

CIS 110 — Introduction to Computer Programming

Summer 2018 — Final

 Name: __

 Recitation # (e.g., 201): __

 Pennkey (e.g., paulmcb): __

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this examination.

__ __________________________
Signature Date

 Instructions:
• Do not open this exam until told by the proctor.

You will have exactly 120 minutes to finish it.
• Make sure your phone is turned OFF (not to vibrate!)

before the exam starts.
• Food, gum, and drink are strictly forbidden.
• You may not use your phone or open your bag for

any reason, including to retrieve or put away pens or
pencils, until you have left the exam room.

• This exam is closed-book, closed-notes, and closed-
 com putational devices .

• If you get stuck on a problem, it may be to your benefit
  to move on to another question and come back later.

• All code must be written out in proper java format,
  including all curly braces and semicolons.

• Do not separate the pages. You may tear off the one
scratch page at the end of the exam. This scratch paper
must be turned in or you lose 3 points.

• Turn in all scratch paper to your exam. Do not take any
sheets of paper with you.

• If you require extra paper, please use the backs of the
exam pages or the extra pages provided at the end of the
exam. Only answers on the FRONT of pages will be
grading. The back is for scratch work only.

• Use a pencil, or blue or black pen to complete the exam.
• If you have any questions, raise your hand and a proctor
  will come to answer them.

• When you turn in your exam, you may be required to
  show ID. If you forgot to bring your ID, talk to an
exam proctor immediately.

• We wish you the best of luck.

Scores: [For instructor use only]

Question 0
 1 pt

Question 1
 11 pts

Question 2
 8 pts

Question 3
 16 pts

Question 4
 10 pts

Question 5
 11 pts

Question 6
 23 pts

Total:
 80 pts

 CIS 110 – Final – Summer 2018 SCORE_________ Page 1

0) (1 point) The Easy One:
• Check that your exam has all 15 pages (excluding the cover sheet).
• Write your name, recitation number, and PennKey (username) on the front of the exam.
• Sign the certification that you comply with the Penn Academic Integrity Code.

1.) RECURSION (11 pts total)

1.1) Exponents

(4 points) Fill in the blank below for a recursive function that finds the value of x / y using
integer division (i.e., dropping the remainder/decimal). You can assume x and y are POSTIVE
(non-zero, non-negative) integers.
public static int division(int x, int y) {
 if (x < y) {
 return 0;
 }
 return division(x-y, y) + 1;
}

1.2) Counting an Array

Consider the function countArray(int[] array, int value, int start) below
that finds the number of times value appears in the array. This is done by finding, for each
index start of the array, the number of times value appears between start and the end of
the array.

Thus, countArray([4,2,1,2,2,0], 2, 0) would return 3 (There are 3 twos in the array starting from
zero) while countArray([4,2,1,2,2,0], 2, 3) would be 2 (Since we only starting counting at index
3, so the first two is not counted).

This function is recursive in nature.

a) (2 points) Give an example base case input to the function (i.e., the values of array, value, and
start) AND what it would return.

countArray([4,2,1,2,2,0], 2, 6) – returns 0

This is the base case, instead of countArray([4,2,1,2,2,3], 2, 5) – returns 3 since the base case
above would work for an array of size 0, the base case below would not work for an array of size
0. And it is a valid question to ask "how many 3's are in this array of size 0", the answer is
always 0.

 CIS 110 – Final – Summer 2018 SCORE_________ Page 2

b) (5 points) Using the same recursive function above.
public static int countArray(int[] array, int count, int start){

 if (start < 0 || start > array.length) { //Error

 throw new RuntimeException(“ERROR”);

 if (start == array.length) {

 return 0;

 } else {

 if (array[start] == count) {

 return 1 + countArray(array, count; start + 1);

 } else {

 return countArray(array, count; start + 1);

 }

 }

}

 CIS 110 – Final – Summer 2018 SCORE_________ Page 3

2) RECURSION TRACING (8 points total)

Below is a mystery recursion function. Do not try to work out WHAT it's doing, as the
functionality is completely made up. It does nothing useful.

public static int mystery(int a, int b)
{
 if (a == 0 || b > 12) {
 System.out.println(a + "," + b);
 return 0;
 } else if (b % 2 == 0) {
 System.out.println(a + "," + b);
 return mystery(a - 1, b + 1) + 3;
 } else if (a % 2 == 0) {
 System.out.println(a + "," + b);
 return mystery(a - 1, b + 2) + 2;
 } else {
 System.out.println(a + "," + b);
 return mystery(a - 1, 2 * a) - 3;
 }
}

In the boxes below, write whatever prints when the function is called with the given arguments
in order. At the bottom of each box, say what the function call ultimate returns.

a) mystery(3,3) b) mystery(4,2)

3,3 4,2
2,6 3,3
1,7 2,6
0,2 1,7
 0,2

Returns: -3 Returns: 0

 CIS 110 – Final – Summer 2018 SCORE_________ Page 4

3) USING OBJECTS (16 points total)

In this problem, you will be using the card class below. In Klondike Solitaire, as well as Freecell
Solitaire, a player can move around the traditional French playing cards into columns. The rule is
that each card can be placed under a card exactly ONE RANK higher, and of the opposite color
(the colors are red and black). I.e., a red 5 can be placed on a black 6, but it cannot be placed on
a red 6, or any card of any other rank. This class is here to model this. Do not worry about
specific suits (hearts, clubs, diamonds, spades), just worry about red/black.

public class Card {
 private char rank; //'A', or '2', or '3', etc.
 private boolean isRed; //true if card is red, false if it's black
 public final char[] ALL_RANKS =
 {'A','2','3','4','5','6','7','8','9','T','J','Q','K'};

 public Card(char rank, boolean isRed) {
 this.rank = rank;
 this.isRed = isRed;
 }

 public char getRank() {
 return rank;
 }

 public boolean isRed() {
 return isRed;
 }

 public int getRankIndex(char ch) {
 for (int i = 0; i < ALL_RANKS.length; i++) {
 if (ALL_RANKS[i] == ch) {
 return i;
 }
 }
 throw new RuntimeException("ERROR: Invalid rank");
 }
 /**
 * This method returns true if child can be placed on parent in
 * Klondike or Freecell Solitaire (i.e., true if parent is black 6 and
 * child is red 5
 */

 public boolean isValidParent(Card parent, Card child) {
 //TODO: SEE NEXT PAGE
 }
}

Write one (1) line of code to produce a red '5': (2 points)

Card c = new Card(5, true);

 CIS 110 – Final – Summer 2018 SCORE_________ Page 5

To Complete the Method isValidParent, reorder all the lines of code below. Use all of the lines
of code below exactly once. Do not use any line of code more than once, and do not write any
code not included below. (You must rewrite the lines in their entiriety). (8 points)

}
}
}
}
}
}
} else {
childRank = i;
for (int i = 0; i < ALL_RANKS.length; i++) {
if (ALL_RANKS[i] == child.rank) {
if (ALL_RANKS[i] == parent.rank) {
if (childRank + 1 == parentRank) {
if (parent.isRed() == child.isRed()) {
int childRank = -1;
int parentRank = -1;
parentRank = i;
public boolean isValidParent(Card parent, Card child) {
return false;
return false;
return true;

public boolean isValidParent(Card parent, Card child) {
 if (parent.isRed() == child.isRed()) {
 return false;
 }
 int childRank = -1;
 int parentRank = -1;

 for (int i = 0; i < ALL_RANKS.length; i++) {
 if (ALL_RANKS[i] == child.rank) {
 childRank = i;
 }
 if (ALL_RANKS[i] == parent.rank) {
 parentRank = i;
 }
 }

 if (childRank + 1 == parentRank) {
 return true;
 } else {
 return false;
 }
 }

 CIS 110 – Final – Summer 2018 SCORE_________ Page 6

In the space below, list the VARIABLE(S) (not methods) in Card that should be static. (2 points)

 ALL_RANKS

In the space below, list the METHOD(S) (not variables) in Card that should be static. (2 points)

 getRankIndex(); isValidParent();

Which attributes of a Card can you change AFTER calling the constructor from outside of the
file? (It's possible you can change all of them, none of them, or only certain ones.) (2 point)

 None

4) Object Theory (10 points)

1. How do you get a NullPointerException (you can either describe it or show a code example)?
(3 points)

Using a dot operator on a null object.

Object o = null;
System.out.println(o.toString());

 CIS 110 – Final – Summer 2018 SCORE_________ Page 7

2. What function do you implement in order to make an object be printed as something other
than "ClassName@Address" (write the entire method declaration, including visibility and
return type) (2 points)

public String toString()

3. Give a reason you would want a private method in a class, or say why there no reason to
ever make a method private. (3 points)

A helper method, that is a method that exists inside of the class to help implement things
the class needs, should not be visible outside the class.

4. If a class is called Exam and you have exactly two instances (no more) of the class, midterm
and finalExam, and there have a static String variable called semester, how should
you change semester to "Summer 18" for both instances? (2 points)

Exam.semester = "Summer 18"

 CIS 110 – Final – Summer 2018 SCORE_________ Page 8

5) SORTING (11 points)
Sort each array in ascending (smallest to largest) order using the specified technique. Show the
state of the array after each iteration through the sorting loop, or after each merge.

a) Insertion sort – {8, 3, 4, 1, 5, 2, 5} (4 points)

3 8 4 1 5 2 5
3 4 8 1 5 2 5
1 3 4 8 5 2 5
1 3 4 5 8 2 5
1 2 3 4 5 8 5
1 2 3 4 5 5 8

b) Merge sort– {8, 3, 4, 1, 5, 2, 5} (4 points)

(note that you can split either 3 | 4 or 4 | 3 and not lose points

 8 3 4 1 5 2 5
 8 3 4 1 5 2 5
 3 4 1 5 2 5

 8 34 15 25
 348 1255
 1234558

c) Which one of these sorts is recursive in nature? (don't say why, just name it) (1 point)

Mergesort

 CIS 110 – Final – Summer 2018 SCORE_________ Page 9

d) Which of the below is code for a selection sort? (circle the one that is a selection sort). Both
pieces of code sort an int[] variable called array. Both use the swap function as covered in
class (that swaps the location of two values in an array). Note that method declarations have been
removed, and variable names obfuscated. (1 point)

Below are two examples of a sorting algorithm on the same numbers. Which is a selection sort?
(1 point)

for (int i = 1; i < array.lenth; i++) {
 for (int j = i; j > 0; j--) {
 if (array[j-1] > (array[j])) {
 swap(array, j - 1, j);
 }
 }
}

for(int i=0; i<array.length-1; i++){
 int a = array[i];
 int b = i;
 for(int j=i+1; j<array.length; j++){
 if(array[j] < a) {
 a = array[j];
 b = j;
 }
 }
 swap(array, i, b);
}

8, 2, 6, 3, 6, 1
2, 6, 3, 6, 1, 8
2, 3, 6, 1, 6, 8
2, 3, 1, 6, 6, 8
2, 1, 3, 6, 6, 8
1, 2, 3, 6, 6, 8

8, 2, 6, 3, 6, 1
1, 2, 6, 3, 6, 8
1, 2, 6, 3, 6, 8
1, 2, 3, 6, 6, 8
1, 2, 3, 6, 6, 8
1, 2, 3, 6, 6, 8

 CIS 110 – Final – Summer 2018 SCORE_________ Page 10

6) LINKED DATA STRUCTURES (23 points)

Below is the class LinkedList which is a SINGLY Linked List. Fill in all the blanks below for
the constructor and the methods isEmpty and add.

public class Node {
 public int value;
 public Node next;

 //Constructor that creates a node with the input value
 public Node(int value) {

 this.value = value; //1 point
 }
}

public class LinkedList {
 public Node head; //first element of the list

 /**
 * returns true if the list is empty
 */
 public boolean isEmpty() {

 return head == null;//1 point
 }

 /**
 * Adds the integer x as a new node to the END of the List
 */
 public void add(int x) {

 Node newNode = new Node(x);//1 point
 if (isEmpty()) {

 head = newNode;//1 point

 } else {

 Node t = head; //1 point

 while (t.next != null) {//1 point

 t = t.next;//1 point
 }

 t.next = newNode;
 }
 }
}

 CIS 110 – Final – Summer 2018 SCORE_________ Page 11

Write a function addRecursive(int x) that implements the same behavior as the existing
add function, however does so recursively. You may need to write a helper function to do this.

Use comments to clearly identify your base case or base cases. There will be no partial credit for
writing an iterative solution. If you use either for or while even once, you will get no credit.
(6 points)

public void addRecursive(int x) {
 if (isEmpty()) {
 head = new Node(x);

}
 addHelper(head, x);
}

public void addHelper(Node n, int x) {
 if (n.next == null) {
 n.next = new Node(x);
 } else {
 addHelper(n.next, x);

}
}

 CIS 110 – Final – Summer 2018 SCORE_________ Page 12

Using this implementation of LinkedList, write, on the next page, the function:

public boolean isSubList(LinkedList a, LinkedList b) {
//this method should have been static, technically

This function returns true if a is a sublist of b. That is, if all of the elements a can be found inside
of b and in the same order. For Example, if:

a = 5 → 3 → 1

b = 7 → 5 → 3 → 1 → 2

Then a is a sublist of b (that is, your function should return true). However, if

a = 5 → 3 → 1

b = 7 → 5 → 3 → 2 → 1

A is NOT a sublist of b. This is because while every element of a is in B, they are not
continuous. They are interrupted by the 2. Another example is:

a = 5 → 3 → 1

b = 7 → 1 → 3 → 5 → 2

This is another case where a is NOT a sublist of b, because the elements are not in the same
order. Another case where a is NOT a sublist of b is when:

a = 7 → 5 → 3 → 1 → 2

b = 5 → 3 → 1

This is a case where a is NOT a sublist of b, but b is a sublist of A. Finally, if a and b are the
same list, such as:

a = 5 → 3 → 1

b = 5 → 3 → 1

Then a IS a sublist of b (that is, return true). Be careful, however. For example, below, a IS a
sublist of B. If you look, you can see why this case might be tricky.

a = 5 → 3 → 1

b = 5 → 3 → 5 → 5 → 3 → 1→ 5

 CIS 110 – Final – Summer 2018 SCORE_________ Page 13

As always, there are a number of ways to do this: here's one

public static boolean isSubList(LinkedList a, LinkedList b) {
 if (a.isEmpty()) {
 return true;
 } else if (b.isEmpty()) {
 return false;
 }
 Node travA = a.head;
 Node travB = b.head;
 while (travB != null) {
 if (travA.value == travB.value) {
 Node tempA = travA;
 Node tempB = travB;
 while (tempB != null) {
 if (tempA == null) {
 return true;
 }
 if (tempA.value != tempB.value) {
 break;
 }
 tempA = tempA.next;
 tempB = tempB.next;
 }
 }

 travB = travB.next;
 }
 return false;
 }

10 points

