
Schools within the UniversityLOGO STYLE GUIDE

19

2.1		Func)ons	

Schools within the UniversityLOGO STYLE GUIDE

19

A	Founda)on	for	Programming	

2

objects

functions and modules

graphics, sound, and image I/O

arrays

conditionals and loops

Math text I/O

assignment statements primitive data types

any program you might want to write

build	bigger	programs	
and	reuse	code	

Schools within the UniversityLOGO STYLE GUIDE

19

Func)ons	

f
x
y
z

f (x, y, z)

• Take	in	input	arguments	(zero	or	more)	
• Perform	some	computa)on	
- May	have	side-effects	(such	as	drawing)	

• Return	one	output	value	
Input		

Arguments	
Return	Value	

Schools within the UniversityLOGO STYLE GUIDE

19

Func)ons	(Sta)c	Methods)	

• Applica)ons:	
- Use	mathema)cal	func)ons	to	calculate	formulas	
- Use	func)ons	to	build	modular	programs	

•  Examples:	
- Built-in	func)ons:			

 Math.random(),	Math.abs(),	Integer.parseInt()	
- I/O	libraries:	

 PennDraw.circle(), PennDraw.setPenColor()	
- User-defined	func)ons:			

 main()	

4

Schools within the UniversityLOGO STYLE GUIDE

19

Why	do	we	need	func)ons?	

•  	Break	code	down	into	logical	sub-steps	

•  	Readability	of	the	code	improves	

•  Testability		-	focus	on	geUng	each	individual	
func)on	correct	

5

Schools within the UniversityLOGO STYLE GUIDE

19

Anatomy	of	a	Java	Func)on	

•  Java	func)ons	–	It	is	easy	to	write	your	own	
- Example:		double sqrt(double c)

6

sqrt(c) = √c
input

2.0 1.414213…
output

public static double sqrt(double c) {
 ...

}

return	
type	

method	
name	 arguments	

method	signature		
(excludes	return	type)	

Please note that the method signature is defined
incorrectly in the figure on pg 188 of your textbook

Schools within the UniversityLOGO STYLE GUIDE

19

Anatomy	of	a	Java	Func)on	

•  Java	func)ons	–	It	is	easy	to	write	your	own	
- Example:		double sqrt(double c)

7

sqrt(c) = √c
input

2.0 1.414213…
output

public static double sqrt(double c)

Schools within the UniversityLOGO STYLE GUIDE

19

Flow	of	Control	

Func)ons	provide	a	new	way	to	control	the	flow	of	
execu)on	

8

implicit return statement
at end of void function

Schools within the UniversityLOGO STYLE GUIDE

19

Flow	of	Control	
What	happens	when	a	func)on	is	called:	
-  Control	transfers	to	the	func)on	
-  Argument	variables	are	assigned		
the	values	given	in	the	call	

-  Func)on	code	is	executed	
-  Return	value	is	subs)tuted	in		
place	of	the	func)on	call	in		
the	calling	code	

-  Control	transfers	back		
to	the	calling	code	

Note:	This	is	known	as	
	"pass	by	value"		

9

Schools within the UniversityLOGO STYLE GUIDE

19

Organizing	Your	Program	

• Func)ons	help	you	organize	your	program	
by	breaking	it	down	into	a	series	of	steps	
- Each	func)on	represents	some	abstract	step	or	
calcula)on	
- Arguments	let	you	make	the	func)on	have	
different	behaviors	

• Key	Idea:		write	something	ONCE	as	a	func)on	
then	reuse	it	many)mes	

11

Schools within the UniversityLOGO STYLE GUIDE

19

Scope	
Scope:		the	code	that	can	refer	to	a	par)cular	variable	
- A	variable's	scope	is	the	en)re	code	block	(any	any	nested	
blocks)	a^er	its	declara)on	

	

Simple	example:	
 int count = 1;

 for (int i = 0; i < 10; i++) {
 count *= 2;
 }
 // using 'i' here generates
 // a compiler error 	
	
Best	prac)ce:		declare	variables	to	limit	their	scope	

13

Schools within the UniversityLOGO STYLE GUIDE

19

Func)on	Challenge	1	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

14

public class Cubes1 {

 public static int cube(int i) {
 int j = i * i * i;
 return j;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Schools within the UniversityLOGO STYLE GUIDE

19

Scope	with	Func)ons	

15

Schools within the UniversityLOGO STYLE GUIDE

19

Tracing	Func)ons	

16

public class Cubes1 {

 public static int cube(int i) {
 int j = i * i * i;
 return j;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
} % javac Cubes1.java

% java Cubes1 6
1 1
2 8
3 27
4 64
5 125
6 216

Schools within the UniversityLOGO STYLE GUIDE

19

Last In First Out (LIFO) Stack of Plates

Schools within the UniversityLOGO STYLE GUIDE

19

Method Overloading

• Two or more methods in the same class may
also have the same name

• This is called method overloading

18

Schools within the UniversityLOGO STYLE GUIDE

19

Method Signature

• A method is uniquely identified by
- its name and
- its parameter list (parameter types and their order)

• This is known as its signature

Examples:

static int min(int a, int b)
static double min(double a, double b)
static float min(float a, float b)

19

Schools within the UniversityLOGO STYLE GUIDE

19

Return Type is Not Enough
• Suppose we attempt to create an overloaded
circle(double x, double y, double r) method by
using different return types:

static void circle(double x, double y, double r) {...}

//returns true if circle is entirely onscreen, false otherwise
static boolean circle(double x, double y, double r) {...}

• This is NOT valid method overloading because the
code that calls the function can ignore the return value
 circle(50, 50, 10);

- The compiler can’t tell which circle() method to
invoke
- Just because a method returns a value doesn’t

mean the calling code has to use it

20

Schools within the UniversityLOGO STYLE GUIDE

19

Too Much of a Good Thing
Automatic type promotion and overloading can

sometimes interact in ways that confuse the compiler
For example:

 // version 1
 static void printAverage(int a, double b) {
 ...
 }

 // version 2
 static void printAverage(double a, int b) {
 ...
 }

Why might this be problematic?

21

Schools within the UniversityLOGO STYLE GUIDE

19

Too Much of a Good Thing
static void average(int a, double b) { /*code*/ }
static void average(double a, int b) { /*code*/ }

•  Consider if we do this

 public static void main (String[] args) {
 ...
 average(4, 8);
 ...
 }

•  The Java compiler can’t decide whether to:
-  promote 7 to 7.0 and invoke the first version of average(), or
-  promote 5 to 5.0 and invoke the second version

•  Take-home lesson: don’t be too clever with method
overloading

22

Schools within the UniversityLOGO STYLE GUIDE

19

Documentation

Schools within the UniversityLOGO STYLE GUIDE

19

Method-level Documentation

• Method header format:

/**
 * Name: circleArea
 * PreCondition: the radius is greater than zero
 * PostCondition: none
 * @param radius - the radius of the circle
 * @return the calculated area of the circle
 */
static double circleArea (double radius) {
 // handle unmet precondition
 if (radius < 0.0) {
 return 0.0;
 } else {
 return Math.PI * radius * radius;
 }
}

24

Schools within the UniversityLOGO STYLE GUIDE

19

Method Documentation

• Clear communication with the class user is of
paramount importance so that he can
- use the appropriate method, and
- use class methods properly.

• Method comments:
- explain what the method does, and
- describe how to use the method.

• Two important types of method comments:
- precondition comments
- post-conditions comments

25

Schools within the UniversityLOGO STYLE GUIDE

19

Preconditions and Postconditions

• Precondition
- What is assumed to be true when a method is called
- If any pre-condition is not met, the method may not

correctly perform its function.

• Postcondition
- States what will be true after the method executes

(assuming all pre-conditions are met)
- Describes the side-effect of the method

26

Schools within the UniversityLOGO STYLE GUIDE

19

An Example of Pre/Post-conditions

Very often the precondition specifies the limits of the
parameters and the postcondition says something about
the return value.

/*Prints the specified date in a long format
 e.g. 1/1/2000 -> January 1, 2000
 Inputs: the month, day, and year
 Pre-condition:
 1 <= month <= 12
 day appropriate for the month
 1000 <= year <= 9999
 Post-condition:
 Prints the date in long format
*/
public static void printDate(int month, int day, int year)
{
 // code here
}

27

Schools within the UniversityLOGO STYLE GUIDE

19

FUNCTION	EXAMPLES	

28

Schools within the UniversityLOGO STYLE GUIDE

19

Func)on	Examples	

29

overloading

multiple arguments

Schools within the UniversityLOGO STYLE GUIDE

19

Func)on	Challenge	2	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

30

public class Cubes2 {

 public static int cube(int i) {
 int i = i * i * i;
 return i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Schools within the UniversityLOGO STYLE GUIDE

19

Func)on	Challenge	3	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

31

public class Cubes3 {

 public static int cube(int i) {
 i = i * i * i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Schools within the UniversityLOGO STYLE GUIDE

19

Func)on	Challenge	4	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

32

public class Cubes4 {

 public static int cube(int i) {
 i = i * i * i;
 return i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

Schools within the UniversityLOGO STYLE GUIDE

19

Func)on	Challenge	5	

Q.		What	happens	when	you	compile	and	run	the	
following	code?	

33

public class Cubes5 {

 public static int cube(int i) {
 return i * i * i;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 System.out.println(i + " " + cube(i));
 }
}

