4
N

Testing and JUnit



Why Test Code?

Testing makes code better

Find bugs in development instead of when the product has been released!
Helps improve design of code

Makes the code easier to understand for developers
https://en.wikipedia.org/wiki/List_of unit_testing_frameworks



https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

What Should We Test?

e General functionality of code - in a perfect world, does the code does what we
want it to do?

e Test for “edge cases” - special cases that come up less often and may not be
obvious to the programmer, but still can arise in use of the program

e Note: Even with testing, there can still be bugs!

e |tis important to test early on in development, and continue through the
process - “regression testing”

e Testing should be as exhaustive as possible




Test Cases

e Atest case describes some action that the programmer expects their code to
perform

e Test cases should be as exhaustive as possible - we want to test the full
functionality of our code, including edge cases!

e Test cases should also be unique




Black Box Testing

This is “functional testing”

Tester does not know the details of the code

Given some input, the test expects some output

Often done by QA/people not familiar with the details of the code




White Box Testing

e Software unit testing
e Done by the developers
e Test cases are designed based on the internal structure of the code




What is JUnit?

e JUnitis a framework for writing unit tests in Java
e Unit test: test of a class
e Test case: atest of a single method in a class




Using JUnit

e Ingeneral:

o public class OurTests {
@Test
protected void runOurTest() {
// Our test goes here!

}




How Do JUnit Tests Actually Work?

Tests do not have a return type - they are void functions

Upon success, a test will do nothing

Upon failure, the test will throw an AssertionError

This error is handled by JUnit, no extra work for the programmer!




How Tests Pass or Fail

In JUnit tests, the programmer asserts a condition
If the assertion is true, the test passes

If the assertion is false, the test fails

JUnit provides many assert functions




Types of Asserts

assertEquals(boolean expected, boolean actual)
assertTrue(boolean condition)
assertFalse(boolean condition)
assertNotNull(Object object)

assertNull(Object object)

assertSame(object1, object2)
assertNotSame(object1, object 2)
assertArrayEquals(expectedArray, resultArray)




Example Test Case Code

import org.junit.Test;
import static org.junit.Assert.*,

public class SampleTest {

@Test
public void simpleTest() {
assertEquals(1, 1);

}

@Test
public void simpleTest2() {
assertTrue(false);

}

}




Let's Try It Out!

BN



