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Abstract
This paper describes a program that automatically selects the best translation from a set of translations produced by multiple
commercial machine translation engines.  The program is simplified by assuming that the most fluent item in the set is the best
translation.  Fluency is determined using a trigram language model.  Results are provided illustrating how well the program performs
for human ranked data as compared to each of its constituent engines.
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Introduction
Amikai, Inc. develops machine translation applications.
The technology is a combination of in-house and out-
sourced material, with the bulk of the translation work
coming from various third party translation engines.
Amikai is a “best of breed” provider, which means that for
each language pair that we support we provide access to
the (single) best translation engine available on the
market.
This paper describes our efforts towards developing a
system which uses multiple translation engines for each
language pair, and dynamically chooses the best
translation from a candidate set of translations for each
input.  We reasoned that if we built a program that could
identify the best translation within a set then we would be
able to claim that our quality was at least as good as the
best translation engine used to produce the candidate set.
Provided that one engine did not uniformly produce the
best translation, then we would in fact have better overall
quality than any given engine.  
The idea of building such a program begs the questions:
Isn’t being able to automatically distinguish the quality of
translations essentially as difficult as building a machine
translation engine?  In that case, why use third party
translation engines at all?  Building a fully-fledged
translation engine is an enormous task.  We’ve simplified
the problem of choosing the best translation by making
one crucial assumption: that the most fluent output
corresponds to the best translation.  With that assumption,
the problem of choosing the best translation can be
divorced from the input, and the problem is reduced to
choosing the most fluent output.  When translation
engines fail to do a complete analysis of the input, their
recovery strategies for producing a translation often result
in “word salad”.  If an engine produces a fluent translation
then it is likely that the engine had a successful analysis of
the input, increasing the likelihood that the meaning will
be successfully transferred.  We verified our assumption
with human testing, and built a statistical language model
to rank fluency automatically.  

Prior Work
In order to automatically rank the translations that are
produced by our collection of commercial translation
engines, we assign a probability to each engine’s output
with a statistical language model of the target language.
Each language model judges the probability that each
output is a sentence in that language.  The highest ranking
output is deemed to be the most fluent, and therefore best
translation.  Statistical language models are not new to
natural language processing.  They are fundamental to
speech and optical character recognition, and are used in
spelling correction, handwriting recognition and statistical
machine translation1.   For example, Hidden Markov
Models have been applied with great success to speech
recognition systems.  Rather than relying on the raw
speech signal to predict the next word, HMMs allow
hypotheses to be generated about a series of words given
the probabilities of the previous words.  Word sequences
are determined by finding the maximum probability path
through the HMM (Ney, 1998).
In the early 1990s, Brown et al. applied statistical
modelling to machine translation.  By inducing word
alignments and “fertilities” from parallel bilingual
corpora, Brown et al. were able to produce a translation
model for the aligned languages.  This model allows a
probability P(e | f) to be assigned to a pair of sentences,
the French sentence f and the English sentence e, that e is
a translation of f.  The best translation is the sentence
which maximizes P(e | f) or P(e) * P(f | e) using Bayes’
Rule.  P(e) represents the probability that e is an English
sentence, and is used to generate translations which are
natural and grammatical.  A language model built from a
monolingual corpus can be used to assign this probability,
and P(f | e) is determined using the bilingual corpora
alignments.  
The English sentence which maximizes both P(e) and P(f |
e) will be the best translation of f .  The design of our
program essentially assumes that all the machine
translation engines produce similar P(f | e) values, and
looks for the value which has the highest P(e) score.

                                                     
1 For an overview of these see Manning and Schütze (1999).



A Trigram Language Model 
We built a language model for English using a web
crawler to gather the text of 800 articles from the Internet
magazine Salon.  This corpus was augmented with 7,000
English inputs from Amikai chat rooms, and 12,000
English questions filtered from search data sent to a
natural language search engine.  The total size of the
corpus was just over two million words.  The statistical
model that we generated was a simple trigram model with
smoothing, following Knight (1999).  Other statistical
models, such as a Hidden Markov Model, could have been
used, but the trigram approach is simpler to implement
and still gives impressive results, as shown below.
To assign a probability to a sentence, a table was created
recording the number of occurrences of every word,
bigram (ordered word pair), and trigram (ordered word
triple) in our corpus.  These counts were used to assign a
probability to each of those units in a sentence.  The
probability of a word x occurring is the number of
occurrences of x divided by the total number of words
seen.  The probability of a bigram xy is b(y | x) = number-
of-occurrences(“xy”) / number-of-occurrences(“x”).  The
probability of a trigram xyz is b(z | x y) = number-of-
occurrences(“xyz”) / number-of-occurrences(“xy”).  The
probability of a sentence could be calculated based on its
trigrams as follows:

P(I like snakes that are not poisonous) ~ 
   b(I | start-of-sentence start-of-sentence) *
   b(like | start-of-sentence I) *
   b(snakes | I like) *
   ...
   b(poisonous | are not) *
   b(end-of-sentence | not poisonous) *
   b(end-of-sentence | poisonous end-of-sentence)

 
Our program assigns a probability to each English
sentence by taking the product of the probability of each
of its trigrams, but smoothes those trigrams with the
probabilities of the bigrams and words to counteract the
effects of sparseness in the data.

Instead of

b(z | x y) = number-of-occurrences(“xyz”)/
number-of-occurrences(“xy”)

it uses

b(z | x y) = 0.80 *number-of-occurrences(“xyz”)/
number-of-occurrences(“xy”)+ 

0.14 * number-of-occurrences (“yz”)/
number-of-occurrences (“z”)+

0.099 * number-of-occurrences(“z”)/
total-words-seen +  0.001

These coefficients were determined by training on a
subset of the human ranked data2. 
The result of using a trigram language model is that
sentences with vocabulary and word ordering that are

                                                     
2 The details of the coefficient determination are omitted for
brevity.

similar to the observed language are assigned a higher
probability than sentences with strange word ordering or
uncommon vocabulary.  This corresponds fairly well to
the intuitive meaning of fluency.

Results
The performance of the program was rated using data
collected from three types of sources: Japanese chat
rooms, French chat rooms, and French web pages.  Each
of the sentences from these sources was translated into a
set of English sentences using commercial machine
translation engines.  For translation from Japanese into
English, four engines were used.  They are labeled
Engines A-D3. For translations from French into English
two engines were used (Engines E, F).  
The fluency of each translation was ranked by a
monolingual English speaker according to the following
scale:  

1 :   Almost Perfect – the sentence is a fluent English
sentence.  It seems like it was written by a native
speaker.

2 :   Understandable – the sentence is understandable
but may have (slightly) strange word choice, or
contain some minor grammatical errors, such as
an incorrect preposition or determiner.

3 :   Barely Understandable – the sentence contains
several grammar and/or vocabulary errors and can
only be understood with great effort on the part of
the reader. 

4 :   Incomprehensible – the meaning of the sentence
cannot be derived. 

The program was then run on each set of translations, and
returned the sentence that it rated as the most fluent.  The
program was awarded a point each time the sentence that
it selected was also the most highly ranked for that set by
the human subject.  The program’s performance is given
below as a percentage, which is calculated by dividing its
points by the number of sets.  The engines’ scores are
determined similarly.      Because of ties, the engine
scores do not sum to 100%.
In comparing the model performance to the human
rankings, we considered the baseline measure to be the
single engine which received the most top ranks from the
human subjects.  If our program did not perform better
than this baseline, then there would be no point in
integrating it into our translation architecture – the
baseline essentially measures what is considered to be
“best of breed” translation technology.
We note that the performance of the program is most
important when the candidate translations are
understandable or nearly perfect, because distinguishing
between the better of barely understandable sentences
does not increase the usability of our products as much.
Therefore, we refined the performance results by grouping
the sets according to their highest ranked translation.
Performance values are given for all sets, for those sets
which contained at least one sentence which was rated
Barely Understandable or higher, for those sets which
contained a sentence rated at least Understandable, and
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for those sets which contained a sentence rated Almost
Perfect.
Here are the results that we obtained:

All   
(100 sets)

At least Barely
Understandable  (94)

Understandable
(86)

Almost Perfect
(57)

Multi-engine Tool 74% 72% 73% 77%
Engine A 58% 55% 54% 61%
Engine B (baseline) 70% 68% 69% 66%
Engine C 27% 22% 21% 19%
Engine D 40% 36% 35% 39%

Table 1: Japanese  English chat translations

In Table 1, the baseline engine produced the highest
ranking candidate translation 70% of the time overall,
68% of the time for translations which were at least barely
understandable, 69% for translations which were at least
understandable, and 66% for translations which were

almost perfect.  Our multi-engine comparison tool
outperformed the baseline engine, choosing the best
translation 4% more often for all sets, and 11% more often
for translations which were nearly perfect.

All
(154 sets)

At least Barely
Understandable  (146)

Understandable
(118)

Almost Perfect
(38)

Multi-engine Tool 84% 82% 81% 87%
Engine E (baseline) 76% 75% 70% 68%
Engine F 58% 56% 52% 45%

Table 2: French  English web page translations

For the French to English translations of sentences from
web pages, the baseline engine was Engine E.  Again the
multi-engine comparison tool outperformed the baseline,

with scores ranging from 7% to 19% higher than the
baseline at choosing the best translation.

All
 (84 sets)

At least Barely
Understandable   (61)

Understandable
(61)

Almost Perfect
(34)

Multi-engine Tool 94% 92% 92% 100%
Engine E 71% 66% 66% 68%
Engine F (baseline) 86% 80% 80% 85%

Table 3: French  English chat translations

For the French to English chat translations, the baseline
engine was Engine F (Engine E performed worse for this
type of informal language usage) which had the
translations that were judged best around 86% of the time.
The engine comparison tool had very high performance
on this data set.  It was able to pick the best translation
more than 90% of the time, and was able to pick the best

translation 100% of the time for the 34 candidate sets
which contained a translation judged to be almost perfect.
We performed another test using translations from English
into French using a trigram language model of French
built from a corpus of a little over 1.1 million words.  The
English sentences were also gathered from web pages and
chat rooms, and translated by five translation engines
(Engines E, F, and G-I).  

All
 (51 sets)

At least Barely
Understandable   (50)

Understandable
(44)

Almost Perfect
(34)

Multi-engine Tool 67% 66% 61% 64%
Engine E 53% 52% 48% 47%
Engine F 49% 48% 41% 47%
Engine G 45% 44% 36% 32%
Engine H 51% 50% 45% 44%
Engine I 63% 62% 57% 62%

Table 4: English  French translations



The multi-engine comparison tool again performed better
than the baseline engine, suggesting that this technique
transfers well to other languages.

Human rankings
In order to test the assumption that the most fluent output
of the machine translation engines corresponds to the best
translation, we designed an experiment to compare how
people rate fluency to how they rank translation quality.
For the experiment we had a group of 9 bilingual subjects
rate a subset of the data that we used to determine the
program’s performance.  The experiment was divided into
two parts.  For the first part the translations were
displayed in random order without showing the source
text.  The subjects were asked to rate the fluency of each
of the sentences according to the previous scale. For the
second part, the subjects, who were fluent in either French
or Japanese, were shown sets of translations paired with
the original sentence.  They were asked to rank the
sentences in each set based on the quality of the
translation.
A within-subject comparison was done between each
subject’s fluency rating and his or her translation quality
rating for each sentence.  The relative ordering for each
pair of translations in a set was compared.  If the subject
assigned the same relative ranking for a pair of
translations for both the fluency and the translation quality
tests, then we counted that as a match.  For cases where
one of the tests was judged a tie, we used either a strict or
loose method for comparison.  In the loose method for
comparison, if the ratings were tied for one test but not the
other, we counted a match.  In the strict method, we
counted a tie as a match only if the scores were also tied
in the other test as well. The similarity was calculated by
dividing the number of matches by the total number of
comparisons.
Using the strict comparison method the subjects had an
average of 90.7% similarity between their fluency and
translation quality scores.  Using the loose method for
comparison that number increased to 99.39%.  We took
this to be strong evidence that our simplifying assumption
was well founded.  

Conclusion
In this paper we described Amikai’s system for
dynamically choosing the best translation from a
collection of commercial machine translation engines.
Relying on the verified assumption that the best
translation was generally the most fluent output from the
engines, we were able to construct our program using a
simple statistical language modeling technique.
Furthermore, that technique is independent of the
language being tested, and can easily be applied to other
languages, or optimized to particular types of language
usage. Our program performed up to 19% better than the
baseline metric which was chosen to reflect the notion of
best of breed for value-added machine translation
technology providers.
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