
CIS	110	—	Introduction	to	Computer	Programming	
Spring	2016	—	Final	Exam	

	
Name:		 	 	 __	

Recitation	#	(e.g.,	201):		 __	
Pennkey	(e.g.,	eeaton):		 __	
My	signature	below	certifies	that	I	have	complied	with	the	University	of	Pennsylvania’s	Code	of	

Academic	Integrity	in	completing	this	examination.	

_________________________________	 	 	 	 ________________________	

Signature		 	 	 	 	 	 	 	 Date	
	

Instructions:	 	 	 	 	 	 	 	Scores:		
•	Do	not	open	this	exam	until	told	by	the	proctor.	You	will		 	 	[For	instructor	use	only]	

have	exactly	110	minutes	to	finish	it.	

•	Make	 sure	 your	 phone	 is	 turned	OFF	 (not	 to	 vibrate!)	 before	 the	
exam	starts.	

•	Food,	gum,	and	drink	are	strictly	forbidden.	

•	 You	 may	 not	 use	 your	 phone	 or	 open	 your	 bag	 for	 any	 reason,	
including	to	retrieve	or	put	away	pens	or	pencils,	until	you	have	left	
the	exam	room.	

•	 This	 exam	 is	 closed-book,	 closed-notes,	 and	 closed	 computational	
devices.	

•	If	you	get	stuck	on	a	problem,	it	may	be	to	your	benefit	to	move	on	

to	another	question	and	come	back	later.	

•	All	answers	must	be	written	on	the	exam	booklet.	

•	All	code	must	be	written	out	in	proper	java	format,	including	all	curly	

braces	and	semicolons.	

•	Do	not	separate	the	pages.	If	a	page	becomes	loose,	re-attach	it	with	

the	provided	staplers.	

•	 Scratch	paper	 is	provided	at	 the	end	of	 the	exam.	Do	not	 take	any	

sheets	of	paper	with	you.	

•	If	you	require	extra	paper,	please	use	the	backs	of	the	exam	pages	or	

the	extra	pages	provided	at	the	end	of	the	exam.	Clearly	indicate	on	
the	 question	 page	 where	 the	 graders	 can	 find	 the	 remainder	 of	
your	work	(e.g.,	“back	of	page”	or	“on	extra	sheet”).	

•	Use	a	pencil,	or	blue	or	black	pen	to	complete	the	exam.	

•	If	you	have	any	questions,	raise	your	hand	and	a	proctor	will	come	to	

answer	them.	

•	When	you	turn	in	your	exam,	you	may	be	required	to	show	ID.	If	you	forgot	to	bring	your	ID,	talk	to	an	
exam	proctor	immediately.	

•	We	wish	you	the	best	of	luck.	

	 	

0.	Cover	Page	

Info	

	 1		pt	

1.	Miscellaneous		 	 10	pts	

2.	Sorting	and	

Searching	

	 18	pts	

3.	LinkedLists	&	

ArrayLists	

	 25	pts	

4.	Recursion	 	 10	pts	

5.	Linked	Data	

Structures	

	 10	pts	

6.	Debugging	 	 12	pts	

7.	Tracery	 	 10	pts	

8.	OO	Memory	 	 14	pts	

Total:	 	 110	

pts	

2	 CIS	110	–	Final	Exam	–	Spring	2016	
	

0. (1	pt) Cover	Page	Information:	

• Check	that	your	exam	has	all	12	pages	(excluding	the	scratch	paper).	

• Write	your	name,	recitation	number,	and	PennKey	(username)	on	the	front	of	the	exam.	

• Sign	the	certification	that	you	comply	with	the	Penn	Academic	Integrity	Code.	

	

SECTION	1:	MISCELLANEOUS		 (10	pts;	1	pt	each)	

Is each of the following statements true or false? (Circle the correct answer)

TRUE or FALSE 1.1) A java class with the following two methods will compile:

 public void add(int e, int index)
 public boolean add(int equals, int i)

TRUE or FALSE 1.2) Each class can only have one constructor.

TRUE or FALSE 1.3) The java compiler will warn you if your code will generate

RuntimeExceptions.

TRUE or FALSE 1.4) IllegalArgumentExceptions are typically used to signify that a

method has been called with inappropriate values for the arguments.

TRUE or FALSE 1.5) Static variables belong to the class; as opposed to fields, which belong

to an instance of a class.

Should each of the following variables/methods be declared static or non-static? (Circle one)

STATIC or NON-STATIC 1.6) A timer keeping track of the number of seconds since 1970

STATIC or NON-STATIC 1.7) An instance-level printGreeting() method that always

outputs the string “Hello and welcome!”

STATIC or NON-STATIC 1.8) The sine function that takes in a number x and returns sin(x)

STATIC or NON-STATIC 1.9) A method getAverage() in a StudentRecord class that

returns the average of a student’s test scores

STATIC or NON-STATIC 1.10) A variable numTimesPlayed in the class SitarString that

tracks the number of times that SitarString was plucked
	

	

	 	

3	 CIS	110	–	Final	Exam	–	Spring	2016	
	

SECTION	2:	SORTING	AND	SEARCHING	(18	pts	total)	

2.1)	 (6	 pts)	 A	 student	 intends	 to	 evaluate	 selection	 sort,	 insertion	 sort	 and	 mergesort,	 based	 on	 the	

number	of	 times	each	algorithm	compares	a	pair	of	elements	 in	the	array.	 	How	many	comparisons	will	

each	sorting	algorithm	make	on	the	array:	{8, 1, 5, 2, 4, 1}?	

Algorithm	 Number	of	Comparisons	

Selection	Sort	 	

	

Insertion	Sort	 	

	

Merge	Sort	 	

	

	

For	each	of	the	following	situations,	choose	the	algorithm	we	studied	that	will	perform	the	best.		

2.2)	(2	pts)	You	are	sorting	data	that	is	stored	on	a	remote	file	server	over	the	network.	Using	the	network	

connection,	it	is	extremely	expensive	to	"swap"	two	elements.		However,	looping	over	the	elements	and	

looking	at	their	values	is	very	inexpensive.	You	want	to	minimize	swaps	above	all	other	factors.		

a.	selection	sort		 b.	insertion	sort				 c.	mergesort		 		d.	None	of	the	above	

2.3)	(2	pts)	You	have	a	fast	computer	with	many	processors	and	lots	of	memory.	You	want	to	choose	a	

sorting	algorithm	that	is	fast	and	can	also	be	parallelized	easily	to	use	all	processors	to	help	sort	the	data.	

a.	selection	sort		 b.	insertion	sort				 c.	mergesort		 		d.	None	of	the	above	

2.4)	(2	pts)	You	have	an	array	that	is	already	sorted.	Periodically,	some	new	data	arrives	and	is	added	to	

the	array	at	random	indexes,	messing	up	the	ordering.	You	know	the	indices	of	the	new	data,	and	need	to	

re-sort	the	array	to	get	it	back	to	being	fully	ordered	as	efficiently	as	possible.	

a.	selection	sort		 b.	insertion	sort				 c.	mergesort		 		d.	None	of	the	above	

2.5)	(2	pts)	Now	that	you	have	a	fair	knowledge	about	programming,	you	decide	to	build	cool	things	on	

your	own.	You	start	off	by	building	a	search	engine!	The	graphical	user	interface	is	done	and	you	now	wish	

to	add	an	autocomplete	feature	that	will	fill	in	the	word	as	you	type	it.		

a.	selection	sort		 b.	insertion	sort				 c.	mergesort		 		d.	None	of	the	above	

	

2.6)	(2	pts)	What	is	the	computational	efficiency	of	mergesort	when	it	is	applied	on	a	sorted	array?	

a.	O(lg	N)	 	 c.	O(0.5N	lg(0.5n))			 e.	O(N
2
)	

b.	O(N)	 	 	 d.	O(N	lg	n)	 	 f.	None	of	the	above	

2.7)	(2	pts)	Recall	that	each	step	of	insertion	sort	uses	linear	search	to	determine	the	index	to	insert	the	

next	item	into	the	sorted	portion	of	the	array.		An	intrepid	student	proposes	a	new	form	of	insertion	sort:		

they	plan	to	locate	the	index	of	insertion	using	binary	search.		What	is	the	computational	complexity	of	

their	algorithm?	

a.	O(lg	N)	 	 c.	O(0.5N	lg(0.5n))			 e.	O(N
2
)	

b.	O(N)	 	 	 d.	O(N	lg	n)	 	 f.	None	of	the	above	 	

4	 CIS	110	–	Final	Exam	–	Spring	2016	
	

SECTION	3:	ARRAYLISTS	AND	LINKEDLISTS	(25	pts	total)	

3.1	 (10	 pts;	 2	 pts	 each)	 For	 each	 of	 the	 methods/properties	 listed	 below,	 circle	 which	 data	

structure	is	more	efficient	(i.e.,	has	lower	computational	complexity).	If	the	efficiency	is	the	same	

for	multiple	data	structures,	circle	multiple	answers	per	row.	Assume	efficient	 implementations	

for	all	methods.	

list.add(0,x) Singly
Linked List

Doubly
Linked List

ArrayList

list.add(x) Singly
Linked List

Doubly
Linked List

ArrayList

list.get(list.size()/2) Singly
Linked List

Doubly
Linked List

ArrayList

list.remove(0) Singly
Linked List

Doubly
Linked List

ArrayList

total memory usage Singly
Linked List

Doubly
Linked List

ArrayList

	
3.2	(15	pts)	One important aspect of programming is using existing generic data
structures to implement new data structures. Assume that you are given
SinglyLinkedList<T> and ArrayList<T> classes, which both implement the
List<T> interface:
public Interface List<T> { public Interface Iterator<T> {
 public boolean add(T x); public boolean hasNext();
 public void add(int index, T x);
 public void clear(); // returns the current element
 public boolean contains(T x); // and advances the iterator
 public T get(int index); public T next();
 public int indexOf(T x);
 public boolean isEmpty(); // removes the item previously
 public Iterator<T> iterator(); // returned by next()
 public T remove(int index); public void remove();
 public T set(int index, T x); }
 public int size();
}

The Identical Twin Convention of America is looking to implement a new registration
system, and needs your help! Implement a new data structure called PairedSet<T>
that contains a List object as a private field, either the SinglyLinkedList<T> or
ArrayList<T> (choose the best option!)
The PairedSet<T> is just like a list, but it
can only contain up to two copies of a single
item, the order of the items does not matter,
and it implements a reduced interface called
Set<T>. The PairedSet<T> should throw
a RuntimeException if someone attempts
to add more than two copies of a single item.

public Interface Set<T> {
 public void add(T x);
 public void clear();
 public void contains(T x);
 public Iterator<T> iterator();
 public boolean isEmpty();
 public void remove(T x);
 public void size();
}	

5	 CIS	110	–	Final	Exam	–	Spring	2016	
	

Put your implementation of the PairedSet<T> class below:
	

	

	

	

	

	

	

	

	

	

	

	 	

6	 CIS	110	–	Final	Exam	–	Spring	2016	
	

SECTION	4:	RECURSION	(10	pts)	

Assume	 that	 you’re	 given	 an	 implementation	 of	 a	 singly	 linked	 list	 of	 strings	 without	 sentinel	

nodes.		Add	a	new	method	to	intersperse	a	value	throughout	the	list.			Node	is	defined	as:	
 class Node {
 String value;
 Node next;
 }
Write	a	pair	of	functions:	a	public	method,	and	the	corresponding	private	helper	method.		Your	

implementation	must	be	recursive.		The	header	for	the	public	method	is:	
/** Function Name: intersperse
 * Parameters: value – String to be interspersed
 * Examples:
 * 1.) Given list: head-> “A” -> “B”-> “C” -> “D” -> null
 * intersperse(“N”) should modify the list to be:
 * “A” -> “N” -> “B” -> “N” -> “C” -> “N” -> “D” -> null
 * 2.) intersperse(“N”) would not modify an empty list
 */	

	 	

7	 CIS	110	–	Final	Exam	–	Spring	2016	
	

SECTION	5:	LINKED	DATA	STRUCTURES	(10	pts)	

The New York City Subway’s Lexington Avenue Line has a local train and an express train. The
local train stops at all stations, the express train only stops at the express stations (in bold).

• Train Depot (0th)
• 1st Street (Bleecker)
• 8th Street (Astor Pl)
• 14th St (Union Sq)
• 23rd Street
• 28th Street

• 33rd Street
• 42nd St -Grand Central
• 51st Street
• 59th Street
• 68th St (Hunter College)
• 77th Street

• 86th Street
• 96th Street
• 103rd Street
• 110th Street
• 116th Street
• 125th Street

We can represent this as a class SubwayLine that is a singly linked list (without sentinel nodes),
where each Station node has two references (to the next local and the next express station):

public class Station {
 public int street; // street number
 public Station nextExpressStation; // next express stop; null if local station
 public Station nextLocalStation; // next local stop; null at end of the line

 public Station(int street, Station nextLocalStation, Station nextExpressStation){
 this.street = street;
 this.nextLocalStation = nextLocalStation;
 this.nextExpressStation = nextExpressStation;
 }
}
	

Write	a	method	printRoute(int street)	for	SubwayLine	that	prints	the	station	numbers	on	the	

shortest	route	from	depot	to	the	station	on	or	before	that	street.		E.g.,	printRoute(32)	would	
output	“0,14,23,28”. Throw	an	IllegalArgumentException	if	the	street	is	negative.	
	
public void printRoute(int street)	{	

	

	

	

	

	

	

	

	

	

	

}	 	

next	
Express	

next	
Local	

street	
0	

next	
Express	

next	
Local	

street	
8	

next	
Express	

next	
Local	

street	
14	

next	
Express	

next	
Local	

street	
23	

next	
Express	

next	
Local	

street	
28	

next	
Express	

next	
Local	

street	
33	

next	
Express	

next	
Local	

street	
42	

next	
Express	

next	
Local	

street	
51	

next	
Express	

next	
Local	

street	
1	 .	.	.	depot	

8	 CIS	110	–	Final	Exam	–	Spring	2016	
	

SECTION	6:	DEBUGGING	(12	pts;	2	pts	each)	
	

An	enterprising	individual	attempted	to	complete	the	implementation	of	the	SubwayLine	class	from	the	

previous	problem,	but	made	a	number	of	errors.		The	code	compiles,	but	the	implementation	does	not	

work	correctly.		Find	and	correct	the	logical	bugs	in	the	code	on	the	following	page.	
	

There	are	six	logical	bugs	total.		After	some	initial	debugging,	you	determine	that	the	method	

buildExpressStation()	works	correctly,	and	so	all	the	bugs	are	in	buildLocalStation()	
and/or	demolishStation().			Each	bug	can	be	fixed	in	one	line	of	code.	
	

Line	Num	 Description	of	Bug	 Correction	

9	 CIS	110	–	Final	Exam	–	Spring	2016	
	
public class SubwayLine {
 // both the express and local tracks begin with the depot at 0th street
 public final Station depot = new Station(0, null, null);

 public void buildLocalStation(int i) {
 if (i < 0) throw new IllegalArgumentException("Invalid street");
 Station curr = null;
 while (curr.nextLocalStation != null && curr.nextLocalStation.street < i) {
 curr = curr.nextLocalStation;
 if (curr.street != i)
 throw new IllegalArgumentException("station exists");
 }
 curr.nextLocalStation = new Station(i, null, null);
 }

 public void buildExpressStation(int i) {
 if (i < 0) throw new IllegalArgumentException("Invalid street");
 Station currExpress = depot;
 while (currExpress.nextExpressStation != null &&
 currExpress.nextExpressStation.street < i) {
 currExpress = currExpress.nextExpressStation;
 if (currExpress.street == i)
 throw new IllegalArgumentException("station exists");
 }
 Station currLocal = currExpress.nextLocalStation;
 while (currLocal.nextLocalStation != null &&
 currLocal.nextLocalStation.street < i) {
 currLocal = currLocal.nextLocalStation;
 // if station exists, change it from local to express
 if (currLocal.street == i) {
 currLocal.nextExpressStation = currExpress.nextExpressStation;
 currExpress.nextExpressStation = currLocal;
 return;
 }
 }
 Station newStation = new Station(i, currLocal.nextLocalStation,
 currExpress.nextExpressStation);
 currLocal.nextLocalStation = newStation;
 currExpress.nextExpressStation = newStation;
 }

 public void demolishStation(int i) {
 Station currLocal = depot;
 Station currExpress = depot;
 while (currLocal.nextLocalStation.street != i) {
 currLocal = currLocal.nextLocalStation;
 if (currLocal == null || currLocal.street > i) {
 throw new IllegalArgumentException("Station doesn’t exist");
 }
 if (currLocal.nextExpressStation != null) {
 //TODO
 }
 }
 if (currExpress.nextExpressStation == currLocal.nextLocalStation) {
 currExpress.nextExpressStation =
 currExpress.nextExpressStation.nextExpressStation;
 }
 currLocal.nextLocalStation = currLocal.nextLocalStation;
 }
}	

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10	 CIS	110	–	Final	Exam	–	Spring	2016	
	

SECTION	7:	TRACERY	(10	pts)	
What	would	the	following	program,	composed	of	the	four	files	below,	print	after	being	run	via:	
 java AnimalHouse Fred Georgia Rita Sammy Bob
	

public class AnimalHouse {
 public static void main(String[] args) {
 Pet[][] pets = new Pet[2][];
 int idx = 0;
 for (int i = 0; i < pets.length; i++) {
 pets[i] = new Pet[args.length / 2 + i * args.length % 2];
 for (int j = 0; j < pets[i].length; j++) {
 if (idx % 2 == 0) {
 pets[i][j] = new Dog(args[idx++]);
 } else {
 pets[i][j] = new Cat(args[idx++]);
 }
 }
 }
 for (int k = 0; k < pets.length; k++) {
 int notK = (pets.length-1) - k;
 for (int i = 0; i < pets[k].length; i++) {
 System.out.print(pets[k][i]);
 for (int j = 0; j < pets[notK].length; j++) {
 if (pets[k][i].equals(pets[notK][j])) {
 System.out.print("*");
 }
 }
 System.out.println();
 }
 }
 }
}

public interface Pet {
 public String getName();
 public int getIDNumber();
 public boolean equals(Pet p);
}

public class Dog implements Pet {
 private String name;
 private int id;
 private static int num = 0;

 public Dog(String name) {
 this.name = name;
 id = num++ + name.length();
 }
 public String getName() {
 return name;
 }
 public int getIDNumber() {
 return id;
 }
 public String toString() {
 return name+"("+id+")";
 }
 public boolean equals(Pet a) {
 return id == a.getIDNumber();
 }
}

public class Cat implements Pet {
 private String name;
 private int id;
 private static int num = 2;

 public Cat(String name) {
 this.name = name;
 id = num;
 num *= 2;
 }
 public String getName() {
 return name;
 }
 public int getIDNumber() {
 return id;
 }
 public String toString() {
 return name+"("+id+")";
 }
 public boolean equals(Pet a) {
 return id == a.getIDNumber();
 }
}
	

11	 CIS	110	–	Final	Exam	–	Spring	2016	
	

Write	your	answer	to	the	tracery	question	below,	with	each	box	representing	one	line	of	output	

(ignore	any	extra	boxes).	

	

	

	

12	 CIS	110	–	Final	Exam	–	Spring	2016	
	

SECTION	8:	OBJECT-ORIENTED	MEMORY	(14	pts	total)	
	

In	this	question,	you	will	draw	memory	diagrams	similar	to	the	ones	we	used	in	lecture.		Here	are	

a	few	examples	of	code	or	objects	and	their	corresponding	memory	diagrams:	

int a = 0; A	class	representing	a	singly-linked	list	of	strings		

String s = new String(“Hello”); (without	a	tail	pointer)	that	contains	two	items.
	

Draw	memory	diagrams	for	each	of	the	following.		For	any	classes,	clearly	draw	a	box	around	the	

class	to	indicate	all	fields	contained	within	that	class,	as	shown	above	for	the	linked	list.	

8.1)	(2	pts)	A	class	representing	an	empty	doubly	linked	list	with	sentinel	nodes.	

	

	

	

	

	

8.2)	(4	pts)	A	class	representing	a	singly	linked	list	of	strings	(with	a	tail	pointer)	containing	four	
items.		Add	a	second	class	representing	an	Iterator	object	that	is	currently	referencing	the	3rd	
word	and	is	capable	of	efficiently	removing	the	3

rd
	word	from	the	list.		(Two	classes	total)	

	

	

	

	

	

	

8.3)	(4	pts)	A	class	representing	a	student’s	academic	record	by	name	and	PennID	number	with	

an	ArrayList	of	classes	the	student	has	taken,	represented	as	strings.	(Two	classes	total)	
	

	
	
	
	
	
8.4)	 (4	 pts)	 A	 class	 representing	 a	 resizable	 two-dimensional	matrix	 of	 integers	 that	 supports	

O(1)	access	to	any	elements	and	can	add	additional	rows	or	columns	of	numbers	in	O(1)	time.	
	
	
	
	
	
	
	
That’s	all.		Please	go	back	and	check	your	work.		Also,	do	not	discuss	the	exam	on	Piazza,	as	there	

are	still	several	people	waiting	to	take	makeup	exams.		Have	a	great	summer!!

0	a	 	s	 “Hello”	 	head	 	“Hello”	 	“There”	 2	size	
	

CIS 110 Spring 2016 Final Exam Answer Key

SECTION 1: MISCELLANEOUS
1.1) FALSE
1.2) FALSE
1.3) FALSE
1.4) TRUE
1.5) TRUE

1.6) STATIC
1.7) STATIC
1.8) STATIC
1.9) NON-STATIC
1.10) NON-STATIC

SECTION 2: SORTING AND SEARCHING
2.1) Selection Sort: 15

Insertion Sort: 14
Merge Sort: 9 or 10 (depending on implementation)

2.2) a
2.3) c
2.4) b
2.5) d
2.6) d
2.7) e

SECTION 3: ARRAYLISTS AND LINKEDLISTS
3.1 list.add(0,x): SinglyLL & DoublyLL

list.add(x): All three
 list.get(list.size()/2): ArrayList
 list.remove(0): SinglyLL & DoublyLL
 total memory usage: ArrayList

3.2

public class PairedSet<T> implements Set<T> {

private List<T> list = new LinkedList(); // or ArrayList()

public void add(T x) {
 Iterator<T> iter = list.iterator();
 int count = 0;
 while (iter.hasNext()) {
 T item = iter.next();
 if (item.equals(x)) count++;
 if (count >= 2)

throw new RuntimeException(
 “set already contains two copies of the item”);

 if (count < 2) list.add(x);

}

public void clear() {

list.clear();
}

public boolean contains(T x) {

return list.contains(x);
}
public Iterator<T> iterator() {

return list.iterator();
}
public boolean isEmpty() {

return list.isEmpty();
}
public void remove(T x) {

list.remove(list.indexOf(x));
}
public int size() {

return list.size();
}

}

SECTION 4: RECURSION
public void intersperse(String s) {

intersperse(head,s);
}
private void intersperse (String s, Node n) {
 if (n.next == null) {
 return;
 }
 Node newNode = new Node();
 newNode.val = s;
 newNode.next = n.next;
 n.next = newNode;
 intersperse(s, newNode.next);
}

OR

public void intersperse(String s) {

head = intersperse(head,s);
}
private Node intersperse (String s, Node n) {
 if (n.next == null) {
 return n.next;
 }
 Node newNode = new Node();
 newNode.val = s;
 newNode.next = intersperse(s, n.next);

 n.next = newNode;

 return n;
}

SECTION 5: LINKED DATA STRUCTURES
public void printRoute(int street) {

if (street < 0) {
throw new IllegalArgumentException("Invalid street number");

}
 Station currExpress = depot;
 System.out.print(currExpress.street);
 while (currExpress.nextExpressStation != null &&

 currExpress.nextExpressStation.street < street) {
 currExpress = currExpress.nextExpressStation;
 System.out.print(", "+currExpress.street);
 }
 Station currLocal = currExpress.nextLocalStation;
 while (currLocal != null &&
 currLocal.street <= street) {
 System.out.print(", "+currLocal.street);
 currLocal = currLocal.nextLocalStation;
 }
 }

SECTION 6: DEBUGGING

7 Iteration must start at depot Change to “Station curr = depot”;

10 Always saying station exists Change != to ==

13 Breaks rest of list Change to : “new Station(i, curr.nextLocalStation, null)”

45 Not protecting for nulls Add condition “currLocal.nextLocalStation != null &&” to
while

51 TODO marker should be removed Change to “currExpress = currLocal”

58 Not deleting station Change to “currLocal.nextLocalStation =
currLocal.nextLocalStation.nextLocalStation”

SECTION 7: TRACERY

Fred(4)*

Georgia(2)

Rita(5)

Sammy(4)*

Bob(5)

SECTION 8: OBJECT-ORIENTED MEMORY
8.1)

8.2)

8.3)

8.4)

4

0

