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Abstract

Fast alignment is essential for many nat-
ural language tasks. But in the setting of
monolingual alignment, previous work has
not been able to align more than one sen-
tence pair per second. We describe a dis-
criminatively trained monolingual word
aligner that uses a Conditional Random
Field to globally decode the best align-
ment with features drawn from source and
target sentences. Using just part-of-speech
tags and WordNet as external resources,
our aligner gives state-of-the-art result,
while being an order-of-magnitude faster
than the previous best performing system.

1 Introduction

In statistical machine translation, alignment is typ-
ically done as a one-off task during training. How-
ever for monolingual tasks, like recognizing tex-
tual entailment or question answering, alignment
happens repeatedly: once or multiple times per
test item. Therefore, the efficiency of the aligner is
of utmost importance for monolingual alignment
tasks. Monolingual word alignment also has a va-
riety of distinctions than the bilingual case, for ex-
ample: there is often less training data but more
lexical resources available; semantic relatedness
may be cued by distributional word similarities;
and, both the source and target sentences share the
same grammar.

These distinctions suggest a model design that
utilizes arbitrary features (to make use of word
similarity measure and lexical resources) and ex-
ploits deeper sentence structures (especially in the
case of major languages where robust parsers are
available). In this setting the balance between
precision and speed becomes an issue: while we
might leverage an extensive NLP pipeline for a
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language like English, such pipelines can be com-
putationally expensive. One earlier attempt, the
MANLI system (MacCartney et al., 2008), used
roughly 5GB of lexical resources and took 2 sec-
onds per alignment, making it hard to be deployed
and run in large scale. On the other extreme, a sim-
ple non-probabilistic Tree Edit Distance (TED)
model (c.f. §4.2) is able to align 10, 000 pairs
per second when the sentences are pre-parsed, but
with significantly reduced performance. Trying to
embrace the merits of both worlds, we introduce a
discriminative aligner that is able to align tens to
hundreds of sentence pairs per second, and needs
access only to a POS tagger and WordNet.

This aligner gives state-of-the-art performance
on the MSR RTE2 alignment dataset (Brockett,
2007), is faster than previous work, and we re-
lease it publicly as the first open-source monolin-
gual word aligner: Jacana.Align.1

2 Related Work

The MANLI aligner (MacCartney et al., 2008)
was first proposed to align premise and hypothe-
sis sentences for the task of natural language in-
ference. It applies perceptron learning and han-
dles phrase-based alignment of arbitrary phrase
lengths. Thadani and McKeown (2011) opti-
mized this model by decoding via Integer Linear
Programming (ILP). Benefiting from modern ILP
solvers, this led to an order-of-magnitude speedup.
With extra syntactic constraints added, the exact
alignment match rate for whole sentence pairs was
also significantly improved.

Besides the above supervised methods, indirect
supervision has also been explored. Among them,
Wang and Manning (2010) extended the work of
McCallum et al. (2005) and modeled alignment
as latent variables. Heilman and Smith (2010)
used tree kernels to search for the alignment that
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yields the lowest tree edit distance. Other tree
or graph matching work for alignment includes
that of (Punyakanok et al., 2004; Kouylekov and
Magnini, 2005; Chambers et al., 2007; Mehdad,
2009; Roth and Frank, 2012).

Finally, feature and model design in monolin-
gual alignment is often inspired by bilingual work,
including distortion modeling, phrasal alignment,
syntactic constraints, etc (Och and Ney, 2003;
DeNero and Klein, 2007; Bansal et al., 2011).

3 The Alignment Model

3.1 Model Design
Our work is heavily influenced by the bilingual
alignment literature, especially the discriminative
model proposed by Blunsom and Cohn (2006).
Given a source sentence s of length M , and a tar-
get sentence t of length N , the alignment from s
to t is a sequence of target word indices a, where
am2[1,M ] 2 [0, N ]. We specify that when am = 0,
source word st is aligned to a NULL state, i.e.,
deleted. This models a many-to-one alignment
from source to target. Multiple source words can
be aligned to the same target word, but not vice
versa. One-to-many alignment can be obtained
by running the aligner in the other direction. The
probability of alignment sequence a conditioned
on both s and t is then:

p(a | s, t) =
exp(

P
m,k �kfk(am�1, am, s, t))

Z(s, t)

This assumes a first-order Conditional Random
Field (Lafferty et al., 2001). The word alignment
task is evaluated over F1. Instead of directly op-
timizing F1, we employ softmax-margin training
(Gimpel and Smith, 2010) and add a cost function
to the normalizing function Z(s, t) in the denom-
inator, which becomes:

X

â

exp(

X

m,k

�kfk(âm�1, âm, s, t) + cost(at, â))

where at is the true alignments. cost(at, â)
can be viewed as special “features” with uniform
weights that encourage consistent with true align-
ments. It is only computed during training in the
denominator because cost(at,at) = 0 in the nu-
merator. Hamming cost is used in practice.

One distinction of this alignment model com-
pared to other commonly defined CRFs is that

the input is two dimensional: at each position m,
the model inspects both the entire sequence of
source words (as the observation) and target words
(whose offset indices are states). The other dis-
tinction is that the size of its state space is not
fixed (e.g., unlike POS tagging, where states are
for instance 45 Penn Treebank tags), but depends
on N , the length of target sentence. Thus we can
not “memorize” what features are mostly associ-
ated with what states. For instance, in the task of
tagging mail addresses, a feature of “5 consecu-
tive digits” is highly indicative of a POSTCODE.
However, in the alignment model, it does not make
sense to design features based on a hard-coded
state, say, a feature of “source word lemma match-
ing target word lemma” fires for state index 6.

To avoid this data sparsity problem, all features
are defined implicitly with respect to the state. For
instance:

fk(am�1, am, s, t) =

(
1 lemmas match: sm, tam
0 otherwise

Thus this feature fires for, e.g.:
(s3 = sport, t5 = sports, a3 = 5), and:
(s2 = like, t10 = liked, a2 = 10).

3.2 Feature Design

String Similarity Features include the following
similarity measures: Jaro Winkler, Dice Sorensen,
Hamming, Jaccard, Levenshtein, NGram overlap-
ping and common prefix matching.2 Also, two
binary features are added for identical match and
identical match ignoring case.
POS Tags Features are binary indicators of
whether the POS tags of two words match. Also,
a “possrc2postgt” feature fires for each word pair,
with respect to their POS tags. This would capture,
e.g., “vbz2nn”, when a verb such as arrests aligns
with a noun such as custody.
Positional Feature is a real-valued feature for the
positional difference of the source and target word
(abs(mM �

am
N )).

WordNet Features indicate whether two words
are of the following relations of each other: hyper-
nym, hyponym, synonym, derived form, entailing,
causing, members of, have member, substances of,
have substances, parts of, have part; or whether

2Of these features the trained aligner preferred Dice
Sorensen and NGram overlapping.



their lemmas match.3

Distortion Features measure how far apart the
aligned target words of two consecutive source
words are: abs(am + 1 � am�1). This learns a
general pattern of whether these two target words
aligned with two consecutive source words are
usually far away from each other, or very close.
We also added special features for corner cases
where the current word starts or ends the source
sentence, or both the previous and current words
are deleted (a transition from NULL to NULL).
Contextual Features indicate whether the left or
the right neighbor of the source word and aligned
target word are identical or similar. This helps
especially when aligning functional words, which
usually have multiple candidate target functional
words to align to and string similarity features can-
not help. We also added features for neighboring
POS tags matching.

3.3 Symmetrization
To expand from many-to-one alignment to many-
to-many, we ran the model in both directions and
applied the following symmetrization heuristics
(Koehn, 2010): INTERSECTION, UNION, GROW-
DIAG-FINAL.

4 Experiments

4.1 Setup
Since no generic off-the-shelf CRF software is de-
signed to handle the special case of dynamic state
indices and feature functions (Blunsom and Cohn,
2006), we implemented this aligner model in the
Scala programming language, which is fully in-
teroperable with Java. We used the L2 regular-
izer and LBFGS for optimization. OpenNLP4 pro-
vided the POS tagger and JWNL5 interfaced with
WordNet (Fellbaum, 1998).

To make results directly comparable, we closely
followed the setup of MacCartney et al. (2008) and
Thadani and McKeown (2011). Training and test
data (Brockett, 2007) each contains 800 manually
aligned premise and hypothesis pairs from RTE2.
Note that the premises contain 29 words on av-
erage, and the hypotheses only 11 words. We take
the premise as the source and hypothesis as the tar-
get, and use S2T to indicate the model aligns from

3We found that each word has to be POS tagged to get an
accurate relation, otherwise this feature will not help.
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source to target and T2S from target to source.

4.2 Simple Baselines

We additionally used two baseline systems for
comparison. One was GIZA++, with the IN-
TERSECTION tricks post-applied, which worked
the best among all other symmetrization heuris-
tics. The other was a Tree Edit Distance (TED)
model, popularly used in a series of NLP appli-
cations (Punyakanok et al., 2004; Kouylekov and
Magnini, 2005; Heilman and Smith, 2010). We
used uniform cost for deletion, insertion and sub-
stitutions, and applied a dynamic program algo-
rithm (Zhang and Shasha, 1989) to decode the
tree edit sequence with the minimal cost, based
on the Stanford dependency tree (De Marneffe
and Manning, 2008). This non-probabilistic ap-
proach turned out to be extremely fast, processing
about 10,000 sentence pairs per second with pre-
parsed trees, performing quantitatively better than
the Stanford RTE aligner (Chambers et al., 2007).

4.3 MANLI Baselines

MANLI was first developed by MacCartney et al.
(2008), and then improved by Thadani and McKe-
own (2011) with faster and exact decoding via ILP.
There are four versions to be compared here:

MANLI the original version.
MANLI-approx. re-implemented version by

Thadani and McKeown (2011).
MANLI-exact decoding via ILP solvers.
MANLI-constraint MANLI-exact with hard

syntactic constraints, mainly on common “light”
words (determiners, prepositions, etc.) attachment
to boost exact match rate.

4.4 Results

Following Thadani and McKeown (2011), perfor-
mance is evaluated by macro-averaged precision,
recall, F1 of aligned token pairs, and exact (per-
fect) match rate for a whole pair, shown in Ta-
ble 1. As our baselines, GIZA++ (with align-
ment intersection of two directions) and TED are
on par with previously reported results using the
Stanford RTE aligner. The MANLI-family of sys-
tems provide stronger baselines, notably MANLI-
constraint, which has the best F1 and exact match
rate among themselves.

We ran our aligner in two directions: S2T and
T2S, then merged the results with INTERSECTION,
UNION and GROW-DIAG-FINAL. Our system beats



System P % R % F1 % E %
GIZA++, \ 82.5 74.4 78.3 14.0

TED 80.6 79.0 79.8 13.5
Stanford RTE⇤ 82.7 75.8 79.1 -

MANLI⇤ 85.4 85.3 85.3 21.3
MANLI-approx./ 87.2 86.3 86.7 24.5
MANLI-exact/ 87.2 86.1 86.8 24.8

MANLI-constraint/ 89.5 86.2 87.8 33.0
this work, S2T 91.8 83.4 87.4 25.9
this work, T2S 93.7 84.0 88.6 35.3

S2T \ T2S 95.4 80.8 87.5 31.3
S2T [ T2S 90.3 86.6 88.4 29.6

GROW-DIAG-FINAL 94.4 81.8 87.6 30.8

Table 1: Results on the 800 pairs of test data. E% stands
for exact (perfect) match rate. Systems marked with ⇤ are
reported by MacCartney et al. (2008), with / by Thadani and
McKeown (2011).

the weak and strong baselines6 in all measures ex-
cept recall. Some patterns are very clearly shown:
Higher precision, lower recall is due to the
higher-quality and lower-coverage of WordNet,
where the MANLI-family systems used addi-
tional, automatically derived lexical resources.
Imbalance of exact match rate between S2T and
T2S with a difference of 9.4% is due to the many-
to-one nature of the aligner. When aligning from
source (longer) to target (shorter), multiple source
words can align to the same target word. This
is not desirable since multiple duplicate “light”
words are aligned to the same “light” word in the
target, which breaks perfect match. When align-
ing T2S, this problem goes away: the shorter tar-
get sentence contains less duplicate words, and in
most cases there is an one-to-one mapping.
MT heuristics help, with INTERSECTION and
UNION respectively improving precision and re-
call.

4.5 Runtime Test

Table 2 shows the runtime comparison. Since the
RTE2 corpus is imbalanced, with premise length
(words) of 29 and hypothesis length of 11, we
also compare on the corpus of FUSION (McKeown
et al., 2010), with both sentences in a pair aver-
aging 27. MANLI-approx. is the slowest, with
quadratic growth in the number of edits with sen-
tence length. MANLI-exact is in second place, re-
lying on the ILP solver. This work has a precise
O(MN2

) decoding time, with M the source sen-
tence length and N the target sentence length.

6Unfortunately both MacCartney and Thadani no longer
have their original output files (personal communication), so
we cannot run a significance test against their result.

corpus sent. pair
length

MANLI-
approx.

MANLI-
exact

this
work

RTE2 29/11 1.67 0.08 0.025
FUSION 27/27 61.96 2.45 0.096

Table 2: Alignment runtime in seconds per sentence pair on
two corpora: RTE2 (Cohn et al., 2008) and FUSION (McKe-
own et al., 2010). The MANLI-* results are from Thadani
and McKeown (2011), on a Xeon 2.0GHz with 6MB Cache.
The runtime for this work takes the longest timing from S2T
and T2S, on a Xeon 2.2GHz with 4MB cache (the closest
we can find to match their hardware). Horizontally in a real-
world application where sentences have similar length, this
work is roughly 20x faster (0.096 vs. 2.45). Vertically, the
decoding time for our work increases less dramatically when
sentence length increases (0.025!0.096 vs. 0.08!2.45).

features P % R % F1 % E %
full (T2S) 93.7 84.0 88.6 35.3

- POS 93.2 83.5 88.1 31.4
- WordNet 93.2 83.7 88.2 33.5

- both 93.1 83.2 87.8 30.1
Table 3: Performance without POS and/or Word-
Net features.

While MANLI-exact is about twenty-fold faster
than MANLI-approx., our aligner is at least an-
other twenty-fold faster than MANLI-exact when
the sentences are longer and balanced. We also
benefit from shallower pre-processing (no parsing)
and can store all resources in main memory.7

4.6 Ablation Test

Since WordNet and the POS tagger is the only used
external resource, we removed them8 from the fea-
ture sets and reported performance in Table 3. This
somehow reflects how the model would perform
for a language without a suitable POS tagger, or
more commonly, WordNet in that language. At
this time, the model falls back to relying on string
similarities, distortion, positional and contextual
features, which are almost language-independent.
A loss of less than 1% in F1 suggests that the
aligner can still run reasonably well without a POS
tagger and WordNet.

7WordNet (˜30MB) is a smaller footprint than the 5GB of
external resources used by MANLI.

8per request of reviewers. Note that WordNet is less pre-
cise without a POS tagger. When we removed the POS tag-
ger, we enumerated all POS tags for a word to find its hyper-
nym/synonym/... synsets.



4.7 Error Analysis
There were three primary categories of error:9

1. Token-based paraphrases that are not covered
by WordNet, such as program and software,
business and venture. This calls for broader-
coverage paraphrase resources.

2. Words that are semantically related but not
exactly paraphrases, such as married and
wife, beat and victory. This calls for re-
sources of close distributional similarity.

3. Phrases of the above kinds, such as elected

and won a seat, politician and presidential

candidate. This calls for further work on
phrase-based alignment.10

There is a trade-off using WordNet vs. larger,
noisier resources in exchange of higher preci-
sion vs. recall and memory/disk allocation. We
think this is an application-specific decision; other
resources could be easily incorporated into our
model, which we may explore in the future to ex-
plore the trade-off in addressing items 1 and 2.

5 Conclusion

We presented a model for monolingual sentence
alignment that gives state-of-the-art performance,
and is significantly faster than prior work. We re-
lease our implementation as the first open-source
monolingual aligner, which we hope to be of ben-
efit to other researchers in the rapidly expanding
area of natural language inference.
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