WorldWeaver: Procedural World Generation for Text Adventure Games
using Large Language Models

Meiqing Jin*, Manvi Kaul*, Shriya Ramakrishanan*, Hardik Jain*,
Samarth Chandrawat®, Ishita Agarwal®, Tianyi Zhang, Andrew Zhu,
Chris Callison-Burch,

University of Pennsylvania

{mgqjin, manvik, shriyar, hardikj, samarthc, iagarwal, zty, andrz, ccb} @upenn.edu

Abstract

Text-based adventure game generation has at-
tracted considerable interest since the advance-
ments in large language models. However, even
state-of-the-art (SOTA) large language mod-
els (LLMs) face challenges in generating se-
mantically and logically coherent content, and
often fail to align with human intentions. In
our work, we propose a procedural world-
generation approach for enhancing content co-
herence, additionally allowing humans in the
loop to better match their intentions. Specifi-
cally, we generate game components, includ-
ing locations, characters, items, actions, and
blocks, and integrate these components with
semantic and logical constraints. Meanwhile,
human game creators can intervene and mod-
ify the components to suit their preferences.
Evaluation results demonstrate that our pro-
cedural world-generation approach both en-
riches the content and satisfies semantic and
logical requirements compared to the SOTA
LLMs. Moreover, the human-in-the-loop fea-
ture gives game creators more control over gen-
erated content. Our project code can be found
on GitHub'.

1 Introduction

A Text Adventure Game (or Interactive Fiction,
IF) is a form of digital storytelling where players
engage with the narrative through text-based com-
mands (Ammanabrolu et al., 2020b). For instance,
consider a scenario where a player receives the
text: "You find yourself in a dimly lit room. An
old chest lies in the corner, and a shadowy figure
stands by the window."” The player might type
commands such as "open chest" or "talk to figure"
to explore the game. Rooted in early computer
games, IF offers a dynamic and immersive
experience, blending elements of literature and
*These authors contributed equally to this work.

1https ://github.com/EmmaMQJin/
WorldWeaver-Interactive-World-Generation

gaming. This unique medium emphasizes virtual
world construction, problem-solving, and narrative
engagement, making it a valuable research tool.

JSON Generation Models

. View and Edit
—| Main Character —
—

User

Locations

]
NPCs Full Game
JSON

Initial User Inputs

Background Story

Objects in

Starting State Locations

Character
Inventories

,,,,,,,,,,,,,,, -

Blocks £
WorldWeaver
Python Class
Actions

Winning State

(S l

"Playthrough”
(list of steps to win
game)

il
s

GPT-Powered
Parser

o
Y
e
&

&

@

Figure 1: Architecture of the WorldWeaver System: The pro-
cess begins with initial user inputs, which include the back-
ground story, starting state, and winning state. From these
inputs, a “playthrough” list of actions is generated, detailing
the steps needed to win the game. These serve as context for
JSON generation models that create various game elements
such as the main character, locations, NPCs (non-playable
characters), items within locations, and character inventories,
which the user can review and edit. We also use GPT-4 to
generate code for specialized actions and blocks. The game
JSON and code are compiled into a playable game. Solid line
arrows represent the sequence of operations, while dashed line
arrows indicate that components are passed as background
context into the system prompts of other models.

Interactive fiction games are significant due to
their unique combination of language processing,
decision-making, and problem-solving elements.
They provide a rich testbed for studying language-
based autonomous agents, requiring the understand-
ing and generation of natural language to inter-
act with complex virtual environments (C6té et al.,
2019; Narasimhan et al., 2015). This enhances Al
systems’ adaptability and robustness across various
applications (Hausknecht et al., 2019), making IF
games ideal for exploring advancements in NLP

https://github.com/EmmaMQJin/WorldWeaver-Interactive-World-Generation
https://github.com/EmmaMQJin/WorldWeaver-Interactive-World-Generation

and reinforcement learning (RL). They present
challenges such as combinatorial action spaces,
commonsense reasoning, and partial observabil-
ity, requiring agents to use contextual knowledge
and linguistic understanding to navigate success-
fully (Hausknecht et al., 2020). Furthermore, the
complexity and diversity of tasks in IF games make
them excellent benchmarks for evaluating RL mod-
els, simulating real-life decision-making processes
and providing insights into how agents can learn
and adapt in dynamic environments (Osborne et al.,
2021).

Our work is centered around procedural world gen-
eration using large language models (LLMs) to
generate a full-fledged game world, complete with
a game map, characters, items, connections, ac-
tions, blocks and end-states. We focus particularly
on exploring methods to ensure consistent and log-
ically coherent model outputs, aiming to build a
playable and reasonable game. To enhance user
experience and control, we incorporate a human-in-
the-loop approach throughout the generation pro-
cess, making the world generation interactive rather
than fully automatic. The result of our work is a
comprehensive game world featuring characters,
locations, connections, and items at various loca-
tions. Additionally, actions and blocks unique to a
newly generated game world are created via code
generation. Combined with the game world and
the code, a GPT-powered game parser will convert
it to a playable game.

In summary, our contributions are two-fold:

1. We propose a procedural game generation ap-
proach to create and arrange the game ele-
ments ensuring they are semantically and log-
ically coherent.

2. We build an interface to allow people to direct
the game construction procedure, and edit the
system’s proposed game elements.

2 Few-shot Prompting Data

We employ a few-shot learning approach for many
aspects of our procedural game generation pipeline
(Brown et al., 2020). To populate our few-shot
prompts, we use game elements derived from the
LIGHT dataset (Urbanek et al., 2019). The LIGHT
dataset is a large-scale crowdsourced text adventure
game designed as a research platform for studying
grounded dialogue. In this environment, agents
can perceive, emote, and act while conducting di-
alogue with other agents, utilizing the state of the

underlying world, including location descriptions,
items, and characters, to condition their predictions
and actions. We select elements from LIGHT (e.g.
locations and connections) that are relevant to our
world generation process, and incorporate them
into few-shot prompts that we give to GPT-4 in a
JSON format.

Figures 2, 3 and 4 show examples of the JSON
format that we use for our few-shot prompts to help
GPT-4 generate LIGHT-style game objects.

{

"name"”: "Lake",
"description”: "The beautiful lake ...",
"connections”: {3},
"travel_descriptions”: {3},
"blocks": {3},

"items": {3},

"characters”: {

}’

"has_been_visited”: false,
"commands”: [],
"properties”: {}

Figure 2: A one-shot example for location generation

{
"name"”: "Whisper”,

"description”: "Whisper is a sleek,
nimble, and mischievous talking cat with shiny,
silver fur...",

"persona”: "Known for his quick-witted
humor...",
"location”: "Kitchen”,
"goal”: ""
"inventory”: {}
}

Figure 3: A one-shot example for character generation

"name”: "Fish-Shaped Cookie"”,
"description”: "A cookie, lovingly shaped like
a fish...",
"examine_text":
and strongly of fish,
Whisper.",
"properties”: {
"is_container”: false,
"is_drink": false,
"is_food": true,
"is_gettable”: true,
"is_surface"”: false,
"is_weapon”: false,
"is_wearable”: false

"The cookie smells delicious
making it irresistible to

Figure 4: An one-shot example for item generation

We also used GPT-4 to synthetically gener-
ate some example background stories, example

playthroughs, etc., so that we could maintain se-
mantic and logical coherence between the back-
ground story and generated JSONSs for all our few-
shot examples.

3 World Generation Workflow

We employ procedural textual-world generation
techniques to dynamically create game compo-
nents, while also accommodating user modifica-
tions to each element. As shown in Figure 7, the
game architecture is segmented into various mod-
ules, including locations, non-player characters
(NPCs), and actions. Each module is supported
by one or more task-specific models dedicated to
its generation. As demonstrated by Brown et al.
(2020), few-shot prompting significantly enhances
a model’s capability to learn specific tasks. Conse-
quently, we employ few-shot prompting with fixed
examples extracted from LIGHT data to improve
the task-specific performance of our models in tar-
geted applications. The outputs from these mod-
ules are integrated into two principal components:
firstly, a comprehensive game environment stored
in a JSON file, which defines locations, characters,
and items essential for gameplay; and secondly,
the WorldWeaver Python class, which incorporates
custom actions and blocks to enhance gameplay co-
herence with the environment. These components
are subsequently processed by our GPT-powered
game parser to generate a playable text adventure
game.

All system prompts and outputs can be found in
Appendix A - G. We show the few-shot examples
used in the system prompts for each component in
Table 1.

3.1 Background Story and Main Character

Initially, the user is prompted to provide a succinct
description of the game’s background story, such as
"a talking cat." Utilizing this description, the model
generates the main character, for instance, "Whis-
per, a talking cat that...". The process begins with
the user’s input of the background story, which the
model, learned with in-context few-shot examples
to understand the expected output and necessary
data, uses along with a predefined character format
as context. At this stage, the model generates a
character JSON with empty values for locations
and inventory. Following this, a human-in-the-loop
process allows the user to refine and edit the gener-
ated character. Once the user finalizes the edits, the

climb out kitchen window

jump onto backyard tree

spot distant mountains

decode old cat language
communicate with neighbour cat
retrieve mystic paw ring
contact suburban cat gang
organize a cat voyage

navigate through city alleyways
understand the dog's bark code
avoid dog patrols

cross river by jumping stones
climb mountain base

distract mountain eagles

climb up the mountain peak
declare mountain as cat territory
celebrate victory with cat gang

Figure 5: Example playthrough: list of actions

main character is integrated into the synthesized
game world.

3.2 Playthrough Generation

After generating the main character, the user is
asked to describe the starting state and winning
state of the game. For example, the starting state
could be "whisper the cat is in the kitchen" and
the winning state could be "whisper climbs the
mountain”. Based on these two states, a model
generates a playthrough of the game, which is a
natural language sequence of actions that outlines
the progression from the starting state to the win-
ning state. The playthrough list of actions is sub-
sequently used to generate game locations, action
classes, and blocks which ensures logical coher-
ence in the game environment. Figure 5 shows an
example list of the generated actions.

3.3 Locations

In this step, a game map is generated, creating
meaningful connections between various locations
to assist the user in achieving their goal, starting
from the initial location. This process employs a
two-phase approach:

Location Selection. First, a model is prompted to
generate a list of purposeful locations for the game,
each location mapped to its purpose, i.e. what the
player needs to accomplish in that location.

Map Generation. Once a list of locations is gen-
erated, they are connected in a way that makes
semantic sense for the game’s story. The neighbor
generation model uses a layer-by-layer flooding

Contexts | Background Main . Winning Location-
C\E\ Story Character Starting State State Playthrough Purpose Others
omponen
Main v
Character
Playthrough v Ve V4 7
If)ocatlon- v v v p y
urpose
Locations v v
All
NPCs v v v previously
generated
characters
Items-For Location
] . v v name and
ocations ..
description
Items-For v / p y
characters
Blocks V4 7 7
Actions v

Table 1: Contexts used in the system prompts for each component

approach, beginning with establishing connections
for the game’s starting location.

Initially, the neighbor generation model pro-
duces a layer of neighboring locations for the cen-
tral location. It then connects these neighbors with
other potential neighbors from the list of remaining
unconnected locations. To introduce more varia-
tion, the number of neighbors for each location, n,
is randomized to be between 1 and 3.

The model selects a list of n different neigh-
boring locations for the given location A from the
input list of all locations. The system prompt is
augmented with the already generated locations
to prevent duplicates. The user prompt includes
the background story of the game, the location for
which neighbors are to be generated, and the num-
ber of neighbors to generate. The model is provided
with 3 shots to ensure correct JSON formatting and
logical coherence between the background story
and all generated locations. The output is a list of
location stubs.

Another neighbor connection model establishes
mutual connections between two given locations
using opposite directions. We define 8 valid direc-
tions: east, west, north, south, up, down, in, and
out. The connection direction between two loca-
tions is determined based on semantic sense. For
instance, if the locations are ’park’ and ’tree’, the
ideal direction should be "up’/’down’.

Since a two-way connection means the direction
from A to X is the opposite of the direction from
X to A, we let the model generate only the connec-
tion from A to X. Then, we programmatically add
the connection from X to A with the opposite di-

rection. This approach ensures that all connections
are logically coherent.

3.4 Non-Player Characters

After all locations are generated, NPCs are created
for each location. All the previously generated
game objects along list of all characters created
thus far, are provided as context to the LLM. The
story and location information assist the model in
creating semantically coherent NPCs, while the ex-
isting NPCs ensure that the model generates unique
NPCs across different locations. Based on this in-
put, the model generates three potential NPC char-
acters for the given location. The user can then
select from these options or request the model to
generate additional choices. The model is few-shot
prompted with examples of story-output pairs, sim-
ilar to the process for generating the main character.
Once the user is satisfied with the generated NPCs,
they can save the changes, and the final characters
are added to the main game JSON file.

3.5 Items

Initially, using the core prompt we generate items
for all locations by providing the model with con-
text, including location names and descriptions. Af-
ter generating items for the locations, we proceed
to generate items for the character inventories. The
model is prompted with the characters’ goals, ac-
tions, and the items already present in the locations,
which were generated in the previous step.

3.6 Block Generation

Blocks are obstacles introduced in the game to
make it more interesting and challenging for the
player to achieve their end state. The block genera-
tion process involves prompting GPT to generate
interactive challenges, or "blocks," that must be
overcome as the player progresses through differ-
ent game locations, such as blocking the progress
in a certain direction until the main character has
a certain item in its inventory. Leveraging detailed
prompt, the system creates Python class definitions
for each block. We first generate a file which has
tuples of (Location, Block Class), which has differ-
ent tuples for different block classes for different
locations. Then we extract the block classes, match-
ing the blocks to their respective locations based
on the narratives of locations and blocks. Finally,
we integrate the blocks into the game’s location
structures in the JSON file.

3.7 Action Generation

Actions are specific tasks that a player can per-
form during the game, such as running, jumping, or
climbing etc., which are unique to the game world.
For action generation, we translate each action
name in the action list generated in the playthrough
section 3.2 to a comprehensive Python class. Each
class has three functions: an init function to initial-
ize the action class, a check precondition function
that outlines the prerequisites that must be met be-
fore the action can be completed, and an apply
effects function to implement the desired effects of
the action. This is achieved by few-shot prompting
GPT-4 with action words paired with the desired
action class for each action word, accounting for
aliases to prevent the creation of redundant classes.

3.8 Interactive Web Interface

We have an interactive web-interface which en-
ables the human-in-the-loop aspect of our game
building process. Users first input their preferred
background story, describing the type of game they
want to build. This generates the main character,
i.e. the protagonist of the game. Here, the users
are given the choice to modify the name and de-
scription of the generated main character. After
submitting the update or accepting the generated
character, we proceed with asking the user to define
the initial state (starting location) and the ending
state of the game. User inputs can be specific or
generic according to their needs. This generates the

modifiable starting location and then proceeds to
generate the entire game map. After this, we begin
an interactive and iterative process of generating
characters for each location in the game. Here, a
list of NPCs is generated, from which the user can
select some NPCs, ask to regenerate more NPCs or
submit their selected choices. A similar process is
followed for generating items and inventories for
all NPCs in the game. Finally, relevant blocks and
actions are generated. With these components, we
are able to construct the full game JSON file as
well as the WorldWeaver Python Class.

4 Evaluation

4.1 A Case Study

In this case study, we contrast our method, which
employs procedural generation to incrementally
build the game world with a simple baseline model
where a zero-shot GPT-4 model tasked with gener-
ating the entire game environment JSON in a single
round. The task of generating a complete game in
a zero-shot fashion is beyond the capabilities of
current frontier models, with GPT-4 sometimes
generating malformed JSON and often producing
logical inconsistencies that render the game un-
playable. For instance, in generating connections
between locations, the model incorrectly specifies
that one can travel west from the Kitchen to the
Living Room but fails to account for the implied re-
ciprocal relationship allowing eastward travel from
the Living Room to the Kitchen. It even incorrectly
places a block to the east, designating a wall where
there should be a passage to the Kitchen.

{
"name”: "Kitchen",
"connections”: {
"west”: "Living Room"
}!
}’
{
"name”: "Living Room",
"blocks": {
"east”: "A wall
blocks your way to the east.”
}!
"connections”: {
"west": "Woods”
}'
}7

Table 2: Baseline model generation output for locations

In contrast, our procedural generation system

Description:

VA /[T\ R\

F

T A\ A [/EESSTTTIER)\ e I R USRS T
Here is your main character, who is also your player:

Name: Percy the Pigeon

Description: An adventurous city pigeon with a knack for getting into mischievous situations. Distinguished by his shiny, iridescent plumage and charming chirps, Percy is not
your typical city-dwelling bird.

Update Character

Name: | Percy the Pigeon

An adventurous city pigeon with a knack for getting into mischievous situations. Distinguished by his shiny, iridescent plumage
and charming chirps, Percy is not your typical city-dwelling bird.

W\ /AR A

Submit Update

Proceed to define the initial state of the game

=S Pl W\ - o 2

=1

Figure 6: Editable main character screen

is specifically designed to maintain logical consis-
tency by incorporating directional logic. This logic
automatically acknowledges and maps reciprocal
relationships between locations, ensuring a more
coherent and navigable game world.

{
"name"”: "Neighbor's Garden”,
"connections”: {
"up”: "Eagle’s Nest”,
"east”: "City's River”
}!
}!
{
"name”: "Eagle's Nest",
"connections”: {
"down": "Neighbor’s Garden”
}l
}!
{
"name”: "City's River”,
"connections”: {
"west": "Neighbor's Garden”
}!
}

Table 3: Procedural generation output for locations

Through this comparative analysis, we demon-
strate that our system using procedural world gen-
eration creates more robust and logically coherent
interactive fiction environments.

5 Observations and Results

An example of the final generated JSON can be
found in the Appendix H.

5.1 Challenges and Errors

During map generation, we observed that the model
tended to produce hallucinations despite extensive
prompt engineering. It generated "downwards"
instead of "down" or used invalid single quota-
tion marks. Additionally, the model often repeated
directions for location A even after removing se-
lected directions from the prompt. To constrain
the model’s behavior, we increased the logit bias
for all valid choices to 12 and set the logit bias for
single and double quotes to -100 to prevent their
generation.

During our code generation for blocks and actions,
the model frequently hallucinated and generated
game classes inconsistent with our class format(eg:
the method names that each class should have).
For instance, when prompted to create a method
called init in the action class, the model generated
a method called initialize instead, resulting in syn-
tax errors during gameplay. To address this issue,
we reduced the model’s temperature to 0.1, ensur-
ing it strictly followed the given instructions and
minimizing deviations.

5.2 Final Game Object Generation

Upon creation of the full game environment JSON
and the WorldWeaver Python class, these compo-
nents are integrated into a GPT-4-powered game
parser. This parser functions as the game’s narrator,

{'character_type": 'owl', 'is_dead': False, 'is_wise'": True}}

A\

S

'is_naughty": True}}

(J {'name": 'Olive the Wise Old Owl', 'description': 'Olive is an ancient owl with a keen gaze and ruffled, silver-tinged feathers. From her branch in the ancient oak, she
watches over the forest creatures with wisdom and warmth.', 'persona': "I'm Olive, the wind's wisdom and the night's watchful eye. I advise young birds like Percy and
ensure the harmony of the forest.", 'location': ", 'goal': 'To counsel Percy on his adventures and provide wisdom rooted in ancient bird lore., 'inventory": {}, 'properties':

[J {'name": 'Flutter the Pretty Sparrow"', 'description': 'Flutter is a lively, young sparrow with bright eyes and brown, speckled plumage. She’s known by all the birds in the
nest for her bubbly spirit and infectious chirp.', 'persona': "I'm Flutter, the sun's joy and breeze's dance. I bring cheer to the nest and enjoy life's little wonders.", 'location": ",
'goal': 'To play and share happy moments with Percy and the others in the nest.', 'inventory": {}, 'properties": {'character_type': 'sparrow', 'is_dead': False, 'is_happy": True} }

[J {'name": 'Peck the Annoying Brother', 'description": 'Peck is Percy’s younger brother, smaller in size but loud and demanding. He is an iridescent feathered nuisance with
aknack for stealing Percy’s shiny things.', 'persona’: "I'm Peck, Percy’s sibling! I look up to Percy but won’t admit it. Instead, I keep pestering him and stealing his stuff.",
'location": ", 'goal': 'To provoke Percy and always compete with him on their various adventures.', 'inventory': {}, 'properties": {'character_type'": 'pigeon', 'is_dead": False,

ST AN =S u

Select NPCs in Location Percy's Nest

NN/ v L\ B

Add Selected ltems

Regenerate NPCs

Finalize Selection for Location Percy's Nest

[T v pw . SSSemm——— i AGNAPZ SN . gy e e G

Figure 7: NPC generation screen: select, regenerate, submit

utilizing existing descriptions to dynamically gener-
ate narrative content. Additionally, it incorporates
a specialized module designed to discern player
intent. This module analyzes player commands
and matches them to the set of feasible actions
within the game, thus facilitating an interactive and
responsive gameplay experience.

6 Related Work

Three components form the foundation of text ad-
venture game generation: stories, environments
(including locations, characters, and items), and
actions (or plots). We review the previous work
following these perspectives.

Storytelling research aims to generate coher-
ent and engaging stories for the player. Sun et al.
(2023) utilizes LLMs for dynamic content genera-
tion. This paper’s focus on co-creative storytelling
and its challenges, such as narrative coherence and
the potential for Al hallucinations. Dhillon et al.
(2024) explores how different levels of Al assis-
tance, or scaffolding, impact the co-writing process.
Using a within-subjects field experiment with 131
participants, the study examines writing tasks under
three conditions: no Al assistance, low scaffold-
ing (sentence suggestions), and high scaffolding
(paragraph suggestions). The findings reveal a U-
shaped relationship between scaffolding levels and
writing quality/productivity, with high scaffolding
significantly improving outcomes, especially for
non-regular writers and less tech-savvy users. Rad-

wan et al. (2024) proposes a system that employs
a human-in-the-loop approach, valuing human cre-
ativity alongside Al-generated content. This paral-
lel suggests that integrating user input in real-time
can enrich the interactive experience, making the
game or story more personalized and engaging.

We adopt the human-Al co-creative story genera-
tion method. To maintain a high level of coherence
and engagement, we include previous stories (de-
scriptions) in the prompt content, along with human
modifications to the Al output.

Game Environment is constructed by creat-
ing and arranging essential components, such as
locations. Ammanabrolu et al. (2020b) procedu-
rally extracted the knowledge graph of game com-
ponents using BERT-QA models, supplemented
with descriptions generated by models such as
GPT-2 to create semantically consistent and engag-
ing text-based environments. Word2world (Nasir
et al., 2024) extracted 2D game components us-
ing language models and enhanced diversity and
coherence with executable evaluation algorithms.
Both works required an entity extraction model to
construct the components. In contrast, our work
achieve this by generation, offering greater free-
dom and creativity to the game world. Fan et al.
(2020) is more closely related to our work, which
explored a subtask of game construction by pro-
viding items and arranging them using BERT-QA
models fine-tuned on the LIGHT dataset. It orga-
nized locations into a coherent map and positioned

characters and objects within those locations. Ad-
ditionally, it generated item descriptions using a
transformer seq2seq model and employed a model-
assisted world generation method to aid humans
in creating interactive text worlds. Our method ex-
pands on the partial game construction task in Fan
et al. (2020) to achieve full construction, includ-
ing the creation of novel items and their coherent
arrangement. Moreover, adopting the basic steps
of constructing locations, characters, and objects
as described in this work, we elaborate it with the
memories of relevant and previous constructions
for creativity and coherence.

Actions are the executable movements in games
through which a player interacts with objects. Am-
manabrolu et al. (2020a) presents an automated
story plot generation method that leverages soft
causal relations and commonsense reasoning via
the transformer-based model COMET, constructing
a plot graph from high-level plot points extracted
from an input story plot. Yao et al. (2020) introduce
the Contextual Action Language Model (CALM),
which leverages reinforcement learning and GPT-
2 to generate contextually appropriate actions in
text-based games. Ammanabrolu et al. (2019) in-
troduces a technique for automatically generating
cooking quests in a "home"-themed text-adventure
game using knowledge graphs and fine-tuned GPT-
2. Al-Nassar et al. (2023) explores using BERT and
GPT-2 models to automatically generate engaging
quests for video games. Virtinen et al. (2024) in-
vestigates the procedural generation of RPG quest
descriptions using GPT-2 and GPT-3. It aligns with
our research on employing GPT-4 to generate a
dynamic world for an interactive text-based game.
These works have developed meticulous method-
ologies to maintain plot coherence, which serves
as a complement for our work. Our work focuses
on generating executable code actions in games,
with detailed constraints such as preconditions and
effects.

7 Discussion and Future Work

This study has demonstrated a framework for pro-
cedural textual-world generation that uses task-
specific modules and few-shot prompting to create
playable interactive fiction games. Our system in-
tegrates multiple LLM modules to generate game
components including locations, NPCs, and actions.
The outputs are synthesized into a gameplay class,
which are processed by a game parser to create

playable games.

Despite the incorporation of programmatic
checks designed to ensure the correctness of JSON
outputs, the initial output from our models con-
tinues to exhibit slight instability. To address
these, we are exploring potential enhancements
such as increasing the number of shots provided
to each model or conducting targeted fine-tuning
of the models. We are also investigating methods
to reduce the latency of generation to ensuring a
smoother and more engaging user experience dur-
ing the iterative world-building process.

In future work, we plan to enhance the interac-
tivity of our world-generation system by expanding
our human-in-the-loop capabilities to not only al-
low direct edits but also integrate user feedback
for dynamic content regeneration, employing tech-
niques like fine-tuning as discussed by Patel et al.
(2024). Additionally, we aim to evolve our system
into a multimodal platform, inspired by the Bruce
et al. (2024), which uses diverse inputs like text
and images to generate interactive environments.
These advancements will make our narrative gen-
eration more responsive and immersive, tailoring
experiences to user interactions and broadening the
scope of our work.

8 Acknowledgements

We would like to express our gratitude to the In-
teractive Fiction and Text Generation course at
the University of Pennsylvania for providing the
foundational knowledge and inspiration for this
research.

Special thanks to James Dennis for his invalu-
able contributions in building the Text Adventure
Games framework, which significantly aided our
work.

We also extend our appreciation to our anony-
mous reviewers for their constructive feedback,
which greatly improved the quality of this paper.

References

Suzan Al-Nassar, Anthonie Schaap, Michael Zwart,
Mike Preuss, and Marcello Gomez-Maureira. 2023.
Questville: Procedural quest generation using nlp
models. pages 1-4.

Prithviraj Ammanabrolu, William Broniec, Alex
Mueller, Jeremy Paul, and Mark O. Riedl. 2019. To-
ward automated quest generation in text-adventure
games. CoRR, abs/1909.06283.

https://doi.org/10.1145/3582437.3587188
https://doi.org/10.1145/3582437.3587188
https://arxiv.org/abs/1909.06283
https://arxiv.org/abs/1909.06283
https://arxiv.org/abs/1909.06283

Prithviraj Ammanabrolu, Wesley Cheung, William
Broniec, and Mark O. Riedl. 2020a. Automated
storytelling via causal, commonsense plot ordering.
CoRR, abs/2009.00829.

Prithviraj Ammanabrolu, Wesley Cheung, Dan Tu,
William Broniec, and Mark O. Riedl. 2020b. Bring-
ing stories alive: Generating interactive fiction
worlds. CoRR, abs/2001.10161.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Jake Bruce, Michael Dennis, Ashley Edwards, Jack
Parker-Holder, Yuge Shi, Edward Hughes, Matthew
Lai, Aditi Mavalankar, Richie Steigerwald, Chris
Apps, Yusuf Aytar, Sarah Bechtle, Feryal Behbahani,
Stephanie Chan, Nicolas Heess, Lucy Gonzalez, Si-
mon Osindero, Sherjil Ozair, Scott Reed, Jingwei
Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas,
Satinder Singh, and Tim Rocktischel. 2024. Ge-
nie: Generative interactive environments. Preprint,
arXiv:2402.15391.

Marc-Alexandre Coté, Akos Kéadar, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Ruo Yu Tao, Matthew Hausknecht, Layla El Asri,
Mahmoud Adada, Wendy Tay, and Adam Trischler.
2019. Textworld: A learning environment for text-
based games. Preprint, arXiv:1806.11532.

Paramveer S. Dhillon, Somayeh Molaei, Jiaqi Li, Maxi-
milian Golub, Shaochun Zheng, and Lionel P. Robert.
2024. Shaping human-ai collaboration: Varied scaf-
folding levels in co-writing with language models.
Preprint, arXiv:2402.11723.

Angela Fan, Jack Urbanek, Pratik Ringshia, Emily Di-
nan, Emma Qian, Siddharth Karamcheti, Shrimai
Prabhumoye, Douwe Kiela, Tim Rocktaschel, Arthur
Szlam, et al. 2020. Generating interactive worlds
with text. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 1693—-1700.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre C6té, and Xingdi Yuan. 2020. Interac-
tive fiction games: A colossal adventure. Preprint,
arXiv:1909.05398.

Matthew Hausknecht, Ricky Loynd, Greg Yang, Adith
Swaminathan, and Jason D. Williams. 2019. Nail:
A general interactive fiction agent. Preprint,
arXiv:1902.04259.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language understanding for text-based

games using deep reinforcement learning. Preprint,
arXiv:1506.08941.

Muhammad U Nasir, Steven James, and Julian Togelius.
2024. Word2world: Generating stories and worlds
through large language models. arXiv preprint
arXiv:2405.06686.

Philip Osborne, Heido Nomm, and Andre Freitas.
2021. A survey of text games for reinforcement
learning informed by natural language. Preprint,
arXiv:2109.09478.

Zeeshan Patel, Karim El-Refai, Jonathan Pei, and Tianle
Li. 2024. Swag: Storytelling with action guidance.
Preprint, arXiv:2402.03483.

Ahmed Y Radwan, Khaled M Alasmari, Omar A Abdul-
bagi, and Emad A Alghamdi. 2024. Sard: A human-
ai collaborative story generation. arXiv preprint
arXiv:2403.01575.

Yugian Sun, Zhouyi Li, Ke Fang, Chang Hee Lee, and
Ali Asadipour. 2023. Language as reality: a co-
creative storytelling game experience in 1001 nights
using generative ai. In Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Dig-
ital Entertainment, volume 19, pages 425-434.

Jack Urbanek, Angela Fan, Siddharth Karamcheti,
Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktischel, Douwe Kiela, Arthur Szlam, and Jason
Weston. 2019. Learning to speak and act in a fantasy
text adventure game. Preprint, arXiv:1903.03094.

Susanna Virtinen, Perttu Himildinen, and Christian
Guckelsberger. 2024. Generating role-playing game
quests with gpt language models. IEEE Transactions
on Games, 16(1):127-139.

Shunyu Yao, Rohan Rao, Matthew J. Hausknecht, and
Karthik Narasimhan. 2020. Keep CALM and ex-
plore: Language models for action generation in text-
based games. CoRR, abs/2010.02903.

https://arxiv.org/abs/2009.00829
https://arxiv.org/abs/2009.00829
https://arxiv.org/abs/2001.10161
https://arxiv.org/abs/2001.10161
https://arxiv.org/abs/2001.10161
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2402.15391
https://arxiv.org/abs/2402.15391
https://arxiv.org/abs/1806.11532
https://arxiv.org/abs/1806.11532
https://arxiv.org/abs/2402.11723
https://arxiv.org/abs/2402.11723
https://arxiv.org/abs/1909.05398
https://arxiv.org/abs/1909.05398
https://arxiv.org/abs/1902.04259
https://arxiv.org/abs/1902.04259
https://arxiv.org/abs/1506.08941
https://arxiv.org/abs/1506.08941
https://arxiv.org/abs/2109.09478
https://arxiv.org/abs/2109.09478
https://arxiv.org/abs/2402.03483
https://arxiv.org/abs/1903.03094
https://arxiv.org/abs/1903.03094
https://doi.org/10.1109/TG.2022.3228480
https://doi.org/10.1109/TG.2022.3228480
https://arxiv.org/abs/2010.02903
https://arxiv.org/abs/2010.02903
https://arxiv.org/abs/2010.02903

A Background and player

Listing 1: A few-shot example for playthrough generation

background story:
talking cat

player:
Whisper

Whisper is a sleek, nimble, and mischievous talking cat with shiny, silver fur. While lovably
eccentric and always ready for a playful adventure, Whisper possesses wisdom and knowledge,
which comes through in his eloquent and captivating narratives.

starting state:
Kitchen

winning state:
Whisper reaches the top of the mountain.

B Location prompt and output

Listing 2: Example list of purposeful locations

System Prompt:

You are a helpful location generator for building a text adventure game. Given the background story
of the game, the description of the player, the initial state and winning state of the game,
the entire list of actions the player needs to take in order to win the game, you should output
a list of locations that you think is needed for the player to be able to take all the
specified actions and for the game to operate properly, based on the list of actions the user
needs to take. Each location should be one specific place. Here is more information on what the
starting location should be like: {central_loc_desc}. Mention which location is the starting
location of the game in its description.

Output:
{
"Enchanted Meadow"”: "Where the magic feather can be found."”,
"Cottage"”: "Starting location. Where the player must unlock the door and then later return to

celebrate victory.”,
"Forest Clearing”: "The player must find a path to enter the dark forest."”,

"Dark Forest”: "Where the glowing mushrooms can be gathered.”,

"Ancient Well”: "A mysterious location where the magic feather must be dropped to receive
enchanted wing armor."”,

"Moonlit Sky"”: "Where the player must wear the enchanted wing armor and fly upwards towards the
moon. ",

"Ghostly Cloud”: "A mystical area where the player must use glowing mushrooms to repel ghosts.”,

"Moon Dancer's Labyrinth”: "Where Moon Dancer is held captive by ghosts.”,

"Celestial Realm”: "Where Moon Dancer resides and where the player must eventually return to

celebrate victory.”

C Character Prompt and Output

Listing 3: Character Generation Prompt and Output

System Prompt:

You are a helpful main character generator for building a text adventure game based on a given
story. Generate one main character from this story in a JSON format. Remember to leave the
values to the location and inventory keys empty. Output the character in JSON format, like
this: {character_format}

Output JSON Example:
"characters”: [

{

"name”: "Whisper"”,

"description”: "Whisper is a sleek, nimble, and mischievous talking cat with shiny,
silver fur. While lovably eccentric and always ready for a playful adventure, Whisper possesses
wisdom and knowledge, which comes through in his eloquent and captivating narratives.”,

"persona”: "Known for his quick-witted humor, flirtatious charm and a peculiar way of
seeing the world, Whisper loves to play devil's advocate and challenge others to think
critically. He relies on his enchanting voice to persuade, console, and encourage his fellow
adventurers.",

"location”:

"goal”: "",

"inventory": {3}

nn

1

D NPC Prompt and Output

Listing 4: NPC Generation Prompt and Output

System Prompt:

"You are a helpful character generator for building a text adventure game.Your job is to generate
NPC characters in a given location. Given the location's name, description, purpose, as well as
the description of the player of the game from the user, you should generate a list of 3
suitable and purposeful NPCs that should be in this location. You should espeially focus on
aligning with the location's given purpose. Output the NPCs as a list of JSON objects. You
should always populate name, description, persona, goal, and properties of an NPC character.
You should always leave the location and inventory of each character empty. Here are the NPCs
you have already before and SHOULD NOT generate again: {existing_npcs}”

Output JSON Example:

"characters”: [
{

"name”: "Bert the Beagle”,

"description”: "Bert is a kind-hearted and slightly clumsy Beagle who always keeps an
eye on the Kitchen. Even though he's a dog, he shares a mutual respect and moderate friendship
with Whisper due to their shared domesticated life.”,

"persona”: "I'm Bert, always there for a good sniff and a wagging tail. I may be a bit
messy, but I love it here in the Kitchen. And don't tell anyone... but I have a soft spot for
that clever cat, Whisper.”,

"location”: "",

"goal”: "To help Whisper in any way he can and maintain harmony in the kitchen.",

"inventory": {}

"properties”: {}

1]
E Item prompt and Output

Listing 5: Item Prompt and Output

System Prompt:

"You are a helpful items generator for building a text adventure game.Given the location name, its
description, and its purpose from the user,generate a list of 5 suitable and purposeful items
that should be in this location.Remember,each item should be specific and purposeful, and
should not be a character or a location. Output the items as a list of JSON items.Include all
necessary attributes such as name, description, examine text, and properties.Here are the items
you have already generated for this location before and SHOULD NOT generate again:
{existing_items}."

Output JSON Example:
"items": {
"Shopping Cart": {

"name": "Shopping Cart”,

"description”: "A silver metal shopping cart, it's slightly rusty but still usable.”,

"examine_text": "You see a shopping cart, it's large enough to carry a respectable

number of items. The wheels seem to be in good condition.”,

"properties”: {
"is_container”: true,
"is_drink": false,
"is_food": false,
"is_gettable”: false,

"is_surface”: false,
"is_weapon": false,
"is_wearable”: false

1,

"location”: "Costco Parking Lot"”

F Block Generation Result

Listing 6: An example of a generated block for a location

{
"blocks": {
"out”: {
"_type": "ProduceAisleOutBlock”,
"connection”: "Costco Parking Lot",
"bobby_the_shopper”: "Bobby the Shopper”,
"location”: "Produce Aisle”
3
3
3

G Action Generation Prompt and Result

Listing 7: An example of a generated location with items

System Prompt;

Given a list of action words, analyze each word to determine its uniqueness. For actions that have
synonyms, consult the Oxford Dictionary to verify if they are indeed synonymous.
For each unique action, compile a list where synonymous actions are grouped together.
Use the format "get [alias: procure, retrieve]” to display the primary action followed by its
synonyms in brackets, prefixed by "alias:".
Ensure to include only one primary action for each group of synonyms, with all other synonymous
actions listed as aliases.
DO NOT ADD the following actions : Go, Get, Drop, Inventory, Give, Unlock Door, Examine or their
synonyms.

Output example:

class Climb(actions.Action):
ACTION_NAME = "climb”
ACTION_DESCRIPTION = "Climb something”
ACTION_ALIASES = ["jump"]

def __init__(self, game, command: str):
super().__init__(game)
self.character = self.parser.get_character(command)
self.item = self.parser.match_item(
command,
self.parser.get_items_in_scope(
self.character)

)
def check_preconditions(self) -> bool:

Preconditions:
x There must be a matched item
x The item must be climbable

if not self.was_matched(self.item):
return False

if not self.item.get_property(”"is_climbable"):
description = "That's not something you can climb.”
self.parser.fail(description)
return False

return True

def apply_effects(self):

Effects:

x Describes the climbing

description = "{name} climbs the {item}.".format(
name=self.character.name.capitalize(), item=self.item.name
)

self.parser.ok(description)
H Final Game JSON Example

Listing 8: An example of the final game JSON generated

"player”: "Whisper",
"start_at"”: "Kitchen",
"game_history”: [],
"game_over": false,
"game_over_description”: null,
"characters”: [

{

"name”: "Whisper"”,

"description”: "Whisper is a sleek, nimble, and mischievous talking cat with shiny,
silver fur. While lovably eccentric and always ready for a playful adventure, Whisper possesses
wisdom and knowledge, which comes through in his eloquent and captivating narratives.”,

"persona”: "Known for his quick-witted humor, flirtatious charm and a peculiar way of
seeing the world, Whisper loves to play devil's advocate and challenge others to think
critically. He relies on his enchanting voice to persuade, console, and encourage his fellow

adventurers.”,
"location”: "Kitchen"”,
"goal”": "",
"inventory”: {...}
}7
]
"locations”: [
{
"name”: "Kitchen”,
"description”: "The kitchen is the familiar location filled with tantalizing and

inviting smells, where our feline hero, Whisper usually spent most of its time. The daily
hustle and bustle of human activities often left behind a tantalizing array of scents and
morsels that tickled the curious kitty's fancy. From the window Whisper could see the entire
suburban world, a world filled with adventures beyond anyone's imagination. This was Whisper's
favorite perch, a place from where our stealthy adventurer embarked on countless journeys into
the great suburban expanses.”,

"connections”: {

"east”: "Backyard Tree",
"west”: "Neighbor's Garden”
}?
"travel_descriptions”: {
"east": "Leaving the familiar scents of the kitchen, you venture towards the window, the

gateway to the suburban wilderness, finally embarking on an adventure towards the backyard tree
that stands tall in the eastern side, its branches offering a panoramic view of distant
mountains.”,

"west": "Leaving the aromatic arena of the Kitchen, you make a courageous leap towards the
wilderness, incrementally crossing the unseen boundary which plunges you into the mesmerizing
world of the Neighbor's Garden, where a secretive conversation with the neighbouring feline

awaits.”
}’
"blocks": {
"east": {
"_type": "KitchenEastBlock"”,
"connection”: "Backyard Tree",
"bert_the_beagle”: "Bert the Beagle",
"location”: "Kitchen"
}
}’
"items": {

"Fish-Shaped Cookie": {

},

"name”: "Fish-Shaped Cookie",
"description”: "A cookie, lovingly shaped like a fish. Whisper's favorite treat.”,
"examine_text": "The cookie smells delicious and strongly of fish, making it
irresistible to Whisper."”,
"properties”: {
"is_container”: false,
"is_drink": false,
"is_food": true,
"is_gettable": true,
"is_surface"”: false,
"is_weapon”: false,
"is_wearable”: false
}?
"location”: "Kitchen”
3
1
"characters”: {
"Bert the Beagle”: {
"name”: "Bert the Beagle”,
"description”: "Bert is a kind-hearted and slightly clumsy Beagle who always keeps an
eye on the Kitchen. Even though he's a dog, he shares a mutual respect and moderate friendship
with Whisper due to their shared domesticated life.”,

"persona”: "I'm Bert, always there for a good sniff and a wagging tail. I may be a bit
messy, but I love it here in the Kitchen. And don't tell anyone... but I have a soft spot for
that clever cat, Whisper.”,

"location”: "Kitchen",

"goal”: "To help Whisper in any way he can and maintain harmony in the kitchen.",

"inventory": {
"Bert's Water Dish": {

"name”: "Bert's Water Dish”,
"description”: "A blue round dish kept by the family for Bert's water.”,
"examine_text"”: "The dish is bright blue and made from sturdy plastic. The edges are a

bit chewed up but it serves its purpose well. Good for providing hydration!"”,
"properties”: {

"is_container”: true,

"is_drink": true,

"is_food": false,

"is_gettable": false,

"is_surface”: true,

"is_weapon”: false,

"is_wearable”: false

3

}!

"properties”: {
"character_type": "dog",
"is_dead": false,
"is_friendly": true

"has_been_visited”: false,
“commands”: [],
"properties”: {}

}’
1)

You

Baseline Model Prompt and Output

Listing 9: system prompt of baseline model

are a helpful text adventure game generator. Given the background story, starting state, and
winning state of the game, you should generate a game JSON in the following example format:
"olayer”: "",

"start_at"”: "Example Location”,

"game_history”: [],

"game_over": false,

"game_over_description”: null,
"characters”: [

{

"name”: "Example Character”,
"description”: "",
wa

"persona”: ,
"location”: "",
"goal”: "",
"inventory”: {...}

}7
1,

"locations”: [
{
"name”: "Example Location”,
"description”: ""
"background”:
"commands”: [],
"properties”: {3},

nn

"blocks": {3,
"travel_descriptions”: {
"east": ""
}?
"connections”: {
"east": ""
}?
"items": {
"Example Location Item": {
"name": "Example Location Item”,
"description”: "",

nn

"examine_text":
"properties”: {
"is_container"”: false,

"is_drink"”: false,
"is_food": false,
"is_gettable": true,
"is_surface”: false,
"is_weapon”: true,
"is_wearable”: false

}!

"location”: "Example Location”

})
}Y

"characters”: {
"Example Character”: {
"name"”: "Example Character”,
"description”: ""

nn

"persona”: s
"location”: "",
"goal”: ""

"inventory": {

"Example Inventory Item”: {
"name": ""
"description”:
"examine_text": "",
"properties”: {

"is_container”: false,
"is_drink”: false,
"is_food": true,
"is_gettable”: true,
"is_surface"”: false,
"is_weapon”: false,
"is_wearable”: false

nn

}’

"commands”: []

}7

h
}7
"has_been_visited”: false,
}7
1,
"actions”: []
}
The ... means you should expand with more items.
Be sure to populate all empty string fields. Each location should have NPC characters and items in

it.
Each character should have objects in their inventory.
The player needs to be an existing character.
Generate at least 5 locations and 5 characters.

Listing 10: output of baseline model

"player”: "Fluffy the Talking Cat”,
"start_at”: "Kitchen”,
"game_history”: [],
"game_over"”: false,
"game_over_description”: null,
"characters”: [
{
"name”: "Fluffy the Talking Cat”,
"description”: "A smart looking cat with the ability to speak human language.”,
"persona”: "Adventurous and curious.”,
"location”: "Kitchen"”,
"goal”: "Reach the top of the mountain.”,
"inventory”: {
"Catnip”: {
"name”: "Catnip”,
"description”: "A herb popular among cats.”,
"examine_text": "It's a bag of dried catnip.”,
"properties”: {
"is_container”: true,
"is_drink": false,
"is_food": true,
"is_gettable": true,
"is_surface”: false,
"is_weapon”: false,
"is_wearable”: false
})

"commands”: []

"name”: "Spike the Dog",

"description”: "A friendly and playful dog.",
"persona”: "Playful and protective.”,
"location”: "Living Room",

"goal”: "To have fun",

"inventory": {}

"name”: "Oliver the Owl",
"description”: "A wise and old owl.",
"persona”: "Wise and knowledgeable."”,
"location”: "Woods",

"goal”: "To impart wisdom”,
"inventory": {3}

"name”: "Bobby the Bear”,
"description”: "A large and intimidating but gentle bear.",
"persona”: "Calm and strong.",

3
];

"location”: "Mountain Base"”,
"goal”: "To protect the forest”,
"inventory": {}

"name”: "Eagle Eye”,

"description”: "A mighty majestic eagle.”,
"persona”: "Brave and fast.”,

"location”: "Mountain Peak”,

"goal”: "Keep an eye on everything”,
"inventory": {}

"locations”: [

{

"name”: "Kitchen",
"description”: "A typical home kitchen with all the appliances.”,
"background”: "Home kitchen”,

"commands”: [],
"properties”: {3},
"blocks": {"north”: "A wall blocks your way to the north."},

"travel_descriptions”: {"west”: "To the west is the Living Room."},
"connections”: {"west"”: "Living Room"},
"items": {3},

"characters”: { "Fluffy the Talking Cat"},
"has_been_visited”: true

"name”: "Living Room",
"description”: "A cozy living room filled with comfortable furniture.”,
"background”: "Home living room”,

"commands”: [1,
"properties”: {3},
"blocks”: {"east”: "A wall blocks your way to the east."},

"travel_descriptions”: {"west"”: "To the west are the Woods."},
"connections”: {"west"”: "Woods"},
"items": {3},

"characters”: { "Spike the Dog"},
"has_been_visited": false

"name”: "Woods",
"description”: "A dense, dark forest.”,
"background”: "Forest”,

"commands”: [],
"properties”: {3},

"blocks”: {3,

"travel_descriptions”: {"north”: "To the north is the Mountain Base."},
"connections”: {"north”: "Mountain Base"},

"items": {3},

"characters”: {"Oliver the Owl"},
"has_been_visited”: false

"name”: "Mountain Base”,
"description”: "The start of an intimidating rocky mountain.”,
"background”: "Mountain base”,

"commands”: [],
"properties”: {3},

"blocks": {3},

"travel_descriptions”: {"north”: "Northwards leads to the Mountain Peak."},
"connections”: {"north”: "Mountain Peak"},

"items": {3},

"characters”: {"Bobby the Bear"},
"has_been_visited”: false

"name”: "Mountain Peak”,
"description”: "The top of the high mountain with a breathtaking view.",
"background”: "Mountain peak",

"commands”: [],
"properties”: {3},
"blocks": {3},
"travel_descriptions”: {3},
"connections”: {3},
"items": {3,
"characters”: {"Eagle Eye"},
"has_been_visited": false

3

1, "actions”: [] }

	Introduction
	Few-shot Prompting Data
	World Generation Workflow
	Background Story and Main Character
	Playthrough Generation
	Locations
	Non-Player Characters
	Items
	Block Generation
	Action Generation
	Interactive Web Interface

	Evaluation
	A Case Study

	Observations and Results
	Challenges and Errors
	Final Game Object Generation

	Related Work
	Discussion and Future Work
	Acknowledgements
	Background and player
	Location prompt and output
	Character Prompt and Output
	NPC Prompt and Output
	Item prompt and Output
	Block Generation Result
	Action Generation Prompt and Result
	Final Game JSON Example
	Baseline Model Prompt and Output

