
COTTAGE: Coherent Text Adventure Games Generation

Yijiang River Dong

A Thesis

in

Data Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Master of Science in Engineering

2023

Supervisor of Thesis

Chris Callison-Burch, Associate Professor of Computer and Information Science

Thesis Reader

Lara J. Martin, CIFellow Postdoctoral Researcher

Graduate Group Chairperson

Susan B. Davidson, Weiss Professor of Computer and Information Science



DISSERTATION TITLE

© COPYRIGHT

2023

Author Full Legal Name

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/



ACKNOWLEDGEMENT

First and foremost, I would like to express my heartfelt gratitude to my Thesis Supervisor,

Professor Chris Callison-Burch, and Thesis Reader, Dr. Lara Martin, for their unwavering

guidance and invaluable insights throughout my thesis work. Your exceptional mentorship,

commitment to fostering a nurturing research environment, and genuine passion for inno-

vation have not only shaped my thesis but also left an indelible mark on my personal and

professional growth.

My sincerest appreciation goes out to the members of Professor Chris Callison-Burch’s lab,

who have generously shared their state-of-the-art research and engaged in thought-provoking

discussions with me. A special mention must be made for Liam Dugan, whose infectious

enthusiasm and steadfast support have been instrumental in this journey, particularly for

taking the time to meticulously reading through my thesis.

I am also deeply thankful to Professor Lyle Ungar and Professor Joao Sedoc for introducing

me to the fascinating field of Natural Language Processing (NLP), inspiring me to pursue

a Ph.D. in NLP, and continuously providing support and mentorship.

I would like to extend my gratitude to my dear friend, Tim Shifan Dong, for his contribution

to the project in its initial phase, providing me with fresh perspectives and valuable insights.

Furthermore, I am grateful to my roommates, Haotong Tian, Siming He, and Shuze Liu,

as well as my friend Estelle Shen, for our engaging conversations on a wide array of topics

related to artificial intelligence and deep learning. Their passion and inquisitiveness have

inspired and encouraged me to pursue my research ambitions wholeheartedly.

Last but certainly not least, I owe a profound debt of gratitude to my family, whose love,

support, and faith in me have been the bedrock of my success. I am who I am today because

of you, and I dedicate this thesis to you with all my heart.

ii



ABSTRACT

COTTAGE: Coherent Text Adventure Games Generation

Yijiang River Dong

Chris Callison-Burch

Text Adventure Games is a simulated text-based game environment where the player can

interact via text commands and explore the story-driven environment. While traditionally

Text Adventure Games are written in computer code that requires lots of e↵ort in specifying

the game, large language models like GPT-3 are shown to be able to generate interesting

text adventure game

However, given the length and complexity of the game, the game generated by GPT-3 are

often self-contradictory. For example, as shown in Figure 1, GPT-3 does not understand it

should reject the command “shot the bodyguard” even though we specified that all bullets

are exhausted.

In this thesis, we leverage neuro-symbolic reasoning to alleviate this issue. Instead of

generating the text, we want to generate the code that the text adventure games run on

since code is easier to be grounded than text. We first show that by one-shot prompting,

GPT-4 is able to generate the code for a story-driven text adventure game. Then when the

users start playing the game, we propose a system called CORRPUS (Code Representations

to Reason & Prompt over for Understanding in Stories) to track the game states changes

based on each GPT generation. For each GPT generation, we also check for consistencies

to avoid long-range inconsistency in the generation.

Finally, we conducted human evaluations to show that the consistency and flexibility of the

game all increased using our new system.
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CHAPTER 1 INTRODUCTION

What is a text adventure game? A text adventure game is a type of interactive

fiction game where players use text-based commands to navigate through a story-driven

environment. Given a goal, the player will keep performing actions (e.g., battle, use items)

and the Dungeon give provide feedback accordingly until the end of the game. Readers can

check out AI Dungeon1 or Sentient Beings 2 if you are not familiar with text adventure

games.

Figure 1: An failure example of the text adventure game by GPT-2 powered AI Dungeon.
As highlighted in red rectangles, while the player used up all the bullets, he should not be
able to fire more bullets. The AI Dungeon is expected to reject the last command.

Why study text adventure games? As Jansen (2021) points out, text adventure games

provide a low-cost text simulation of a 2D or 3D environment, which is an ideal testbed

for embodied agents on real-world tasks. Thus, researchers can study questions includ-

ing embodied reasoning, planning, Human-AI collaboration, commonsense reasoning, etc.

(Jansen, 2021).

1https://aidungeon.io
2https://grizel.itch.io/sentient-beings
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Generating text adventure games Text adventure games are traditionally controlled

by the game’s programming code. The programming code defines the rules of the game

world and the interactions that the player can have with the environment, including the

layout of the dungeon and the items and characters within it. However, the predefining all

the items, characters, locations, and game rules can be labor-extensive.

With the development of Large Language Models (LLMs), researchers and entrepreneurs

designed systems like AI Dungeon that could automatically generate text adventure games

that can understand human input engaging and create engaging plots. However, as shown

in Figure 1, these Dungeons that simply reply on LLMs can be self-contradictory mainly

because it does not keep track of all the game states and does not know when how to reject

impossible user requests.

Research Questions in this thesis In this thesis, I want to create an AI dungeon that

can generate coherent stories based on arbitrary user inputs. To achieve this goal, the

following research questions are explored in this thesis:

• How to generate an engaging text adventure game? In a typical human-written

text adventure game, the player would travel through di↵erent locations, meet and

play with di↵erent NPCs using game items. To generate a new adventure game envi-

ronment, I leveraged LLM’s language generation ability to initialize these locations,

characters, items, etc as shown in Chapter 3 and Chapter 5. Each location/charac-

ter/item would have its own descriptions and properties that could be updated as the

game progresses.

• How to maintain the long-range consistency in the generated text adventure game?

To maintain the coherence of the generated game, I incorporate neuro-symbolic rea-

soning and game state tracking systems as shown in Chapter 4 and Chapter 5. The

game state tracking system would try to complete, update and align the game states

based on the AI dungeon’s text descriptions. These game states and tracking system
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is implemented as a code-based system to leverage the code’s inherent executability

and long-range reasoning nature.

Through exploring these questions, we propose our COTTAGE (Coherent Text Adventure

Games Generation) system that can generate code for a story-driven text adventure game

and then act as a coherent AI dungeon for the players. We then conduct a human evaluation

to show that the model is more coherent and flexible than other systems. Our code is avail-

able at https://colab.research.google.com/drive/1Gnn6sR9oHwCHenkf3JF4ZhiiDFK7_

SM0#scrollTo=OrNCXsMO9Gwh

The rest of this thesis is structured as follows

Chapter 2 provides a Literature Review on the research about text adventure games, story

generation, neuro-symbolic reasoning, etc.

Chapter 3 discusses an existing code-based setup of the text adventure game that this thesis

builds on. This system needs a human to pre-define all the characters, items, locations, and

actions in the game.

Chapter 4 describes a novel neuro-symbolic state tracking system that we proposed and

how I extend it for text adventure games.

Chapter 5 discusses how I combined the three components in Chapter 3 and Chapter 4 into

an AI dungeon that can generate engaging and coherent text adventure games.

Chapter 6 presents the human evaluation that I conducted and the insight I found.

Chapter 7 concludes this thesis by discussing the limitation, implications, and future work.
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CHAPTER 2 RELATED WORK

2.1. Text Adventure Games (TAGs)

History of Text Adventure Games Text adventure games have a rich history dating

back to the 1960s, when computers were not easily accessible. In 1974, the first role-playing

game, Dungeons & Dragons (D&D), was released and greatly influenced the future devel-

opment of fantasy games. Originally used for simulating military battles, D&D quickly

developed into an open-world game in which players took on di↵erent characters and per-

formed actions (such as battles) with the help of a dungeon master, tables, maps, dice, and

other tools (Callison-Burch and Martin, 2022). In comparison to role-playing games, text

adventure games do not require a dungeon master and have a limited action space, making

them easier for a single player to enjoy. The first text adventure game named Colossal

Cave Adventure (Crowther, 1976) was created by Will Crowther in 1975. In the era before

graphical user interfaces, these text-only computer games quickly gained popularity, and

many more games, including Zork Lebling et al. (1979) and Planetfall, were made. Al-

though many people shifted to graphical computer games later, the unique appeal of text

adventure games has won them a great number of fans around the world, and they remain

popular to this day.

Existing Text Adventure Game Environments Beyond AI Dungeon (described in

the introduction), many text simulators exists nowadays for research purpose. They typi-

cally provide descriptions of the environment and the possible actions the agent can take.

TextWorld (Côté et al., 2019) allows procedurally generating environment and training RL

Agents. JerichoWorld (Ammanabrolu and Riedl, 2021) is a setting designed for the creation

of interactive narrative games. ScienceWorld (Wang et al., 2022b) is a text adventure game

that focuses on testing agents to do scientific experiments in the game. LIGHT (Urbanek

et al., 2019) is more of a large-scale crowdsourced text-game resource for generating games

and dialogues. However, these hard-coded game engines can only run the game, but not

use AI to generate a game that is di↵erent each time based on user’s input.
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World Model The world models (or equivalently, environments) is the setting of our text

adventure games. They are typically modeled as Things (locations, objects, characters)

plus a set of game logic. Here we use Facebook’s LIGHT (Learning in Interactive Games

with Humans and Text) dataset (Urbanek et al., 2019) as an example. In LIGHT, each

object has a name, id, descriptions, ex room ids (the ids of the room that the object is

explicitly said to be located at), in room ids (the ids of the room that the object is not

explicitly said to be located at), holding character ids (the ids of the character that is

holding the object) as well as a set of properties such as is food or is gettable. Similarly,

the character and room object has their corresponding fields.

Here’s an example of the object “Legendary Sword”:

1 {"name": "Legendary sword",

2 "object_id": 1188,

3 "descriptions": ["The sword is very old, you would assume it

had once belonged to a legendary warrior .", "The sword ’s

legend is known by everyone, it is famous throughout the

land."],

4 "ex_room_ids": [13],

5 "holding_character_ids": [110],

6 "in_room_ids": [12],

7 "is_container": 0.0,

8 "is_drink": 0.0,

9 "is_food": 0.0,

10 "is_gettable": 1.0,

11 "is_plural": 0.0,

12 "is_surface": 0.0,

13 "is_weapon": 1.0,

14 "is_wearable": 0.0}
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Listing 2.1: an example of LIGHT data: In the example above, base form is the general

category of the object, “ex room ids” is the room id that the “legendary swords” is located

at. “holding character ids” is the character id whom carries the “legendary swords”. The

properties like “is gettable” are boolean values where 1.0 indicates the object can be get by

a player, vice versa.

Contemporary Research Focus: Playing Text Adventure Games This world

model naturally leads to the Markov decision process (MDP) view of the text adventure

game by modeling state history (S), valid state transitions (T), available actions (A), and

the expected immediate reward for taking each action (R). Thus researchers propose di↵er-

ent Reinforcement Learning (RL) algorithms to teach AI agents to play the text adventure

game. Narasimhan et al. (2015) uses Deep-Q Networks and He et al. (2015) uses Deep

Reinforcement Relevance Network (DRRN). Yao et al. (2020) proposes CALM that uses

GPT-2 to help RL select its actions with knowledge of gameplay and commonsense. KG-

A2C (Ammanabrolu and Hausknecht, 2020) shows that by using a knowledge graph to

model the game states of the RL agent could lead to better performance.

In addition to RL algorithms, Wang et al. (2022a) proposes to provide the agent with

Neurosymbolic modules (explained in 1.2) and then train a Decision Transformer (Chen

et al., 2021a) to model the reinforcement learning as a sequence-to-sequence problem to

predict the next action. However, both the RL and decision transformers require accurate

modeling of the world model and extensive training. Recently, Bubeck et al. (2023) claim

that GPT-4 could solve TextWorld without further training (which cannot be done by

GPT-3).

Our Research Focus: Generating Text Adventure Games It would be an impor-

tant breakthrough for text adventure games and Human-AI collaboration if people could

play a text adventure game that is fully generated and run by AI. Some prior work has been

done to automatically generate game environments. (Fan et al., 2020) studies automatically
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generating coherent and creative game environments in LIGHT using BERT. Orosz (2021)

fine-tunes GPT-3 on LIGHT to generate the game environment. However, they did not

convert the generated environment back to games which requires iteratively updating the

game states. AI Dungeon (Walton, 2019) is a GPT-based online text adventure game but

it su↵ers from frequent inconsistencies and forgetting.

In this thesis, we attempt to create an AI Dungeon that generates and runs the text ad-

venture game. Building on Orosz (2021), we create Python code that iteratively updates

the “world model” as the game progresses and thus creates a more coherent AI Dungeon

for text adventure games.

2.2. Large Language Models (LLM)

Recently by scaling language models with billions of parameters and web-scale data, large

language models (LLM) achieved significant breakthroughs in various downstream tasks

and unlocks many new abilities (Wei et al., 2022a). In particular, LLMs have the following

notable characteristics: (1) Multi-task learners: GPT-2 (Radford et al., 2019) and T5

(Ra↵el et al., 2020) are multi-task learners that can solve a variety of tasks including

machine translation, reading comprehension, question-and-answering, etc. Its performance

can further increase when fine-tuned on task-specific data. (2) Long-form generation: GPT-

3 (Brown et al., 2020) is able to generate long-form text that is nearly indistinguishable

from human-written text (3) Few-shot Learning: GPT-3 can learn from in-text prompts in

few-shots. (4) Instruction fine-tuning: (Ouyang et al., 2022) used Reinforcement Learning

to fine-tune GPT-3 to learn from human feedback and can generate content that directly

follows the prompt. (5) Multimodal: GPT-4 (OpenAI, 2023) is a multimodal LLM that

aligns the embedding of text-and-image and performs well in understanding and generating

images.

In particular, prompting and fine-tuning are important to the success of our COTTAGE

system. We note that fine-tuning consumes more training samples and compute power and
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in general leads to better performance. Prompting could achieve impressive performance

with the careful design of the prompts (Liu et al., 2023) although su↵ers from being not

robust. It is generally believed that a specific, detailed prompt with several examples could

lead to better performance. In our implementation, we manually compare the performance

of fine-tuning and prompting and choose the better one. Below are examples of their usage.

Figure 2: A zero-shot prompting example used in Callison-Burch and Martin (2022) to
describe the scenes.

Figure 3: A few-shot prompting example used in Callison-Burch and Martin (2022) to
generate descriptions of items.

Despite these impressive capacities of LLMs, many major issues still remain unsolved, in-

cluding hallucination, long-range inconsistency, AI safety, and multi-hop reasoning. Given

the goal of generating coherent text adventure games, the issue of long-range inconsistency

is particularly concerning.

In story generation, many methods have been proposed to alleviate this issue. Fan et al.

(2018) proposes to generate multiple candidate sentences and then rerank them based on
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their coherence score. Yang et al. (2022); Nye et al. (2021) propose to maintain a database

of world states to eliminate contradictory generations. Building on these works, we propose

CoRRPUS (Code Representations to Reason & Prompt over for Understanding in Stories)

(Dong et al., 2022a) to leverage LLM’s impressive programming capacities to do neuro-

symbolic reasoning to track the world states in the story (described in Section 4.1). In our

implementation, we adopt CoRRPUS to track game states in text adventure games. Then,

similar to Yang et al. (2022) and Nye et al. (2021), given the extracted world model, we

check the consistency of between the generation and the world model to alleviate the issue

of long-range inconsistency.

2.3. Story Generation

In this section, we discuss automatic storytelling as it shares many similarities with creating

a TAG world.

An important line of research is about planning the plots of stories. Rashkin et al. (2020)

proposes to generate multi-paragraph stories conditioned on a story outline using transform-

ers with memory attention. Yao et al. (2019) used schema to plan out the entire storyline

and then use seq-2-seq models to generate the story. Martin et al. (2018) explored using

Recurrent Neural Network (RNN) to do event generation and thus the full story. Tamb-

wekar et al. (2018) aims at controlling the story plot by controlling its ending and events

order via reinforcement learning. Yang et al. (2022) recursively prompt GPT-3 to generate

the characters, and story outlines to write coherent stories of thousands of words long that

go beyond GPT-3’s context length. In this thesis, we let the user specify the high-level goal,

and then by one-shot prompting, we let GPT-3 generate the game with a plot.

Other researches such as character-centric generation are also relevant to text adventure

games. Character-centric generation studies how di↵erent characters would respond to the

same actions di↵erently and talk di↵erently. Character-centric generation could improve the

way NPCs interact with the player in the game (Louis and Sutton, 2018) (Ammanabrolu

et al., 2020). In this thesis, we generate text conditioned on the characters (which contains
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his persona, characteristics, etc.) and the surrounding environment which enables the model

to take this information into account.

2.4. Neuro-Symbolic Reasoning

Before the rise of deep learning or connectionism, symbols are viewed as the root of intelli-

gent action (Newel and Simon, 1976). Although deep learning dominates the field of artificial

intelligence in the past decade and achieve human-level performance on many tasks, it has

many apparent weaknesses including interpretability, robustness, e�ciency, and generaliza-

tion. Therefore, many researchers consider combining these structured symbolic methods

with probabilistic neural networks has grown. As Dr. Yoshua Bengio drew from Nobel

Price Winning Psychologist Daniel Kahneman’s book “Thinking Fast and Slow” (Kahne-

man, 2011) to argue that artificial intelligence needs to combine system 1 and system 2

thinking like human, where system 1 represents the intuitive and fast thinking like a neural

network and system 2 represents the slow, logical, and reasoning-related thinking (Bengio,

2019). This comment highlights the biological motivation for neuro-symbolic reasoning.

Post LLMs Since the rise of LLMs, researchers found that LLMs can learn to perform

symbol manipulations by few-shot examples or fine-tuning. Chen et al. (2021b) published

CODEX by fine-tuning GPT-3 on GitHub code and shows LLM’s capacity to do program

synthesis. Schick et al. (2023) proposes toolformer, which teaches LLMs when and how

to APIs during decoding. Similar ideas are carried out by OpenAI to create ChatGPT

Plugins, through which GPT can learn to use hundreds of APIs provided by third-party

developers. In particular, the WolframAlpha plugin in particular equips GPT with many

powerful symbolic modules that would in part solve GPT’s math shortcomings as a language

model (Wolfram, 2023). Jiang et al. (2022) and Wu et al. (2022) show that LLM can be

used to assist theorem proving. Suŕıs et al. (2023) proposes ViperGPT that teaches LLMs

to perform interpretable neuro-symbolic reasoning across vision and language. With their

world knowledge and commonsense, LLMs can also directly write machine code to plan and

control robots (Huang et al., 2022) (Liang et al., 2022).
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Neuro-Symbolic Reasoning in Story Generation As discussed in Section 2.3, many

researchers plan out the story plot and then generate the full story. Other researches include

structure to enhance story generation including using external resources. For example,

(Huang et al., 2020) uses ConceptNet (Speer et al., 2017) (Martin, 2021) uses VerbNet

(Brown et al., 2019), (Peng et al., 2021) uses ATOMIC (Sap et al., 2019).

The recent work on the extraction of a story world or world model is particularly relevant to

this thesis. These use LLMs to dynamically maintain an external “world model” represen-

tation to keep track of the story and maintain the story consistency. (Martin, 2021) (Yang

et al., 2022) uses a python dictionary, (Nye et al., 2021) uses object-oriented notation, and

(Andrus et al., 2022) uses knowledge graphs.

Neuro-Symbolic Reasoning in This Thesis As traditional text adventure games are

built on predefined computer code (symbolic), it is natural to consider the role of symbolic

modules in the automatic generation of text adventure games. There are two key obser-

vations on why and how to use symbolic modules in generating text adventure games. (1)

Similar to Nye et al. (2021), Yang et al. (2022), Dong et al. (2022b), and Figure 1, we

note that LLMs often generate self-contradictory text especially when prompted to do so in

GPT-powered AI Dungeon. Thus we provide examples and APIs for the code to iteratively

update the “world model” and check for consistency when a new action is an input by the

player. (2) Di↵erent from story generation, text adventure games require the system to

have a much deeper understanding of each action: its preconditions and e↵ects and act

according to the “world model”. In this thesis, we let LLMs to generate the action schema

to reject invalid actions and update the game states.
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CHAPTER 3 CODE FORMULATION OF TEXT ADVENTURE GAME

In this chapter, we introduce two text adventure game systems that this thesis builds on.

One system is the python environment on which we can build hard-corded text adventure

games. The other component is about fine-tuning LLMs to generate a static text adventure

game.

3.1. Python Code Formulation of Text Adventure Games

Things Following the LIGHT data, one crucial component of Text Adventure Games are

the locations, items, and characters, which we call Things. All these things have their own

descriptions and properties that we should keep track in our “world model”. We thus create

the following Thing super class with class Item, Character or Location that inherit from

it.

class Thing:
def __init__(self , name , description):

self.name = name
self.description = description
# A dictionary of properties and their values. Boolean properties for items

include: is_gettable , is_wearable , is_drink , is_food , is_weapon , etc.

self.properties = defaultdict(bool)

Listing 3.1: Thing class

class Item(Thing):
def __init__(self , name , description , examine_text , take_text="", start_at=None):

super().__init__(name , description)
self.examine_text = examine_text
self.take_text = take_text if take_text else ("You take the %s." % self.name)
# If an item is gettable , then the player can get it and put it in their

inventory .

self.properties["gettable"] = True
self.commands = {}
self.location = start_at

Listing 3.2: Item class (The commands will be explained in the next paragraph. It relates

to how we can perform actions using the item.)

Actions In addition to initializing the Things, the code formulation code also needs to

define common and special action functions that allow the players to actually interact with

the environment. While many di↵erent formulations are possible, we implement the actions

in python as an objects as shown in 3.3. The Action fields contain preconditions and
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e↵ects and when the player performs the action, the code will check the preconditions. If

all conditions are met, the action will be performed and the e↵ects will also be triggered.

Otherwise, the action will be rejected by the Dungeon.

class Action:
"""

Action schema have a set of preconditons and effects that result from taking the

action , if the preconditons .

"""

def __init__(self , parameter_types , preconditons , effects):
# preconditions = list of tuples ( test_function [args = list of param names ])

self.preconditons = preconditons
self.effects = effects

def check_preconditions(self , parameters):
# parameters = map from parameter_name to param itself

for precondition , arguments in self.preconditons:
if not precondition(parameters , arguments):

return False
return True

def try_action(self , ** kwargs):
parameters = kwargs
if self.check_preconditions(parameters):

for effect , arguments in self.effects:
effect(parameters , arguments)

return True
else:

return False

Listing 3.3: Action Class (simplied version)

For preconditions, each contains a list of tuples that define the conditions that must be

satisfied for the action to be executed. Each tuple contains a test function and a list

of parameter names that will be passed as arguments to the function. The test function

should return a Boolean value. If all test functions return ‘True’, the action can be executed.

Similarly, e↵ects are lists of tuples which is the function and their arguments. These e↵ect

functions will be executed by passing the arguments in if the preconditions are met.

With these preconditions and e↵ects defined, we can then define some common actions such

as Go, Get, Drop, etc. Listing 3.4 is an example of Go. The users can also define their own

special functions as shown in Listing 3.5.

preconditons = [
(at , ("character", "from_loc")),
(connected , ("from_loc", "to_loc", "direction")),
(not_blocked , ("from_loc", "direction")) ]
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effects = [
(move , ("character", "from_loc", "to_loc", "direction"))

]

go = Action(parameter_types , preconditons , effects)

Listing 3.4: The implementation of Go Action Schema

class Item(Thing):
def __init__:

...

def add_action(self , command_text , function , arguments , preconditions ={}):
""" Add a special action associated with this item """

self.commands[command_text] = (function , arguments , preconditions)

def do_action(self , command_text , game):
""" Perform a special action associated with this item """

end_game = False # Switches to True if this action ends the game.

if command_text in self.commands:
function , arguments , preconditions = self.commands[command_text]
all_conditions_met , failure_reasons = check_preconditions(preconditions , game)
if all_conditions_met:

end_game = function(game , arguments)
else:

gpt_describe(failure_reasons , [], f"You cannot perform {command_text}")
return end_game

## Then , assume we have initialized an object rosebush , we can add a special function

to it by writing the code below.

rosebush.add_action("pick rose", add_item_to_inventory , (rose , "You pick the lone
rose from the rosebush.", "You already picked the rose."), preconditions ={"
inventory_not_contains": rose}

Listing 3.5: The implementation of do action that allows we perform a special function to

an item. And an example of special function “pick rose” that one can perform to item rose.

As we can see, the ”command text” is pick rose. The precondition is that inventory does

not contains rose and the e↵ect is to add rose into the inventory.

Game In this way users can create a code-based text adventure game by specifying the

environment and actions. The game typically ends with a special function end game that

indicates if the play has won or lost the game. Listing 3.6 is an example of the game and

Listing 3.7 is the transcript when playing the game.
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def build_game ():
# Locations

cottage = Location("Cottage", "You are standing in a small cottage.")
garden_path = Location("Garden Path", "You are standing on a lush garden path.

There is a cottage here.")
fishing_pond = Location("Fishing Pond", "You are at the edge of a small fishing

pond.")

# Connections

cottage.add_connection("out", garden_path)
garden_path.add_connection("south", fishing_pond)

# Items that you can pick up

fishing_pole = Item("pole", "a fishing pole", "A SIMPLE FISHING POLE.", start_at=
cottage)

rose = Item("rose", "a red rose", "IT SMELLS GOOD.", start_at=None)
fish = Item("fish", "a dead fish", "IT SMELLS TERRIBLE.", start_at=None)

# Sceneary (not things that you can pick up)

pond = Item("pond", "a small fishing pond", "THERE ARE FISH IN THE POND.", start_at
=fishing_pond)

pond.set_property("gettable", False)
rosebush = Item("rosebush", "a rosebush", "THE ROSEBUSH CONTAINS A SINGLE RED ROSE.

IT IS BEAUTIFUL.", start_at=garden_path)
rosebush.set_property("gettable", False)

# Add special functions to your items

rosebush.add_action("pick rose", add_item_to_inventory , (rose , "You pick the lone
rose from the rosebush.", "You already picked the rose."))

pond.add_action("catch fish", describe_something , ("You reach into the pond and
try to catch a fish with your hands , but they are too fast."))

pond.add_action("catch fish with pole", add_item_to_inventory , (fish , "You dip
your hook into the pond and catch a fish.","You weren ’t able to catch another
fish."), preconditions ={"inventory_contains":fishing_pole })

fish.add_action("eat fish", end_game , ("That’s disgusting! It’s raw! And
definitely not sashimi -grade! But you’ve won this version of the game. THE END.
"))

locations = [fishing_pond , garden_path , fishing_pond]
items = [fishing_pole , rose , fish , pond , rosebush]
characters = []

player = Character(name="player", description="You are a simple peasant destined
for greatness.", persona="I am on an adventure.", location=cottage)

return Game(cottage , player , items , characters , locations)

Listing 3.6: An example of the full game in Python

Play The user could start playing the game by entering the command. The parser class

would first parse the command to get the intention of the user, then call the corresponding

functions to check the preconditions and trigger the e↵ects. Finally, conditioned on the

command and recent game states, the system calls GPT-3 to provide users a vivid descrip-

tion of what happened after the command. An example of user playing the game is shown
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in Listing 3.7.

You are standing in a small cottage.
Exits:
Out to Garden Path

You see:
* a fishing pole
* a poisonous potion

---

You find yourself standing in a small cottage. The walls are made of roughly
hewn logs , and the roof is covered with thick thatch. The wooden floor creaks as
you step inside , and the smell of freshly baked bread fills the air. There is a
small wooden table in the corner of the room , and next to it sits a fishing
pole. On the table lies a small vial of what appears to be a poisonous potion.
Out the door you can see a winding garden path , lit by the evening sun. What do
you do?

Player: take pole

You grab the fishing pole off the table. Its handle is cool to the touch , and
the line looks freshly waxed. What do you do now?

Player: go out
Player is at the Garden Path.

Player: go south
Player is at the Fishing Pond.

Player: catch fish with pole

You cast your line into the shimmering waters of the pond. After a few minutes ,
you feel a tug on your line and reel in a silvery fish. You can now add the fish
to your inventory. What do you do now?

Listing 3.7: An example transcript that when playing the text adventure game in 3.6.

“Player” is the player’s input command and all other texts are generated by GPT-3.

3.2. Generating Static Text Adventure Games

This thesis also builds on Orosz (2021) and HW2 of Callison-Burch and Martin (2022)’s

course, which shows that GPT-3 is able to generate a static text adventure game via fine-

tuning or few-shot prompting. By static, we note that the model only generates the de-

scriptions and properties of the Things but does not create an AI Dungeon that the player

can interact with.

Specifically, Orosz (2021) experiment with fine-tuning and few-shot prompting LLMs for

predicting the descriptions and properties of Things. In 1 and 2, we show an example of

the fine-tuning data and few-shot examples as well as the corresponding model output that
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they used.

{“prompt”: “The rectory”, “completion”: “This room is quite small and cramped. It’s
about the size of maybe three wooden carts, which is to say, it’s very small. There are
boxes all over the place and many candles and other church accessories. There are several
big robes hanging next to what looks like a very small closet. Some candles shed an eerie
light on the room, flickering softly. There is a small cabinet with several religious tapes
and records and a few books. A book case is near and contains many common religious
texts.”}

Table 1: An example of fine-tuning data. The full fine-tuning data is a json line file that
contains hundreds of such prompt-completion pairs.

Then, for generating each of the Things via fine-tuning and few-shot prompting, Orosz

(2021) conducted a detailed human evaluation and concluded that the performance of fine-

tuning with GPT-3 Curie is better than few-shot prompting GPT-3 Curie and is on par with

few-shot prompting GPT-3 Davinci. (Recall that GPT-3 has four versions: Ada, Babbage,

Curie, and Davinci. Davinci is the most powerful and expansive one and Curie is cheaper

but not as powerful as Davinci. Ada and Babbage are less powerful than Curie.) And thus

it ies not worth the extra cost to use GPT-3 Davinci to conduct the experiments. This

thesis follows the same setup: we mainly use GPT-3 Curie and prefer fine-tuning when

there exists su�cient data.

In summary, this chapter discusses (1) the code-based representation that our COTTAGE

system builds on and (2) a method to generate a static game. But (1) requires the user to

hard-code all the things and game logic in the game while (2) is only a static game that

users cannot play. The next chapter introduces a novel state-tracking system that is crucial

for us to maintain long-range consistency in the final COTTAGE system.
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Location: Cottage safe-room
Description: Stocked from floor to ceiling, food and medicine line the western wall. The
room is painted matte grey and contains a chest to the left of the food and medicine.
Three chairs and a table with a lamp are what is left in the middle of the safe-room.
Dimly lit, and a steady water supply coming from the well outside of the cottage.
===
Location: Cottage entryway
Description: A welcome mat adorns the floor at the foot of the door. A rack to hang hats
and coats is on the left hand side. Right above, a fan lazy spins about on a hot summer
day. A single bulb of light illuminates the small hall that the entrance leads to. The
entrance smells of the fresh outdoors.
===
Location: Unexplored jungle
Description: Located outside of civilization, the jungle is a vast unknown. Many plants
have never seen, many beasts never discovered. However, what is known is that one
cannot survive alone in this jungle. There are many poisonous trees and plants and it
is impossible to see the sun once in it. Just an incredible amount of vast, dense and
impassable vegetation.
===
Location: Abandoned Mine
Description: Deep in the mountains, the abandoned mine lies forgotten by most. The
entrance is covered in vines and cobwebs, and a deep, thick silence hangs heavy in the air.
Once inside, the darkness of the mine is illuminated by a faint, eerie light, coming from
the distant depths of the mine. Here and there, rusty tools and broken pieces of machinery
can be seen, and the walls are lined with large ore veins. Despite its long abandonment,
the mine still holds its secrets, waiting to be discovered.

Table 2: An example of a few-shot prompt provided to GPT-3. The highlighted text is
generated by GPT-3 as the description for Abondoned Mine.

19



CHAPTER 4 GAME STATE TRACKING

To solve the issue of generating inconsistent text in text adventure games, we want to

keep track of the “world model” via an external knowledge representation. This chapter

introduces the neuro-symbolic state tracking system that we use. We first introduce our

previous work (Dong et al., 2022a) CORRPUS, which is a state tracking system for stories,

and then show how we adopt it for text adventure games.

4.1. CORRPUS State Tracking System

In Dong et al. (2022b), We proposed CORRPUS (Code Representations to Reason &

Prompt over for Understanding in Stories) to use neuro-symbolic reasoning to improve

story understanding. The motivation is similar to Figure 1, for stories, LLMs also sometimes

lose track of the important game states 4 and generate self-contradictory stories. Thus we

proposed a novel CODEX-based neuro-symbolic state tracking system. The idea is that

given a world model W0 that contains all the characteristics that we want and the story S,

we convert them into code representation and ask CODEX to generate code to update the

world model.

Figure 4: GPT-3’s failure in tracking important game states in stories

Formally, we present the problem as follows: given a story S = [S0 : S1 : ... : Sn] and

an initial state of the story world W0, the goal is to have the model update the story

world state Wi until the story reaches its conclusion, Wn. After each sentence Si within

the story, an unspecified update function Ui is used by the model to modify the world

state. Consequently, the final world state Wn is derived through the following process:
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W0
U0�! W1

U1�! ....
Un�1���! Wn�1

Un�! Wn. It is important to note that, apart from W0 and

Wn, the intermediate world states remain hidden and are not visible to the user.

CoRRPUS, the system we have developed, extracts structured data using code-based chain-

of-thought-type prompting, allowing for more precise tracking of the underlying story state

and identification of inconsistencies.

Figure 5: An example prompt for bAbI Task 2. All three prompting methods have the
same prompt world model initialization (a) followed by their respective story functions (b,
c, or d), found inside the World class (end of a). That is, for the 1-shot example, CoRRPUS
would be provided (a) + (b, c, or d) depending on the prompting method, and then the
CODEX model is expected to output the highlighted code to update the world model.

We experiment with three di↵erent prompting techniques as shown in 5. The following
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examples demonstrate how the story sentence “Sandra journeyed to the bedroom” would

be altered for each type of prompt.

• Comment Only: This is the most basic prompt, o↵ered no additional structural

information. It must rely solely on the comments from the prompt and initialization

of the story world state. This reveals the ability of the Code-LLM to deduce and com-

plete information with minimal guidance. Example: Given the comment ## Sandra

journeyed to the bedroom., the model should output self.Sandra.location =

"bedroom".

• Specific Functions: This prompt transforms each sentence into a distinct function.

Alongside the commented sentences at the beginning of the prompt, the system is also

prompted to create functions for each sentence. Example: Given the function name

Sandra journeyed to the bedroom(), the model should produce a definition for the

function, which should include self.Sandra.location = "bedroom".

• Abstract Functions: This final prompting style provides functions for actions or set-

ting attributes to the model. The model does not need to determine the meaning of a

specific event but must identify the appropriate function for a given story sentence and

how to fill in the function’s arguments. Example: Given go(character, location)

and other functions, generate go(character=Sandra, destination=bedroom).

We conduct two set of experiments on bAbI Task 2 and Re3 and showed that CORRPUS

greatly improves the tracking system. Details can be found in Appendix (Section 8.1).

4.2. Adapting CORRPUS for Text Adventure Games

To use CoRRPUS for text adventure games, we first add two functions (update description

and update properties) to Things to update its descriptions and properties. Then, we

retrieve the relevant game states and ask GPT-3.5 (ChatGPT) to update the world model

as CoRRPUS. The relevant game states now is all the items and characters at the location

and all the items in the player’s inventory. An example is shown in Listing 4.1.
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Game states:
1. Location:
Dark Room: You are in a dark room that you can barely see anything in the room.
2. Existing Items:
pond: a small fishing pond
lamp: a lamp (unlit)
pole: a fishing pole
3. Existing Characters:
player: You are a simple peasant destined for greatness.
---
Action: Lit up the lamp
---
Description: You lit up the candle and the room was suddenly filled with light. You

can now see the pond , the fishing pole , and a few other items in the room.
---
Now write code to update the game states only when necessary.
Code:
## Add missing items/ characters that is missing in the Game states.

## No changes needed

## Update existing item/character ’s properties and descriptions

game.items[’lamp’]. update_description("A lamp (lit)")
game.items[’lamp’]. update_properties("Lit", True)

Listing 4.1: The prompt we use for CoRRPUS on text aventure games. We show GPT

the game states (location, items, and characters), the user input, and GPT generated

descriptions, then we ask GPT to generate the code to update the world model. We

also note that since CODEX API is no longer available, we used GPT3.5-turbo for the

CoRRPUS on text adventure games based on OpenAI’s discovery that GPT3.5 is equally

good at CODEX in terms of coding-related tasks.
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CHAPTER 5 COTTAGE

5.1. Architecture

Recall the main goal of this thesis is to alleviate the issue of long-range consistency by keep-

ing track of the world model. In the previous two sections, we introduced the static game

generator and state tracking system (CoRRPUS). In this section, we put these components

together to construct our COTTAGE system as shown in 7.

Figure 6: The architecture of our novel AI Dungeon COTTAGE. Given each new user
command, we retrieve the relevant game history from the world model, and then conditioned
on that, we prompt GPT-3 to generate the Dungeon’s output to the player. Then we take
the GPT-3 output into our CoRRPUS system to generate the necessary code to update
the world model. Also, we note this abstraction is inspired by Figure 1 in Neural turning
Machine Architecture (Graves et al., 2014) as we also believe that for today’s LLMs, keeping
an external memory (world model in our case) is important.

5.2. Plot-conditioned One-shot Static Game Generation

While Orosz (2021) studies generating descriptions and properties of Things one by one,

it does not consider how to compose them in a meaningful way to form a text adventure

game. While we also experimented with hierarchically generating each description and then
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putting them together, we found that the most e↵ective way is to use what we call “plot-

conditioned One-shot Generation”. We first prompt GPT-3 with the goal (or win condition)

of the game as well as the size of the game (e.g., the expected number of rooms, characters,

and items) and then ask it to outline the locations, characters, and items in the game. The

prompt and outline are shown in 3. Then, we take the prompt in 3, the generated outline,

and an example game from 3.6, and ask GPT-4 to write code to expand the outline to a

static text adventure game. The generated game is shown in 6.4. Note that since the code

generation step can easily go beyond the context length of GPT-3, we opt to use GPT-4

for generating the code.

Now let’s generate a text adventure game. There should be rooms, characters, and items in
the game. The goal is to defeat Lord Voldemort. You should generate rooms, characters,
items following the goal.
Room 1: Hogwarts Entrance Hall
Characters: Harry Potter, Dumbledore, Professor McGonagall, Lord Voldemort Items:
Wand, Cloak of Invisibility, Philosopher’s Stone
Room 2: Great Hall
Characters: Ron Weasley, Hermione Granger, Hagrid
Items: Triwizard Cup, Gry�ndor Sword, Marauder’s Map
Room 3: Forbidden Forest
Characters: Aragog, Centaur, Dragon
Items: Golden Snitch, Time Turner, Basilisk Fang
Room 4: Chamber of Secrets
Characters: Tom Riddle, Salazar Slytherin, Basilisk
Items: Sorting Hat, Sword of Gry�ndor, Crucio Curse Book

Table 3: The zero-shot prompt for GPT-3 to create a game outline and the actual outline
GPT-3 generates.

def build_game ():
# Locations

hogwarts_entrance_hall = Location("Hogwarts Entrance Hall", "You are standing in
the Hogwarts Entrance Hall.")

...

# Items that you can pick up

wand = Item("wand", "a wand", "A MAGIC WAND.", start_at=hogwarts_entrance_hall)
...

# Characters

harry_potter = Character("Harry Potter", "Harry Potter is a young wizard with a
lightning -shaped scar.", "Hello , I’m Harry Potter.", location=
hogwarts_entrance_hall)

...
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# Actions for defeating Lord Voldemort

voldemort.add action("defeat voldemort", destroy item, (voldemort, "Using your wand, you cast a
powerful spell and defeat Lord Voldemort. Congratulations! You win the game!", "You have
already defeated Lord Voldemort."), preconditions={"inventory contains": wand,
"inventory contains": sword of gryffindor}

player = Character(name="player", description="You are a brave wizard at Hogwarts ,
ready to save the school from evil.", persona="I am on a mission to defeat Lord
Voldemort.", location=hogwarts_entrance_hall)

locations = [hogwarts_entrance_hall , great_hall , forbidden_forest ,
chamber_of_secrets]

characters = [harry_potter , dumbledore , mcgonagall , voldemort , ron_weasley ,
hermione_granger , hagrid , aragog , centaur , dragon , tom_riddle ,
salazar_slytherin , basilisk]

items = [wand , cloak , philosophers_stone , triwizard_cup , gryffindor_sword ,
marauders_map , golden_snitch , time_turner , basilisk_fang , sorting_hat ,
sword_of_gryffindor , crucio_curse_book]

game = Game(hogwarts_entrance_hall , player , items , characters , locations)
return game

Listing 5.1: The game generated by GPT-4. It’s directly executable building on the code

described in Chapter 3. In particular, this game is carefully designed toward the goal of

defeating voldemort. As I highlight the special action “defeat voldmort” that is generated

by GPT-4, the preconditions and e↵ects are highly non-trival and coherent with the game

setting.

5.3. Retriever

To limit the input length for GPT-3, we retrieve the most relevant game states and feed

that into GPT-3. We retrieve the name and descriptions of all the items and characters in

the player’s location.

5.4. Consistency Checker

After the static game is generated, the users can start playing the game. The way we

prompt GPT-3 to create Dungeon output is the same as Section 3.1. However, sometimes

the Dungeon output can be self-contradictory as shown in Figure 1. Thus we need to check

if the Dungeon output is consistent with the world model. If the output is consistent, we

use CoRRPUS to update the game state. If it’s inconsistent, the output is regenerated.

We go over an example to help illustrate the mechanics of the the pipeline in 5.7. This

section will focus on how to check the consistency between the Dungeon output and the

game states.
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In practice, we prompt GPT-3 to determine if the description and the retrieved game states

are consistent.

5.5. Action Schema Generation

In the COTTAGE standard system discussed in 7, the player are limited to perform the

predefined special functions. To make the system more flexible, we would want the system

to be able to take in arbitrary commands and if it is a new action, our system generate the

action schema for it. This is achieved via “Action Schema Generation”.

## Omitted the definition of the Item Class and predefined precondition and effect

functions

## Now generate a new action schema for "pick rose" using the defined preconditions

and effects. You should carefully consider the precondition and effects of each

action. (Only use at and inventory_contains for precondition .)

game.items = {’red rose’: <__main__.Item at 0x7fb2888c97b3 >}
game.characers = {}

## Action Schema:

## the relavant object is red rose

try:
game.items[’red rose’]. add_action("pick rose", add_item_to_inventory , (game.items[

’red rose’],"You pick the lone rose from the rosebush.","You already picked the
rose."), preconditions ={})

self.run_special_command("pick rose")
except:

print("error in generated action schema")
===
## Now generate a new action schema for "catch fish with pole" using the defined

preconditions and effects. You should carefully consider the precondition and

effects of each action. (Only use at and inventory_contains for precondition .)

game.items = ‘fishing pole’: < main .Item at 0x7fb43765c97b3>, ‘fish’: < main .Item at
0x7fe32765c97b3>

game.characers = {}

## Action Schema:

## the relevant object in the game states is fishing pole
try:
game.items[’fishing pole’].add action("catch fish with pole", add item to inventory,

(game.items[’fish’], "You dip your hook into the pond and catch a fish.","You weren’t able to
catch another fish."), preconditions={"inventory contains": game.items[’fishing pole’]})

self.run special command("catch fish with pole")
except:
print("error in generated action schema")

Listing 5.2: The example prompt that we use for action schema generation. The text

highlighted in pink are those that are retrieved and changed for di↵erent settings. The

function highlighted in yellow is the action schema generated. It successfully writes

executable code and writes the correct e↵ect. It also stated the precondition that fishing
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pole should be in our inventory.

5.6. Three variants of COTTAGE

By combing the components described above, we finally have the following three variants

of COTTAGE systems. They are graphically illustrated in 7.

Figure 7: All three variants of the COTTAGE systems together with two baselines that we
use. The baselines will be discussed in Section 6.1

(1) COTTAGE Standard: This is our base system. It combines all the crucial components

including game generation, CoRRPUS state tracking, consistency checker, and GPT-3 gen-

eration.

(2) COTTAGE Without State Tracking (COTTAGE-No ST): In this variant, we disable

the world model updating step (CoRRPUS) to examine how much the state tracking system
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a↵ects the coherence of the game

(3) COTTAGE With Action Schema Generation (COTTAGE-AG): In this variant, we add

the action schema generation module to examine how much the level of flexibility it adds and

whether or not it causes inconsistent generations. Assuming the action schema generation

works well, we would have a variant of COTTAGE that can take in arbitrary user

input and generate consistent Dungeon output.

5.7. Example Walkthrough

Below we go over an example of the COTTAGE Standard to help the reader better under-

stand how the whole pipeline works. We continue with the Harry Potter example in which

the static game is generated in Listing 3 and Listing 6.4.

A typical game loop starts with the user entering a command. If the command is successfully

parsed by our parser, the AI dungeon would output a description based on the action. The

text highlighted in pink is the underlying game state representation that is not shown to

the player. The longer descriptions highlighted in yellow are actual text that will be shown

to the players. Then the consistency checker will check the generation and if it’s consistent,

the CoRRPUS state tracker will update the game states accordingly. Then the COTTAGE

system would wait the player to enter the new command.

Finally, the player successfully defeat Voldemort (with the wand and sword) and win the

game.

> Typically here the player should enter a new command but the player does not do it for the first
round.

---
You are standing in the Hogwarts Entrance Hall.

Exits:
North to Great Hall
You see:
* a wand
* a cloak of invisibility
* a philosopher"s stone

---

You enter the grand and foreboding Hogwarts Entrance Hall. A chill runs downyour spine as you take in
the sight of the ancient stone walls and toweringwindows. The air is thick with the dust of years
and a sense of magic hangs inthe air. You see a wand, a cloak of invisibility, and a
philosopher"s stone laidout on a nearby table. North to Great Hall: You walk through the
archwayleading to the Great Hall. This majestic room is filled with ornate tapestriesand banners
of ancient houses. At the end of the hall is a large fireplace, anda long table that could easily
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seat hundreds of students.
---
Consistency Checker: CONSISTENT
---

update_game_state:
## Add missing items/characters that is missing in the Game states.
## No changes needed
## Update existing item/character"s properties and descriptions
game.locations [" Hogwarts Entrance Hall "]. update_description ("You enter the grand and

foreboding Hogwarts Entrance Hall. A chill runs down your spine as you take in
the sight of the ancient stone walls and towering windows. The air is thick with
the dust of years and a sense of magic hangs in the air. You see a wand , a cloak
of invisibility , and a philosopher"s stone laid out on a nearby table .")

game.locations ["Great Hall "]. update_description ("This majestic room is filled with
ornate tapestries and banners of ancient houses. At the end of the hall is a
large fireplace , and a long table that could easily seat hundreds of students .")

game.locations [" Hogwarts Entrance Hall "]. add_exit (" north", game.locations [" Great Hall
"])

>take wand

---
You take the wand.

---

You take the wand from the table and feel a surge of power course through your
body. You look around the entrance hall , taking in the sights and feeling the
magic in the air.
---
Consistency Checker: CONSISTENT
---

update_game_state:
## Add missing items/characters that is missing in the Game states.
## No changes needed
## Update existing item/character"s properties and descriptions
game.items["wand "]. update_description ("A powerful wand that feels like an extension

of your arm .")
game.characters [" player "]. update_properties ("Has wand", True)

>go north
Player is at the Hogwarts Entrance Hall.
trying to go north to the Great Hall.
Player is at the Great Hall.

---
This majestic room is filled with ornate tapestries and banners of ancient houses.

At the end of the hall is a large fireplace , and a long table that could easily
seat hundreds of students.

Exits:
South to Hogwarts Entrance Hall
East to Forbidden Forest

You see:
* a triwizard cup
* a gryffindor sword
* a marauder"s map

---

You stand in the Great Hall , a majestic room with ornate tapestries and banners
of ancient houses. At the end of the hall sits a large fireplace , and a long
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table that could easily seat hundreds of students. In the center of the room ,
you spot a Triwizard Cup , a Gryffindor Sword and a Marauder"s Map.
---
Consistency Checker: CONSISTENT
---

update_game_state:
## No changes needed.

>take gryffindor sword

---
You take the gryffindor sword.

---

You are still in the Great Hall , the same ornate room from before. You now carry
the Gryffindor Sword , which you snatched from the center of the room.
---
Consistency Checker: CONSISTENT
---

update_game_state:
## Add missing items/characters that is missing in the Game states.
## No changes needed
## Update existing item/character"s properties and descriptions
game.items[" gryffindor sword "]. update_description ("A powerful sword that glows with a

red light")
game.items[" gryffindor sword "]. update_properties (" Carried", True)
game.characters [" player "]. update_description ("You are a brave wizard at Hogwarts ,

ready to save the school from evil. You now carry the Gryffindor Sword .")
game.characters [" player "]. update_properties (" Carrying Sword", True)

>go south
Player is at the Great Hall.
trying to go south to the Hogwarts Entrance Hall.
Player is at the Hogwarts Entrance Hall.

---
You enter the grand and foreboding Hogwarts Entrance Hall. A chill runs down your

spine as you take in the sight of the ancient stone walls and towering windows.
The air is thick with the dust of years and a sense of magic hangs in the air.
You see a wand , a cloak of invisibility , and a philosopher"s stone laid out on a
nearby table.

Exits:
North to Great Hall

You see:
* a cloak of invisibility
* a philosopher"s stone

---

You are now in the Hogwarts Entrance Hall , a grand and foreboding room. The
ancient stone walls and towering windows make you shiver. The wand , cloak of
invisibility and philosopher"s stone still lay on the nearby table. You can go
north to the Great Hall.

---
Consistency Checker: CONSISTENT
---

update_game_state:
## Add missing items/characters that is missing in the Game states.

31



gryffindor_sword = Item(" gryffindor sword", "sword", "A powerful sword that glows
with a red light", start_at=player)

game.add_item(gryffindor_sword)

## Update existing item/character"s properties and descriptions
game.characters [" player "]. update_description ("You are a brave wizard at Hogwarts ,

ready to save the school from evil. You now carry the Gryffindor Sword .")
game.locations [" Hogwarts Entrance Hall "]. update_description ("You enter the grand and

foreboding Hogwarts Entrance Hall. A chill runs down your spine as you take in
the sight of the ancient stone walls and towering windows. The air is thick with
the dust of years and a sense of magic hangs in the air. You see a wand , a cloak
of invisibility , and a philosopher"s stone laid out on a nearby table .")

game.items["wand "]. update_description ("A powerful wand that feels like an extension
of your arm .")

game.items["cloak "]. update_description ("A cloak of invisibility ")
game.items[" philosopher \"s stone "]. update_description ("A philosopher"s stone ")
game.locations [" Hogwarts Entrance Hall "]. update_exit (" north", "Great Hall")

>defeat voldemort

---
defeat voldemort

---

You draw my wand and point it at Lord Voldemort. You then reach for the Gryffindor
sword , feeling its weight and power in my hands. You begin to cast powerful
spells , and the sword acts as an extension of your wand , amplifying the power of
upir spells and deflecting Voldemort"s curses. You press forward , pushing him
back until he is weakened and defeated. With a final , powerful stroke from your
sword , Lord Voldemort is vanquished. You win the game!

---
Consistency Checker: CONSISTENT
---

update_game_state:
## Add missing items/characters that is missing in the Game states.
great_hall = Location ("Great Hall", "The Great Hall is a grand room with high

ceilings and long tables for the Hogwarts students .")
game.add_location(great_hall)

## Update existing item/character"s properties and descriptions
game.items[" gryffindor sword "]. update_properties (" Power", 10)
game.characters ["Harry Potter "]. update_description (" Harry Potter is a young wizard

with a lightning -shaped scar. He is currently studying at Hogwarts .")
game.characters [" Dumbledore "]. update_description (" Dumbledore is the wise and powerful

headmaster of Hogwarts. He is known for his great wisdom and kindness .")
game.characters [" Professor McGonagall "]. update_description (" Professor McGonagall is a

strict but fair professor at Hogwarts. She teaches Transfiguration and is the
head of Gryffindor House .")

game.characters ["Lord Voldemort "]. update_description ("Lord Voldemort is an evil and
powerful dark wizard. He is the main antagonist of the Harry Potter series .")

game.items["cloak "]. update_description ("A cloak of invisibility that makes the wearer
invisible .")

game.items[" philosopher \"s stone "]. update_description ("A legendary stone that can
grant immortality and turn any metal into gold .")

game.items["wand "]. update_description ("A powerful wand that feels like an extension
of your arm. It is made of holly and has a phoenix feather core .")

Listing 5.3: An example game transcript based on COTTAGE for our generated Harry

Potter text adventure game
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CHAPTER 6 EXPERIMENTS AND EVALUATION

6.1. Baselines

Aside from the COTTAGE AI Dungeons discussed, we consider the following two baselines:

ChatGPT’s self-imagination Rado↵ (2022) notes that ChatGPT can be viewed as an

AI dungeon for text adventure games by just simply prompting it to image it is the Dungeon.

Then, ChatGPT would function as an AI Dungeon by generating the textual environment

and responding to the user commands. The prompt and a brief example is included in 8

and 9.

Figure 8: The prompt used to ask ChatGPT to imagine itself as an AI Dungeon.

Hard-coded Game We also compare the game in which all the things and actions are

specified by humans as shown in 1 (Callison-Burch and Martin, 2022).

6.2. Evaluation Methodology

The evaluation of generated text adventure games is di�cult and requires human annota-

tion. Thus in this thesis, we conduct a small-scale subjective human evaluation where the

author is the evaluator. We evaluate the game by ourselves and consider 5 games for each

method. Due to the limitations of this manual analysis, we consider this as a subjective and

preliminary evaluation result. The three major metrics that we focus on are listed below.
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Figure 9: Some examples of the user commands and computer responses

(1) Coherence: To evaluate the coherence, we manually play the game until the end and

judge if the generation after each command is consistent or inconsistent. Then, we count the

number of consistent generations and divide by the total number of generations. Because

inconsistent generation happens very rarely, if we simply follow the options given by the

AI Dungeon, we also adversarially input some commands that likely lead the AI Dungeon

to generate inconsistent text (e.g., Figure 1) and examine if it can reject the inappropriate

generation/user input.

(2) Flexibility: Flexibility score is assigned directly. We give fully hard-coded games like

Zork Lebling et al. (1979) a flexibility score of 0 as no any customization or randomness is

present. Our hard-coded game 1 would has a flexibility score of 1 since the generation is

more diverse and the parser is more flexible. The COTTAGE standard would get a flexibility

of 2 as we can generate the game conditioning on the theme/size/plot of the game. Then,

we give methods like ChatGPT’s self-imagination and COTTAGE with arbitrary action
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input would highest flexibility score of 3 as it can accept any user commands and continue

narrating the game.

6.3. Results

System Consistency
Consistency
(Adversarial)

Flexibility

ChatGPT 0.92 0.40 3
Hard-coded Game 1 0.92 1
COTTAGE-Standard 1 0.86 2
COTTAGE-No ST 1 0.53 2
COTTAGE-AG 1 0.60 3

Table 4: The human evaluation results for text adventure game generation. We report the
average for each metric. Recall COTTAGE-No ST is the version that does not perform
state tracking and COTTAGE-AG is the version that uses action schema generation. The
consistency score is the #coherent generations/#total generations.

State tracking helps with consistency As we see in Figure 6.3, comparing to COTTAGE-

No ST, the adversarial consistency score increase 33% for COTTAGE with state tracking.

Below is an example when the state tracking system helps maintaining the consistency.

>destroy cloak

---
destroy cloak

---

You raise the wand , pointing it at the cloak draped on the chair. A spark of
energy leaps from the wand , and the cloak is instantly reduced to ashes.

Consistency Checker: CONSISTENT

update_game_state:
## Add missing items/characters that is missing in the Game states.
## No changes needed
## Update existing item/character ’s properties and descriptions
game.items[’cloak ’]. update_description ("A pile of ashes where the cloak of

invisibility used to be.")
game.items[’cloak ’]. update_properties (" Destroyed", True)

>take cloak

---
You take the cloak.

---

You reach out and take the cloak , feeling the soft , luxurious fabric in your hands.
It is a deep blue color , with embroidered symbols around the collar.

Consistency Checker: INCONSISTENT

---
REGENERATING
---
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You reach out and take the cloak , feeling the rough , charred fabric in your hands. It
is a deep black color , with burnt symbols around the collar.

Consistency Checker: CONSISTENT

Listing 6.1: In this example, the consistency checker successfully recognized the

inconsistency between the previous game states and the generation and regenerated the

consistent description.

Failure case of state tracking In our evaluation, we generally found that the CoRRPUS

state tracking system could update most of the important state changes but sometimes over

generate. For example, in the example below, it update the description of all the characters

when in fact no changes are needed. (This does not significantly hurt the performance of

the model though.)

>go south
Player is at the Great Hall.
trying to go south to the Hogwarts Entrance Hall.
Player is at the Hogwarts Entrance Hall.

---
You are standing in the Hogwarts Entrance Hall.

Exits:
North to Great Hall

You see:
* a philosopher ’s stone

---

You stand in the entrance hall of Hogwarts Castle , the ancient walls looming
around you. To the north lies the Great Hall , its doors standing ajar. In the
corner of the hall you spot a glimmering stone , its brilliant surface catching
the light.

update_game_state:
## Add missing items/characters that is missing in the Game states.
## No changes needed
## Update existing item/character ’s properties and descriptions
game.items[’wand ’]. update_description ("A wand that feels cool to the touch and

tingles with magic. It is your most prized possession. You feel a strong
connection to it.")

game.items[’cloak ’]. update_description ("A luxurious cloak of invisibility that makes
you invisible to all. It is a powerful tool in your arsenal. You feel its weight
on your shoulders , a constant reminder of its power .")

game.items[’gryffindor sword ’]. update_description ("The legendary sword of Godric
Gryffindor. Its richly engraved handle is cold to the touch , and its blade is
sharp and gleaming. You feel a sense of awe and reverence in its presence .")

game.characters[’Harry Potter ’]. update_description (" Harry Potter is a young wizard
with a lightning -shaped scar. He is brave and loyal , and always willing to fight
for what is right .")
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game.characters[’Dumbledore ’]. update_description (" Dumbledore is the wise and powerful
headmaster of Hogwarts. He is a great wizard and a kind mentor to all who seek

his guidance .")
game.characters[’Professor McGonagall ’]. update_description (" Professor McGonagall is a

strict but fair professor at Hogwarts. She is a skilled witch and a fierce
defender of the school .")

game.characters[’Lord Voldemort ’]. update_description ("Lord Voldemort is an evil and
powerful dark wizard. He is the greatest threat to Hogwarts and all who dwell
within its walls .")

game.items[’philosopher\’s stone ’]. update_description ("A philosopher ’s stone , said to
have the power to grant eternal life. It is a dangerous and coveted object , and

many have sought it throughout history .")

Listing 6.2: In this example, the player enters the command “go south” and the generated

describe should not cause game state updates. However the CoRRPUS state tracking system

updates the description of all the characters.

Failure case of consistency checker The consistency checker could also fail sometimes

as in Listing 6.3

>take wand

---
You take the wand.

---

You pick up the wand , feeling its power and potential in your hands. You can
almost feel the magic emanating from it.

>drop wand

---
You drop the wand.

---

You place the wand back on the pedestal , allowing its power to remain in the
room. You can feel the magic dissipate as it leaves your hands.

Consistency Checker: Not consistent. The description lists characters and magical
objects from the Harry Potter universe , but it does not provide any information
about how they relate to the game states of cloak , philosopher ’s stone , and wand.

Listing 6.3: In this example, the player should be able to drop the wand while the consistency

checker decides it to be inconsistent for wierd reasons.

Action schema generation makes the game flexible Below is an example showing

that when the player enters a command that is not predefined, COTTAGE-AG could gen-

erate an action schema that makes sense. This significantly increases the flexibility of the
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text adventure game.

It should be also noted that GPT-3 would fail to generate the correct pre-conditions and

e↵ects. As we can see in Figure 6.3, when adding in the action schema generation, if I keep

asking adversarial commands that is not predefined, the consistency score would drop from

0.86 to 0.60.

---
You are standing in the Hogwarts Entrance Hall.
Exits:
North to Great Hall

You see:
* a wand
* a cloak of invisibility
* a philosopher ’s stone

---

You step into the Hogwarts Entrance Hall , a grand chamber filled with the
ancient echoes of ages past. The walls are lined with marble and stained glass
windows , lit from within by the magical glow of unseen candles. A long carpet of
emerald green stretches out before you , leading up to an impressive door of
solid oak. To the left and right , two grand staircases spiral up to the second
floor , flanked by suits of armor that stand guard. On the floor , you spot a
wand , a cloak of invisibility , and a philosopher ’s stone. North to Great Hall:
You ascend the grand staircase and enter the Great Hall. A long table stretches
out before you , lined with chairs and illuminated by the soft light of hundreds
of candles. On the walls , banners of Hogwarts ’ four houses hang proudly , while
suits of armor stand guard in the corners. The air is filled with the smell of
freshly cooked food and the sound of conversations.

>pick up the stone
## Generated Action Schema: ## the relevant object in the game states is "philosopher

’s stone"
try:

game.items[" philosopher ’s stone "]. add_action ("pick up the stone",
add_item_to_inventory , (game.items[" philosopher ’s stone"], "You pick up the
philosopher ’s stone.", "You already have the philosopher ’s stone in your
inventory ."), preconditions ={})

self.run_special_command ("pick up the stone ")
except:

print("error in generated action schema ")

You pick up the philosopher ’s stone.

---
You pick up the philosopher ’s stone.

---

You add the philosopher ’s stone to your inventory.
relevant_game_stateGame States:

>inventory

---
In your inventory , you have:

* a philosopher ’s stone
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---

You have the philosopher ’s stone in your inventory. With it , you can access a
hidden realm of ancient knowledge and power. You can feel its energy thrumming
through your veins. You can now go to the castle entrance.

>throw away the stone
## Generated Action Schema: ## the relevant object in the game states is "philosopher

’s stone"
try:

game.items[" philosopher ’s stone "]. add_action (" throw away the stone", destroy_item ,
(game.items[" philosopher ’s stone"], "You throw away the philosopher ’s stone.",
"You already threw away the philosopher ’s stone ."), preconditions ={"
inventory_contains ": game.items [" philosopher ’s stone "]})

self.run_special_command (" throw away the stone ")
except:

print("error in generated action schema ")

---
You throw away the philosopher ’s stone.

---

You toss the philosopher ’s stone away , watching as it tumbles through the air
and lands with a thud in the forest nearby.

>inventory

---
You don ’t have anything.

---

You survey your surroundings , but you don ’t have anything on you.

Listing 6.4: In this example, GPT-3.5 successfully generate the new action schema for the

command “pick up the stone” and “throw away the stone” which is not supported by our

hard-coded parser. In the hard-coded parser, the only accepted and equivalent command

is “take the phiolosopher’s stone” and “drop the philosopher’s stone”.
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CHAPTER 7 CONCLUSION AND FUTURE WORK

This thesis presents a novel text adventure game generator COTTAGE that aims at gener-

ating an interesting and coherent text adventure game. We discuss the existing two existing

AI dungeons and one’s limitations as a static game generator and the other one su↵ers from

inconsistent generations. Then, we discuss the components that we used to construct our

new COTTAGE system including a plot-conditioned game generator, the CoRRPUS state

tracking system, the action schema generator, consistency checker.

We conduct a human evaluation to show that our COTTAGE system is better than previ-

ous systems in terms of coherence and flexibility even though there is a trade-o↵ between

flexibility, complexity, and coherence. By comparing three variants of COTTAGE, we show

that components like action schema generator and CoRRPUS could improve either the

consistency or the flexibility of the text adventure game generator.

There are many more ideas to improve the game generator. Future work includes the

following:

(1) More evaluation needs to be done in the future. If budget permits, we should conduct

a large-scale human evaluation to more objectively evaluate our COTTAGE system. We

should also conduct experiments for each separate module (e.g., check consistency module,

game generation module, etc.) to examine its performance and investigate ways to improve

each component.

(2) The check consistency module might benefit from getting more and better examples to

understand the kind of contradition we are looking for. In the future, we should explore

more prompts for it.

(3) How to better control the CoRRPUS to update the game states only when needed?

Currently, it updates the game states more frequently than needed. Maybe a better prompt

could solve it. Maybe we can ask GPT-3 if the Thing needs to be updated and then take
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the probability of Yes and No it outputs and choose a threshold there.

(4) Can we extend this work to create a multimodal game that would be more engaging than

text-only games? In addition to GPT-3 which can generate text, Generative models in other

modalities are also making significant breakthroughs recently. For example, Stable Di↵usion

can generate photo-realistic images (Rombach et al., 2022), Speech Synthesis techniques can

generate a personalized voice for input text (Oord et al., 2016), Singer et al. (2022) can

also generate reasonably good videos. Thus we think that in the future, it is possible to

automatically generate multimodal games by either calling models from di↵erent modalities

or training one single multimodal model. I envision a future world in which people would

play whatever games they want up to their imagination.
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CHAPTER 8 Appendix

8.1. CoRRPUS Experiment Details

To show how CoRRPUS can improve story understanding via maintaining a world model,

we evaluate our system on two tasks: (1) Task 2 of the bAbI set of tasks Weston et al.

(2015), which tests multi-step reasoning, and (2) Re3 Yang et al. (2022), for detecting story

inconsistencies in complicated real-world story examples.

8.1.1. Introduction to the Story Understanding Tasks

bAbI (Weston et al., 2015) is a set of tasks on simple stories that ask questions about what

happened during the story. The tasks have various ways of responding to the questions

such as with argument relations, supplying supporting acts, or a simple yes/no. Following

Nye et al. (2021), we use only bAbI task 2, which tracks characters carrying objects and

moving between di↵erent locations.

Re3 (Yang et al., 2022) is a story inconsistency detection task aimed at identifying character-

based contradictions in stories. Similar to similar to (Qin et al., 2019), Yang et al. (2022)

built a set of stories, each with a variation that is counterfactual to the original story. These

stories were generated by LLMs to generate consistent/contradictory stories based on a story

premise and then the model was asked to detect any story inconsistencies. Yang et al. (2022)

make use of the Edit function for GPT-3 to correct the detected factual inconsistencies in

order to maintain long-range story consistency.

These two tasks have been seen to be extremely challenging for LLMs with naive, few-shot

prompting leading to accuracy barely above random chance.

8.1.2. Question-and-Answering (bAbI Task 2)

bAbI (Weston et al., 2015) is a question answering dataset for logic-based reasoning tasks.

In Task 2, it first provide a story S focusing on the movement of objects and characters

throughout the story and a query Q about their locations. The dataset contains 1000

testing samples of the (S, Q, A) tuples, where A is the answer to the query. We choose Task
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2 because of the recent neurosymbolic reasoning work evaluated on it (Nye et al., 2021;

Creswell et al., 2022), which we use as our baselines.

Method # Shot Original Accuracy Our Accuracy

Random - 25% -
GPT-3 (Nye et al., 2021) 0 29.0% -
GPT-3 1 - 56.5%
7B LLM COT (Creswell et al., 2022) 5 ⇠30% 46.4% (175B) 1 shot
280B LLM COT (Creswell et al., 2022) 5 ⇠35% 46.4% (175B) 1 shot
7B LLM SI (Creswell et al., 2022) 5 ⇠30% 29.3% (175B) 1 shot
280B LLM SI (Creswell et al., 2022) 5 Not reported 29.3% (175B) 1 shot
GPT-3 DS (Nye et al., 2021) 10 100.0% -
CoRRPUS (comment only) 1 - 67.0%
CoRRPUS (specific functions) 1 - 78.7%
CoRRPUS (abstract functions) 1 - 99.1%

Table 5: Accuracy on bAbI task 2. GPT-3 with Chain-of-Thought (COT) and Selection-
Inference (SI) are by Creswell et al. (2022) and GPT-3 with Dual-System (DS) is by Nye
et al. (2021). The Creswell et al. (2022) models were in-house LLMs RETRO (7B param-
eters) (Borgeaud et al., 2021) and Gopher (280B parameters) (Rae et al., 2021) using a
5-shot prompt. When we ran their task using GPT-3 (which has 175B parameters) and a
1-shot prompt, the model did significantly better for the COT task and about the same on
SI. Their numbers are reported as approximations since they were reported in a graph. All
methods have been rerun on our machines. Due to pricing constraints, we ran the vanilla
GPT-3 model using 1-shot prompting to more closely match our own experiments.

We compare our system to the following baselines:

1. GPT-3: We compare to a o↵-the-shelf GPT-3 davinci model two di↵erent ways:

using zero-shot (Nye et al., 2021) and, for a better comparison to CoRRPUS, one-

shot prompting.

2. LLM with Chain-of-Thought Prompting (Creswell et al., 2022): Chain-of-

Thought Prompting (Wei et al., 2022b) includes the reasoning traces for the question

and has been shown to improve model performance on various tasks. Although the

original models by Creswell et al. (2022) were in-house 7 billion- and 280 billion-

parameter LLMs, we use the prompt they provide with GPT-3 (175 billion parame-

ters). We report their original accuracy on both their models and our accuracy re-run

on GPT-3.
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3. LLM with Selection-Inference (Creswell et al., 2022): This method prompts

the LLM to first select sentences relevant to the question, reveal the reasoning chain,

and then do the inference. Again, Creswell et al. (2022) use 7 billion- and 280

billion-parameter models, but we re-implement the Selection-Inference framework us-

ing GPT-3.

4. GPT-3 with Dual-System (Nye et al., 2021): The method specify the functions

of all actions used in Task 2 (symbolic). Then it prompt GPT-3 to match each sentence

with the actions (neural) and execute the corresponding function.

CoRRPUS Formulation for bAbI. Starting with the CoRRPUS prompt formulation

that was described in Section 4.1, we first initialize the character class with the attributes

name, location, and inventory. The object class has attributes name, location, and

carrier. Then, we let Codex complete the World class by generating the rest of the

story() function, which tracks the story state changes. The final World class is given to

GPT-3 to answer the query Q given in the bAbI Task, and we measure the accuracy of the

model selecting the correct answer.

Results and Discussion. As show in Table 5, even the one-shot prompting CoRRPUS

system with Comment Only or Specific Functions achieve 12% and 22% higher accuracy,

respectively, compared to vanilla one-shot GPT-3. We believe that is because GPT-3 out-

of-the-box and unaided is known to be bad at multi-step reasoning (Shridhar et al., 2022;

Sap et al., 2022). Meanwhile, Code-LLMs represent knowledge symbolically and therefore

are better at logical reasoning (Madaan et al., 2022).

However, when the underlying functions for actions are provided for CoRRPUS (Abstract

Functions), it can achieve near-perfect accuracy, vastly exceeding other prompting methods.

This experiment shows that the importance of abstraction to trackability and composability

in symbolic reasoning. The other system which approximately matches ours is the GPT-3

Dual System (Nye et al., 2021), which splits the reasoning steps into two separate systems,

uses hand-written rules, and requires 10-shot prompting. We show that simply one-shot
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Figure 10: An illustration of the contraction detection process of CoRRPUS for Re3. Fol-
lowing Yang et al. (2022), we check attributes across the premise and the story using a
BART-based entailment model and flag any contradictions for attribute-value pairs with
the same attribute key.

prompting Codex is enough to perform logic reasoning on these simple sentences, as long

as it is provided low-level functions to compute over.

With such high accuracies from our system and Nye et al. (2021)’s Dual System, we are

tempted to consider bAbI’s Task 2 a solved problem.

8.1.3. Detecting Story Inconsistency (Re3)

Given the simplicity of the sentences in bAbI, we wondered how well CoRRPUS could

process and understand stories with complicated real-world sentences, such as those in the

Re3 task. This dataset contains 50 (P, P’, S, S’) tuples where P denotes a story premise, P’

is a premise contradictory to P, S is the story generated from P, and S’ is the story generated

following P’. The task is framed as classification; one wants to flag (P, S) and (P’, S’) as

consistent and (P, S’) and (P’, S) as contradictory. They then report the ROC-AUC (area

under the ROC curve) score. An example of the comparison between facts of the premise

and the story is shown in Figure 10.

CoRRPUS Formulation for Re3. Following our CoRRPUS prompt starting point (see

Section 4.1), we initialize the character class with common person attributes including

name, appearance, occupation, gender, age, and relations (to other characters). Then

we initialize the main characters in the World class and one-shot prompt Codex to complete

the story function for tracking the state changes of the characters. Full examples of each

of these prompts can be found in Dong et al. (2022b).
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We use the following baselines:

1. GPT-3: We query GPT-3 using zero-shot prompting to determine whether there are

inconsistencies in the (S, P) pair.

2. Textual Entailment (Yang et al., 2022): This method uses the BART-Large-

based (Lewis et al., 2020) entailment model trained on MNLI (Williams et al., 2018)

to score (S, P) pairs.

3. Entailment-DPR (Yang et al., 2022): For each sentence si in S, this method

computes its relevance score against each sentence in P by using Dense Passage Re-

trieval (Karpukhin et al., 2020). Then the method takes the sentence with highest

relevance score pi and use the entailment model to detect contradictions.

4. Structured-Detect (Yang et al., 2022): This method prompts GPT-3 to extract

an attribute dictionary for each character in the story premise and the story. To

prevent hallucinations, the method prompts GPT-3 three times and then uses the

BART-Large-based entailment model to take the most-agreed attributes. Finally,

the method converts the attribute-value pairs into natural sentences and uses the

entailment model to detect contradictions for values under the same key.

Inspired by the Structured-Detect (Yang et al., 2022) and Self-Consistency (Wang et al.,

2022c) methods, we ask CoRRPUS to complete 3 di↵erent generations with temperature

equals 0.7 and take the attribute-value pair by majority voting. Finally, we use the BART-

Large-based entailment model to flag any contradictions for the values for any attributes

found in both the premise and the story. A toy example of this comparison process is shown

in Figure 10.

Results and Discussion. Table 1 shows that all version of CoRRPUS greatly outperform

the baseline methods, with CoRRPUS (specific functions) performing the best at a ROC-

AUC score of 0.79.
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Method ROC-AUC

Random 0.5
GPT-3 0.52
Yang et al. (2022) baselines:
Entailment 0.528
Entailment-DPR 0.610
Structured-Detect 0.684
CoRRPUS (comment only) 0.751
CoRRPUS (specific functions) 0.794
CoRRPUS (abstract functions) 0.704

Table 6: ROC-AUC score on the Re3 consistency detection task. The scores for Entailment,
Entailment-DPR, and Structured-Detect models are directly cited from Yang et al. (2022).

Subjectively comparing CoRRPUS to GPT-3 shows that GPT-3 tends to struggle with

the parsing of the sentences, not knowing what is relevant. Take, for example, the sentence

“Mark Woodbury, a middle-aged man with graying hair and a mustache, smiled at Shannon

as she walked into his o�ce.” CoRRPUS generates

• self.Mark Woodbury.appearance.append(‘graying hair’)

• self.Mark Woodbury.appearance.append(‘mustache’)

• self.Mark Woodbury.age.append(‘middle-aged’)

Meanwhile, GPT-3 generates “Mark is a middle-aged man with graying hair and a mus-

tache.” Our particular way of prompting with CoRRPUS uses pre-specified attributes in

the character class initialization. By pointing out what types of attributes the model

should be paying attention to (e.g. appearance or relations), CoRRPUS is better able to

extract the relevant information from the natural language sentences of the given story.

Meanwhile, GPT-3 ends up summarizing the original sentence.
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