
Testing and JUnit

Why Test Code?

● Testing makes code better
● Find bugs in development instead of when the product has been released!
● Helps improve design of code
● Makes the code easier to understand for developers
● https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

What Should We Test?

● General functionality of code - in a perfect world, does the code does what we
want it to do?

● Test for “edge cases” - special cases that come up less often and may not be
obvious to the programmer, but still can arise in use of the program

● Note: Even with testing, there can still be bugs!
● It is important to test early on in development, and continue through the

process - “regression testing”
● Testing should be as exhaustive as possible

Test Cases

● A test case describes some action that the programmer expects their code to
perform

● Test cases should be as exhaustive as possible - we want to test the full
functionality of our code, including edge cases!

● Test cases should also be unique

Black Box Testing

● This is “functional testing”
● Tester does not know the details of the code
● Given some input, the test expects some output
● Often done by QA/people not familiar with the details of the code

Input Output

White Box Testing

● Software unit testing
● Done by the developers
● Test cases are designed based on the internal structure of the code

What is JUnit?

● JUnit is a framework for writing unit tests in Java
● Unit test: test of a class
● Test case: a test of a single method in a class

Using JUnit

● In general:
○ public class OurTests {

@Test
protected void runOurTest() {

 // Our test goes here!
}

}

How Do JUnit Tests Actually Work?

● Tests do not have a return type - they are void functions
● Upon success, a test will do nothing
● Upon failure, the test will throw an AssertionError
● This error is handled by JUnit, no extra work for the programmer!

How Tests Pass or Fail

● In JUnit tests, the programmer asserts a condition
● If the assertion is true, the test passes
● If the assertion is false, the test fails
● JUnit provides many assert functions

Types of Asserts

● assertEquals(boolean expected, boolean actual)
● assertTrue(boolean condition)
● assertFalse(boolean condition)
● assertNotNull(Object object)
● assertNull(Object object)
● assertSame(object1, object2)
● assertNotSame(object1, object 2)
● assertArrayEquals(expectedArray, resultArray)

Example Test Case Code
import org.junit.Test;
import static org.junit.Assert.*;

public class SampleTest {

 @Test
 public void simpleTest() {
 assertEquals(1, 1);
 }

 @Test
 public void simpleTest2() {
 assertTrue(false);
 }
}

Let’s Try It Out!

