
CIS 110 — Introduction to Computer Programming

28 June 2012 — Final Exam

Name:

Recitation # (e.g. 201):

Pennkey (e.g. bjbrown):

My signature below certifies that I have complied with the University of Pennsylvania’s Code
of Academic Integrity in completing this examination.

Signature Date

Scores:

1 1

2 5

3 7

4 15

5 20

6 32

Total: 80



CIS 110 Final Instructions

• You have 110 minutes to finish this exam. Time will begin when called by a proctor and end
precisely 110 minutes after that time. If you continue writing after the time is called, you
will receive a zero for the exam.

• This exam is closed-book, closed-notes, and closed-computational devices. Except where noted,
you can assume that code included in the question is correct and use it as a reference for Java
syntax.

• This exam is long. If you get stuck part way through a problem, it may be to your advantage
to go on to another problem and come back later if you have time.

• When writing code, the only abbreviations you may use are for System.out.println, System.out.print,
and System.out.printf as follows:

System.out.println −→ S.O.PLN

System.out.print −→ S.O.P

System.out.printf −→ S.O.PF

Otherwise all code must be written out as normal, including all curly braces and semicolons.

• Please do not separate the pages of the exam. If a page becomes loose, write your name on
it and use the provided staplers to reattach the sheet when you turn in your exam so that we
don’t lose it.

• If you require extra paper, please use the backs of the exam pages or the extra sheet(s) of
paper provided at the end of the exam. Clearly indicate on the question page where the
graders can find the remainder of your work (e.g. ”back of page” or ”on extra sheet”). Staple
an extra sheets you use to the back of your exam when you turn it in using the provided
staplers.

• If you have any questions, please raise your hand and an exam proctor will come to answer
them.

• When you turn in your exam, you may be required to show ID. If you forgot to bring your
ID, please talk to an exam proctor immediately.

Good luck, have fun!

1



Miscellaneous

1. (1 points)

(a) Write your name, recitation number, and PennKey (username) on the front of the exam.

(b) Sign the certification that you comply with the Penn Academic Integrity Code

Short Answer

2. (5 points) Answer each of the following questions in at most two sentences.

(a) If I pushed 3, then 5, then 7 onto a stack of integers, what would pop() remove?

(b) What are the best and worst case running times for insertion sort, and in which cases do they
occur? If you expect the input to be random, what do you expect the running time to be?
You may use any notation you like as long as it is clear that you understand the answer.

(c) What is one reason we would prefer a linked list to an array? What is one reason we would
prefer an array to a linked list?

(d) Give two reasons why we might want to use an interface.

(e) What is the purpose of the Comparable interface?

2



Debugging

3. (7 points) Find and correct 7 errors in the following code. Note: some of the bugs may cause
incorrect behavior rather than syntax errors. The line numers are included for your convenience.

1: public class Ouch {

2: private int[] arr;

3: private string name;

4: public Ouch() {

5: arr = int[5];

6: }

7: public DebugMe(int[] arr, String n) {

8: arr = arr;

9: }

10: public printMe() {

11: for (i = 0; i < arr.length; i++) {

12: System.out.println(name.length() + arr[i]);

13: }

14: }

15: }

BUG 1:

BUG 2:

BUG 3:

BUG 4:

BUG 5:

BUG 6:

BUG 7:

3



Awesome TAs, What Are They Good For?

4. (15 points) The following program prints five lines of output. What are they? Write and
circle your answer on the following page.

4



public class Awesome {

public String thing;

public double[] lulz;

public int hi;

public Awesome(String a, int b) {

hi = b;

a = b + a + hi;

thing = a;

b = b * b;

lulz = new double[b];

for(int Jeff = 0; Jeff < hi; Jeff++)

lulz[Jeff] = Jeff + b;

}

public static void roffleCopter(String thing, Awesome sauce) {

Awesome bye = sauce;

thing = sauce.thing;

if(sauce.lulz.length >= 2)

bye.lulz[1] = sauce.hi;

String t = sauce.thing;

t = t + t;

bye.hi = thing.length();

if(sauce.hi == bye.hi)

bye.hi++;

}

public static void main(String[] args) {

String a = "cheezburger";

String b = "fryz";

Awesome Sam = new Awesome(a, 4);

Awesome Kat = new Awesome(b, 5);

System.out.println(1 + ": " + Sam.thing + " " + Sam.hi);

System.out.println(2 + ": " + Kat.thing + " " + Kat.hi);

Awesome.roffleCopter("WOMP", Sam);

Awesome.roffleCopter("WUB", Kat);

System.out.println(3 + ": " + Sam.thing + " " + Sam.hi);

System.out.println(4 + ": " + Kat.thing + " " + Kat.hi);

System.out.println(5 + ": " + a + " " + b);

}

}

5



Write the five lines that the Awesome program prints out here. Circle your answer.

6



QuickSelect

5. (20 points) Quickselect is an algorithm for finding the k-th element of an array, also referred
to as the element of rank k. To understand how quickselect works, assume the value of the first
array element is val. Quickselect will rearrange the elements of the array so that every element
that is less than val comes before it in the array (in no particular order), and every element that
is larger than it comes after (again, in no particular order). This can be done in one pass over the
array that works in from both ends, leaving elements in place when they are at the correct end of
the array, and swapping them when they aren’t. Finally, the first element (val) is swapped into
its position in the middle of the array. When this is done, we know exactly how many elements
are smaller than val, and how many are larger. That means we know whether the k-th element is
before or after val in the array, and we can recursively call quickselect on that portion of the array.
It turns out that quickselect almost always finds the k-th lowest element in O(n) time for an array
of n elements, and it is widely used in practice.

Below is a program that takes a list of integers as command line arguments, finds a specific
element within the array, and prints it. It also prints the array contents after the selection, and
some debugging information during the selection:

public class QuickSelect {

public static void main(String[] args) {

// take a list of integers as command-line arguments

// and convert them to an int[] array

int[] arr = new int[args.length];

for (int i = 0; i < args.length; i++)

arr[i] = Integer.parseInt(args[i]);

// use quick-select to find the (args.length / 2) lowest value

int retval = select(arr, 0, args.length, args.length / 2);

// print out the return value and contents of arr

System.out.println("return value = " + retval);

for (int i = 0; i < arr.length; i++) System.out.print(arr[i] + " ");

System.out.println();

}

// swap elements a and b of arr

private static void swap(int[] arr, int a, int b) {

int tmp = arr[a];

arr[a] = arr[b];

arr[b] = tmp;

}

/* CONTINUED ON NEXT PAGE */

7



/* CONTINUATION OF QuickSelect FROM PREVIOUS PAGE */

// sort arr just enough to identify and return

// the rank-lowest value of arr

//

// e.g. if rank is 2, sort arr just enough to find an return

// the second lowest element

public static int select(int[] arr, int lo, int hi, int rank) {

// print out lo and hi

System.out.println(lo + " " + hi);

// rearrange elements lo..hi of arr so that

// all values that are <= arr[lo] are before it

// in arr, and all elements that are > arr[lo]

// are after it

int midval = arr[lo];

int l = lo + 1, r = hi - 1;

while (r > l) {

if (arr[l] > midval) {

swap(arr, l, r);

r--;

} else l++;

}

if (arr[l] > midval) l--;

swap(arr, lo, l);

// Now the value that used to be in arr[lo] is in its

// final (sorted) position in the array, even if nothing

// else is fully sorted. So if it’s at position rank, it’s

// the value we’re looking for. Otherwise we can tell if the

// value we’re looking for is below or above it, and recurse

// only on that half of the array.

if (l == rank) return arr[l];

else if (l < rank) return select(arr, r, hi, rank);

else return select(arr, lo, r, rank);

}

}

8



For each invocation of QuickSelect below, write exactly what the program will print:

(a) % java QuickSelect 4 3 2 1 7 6 5

(b) % java QuickSelect 3 2 1 6 4 5 7

9



Queues on First

6. (32 points) You want to have a conversation with your friend about baseball. Unfortunately,
he’s a computer science major, and doesn’t know a thing about it. But he does know Java, so you
can decide to explain the batter’s lineup to him in code. The general idea is that there is a line
of Players, and that when someone must hit the ball, the person that goes up is the one who has
waited the longest in line. When the coach adds someone to the lineup they get in the back of the
line and must wait for everyone in front to bat first.

Given the Player and Lineup classes below, answer the questions on the following pages.

public class Player {

public String name;

public int rbi;

public Player next; // the next Player in the lineup

// null if there are no players behind this one

}

public class Lineup {

public Player first; // the first player in the batting lineup

public Player last; // the last player in the lineup

public int size; // the number of players in the lineup

// remove and return the Player at the front of the lineup

// return null if the lineup is empty

public Player atBat() { /* ... */ }

// add a Player to the lineup

// assumes that p is not already in the lineup

// does nothing if p == null

public void addToLineup(Player p) { /* ... */ }

}

10



(a) Implement the atBat() and addToLineup methods. Make sure that the methods obey the
comments in the code extract above, and that first, last, and size are updated correctly.

public Player atBat {

}

public void addToLineup(Player p) {

}

11



(b) The team you’re talking about is exceptionally rowdy, so they often have players ejected from
the game. To explain how this works, you decide to add a third public method, eject to
the Lineup class that take a Player p, and removes p from the lineup and returns true if p
was in it. If p is null or not in the lineup, eject makes no change and returns false. For
example, if the lineup was Catherine, Sam, Jeff, and Kat when the umpire ejected Sam, the
lineup would become Catherine, Jeff, and Kat, and eject would return true. Don’t forget to
handle nulls appropriately and to update the first, last, and size variables.

12



Postscript (extra paper)

13



Postscript (extra paper)

14


