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Abstract

Recursive noun phrases (NPs) have interest-
ing semantic properties. For example, my fa-
vorite new movie is not necessarily my fa-
vorite movie, whereas my new favorite movie
is. This is common sense to humans, yet it is
unknown whether language models have such
knowledge. We introduce the Recursive Noun
Phrase Challenge (RNPC), a dataset of three
textual inference tasks involving textual entail-
ment and event plausibility comparison, pre-
cisely targeting the understanding of recursive
NPs. When evaluated on RNPC, state-of-the-
art Transformer models only perform around
chance. Still, we show that such knowledge
is learnable with appropriate data. We further
probe the models for relevant linguistic fea-
tures that can be learned from our tasks, in-
cluding modifier semantic category and mod-
ifier scope. Finally, models trained on RNPC
achieve strong zero-shot performance on an ex-
trinsic Harm Detection evaluation task, show-
ing the usefulness of the understanding of re-
cursive NPs in downstream applications.1

1 Introduction

Recursion, the self-embedding of a linguistic struc-
ture, constitutes a fundamental property of human
language. Due to its hierarchical structure, it poses
many challenges to human language acquisition.
One such challenge occurs in the context of recur-
sive Noun Phrases (NPs), i.e., NPs with multiple
prenominal modifiers. For instance, in Figure 1,
when asked to point to the second green ball in a se-
ries of balls, children sometimes erroneously point
to the second and green ball (intersective interpreta-
tion), instead of the second among green balls (re-
cursive interpretation) (Matthei, 1982; Hamburger
and Crain, 1984; Marcilese et al., 2013).

1Our code and data are available at https://github.
com/veronica320/Recursive-NPs.

Figure 1: The intersective (incorrect) and the recursive
(correct) interpretation of the second green ball.

We investigate whether language models (LMs)
make similar errors, since the understanding of
recursive NPs is also fundamental in real-world AI
applications. For example, a summarization system
should know that the former US president cannot
be shortened as the president, since they are no
longer in power. Also, a self-driving car asked to
take the first left-hand exit should not assume that
it is always the first exit.

Previous work has studied the syntactic parsing
of recursive NPs (Nakov and Hearst, 2005; Pitler
et al., 2010), as well as the semantic categorization
of modifiers in NPs with only one prenominal mod-
ifier (Kamp and Partee, 1995; McCrae et al., 2014).
However, neither parsing nor modifier categoriza-
tion alone can sufficiently capture the meaning of
recursive NPs (§2).

In this paper, using recursive NPs with two modi-
fiers as our test-bed, we address the following ques-
tions about LMs’ understanding of recursion:

(a) Is the knowledge of how to interpret re-
cursive NPs present in LMs (§5)? We propose

https://github.com/veronica320/Recursive-NPs
https://github.com/veronica320/Recursive-NPs


Task ID Input Label

Single-Premise
Textual Entailment
(SPTE)

(1a)
Premise: This is my new favorite movie.

Entailment
Hypothesis: This is my favorite movie.

(1b)
Premise: This is my favorite new movie.

Non-Entailment
Hypothesis: This is my favorite movie.

Multi-Premise
Textual Entailment
(MPTE)

(2a)
Premise 1: He is a skillful American violinist.

EntailmentPremise 2: He is a father.
Hypothesis: He is an American father.

(2b)
Premise 1: He is a skillful American violinist.

Non-EntailmentPremise 2: He is a father.
Hypothesis: He is a skillful father.

Event Plausibility
Comparison (EPC)

(3a)
Event 1: The actress is known by everyone. (Event 2 is)

More PlausibleEvent 2: The famous former actress is known by everyone.

(3b)
Event 1: The actress lives in France. (Event 2 is)

Equally PlausibleEvent 2: The famous former actress lives in France.

(3c)
Event 1: The actress stars in many latest movies. (Event 2 is)

Less PlausibleEvent 2: The famous former actress stars in many latest movies.

Table 1: Examples for each task in our dataset. The NPs of interest are underlined. Differences between examples
are in bold. See Section 3 for details.

the Recursive Noun Phrase Challenge (RNPC), a
challenge set containing three classification tasks:
Single-Premise Textual Entailment, Multi-Premise
Textual Entailment, and Event Plausibility Compar-
ison (§3). Table 1 provides examples for each task.
Results show that state-of-the-art (SOTA) LMs fine-
tuned on standard benchmarks of the same format
(e.g., MNLI (Williams et al., 2018)) all struggle on
our dataset, suggesting that the target knowledge is
not readily available.

(b) Is such knowledge learnable with appro-
priate data (§6)? We adopt the challenge set
analysis technique proposed by Liu et al. (2019a),
which exposes models to a small amount of data
and assesses how well they can adapt. All mod-
els achieve a noticeable performance improvement
with as few as 200 examples, indicating that the
target knowledge is potentially learnable.

(c) What can models learn from recursive
NPs (§7)? We probe the finetuned models for two
well-studied linguistic features in previous work,
modifier semantic category and modifier scope. We
show that both features can be learned from RNPC,
with techniques including edge probing (Tenney
et al., 2019) and attention visualization (Vig, 2019).

(d) Is such knowledge useful for downstream
tasks (§8)? When evaluated on an extrinsic Harm
Detection task, models finetuned on RNPC achieve
strong zero-shot performance. This shows that the
understanding of recursive NPs can benefit down-
stream language understanding tasks.

In summary, our work identifies an interesting
linguistic phenomenon that is common sense to

humans but challenging for models. It contributes
to the characterization of LMs’ limitations and ca-
pabilities in language understanding.

2 Related Work

Noun Phrases (NPs) have been extensively studied
in both linguistics and NLP, primarily from the
following perspectives.
Syntactic structure. A line of work focuses on
the syntactic structure of NPs, which essentially
explains the modifier scope (Campbell, 2002) in
NPs. One classic task is NP bracketing, i.e., decid-
ing whether an NP is right-branching (e.g., [world
[oil prices]]) or left-branching (e.g., [[crude oil]
prices]) (Lauer, 1995; Nakov and Hearst, 2005). A
harder task is full parsing (Vadas and Curran, 2007;
Pitler et al., 2010), i.e., reconstructing the complete
dependency tree.
Modifier semantics. Another line of research
revolves around the semantics of simple modifier-
noun composition, starting with ways to categorize
modifiers based on their inference patterns (Kamp
and Partee, 1995; Bouillon and Viegas, 1999; Chier-
chia and McConnell-Ginet, 2000). With M as the
modifier and N as the noun, a representative taxon-
omy summarized by McCrae et al. (2014) is:
(1) intersective: X is aM N =⇒ X isM ∧X is
a N , e.g., “an American surgeon” describes some-
one who is both American and a surgeon;
(2) subsective: X is a M N =⇒ X is a N , but
X is a M N 6=⇒ X is M , e.g., someone who is
“a skillful surgeon” is not necessarily skillful in all
disciplines;



(3) privative: X is a M N 6=⇒ X is a N , e.g.,
“a former surgeon” describes someone who is no
longer a surgeon.

Despite the variations2 and debates3 on the tax-
onomy, we follow these conventional terms in sub-
sequent sections.

With the advances in NLP, more recent works
starts modeling the semantics of simple modifier-
noun constructions with first-order logic (McCrae
et al., 2014), linear mapping (Baroni and Zampar-
elli, 2010), and other explicit compositional op-
erations (Boleda et al., 2012, 2013). In particu-
lar, Pavlick and Callison-Burch (2016a,b) propose
a novel contextualized inference-based approach.
They define the Add-One Entailment task with nat-
ural contexts from textual corpora, where the hy-
pothesis differs from the premise by the insertion
of one modifier. For example, The crowd roared
entails The enthusiastic crowd roared, though en-
thusiastic crowd denotes a subset of crowd without
context. However, natural contexts also introduce
complications from monotonicity (Van Benthem,
1983). For instance, red apple entails apple, but He
didn’t eat any red apple does not entail He didn’t
eat any apple due to the downward entailment con-
text. In our proposed approach, we handle this
issue by controlling for context monotonicity.

Other related work explores which attributes of
the head noun are affected by the presence of mod-
ifiers. Mullenbach et al. (2019) look at how mod-
ifiers project from a noun to its parts (e.g., does a
red jeep have red tires?). Emami et al. (2021) test
the likelihood change of an event when a modifier
is added (e.g., a false key is less likely to open a
door than a key). Apidianaki and Garí Soler (2021)
study the prototypical properties of nouns (e.g., a
strawberry entails a red strawberry). Researchers
also examine the interpretation of noun compounds
(Shwartz and Waterson, 2018; Hendrickx et al.,
2013) (e.g., olive oil is made of olives, while baby
oil is made for babies).
Summary. Neither syntactic parsing nor modifier
semantics alone can fully capture the meaning of
recursive NPs. In terms of syntax, modifier scope
cannot always explain NPs due to the influence
from modifier semantics. For instance, a [big [fake

2For example, other studies call category (3) “non-
subsective” instead, and further decompose it into “privative”
(X is a M N contradicts X is a N , e.g., fake) and “non-
privative” (X is a M N is neutral to X is a N , e.g., alleged).

3Some linguists (for example, Partee (2010)) argue that
(3) should be subsumed by (2), since privative modifiers can
coerce the noun they modify into a looser interpretation.

gun]] and a [big [black gun]] have the same struc-
ture but different inference patterns, i.e. only the
latter is a gun. Meanwhile, modifier category itself
does not suffice without taking into account modi-
fier scope. For example, a so-called healthy food
and a so-called homeopathy expert start with the
same privative modifier (so-called). However, so-
called questions truthfulness of the second modifier
(healthy) in the former case while that of the noun
(expert) in the latter. Therefore, we introduce a
dataset containing three novel and challenging tex-
tual inference tasks, which rely on the interplay of
syntax and semantics in determining the meaning
of recursive NPs.

3 Task Formulation

Our dataset contains three tasks. Let us de-
note a canonical two-modifier recursive NP by
DetM1 M2 N (Determiner, Modifier 1, Modi-
fier 2, Noun). With this notation, the tasks are
outlined below. See Table 1 for concrete examples.

Single-Premise Textual Entailment (SPTE)
follows the conventional TE task format. Given
a premise and a hypothesis, the model decides
whether the premise semantically entails the hy-
pothesis. The labels include entailment and
non-entailment.4 An SPTE example can be
represented in regular expression as:

Premise : P Det M1 M2 N

Hypothesis : P Det (M1|M2)? N

Label : entailment|non-entailment

where P is a sentence prefix, which can be instanti-
ated as This is/He is/She is, etc., depending on the
NP. Intuitively, this task tests whether an NP en-
tails its various components. This holds for most
simple NPs (e.g., the second ball entails ball), but
recursive NPs offer interesting counterexamples
(e.g., (1b) in Table 1).

Multi-Premise Textual Entailment (MPTE) is
adapted from the attributive propagation test de-
scribed in Lalisse (2015). The format differs from
SPTE only in that it has two premises instead of
one. Given that both are true, the task is to deter-
mine whether the hypothesis is also true. The first
premise is of the same form as in SPTE. The sec-
ond premise contains a noun other than N, denoted

4We do not distinguish between neutral and
contradiction in order to minimize label ambiguity.



Category Count Examples: modifier (ATTRIBUTE)
Intersective 296 red (COLOR), female (GENDER),

German (NATIONALITY)
Subsective 269 short (HEIGHT), small (SIZE),

far (DISTANCE)
Privative 124 former (TIME), vice (AUTHORITY),

fake (AUTHENTICITY)

Table 2: Statistics and examples for each semantic cat-
egory in our modifier lexicon.

by N2.5 A regular expression representation is:

Premise 1 : P Det M1 M2 N

Premise 2 : P Det N2

Hypothesis : P Det (M1|M2) N2

Label : entailment|non-entailment

This test targets the compositionality of modifiers
and nouns. While most of the time a modifier can
be freely “detached” and “attached” (e.g., (2a)),
sometimes it cannot (e.g., (2b)).

Event Plausibility Comparison (EPC) follows
the task formalization by Emami et al. (2021) for
single-modifier NPs. Given two events, Event1
and Event2, a model needs to assess the plau-
sibility of Event2 compared to that of Event1.
The two events have the same event predicate E,
and differ only in the NP. A regular expression
representation is:

Event 1 : Det (M1|M2)? N E

Event 2 : Det M1 M2 N E

Label : more|equally|less plausible

This task tests the influence of adding modifier(s)
on the plausibility of different events about the
noun. Not all events are affected in the same way:
in (3), stars in many latest movies becomes less
plausible, while is known by everyone is more so.

We choose the three tasks defined above because
they allow us to study different interesting prop-
erties of recursive NPs that conventional parsing
tasks do not. For example, SPTE is convenient
for comparing the impact of modifier order on the
meaning of the NP (e.g., (1a) and (1b)); MPTE pre-
cisely reflects the property of subsective modifiers
(e.g., skillful); whereas EPC is suitable for NPs
with privative modifiers, since the other formats
often cause ambiguity in this case.6

5For both premises to hold at the same time, we need an
N2 that can refer to the same entity as N.

6For example, fake fur might or might not be considered

Task Total Entail Non-entail
SPTE 1,163 582 581
Task Total Entail Non-entail
MPTE 1,063 541 522
Task Total More Equal Less
EPC 1,479 508 392 579

Table 3: Number of examples in each RNPC task.
Entail/Non-entail stand for Entailment/Non-entailment,
and More/Equal/Less stand for More Plausible/Equally
Plausible/Less Plausible.

4 Dataset Construction

Our dataset is constructed in four stages: (a) mod-
ifier lexicon construction, (b) NP extraction and
selection, (c) instance creation and review, and (d)
label verification. Among them, (c) and (d) involve
crowdsourcing.7

Modifier lexicon construction. We first con-
struct a lexicon of modifiers following the taxon-
omy in Section 2 (McCrae et al., 2014). We include
modifiers studied in relevant linguistics literature
(Nayak et al., 2014; Lalisse, 2015) and comple-
ment the list with modifiers that are missing or
have not been addressed before under this lens (for
example, modifiers that describe material, such as
wooden, can also be viewed as privative). Each
entry in the lexicon contains the modifier itself, its
category (intersective, subsective, or privative), and
its attribute (e.g., green is a COLOR). In total, the
lexicon contains 689 modifiers, the largest resource
of this kind. See Table 2 for category distribution
and examples.
NP extraction and selection. Next, we collect
recursive NPs from a variety of resources: linguis-
tics literature (Matthei, 1982; Abdullah and Frost,
2005; Teodorescu, 2006; Morzycki, 2016), text cor-
pora (Penn Treebank (Marcus et al., 1993) and
the Annotated Gigaword corpus (Napoles et al.,
2012)), and our creation. From text corpora, we
extract all NPs with more than two consecutive
modifiers in our lexicon, and manually select NPs
considering a set of factors: lexical diversity, class
balance, whether there is an interaction between
the modifiers, etc. Finally, we complement the set
with deliberately designed challenging cases of our
invention, resulting in 1,299 NPs in total.

a kind of fur (Partee, 2010). Annotators would thus probably
disagree on the label if it were an SPTE example.

7See more statistics, crowdsourcing setup, and agreement
details in Appendix A; see annotation guidelines and HIT
design in the Supplementary Materials.



Figure 2: Given SOTA models finetuned on existing benchmark(s) of the same format as each RNPC task, we
compare their accuracy on these benchmark(s) and on the RNPC task. The dotted line represents the majority
baseline, and the solid line stands for human performance. Models for SPTE are finetuned on MNLI and SNLI,
while models for the other two tasks are finetuned on MPE and ADEPT, respectively.

Instance creation and review. We hire college
students8 to write examples for the three tasks
based on our collection of NPs. Each student
is given a screening test containing five NPs. If
≥ 75% of their created examples across all tasks
are valid, they are qualified to continue. Each in-
stance is then reviewed and/or revised by one of
the authors, resulting in 8,260 valid instances.
Label verification. We again hire college stu-
dents to verify instance labels via Amazon Mechan-
ical Turk. Each task has a screening test of 10 easy
instances with an unambiguous answer, and only
students with an accuracy of ≥ 90% can proceed.
During the official annotation, a HIT contains 10
questions of a task, including one control question.
Each HIT is completed by three people, excluding
its creator. Annotations are then filtered based on
the accuracy on control questions and the time used.
Only examples with ≥ 2 people agreeing with the
gold label are retained, yielding 4,567 examples.
We then down-sample the examples in each task for
a relatively balanced ratio among classes, resulting
in 3,705 examples. See Table 3 for details.

5 Do LMs understand recursive NPs?

To answer question (a), whether the knowledge of
how to interpret recursive NPs is present in pre-
trained LMs, we use the “behavioral test” probing
method (Belinkov et al., 2020). Namely, we eval-
uate SOTA models finetuned on existing bench-
mark(s) of the same format as each RNPC task.

8Specifically, undergraduate and graduate students in an
Artificial Intelligence class.

The rationale is that LMs should acquire the ability
of textual inference in the required format during
finetuning, which allows us to elicit their potential
knowledge about recursive NPs.9

Experimental setup. We consider the follow-
ing datasets that address similar phenomena as our
tasks: (1) MNLI (Williams et al., 2018) and SNLI
(Bowman et al., 2015) for our SPTE; (2) MPE
(Lai et al., 2017) for our MPTE; and (3) ADEPT
(Emami et al., 2021) for our EPC. We choose SOTA
and close-to-SOTA models on these benchmarks as
probing candidates, including BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019b), BART (Lewis
et al., 2020), and GPT3 (Brown et al., 2020).10

Results and analysis. We evaluate the finetuned
models on each RNPC task. When the finetuning
dataset has more classes than our task does, we
map the model prediction to one of our classes
by summing probability scores.11 Figure 2 com-
pares the performance of the models on the relevant

9LMs can also overfit the finetuning dataset and thus “for-
get” the target knowledge acquired during pretraining. Thus,
we also directly probe the pretrained LMs in a complementary
“likelihood scoring” experiment, described in Appendix C.

10Due to the size of MNLI and SNLI, we only evaluate
available checkpoints from the Huggingface Transformers
model hub. For the other two benchmarks, all models are
trained by us. Also, the largest GPT3-davinci is unavailable
for finetuning and thus excluded. See Appendices B and E.1
for dataset, model and hyperparameter details.

11For example, for a model trained on MNLI (with three
labels), we compare the score of entailment and the
summed score of neutral and contradiction. If the
former is higher, we predict entailment on SPTE; other-
wise non-entailment. Empirically, this strategy results
in higher performance than directly mapping the highest-score
MNLI label to its corresponding SPTE label.



Task ID Input Gold Label Predicted Label
Single-
Premise
Textual
Entailment

(1a)
Premise: This is my new favorite movie.

Entailment Entailment 3
Hypothesis: This is my favorite movie.

(1b)
Premise: This is my favorite new movie.

Non-Entailment Entailment 7
Hypothesis: This is my favorite movie.

Multi-
Premise
Textual
Entailment

(2a)
Premise 1: He is a short American basketball player.

Entailment Entailment 3Premise 2: He is a man.
Hypothesis: He is an American man.

(2b)
Premise 1: He is a short American basketball player.

Non-Entailment Entailment 7Premise 2: He is a man.
Hypothesis: He is a short man.

Event
Plausibility
Comparison

(3a)
Event 1: An animal can be harmful to people.

Less Plausible Less Plausible 3
Event 2: A dead dangerous animal can be harmful to people.

(3b)
Event 1: An animal can be harmful to people.

More Plausible Less Plausible 7
Event 2: A dangerous dead animal can be harmful to people.

Table 4: Minimal-pair examples where the best-performing models make errors for each RNPC task. Differences
between each pair are underlined.

benchmarks and our tasks. We also include human
performance, calculated by averaging the accuracy
of three college student annotators on a random
sample of 300 examples for each task.

All models struggle on RNPC with performance
around chance, while human accuracy is constantly
above 90. On SPTE and MPTE, almost all mod-
els have a high false-positive rate. As long as all
tokens in the hypothesis (e.g., This is the second
ball) appear in the premise (e.g., This is the second
green ball), they tend to predict entailment, in-
dicating that they are making the same intersective
interpretation errors as children do. On EPC, most
models over-predict equally plausible, ar-
guably due to the class imbalance during finetuning.
This also shows that our task is not trivially solv-
able by models that understand non-recursive NPs,
which the finetuning dataset comprises.

Next, we closely examine the best-performing
models on each task, including RoBERTa-large
finetuned on MNLI, GPT3-curie finetuned on MPE,
and RoBERTA-large finetuned on ADEPT. On
MPTE and EPC, even the best model barely sur-
passes chance performance. On SPTE, the best
accuracy (61.2) is still unimpressive for a binary
classification task. To understand where exactly
the models fail, we further present a qualitative
minimal-pair analysis in Table 4. On SPTE, the two
examples differ only in the order of modifiers (new
and favorite) in the premise, leading to opposite la-
bels. However, the model predicts entailment
for both, suggesting its insensitivity to subtle mean-
ing differences incurred by modifier order changes.
On MPTE, the difference between the two exam-
ples lies in the modifier in the hypothesis, an Ameri-

can man vs. a short man. As basketball players are
generally tall, the second hypothesis should not be
entailed. Again, the model predicts entailment
for both cases, which shows its lack of relevant
world knowledge. Finally, on EPC, a dead dan-
gerous animal and a dangerous dead animal have
subtly different meanings – the former refers to a
dangerous animal that is dead (e.g., a dead lion,
which is no longer harmful to people), while the
latter refers to a dead animal that has become dan-
gerous (e.g., a dead squirrel carrying viruses, which
is indeed harmful). The model fails to distinguish
between them, predicting less plausible for
both. All the above observations show that the
knowledge for interpreting recursive NPs is not
present in LM representations.

6 Can LMs Learn the Meaning of
Recursive NPs?

We investigate the reasons behind the models’ low
performance on RNPC, specifically whether their
failure is due to the lack of in-domain training
data or an intrinsic deficiency in their architecture.
Namely, we attempt to answer question (b): Is the
target knowledge learnable with appropriate data?

We adopt the challenge set analysis technique
from Liu et al. (2019a), which exposes a model to
a small amount of challenge data and assesses how
well it can adapt. Specifically, we split each RNPC
task dataset into a training set of 200 examples and
a new test set containing the rest, ensuring that they
have different modifiers in the same position. For
example, if a modifier appears as the M1 of an NP
in the training set, it cannot appear in the same po-
sition of any NP in the test set. Then, we finetune
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Figure 3: Learning curves of the best models on each
RNPC task with an increasing number of finetuning ex-
amples.

each model from Figure 2 on an increasing num-
ber of examples (10 to 200). The learning curves
of the best-performing models (RoBERTa-large
(MNLI), RoBERTa-base (MPE), and RoBERTA-
large (ADEPT)) are plotted in Figure 3.12

On SPTE, the accuracy rapidly climbs from 61.1
to 75.8 with only 10 examples, and saturates around
92 with 100 examples, approaching human perfor-
mance (94.1). The learning curve on MPTE has
more fluctuations, with a peak at 71.1 (150 exam-
ples) and a final score of 67.8. On EPC, starting
around chance (39.5), the accuracy progressively
increases up to 64.4 with 200 examples. These re-
sults indicate that the target knowledge is learnable
with appropriate training data. Furthermore, SPTE
may be the easiest task, since it only requires local
knowledge about the meaning of the modifiers and
the noun. By contrast, MPTE and EPC involve
world knowledge (e.g., basketball players are gen-
erally tall among the population), as well as global
reasoning between components in a sentence (e.g.,
the relationship between the event and the modi-
fiers), which may explain the remaining large gap
between model and human performance (> 90).

7 What can LMs learn from RNPC?
Given that the target knowledge is learnable, we
now address question (c): What linguistic features
have the models learned from RNPC? We probe
for two features extensively studied in the relevant
literature (cf. §2), using different techniques.
Modifier semantic category. We first investi-
gate if models have learned the semantic category
of modifiers using the “edge probing technique”
(Tenney et al., 2019). Namely, each modifier is
categorized as intersective, subsective, or privative
(McCrae et al., 2014). The entailment pattern of

12See Appendix E.2 for model and hyperparameter details.
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Figure 4: Probing accuracy for the “modifier semantic
category” feature, before (left) and after (right) finetun-
ing on each RNPC task.

individual modifiers is an important factor in deter-
mining the meaning of the entire NP.

Given a finetuned model, we take the contextu-
alized representation of each modifier in the last
hidden layer. Then, we attach a linear head on top
of the token representation as an “auxiliary classi-
fier”. We choose linear classifiers because more ex-
pressive ones like Multi-Layer Perceptron are more
likely to capture the target feature themselves (He-
witt and Liang, 2019). The token representations
are then frozen, while the linear head is trained to
predict the semantic category of the modifiers.13

We probe the models finetuned on RNPC from
Section 6, as well as the models finetuned on ex-
isting benchmarks for comparison. The results are
shown in Figure 4. For all tasks, the probing ac-
curacy is higher for models finetuned on RNPC
than on existing benchmarks. The increase is small
for SPTE (3.4) and MPTE (2.8), but more obvious
for EPC (7.1). This is somewhat counter-intuitive
since modifier category is defined in terms of entail-
ment patterns, but models learn it better from EPC
than from TE tasks. Nonetheless, the overall trend
shows that models can learn the semantic category
of modifiers to some extent after being finetuned
on our datasets. Since the absolute increase is lim-
ited, we plan to explore ways to quantify the actual
amount of learned knowledge in future work.
Modifier scope. We also probe for the scope
of the first modifier (M1) in recursive NPs
(DetM1 M2 N). Specifically, we focus on pri-
vative M1’s, since they can have different scopes
when interacting with different M2’s and N’s. For
instance, in the NP a former American diplomat,
former negates diplomat (N), but the person is still
American; while in a former beginner drummer, it
negates beginner (M2), but the person may still be

13See Appendix E.3 for an illustration of the method.



Figure 5: A case study of modifier scope. Each sub-
figure shows the frequency distribution of the attention
ratio r (0 < r < 1) for an M1, divided into two sides
at 0.5. The M2 side contains NPs where M1 attends
more to M2 than to N; vice versa for the N side.

a drummer.14 This difference cannot be captured
by the semantic category of former.

As a proxy for the scope of M1, we use atten-
tion visualization, a widely adopted technique to
study token correlations (Vig, 2019).15 We choose
BERT-base finetuned on 200 MPTE examples from
Section 6 as the model to be probed for a case study.

Let us denote any token in a given NP as x.
We define Ax, the average of the weights of all
attention heads from M1 to x in the final layer,
representing how much M1 attends to token x. We
then calculate the ratio r = AN/(AN +AM2)
(0 < r < 1). If r < 0.5, then M1 attends more
to M2; else, M1 attends more to N. For each pri-
vative modifier, we take all NPs containing it in
the M1 position in our dataset and plot the distribu-
tion of r. Figure 5 shows three examples (alleged,
counterfeit, or fraudulent) representing different
patterns.

As shown in the first sub-figure, alleged attends
more to either M2 and N depending on the NP.
For example, it attends more to M2 in an alleged
antique bowl (0.454), since the NP describes a bowl

14Admittedly, there can be alternative interpretations: say,
one can also imagine that a former beginner drummer de-
scribes a person who is no longer a drummer at all. However,
in that case, it is enough to say a former drummer instead,
considering the Gricean maxim of quantity. Therefore, here
we still focus on the first interpretation, which is more straight-
forward.

15There have been recent debates on the faithfulness of this
method (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019).
Therefore, we do not use attention weights to make claims
about how our models work, but only what they capture, with
attention weights.

that may not be antique. Inversely, an alleged male
criminal is on the N side (0.517), since they are
most likely male but may not be a criminal.

The second sub-figure indicates that counterfeit
mainly attends to M2. For instance, a counterfeit
Hollywood movie (0.382) is still a movie, but is
probably not made in Hollywood. This is similar
to the cases of luxury bag, medical drugs, foreign
cigarettes, etc. On the contrary, fraudulent mainly
attends to N, as shown in the third sub-figure. The
fraudulent medical claims (0.559) are not valid
claims but still on medical grounds. The same
holds for electoral victory, medical excuse, etc.

Additionally, we notice that there are some
boundary cases close to the r = 0.5 division line,
like ruthless criminal and former thief in the al-
leged sub-figure. A plausible explanation is that
M1 is questioning both M2 and N in these cases
(e.g., an alleged ruthless criminal is not necessarily
ruthless or a criminal). Overall, the above results
indicate that models finetuned on our tasks can
capture modifier scope in recursive NPs.

8 Is RNPC useful for downstream tasks?
We finally address question (d): How can such
knowledge benefit downstream tasks? We choose
the task of Harm Detection (Banko et al., 2020)
for extrinsic evaluation. Concretely, we consider
the scenario where a user interacts with a task-
oriented agent like Siri or Alexa, and the agent
needs to determine whether the involved activity in
the user query is potentially harmful. The definition
of “harm” can be user-dependent. Here, we con-
sider an activity to be harmful if it may cause pain,
physical injury, or be illegal for minors. We choose
this task because many false positives come from
recursive NPs. For example, how to make a home-
made bomb is obviously harmful while how to
make a homemade bath bomb is harmless.

We collect a small test set from wikiHow, a web-
site of how-to articles. Each article title is con-
sidered a query (e.g., how to make a cake). Then,
we compile a list of 74 keywords about harmful
entities (e.g., bomb, fire, drugs), only 12 of which
occur in RNPC. We then select wikiHow queries
containing at least an NP with one of the 74 key-
words as the head noun, and sample a small subset
for manual annotation. Each query is labeled as
harmful or harmless, depending on whether
it involves a harmful activity as defined above. Af-
ter data cleaning and re-balancing, we obtain 170
queries, with a 1:1 positive/negative ratio.



Model Acc. P R F1

Always harmful 50.0 50.0 100.0 66.7
GPT3-ada 49.4 49.7 98.8 66.1
GPT3-curie 59.4 60.5 54.1 57.1
GPT3-davinci 51.3 50.6 100.0 67.2
RoBERTa-large (SPTE) (ours) 58.2 54.5 100.0 70.5
RoBERTa-large (EPC) (ours) 72.9 66.4 92.9 77.5

Table 5: Zero-shot performance of models trained on
RNPC on the Harm Detection task. Baselines include
a model that always predicts harmful and GPT3.

We design two zero-shot harm classifiers using
models finetuned on our entire SPTE and EPC
dataset. They share a few pre-processing steps:
first, all NPs are extracted from the input query;
then, NPs containing a keyword from our list in
the head noun position are retained. For each re-
tained NP (e.g., a water gun), we check if it is
indeed a harmful entity using either the SPTE or
the EPC model. The input to the SPTE model is a
premise of the form “This is {NP}” (e.g., This is
a water gun) and a hypothesis of the form “This
is (a/an) {N}” (e.g., This is a gun). If the output
label is entailment, we classify the query as
harmful, otherwise harmless. Likewise, us-
ing the EPC model, we form two events given the
retained NP: “(A/An) {N} is harmful” and “{NP}
is harmful”. If the second event is predicted as
more or equally plausible compared to the first, the
query is considered harmful.

We compare our two classifiers to a simple base-
line that always predicts harmful as well as to
three GPT3 models.16 Both classifiers meaning-
fully exceed the simple baseline, and the EPC-
based classifier outperforms all the other methods
by 10+ in terms of accuracy and F1. This shows
that the understanding of recursive NPs is bene-
ficial for downstream tasks without any training
data. To understand why EPC is more suitable than
SPTE for this task, we further examine the errors
they make. One major error type concerns poly-
semous keywords such as shot. For instance, the
SPTE model mistakenly predicts how to have a
good basketball shot to be harmful because a
good basketball shot is still a shot (shot can mean
both “shooting a gun” and “shooting a ball”). There
are also some queries out of the scope of the EPC
model, e.g., how to make a sake bomb. Since sake
bomb is a cocktail, the gold label is harmful as
our target users are minors. The EPC model cor-
rectly predicts that a sake bomb is less harmful
than a bomb, but fails to capture that it may still be

16Used in a zero-shot setting; see Appendix E.4 for details.

harmful (for minors).

9 Conclusion
We introduce RNPC, a challenge set targeting the
understanding of recursive NPs, a fundamental as-
pect of human common sense. Pretrained LMs
with SOTA performance on Natural Language Un-
derstanding benchmarks have poor mastery of this
knowledge, but can still learn it when exposed to
small amounts of data from RNPC. Using different
probing techniques, we show that models can learn
relevant linguistic features, including modifier cat-
egory and scope, from RNPC. They also achieve
strong zero-shot performance on an extrinsic Harm
Detection task, indicating the transferability of this
knowledge. For future work, we hope to investi-
gate other linguistic phenomena as a step towards
comprehensively characterizing LMs’ limitations
and capabilities in language understanding.
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A Dataset Construction Details

A.1 RNPC Statistics
NPs. RNPC has 1,299 NPs. For an NP in the
form of DetM1 M2 N, the two modifiers M1

and M2 can each belong to one of three possi-
ble semantic categories (intersective, subsective,
or privative), resulting in nine possible combina-
tions. We plot the distribution of NPs with different
combinations in RNPC in Table 6. Note that the
distribution is not balanced because certain cate-
gories (e.g., NPs containing privative modifiers)
yield many more minority class examples for our
three tasks (e.g., non-entailment in SPTE).
Thus, considering the final class balance in RNPC
tasks, we include more NPs of certain categories.
Training and test sets for finetuning. In the
experiment where we finetune models on RNPC,
described in Section 6, we split again the dataset
for each task into a training set and a new test set,
ensuring no overlap of modifiers occurring in the
same position. The training set contains 200 exam-
ples, which are gradually provided to the model.
The test set contains the remaining examples. Ta-
ble 7 shows the number of examples for each task.

A.2 Crowdsourcing Details
In the construction of RNPC, we hire college stu-
dents as crowdworkers for instance creation and
label verification. Specifically, they are undergrad-
uate and graduate students in an Artificial Intelli-
gence class (CIS 421/521 and MCIT 521 at the
University of Pennsylvania), with good English
proficiency. Both tasks are given as optional ex-
tra credit assignments in the class. Participation is
solely voluntary. Before participation, students can
preview the tasks, and are given a clear description
of how the data will be used at the beginning of the
instructions.

During instance creation, we provide detailed
instructions on how to write high-quality examples
for each task, which can be found in the Supple-
mentary Materials. Annotations are collected via
Google Forms. With 100 valid instances (equiva-
lent to 2.5-4.75 hours of work, depending on their
proficiency), students can earn 1% in extra credit
of the overall course grade.

During label verification, we host our questions
on Amazon Mechanical Turk. We design a HIT
type for each RNPC task, which is also included in
the Supplementary Materials. With 600 correctly
answered questions (equivalent to 3.5-4 hours of

M1 / M2 Int. Sub. Pri.
Int. 13 37 74
Sub. 138 109 162
Pri. 99 420 250

Table 6: Number of NPs in RNPC with different com-
binations of modifier category in the M1 and M2 po-
sition. Possible categories include intersective, subsec-
tive, and privative.

Task Train Test
SPTE 200 963
MPTE 200 863
EPC 200 1,279

Table 7: Number of examples in the training and testing
split for each RNPC task in the finetuning experiment.

Dataset Train Dev Test
MNLI 392,702 20,000 20,000
SNLI 550,152 10,000 10,000
MPE 8,000 1,000 1,000
ADEPT 12,892 1,611 1,612

Table 8: Number of examples in existing datasets of the
same format used for finetuning.

work), students can earn 1% in extra credit of
the overall course grade. We calculate the inter-
annotator agreement using Krippendorff’s alpha.17

The agreement is 0.843 for SPTE, 0.575 for MPTE,
and 0.933 for EPC.

A.3 Debiasing and Anonymization

The collected data does not contain any informa-
tion that names or uniquely identifies individual
people or offensive content. We ensure this by 1)
manually reviewing the set of extracted NPs from
corpora, and filtering out any NP that contains any
sensitive/offensive information, 2) not requesting
any personal information during human annotation,
and 3) manually reviewing each RNPC example
written by the human participants.

B Existing Benchmarks for Finetuning

We use the following benchmark datasets for fine-
tuning. Each of them has the same format as one
of our RNPC tasks. Table 8 shows the number of
examples in each dataset.
MNLI. The Multi-Genre Natural Language In-
ference corpus (Williams et al., 2018) is a dataset
of 433k textual entailment examples, labeled as
entailment, contradiction, or neutral. It covers a

17https://pypi.org/project/krippendorff

https://pypi.org/project/krippendorff


range of genres of spoken and written text. The
language in the dataset is English. The corpus is
released under the OANC’s license, the Creative
Commons Share-Alike 3.0 Unported License, and
the Creative Commons Attribution 3.0 Unported
Licenses, depending on the portion.
SNLI. The Stanford Natural Language Inference
corpus (Bowman et al., 2015) is a crowdsourced
dataset of textual entailment examples, labeled as
entailment, contradiction, or neutral. The sentences
are written by humans doing a novel grounded task
based on image captioning. The language in the
dataset is English. The dataset is released under
the Creative Commons Attribution-ShareAlike 4.0
International License.
MPE. Lai et al. (2017) introduce a Multiple
Premise Entailment Task dataset. This is a novel
textual entailment task that requires inference over
multiple premise sentences. Each example con-
sists of four premise sentences (captions from a
FLICKR30K image), one hypothesis sentence (a
simplified FLICKR30K caption), and one label (en-
tailment, neutral, or contradiction) that indicates
the relationship between the set of four premises
and the hypothesis. The language in the dataset is
English. The license of the dataset is unspecified.
ADEPT. Emami et al. (2021) introduce a dataset
of the Adjective-Dependent Plausibility Task
(ADEPT). Each example contains a base sentence,
and a slightly modified sentence obtained by adding
an adjective to a noun in the base sentence. The
dataset is created to support explorations into how
certain classes of adjectives might influence the
plausibility of events depicted in natural language
sentences. The textual data come from Wikipedia,
the Common Crawl, and ConceptNet. The lan-
guage of the dataset is English. ADEPT is released
under the CC BY-SA 3.0 license. It is intended to
be used only for research, exploratory evaluation,
and auditing, which our use is consistent with.

C Probing Pretrained LMs

C.1 Motivation

When addressing question (a), we finetune pre-
trained LMs on existing benchmarks of the same
format as each RNPC task, assuming that the fine-
tuning process allows models to do textual infer-
ence in the required format. However, it is possible
that this assumption does not hold, because LMs
can overfit the finetuning data beyond just learning
the format. Then even if the target knowledge is

present in pretrained LMs, catastrophic forgetting
(Kemker et al., 2018) can happen during finetuning.

C.2 Task Conversion

We complement Section 5 with another experiment,
where we directly probe pretrained LMs using a
prompting method inspired by the line of work
on LMs as knowledge bases (Petroni et al., 2019).
Specifically, we convert each RNPC task to a like-
lihood comparison task:
SPTE. Given the original formulation which has
a premise and a hypothesis, we define Lentail as the
conditional likelihood that the hypothesis is nec-
essarily true given the premise, assigned by an LM.
Contrarily, Lnon−entail stands for the conditional
likelihood that the hypothesis is NOT necessarily
true given the premise.18 If Lentail > Lnon−entail,
the model is considered to predict entailment,
and vice versa.
MPTE. The conversion method is the same as
that for SPTE, except that in the conditional likeli-
hood computation, we now consider the concatena-
tion of two premises as the given condition.
EPC. Given the original formulation with two
events, Event 1 and Event 2, we define L1 and
L2 as the (unconditional) likelihood of Event 1
and Event 2 assigned by an LM, respectively. We
then choose a threshold θ,19 and compare it to the
absolute difference between L1 and L2. If the dif-
ference is smaller than θ, we consider the model
prediction as equally likely. Otherwise, the
model prediction is more likely ifL2 is higher,
and less likely if L1 is higher.

For Causal LMs (e.g., GPT), the likelihood
is computed with standard left-to-right language
modeling scores. For Masked LMs (e.g., BERT,
RoBERTa, BART), the likelihood is computed with
pseudo-log-likelihood scores (Salazar et al., 2020).

C.3 Sanity Check

Before evaluating LMs on the converted RNPC, we
perform a sanity check to see if our formalization
makes sense to LMs, i.e., whether they understand
the meaning of necessarily and not necessarily.

18For example, if the original SPTE example has the
premise This is the second green ball and the hypothesis This
is the second ball, then Lentail equals to L(This is neces-
sarily the second ball | This is the second green ball), and
Lnon−entail equals to L(This isn’t necessarily the second
ball | This is the second green ball).

19In the range [0.1, 0.5, 1, 2, 3, 5], 0.5 is the empirical
optimal.



Model SPTE MPTE EPC
gpt2-base 59.4 52.8 33.4
gpt2-medium 62.6 53.6 33.6
gpt2-large 61.4 56.1 32.4
gpt2-xl 61.7 56.9 31.7
gpt3-ada 55.2 55.2 33.2

Table 9: Accuracy of SOTA pretrained models directly
evaluated on RNPC tasks.

We write 50 sentence pairs for likelihood com-
parison, all consisting of simple commonsense
knowledge. For example, comparing A human be-
ing is necessarily female and A human being isn’t
necessarily female, the second sentence should be
more likely; while for Humans are necessarily mor-
tal and Humans aren’t necessarily mortal, the first
sentence should be more likely. Such comparisons
do not require any knowledge about recursive NPs,
and involve only common entities and facts. If
models understand necessarily and not necessarily
correctly, they should find the task easy.

To our surprise, almost all Masked LMs we test
(BERT-base/large, RoBERTa-base/large) fail the
sanity check, mostly performing around chance
(50 accuracy). However, most Causal LMs (GPT-2-
base/medium/large/xl, GPT-3-ada) reasonably per-
form above chance, with accuracy scores rang-
ing from 70 to 80. We suspect that pseudo-log-
likelihood scores are not entirely suitable for our
purposes; also, the task is harder than expected due
to reporting bias, as the tested knowledge (e.g., not
all humans are female) is potentially too obvious
to be explicitly stated in the pretraining data.

C.4 Results

We evaluate LMs that pass the sanity check on the
converted RNPC, and report their performance in
Table 9. Despite the decent performance on the
sanity check examples (70-80), the accuracy on
RNPC is remarkably lower. Compared to our orig-
inal results of probing the finetuned models, the
optimal performance on SPTE and MPTE slightly
improves, while accuracy on EPC decreases. How-
ever, the same patterns hold: most models perform
around or slightly above chance, with a large dif-
ference from human performance. These findings
further strengthen our answer to question (a), i.e.
LMs do not inherently have the knowledge to inter-
pret recursive NPs.

Model Acc. P R F1

BERT-base (SNLI) 49.8 49.9 77.0 60.5
BERT-base (MNLI) 51.3 50.7 97.8 66.8
RoBERTa-large (MNLI) 61.1 56.3 99.1 71.9
BART-large (MNLI) 59.3 55.1 97.9 70.7

Table 10: Full results of SOTA models evaluated on
SPTE. The finetuning dataset is in brackets.

Model Acc. P R F1

BERT-base 47.2 48.0 44.0 45.9
BERT-large 41.5 34.2 16.3 22.1
RoBERTa-base 51.1 51.0 100.0 67.5
RoBERTa-large 50.9 50.9 100.0 67.5
GPT3-ada 52.0 51.5 97.0 67.3
GPT3-curie 54.1 52.6 97.4 68.4

Table 11: Full results of SOTA models evaluated on
MPTE. The finetuning dataset is MPE for all models.

Model Acc. P R F1

BERT-base 31.6 29.2 31.6 22.4
BERT-large 32.2 27.7 32.2 23.7
RoBERTa-base 31.0 46.8 31.0 22.3
RoBERTa-large 39.5 54.1 39.5 32.7
GPT3-ada 35.2 40.2 35.2 28.3
GPT3-curie 38.7 69.9 38.7 32.8

Table 12: Full results of SOTA models evaluated on
EPC. The finetuning dataset is ADEPT for all models.

D Full Results

In Section 5, we evaluate SOTA LMs on RNPC
tasks. In addition to accuracy, we also report preci-
sion, recall, and F-1 score here. Tables 10, 11 and
12 show the full results for each task, respectively.

E Implementation Details

E.1 Models Finetuned on Existing
Benchmarks

In Section 5, we evaluate SOTA LMs finetuned on
existing benchmarks of the same format on RNPC.
We use four different pretrained models, BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019b),
BART (Lewis et al., 2020), and GPT3 (Brown et al.,
2020), in different sizes. The first three are imple-
mented with HuggingFace Transformers20, and the
last is from OpenAI’s standard API21.

The pretrained model checkpoints we use
include: bert-base-uncased (110M pa-
rameters), bert-large-uncased (336M
parameters), roberta-base (125M param-

20https://github.com/huggingface/
transformers

21https://beta.openai.com/docs/
api-reference

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://beta.openai.com/docs/api-reference
https://beta.openai.com/docs/api-reference


eters), roberta-large (335M parameters),
facebook/bart-large (406M parame-
ters), GPT3-ada (350M parameters), and
GPT3-curie (6.7B parameters).22 Their
licenses include Apache License 2.0 (BERT
and BART), GNU General Public License v2.0
(RoBERTa), and MIT license (GPT3).

Due to the size of MNLI and SNLI, we use
existing checkpoints available on the Hugging-
face Transformers model hub. For all other
datasets, we finetune the pretrained models using
the SequenceClassification pipeline on
Huggingface, or the standard prompt completion
finetuning API on OpenAI.23 The finetuning scripts
are adapted from the text-classification
example in the HuggingFace Transformers reposi-
tory.24 We performed hyperparameter search in the
following range:

- batch size: [4, 8, 16, 32]
- learning rate: [1e-5, 1e-6]
- number of epochs: [2, 3, 5]
- max sequence length: [64, 128]
The optimal hyperparameter values and fine-

tuned models are available on the HuggingFace
model hub.

We run our finetuning experiments on an
NVIDIA GeForce RTX 2080 Ti GPU, with half-
precision floating point format (FP16). The fine-
tuning takes 2 to 5 hours depending on the task.

E.2 Models Finetuned on RNPC

In Section 6, we address the question of whether
LMs can learn the meaning of recursive NPs. We
finetune each model from Section E.1 on an increas-
ing number of examples of each RNPC task. The
model architectures, the pipelines used, the range
of hyperparameter search, and the computing re-
sources used are all the same as in the previous
subsection. After being finetuned on 200 exam-
ples, the best performing models are RoBERTa-
large (MNLI) for SPTE, RoBERTa-base (MPE) for
MPTE, and RoBERTA-large (ADEPT) for EPC.
The optimal hyperparameter values and finetuned
models on the full 200 examples of each RNPC
task are available on the HuggingFace model hub.

22All models above are available at https:
//huggingface.co/transformers/v4.8.
2/pretrained_models.html or https:
//beta.openai.com

23https://beta.openai.com/docs/
api-reference/fine-tunes

24https://github.com/huggingface/
transformers/tree/master/examples/legacy

Figure 6: An illustration of the Edge Probing method.
Figure adapted from Tenney et al. (2019).

E.3 The “Edge Probing” Method

In Section 7, we adopt the Edge Probing technique
from Tenney et al. (2019) to investigate if the modi-
fier category feature can be learned from our tasks.

To reintroduce the general idea of this method,
consider the following setup: we have data
D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where
(x1, x2, ..., xn) are the model representations to
be probed and (y1, y2, ..., yn) are the labels of
a linguistic feature we are interested in probing
for. The goal is to see if (x1, x2, ..., xn) encodes
(y1, y2, ..., yn).

In our case, given an NP of the form
DetM1 M2 N, (x1, x2, ..., xn) are the token rep-
resentations of the best-performing models after
being finetuned on each RNPC task, as mentioned
in Section E.2, and (y1, y2, ..., yn) are the semantic
categories of M1 and M2.

We freeze the representations (x1, x2, ..., xn),
and attach a simple auxiliary classifier (or probing
classifier) on top of them. The auxiliary classi-
fier is trained to predict the semantic category yi
corresponding to every modifier token representa-
tion xi. In our case, we choose a linear classifier
as the probing classifier. The assumption is that
the expressivity of the auxiliary classifier should
be limited, or otherwise it might learn the target
feature itself. Based on this assumption, the accu-
racy of predicting y indicates the extent to which
the model representations encode the target feature.
The method is illustrated in Figure 6.

Specifically, the linear classifier is an
SGDClassifier implemented with scikit-
learn.25 We perform hyperparameter search in the
following range:

25https://scikit-learn.org

https://huggingface.co/transformers/v4.8.2/pretrained_models.html
https://huggingface.co/transformers/v4.8.2/pretrained_models.html
https://huggingface.co/transformers/v4.8.2/pretrained_models.html
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- loss: [hinge, log, modified_huber,
squared_hinge, perceptron]

- warm_start: [True, False]
- penalty: [l2, l1, elasticnet]
- alpha: [0.0001, 0.001, 0.01, 0.1]
- n_jobs: [-1]
- max_iter: [500, 1000, 2000]
- random_state: [0]
- eta0: [0.1, 0.01, 0.001, 0.0001]
- learning_rate: [optimal, invscaling, adaptive]
The optimal hyperparameter values for the best-

performing models of each RNPC task from Sec-
tion E.2 are available on the HuggingFace model
hub.

E.4 Models Used for Extrinsic Evaluation
In Section 8, one of the models we compare
to is GPT3. We exploit three versions of dif-
ferent sizes, GPT3-ada, GPT3-curie, and
GPT3-davinci, using the same API described
in Section E.1. The models are evaluated in a zero-
shot setting, where we only provide the following
task description:

Given a “how-to” query, determine if the
task is harmful to a teenager. The answer
should be Yes or No.

Each input question is then formatted as:

Question: Is “{how-to query}” harmful?
Answer:

For every how-to query in our test set, we use the
concatenation of the task description and the in-
stantiated input question as the prompt, and let the
model generate a one-token continuation. The top
generated token is always Yes or No, implying that
GPT3 has a good understanding of the task format.

F Ethical Considerations

F.1 Limitations
Assumptions. One assumption we make in an-
swering question (a) is that LMs finetuned on ex-
isting benchmarks can learn the required format
without overfitting the specific domains of the fine-
tuning data. Suppose this assumption does not hold,
then even if the target knowledge is present in pre-
trained LMs, they can “forget” it during finetuning.
Therefore, the finetuning process does not allow us
to elicit the target knowledge from pretrained LMs.
To address this issue, we complement the behav-
ioral test probing method with another experiment

to directly probe the pretrained LMs via likelihood
scoring. See Section C for details.

Another assumption occurs in our answer to
question (d). We assume that a query is harmful
if it contains a harmful entity. However, in prac-
tice, there can be queries like How to prevent a
fire, which does contain a harmful entity (fire) but
is precautionary instead of harmful. Our model
does not take into account factors like predicates in
context, and will therefore identify all such cases
as false positives.
Scope of claims. Our first three claims (i.e. an-
swers to question (a)-(c)) are only verified to hold
on the RNPC dataset, which 1) is in English and 2)
mainly consists of NPs in the news domain. Our
last claim (i.e. answer to question (d)) is only veri-
fied to hold on the harm detection dataset we col-
lect, which 1) is also in English, 2) consists of how-
to queries in the domain of human activities, and
3) is annotated based on a non-exhaustive keyword
list of harmful entities.

Moreover, part of our answer to question (b) (i.e.
LMs have learned the feature of modifier semantic
category from RNPC) is qualitative. The absolute
increase in the probing accuracy after finetuning is
limited, so it is likely not the entire picture. Quanti-
fying to what extent LMs have learned this feature
is an interesting direction for future work.

F.2 Risks
The risks associated with the study are minimal.
Harm detection models. Our harm detection
models are intended for research purposes only.
They are designed for specific types of harmful
queries, i.e. those with harmful entities. One
should not deploy them directly in real life since
they are by no means applicable under all scenar-
ios.
Data collection. Our human participants may
experience slight discomfort due to boredom dur-
ing data collection. To minimize this, we make
sure that it is entirely voluntary to participate and
discontinue at any time.

F.3 Intended Use
Our models and data should be used for research
purposes only. They should not be deployed in
the real world as anything other than a research
prototype, especially commercially.


