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2.1		Func)ons	
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A	Founda)on	for	Programming	

2 

objects 

functions and modules 

graphics, sound, and image I/O 

arrays 

conditionals and loops 

Math text I/O 

assignment statements primitive data types 

 
 
 

any program you might want to write 

build	bigger	programs	
and	reuse	code	
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Func)ons	

f
x
y
z

f (x, y, z)

• Take	in	input	arguments	(zero	or	more)	
• Perform	some	computa)on	
- May	have	side-effects	(such	as	drawing)	

• Return	one	output	value	
Input		

Arguments	
Return	Value	
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Func)ons	(Sta)c	Methods)	

• Applica)ons:	
- Use	mathema)cal	func)ons	to	calculate	formulas	
- Use	func)ons	to	build	modular	programs	

•  Examples:	
- Built-in	func)ons:			

 Math.random(),	Math.abs(),	Integer.parseInt()	
- I/O	libraries:	

 PennDraw.circle(), PennDraw.setPenColor()	
- User-defined	func)ons:			

 main()	

4 
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Why	do	we	need	func)ons?	

•  	Break	code	down	into	logical	sub-steps	

•  	Readability	of	the	code	improves	

•  Testability		-	focus	on	geUng	each	individual	
func)on	correct	

5 
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Anatomy	of	a	Java	Func)on	

•  Java	func)ons	–	It	is	easy	to	write	your	own	
- Example:		double sqrt(double c) 

6 

sqrt(c) = √c
input 

2.0   1.414213… 
output 

public static double sqrt(double c) { 
 ... 

} 

return	
type	

method	
name	 arguments	

method	signature		
(excludes	return	type)	

Please note that the method signature is defined 
incorrectly in the figure on pg 188 of your textbook 
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Anatomy	of	a	Java	Func)on	

•  Java	func)ons	–	It	is	easy	to	write	your	own	
- Example:		double sqrt(double c) 

7 

sqrt(c) = √c
input 

2.0   1.414213… 
output 

public static double sqrt(double c) 
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Flow	of	Control	

Func)ons	provide	a	new	way	to	control	the	flow	of	
execu)on	

8 

implicit return statement 
at end of void function 
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Flow	of	Control	
What	happens	when	a	func)on	is	called:	
-  Control	transfers	to	the	func)on	
-  Argument	variables	are	assigned		
the	values	given	in	the	call	

-  Func)on	code	is	executed	
-  Return	value	is	subs)tuted	in		
place	of	the	func)on	call	in		
the	calling	code	

-  Control	transfers	back		
to	the	calling	code	

Note:	This	is	known	as	
	"pass	by	value"		

9 
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Organizing	Your	Program	

• Func)ons	help	you	organize	your	program	
by	breaking	it	down	into	a	series	of	steps	
- Each	func)on	represents	some	abstract	step	or	
calcula)on	
- Arguments	let	you	make	the	func)on	have	
different	behaviors	

• Key	Idea:		write	something	ONCE	as	a	func)on	
then	reuse	it	many	)mes	

11 
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Scope	
Scope:		the	code	that	can	refer	to	a	par)cular	variable	
- A	variable's	scope	is	the	en)re	code	block	(any	any	nested	
blocks)	a^er	its	declara)on	

	

Simple	example:	
  int count = 1; 

 for (int i = 0; i < 10; i++) { 
   count *= 2; 
  } 
   // using 'i' here generates  
  // a compiler error 	
	
Best	prac)ce:		declare	variables	to	limit	their	scope	

13 
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Func)on	Challenge	1	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

14 

public class Cubes1 { 
 
   public static int cube(int i) { 
      int j = i * i * i; 
      return j; 
   } 
 
   public static void main(String[] args) { 
      int N = Integer.parseInt(args[0]); 
      for (int i = 1; i <= N; i++) 
         System.out.println(i + " " + cube(i)); 
   } 
} 
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Scope	with	Func)ons	

15 
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Tracing	Func)ons	

16 

public class Cubes1 { 
 
   public static int cube(int i) { 
      int j = i * i * i; 
      return j; 
   } 
 
   public static void main(String[] args) { 
      int N = Integer.parseInt(args[0]); 
      for (int i = 1; i <= N; i++) 
         System.out.println(i + " " + cube(i)); 
   } 
} % javac Cubes1.java 

% java Cubes1 6  
1 1 
2 8 
3 27 
4 64 
5 125 
6 216 
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Last In First Out (LIFO) Stack of Plates 
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Method Overloading 

• Two or more methods in the same class may 
also have the same name 

• This is called method overloading 

18 
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Method Signature 

• A method is uniquely identified by 
- its name and 
- its parameter list (parameter types and their order) 

• This is known as its signature 
 
Examples: 
 
static    int min(int a, int b) 
static double min(double a, double b) 
static  float min(float a, float b) 

19 
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Return Type is Not Enough 
• Suppose we attempt to create an overloaded 
circle(double x, double y, double r) method by 
using different return types: 
  
static void    circle(double x, double y, double r) {...} 
 
//returns true if circle is entirely onscreen, false otherwise 
static boolean circle(double x, double y, double r) {...} 
 
 

• This is NOT valid method overloading because the 
code that calls the function can ignore the return value 
 circle(50, 50, 10); 

 

- The compiler can’t tell which circle() method to 
invoke 
- Just because a method returns a value doesn’t 

mean the calling code has to use it 

20 



Schools within the UniversityLOGO STYLE GUIDE

19

Too Much of a Good Thing 
Automatic type promotion and overloading can 

sometimes interact in ways that confuse the compiler 
For example: 
 

   // version 1 
   static void printAverage(int a, double b) { 
      ... 
  } 

 

   // version 2 
   static void printAverage(double a, int b) { 
      ... 
  } 
  

Why might this be problematic? 

21 
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Too Much of a Good Thing 
static void average(int a, double b) { /*code*/ } 
static void average(double a, int b) { /*code*/ } 
 

•  Consider if we do this 

   public static void main (String[] args) { 
     ... 
        average(4, 8); 
     ...  
   } 
 

•  The Java compiler can’t decide whether to: 
-  promote 7 to 7.0 and invoke the first version of average(), or 
-  promote 5 to 5.0 and invoke the second version 

•  Take-home lesson: don’t be too clever with method 
overloading 

22 
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Documentation 
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Method-level Documentation 

• Method header format: 
 
/** 
 * Name: circleArea 
 * PreCondition: the radius is greater than zero 
 * PostCondition: none 
 * @param radius - the radius of the circle 
 * @return the calculated area of the circle 
 */ 
static double circleArea (double radius) { 
    // handle unmet precondition 
    if (radius < 0.0) { 
        return 0.0; 
    } else { 
        return Math.PI * radius * radius; 
    } 
} 

24 
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Method Documentation 

• Clear communication with the class user is of 
paramount importance so that he can 
- use the appropriate method, and 
- use class methods properly. 

• Method comments: 
- explain what the method does, and 
- describe how to use the method. 

• Two important types of method comments:  
- precondition comments 
- post-conditions comments 

25 
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Preconditions and Postconditions 

• Precondition 
- What is assumed to be true when a method is called 
- If any pre-condition is not met, the method may not 

correctly perform its function. 

• Postcondition 
- States what will be true after the method executes 

(assuming all pre-conditions are met) 
- Describes the side-effect of the method 

26 
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An Example of Pre/Post-conditions 

Very often the precondition specifies the limits of the 
parameters and the postcondition says something about 
the return value. 

 
/*Prints the specified date in a long format 
     e.g.  1/1/2000 -> January 1, 2000 
  Inputs:  the month, day, and year 
  Pre-condition: 
  1 <= month <= 12 
  day appropriate for the month 
  1000 <= year <= 9999 
 Post-condition: 
  Prints the date in long format 
*/ 
public static void printDate(int month, int day, int year) 
{ 
 // code here 
} 

27 
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FUNCTION	EXAMPLES	

28 
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Func)on	Examples	

29 

overloading 

multiple arguments 
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Func)on	Challenge	2	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

30 

public class Cubes2 { 
 
   public static int cube(int i) { 
      int i = i * i * i; 
      return i; 
   } 
 
   public static void main(String[] args) { 
      int N = Integer.parseInt(args[0]); 
      for (int i = 1; i <= N; i++) 
         System.out.println(i + " " + cube(i)); 
   } 
} 
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Func)on	Challenge	3	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

31 

public class Cubes3 { 
 
   public static int cube(int i) { 
      i = i * i * i;     
   } 
 
 
   public static void main(String[] args) { 
      int N = Integer.parseInt(args[0]); 
      for (int i = 1; i <= N; i++) 
         System.out.println(i + " " + cube(i)); 
   } 
} 
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Func)on	Challenge	4	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

32 

public class Cubes4 { 
 
   public static int cube(int i) { 
      i = i * i * i; 
      return i; 
   } 
 
   public static void main(String[] args) { 
      int N = Integer.parseInt(args[0]); 
      for (int i = 1; i <= N; i++) 
         System.out.println(i + " " + cube(i)); 
   } 
} 
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Func)on	Challenge	5	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

33 

public class Cubes5 { 
 
   public static int cube(int i) { 
      return i * i * i; 
   } 
  
 
   public static void main(String[] args) { 
      int N = Integer.parseInt(args[0]); 
      for (int i = 1; i <= N; i++) 
         System.out.println(i + " " + cube(i)); 
   } 
} 


