4.3 Stacks, Queues, and Linked Lists

% Efgirn‘e?mg Section 4.3

Data Types and Data Structures

Data types: Set of values and operations on those values.
* Some are built into the Java language: int, double[], String, ...

* Most are not: Complex, Picture, Stack, Queue, ST, Graph, ...

N

this lecture

Data structures:

* Represent data or relationships among data.

* Some are built into Java language: arrays.

* Most are not: linked list, circular list, tree, sparse array, graph, ...

this lecture

Progr. amml g

CISM IO Penn saun Section 4.3
& =

Engineering

Collections

Fundamental data types:

» Set of operations (add, remove, test if empty) on generic data.
* Intentis clear when we insert.

* Which item do we remove?

Stack: [LIFO = last in first out] «— this lecture
 Remove the item most recently added.
 Ex: Pez, cafeteria trays, Web surfing.

Queue: [FIFO = first in, first out] «—— Harp
 Remove the item least recently added.
 Ex: Line for help in TA office hours.

Symbol table:
 Remove the item with a given key.
 Ex: Phone book.

4

oo 9]

Engineering

Section 4.3 3

Stack API

public class *StackOfStrings

*StackOfStrings() create an empty stack
boolean isEmpty() is the stack empty?
void push(String item) push a string onto the stack
String pop() pop the stack

Programming

IO P9 Penn Section 4.3

SR P ogincering

Stack Client Example 1: Reverse

public class Reverse {
public static void main (String[] args) {

StackOfStrings stack = new StackOfStrings() ;

while (!'StdIn.isEmpty()) {
String s = StdIn.readString() ;
stack.push(s) ;

}

while (!'stack.isEmpty()) {
String s = stack.pop() ;
StdOut.println(s) ;

} % more tiny.txt
times it was the best of times
of . .
% Jjava Reverse < tiny. txt
best times of best the was it
the

was | «<— stack contents when standard input is empty

it

q“sw O @Pe.nn. s==c Section 4.3
Engineering

Stack: Array Implementation

Array implementation of a stack. how bigtomake array? [stay tuned]

* Use array ar] to store n items on stack.

° push () add new item at a[N]. stackand array contents not
after 4t push operation or
« pop() remove item from a[n-1j. | be

to

a[] to be or not

0 1 2 3 4 5 6 7 8 9

N

public class ArrayStackOfStrings {
private String[] a;

)) temporary solution: make client provide capacit
private int N = 0; porary P pacity

g

public ArrayStackOfStrings (int max) { a = new String[max]; }
public boolean isEmpty () { return (N == 0),; }
public void push(String item) { a[N] = item; N++; }
public String pop () { N--; return a[N]; }

Cléw O @ Penn

Engineering

oo Section 4.3
=

Linked Lists

Official Florida Presidential Ballot

Follow the arrow and Punch the appropriate dot.

Bush

Buchanan

() 2000 Mike Collins, Taterbrams.com

@R P Lnuorig

Pror

Sequential vs. Linked Allocation

Sequential allocation: Put items one after another.
 TOY: consecutive memory cells.
e Java: array of objects.

Linked allocation: Include in each object a link to the next one.
e TOY: link is memory address of next item.

"Alice" "Carol" «—

e Java: linkis reference to next item. BL "Bob L nun
B2 "Carol" c2 =
B3 = Cc3
B4 = c4 "Alice"
B5 - c5 ca o
e —— -
Key distinctions: _ getititem S T 07
* Array: random access, fixed size. =20 cs
B9 - co -
* Linked list: sequential access, variable size. = - ca "Bob"
\ BB - CB co —
get next item array linked list
CIS 1()'-___ @Penn (BO) (c4)
' Engineering

Singly-Linked Data Structures

From the point of view of a particular object:
all of these structures look the same! —
/ \

> > > > >»(H—> / \

sequential (this lecture) ,\ /

7N\ ~o /

/T\ AN / circular l/
/N /1\ (_ | /

/\ I 'Y . _\)‘1/_) - \/

parent-link tree rho > /:generalcase / \ N — '\\

Multiply-linked data structures: Many more possibilities.

% @geg{nlgmg Section 4.3

Linked Lists

Linked list:
* A recursive data structure.
* Anitem plus a pointer to another linked list (or empty list).

— Unwind recursion: linked list is a sequence of items.

public class Node {

Node data type: public String item;
public Node next;
* Areferencetoa String. }

e A reference to another Node.

first

\\\‘ Alice o—» Bob o—— Carol — null

item next special pointer value null

CléWr IO @ Penn terminates list
Engineering

Building a Linked List

Node third = new Node() ; " "
third.item = "Carol"; — CO Carol
third.next = null; Cl null
Node second = new Node () ; C2 -
second.item = "Bob"; C3 -
second.next = third; . .
first C4 —— C4 "Alice"
Node first = new Node() ;
first.item = "Alice"; second CA — C>S CA]
first.next = second; third CO Cé =
C7 -
C8 -
C9 -
—— CA "Bob" <+
first second third CB Co
) | ! N
Alice o—> BoDb o—— Carol o—— null CD -
item next CE =
CF -

Cléw O @ Penn

Engineering

main memory

Stack Push: Linked List Implementation

first

.

best—* the — was —* it

first second

N

best—— the — was — it Node second = first;

first second
! !
best——> the —* was — it first = new Node() ;
first second
! y

first.item = "of";

— — — —>
of best the was it first.next = second;

Cléw O @ Penn

Engineering

Progr: mmlz

sees Section 4. 3

Stack Pop: Linked List Implementation

first o "of"

v

of —>best— the — was — it String item = first.item;
first

',‘ -\‘j‘best—’ the —* was — it first = first.next;

garbage-collected

first

\beSt—> the — was — it return item;

Pro ramml g

CI“SM IO Penn sacn Section 4.3
& =

Engineering

15

Stack: Linked List Implementation

Linked List Stack: Test Client Trace

StdIn StdOut

push| tw

Penn
Engineering

sscc Section 4.3

Stack Data Structures: Tradeoffs

Two data structures to implement Stack data type.

Array:
* Every push/pop operation take constant time.
* But... must fix maximum capacity of stack ahead of time.

Linked list:

e Every push/pop operation takes constant time.

* Memory is proportional to number of items on stack.

e But... uses extra space and time to deal with references.

first

\
to be or not PeF \
6 7 8 9 i \
(i, 10 @ Penp ® ST
Engineering to

List Processing Challenge 1

What does the following code fragment do?

for (Node x = first; x '= null; x = x.next) {
System.out.println(x.item) ;

}

Prog
]

| =5

@B P tgnearing

200 Section 4.3

9

List Processing Challenge 2

What does the following code fragment do?

Node last = new Node() ;
last.item = 5;
last.next = null;

Node first = last;

for (int 1 =1; i < 6; i++) {
last.next = new Node() ;
last = last.next;
last.item = i;
last.next = null;

Penn
Engineering

