
Turkish Judge: A Peer Evaluation Framework
for Crowd Work Appeals

Edward Cohen, Mukund Venkateswaran, Nivedita Sankar, Chris Callison-Burch
University of Pennsylvania

3401 Walnut Street
Philadelphia, Pennsylvania 19104

{edcohen, mukundv, nsankar, ccb}@seas.upenn.edu

Abstract

We present our work in progress platform Turkish Judge, a
crowd-driven adjudication system for rejected work on Ama-
zon Mechanical Turk. The Mechanical Turk crowdsourcing
platform allows Requesters to approve or reject assignments
submitted by Workers. If the work is rejected, then Work-
ers aren’t paid, and their reputation suffers. Currently, there
is no built-in mechanism for Workers to appeal rejections,
other than contacting Requesters directly. The time it takes
Requesters to review potentially incorrectly rejected tasks
means that their costs are substantially higher than the pay-
ment amount that is in dispute. As a solution to this is-
sue, we present an automated appeals system called Turkish
Judge which employs crowd workers as judges to adjudicate
whether work was fairly rejected when their peers initiate an
appeal.

Introduction
Amazon Mechanical Turk (AMT) is a crowdsourcing plat-
form developed by Amazon which allows businesses and
individuals (Requesters) to hire Workers (sometimes called
Turkers) to completed microtasks on the platform. Tasks up-
loaded by a Requester to the Amazon Mechanical Turk mar-
ketplace to be completed by Turkers are called HITs (for
Human Intelligence Tasks). AMT allows Requesters to re-
view HITs submitted by Workers. Requesters may approve
the HITs, in which case the Worker is paid, or they may re-
ject the HITs, in which case the Worker is not paid.

Beyond wasted time and not receiving compensation for
their work, a Worker is additionally penalized since a re-
jection diminishes their rating in AMT’s reputation system.
Each Turker has an associated score based on their past ap-
proval rate. Requesters restrict their work to Workers whose
approval rate is above a specified threshold. Whenever a
Worker receives a rejection their approval rate decreases,
which limits the work they are able to access on the plat-
form.

Requesters are able to reject HITs submitted by Turkers
for any reason whatsoever, and AMT provides no mecha-
nism for Workers to appeal the rejection beyond emailing

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the Requester. This raises obvious concerns over fairness.
Workers are aware of this issue and in a 2019 survey, 69% of
Workers cited unfair rejections in their top three grievances
with the platform (Whiting, Hugh, and Bernstein 2019).
Turkers have means to label and make others aware of unfair
Requesters through either TurkOpticon (Irani and Silberman
2013) or popular forums like Turker Nation. On TurkOpti-
con, Turkers can rate Requesters on their “fairness”. This
attribute is a 1 to 5 scale for how fair a Requester is in ap-
proving or rejecting work.

Some of the rejections on the platform are warranted and
weed out malicious Workers. Mechanical Turk has built-in
functionality allowing Requesters to overturn rejections, but
Workers have little recourse for asking for this. Mechanical
Turk supports Workers emailing Requesters directly asking
them to overturn the rejection. However, Requesters rarely
read or respond to these because of the time costs associated
with a manual resolution of the grievance (Irani and Silber-
man 2013). Therefore, any proposed solution to this issue
must be minimum effort to Requesters.

To address these issues, we built Turkish Judge, a plat-
form to give Workers a way of appealing rejected work, and
to simplify the Requester’s job of adjudicating their appeals
by allowing the Requester to hire other crowd workers to
act as peer reviewers of the rejected work. The mechanism
posts the HIT in question and an explanation provided by the
appellant on the AMT marketplace for other Turkers to ad-
judicate on whether the rejection was fair or unfair. The buy-
in from requesters is that they upload a file containing their
HIT results and check in to see the status of their rejected
HITs. This allows the Requester to overturn the rejection or
uphold it with minimal effort. It reduces the burden placed
on Requesters to manually review appeals, and provides for
the fairer treatment of Workers.

Related Work
The literature on potential solutions is written in the context
of design considerations for the platform beyond just unfair
rejections. (Bederson and Quinn 2011; Martin et al. 2014).
Generally, Turkers are identified as an invisible workforce
with calls being made for more transparency and commu-
nication on the platform (Martin et al. 2014). Toward this



end, services like TurkOpticon and Crowd Workers, as well
as platforms like Turker Nation provide Workers with in-
formation into Requesters and the marketplace (Irani and
Silberman 2013; Callison-Burch 2014). On the issue of re-
jections specifically, Bederson and Quinn suggest that Re-
questers should at least have to email Turkers with an expla-
nation for why their work was rejected (Bederson and Quinn
2011). Turkers have suggested three options: they are given
the chance to redo the work, the Requesters should not be
allowed to keep rejected work, and similar to Bederson and
Quinn, that Requesters should be obligated to elucidate a
reason for the rejection (Felstiner 2011).

The externally-developed worker tool TurkerView re-
leased a rejection dispute tool, TurkerView Bridge, this past
February (TurkerView 2020). Turkers can submit a text, im-
age, or video reason for why the work should not have been
rejected. This appeal gets sent to the Requester for them to
review. TurkerView Bridge provides information for the re-
quester on overturning rejections and a properly formatted
csv for one to upload to reverse rejections. This solution re-
duces the friction in the rejection dispute process, however it
still relies on Requesters to take the time to review disputed
rejections.

Design Rationale

Currently, when a Turker submits a grievance request re-
garding their rejected work, the Requester must read the pe-
tition in full, manually search through the HIT batch data for
the corresponding row entry, assess its quality, and return
a final judgement. This process takes a nontrivial amount
of time. Given that the median hourly wage for Turkers is
around two dollars an hour (Hara et al. 2017), the Requester
incurs more cost reviewing the petition than they would have
paid originally. Irani captured this sentiment in a quote from
a Requester who said “[a Requester] cannot spend time ex-
changing email. The time you spent looking at the email
costs more than what you paid [the Worker].” (Irani 2015).
This imbalance means that the petitioning Turker frequently
receives no response, much less payment and a reputation
increase.

As a result, a mechanism that removes the time burden as-
sociated with Requesters manually reviewing appeals is nec-
essary. A mechanism which allows Requesters to adjudicate
appeals quickly and at low cost could enable a marketplace
that is both easy for Requesters and fairer to Workers. We
take this into account when designing the mechanism work-
flows.

Turkish Judge

Turkish Judge is built as a simple Flask web application.
Requesters can create an account to upload batches to the
platform, and Workers can then simply enter a correspond-
ing WorkerID and HITID in order to submit an appeal. We
outline the workflows of a Requester, a Worker submitting
an appeal, and a crowdworker acting as an Judge.

Requester Workflow
After a batch is completed and reviewed by a Requester, the
Requester should upload the batch information to Turkish
Judge for adjudication. Here, we have access to the relevant
information necessary for the adjudication task including
HITIDs, WorkerIDs, the HIT in question, and whether the
task was accepted or rejected. This information is stored in
our database to allow rejected Workers to appeal their HITs.
Once a Turker submits an appeal and the task is adjudicated,
the Turker and the Requester will both be notified so that the
Requester can act correspondingly to overturn the rejection
for the Turker if the rejection is deemed unfair.

This allows for Requesters to spend much less time deal-
ing with messages from Turkers who were rejected and in-
troduces an expert third party to analyze the completion of
the HIT.

To overturn rejected HITs, Requesters have the option of
uploading a csv file of Worker data with “Approve” and “Re-
ject” columns. After a verdict is reached on all appealed
HITs in a batch, the Requester will be able to download a
csv file containing the verdict for each HIT. A Requester will
simply be able to upload this csv file to Mechanical Turk in
order to reverse the rejection on the overturned HITs. This
greatly accelerates the Requester workflow from manual ad-
judication, as they simply have to upload one csv file rather
than individually dealing with each Worker grievance.

Therefore the only work required from the Requester is to
upload completed HITs, and overturn rejections if and when
they are deemed unfair. Both of these take brief amounts of
time and thus are minimum effort options to Requesters.

Worker Workflow
In order to appeal a rejected HIT, Workers provide the ID of
the HIT in question along with their Mechanical Turk Work-
erID in order to identify the corresponding HIT. The Turker
will be prompted to enter an explanation for their comple-
tion of the HIT describing why the rejection should be over-
turned. Once a Worker submits an appeal, an adjudication
task is created for 3-5 other Turkers to complete.

Adjudicator Workflow
An adjudication task is comprised of the original HIT in
question, an optional appeal message from the Turker, the
rejection message from the Requester, as well as some in-
structions on how to adjudicate the HIT as objectively as
possible. The Judge who is given this task will be able to
respond either that the rejection should be upheld or that it
should be overturned. We aggregate the responses that we
get from the Judges to make a decision on the task in ques-
tion.

Analysis of Adjudication Quality (In Progress)
A prominent concern with such a mechanism is adjudica-
tion quality. More specifically, how can effortful and truthful
adjudication be incentivized? One concern is that because
Turkers are predisposed to feel Requesters rejections are
unfair, perhaps Turkers would simply side with their peers



when adjudicating HITs. This issue is of the utmost impor-
tance in the fruitfulness of our system, since there is no use
in a corrupt judicial system.

To empirically estimate the quality of our adjudication
mechanism, we are simulating batches of rejected work to
analyze whether Judges’ adjudications align with our ex-
pected outcomes. Each of the appeals has a ground truth
label for whether it should be overturned or not. We be-
lieve that Turkers have the ability to effectively determine
whether or not a rejected HIT was actually properly com-
pleted because they are experts in completing HITs. Using
the gathered data, we seek to measure the productivity and
behavior of Workers on the adjudication task.

We plan on extending this analysis to a variety of different
types of tasks, but we show initial results on a simple text
classification task below as proof of concept.

Results
Results of our adjudications tasks are summarized in the
appendix [2, 3]. Note that each verdict is representative of
five Workers, making each individual decision made by the
judges more statistically significant than if adjudicated sim-
ply by one or three Workers.

Analysis
To quantify the quality of adjudication through the formu-
lated crowd based appeals system, we focus on the precision
and recall of overturning rejected HITs.

In determination of true labels for HIT completion, a gen-
erous threshold for properly completed HITs might be an
accuracy of .75. Using this as the true labels for our empir-
ical experimentation, we find that there are very few false
positive predictions made by the Judges. This shows that
Judges very rarely reverse rejections on improperly com-
pleted HITs.

On the other hand, we find quite a few false negative pre-
dictions. This shows that our Judges frequently upheld rejec-
tions when we would expect the rejection to be overturned
according to our performance threshold. We break this down
further in [Figure 3] to show the threshold of accuracy ex-
pected by Judges when overturning a rejection. With an ac-
curacy even as high as .83, we find that Turkers still uphold
rejection on the majority of the appeals. Only on HITs com-
pleted with perfect accuracy do we find that Judges overturn
a majority of the HITs.

These results indicate Judges’ proficiency in the analysis
of HIT completion quality as we can see that the rejection
reversal rate increases monotonically with the accuracy of
HIT completion. Moreover, these results indicate that Judges
uphold higher standards of HIT completion quality than we
expected.

Conclusion
Ongoing work on this project includes a more thorough em-
pirical evaluation that incorporates a variety of HITs, a study
of Requester’s incentives for a platform, surveys to estimate
whether Turkish Judge changes Workers’ perceptions of
fairness of rejections or willingness to work with Requesters

who use it, and updates to the interface and functionality of
the website. The Requester dashboard, and Worker appeal
page are shown in [Figure 4].

Acknowledgements
This research was sponsored by the National Science Foun-
dation’s Future of Work at the Human-Technology Frontier
program under award number 1928474.

References
Bederson, B. B., and Quinn, A. J. 2011. Web workers unite!
addressing challenges of online laborers. In CHI’11 Ex-
tended Abstracts on Human Factors in Computing Systems.
97–106.
Callison-Burch, C. 2014. Crowd-workers: Aggregating in-
formation across turkers to help them find higher paying
work. In The Second AAAI Conference on Human Com-
putation and Crowdsourcing (HCOMP-2014).
Felstiner, A. 2011. Working the crowd: Employment and
labor law in the crowdsourcing industry. Berkeley J. Emp. &
Lab. L. 32:143.
Hara, K.; Adams, A.; Milland, K.; Savage, S.; Callison-
Burch, C.; and Bigham, J. P. 2017. A data-driven analy-
sis of workers’ earnings on amazon mechanical turk. CoRR
abs/1712.05796.
Irani, L. C., and Silberman, M. S. 2013. Turkopticon: Inter-
rupting worker invisibility in Amazon Mechanical Turk. In
Proceedings of the SIGCHI conference on human factors in
computing systems, 611–620.
Irani, L. 2015. The cultural work of microwork. New Media
& Society 17(5):720–739.
Martin, D.; Hanrahan, B. V.; O’Neill, J.; and Gupta, N. 2014.
Being a Turker. In Proceedings of the 17th ACM conference
on Computer Supported Cooperative Work & Social Com-
puting, 224–235.
TurkerView. 2020. Building bridges: TurkerView launches
MTurk bridge — rejection disputes.
Whiting, M. E.; Hugh, G.; and Bernstein, M. S. 2019. Fair
work: Crowd work minimum wage with one line of code. In
Proceedings of the AAAI Conference on Human Computa-
tion and Crowdsourcing, volume 7, 197–206.



Figure 1: Depiction of original rejected HIT within the appeal task.

Actual / Verdict V: Overturn V: Reject
A: Overturn TP = 27 FN = 23

A: Reject FP = 2 TN = 46

Figure 2: Confusion matrix for HIT adjudication, based on a Requester hypothetically accepting all work with an accuracy
threshold of 75%.

Accuracy: 0.0 - 0.50 .67 .83 1.0
% of HITs overturned: 2.5% 12.50% 30.77% 79.17%

Figure 3: Accuracy of our simulated rejected HIT vs. percentage of HITs overturned. Judges were more likely to overturn the
rejections on HITs that had been completed with high accuracy than for HITs that were erroneous.

Figure 4: The Requester dashboard and the page to submit an appeal.


