 ?

C5 ?

C6 ?

registers

C0

addr value b1

month

day

year

 Date b1 = new Date();

this

30

public class Date {

 private int month; // 1 - 12

 private int day; // 1 - 31

 private int year; // 4 digits

 // no-argument constructor

 public Date() {
 month = 1;

 day = 1;

 year = 1900;

 }

 // alternative constructor

 public Date(int month, int day, int year) {
 this.month = month;

 this.day = day;

 this.year = year;

 }

 ...

}

Overloaded Constructors

// 1 Jan 1900

Date d1 = new Date();

// 30 Oct 2013

Date d2 = new Date(10, 30, 2013);

Note the usage of the this

keyword to avoid the

obvious ambiguity

31

Accessors & Mutator

• Class behavior may allow access to, or
modification of, individual private instance
variables.

• Accessor method
– retrieves the value of a private instance variable
– conventional to start the method name with get

• Mutator method
– changes the value of a private instance variable
– conventional to start the name of the method with set

• Gives the client program indirect access to the
instance variables.

32

More Accessors and Mutators

Question: Doesn’t the use of accessors and
mutators defeat the purpose of making the
instance variables private?

Answer: No

• The class implementer decides which instance
variables will have accessors.

• Mutators can:
– validate the new value of the instance variable, and

– decide whether or not to actually make the requested
change.

33

Accessor and Mutator Example
public class Date {

 private int month; // 1 - 12

 private int day; // 1 - 31

 private int year; // 4-digit year

 // accessors return the value of private data

 public int getMonth() { return month; }

 // mutators can validate the new value

 public boolean setMonth(int month) {

 if (1 <= month && month <= 12) {

 this.month = month;

 return true;

 }

 else // this is an invalid month

 return false;

 }

 }

 // rest of class definition follows

}

34

Accessor/Mutator Caution

• In general you should NOT provide

accessors and mutators for all private
instance variables.

– Recall that the principle of encapsulation is

best served with a limited class interface.

35

Private Methods

• Methods may be private.

– Cannot be invoked by a client program

– Can only be called by other methods within

the same class definition

– Most commonly used as 䇾helper䇿 methods to
support top-down implementation of a public

method

36

Private Method Example
public class Date {

 private int month; // 1 - 12

 private int day; // 1 - 31

 private int year; // 4-digit year

 // accessors return the value of private data

 public int getMonth() { return month; }

 // mutators can validate the new value

 public boolean setMonth(int month) {

 if (isValidMonth(month)) {

 this.month = month;

 return true;

 }

 else // this is an invalid month

 return false;

 }

 // helper method - internal use only

 private boolean isValidMonth(int month) {

 return 1 <= month && month <= 12;

 }

}

37 37

Static and Final

38 38

Static Variable

• A static variable belongs to the class as a
whole, not just to one object.

• There is only one copy of a static variable

per class.
– All objects of the class can read and change

this static variable.

• A static variable is declared with the

addition of the modifier static.
static int myStaticVariable = 0;

Copyright © 2008 Pearson Addison-Wesley.

All rights reserved

39 39

Static Variable
• The most common usage of a static variable is in order

to keep track of the number of instances of an object.

• Assume class called Human. There is some
͚ĐoŶtrolliŶg͛ Đlass ǁhiĐh Đreates huŵaŶs ;Ŷeǁ
Human()) and it also is responsible for the death of
humans.

• We would like to keep track of the number of
Humans. One way to do this would be have a static
variable in the Human class which gets incremented
upon child birth and decremented upon death.

Copyright © 2008 Pearson Addison-Wesley.

All rights reserved

40 40

Static Constants
• A static constant is used to symbolically represent a

constant value.

– The declaration for a static constant includes the modifier
final, which indicates that its value cannot be changed:

 public static final float PI = 3.142;

• It is not necessary to instantiate an object to access a
static variable, constant or method.

• When referring to such a constant outside its class,
use the name of its class in place of a calling object.

float radius = MyClass.PI * radius * radius;

Copyright © 2008 Pearson Addison-Wesley.

 All rights reserved

41

Rules for Static Methods

• Static methods have no calling/host object (they
have no this).

• Therefore, static methods cannot:

– Refer to any instance variables of the class

– Invoke any method that has an implicit or explicit this for a
calling object

• Static methods may invoke other static methods or
refer to static variables and constants.

• A class definition may contain both static methods
and non-static methods.

42

main = Static Method

Note that the method header for main() is

public static void main(String[] args)

Being static has two effects:

• main can be executed without an object.

• 䇾Helper䇿 methods called by main must
also be static.
– Hence public static when you were first

introduced to functions

43

Any Class Can Have a main()

• Every class can have a public static

method name main().

• Java will execute the main that exists in

whichever class you choose to run

 java <className>

• A convenient way to write test code for
your class.

44

Static Review

• Given the skeleton class definition below

public class C {
public int a = 0;
public static int b = 1;

public void f() {…}
public static void g() {…}

}

• Can body of f() refer to a?
• Can body of f() refer to b?
• Can body of g() refer to a?
• Can body of g() refer to b?
• Can f() call g()?
• Can g() call f()?

For each, explain why or why not.

BACKUP/EXTRA
SLIDES

45

Complex Numbers

47

Complex Number Data Type

Goal: Create a data type for complex numbers

Values: the real and imaginary parts (doubles)

a = 3 + 4i, b = -2 + 3i

a + b = 1 + 7i

a  b = -18 + i

| a | = 5

48

Applications of Complex Numbers

 Fractals

 Impedance in RLC circuits

 Signal processing and Fourier analysis

 Control theory and Laplace transforms

 Quantum mechanics and Hilbert spaces

 …

49

Complex Number Data Type: A Simple Client

public static void main(String[] args) {

 Complex a = new Complex(3.0, 4.0);

 Complex b = new Complex(-2.0, 3.0);

 Complex c = a.times(b);

 StdOut.println("a = " + a);

 StdOut.println("b = " + b);

 StdOut.println("c = " + c);

}
% java TestClient

a = 3.0 + 4.0i

b = -2.0 + 3.0i

c = -18.0 + 1.0i

result of c.toString()

50

Complex Number Data Type: Implementation

public class Complex {

 private final double re;

 private final double im;

 public Complex(double real, double imag) {

 re = real;

 im = imag;

 }

 public String toString() { return re + " + " + im + "i"; }

 public double abs() { return Math.sqrt(re*re + im*im); }

 public Complex plus(Complex b) {
 double real = re + b.re;

 double imag = im + b.im;

 return new Complex(real, imag);

 }

 public Complex times(Complex b) {

 double real = re * b.re – im * b.im;
 double imag = re * b.im + im * b.re;

 return new Complex(real, imag);

 }

}

constructor

fields

methods

creates a Complex object,
and returns a reference

refers to b's
instance variable

51

Mandelbrot Set

Mandelbrot set: A set of complex numbers

Plot (x, y) black if z = x + y i is in the set,

and white otherwise.





52

Mandelbrot Set

Is complex number z0 in the set?

 Iterate zt + 1 = (zt)
2 + z0

 If | zt | diverges to infinity, then z0 is not in set;

otherwise z0 is in set

z = 1 + i not in Mandelbrot set z = -1/2 is in Mandelbrot set

-1/2 + 0i 0

-1/4 + 0i 1

-7/16 + 0i 2

-79/256 + 0i 3

-26527/65536 + 0i 4

-1443801919/4294967296 + 0i

zt

5

t

1 + i 0

1 + 3i 1

-7 + 7i 2

1 - 97i 3

-9407 – 193i 4

88454401 + 3631103i

zt

5

t

53

Plotting the Mandelbrot Set

Practical issues:

 Cannot plot infinitely many points

 Cannot iterate infinitely many times

Approximate solution:

 Sample from an N-by-N grid of points in the plane

 Fact: if | zt | > 2 for any t, then z not in Mandelbrot set

– if | z255 |  2 then z "likely" in Mandelbrot set

-0.6 + 0.1i

10-by-10 grid (-1.5, -1)

(0.5, 1)

54

Complex Number Data Type: Another Client

Mandelbrot function with complex numbers

 Is z0 in the Mandelbrot set?

 Returns white (definitely no) or black (probably yes)

More dramatic picture: replace StdDraw.WHITE with

grayscale or color

public static Color mand(Complex z0) {

 Complex z = z0;

 for (int t = 0; t < 255; t++) {

 if (z.abs() > 2.0) return StdDraw.WHITE;

 z = z.times(z);

 z = z.plus(z0);

 }

 return StdDraw.BLACK;

}

z = z2 + z0
new Color(255-t, 255-t, 255-t)

55

Complex Number Data Type: Another Client

Plot the Mandelbrot set in gray scale.

public static void main(String[] args) {

 double xc = Double.parseDouble(args[0]);

 double yc = Double.parseDouble(args[1]);

 double size = Double.parseDouble(args[2]);

 int N = 512;

 Picture pic = new Picture(N, N);

 for (int i = 0; i < N; i++) {

 for (int j = 0; j < N; j++) {

 double x0 = xc - size/2 + size*i/N;

 double y0 = yc - size/2 + size*j/N;

 Complex z0 = new Complex(x0, y0);

 Color color = mand(z0);

 pic.set(i, N-1-j, color);

 }

 }

 pic.show();

}

scale to screen
coordinates

(0, 0) is upper left

56

Mandelbrot Set

% java Mandelbrot –.5 0 2 % java Mandelbrot .1045 -.637 .01

