
3.1 Objects

2

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

any program you might want to write

conditionals and loops

Math text I/O

assignment statements primitive data types

create your own

data types

3

Data Types

Data Types: set of values and associated operations

Primitive Types:
• values map directly to the machine representation

• ops map directly to machine instructions

We want to write programs that handle other data types
 colors, piĐtures, striŶgs, iŶput streaŵs, …

 complex Ŷuŵďers, ǀeĐtors, ŵatriĐes, polyŶoŵials, …
 points, polygoŶs, Đharged partiĐles, Đelestial ďodies, …

Operations Set of Values Data Type

not, and, or, xor true, false boolean

double

int

add, subtract, multiply any of 264 possible reals

add, subtract, multiply -231 to 231 - 1

4

Objects

Objects: represent values and operations for more

complex data types
– Object variables are called fields

– Object operations are called methods

Objects are said to encapsulate (hide) its detail

– How an object is implemented is not important

– What it does is important

Objects can be created and referenced with variables

length, substring, compare sequence of characters String

Operations Set of Values Data Type

get red component, brighten 24 bits Color

Picture get/set color of pixel (i, j) 2D array of colors

5

Programming paradigm that views a program as a

collection of interacting objects
 In contrast, the conventional model views the program as a list

of tasks (subroutines or functions)

We’ll talk aďout hoǁ to:
 Create your own data types (set of values and operations)

 Use objects in your programs (e.g., manipulate objects)

Why would I want to use objects in my programs?
 Simplify your code

 Make your code easier to modify

 Share an object with a friend

Object-Oriented Programming

The String Object

7

Constructors and Methods

To construct a new object:
 Use keyword new (to invoke constructor)

 Use name of data type (to specify which type of object)

with associated parameters for the constructor

To apply an operation:
 Use name of object (to specify which object)

 Use the dot operator (to access a member of the object)

 Use the name of the method (to specify which operation)

Defining Your Own Objects with Classes

• Classes are blueprints or prototypes for new objects

• Classes define all field and method declarations

… ǁhiĐh are repeated for eaĐh Ŷeǁ oďjeĐt Đreated

• Using a class to create a new object is called

instantiating an object

… ĐreatiŶg a Ŷeǁ oďjeĐt instance of the class

• Classes often model real-world items

9

Bouncing Ball Object

• What do we want to have the ball do?

 (i.e., what methods should it have?)

• What initial parameters should we

specify in the constructor?

10

Bouncing Ball Object

• What do we want to have the ball do?

 (i.e., what methods should it have?)

– ǀoid draǁ;Ϳ : ͞Ball, draǁ thyself!͟

– ǀoid update;Ϳ : siŵulate the ďall’s ŵotioŶ

• What initial parameters should we

specify in the constructor?

11

Bouncing Ball Object

• What do we want to have the ball do?

 (i.e., what methods should it have?)

– ǀoid draǁ;Ϳ : ͞Ball, draǁ thyself!͟

– ǀoid update;Ϳ : siŵulate the ďall’s ŵotioŶ

• What initial parameters should we

specify in the constructor
– Ball (int x, int y) : creates a ball at (x, y)

These ŵethods ĐoŶstitute the ďall’s API

12

Bouncing Ball Object

Given only the API, we can use the object in a program:

Ball

Ball(int x, int y)

void draw()

void update()

static Ball[] balls = new Ball[20];

public static void setup() {

 // Create all new Ball objects

 for (int i = 0; i < balls.length; i++) {

 balls[i] = new Ball(Math.random(),

 Math.random());

 }

}

public static void draw() {

 StdDraw.clear(StdDraw.WHITE);

 for (int i = 0; i < balls.length; i++) {

 balls[i].update();

 balls[i].draw();

 }

}

Declare

an array
of Balls.

New objects are

created with the

new keyword.

Methods of objects stored in the array

are accessed using dot-notation.

13

Bouncing Ball Object Implementation

• What fields should the ball have?

 (i.e., what does it need to know about itself?)

– position (x,y)

– velocity (dx, dy)

– acceleration due to gravity (ay)

– size, color, etc...

• The class Ball is implemented in

the same file

(BouncingBallObjectDemo.java)

14

// Defining a new object

public class MyObjectName {

 // All field variable declarations go here.

 // Field variables should be private.

 /* Define a special function-like statement called

 * the object’s constructor.
 * Its name is same as the class name,

 * with no return value.

 */

 public MyObjectName(optional arguments) {

 // Perform all initialization here

 }

 // Declare all method functions here

}

Defining Your Own Objects with Classes

15

// A Ball Class

public class Ball {

 // Fields

 private double ay = 0.002; // y acceleration (gravity)

 private double x; // x position

 private double y; // y position

 private double dx; // x velocity

 private double dy; // y velocity

 private double radius = 0.05;

 // Constructor

 public Ball() {

 x = StdRandom.uniform(radius, 1 - radius);

 y = StdRandom.uniform(0.5, 1);

 dx = StdRandom.uniform(-0.03, 0.03);

 dy = StdRandom.uniform(0.0, 0.05);

 }

 ...

}

16

 private boolean canBounceOffWalls = true;

 private boolean canBounceOffFloors = true;

 // Methods

 public void update() {

 // Move ball

 x += dx;

 y -= dy;

 dy += ay;

 // Bounce off walls and floor

 if (canBounceOffWalls && (x < radius || x > (1 - radius))) {

 dx = -dx;

 canBounceOffWalls = false;

 }

 if (canBounceOffFloors && y < radius) {

 dy = -0.9*dy;

 canBounceOffFloors = false;

 }

 // reset ready-to-bounce flags

 if (x >= radius && x <= (1 - radius)) canBounceOffWalls = true;

 if (y >= radius) canBounceOffFloors = true;

 }

 public void draw() {

 PennDraw.filledCircle(x, y, radius);

 }

Comparing Declarations and Initializers

int i;

int j = 3;

float f = 0.1;

float[] f2 = new float[20];

String s1 = "abc";

String s2 = new String("abc");

Ball b = new Ball();

Ball[] b2 = new Ball[20];

for (int i = 0; i < b2.length; i++) {

 b2[i] = new Ball();

}

18

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0

C1 0

C2 0

C3 0

C4 0

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

addr value

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

19

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0

C1 0

C2 0

C3 0

C4 0

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

C0

registers

0.50

0.50

0.05

0.01

0.03

addr value

b1

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

20

0.50

0.50

0.05

0.01
Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0

C1

C2

C3

C4 0.03

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

C0

registers

0.55

0.51

addr value

b1

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

21

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0.55

C1 0.51

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

C0

registers

0.60

0.52

addr value

b1

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

22

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0.60

C1 0.52

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0

C8 0

C9 0

CA 0

CB 0

CC 0

C0

registers

C7 0.50

0.50

0.07

0.04

0.04

addr value

b1

b2

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

23

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0.60

C1 0.52

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0.50

C8 0.50

C9 0.07

CA 0.04

CB 0.04

CC 0

C7

registers

C0

0.57

0.54

addr value

b1

b2

Object References

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

24

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0 0.60

C1 0.52

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0.57

C8 0.54

C9 0.07

CA 0.04

CB 0.04

CC 0

C0

registers

C0

addr value

b1

b2

Object References

C7 – CB can be reused for other

variables. Known as garbage

collection in java.

 Allow client to manipulate an object as a

single entity

 Essentially a machine address (pointer)

25

Ball b1 = new Ball();

b1.update();

b1.update();

Ball b2 = new Ball();

b2.update();

b2 = b1;

b2.update();

main memory
(64-bit machine)

C0

addr

0.60

value

C1 0.52

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0.57

C8 0.54

C9 0.07

CA 0.04

CB 0.04

CC 0

C0

b1

registers

C0

b2

0.65

0.53

Object References

Moving b2 also moves b1 since

they are aliases that reference

the same object.

26

Pass-By-Value

Arguments to methods are always passed by value.

 Primitive types: passes copy of value of actual parameter.

 Objects: passes copy of reference to actual parameter.

public class PassByValue {

 static void update(int a, int[] b, String c) {

 a = 7;

 b[3] = 7;

 c = "seven";

 System.out.println(a + " " + b[3] + " " + c);

 }

 public static void main(String[] args) {

 int a = 3;

 int[] b = { 0, 1, 2, 3, 4, 5 };

 String c = "three";

 System.out.println(a + " " + b[3] + " " + c);

 update(a, b, c);

 System.out.println(a + " " + b[3] + " " + c);

 }

}

27 27

Encapsulation

28

Access Control

• Encapsulation is implemented using access
control.
– Separates interface from implementation

– Provides a boundary for the client programmer

• Visible parts of the class (the interface)
– can be used and/or changed by the client

programmer.

• Hidden parts of the class (the implementation)
– Can be changed by the class creator without

impacting any of the client programmer’s code

– Can’t be corrupted by the client programmer

29

Access Control in Java

• Visibility modifiers provide access

control to instance variables and methods.

– public visibility - accessible by everyone, in

particular the client programmer

• A class’ interface is defined by its public methods.

– private visibility - accessible only by the

methods within the class

– Two others—protected and package—later

30

Good Programming Practice

• Combine methods and data in a single class

• Label all instance variables as private for
information hiding
– The class has complete control over how/when/if

the instance variables are changed

– Fields primarily support class behavior

• Minimize the class’ public interface

32

Using this

You can think of this as an implicit private reference to
the current instance.

Note that b1.year and b1.this.year refer to the same field

Date

=== public ====

Date()

int getYear()

 ...

=== private ===

int month

int day

int year

Date this

 ...

main memory
(64-bit machine)

C0 1

C1 1

C2 1900

C3 C0

C4 ?

C5 ?

C6 ?

registers

C0

addr value b1

month

day

year

 Date b1 = new Date();

this

33

Overloaded Constructors
public class Date {

 private int month; // 1 - 12

 private int day; // 1 - 31

 private int year; // 4 digits

 // no-argument constructor

 public Date() {
 month = 1;

 day = 1;

 year = 1900;

 }

 // alternative constructor

 public Date(int month, int day, int year) {
 this.month = month;

 this.day = day;

 this.year = year;

 }

 ...

}

// 1 Jan 1900

Date d1 = new Date();

// 30 Oct 2013

Date d2 = new Date(10, 30, 2013);

34

Accessors & Mutator

• Class behavior may allow access to, or
modification of, individual private instance
variables.

• Accessor method
– retrieves the value of a private instance variable
– conventional to start the method name with get

• Mutator method
– changes the value of a private instance variable
– conventional to start the name of the method with set

• Gives the client program indirect access to the
instance variables.

35

More Accessors and Mutators

Question: Doesn’t the use of accessors and
mutators defeat the purpose of making the
instance variables private?

Answer: No

• The class implementer decides which instance
variables will have accessors.

• Mutators can:
– validate the new value of the instance variable, and

– decide whether or not to actually make the requested
change.

36

Accessor and Mutator Example
public class Date {

 private int month; // 1 - 12

 private int day; // 1 - 31

 private int year; // 4-digit year

 // accessors return the value of private data

 public int getMonth() { return month; }

 // mutators can validate the new value

 public boolean setMonth(int month) {

 if (1 <= month && month <= 12) {

 this.month = month;

 return true;

 }

 else // this is an invalid month

 return false;

 }

 }

 // rest of class definition follows

}

37

Accessor/Mutator Caution

• In general you should NOT provide

accessors and mutators for all private
instance variables.

– Recall that the principle of encapsulation is

best served with a limited class interface.

38

Private Methods

• Methods may be private.

– Cannot be invoked by a client program

– Can only be called by other methods within

the same class definition

– Most commonly used as 䇾helper䇿 methods to
support top-down implementation of a public

method

39

Private Method Example
public class Date {

 private int month; // 1 - 12

 private int day; // 1 - 31

 private int year; // 4-digit year

 // accessors return the value of private data

 public int getMonth() { return month; }

 // mutators can validate the new value

 public boolean setMonth(int month) {

 if (isValidMonth(month)) {

 this.month = month;

 return true;

 }

 else // this is an invalid month

 return false;

 }

 // helper method - internal use only

 private boolean isValidMonth(int month) {

 return 1 <= month && month <= 12;

 }

}

40 40

Static and Final

41 41

Static Variable

• A static variable belongs to the class as a
whole, not just to one object.

• There is only one copy of a static variable

per class.
– All objects of the class can read and change

this static variable.

• A static variable is declared with the

addition of the modifier static.
static int myStaticVariable = 0;

Copyright © 2008 Pearson Addison-Wesley.

All rights reserved

42 42

Static Constants
• A static constant is used to symbolically represent a

constant value.

– The declaration for a static constant includes the modifier
final, which indicates that its value cannot be changed:

 public static final float PI = 3.142;

• It is not necessary to instantiate an object to access a
static variable, constant or method.

• When referring to such a constant outside its class,
use the name of its class in place of a calling object.

float radius = MyClass.PI * radius * radius;

Copyright © 2008 Pearson Addison-Wesley.

 All rights reserved

43

Rules for Static Methods

• Static methods have no calling/host object (they
have no this).

• Therefore, static methods cannot:

– Refer to any instance variables of the class

– Invoke any method that has an implicit or explicit this for a
calling object

• Static methods may invoke other static methods or
refer to static variables and constants.

• A class definition may contain both static methods
and non-static methods.

44

main is a Static Method

Note that the method header for main() is

public static void main(String[] args)

Being static has two effects:

• main can be executed without an object.

• 䇾Helper䇿 methods called by main must
also be static.

45

Any Class Can Have a main()

• Every class can have a public static

method name main().

• Java will execute main in whichever class

is specified on the command line.

 java <className>

• A convenient way to write test code for
your class.

46

Static Review

• Given the skeleton class definition below

public class C {
public int a = 0;
public static int b = 1;

public void f() {…}
public static void g() {…}

}

• Can body of f() refer to a?
• Can body of f() refer to b?
• Can body of g() refer to a?
• Can body of g() refer to b?
• Can f() call g()?
• Can g() call f()?

For each, explain why or why not.

