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Abstract

Many natural language processing tasks re-
quire discriminating the particular meaning
of a word in context, but building corpora
for developing sense-aware models can be
a challenge. We present a large resource
of example usages for words having a par-
ticular meaning, called Paraphrase-Sense-
Tagged Sentences (PSTS). Built upon the
premise that a word’s paraphrases instan-
tiate its fine-grained meanings – i.e. bug
has different meanings corresponding to its
paraphrases fly and microbe – the resource
contains up to 10,000 sentences for each
of 3 million target-paraphrase pairs where
the target word takes on the meaning of
the paraphrase. We describe an automatic
method based on bilingual pivoting used to
enumerate sentences for PSTS, and present
two models for ranking PSTS sentences
based on their quality. Finally, we demon-
strate the utility of PSTS by using it to
build a dataset for the task of hypernym
prediction in context. Training a model
on this automatically-generated dataset pro-
duces accuracy that is competitive with a
model trained on smaller datasets crafted
with some manual effort.

1 Introduction

Word meaning is context-dependent. While lex-
ical semantic tasks like relation prediction have
been studied extensively in a non-contextual set-
ting, applying such models to a downstream task
like textual inference or question answering re-
quires taking the full context into account. For
example, it may be true that rotavirus is a type of
bug, but rotavirus is not within the realm of pos-
sible answers to the question “Which bug caused
the server outage?”

Many tasks in natural language processing
require discerning the meaning of polysemous

Figure 1: We assume that the fine-grained mean-
ings of the noun bug are instantiated by its para-
phrases. Example usages of bug pertaining to
each paraphrase are extracted automatically via a
method inspired by bilingual pivoting (Bannard
and Callison-Burch, 2005).

words within a particular context. It can be a chal-
lenge to develop corpora for training or evaluat-
ing sense-aware models, since particular attention
must be paid to making sure the distribution of in-
stances for a given word reflects its various mean-
ings. This paper introduces Paraphrase-Sense-
Tagged Sentences (PSTS)1, a large resource of ex-
ample usages of English words having a particular
meaning. Rather than assume a rigid inventory of
possible senses for each word, PSTS is grounded
in the idea that the many fine-grained meanings of
a word are instantiated by its paraphrases. For ex-
ample, the word bug has different meanings cor-
responding to its paraphrases fly, error, and mi-
crobe, and PSTS includes sentences where bug
takes on each of these meanings (Figure 1). Over-
all, the resource contains up to 10,000 sentences
for each of roughly 3 million English lexical and
phrasal paraphrases from the Paraphrase Database
(PPDB) (Bannard and Callison-Burch, 2005; Gan-
itkevitch et al., 2013; Pavlick et al., 2015).

PSTS was compiled by automatically extracting

1http://psts.io

http://psts.io


sentences from the English side of bilingual paral-
lel corpora using a technique inspired by bilingual
pivoting (Bannard and Callison-Burch, 2005). For
instance, to find a sentence containing bug where it
means fly, we select English sentences where bug
is translated to the French mouche, Spanish mosca,
or one of the other foreign words that bug shares
as a translation with fly. Qualitative analysis of
the sentences in PSTS indicates that this is a noisy
process, so we implement and compare two meth-
ods for ranking sentences by the degree to which
they are ‘characteristic’ of their associated para-
phrase meaning. When used to rank PSTS sen-
tences, a supervised regression model trained to
correlate with human judgments of sentence qual-
ity, and an unsupervised lexical substitution model
(Melamud et al., 2016) lead to respectively 89%
and 96% precision within the top-10 sentences.

In Section 5 we demonstrate a use of PSTS by
automatically constructing a training set for the
task of hypernym prediction in context (Shwartz
and Dagan, 2016; Vyas and Carpuat, 2017). In this
task, a system is presented with a pair of words and
sentence-level contexts for each, and must predict
whether a hypernym relation holds for that word
pair in the given contexts. We automatically gen-
erate training data for this task from PSTS, creat-
ing a training set with 5 and 30 times more train-
ing instances than the two existing datasets for this
task – both of which rely on manually-generated
resources. We train a contextual hypernym predic-
tion model on the PSTS-derived dataset, and show
that it leads to prediction accuracy that is com-
petitive with or better than than the same model
trained on the smaller training sets.

2 Related Work

In general, there are three basic categories of tech-
niques for generating sense-tagged corpora: man-
ual annotation, application of supervised mod-
els for word sense disambiguation, and unsuper-
vised methods. Manual annotation asks humans
to hand-label word instances with a sense tag, as-
suming that the word’s senses are enumerated in
an underlying sense inventory (typically WordNet
(Miller, 1995)) (Edmonds and Cotton, 2001; Mi-
halcea et al., 2004; Petrolito and Bond, 2014).
Manually sense-tagged corpora, such as SemCor
(Miller et al., 1994) or OntoNotes (Weischedel
et al., 2013), can then be used to train supervised
word sense disambiguation (WSD) classifiers to

predict sense labels on untagged text (Ando, 2006;
Zhong and Ng, 2010; Rothe and Schütze, 2015).
Top-performing supervised WSD systems achieve
roughly 74% accuracy in assigning WordNet sense
labels to word instances (Ando, 2006; Rothe and
Schütze, 2015). In shared task settings, super-
vised classifiers typically out-perform unsuper-
vised WSD systems (Mihalcea et al., 2004).

Within the set of unsupervised methods, one
long-standing idea is to use foreign translations
as proxies for sense labels of polysemous words
(Brown et al., 1991; Dagan, 1991). This is based
on the assumption that a polysemous English word
e will often have different translations into a tar-
get language, depending on the sense of e that
is used. To borrow an example from Gale et al.
(1992), if the English word sentence is translated
to the French peine (judicial sentence) in one con-
text and the French phrase (syntactic sentence) in
another, then the two instances in English can be
tagged with appropriate sense labels based on a
mapping from the French translations to the En-
glish sense inventory. This technique has been fre-
quently applied to automatically generate sense-
tagged corpora, in order to overcome the costli-
ness of manual sense annotation (Gale et al., 1992;
Dagan and Itai, 1994; Diab and Resnik, 2002;
Ng et al., 2003; Chan and Ng, 2005; Apidianaki,
2009; Lefever et al., 2011). Our approach to unsu-
pervised sense tagging in this paper is related, but
different. Like the translation proxy approach, our
method relies on having bilingual parallel corpora.
But in our case, the sense labels are grounded in
English paraphrases, rather than in foreign trans-
lations. This means that our method does not re-
quire any manual mapping from foreign transla-
tions to an English sense inventory. It also enables
us to generate sense-tagged examples using bitext
over multiple pivot languages, without having to
resolve sense mapping between languages.

There is a close relationship between sense tag-
ging and paraphrasing. Some research efforts as-
sume that words have a discrete sense inventory,
and they represent each word sense as a set or
cluster of paraphrases (Miller, 1995; Cocos and
Callison-Burch, 2016). Other work (Melamud
et al., 2015a), including in lexical substitution
(McCarthy and Navigli, 2007, 2009), represents
the contextualized meaning of a word instance by
the set of paraphrases that could be substituted
for it. This paper takes the view that assuming



a discrete underlying sense inventory can be too
rigid for many applications; humans have noto-
riously low agreement in manual sense-tagging
tasks (Cinková et al., 2012), and the appropriate
sense granularity varies by setting. Instead, we as-
sume a “one paraphrase per fine-grained meaning"
model in this paper as a generalizable approach to
word sense modeling. In PSTS, a word type has
as many meanings as it has paraphrases, but its
paraphrase-sense-tagged instances can be grouped
based on a coarser sense inventory if so desired.

3 Constructing PSTS

For a paraphrase pair like coach↔trainer, PSTS
includes a set of sentences Scoach,trainer contain-
ing coach in its trainer sense (e.g. My coach
cancelled the workout), and a set of sentences
Scoach,trainer containing trainer in its coach sense
(e.g. It’s just a sprain, according to her trainer).
This section describes the method for enumerating
sentences corresponding to a particular paraphrase
pair for inclusion in PSTS.

3.1 Sentence Extraction

Our method for extracting sentences for PSTS
is inspired by bilingual pivoting (Bannard and
Callison-Burch, 2005), which discovers same-
language paraphrases by ‘pivoting’ over bilin-
gual parallel corpora. Specifically, if the English
phrases coach and trainer are each translated to
the same Slovenian phrase trener in some con-
texts, this is taken as evidence that coach and
trainer have approximately similar meaning. We
apply this idea in reverse: to find English sen-
tences where coach means trainer (as opposed to
bus or railcar), we extract sentences from English-
Slovenian parallel corpora where coach has been
aligned to their shared translation trener.

The starting point for extracting PSTS is the
Paraphrase Database (PPDB) (Ganitkevitch et al.,
2013; Pavlick et al., 2015), a collection of over
80M lexical (one-word) and phrasal English para-
phrase pairs.2 Because PPDB was built using the
pivot method, it follows that each paraphrase pair

2Note that while the term paraphrase is generally used
to denote different words or phrases with approximately the
same meaning, the noisy bilingual pivoting process can pro-
duce paraphrase pairs that are more loosely semantically re-
lated (i.e. meronyms, holonyms, or even antonyms). Here
we take a broader definition of paraphrase to mean any pair
derived from bilingual pivoting.

1

Fx Fy

Fxy = Fx ∩ Fy

y2k (zh)

የឿ (zh)

vaihtumisen (fi)

error (es)

(ar) الفيروس
: (fr)

ᡩ (zh)

(ar) ميكروب

virus (fr)
ιός (el)

წᤅ (zh)

cellulaire (fr)

übertragung (de)

cualquiera (es)

ྰਸ਼ (zh)

x = bug y = virus

2
ιός (el)  [virus] 11.4
virus (fr)  [virus] 10.0
[microbial]  (ar) ميكروب 6.5
ᡩ (zh) [worm] 3.4
: (fr) [<punctuation>] -0.7

f ∈ Fxy PMI(y, f )

3 On dirait que vous avez attrapé le virus .

It looks like you caught the bug . S·xy

Figure 2: Extracting sentences containing the noun
x = bug in its y = virus sense for PSTS set
Sxy. In Step (1), the set F xy of translations shared
by bug and virus is enumerated. In Step (2), the
translations f ∈ F xy are ranked by PMI(y, f), in
order to prioritize bug’s translations most ‘charac-
teristic’ of its meaning in the virus sense. In Step
(3), sentences where bug has been aligned to the
French translation f = virus are extracted from
bitext corpora and added to the set Sxy.

x↔y in PPDB has at least one shared foreign trans-
lation. The paraphrases for a target word x are
used as proxy labels for x’s fine-grained senses.

The process for extracting PSTS sentences Sx,y

for x↔y consists of three steps: (1) finding a set
F xy of shared translations for x and y, (2) priori-
tizing translations that are most ‘characteristic’ of
x’s shared meaning with y, and (3) extracting sen-
tences from bilingual parallel corpora. The pro-
cess is illustrated in Figure 2, and described in fur-
ther detail below.

Step 1: Finding Shared Translations. In order
to find sentences containing the English term x
where it takes on its meaning as a paraphrase of y,
we begin by finding the sets of foreign translations
for x and y, F x and F y respectively. These trans-
lations are enumerated by processing the phrase-
based alignments induced between English sen-
tences and their translations within a large, amal-
gamated set of English-to-foreign bitext corpora.
Once the translation sets F x and F y are extracted
for the individual terms, we take their intersection



(x↔ y) f log p(f |y) log p(f) PMI(y, f) Sentence segment

hot↔ warm
cálida (es) -1.96 -12.75 10.79 With the end of the hot season last year, ...
ciepłego (pl) -3.92 -14.34 10.42 I think that a hot cup of milk...would be welcome.
chaudes (fr) -3.30 -12.63 9.33 Avoid getting your feet too close to hot surfaces...

hot↔ spicy
吃辛辣 (zh) -4.41 -17.75 13.34 People with digestion issues should shun hot dishes.
épicé (fr) -1.61 -14.32 12.72 Hot jambalaya!
辣 (zh) -1.92 -12.98 11.06 ...a manufacturer of soy sauce, hot pepper paste...

hot↔ popular
très vogue (fr) -8.19 -17.40 9.21 ...skin aging - a hot topic in the cosmetic industry.
très demande (fr) -9.11 -17.47 8.36 This area of technology is hot.
热门 (zh) -3.61 -11.77 8.17 Now the town is a hot spot for weekend outings.

Table 1: Example PSTS sentence segments for the adjective x=hot as a paraphrase of y ∈
{warm, spicy, popular}. For each example, the pivot translation f is given along with its translation
probability p(f |y), foreign word probability p(f), and PMI(y, f).

as the set of shared translations, F xy.

Step 2: Prioritizing Characteristic Transla-
tions. Our goal is to build Sxy such that its sen-
tences containing x are “highly characteristic” of
x’s shared meaning with y, and vice versa. How-
ever, not all pivot translations f ∈ F xy pro-
duce equally characteristic sentences. For exam-
ple, consider the paraphrase pair bug ↔ worm.
Their shared translation set, F bug,worm, includes
the French terms ver (worm) and espèce (species),
and the Chinese term 虫 (bug). In selecting sen-
tences for Sbug,worm, PSTS should prioritize En-
glish sentences where bug has been translated to
the most characteristic translation for worm – ver
– over the more general虫 or espèce.

We propose using pointwise mutual informa-
tion (PMI) as a measure to quantify the degree to
which a foreign translation is “characteristic” of
an English term. To avoid unwanted biases that
might arise from the uneven distribution of lan-
guages present in our bitext corpora, we treat PMI
as language-specific and use shorthand notation fl
to indicate that f comes from language l. The PMI
of English term ewith foreign word fl can be com-
puted based on the statistics of their alignment in
bitext corpora:

PMI(e, fl) =
p(e, fl)

p(e) · p(fl)
=
p(fl|e)
p(fl)

(1)

The term in the numerator of the rightmost
expression is the translation probability p(fl|e),
which indicates the likelihood that English word
e is aligned to foreign term fl in an English-l par-
allel corpus. Maximizing this term promotes the
most frequent foreign translations for e. The term

in the denominator is the likelihood of the for-
eign word, p(fl). Dividing by this term down-
weights the emphasis on frequent foreign words.
This is especially helpful for mitigating errors due
to mis-alignments of English words with foreign
stop words or punctuation. Both p(fl|e) and p(fl)
are estimated using maximum likelihood estimates
from an automatically aligned English-l parallel
corpus.

Step 3: Extracting Sentences. To extract Sxy, we
first order the shared translations for paraphrase
pair x↔y, f ∈ F xy, by decreasing PMI(y, f).
Then, for each translation f in order, we extract up
to 2500 sentences from the bitext corpora where x
is translated to f . This process continues until Sxy

reaches a maximum size of 10k sentences. Table
1 gives examples of sentences extracted for var-
ious paraphrases of the adjective hot, ordered by
decreasing PMI.

PSTS is extracted from the same English-to-
foreign bitext corpora used to generate English
PPDB (Ganitkevitch et al., 2013), consisting of
over 106 million sentence pairs, and spanning 22
pivot languages. Sentences are extracted for all
paraphrases with a minimum PPDBSCORE3 thresh-
old of at least 2.0. The threshold value serves to
produce a resource corresponding to the highest-
quality paraphrases in PPDB, and eliminates con-
siderable noise. In total, sentences were extracted
for over 3.3M paraphrase pairs covering nouns,
verbs, adverbs, and adjectives (21 part-of-speech
tags total). Table 2 gives the total number of
paraphrase pairs covered and average number of
sentences per pair in each direction. Results are

3The PPDBSCORE is a supervised metric trained to cor-
relate with human judgments of paraphrase quality (Pavlick
et al., 2015).



POS Paraphrase pairs Mean |Sxy| Median |Sxy|

N* 1.8M 856 75
V* 1.1M 972 54
R* 0.1M 1385 115
J* 0.3M 972 72

Total 3.3M 918 68

Table 2: Number of paraphrase pairs and sentences
in PSTS by macro-level part of speech (POS). The
number of sentences per pair is capped at 10k in
each direction.

given by macro-level part-of-speech, where, for
example, N* covers part-of-speech tags NN, NNS,
NNP, and NNPS, and phrasal constituent tag NP.

4 PSTS Validation and Ranking

Bilingual pivoting is a noisy process (Bannard and
Callison-Burch, 2005; Chan et al., 2011; Pavlick
et al., 2015). Although shared translations for each
paraphrase pair were carefully selected using PMI
in an attempt to mitigate noise in PSTS, the anal-
ysis of PSTS sentences that follows in this section
indicates that their quality varies. Therefore, we
follow the qualitative analysis by proposing and
evaluating two metrics for ranking target word in-
stances to promote those most characteristic of the
associated paraphrase meaning.

4.1 Qualitative Evaluation of PSTS

Our primary question is whether automatically-
extracted PSTS sentences for a paraphrase pair
truly reflect the paraphrase meaning. Specifically,
for sentences like sbug where sbug ∈ Sbug,virus,
does the meaning of the word bug in sbug actually
reflect its shared meaning with virus?

We used human judgments to investigate this
question. For a pair like bug↔insect, annotators
were presented with a sentence containing bug
from Sbug,insect, and asked whether bug means
roughly the same thing as insect in the sentence.
The annotators chose from responses yes (the
meanings are roughly similar), no (the meanings
are different), unclear (there is not enough con-
textual information to tell), or never (these phrases
never have similar meaning). We instructed anno-
tators to ignore grammaticality in their responses,
and concentrate specifically on the semantics of
the paraphrase pair.

Human annotation was run in two rounds, with

the first round of annotation completed by NLP
researchers, and the second (much larger) round
completed by crowd workers via Amazon Me-
chanical Turk (MTurk). In the first round (done
by NLP researchers), a batch of 240 sentence-
paraphrase instances (covering lexical and phrasal
noun, verb, adjective, and adverb paraphrases)
corresponding to 40 hand-selected polysemous
target words was presented to a group of 10 an-
notators, split into 5 teams of 2. To encourage
consistency, each pair of annotators worked to-
gether to annotate each instance. For redundancy,
we also ensured that each instance was annotated
separately by two pairs of researchers. In this first
round, the annotators had inter-pair agreement of
0.41 Fleiss’ kappa (after mapping all never and un-
clear answers to no), indicating weak agreement
(Fleiss, 1971).

In the second round we generated 1000
sentence-paraphrase instances, and each instance
was evaluated individually by 7 workers on
MTurk. In each MTurk assignment, we also in-
cluded an instance from the first round that was an-
notated as unanimously yes or unanimously no by
the NLP researchers in order to gauge agreement
between rounds. The crowd annotators had inter-
annotator agreement of 0.34 Fleiss’ kappa (after
mapping all never and unclear answers to no) –
slightly lower than that of the NLP researchers
in round one. The crowd workers had 75% ab-
solute agreement with the ‘control’ instances in-
serted from the previous round.

There was weak inter-annotator agreement in
both annotation rounds. To determine why, we
manually examined 100 randomly selected in-
stances that received an even or nearly even split
of yes and no responses. Most of the time (71%),
annotators disagreed on the boundary between
“roughly similar” and “different” meanings. For
example, in “An American can not rent a car
in Canada, drive it to the USA and then return
it to Canada.”, annotators were closely split on
whether the target word drive had roughly similar
meaning to its paraphrase guide. Another common
reason for disagreement was ambiguity of the tar-
get word within the given context (13%), as in the
instance “I think some bug may have gotten in the
clean room.” (paraphrase virus). Further disagree-
ments occurred when the target word and para-
phrase were morphologically different forms of
the same lemma (6%) (“...a matter which is very



close to our hearts...” with paraphrase closely).
The remaining 10% of closely split instances are
generally cases where annotators did not consider
all possible senses of the target word and para-
phrase. For example, in “It does not look good for
the intelligence agency chief”, only 4 of 7 crowd
workers said that service was an appropriate para-
phrase for its synonym agency.

4.1.1 Human annotation results

To quantify the overall quality of sentences in
PSTS, we calculate the average human rating for
each annotated instance, where no (32.1% of all
annotations), never (3.9%), and unclear (2.8%)
answers are mapped to the value 0, and yes an-
swers are mapped to the value 1. The combined re-
sults of this calculation from both rounds are given
in Figure 3. Overall, the average rating is 0.61, in-
dicating that more sentence-paraphrase instances
from PSTS are judged by humans to have simi-
lar meaning than dissimilar meaning. In general,
adjectives produce higher-quality PSTS sentences
than the other parts of speech. For nouns and
adjectives, phrasal paraphrase pairs are judged to
have higher quality than lexical paraphrase pairs.
For verbs and adverbs, the results are reversed.
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(a) Histogram of sentence ratings by part of speech

POS Lexical Phrasal

NN 0.55 0.64
VB 0.63 0.49
JJ 0.68 0.73
RB 0.64 0.36

Combined 0.62 0.55

(b) Mean sentence ratings by paraphrase type

Figure 3: Human evaluation of the degree to which
a PSTS sentence from Sxy containing term x re-
flects x’s shared meaning with its paraphrase y
(range 0 to 1; higher scores are better).

To understand why some sentences are of poor
quality, we manually examine 100 randomly se-
lected instances with average human rating below
0.3. On close inspection, we disagreed with the
low rating for 25% of the sentences (which mirrors
the finding of 75% absolute agreement between
expert- and crowd-annotated control instances in
the second round of annotation). In those cases,
either the meaning of the target in context is a rare
sense of the target or paraphrase (e.g. “the appro-
priation is intended to cover expenses” with para-
phrase capture), or the target word is ambiguous
in its context but could be construed to match the
paraphrase meaning (e.g. “We’re going to treat
you as a victim in the field." with paraphrase dis-
cuss).

For the truly poor-quality sentences, in roughly
one third of cases the suggested PPDB paraphrase
for the target word is of poor quality due to mis-
spellings (e.g. manage↔mange) or other noise
in the bilingual pivoting process. One common
source of noise was mis-tagging of the target word
in context, leading to a suggested paraphrase per-
taining to the wrong part of speech. For exam-
ple, in the sentence “Increase in volume was ac-
companied by a change to an ovaloid or elongate
shape”, the target elongate, which appears as an
adjective, was mis-tagged as a verb, yielding the
suggested but erroneous paraphrase lie.

The remaining poor-quality sentences (roughly
50 of the 100 examined) were cases where the tar-
get word simply did not take on its shared mean-
ing with the suggested paraphrase. Most of these
occurred due to polysemous foreign translations.
For example, PSTS wrongly suggests the sentence
“...to become a part of Zimbabwe’s bright and
positive history” as an example of bright taking on
the meaning of high-gloss. This error happens be-
cause the shared Spanish translation, brillante, can
be used with both the literal and figurative senses
of bright, but high-gloss only matches the literal
sense.

4.2 Sentence Quality Ranking

Given the amount of variation in PSTS sentence
quality, it would be useful to have a numeric qual-
ity estimate. In the formation of PSTS (Sec-
tion 3) we used point-wise mutual information
PMI(y, f) of the English paraphrase y with
the shared foreign translation f to estimate how
characteristic a sentence containing English target



word x is of its shared sense with y. But the Spear-
man correlation between PMI and the average hu-
man ratings for the annotated sentence-paraphrase
instances is 0.23 (p < 0.01), indicating only weak
positive correlation. Therefore, in order to enable
selection within PSTS of the most characteristic
sentences for each paraphrase pair for downstream
tasks, we propose and evaluate two models to re-
rank PSTS sentences in a way that better corre-
sponds to human quality judgements.

4.2.1 Supervised Regression Model
The first ranking model is a supervised regression,
trained to correlate with human quality judgments.
Concretely, given a target word x, its paraphrase
y, and a sentence sx ∈ Sx,y, the model predicts a
score whose magnitude indicates how characteris-
tic sx is of x’s shared meaning with y. This task is
formulated as ordinary least squares linear regres-
sion, where the dependent variable is the average
human quality rating for a sentence-paraphrase in-
stance, and the features are computed based on the
input sentence and paraphrase pair. There are four
groups, or types, of features used in the model
that are computed for each paraphrase-sentence
instance, (x↔y, sx ∈ Sx,y):

PPDB Features. Seven features from PPDB 2.0
for paraphrase pair x↔y are used as input to the
model. These include the pair’s PPDBSCORE, and
translation and paraphrase probabilities.

Contextual Features. Three contextual features
are designed to measure the distributional similar-
ity between the target x and paraphrase y, as well
as the substitutability of paraphrase y for the target
x in the given sentence. They include the mean
cosine similarity between word embeddings4 for
paraphrase y and tokens within a two-word con-
text window of x in sentence sx; the cosine simi-
larity between context-masked embeddings for x
and y in sx (Vyas and Carpuat, 2017), and the
AddCos lexical substitution metric where y is the
substitute, x is the target, and the context is ex-
tracted from sx (Melamud et al., 2015b) (Table 3).

Syntactic Features. Five binary features indicate
the coarse part-of-speech label assigned to para-
phrase x ↔ y (NN, VB, RB, or JJ), and whether
x↔ y is a lexical or phrasal paraphrase.

4For computing all contextual features, we used 300-
dimensional skip-gram embeddings (Mikolov et al., 2013)
trained on the Annotated Gigaword corpus (Napoles et al.,
2012)).

Mean contextual similarity

f(y, sx) =
∑

w∈W cos(vy ,vw)

|W |

AddCos (Melamud et al., 2015b)

f(x, y, sx) =
|W |·cos(vx,vy)+

∑
w∈W cos(vy ,vw)

2·|W |

Context-masked embedding similarity (Vyas and
Carpuat, 2017)

f(x, y, sx) = cos(vx,mask, vy,mask)

vx,mask = [vx�vWmin ; vx�vWmax ; vx�vWmean ]

Table 3: Contextual features used for sentence
quality prediction, given paraphrase pair x↔y and
sentence sx ∈ Sx,y. W contains words within a
two-token context window of x in sx. vx is the
word embedding for x. vW? are vectors composed
of the column-wise min/max/mean of embeddings
for w ∈ W . The � symbol denotes element-wise
multiplication.

PMI. The final feature is simply PMI(y, f).

The features used as input to the model training
process are the sixteen listed above, as well as
their interactions as modeled by degree-2 poly-
nomial combinations (153 features total). During
training and validation, we apply feature selec-
tion using recursive feature elimination in cross-
validation (RFECV) (Guyon et al., 2002).

We train the model on the 1227 sentence-
paraphrase instances that were annotated in one
or both rounds of human evaluation, after ignor-
ing instances marked as ‘unclear’ by two or more
workers. The quality rating for each instance is
taken as the average annotator score, where no,
never, and unclear answers are mapped to the
value 0, and yes answers are mapped to the value
1. We refer to the predicted quality scores pro-
duced by this model as the REG(ression) score.

4.2.2 Unsupervised LexSub Model
Lexical substitution (hereafter LexSub) is the task
of identifying meaning-preserving substitutes for
target words in context (McCarthy and Navigli,
2007, 2009). For example, valid substitutes for
bug in There are plenty of places to plant a bug in
her office might include microphone or listening
device but not glitch. The tasks of sense tagging
and LexSub are closely related, since valid sub-
stitutes for a polysemous word must adhere to the
correct meaning in each instance. Indeed, early



LexSub systems explicitly included sense disam-
biguation as part of their pipeline (McCarthy and
Navigli, 2007), and later studies have shown that
performing sense disambiguation can improve the
results of LexSub models and vice versa (Cocos
et al., 2017; Alagić et al., 2018).

We adopt an off-the-shelf LexSub model called
CONTEXT2VEC (Melamud et al., 2016) as an
unsupervised sentence ranking model. CON-
TEXT2VEC learns word and context embeddings
using a bi-directional LSTM such that words and
their appropriate contexts have high cosine simi-
larity. In order to apply CONTEXT2VEC to ranking
sentence-paraphrase instances, we calculate the
cosine similarity between the paraphrase’s CON-
TEXT2VEC word embedding and the context of
the target word in the sentence, using a pre-trained
model.5 The resulting score is hereafter referred
to as the C2V score.

4.2.3 Ranking Model Comparison
We compare the PSTS REG and C2V scoring mod-
els under two evaluation settings. First, we mea-
sure the correlation between predicted sentence
scores under each model, and the average human
rating for annotated sentences. Second, we com-
pare the precision of the top-10 ranked sentences
under each model based on human judgments.
In the latter experiment, we also compare with
a baseline LexSub-based sentence selection and
ranking model in order to validate bilingual pivot-
ing as a worthwhile sentence selection approach.

To calculate correlation between C2V model
rankings and human judgments, we simply gen-
erate a C2V score for each of the 1227 human-
annotated sentence-paraphrase instances. For the
REG model, since the same instances were used
for training, we use 5-fold cross-validation to esti-
mate model correlation. In each fold, we first run
RFECV on the training portion, then train a re-
gression model on the selected features and predict
ratings for the test portion. The predicted ratings
on held-out portions from each fold are compared
to the mean annotator ratings, and Spearman cor-
relation is calculated on the combined set of all
instances.

We calculate precision under each model by so-
liciting human judgments, via the same crowd-
sourcing interface used to gather sentence anno-
tations in Section 4.1. Specifically, for each of

5http://u.cs.biu.ac.il/~nlp/resources/
downloads/context2vec/

LexSub
(baseline)

PSTS+REG PSTS+C2V

ρ – 0.40 0.34

P@1 0.91 0.85 0.98
P@5 0.93 0.88 0.97
P@10 0.92 0.89 0.96

Table 4: Correlation (ρ) of REG and C2V scores
with human ratings for 1227 PSTS sentence-
paraphrase instances, and precision of top-1/5/10
ranked sentences as evaluated by humans.

40 hand-picked polysemous target words t (10
each nouns, verbs, adjectives, and adverbs), we se-
lect two paraphrases p and ask workers to judge
whether t takes on the meaning of p in the top-
10 PSTS sentences from St,p as ranked by REG or
C2V.

We also use top-10 precision to see how
our bilingual pivoting approach for enumerating
meaning-specific sentences compares to a system
that enumerates sentences using a LexSub model
alone, without bilingual pivoting. The baseline
LexSub model selects sentences containing coach
in its trainer sense by scoring trainer as a substi-
tute for coach in a large set of candidate sentences
using CONTEXT2VEC, and ranking them. We con-
sider the union of all PSTS sentence sets contain-
ing coach, Scoach,∗, as candidates. The top-10
scoring sentences are evaluated by humans for pre-
cision, and compared to the ranked sets of top-10
PSTS sentences under the REG and C2V models.
Results are given in Table 4.

The supervised REG model produces a higher
correlation (0.40) between model scores and hu-
man ratings than does the unsupervised C2V

model (0.34) or the PMI metric (0.23), indicat-
ing that REG may be preferable to use in cases
where sentence quality estimation for a wide qual-
ity range is needed. While a correlation of 0.40 is
not very high, it is important to note that the cor-
relation between each individual annotator and the
mean of other annotators over all target sentence-
paraphrase instances was only 0.36. Thus the
model predicts the mean annotator rating with
roughly the same reliability as individual annota-
tors.

For applications where it is necessary to choose
only the highest-quality examples of target words
with a specific paraphrase-aligned meaning, the

http://u.cs.biu.ac.il/~nlp/resources/downloads/context2vec/
http://u.cs.biu.ac.il/~nlp/resources/downloads/context2vec/


C2V ranking of PSTS sentences is best. 96% of
top-10 ranked sentences under this model were
evaluated by humans to be good examples of tar-
get words with the specified meaning, versus 89%
for the REG model and 92% for the LexSub base-
line. This indicates that the different methods for
enumerating example sentences – bilingual pivot-
ing (PSTS) and LexSub score – are complemen-
tary, and that combining the two produces the best
results.

5 Hypernym Prediction in Context

Finally, we aim to demonstrate that PSTS can be
used to automatically construct a training dataset
for the task of predicting hypernymy in context,
without relying on manually-annotated resources
or a pre-trained word sense disambiguation model.

Most work on hypernym prediction has been
done out of context: the input to the task is a pair
of terms like (table, furniture), and the model pre-
dicts whether the second term is a hypernym of the
first (in this case, it is). However, both Shwartz
and Dagan (2016) and Vyas and Carpuat (2017)
point out that hypernymy between two terms de-
pends on their context. For example, the table
mentioned in “He set the glass down on the ta-
ble” is indeed a type of furniture, but in “Results
are reported in table 3.1” it is not. This is the
motivation for studying the task of predicting hy-
pernymy within a given context, where the input to
the problem is a pair of sentences each containing
a target word, and the task is to predict whether a
hypernym relationship holds between the two tar-
gets. Example task instances are in Table 5.

Previous work on this task has relied on either
human annotation, or the existence of a manually-
constructed lexical semantic resource (i.e. Word-
Net), to generate training data. In the case of
Shwartz and Dagan (2016), who examined fine-
grained semantic relations in context, a dataset of
3,750 sentence pairs was compiled by automat-
ically extracting sentences from Wikipedia con-
taining target words of interest, and asking crowd
workers to manually label sentence pairs with the
appropriate fine-grained semantic relation.6 Sub-
sequently, Vyas and Carpuat (2017) studied hyper-
nym prediction in context. They generated a larger

6In this study, which included the relations equivalence,
forward and reverse entailment, negation/alternation, other-
related, and independence, hyponym-hypernym pairs were
labeled as forward entailment and hypernym-hyponym pairs
labeled as reverse entailment instances.

dataset of 22k sentence pairs which used example
sentences from WordNet as contexts, and Word-
Net’s ontological structure to find sentence pairs
where the presence or absence of a hypernym re-
lationship could be inferred. This section builds
on both previous works, in that we generate an
even larger dataset of over 84k sentence pairs for
studying hypernymy in context, and use the exist-
ing test sets for evaluation. However, unlike the
previous methods, our dataset is constructed with-
out any manual annotation or reliance on WordNet
for contextual examples. Instead, we leverage the
sense-specific contexts in PSTS to generate train-
ing instances automatically.

5.1 Producing a Training Set
Because PSTS can be used to query sentences con-
taining target words with a particular fine-grained
sense, our hypothesis is that, given a set of term
pairs having known potential semantic relations,
we can use PSTS to automatically produce a large
training set of sentence pairs for contextual hyper-
nym prediction. More specifically, our goal is to
generate training instances of the form:

(t, w, ct, cw, l)

where t is a target term, w is a possibly related
term, ct and cw are contexts, or sentences, con-
taining t and w respectively, and l is a binary la-
bel indicating whether t and w are a hyponym-
hypernym pair in the senses as they are expressed
in contexts ct and cw. The proposed method for
generating such instances from PSTS relies on
WordNet (or another lexical semantic resource)
only insofar as we use it to enumerate term pairs
(t, w) with known semantic relation; the contexts
(ct, cw) in which these relations hold or do not are
generated automatically from PSTS.

The training set is deliberately constructed to in-
clude instances of the following types:

(a) Positive instances, where (t, w) hold a hyper-
nym relationship in contexts ct and cw (l = 1)
(Table 5, example a).

(b) Negative instances, where (t, w) hold some
semantic relation other than hypernymy (such
as meronymy or antonymy) in contexts ct and
cw (l = 0). This will encourage the model to
discriminate true hypernym pairs from other
semantically related pairs (Table 5, example b
shows an antonym pair in context).



Ex.
Target
Word (t)

Related
Word (w)

Contexts
Hypernym
(l)

(a) tuxedo dress
ct: People believe my folderol because I wear a black tuxedo.

cw: The back is crudely constructed and is probably an addition for fancy dress.
Yes

(b) defendant plaintiff
ct: The plaintiff had sued the defendant for defamation.

cw: The court found that the plaintiff had made sufficiently full disclosure.
No

(c) bug
micro-
phone

ct: An address error usually indicates a software bug.

cw: You have to bring the microphone to my apartment.
No

Table 5: Example instances for contextual hypernym prediction, selected from the PSTS-derived dataset.

(c) Negative instances, where (t, w) hold a known
semantic relation, including possibly hyper-
nymy, in some sense, but the contexts ct and
cw are not indicative of this relation (l = 0).
This will encourage the model to take context
into account when making a prediction (Table
5, example c).

Beginning with a target word t, the procedure
for generating training instances of each type from
PSTS is as follows:

Find related terms. The first step is to find re-
lated terms w such that the pair (t, w) are related
in WordNet with relation type r (which could be
one of synonym, antonym, hypernym, hyponym,
meronym, or holonym), and t↔ w is a paraphrase
pair present in PSTS. The related terms are not
constrained to be hypernyms, in order to enable
generation of instances of type (b) above.

Generate contextually related instances (types
(a) and (b) above). Given term pair (t, w) with
known relation r, generate sentence pairs where
this relation is assumed to hold as follows. First,
order PSTS sentences in Stw (containing target t)
and Stw (containing related termw in its sense as a
paraphrase of t) by decreasing quality score. Next,
choose the top-k sentences from each ordered list,
and select sentence pairs (ct, cw) ∈ Stw × Stw

where both sentences are in their respective top-k
lists. Add each sentence pair to the dataset as a
positive instance (l = 1) if r = hypernym, or as
a negative instance (l = 0) if r is something other
than the hypernym relation.

Generate contextually unrelated instances (type
(c) above). Given term pair (t, w) with known re-
lation r, generate sentence pairs where this rela-
tion is assumed not to hold as follows. First, pick
a confounding term t′ that is a paraphrase of t (i.e.

t ↔ t′ is in PPDB), but unrelated to w in PPDB.
This confounding term is designed to represent an
alternative sense of t. For example, a confounding
term corresponding to the term pair (t, w) =(bug,
microphone) could be glitch because it represents
a sense of bug that is different from bug’s shared
meaning with microphone. Next, select the top-
k/2 sentences containing related term w in its
sense as w′ from Sw,w′

in terms of quality score.
Choose sentence pairs (ct, cw) ∈ St,w × Sw,w′

to
form negative instances.

To form the PSTS-derived contextual hyper-
nym prediction dataset, this process is carried out
for a set of 3,558 target nouns drawn from the
Shwartz and Dagan (2016) and Vyas and Carpuat
(2017) datasets. For each target noun, all PPDB
paraphrases that are hypernyms, hyponyms, syn-
onyms, antonyms, co-hyponyms, or meronyms
from WordNet were selected as related terms.
There were k = 3 sentences selected for each tar-
get/related term pair, where the PSTS sentences
were ranked by the C2V model. This process re-
sulted in a dataset of over 84k instances, of which
32% are positive contextual hypernym pairs (type
(a)). The 68% of negative pairs are made up of
38% instances where t and w hold some relation
other than hypernymy in context (type (b)), and
30% instances where t and w are unrelated in the
given context (type (c)).

5.2 Baseline IMS Training Set

In order to compare the quality of the PSTS-
derived contextual hypernym dataset to one pro-
duced using sentences sense-tagged by a super-
vised WSD model, we generate a baseline train-
ing set using word instances with senses tagged by
the English all-words WSD model It Makes Sense
(IMS) (Zhong and Ng, 2010). IMS is a supervised



sense tagger that uses a SVM classifier operating
over syntactic and contextual features.

We begin by extracting an inventory of sen-
tences pertaining to WordNet senses using IMS.
Specifically, a pre-trained, off-the-shelf version of
IMS7 is used to predict WordNet 3.0 sense labels
for instances of the same target nouns present in
the PSTS-derived training set. The instances are
drawn from the English side of the same English-
foreign bitext used to extract PSTS, so the source
corpora for the PSTS-derived and IMS contextual
hypernym datasets are the same. We select the top
sentences for each sense of each target noun, as
ranked by IMS model confidence, as a sentence
inventory for each sense.

Next, we extract training instances
(t, w, ct, cw, l) using the same procedure out-
lined in Section 5.1. Term pairs (t, w) are selected
such that t and w have related senses in WordNet,
and both t and w are within the set of target
nouns. Related instances are generated from the
top-3 IMS-ranked sentences for the related senses
of t and w, and unrelated sentences are chosen
by selecting an un-related WordNet sense of t to
pair with the original sense of w, and vice versa.
Finally, we truncate the resulting set of training
instances to match the PSTS-derived dataset in
size and instance type distribution: 84k instances
total, with 32% positive (contextual hypernym)
pairs, 38% contextually related non-hypernym
pairs, and 30% contextually unrelated pairs.

5.3 Contextual Hypernym Prediction Model

Having automatically generated a dataset from
PSTS for studying hypernymy in context, the next
steps are to adopt a contextual hypernym predic-
tion model to train on the dataset, and then to eval-
uate its performance on existing hypernym predic-
tion test sets.

The model adopted for predicting hypernymy in
context is a fine-tuned version of the BERT pre-
trained transformer model (Devlin et al., 2019)
(Figure 4). Specifically, we use BERT in its con-
figuration for sentence pair classification tasks,
where the input consists of two tokenized sen-
tences (ct and cw), preceded by a ‘[CLS]’ to-
ken and separated by a ‘[SEP]’ token. In or-
der to highlight the target t and related term w in
each respective sentence, we surround them with
left and right bracket tokens “<” and “>”. The

7https://www.comp.nus.edu.sg/~nlp

Figure 4: The contextual hypernym prediction
model is based on BERT (Devlin et al., 2019). In-
put sentences ct and cw are tokenized, prepended
with a [CLS] token, and separated by a [SEP]
token. The target word t in the first sentence, ct,
and the related word w in the second sentence, cw,
are surrounded by < and > tokens. The class la-
bel (hypernym or not) is predicted by feeding the
output representation of the [CLS] token through
fully-connected and softmax layers.

model predicts whether the sentence pair contains
contextualized hypernyms or not by processing the
input through a transformer encoder, and feeding
the output representation of the ‘[CLS]’ token
through fully connected and softmax layers.

5.4 Experiments

To test our hypothesis that PSTS can be used to
generate a large, high-quality dataset for train-
ing a contextualized hypernym prediction model,
we perform experiments that compare the perfor-
mance of the BERT hypernym prediction model
on existing test sets after training on our PSTS
dataset, versus training on on datasets built using
manual resources or a supervised WSD model.

We use two existing test sets for contextual hy-
pernym prediction in our experiments. The first,
abbreviated S&D-binary, is a binarized version
of the fine-grained semantic relation dataset from
Shwartz and Dagan (2016). While the original
dataset contained five relation types, we convert
all forward entailment and flipped reverse entail-
ment instances to positive (hypernym) instances,
and the rest to negative instances. The result-
ing dataset has 3750 instances (18% positive and
82% negative), split into train/dev/test portions
of 2630/190/930 instances respectively. The sec-
ond dataset used in our experiments is “WordNet
Hypernyms in Context” (WHiC) from Vyas and
Carpuat (2017). It contains 22,781 instances (23%

https://www.comp.nus.edu.sg/~nlp


positive and 77% negative), split into train/dev/test
portions of 15716/1704/5361 instances respec-
tively. There are two primary differences between
the WHiC and S&D-binary datasets. First, S&D-
binary contains negative instances where the word
pair has a semantic relation other than hypernymy
in the given contexts – i.e. type (b) from Table
5 – whereas WHiC does not. Second, because
its sentences are extracted from Wikipedia, S&D-
binary contains some instances where the mean-
ing of a word in context is ambiguous; WHiC sen-
tences selected from WordNet are unambiguous.
Our PSTS-derived contextual hypernym predic-
tion dataset, which contains semantically related
negative instances and has some ambiguous con-
texts (as noted in Section 4.1.1) is more similar in
nature to S&D-binary.

For both the S&D-binary and WHiC datasets,
we compare results of the BERT sentence pair
classification model on the test portions after fine-
tuning on the PSTS dataset, the supervised IMS
baseline dataset, the original training set, or a
combination of the PSTS dataset with the origi-
nal training set. In order to gauge how different
the datasets are from one another, we also experi-
ment with training on S&D-binary and testing on
WHiC, and vice versa. In each case we use the
dataset’s original dev portion for tuning the BERT
model parameters (batch size, number of epochs,
and learning rate). Results are reported in terms
of weighted average F-Score over the positive and
negative classes, and given in Table 6.

Training Set Test Set
WHiC S&D-binary

S&D-binary 68.6 79.2
WHiC 78.7 71.7
IMS 69.8 81.4
PSTS 73.4 79.7
PSTS+WHiC 78.5
PSTS+S&D-binary 82.5

Table 6: Performance of the BERT fine-tuned con-
textual hypernym prediction model on two exist-
ing test sets, segmented by training set. All results
are reported in terms of weighted average F1.

In the case of S&D-binary, we find that train-
ing on the 85k-instance PSTS dataset leads to a
modest improvement in test set performance of
0.6% over training on the original 2.6k-instance
manually-annotated training set. Combining the

PSTS and original training sets leads to a 4.2% rel-
ative performance improvement over training on
the original dataset alone, and out-performs the
IMS baseline built using a supervised WSD sys-
tem. However, on the WHiC dataset, it turns out
that training on the PSTS dataset as opposed to the
original 15.7k-instance WHiC training set leads to
a relative 6.7% drop in performance. But training
the model on the PSTS training data leads to better
performance on WHiC than training on instances
produced using the output of the supervised IMS
WSD system, or from training on S&D-binary. It
is not surprising that the PSTS-derived training set
performs better on the S&D-binary test set than it
does on the WHiC test set, given the more similar
composition between PSTS and S&D-binary.

6 Conclusion

We present PSTS, a resource of up to 10k En-
glish sentence-level contexts for each of over 3M
paraphrase pairs. The sentences were enumer-
ated using a variation of bilingual pivoting (Ban-
nard and Callison-Burch, 2005), which assumes
that an English word like bug takes on the mean-
ing of its paraphrase fly in sentences where it
is translated to a shared foreign translation like
mouche (fr). Human assessment of the resource
shows that sentences produced by this automated
process have varying quality, so we propose two
methods to rank sentences by how well they re-
flect the meaning of the associated paraphrase pair.
A supervised regression model has higher over-
all correlation (0.4) with human sentence quality
judgments, while an unsupervised ranking method
based on lexical substitution produces highest pre-
cision (96%) for the top-10 ranked sentences.

We leveraged PSTS to automatically produce a
contextualized hypernym prediction training set,
without the need for a supervised sense tagging
model or existing hand-crafted lexical semantic re-
sources. To evaluate this training set, we adopted
a hypernym prediction model based on the BERT
transformer (Devlin et al., 2019). We showed that
this model, when trained on the large PSTS train-
ing set, achieves a slight gain of 0.6% accuracy rel-
ative to training on a smaller, manually-annotated
training set, without the need for manual annota-
tions. This suggests that it is worth exploring the
use of PSTS to generate sense-specific datasets for
other contextualized tasks.
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Domagoj Alagić, Jan Šnajder, and Sebastian Padó.
2018. Leveraging lexical substitutes for unsu-
pervised word sense induction. In Proceedings
of the Thirty-Second AAAI Conference on
Artificial Intelligence, pages 5004–5011, New
Orleans, Louisiana. Association for the Ad-
vancement of Artificial Intelligence.

Rie Kubota Ando. 2006. Applying alter-
nating structure optimization to word sense
disambiguation. In Proceedings of the
Tenth Conference on Computational Natural
Language Learning (CoNLL), pages 77–84,
New York, New York. Association for Compu-
tational Linguistics.

Marianna Apidianaki. 2009. Data-driven seman-
tic analysis for multilingual WSD and lexical
selection in translation. In Proceedings of the
12th Conference of the European Chapter of
the Association for Computational Linguistics
(EACL), pages 77–85, Athens, Greece. Associ-
ation for Computational Linguistics.

Colin Bannard and Chris Callison-Burch. 2005.
Paraphrasing with bilingual parallel corpora.
In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics
(ACL), pages 597–604, Ann Arbor, Michigan.
Association for Computational Linguistics.

Peter F Brown, Stephen A Della Pietra, Vincent
J Della Pietra, and Robert L Mercer. 1991.
Word-sense disambiguation using statistical
methods. In Proceedings of the 29th Annual

Meeting of the Association for Computational
Linguistics (ACL), pages 264–270, Berkeley,
California. Association for Computational Lin-
guistics.

Tsz Ping Chan, Chris Callison-Burch, and Ben-
jamin Van Durme. 2011. Reranking bilingually
extracted paraphrases using monolingual dis-
tributional similarity. In Proceedings of the
GEMS 2011 Workshop on GEometrical Models
of Natural Language Semantics, pages 33–42,
Edinburgh, UK. Association for Computational
Linguistics.

Yee Seng Chan and Hwee Tou Ng. 2005. Scal-
ing up word sense disambiguation via paral-
lel texts. In Proceedings of the Twentieth
National Conference on Artificial Intelligence
(AAAI), pages 1037–1042, Pittsburgh, Penn-
sylvania. Association for the Advancement of
Artificial Intelligence.

Silvie Cinková, Martin Holub, and Vincent Kríž.
2012. Managing uncertainty in semantic tag-
ging. In Proceedings of the 13th Conference
of the European Chapter of the Association for
Computational Linguistics (EACL), pages 840–
850, Avignon, France. Association for Compu-
tational Linguistics.

Anne Cocos, Marianna Apidianaki, and Chris
Callison-Burch. 2017. Word sense filtering
improves embedding-based lexical substitution.
In Proceedings of the 1st Workshop on Sense,
Concept and Entity Representations and their
Applications, pages 110–119, Valencia, Spain.
Association for Computational Linguistics.

Anne Cocos and Chris Callison-Burch. 2016.
Clustering paraphrases by word sense. In
Proceedings of the 15th Annual Conference of
the North American Chapter of the Association
for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages
1463–1472, San Diego, California. Association
for Computational Linguistics.

Ido Dagan. 1991. Lexical disambiguation:
sources of information and their statistical re-
alization. In Proceedings of the 29th Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 341–342, Berkeley,
California. Association for Computational Lin-
guistics.

http://www.aclweb.org/anthology/W11-2504
http://www.aclweb.org/anthology/W11-2504
http://www.aclweb.org/anthology/W11-2504


Ido Dagan and Alon Itai. 1994. Word sense disam-
biguation using a second language monolingual
corpus. Computational Linguistics, 20(4):563–
596.

Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT: Pre-
training of deep bidirectional transformers for
language understanding. In Proceedings of
the 2019 Annual Conference of the North
American Chapter of the Association for
Computational Linguistics (NAACL), Min-
neapolis, Minnesota. Association for Computa-
tional Linguistics.

Mona Diab and Philip Resnik. 2002. An unsuper-
vised method for word sense tagging using par-
allel corpora. In Proceedings of 40th Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 255–262, Philadel-
phia, Pennsylvania, USA. Association for Com-
putational Linguistics.

Philip Edmonds and Scott Cotton. 2001.
SENSEVAL-2: overview. In Proceedings of
SENSEVAL-2 Second International Workshop
on Evaluating Word Sense Disambiguation
Systems, pages 1–5, Toulouse, France. Associ-
ation for Computational Linguistics.

Joseph L. Fleiss. 1971. Measuring nominal scale
agreement among many raters. Psychological
Bulletin, 76(5):378.

William A. Gale, Kenneth W. Church, and David
Yarowsky. 1992. Using bilingual materials
to develop word sense disambiguation meth-
ods. In Proceedings of the Fourth International
Conference on Theoretical and Methodological
Issues in Machine Translation, pages 101–112,
Montréal, Canada.

Juri Ganitkevitch, Benjamin Van Durme, and
Chris Callison-Burch. 2013. PPDB: The
Paraphrase Database. In Proceedings of
the 2013 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies
(NAACL-HLT), pages 758–764, Atlanta, Geor-
gia. Association for Computational Linguistics.

Isabelle Guyon, Jason Weston, Stephen Barnhill,
and Vladimir Vapnik. 2002. Gene selection for
cancer classification using support vector ma-
chines. Machine Learning, 46(1-3):389–422.

Els Lefever, Véronique Hoste, and Martine
De Cock. 2011. ParaSense or how to use par-
allel corpora for word sense disambiguation.
In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies (ACL): Short
Papers-Volume 2, pages 317–322, Portland,
Oregon. Association for Computational Lin-
guistics.

Diana McCarthy and Roberto Navigli. 2007.
SemEval-2007 Task 10: English lexical
substitution task. In Proceedings of the
4th International Workshop on Semantic
Evaluations (SemEval-2007), pages 48–53,
Prague, Czech Republic. Association for
Computational Linguistics.

Diana McCarthy and Roberto Navigli. 2009. The
English lexical substitution task. Language
Resources and Evaluation Special Issue on
Computational Semantic Analysis of Language:
SemEval-2007 and Beyond, 43(2):139–159.

Oren Melamud, Ido Dagan, and Jacob Gold-
berger. 2015a. Modeling word meaning in con-
text with substitute vectors. In Proceedings of
the 2015 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies
(NAACL-HLT), pages 472–482.

Oren Melamud, Jacob Goldberger, and Ido Da-
gan. 2016. context2vec: Learning generic con-
text embedding with bidirectional LSTM. In
Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning
(CONLL), pages 51–61, Berlin, Germany. As-
sociation for Computational Linguistics.

Oren Melamud, Omer Levy, and Ido Dagan.
2015b. A simple word embedding model for
lexical substitution. In Proceedings of the
1st Workshop on Vector Space Modeling for
Natural Language Processing, pages 1–7, Den-
ver, Colorado. Association for Computational
Linguistics.

Rada Mihalcea, Timothy Chklovski, and Adam
Kilgarriff. 2004. The SENSEVAL-3 en-
glish lexical sample task. In Proceedings of
SENSEVAL-3: Third International Workshop
on the Evaluation of Systems for the Semantic
Analysis of Text, pages 25–28, Barcelona,



Spain. Association for Computational Linguis-
tics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Dis-
tributed representations of words and phrases
and their compositionality. In Advances in
Neural Information Processing Systems 26,
Lake Tahoe.

George A. Miller. 1995. WordNet: A lexi-
cal database for English. Commun. ACM,
38(11):39–41.

George A. Miller, Martin Chodorow, Shari Lan-
des, Claudia Leacock, and Robert G. Thomas.
1994. Using a semantic concordance for
sense identification. In Human Language
Technology: Proceedings of a Workshop held
at Plainsboro, New Jersey, March 8-11, 1994,
pages 240–243, Plainsboro, New Jersey. Asso-
ciation for Computational Linguistics.

Courtney Napoles, Matthew Gormley, and
Benjamin Van Durme. 2012. Annotated
Gigaword. In Proceedings of the Joint
Workshop on Automatic Knowledge Base
Construction and Web-scale Knowledge
Extraction (AKBC-WEKEX), pages 95–100,
Montréal, Canada. Association for Computa-
tional Linguistics.

Hwee Tou Ng, Bin Wang, and Yee Seng Chan.
2003. Exploiting parallel texts for word
sense disambiguation: An empirical study. In
Proceedings of the 41st Annual Meeting of
the Association for Computational Linguistics
(ACL), pages 455–462, Sapporo, Japan. Asso-
ciation for Computational Linguistics.

Ellie Pavlick, Pushpendre Rastogi, Juri Gan-
itkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2015. PPDB 2.0: Better para-
phrase ranking, fine-grained entailment rela-
tions, word embeddings, and style classifi-
cation. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint
Conference on Natural Language Processing
(ACL) (Volume 2: Short Papers), pages 425–
430, Beijing, China. Association for Computa-
tional Linguistics.

Tommaso Petrolito and Francis Bond. 2014. A
survey of WordNet annotated corpora. In

Proceedings of the Seventh Global WordNet
Conference, pages 236–245, Tartu, Estonia.
University of Tartu Press.

Sascha Rothe and Hinrich Schütze. 2015. Au-
toextend: Extending word embeddings to
embeddings for synsets and lexemes. In
Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics
and the 7th International Joint Conference on
Natural Language Processing (ACL) - Volume
1: Long Papers, pages 1793–1803, Beijing,
China. Association for Computational Linguis-
tics.

Vered Shwartz and Ido Dagan. 2016. Adding con-
text to semantic data-driven paraphrasing. In
Proceedings of the Fifth Joint Conference on
Lexical and Computational Semantics, pages
108–113, Berlin, Germany. Association for
Computational Linguistics.

Yogarshi Vyas and Marine Carpuat. 2017. De-
tecting asymmetric semantic relations in con-
text: A case study on hypernymy detection.
In Proceedings of the 6th Joint Conference on
Lexical and Computational Semantics (*SEM),
pages 33–43, Vancouver, Canada. Association
for Computational Linguistics.

Ralph Weischedel, Martha Palmer, Mitchell
Marcus, Eduard Hovy, Sameer Pradhan,
Lance Ramshaw, Nianwen Xue, Ann Taylor,
Jeff Kaufman, Michelle Franchini, et al.
2013. OntoNotes release 5.0 LDC2013T19.
Linguistic Data Consortium, Philadelphia, PA.

Zhi Zhong and Hwee Tou Ng. 2010. It Makes
Sense: A wide-coverage word sense disam-
biguation system for free text. In Proceedings
of the ACL 2010 System Demonstrations, pages
78–83, Uppsala, Sweden. Association for Com-
putational Linguistics.

https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748

