
2.1 Functions

Functions

f
x
y
z

f (x, y, z)

• Take in input arguments (zero or more)
• Perform some computation

- May have side-effects (such as drawing)
• Return one output value

Input
Arguments

Return Value

Functions (Static Methods)

• Applications:
- Use mathematical functions to calculate formulas
- Use functions to build modular programs

• Examples:

- Built-in functions:
 Math.random(), Math.abs(), Integer.parseInt()
 These methods return, respectively, a double, double, and int value.

- I/O libraries:
 PennDraw.circle(x,y,halfRadius),
 PennDraw.line(x0,y0,x1,y1)

- User-defined functions:
 main()

4

Why do we need functions?

• Break code down into logical sub-steps

• Readability of the code improves

• Testability - focus on getting each individual
function correct

5

Anatomy of a Java Function

• Java functions – It is easy to write your own
- Example: double sqrt(double c)

6

sqrt(c) = √c
input

2.0 1.414213…
output

public static double sqrt(double c) {
 ...
}

return
type

method
name arguments

method signature
(excludes return type)

Please note that the method signature is defined
incorrectly in the figure on pg 188 of your textbook

Anatomy of a Java Function

• Java functions – It is easy to write your own
- Example: double sqrt(double c)

7

sqrt(c) = √c
input

2.0 1.414213…
output

public static double sqrt(double c)

Flow of Control

Functions provide a new way to control the flow of
execution

8

implicit return statement
at end of void function

Flow of Control
What happens when a function is called:
- Control transfers to the function
- Argument variables are assigned

the values given in the call
- Function code is executed
- Return value is substituted in

place of the function call in
the calling code

- Control transfers back
to the calling code

Note: This is known as
 "pass by value"

9

Example

• Function to reverse a word

• Apply this word reversal function to reverse a
sentence that is entered via command line
arguments.

 Live coding time …..

10

Organizing Your Program

• Functions help you organize your program
by breaking it down into a series of steps
- Each function represents some abstract step or

calculation
- Arguments let you make the function have

different behaviors

• Key Idea: write something ONCE as a function
then reuse it many times

11

Functions are useful!

• Common adage in programming – DRY principle

• DRY = Don’t Repeat Yourself

As opposed to

WET = Write Everything Twice

• Remember, if you are writing too much code that

looks similar, it is time to think about a function!

12

Scope
Scope: the code that can refer to a particular variable

- A variable's scope is the entire code block (any any nested
blocks) after its declaration

Simple example:
 int count = 1;
 for (int i = 0; i < 10; i++) {

 count *= 2;
 }
 // using 'i' here generates
 // a compiler error

Best practice: declare variables to limit their scope

13

Function Challenge 1

Q. What happens when you compile and run the
following code?

14

public class Cubes1 {

 public static int cube(int i) {
 int j = i * i * i;
 return j;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Scope with Functions

15

Tracing Functions

16

public class Cubes1 {

 public static int cube(int i) {
 int j = i * i * i;
 return j;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
} % javac Cubes1.java

% java Cubes1 6
1 1
2 8
3 27
4 64
5 125
6 216

Last In First Out (LIFO) Stack of Plates

Method Overloading

• Two or more methods in the same class may
also have the same name

• This is called method overloading

18

Method Overloading

• We need some way to uniquely identify a method
• The name of the method alone isn’t enough

- PennDraw.square(0.5, 0.5, 0.25)

- PennDraw.square(0.5, 0.5, 0.25, 45)

19

The methods have the same name,
 but do different things!

Method Signature

• A method is uniquely identified by
- its name and
- its parameter list (parameter types and their order)

• This is known as its signature

Examples:

static int min(int a, int b)
static double min(double a, double b)
static float min(float a, float b)

20

Return Type is Not Enough
• Suppose we attempt to create an overloaded
circle(double x, double y, double r) method by
using different return types:

static void circle(double x, double y, double r) {...}

//returns true if circle is entirely onscreen, false otherwise
static boolean circle(double x, double y, double r) {...}

• This is NOT valid method overloading because the
code that calls the function can ignore the return value
 circle(50, 50, 10);

- The compiler can’t tell which circle() method to
invoke

- Just because a method returns a value doesn’t
mean the calling code has to use it

21

Too Much of a Good Thing
Automatic type promotion and overloading can

sometimes interact in ways that confuse the compiler
For example:

 // version 1
 static void printAverage(int a, double b) {
 ...
 }

 // version 2
 static void printAverage(double a, int b) {
 ...
 }

Why might this be problematic?

22

Too Much of a Good Thing
static void average(int a, double b) { /*code*/ }
static void average(double a, int b) { /*code*/ }

• Consider if we do this

 public static void main (String[] args) {
 ...
 average(4, 8);
 ...
 }

• The Java compiler can’t decide whether to:
- promote 7 to 7.0 and invoke the first version of average(), or
- promote 5 to 5.0 and invoke the second version

• Take-home lesson: don’t be too clever with method
overloading

23

Function Examples

29

overloading

multiple arguments

Function Challenge 2

Q. What happens when you compile and run the
following code?

30

public class Cubes2 {

 public static int cube(int i) {
 int i = i * i * i;
 return i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Function Challenge 3

Q. What happens when you compile and run the
following code?

31

public class Cubes3 {

 public static int cube(int i) {
 i = i * i * i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Function Challenge 4

Q. What happens when you compile and run the
following code?

32

public class Cubes4 {

 public static int cube(int i) {
 i = i * i * i;
 return i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Function Challenge 5

Q. What happens when you compile and run the
following code?

33

public class Cubes5 {

 public static int cube(int i) {
 return i * i * i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

	2.1 Functions
	Functions
	Functions (Static Methods)
	Why do we need functions?
	Anatomy of a Java Function
	Anatomy of a Java Function
	Flow of Control
	Flow of Control
	Example
	Organizing Your Program
	Functions are useful!
	Scope
	Function Challenge 1
	Scope with Functions
	Tracing Functions
	Slide Number 17
	Method Overloading
	Method Overloading
	Method Signature
	Return Type is Not Enough
	Too Much of a Good Thing
	Too Much of a Good Thing
	Function Examples
	Function Challenge 2
	Function Challenge 3
	Function Challenge 4
	Function Challenge 5

