3.1 Objects

Penn.
Engineering

INTRODUCTION TO

Prograrﬂnm‘ing

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

A Foundation for Programming

any program you might want to write

< create your own
data types

functions and modules

graphics, sound, and image I/O
arrays
conditionals and loops
Math text I/O

primitive data types assignment statements

Penn
Engineering

Data Types

Data Types: set of values and associated operations

Primitive Types:
* values map directly to the machine representation
e ops map directly to machine instructions

boolean true, false not, and, or, xor
int -231 to 231-1 add, subtract, multiply
double any of 254 possible reals add, subtract, multiply

We want to write programs that handle other data types
m colors, pictures, strings, input streames, ...
m complex numbers, vectors, matrices, polynomials, ...
m points, polygons, charged particles, celestial bodies, ...

Penn
Engineering

Objects

Objects: represent values and operations for more

complex data types
- Object variables are called fields
- Object operations are called methods

Color 24 bits get red component, brighten
Picture 2D array of colors get/set color of pixel (i, j)
String sequence of characters length, substring, compare

Objects are said to encapsulate (hide) its detail
-How an object is implemented is not important
-What it does is important

Objects can be created and referenced with variables

Penn
Engineering

Object-Oriented Programming

Programming paradigm that views a program as a

collection of interacting objects
m |n contrast, the conventional model views the program as a list
of tasks (subroutines or functions)

We’'ll talk about how to:
m Create your own data types (set of values and operations)
m Use objects in your programs (e.g., manipulate objects)

Why would | want to use objects in my programs?
m Simplify your code
m Make your code easier to modify
m Share an object with a friend

Penn
Engineering

The String Object

public class String (Java string data type)

Penn
Engincering

String(String s) create a string with the same value as s
int Tlength(Q) string length
char charAt(int 1) ith character
String substring(int i, int j) ith through (j-1)st characters
boolean contains(String sub) does string contain sub as a substring?
boolean startsWith(String pre) does string start with pre?
boolean endsWith(String post) does string end with post?
int indexOf(String p) index of first occurrence of p
int indexOf(String p, int i) index of first occurrence of p after i
String concat(String t) this string with t appended
int compareTo(String t) string comparison
String replaceAl1(String a, String b) resultof changing as to bs
String[] split(String delim) strings between occurrences of delim
boolean equals(String t) is this string’s value the same as t’s?

Constructors and Methods

To construct a new object:
m Use keyword new (to invoke constructor)
m Use name of data type (to specify which type of object)
with associated parameters for the constructor

To apply an operation:
m Use name of object (to specify which object)
m Use the dot operator (to access a member of the object)
m Use the name of the method (to specify which operation)

declare a variable (object name)

/ call a constructor to create an object
String s; //
s =|new String("Hello, World");
System.out.println ([. substring(0, 5)|);

object name / }
Penn call a method that operates

Engineering on the object’s value

Defining Your Own Objects with Classes

e Classes are blueprints or prototypes for new objects

Classes define all field and method declarations
... Which are repeated for each new object created

e Using a class to create a new object is called
instantiating an object

... creating a new object instance of the class

e Classes often model real-world items

Penn
Engineering

Bouncing Ball Object

* What do we want to have the ball do?

(i.e., what methods should it have?)

* What initial parameters should we
specify in the constructor?

Penn
Engineering

Bouncing Ball Object

* What do we want to have the ball do?

(i.e., what methods should it have?)

l"

— void draw() : “Ball, draw thyself
— void update() : simulate the ball’s motion

* What initial parameters should we
specify in the constructor?

Penn
Engineering

Bouncing Ball Object

* What do we want to have the ball do?

(i.e., what methods should it have?)

l"

— void draw() : “Ball, draw thyself
— void update() : simulate the ball’s motion

* What initial parameters should we
specify in the constructor

— Ball (int x, int y) : creates a ball at (x, y)

These methods constitute the ball’s API

Penn
Enginccring

Bouncing Ball Object

Given only the API, we can use the object in a program:

an array

public static void setup () { of Balls.

// Create all new Ball objects
for (int i = 0; i < balls.length; i++) {
balls[i] new Ball (Math.random(),
Math.random()); “>_

} New objects are

created with the

public static void draw() { new keyword.
StdDraw.clear (StdDraw.WHITE) ;

}

for (int i = 0; 1 < balls.length; i++) {
balls[i] .update() ;

}

Ball (int x, int y)
void draw ()
void update ()

balls[i] .draw() ; \
}
Methods of objects stored in the array

are accessed using dot-notation.

Penn
Engineering

Bouncing Ball Object Implementation

* What fields should the ball have?
(i.e., what does it need to know about itself?)
— position (x,y)
— velocity (dx, dy)
— acceleration due to gravity (ay)
— size, color, etc... ‘

* The class Ball is implemented in

the same file
(BouncingBallObjectDemo.java)

Penn
Enginccring

Defining Your Own Objects with Classes

// Defining a new object
public class MyObjectName ({

Penn
Engincering

// All field variable declarations go here.
// Field wvariables should be private.

/* Define a special function-like statement called
* the object’s constructor.
* Its name 1s same as the class name,
* with no return value.
*/
public MyObjectName(optional arguments) {
// Perform all initialization here

}

// Declare all method functions here

14

// A Ball Class
public class Ball {

// Fields

private double ay = 0.002; //
private double x; //
private double y; //
private double dx; //
private double dy; //

private double radius = 0.05;

// Constructor

public Ball() {
x = StdRandom.uniform(radius,
y = StdRandom.uniform (0.5, 1);
dx = StdRandom.uniform(-0.03,
dy = StdRandom.uniform (0.0, O.

Penn
Engineering

acceleration (gravity)
position
position

velocity

K X K X K

velocity

1 - radius);

0.03);
05);

private boolean canBounceOffWalls = true;
private boolean canBounceOffFloors = true;

// Methods
public void update() {
// Move ball

x += dx;
y -= dy;
dy += ay;

// Bounce off walls and floor
if (canBounceOffWalls && (x < radius || x > (1 - radius))) {
dx = -dx;
canBounceOffWalls = false;
}
if (canBounceOffFloors && y < radius) {
dy = -0.9*dy;
canBounceOffFloors = false;

}

// reset ready-to-bounce flags
if (x >= radius && x <= (1 - radius)) canBounceOffWalls = true;
if (y >= radius) canBounceOffFloors = true;

}

public void draw() {
PennDraw.filledCircle(x, y, radius);

}

Penn
Engineering

Comparing Declarations and Initializers

int 1,

int J = 3;

float f = 0.1;

float|[] f2 = new float[20];

String sl = "abc";

String s2 = new String("abc");

Ball b = new Ball();

Ball][] b2 = new Ball[20];

for (int i1 = 0; i < b2.length; i++) {
b2[1] = new Ball();

}

Penn
Enginccring

Object References

. Allow client to manipulate an object as a

single entity

. Essentially a machine address (pointer) €0 °

Cl1 0

Cc2 0

Ball bl = new Ball(); c3 0
bl .update() ;

bl .update() ; c4 0

C5 0

Ball b2 = new Ball(); cé6 0
b2 .update() ;

C7 0

b2 = bl; c8 0
b2 .updat ;

update () c9 0

CA 0

CB 0

CC 0

main memory

(64-bit machine)

Object References

. Allow client to manipulate an object as a

single entity
- | - e o
. Essentially a machine address (pointer)
o
| Bait bt - new Ba1l0; - 2
bl.update() ; co — C3
bl .update() ; c4
C5 0
Ball b2 = new Ball(); ce 0
b2 .update() ;
C7 0
b2 = bl; cs 0
b2 .updat ;
el co 0
CA 0
CB 0
CC 0
registers main memory

(64-bit machine)

Object References

. Allow client to manipulate an object as a

single entity

—>
. Essentially a machine address (pointer) SO 055 |
s
C2 0.05
bl
Ball bl = new Ball() ; -
co C3 0.01
bl.update() ; C4 0.03
C5 0
Ball b2 = new Ball() ; cé 0
b2 .update() ;
C7 0
b2 = bl; c8 0
b2 .updat ;
update () c9 0
CA 0
CB 0
CcC 0
registers main memory

(64-bit machine)

Object References

. Allow client to manipulate an object as a

single entity

—>
. Essentially a machine address (pointer) N 00
s
Cc2 0.05
bl
Ball bl = new Ball() ; - c3 0.01
bl.update () ; €0 '
C4 0.03
C5 0
Ball b2 = new Ball(); cé6 0
b2 .update() ;
C7 0
b2 = bl; C8 0
b2 .update () ;
update () c9 0
CA 0
CB 0
CC 0
registers main memory

(64-bit machine)

Object References

. Allow client to manipulate an object as a

single entity
—>
. Essentially a machine address (pointer) g | bt
C1 0.52
Cc2 0.05
Ball bl = new Ball(); o3 0 o1
bl .update() ; co —— :
bl .update() ; c4 0.03
C5

~ Ball b2 = new Ball(); e
b2 .update() ; n

c?7 —— C7

b2 = bl; .

b2 .update() ; co

ca
CB

CcC

registers main memory
(64-bit machine)

Object References

. Allow client to manipulate an object as a

single entity

—>

. Essentially a machine address (pointer) co 0.60
C1 0.52
Cc2 0.05
bl
Ball bl = new Ball(); - o3 0 01
bl .update() ; co —— :
bl .update() ; c4 0.03
C5 0
Ball b2 = new Ball () ; n
- b2.update(); —
c7 —— C7 0.

b2 = bl; Il 0.54 |

b2 .update() ;

C9 0.07
ca 0.04
CB 0.04
CcC 0
registers main memory

(64-bit machine)

Object References

. Allow client to manipulate an object as a
single entity value

—

. Essentially a machine address (pointer) — €0 0.60
Cl1 0.52
Cc2 0.05
bl
Ball bl = new Ball(); - - 0.01
bl .update() ; co —— :
bl .update() ; c4 0.03
C5
Ball b2 = new Ball();
b2 .update() ; m ce
co ——— C7
c8
b2 .update () ;
update () -
ca
CB
C7 = CB can be reused for other cc
variables. Known as garbage , .
registers main memory

collection in java. (64-bit machine)

Object References

. Allow client to manipulate an object as a

single entity

—>
. Essentially a machine address (pointer) — o XA
a
c2 0.05
Ball bl = new Ball();
bl.update () ; coO —— c3 0.01
bl .update() ; c4 0.03
C5 0
Ball b2 = new Ball();
b2 .update() ; n ce 0
co —— Cc7 0.57
b2 = bl; c8 0.54
~ b2.update(); —
CA 0.04
CB 0.04
Moving b2 also moves b1 since cc 0
they are aliases that reference | |
registers main memory

the same object. (64-bit machine)

Pass-By-Value

Arguments to methods are always passed by value.
- Primitive types: passes copy of value of actual parameter.
- Objects: passes copy of reference to actual parameter.

26

Encapsulation

Penn
Engineering

Access Control

« Encapsulation is implemented using access
control.

— Separates interface from implementation
— Provides a boundary for the client programmer

* Visible parts of the class (the interface)

— can be used and/or changed by the client
programmer.

« Hidden parts of the class (the implementation)

— Can be changed by the class creator without
impacting any of the client programmer’ s code

— Can’ t be corrupted by the client programmer

Penn
Englnc ing

Access Control in Java

 Visibility modifiers provide access
control to instance variables and methods.

— public visibility - accessible by everyone, in
particular the client programmer

« Aclass’ interface is defined by its public methods.

— private visibility - accessible only by the
methods within the class

— Two others—protected and package—lIater

Penn
Enginccring

Good Programming Practice

« Combine methods and data in a single class

 Label all instance variables as private for
information hiding

— The class has complete control over how/when/if
the instance variables are changed

— Fields primarily support class behavior
« Minimize the class’ public interface

Penn _— . . S LK eme cot
Engineering 30

Using this

You can think of this as an implicit private reference to

the current instance.
Date bl = new Date();

=== Publlc ==== co — (o]0 1 month
Date () registers c1l 1 day
int getYear() c2 1900 vyear

_ c3 co this —
=== Prlvate ===
. C4 ?
int month
int day C5 ?
int year (of3 ?
Date this ./ main memory

(64-bit machine)

Note that bl.yearand bl.this.year refer to the same field

Penn
Engineering 32

Overloaded Constructors

public class Date {

private int month; // 1 - 12
private int day; // 1 - 31
private int year; // 4 digits

// no-argument constructor
public Date() {

month = 1;
day = 1;
year = 1900;

}

// alternative constructor

public Date(int month, int day, int year) ({
this.month = month;

this.day = day;
this.year = year;

} // 1 Jan 1900
Date dl new Date() ;

} // 30 Oct 2013
Date d2

new Date (10, 30, 2013);

Penn
Enginccring

Accessors & Mutator

- Class behavior may allow access to, or
modification of, individual private instance
variables.

* Accessor method

— retrieves the value of a private instance variable

— conventional to start the method name with get

* Mutator method

— changes the value of a private instance variable

— conventional to start the name of the method with set

 @Gives the client program indirect access to the
instance variables.

Penn
Enginccring

More Accessors and Mutators

Question: Doesn’ t the use of accessors and
mutators defeat the purpose of making the
instance variables private?

Answer: No

* The class implementer decides which instance
variables will have accessors.

 Mutators can:

— validate the new value of the instance variable, and

— decide whether or not to actually make the requested
change.

Penn
Enginccring

Accessor and Mutator Example

public class Date {

private int month; // 1 - 12
private int day; // 1 - 31
private int year; // 4-digit year

// accessors return the value of private data
public int getMonth () { return month; }

// mutators can validate the new value
public boolean setMonth (int month) ({
if (1 <= month && month <= 12) {
this.month = month;
return true;
}
else // this is an invalid month
return false;
}
}
// rest of class definition follows

}

Penn
Engineering

Accessor/Mutator Caution

* In general you should NOT provide
accessors and mutators for all private
iInstance variables.

— Recall that the principle of encapsulation is
best served with a limited class interface.

Penn
Enginccring

Private Methods

* Methods may be private.

— Cannot be invoked by a client program

— Can only be called by other methods within
the same class definition

— Most commonly used as “helper” methods to
support top-down implementation of a public
method

Penn
Enginccring

Private Method Example

public class Date {

}

private int month; // 1 - 12
private int day; // 1 - 31
private int year; // 4-digit year

// accessors return the value of private data
public int getMonth () { return month; }

// mutators can validate the new value
public boolean setMonth (int month) ({
if (isValidMonth (month)) {
this.month = month;
return true;
}
else // this is an invalid month
return false;

}

// helper method - internal use only

private boolean isValidMonth (int month) {
return 1 <= month && month <= 12;

}

Penn
Engineering

39

Static and Final

Penn
Engineering

Static Variable

* A static variable belongs to the class as a
whole, not just to one object.

* There is only one copy of a static variable
per class.

— All objects of the class can read and change
this static variable.

« A static variable is declared with the
addition of the modifier static.

static int myStaticVariable = 0;

Penn
Engineering

Static Constants

* A static constant is used to symbolically represent a
constant value.

— The declaration for a static constant includes the modifier
final, which indicates that its value cannot be changed:

public static final float Pl = 3.142;

* |tis not necessary to instantiate an object to access a
static variable, constant or method.

 When referring to such a constant outside its class,
use the name of its class in place of a calling object.

float radius = MyClass.Pl * radius * radius;

Copyright © 2008 Pearson Addison-Wesley.
Penn All rights reserved
Engineering

42

Rules for Static Methods

 Static methods have no calling/host object (they
have no this).

 Therefore, static methods cannot:
— Refer to any instance variables of the class

— Invoke any method that has an implicit or explicit this for a
calling object

e Static methods may invoke other static methods or
refer to static variables and constants.

* A class definition may contain both static methods
and non-static methods.

Penn
Enginccring

main is a Static Method

Note that the method header for main() is

public static void main(String[] args)

Being static has two effects:
* main can be executed without an object.

» “Helper” methods called by main must
also be static.

Penn
Enginccring

Any Class Can Have a main()

» Every class can have a public static
method name main().

e Java will execute main in whichever class
is specified on the command line.

jJjava <className>

* A convenient way to write test code for
your class.

Penn
Enginccring

Static Review

Given the skeleton class definition below

public class C {
public int a = 0;
public static int b = 1;

public void £() {..
public static void g() {..}

}

Can body of f(
Can body of f(
Can body of g
Can body of g
Can f() call g()"
Can g() call f()"

refer to a?
refer to b?
refer to a?
refer to b?

AN N N
\)_/_/

D

For each, explain why or why not.

Penn
Enginccring

