
2.1 Functions

Functions

f
x
y
z

f (x, y, z)

• Take in input arguments (zero or more)
• Perform some computation

- May have side-effects (such as drawing)
• Return one output value

Input
Arguments

Return Value

Functions (Static Methods)

• Applications:
- Use mathematical functions to calculate formulas
- Use functions to build modular programs

• Examples:

- Built-in functions:
 Math.random(), Math.abs(), Integer.parseInt()
 These methods return, respectively, a double, double, and int value.

- I/O libraries:
 PennDraw.circle(x,y,halfRadius),
 PennDraw.line(x0,y0,x1,y1)

- User-defined functions:
 main()

4

Why do we need functions?

• Break code down into logical sub-steps

• Readability of the code improves

• Testability - focus on getting each individual
function correct

5

Method Signatures

• We need some way to uniquely identify a method
• The name of the method alone isn’t enough

- PennDraw.square(0.5, 0.5, 0.25)

- PennDraw.square(0.5, 0.5, 0.25, 45)

6

The methods have the same name,
 but do different things!

In Class Poll

• Which of these sets of elements are part of the
method signature?

1) Method name, return type, name of parameters

2) Method name, return type, type of parameters

3) Method name, number of parameters

4) Method name, type of parameters

7

Anatomy of a Java Function

• Java functions – It is easy to write your own
- Example: double sqrt(double c)

8

sqrt(c) = √c
input

2.0 1.414213…
output

public static double sqrt(double c) {
 ...
}

return
type

method
name arguments

method signature
(excludes return type)

Please note that the method signature is defined
incorrectly in the figure on pg 188 of your textbook

Anatomy of a Java Function

• Java functions – It is easy to write your own
- Example: double sqrt(double c)

9

sqrt(c) = √c
input

2.0 1.414213…
output

public static double sqrt(double c)

Flow of Control

Functions provide a new way to control the flow of
execution

10

implicit return statement
at end of void function

Flow of Control
What happens when a function is called:
- Control transfers to the function
- Argument variables are assigned

the values given in the call
- Function code is executed
- Return value is substituted in

place of the function call in
the calling code

- Control transfers back
to the calling code

Note: This is known as
 "pass by value"

11

Example

• Function to reverse a word

• Apply this word reversal function to reverse a
sentence that is entered via command line
arguments.

 Live coding time …..

12

Organizing Your Program

• Functions help you organize your program
by breaking it down into a series of steps
- Each function represents some abstract step or

calculation
- Arguments let you make the function have

different behaviors

• Key Idea: write something ONCE as a function
then reuse it many times

13

Scope
Scope: the code that can refer to a particular variable

- A variable's scope is the entire code block (any any nested
blocks) after its declaration

Simple example:
 int count = 1;
 for (int i = 0; i < 10; i++) {

 count *= 2;
 }
 // using 'i' here generates
 // a compiler error

Best practice: declare variables to limit their scope

15

Function Challenge 1

Q. What happens when you compile and run the
following code?

16

public class Cubes1 {

 public static int cube(int i) {
 int j = i * i * i;
 return j;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Scope with Functions

17

Tracing Functions

18

public class Cubes1 {

 public static int cube(int i) {
 int j = i * i * i;
 return j;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
} % javac Cubes1.java

% java Cubes1 6
1 1
2 8
3 27
4 64
5 125
6 216

Last In First Out (LIFO) Stack of Plates

Method Overloading

• Two or more methods in the same class may
also have the same name

• This is called method overloading

20

Presenter
Presentation Notes
[L4]

Method Signature

• A method is uniquely identified by
- its name and
- its parameter list (parameter types and their order)

• This is known as its signature

Examples:

static int min(int a, int b)
static double min(double a, double b)
static float min(float a, float b)

21

Presenter
Presentation Notes
[L4]

Return Type is Not Enough
• Suppose we attempt to create an overloaded
circle(double x, double y, double r) method by
using different return types:

static void circle(double x, double y, double r) {...}

//returns true if circle is entirely onscreen, false otherwise
static boolean circle(double x, double y, double r) {...}

• This is NOT valid method overloading because the
code that calls the function can ignore the return value
 circle(50, 50, 10);

- The compiler can’t tell which circle() method to
invoke

- Just because a method returns a value doesn’t
mean the calling code has to use it

22

Presenter
Presentation Notes
[L4—modified]

Too Much of a Good Thing
Automatic type promotion and overloading can

sometimes interact in ways that confuse the compiler
For example:

 // version 1
 static void printAverage(int a, double b) {
 ...
 }

 // version 2
 static void printAverage(double a, int b) {
 ...
 }

Why might this be problematic?

23

Presenter
Presentation Notes
[L4—modified]

Too Much of a Good Thing
static void average(int a, double b) { /*code*/ }
static void average(double a, int b) { /*code*/ }

• Consider if we do this

 public static void main (String[] args) {
 ...
 average(4, 8);
 ...
 }

• The Java compiler can’t decide whether to:
- promote 7 to 7.0 and invoke the first version of average(), or
- promote 5 to 5.0 and invoke the second version

• Take-home lesson: don’t be too clever with method
overloading

24

Presenter
Presentation Notes
[L4—modified]

Function Examples

30

overloading

multiple arguments

Function Challenge 2

Q. What happens when you compile and run the
following code?

31

public class Cubes2 {

 public static int cube(int i) {
 int i = i * i * i;
 return i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Presenter
Presentation Notes
Compiler error i is already defined

Function Challenge 3

Q. What happens when you compile and run the
following code?

32

public class Cubes3 {

 public static int cube(int i) {
 i = i * i * i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Presenter
Presentation Notes
Compiler error: missing return statement

Function Challenge 4

Q. What happens when you compile and run the
following code?

33

public class Cubes4 {

 public static int cube(int i) {
 i = i * i * i;
 return i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Presenter
Presentation Notes
Correct: the i in cube() and the i in main() are different

Function Challenge 5

Q. What happens when you compile and run the
following code?

34

public class Cubes5 {

 public static int cube(int i) {
 return i * i * i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Presenter
Presentation Notes
Correct and preferred style

	2.1 Functions
	Functions
	Functions (Static Methods)
	Why do we need functions?
	Method Signatures
	In Class Poll
	Anatomy of a Java Function
	Anatomy of a Java Function
	Flow of Control
	Flow of Control
	Example
	Organizing Your Program
	Scope
	Function Challenge 1
	Scope with Functions
	Tracing Functions
	Slide Number 19
	Method Overloading
	Method Signature
	Return Type is Not Enough
	Too Much of a Good Thing
	Too Much of a Good Thing
	Function Examples
	Function Challenge 2
	Function Challenge 3
	Function Challenge 4
	Function Challenge 5

