

CIS 110 — Introduction to Computer Programming

Summer 2017 — Final

 Name: __

 Recitation # (e.g., 201): __

 Pennkey (e.g., paulmcb): __

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this examination.

__ __________________________
Signature Date

 Instructions:
• Do not open this exam until told by the proctor.

You will have exactly 120 minutes to finish it.
• Make sure your phone is turned OFF (not to vibrate!)

before the exam starts.
• Food, gum, and drink are strictly forbidden.
• You may not use your phone or open your bag for

any reason, including to retrieve or put away pens or
pencils, until you have left the exam room.

• This exam is closed-book, closed-notes, and closed-
 com putational devices .

• If you get stuck on a problem, it may be to your benefit
  to move on to another question and come back later.

• All code must be written out in proper java format,
  including all curly braces and semicolons.

• Do not separate the pages. You may tear off the one
scratch page at the end of the exam. This scratch paper
must be turned in or you lose 3 points.

• Turn in all scratch paper to your exam. Do not take any
sheets of paper with you.

• If you require extra paper, please use the backs of the
exam pages or the extra pages provided at the end of the
exam. Only answers on the FRONT of pages will be
grading. The back is for scratch work only.

• Use a pencil, or blue or black pen to complete the exam.
• If you have any questions, raise your hand and a proctor
  will come to answer them.

• When you turn in your exam, you may be required to
  show ID. If you forgot to bring your ID, talk to an
exam proctor immediately.

• We wish you the best of luck.

Scores: [For instructor use only]

Question 0
 1 pt

Question 1
 14 pts

Question 2
 6 pts

Question 3
 11 pts

Question 4
 8 pts

Question 5
 10 pts

Question 6
 6 pts

Question 7
 24 pts

Total:
 80 pts

 CIS 110 – Final – Summer 2017 SCORE_________ Page 1

0) (1 point) The Easy One:
• Check that your exam has all 16 pages (excluding the cover sheet).
• Write your name, recitation number, and PennKey (username) on the front of the exam.
• Sign the certification that you comply with the Penn Academic Integrity Code.

1.) RECURSION (14 pts total)

1.1) Exponents

(2 points) Fill in the blank below for a recursive function that finds the value of xy where y is a
non-negative integer, and x is not zero. It’s worth noting that 34 = 3 * 33 , 32 = 3 * 31 . Note that
any non-zero number to the power of zero is 1.
public static int power(int x, int y) {
 if (y == 0) { //exponent is 0
 return 1;
 }
 return x * power(x, y-1);
}

1.2) Summing an Array

Consider function sumArray(int[] array, int start) below that finds the sum of
an array recursively. This is done by finding, for each index start of the array, the sum of all
elements of the array from start to array.length – 1 by adding start to the sum of all remaining
elements.

Thus, sumArray([4,2,1],0) would return 7 (adding every element from zero forward) while
sumArray([4,2,1],1) would be 3 (since we would only add the elements 2 and 1 together.

This function is recursive in nature.

a) (2 points) Give an example base case input (in code) and what the output would be.

sumArray([4,2,1], 3)

output = 0

 CIS 110 – Final – Summer 2017 SCORE_________ Page 2

b) (4 points) Using the base case above, fill in the blank to make the function work
public static int sumArray(int[] array, int start){

 if (start < 0 || start > array.length) { //Error

 throw new RuntimeException(“ERROR”);

 if (start == array.length) { //base case

 return 0; //base case output

 } else { //recursive step

 return array[start] + summArray(array, start+1);

 }

}

.1.3) (6 points) Writing Recursion
Given the following implementation of singly linked list of integers, answer the question on the
next page:

public class LinkedList{
 public IntNode first;

 public LinkedList(){
 first = null;
 }

 public boolean isEmpty(){
 return (first == null);
 }

 public void insert(int x){
 //Code redacted
 //You can assume insert works
 }
}

public class IntNode{
 public int value;
 public IntNode next;

 public IntNode(int value){
 this.value = value;
 this.next = null;

 CIS 110 – Final – Summer 2017 SCORE_________ Page 3

 }
}

Below, write a recursive method count(IntNode node, int x) that returns the number
of times x appears in an instance of LinkedList .

Start by identifying the base case, then the recursive step.

If you find you are not able to write a recursive solution, you may write an iterative (looping)
solution. However, you will receive an automatic 2 point deduction for iterative solutions.

public int count(IntNode node, int x) {
 if (node == null) {
 return 0;
 } else {
 if (node.value == x) {
 return 1 + count(node.next, x);
 } else {
 return count(node.next, x);
 }
 }
}

//Iterative solution – note this lost points

public int count (IntNode node, int x) {
 int out = 0;

while (node != null) {
 if (node.value == x) {
 out++;
 }
}
return out;

}

 CIS 110 – Final – Summer 2017 SCORE_________ Page 4

2) RECURSION TRACING (6 points total)

I brought in JJ Abrams because I wanted to reboot an old exam question. Like most things he
does, he ended up ruining it. I can’t even recognize what this code does anymore.

public class Nostalgia {
 public static int lensFlare(int emoSpock, int superEight) {
 if (emoSpock < superEight) {
 return emoSpock;
 } else {
 return lensFlare(emoSpock – superEight, superEight);
 }
 }

 public static void main(String[] args) {
 int newHopeRemake = lensFlare(args[0], args[1]);
 System.out.println(newHopeRemake);
 }
}

To help me out, tell me what prints as a result of the following calls (use the following blank
page for notes).

(1 point each)
a) java Nostalgia 1 2 ___1__

b) java Nostalgia 2 1 ____0__

c) java Nostalgia 12 5 ___2___

d) java Nostalgia 22 6 ___4__

e) (2 points) What built in Java operation does this mimic?

Modulus Function

 CIS 110 – Final – Summer 2017 SCORE_________ Page 5

3) USING OBJECTS (11 points total)

You may not know this, but Professor McBurney is a diehard SportsBall fan (go “Fightin’
Fighters”). SportsBall is truly the greatest modern game, fit for the attention spans of today’s
audiences, where every game between two teams is decided by a coin flip. That’s the entire
game. Imagine we had two teams:

Team 1) “Penn Quakers” – 5 wins, 3 losses.

And

Team 2) “Princeton Tigers” – 3 wins, 4 losses.

If the two teams played, they would have a 50% chance of either team winning.

If Penn wins, the result would be Penn increasing their number of wins from 5 to 6, Princeton
increasing their number of losses from 4 to 5. Penn would still have 3 losses, Princeton would
still have 3 wins.

If, however, Princeton wins, then Princeton goes from 3 wins to 4 wins, and Penn goes from 3
losses to 4 losses. Penn would still have 5 wins, and Princeton would still have 4 losses.

You are given an incomplete Team.java on the next page. Each Team instance represents a
SportsBall team. The play method is used to play a game between the two teams.

This could be tested using the following code:

public static void main(String[] args) {
 // create two teams that both have initially
 // zero wins and zero losses
 SportsBallTeam penn = new SportsBallTeam("Penn");
 SportsBallTeam princeton = new SportsBallTeam("Princeton");

 // play a match between them
 penn.play(princeton);

 //now one team should have 1 win, and the other
 //should have one loss
}

 CIS 110 – Final – Summer 2017 SCORE_________ Page 6

a) (7 points) Fill in the blanks to finish this class.
public class SportsBallTeam {
 public final String name;
 private int wins, losses;
 //constructor
 public SportsBallTeam(String name) {
 this.name = name;
 wins = 0;
 losses = 0;
 }
 //getters
 public int getWins() {

 return wins;
 }

 //getters
 public int getLosses() {

 return losses;
 }
 public void play(SportsBallTeam opponent) {

 if (Math.random() < 0.5) { //50% chance opponent wins

 opponent.wins++; //increment opponent wins

 losses++; //increment calling instance's losses

 } else {

 opponent.losses++; //increment opponent losses

 wins++;//increment calling instance's wins
 }
 }
}
b) (4 points) For both of the lines below, explain why they would result in a compile-time error if called
from another class (assuming penn and princeton are existing SportsBallTeam variables):

penn.name = "The best team ever";

Name is a final String, meaning once it is initially set, it cannot be changed

princeton.wins = -10;

Wins is a private variable, meaning it cannot be modified externally.

 CIS 110 – Final – Summer 2017 SCORE_________ Page 7

4.) STATIC (8 points total)

Consider the following object.

public class RGBColor {
 public final double r, g, b;

 public RGBColor RED = new RGBColor(1.0, 0.0, 0.0);
 public RGBColor GREEN = new RGBColor(0.0, 1.0, 0.0);
 public RGBColor BLUE = new RGBColor(0.0, 0.0, 1.0);
 public RGBColor WHITE = new RGBColor(1.0, 1.0, 1.0);

 public RGBColor(double r, double g, double b) {
 this.r = r;
 this.g = g;
 this.b = b;
 }

 /**
 * Returns the grayscale (0.0 - 1.0) value of this color
 */

 public double toGrayscale() {
 return (r + g + b) / 3.0;
 }

 /**
 * Returns the grayscale (0.0 - 1.0) value of the input color triplet
 */
 public double tripletGrayscale(double r, double g, double b) {
 RGBColor temp = new RGBColor(r, g, b);
 return temp.toGrayscale();
 }

 public String toString() {
 return "Red: " + r + " , Green: " + g + " , Blue: " + b;
 }

 public static void main(String[] args) {
 RGBColor yellow = new RGBColor (1.0, 1.0, 0.0);
 System.out.println(yellow);
 }
}

a) (3 points) Some of the fields should be static (in fact, if you don’t make some of the
fields static, this will crash when you create an instance). List the fields that should be
static: (Do not list any methods, we are only talking about fields right now).

RED, GREEN, BLUE, WHITE must be static

 CIS 110 – Final – Summer 2017 SCORE_________ Page 8

b) (3 points) What prints as a result of running main (assuming you made the proper
corrections in a)?

Prints:

Red: 1.0 , Green: 1.0 , Blue: 0.0

c) (1 point) Which method should be static (there is only one)?

tripletGrayscale

d) (1 point) How would you call the method from c outside of the class? Keep in mind how
static methods are called in other classes. Just give one example of a line of code that
calls this method and sets an output to a variable.

RGBColor.tripletGrayscale(0.25, 0.5, 0.75);

 CIS 110 – Final – Summer 2017 SCORE_________ Page 9

5.) SORTING (10 points)
Sort each array in ascending order using the specified technique. Show the state of the array
after each iteration through the sorting loop.

a) Insertion sort – {8, 3, 4, 1, 5} (4 points)

83415
38415
34815
13485
13458

b) Selection sort– {8, 3, 4, 1, 5} (4 points)

83415
13485
13485
13485
13458

Students were expected to write the three intermediate steps (in directions "AFTER EACH
ITERATION")

c) (1 point) Both of these sorts are far slower than what type of recursive sort?

MergeSort

d) (1 point) Describe in plain English (not code) what the base case this sorting technique.

MergeSort on an array of size 1 or size 0.

 CIS 110 – Final – Summer 2017 SCORE_________ Page 10

6) INTERFACES (6 points)

Answer the follow questions about the interface below:

public interface GeoCoordinates{
 public double getLongitude();
 //get the longitude coordinate

 public double getLatitude();
 //get the latitude coordinate
}

 (6 points) Write the java code for a class that implements this interface. This class should have a
constructor that takes in two numbers, (double longitude, double latitude). DO
NOT do any error checking on the coordinates. This will waste your time working on the exam
and our time grading it. This means you don’t have to check of longitude is between -180 and
180, or if latitude is between -90 and 90. Select your own name for the class.

public class MyGeoCoordinates implements GeoCoordinates {

 private double longitude, latitude;

public MyGeoCoordinates(double longitude, double latitude){
 this.longitude = longitude;
 this.latitude = latitude;
 }

 public double getLongitude() {
 return longitude;
 }

 public double getLatitude() {
 return latitude

}
}

 CIS 110 – Final – Summer 2017 SCORE_________ Page 11

7) LINKED DATA STRUCTURES (24 points)

7.1) Based on what we discussed in class, illustrate these data structures (indicating where the
“first” node is for both, and the “last” node for queue). There is no fixed way to draw these lists,
but order should be clear, as well as where the head node is.

a) (3 points) A queue “q” implemented as a LinkedList after the instructions
q.queue("cat");
q.dequeue();
q.queue("river"); bag[first] -> cat[last] -> null
q.queue("dog");
q.dequeue();
q.queue("bag");
q.queue("cat");
q.dequeue();

b) (3 points) A stack “s” implemented as a LinkedList after the instructions
s.push("cat");
s.pop();
s.push("river"); bag[first] -> river -> null
s.push("dog");
s.pop();
s.push("bag");
s.push("cat");
s.pop();

 CIS 110 – Final – Summer 2017 SCORE_________ Page 12

7.2) In this question, you will write the insert method of a Sorted Doubly Linked List. Each
element is added to the list in sorted order. For example, if the list contains:

(first) 5 → 8 → 10 (last)

And you inserted 7, the end result would be a list:

(first) 5 → 7 → 8 → 10 (last)

You CAN have duplicate values. For example, if you inserted 7 again, you would get

(first) 5 → 7 → 7 → 8 → 10 (last)

Notice it doesn’t matter if you add the 7 before or after the previous 7.

Using the following code, answer questions on the next page. YOU MAY NOT RIP THIS
PAGE OFF.:

public class SortedDoublyLinkedList{
 public IntNode first;
 public IntNode last;

 public SortedDoublyLinkedList(){
 first = null;
 last = null;
 }

 public boolean isEmpty(){
 return (first == null);
 }

 public int size() {
 //TODO: Return the size of the list;
 }

 public void insert(int x){

 //TODO: Insert into the Linked List in sorted Order
 }
}
--
public class IntNode{
 public int value;
 public IntNode next;
 public IntNode prev;

 public IntNode(int x){
 value = x;
 next = null;
 prev = null;
 }
}

 CIS 110 – Final – Summer 2017 SCORE_________ Page 13

a) (4 points) Write the size() function to return the number of elements in the list. YOU
MAY NOT ALTER THE OBJECT IN ANY WAY. You cannot assume a size variable
exists. You should not need more space than given. The lower half of this page is for you
to use as scractch space for both a) and b)

 public int size() {
 int size = 0;
 for (IntNode node = first; node != null; node = node.next)
{
 size++;
 }
 return size;
 }

 CIS 110 – Final – Summer 2017 SCORE_________ Page 14

b) (14 points) Write the function insert(int x) such that the list inserts x in sorted
ASCENDING ORDER. This means the first of the list must be the smallest value, the last
of the list must be the largest value. Your insert function must work for all cases:

• Inserting into an empty list
• Inserting a new largest value into the list
• Inserting a new smallest value into the list
• Inserting a value that goes in the middle of the list

public void insert(int x) {
 IntNode newNode = new IntNode(x); //create new Node

 //insert into empty list
 if (isEmpty()) {
 first = newNode;
 last = newNode;

}

//insert BEFORE first
else if (x < first.value) {
 newNode.next = first;
 first.prev = newNode;
 first = newNode;
}

//insert AFTER last
else if (x > last.value) {
 last.next = newNode;
 newNode.prev = last;
 last = newNode;
}

else {

//insert in middle
IntNode temp;

 for(temp = first; temp.next.value < x; temp = temp.next){
 //empty for loop, gets temp to BEFORE the insertion occurs

}
//temp is BEFORE the node being insert
//temp.next is AFTER the node being inserted
IntNode after = temp.next;

//connect the links
temp.next = newNode;
newNode.prev = temp;
after.prev = newNode;
newNode.next = after;

}
}

 CIS 110 – Final – Summer 2017 SCORE_________ Page 15

EXTRA ANSWER SPACE: You may NOT rip this page off, but work written on the
FRONT of this page may be graded.

 CIS 110 – Final – Summer 2017 SCORE_________ Page 16

SCRATCH PAPER: You may rip this page off, but must turn it in at the end of the exam.
If you take this page with you, you lose 3 points.

