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ABSTRACT

Many Natural Language Processing (NLP) tasks require knowing the sense of polysemous
words. Clustering the paraphrases of a word into distinct senses has been used as a step in
word sense disambiguation (WSD) algorithms. However, all previous word sense clustering
algorithms have relied exclusively on unimodal linguistic features, and in particular, using
word representations from distributional semantics. In our work, we incorporate visual
features derived from the image search engine into the tasks of word similarity prediction and
word sense clustering. Image search engine provide a way to link a query word and a set of
top n images for that query word. Based on previous work, n visual or image-based features
can be obtained by running n images through a convolutional neural network (CNN) and
extracting values from the pre-softmax layer. Following the linguistic approach of having a
single representation for a query word, we explore three ways to convert n visual or image-
based features into a single representation. For the task of word similarity prediction, we
conduct a comprehensive set experiments on thirteen datasets by varying the number of
image features n for all three approaches. In addition to comparing different models, we
provide a way to combine linguistic and visual features into a multimodal representation by
vector concatenation applied with dimensionality reduction. We show that the performance
of visual and multimodal representation is comparable to the linguistic representation for
some of the datasets. We report that on average the performance increases as n increases.
Moreover, we show that sets of image features corresponding to each word also provide a
powerful signal for the task of sense clustering, and that by incorporating visual information
into our clustering paradigm, we can achieve an alternative sense disambiguation than
by using text alone. We report our results on two existing datasets for different part-of-
speech (POS) and argue that visual features are better than linguistic features in predicting
clusterings for nouns, but are significantly worse for verbs. Finally, we provide limitations of
existing datasets, generate a new dataset for word sense, and report our results for different

POS.
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CHAPTER 1 : Introduction

A polysemous word is one that has several different meanings or senses. The task of word
sense disambiguation (WSD) involves determining the meaning of a word from its surround-
ing context given a predefined sense inventory. For example, the word ‘bug’ in the context
of biology could mean ‘parasite’ or ‘virus’. To a computer scientist, however, ‘bug’ is much
more likely to mean ‘error’ or ‘glitch’. WordNet (Miller, 1995) contains manually created

sense inventories. It contains the following senses for the noun ‘bug’:
e S1: bug (general term for any insect or similar creeping or crawling invertebrate)
e S2: bug, glitch (a fault or defect in a computer program, system, or machine)
e S3: bug (a small hidden microphone; for listening secretly)

e S4: hemipterous insect, bug, hemipteran, hemipteron (insects with sucking mouth-
parts and forewings thickened and leathery at the base; usually show incomplete

metamorphosis)

e S5: microbe, bug, germ (a minute life form (especially a disease-causing bacterium);

the term is not in technical use)

Many tasks in Natural Language Processing (NLP) like machine translation are incomplete
without knowing the sense of a word. Consider the following sentence: ‘The patient is
running a fever that seems to be the result of a mild bug’. This cannot be translated
accurately from English to French without knowing that the definition of ‘bug’ is most
similar to that of ‘virus’, given the context. The task of automatically identifying the

senses of a word is knows as word sense induction (WSI).

Hence, there is a need to represent the meaning of a word, as it serves as a prerequisite to
many tasks in NLP. One of the traditional approaches to represent the meaning of a word

is to use the context in which it appears. The context can be represented as a vector, com-
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Figure 1: An abstract representation of word vectors that represent a word using the
contexts in which it appears under the assumption of the distributional hypothesis

monly referred to as a word embedding. The key idea relies on the distributional hypothesis
(Harris, 1954), which tells that words that appear in similar context have similar vectors
and similar semantics. This representation allows to compare words via multiple vector sim-
ilarity metrics, for instance cosine similarity. Figure 1 denotes an abstract representation of
word embeddings along with the cosine similarity scores for a subset of those embeddings.
It can be seen that words ‘army’ and ‘navy’ have a relatively high similarity score, whereas
‘general’ and ‘navy’ have a relatively low similarity score. This is most likely justified by
the word ‘general’ being a polysemous word that could appear both as an adjective and as

a nour.

In our work, we focus on two tasks: word similarity prediction and clustering paraphrases
by word sense. The first task asks to predict a similarity and/or relatedness score between a
pair of words. For instance, in Figure 1 how similar are ‘navy’ and ‘general’ or how similar
are ‘admiral’ and ‘general’? The second task is to group paraphrases by word sense. The
task is summarised in Figure 2 and can be formulated as follows: given a query term and
a set of paraphrases for that query term, create a clustering such that a cluster in this

clustering represents a distinct sense.
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Figure 2: WordNet+ Gold 2.0 Dataset gold clustering for the word bug. The objective is to
cluster paraphrases such as bug into its different senses Cocos and Callison-Burch (2016)

The approach most closely related to our work is that of Cocos and Callison-Burch (2016)
which explores advanced clustering algorithms and similarity measures for clustering para-
phrases by word sense. A key component to clustering is choosing how to define the simi-
larity, or affinity, between two data points. Cocos and Callison-Burch (2016) experimented
with several text-based measures of affinity between two paraphrases, such as second-order
paraphrases and distributional semantics. Most clustering algorithms require a similarity
matrix as an input. A similarity matrix for a paraphrase set of n terms is n X n symmetric
matrix of non-negative values where each element gives a pairwise similarity score. There-
fore, the first task of similarity prediction is of great importance to the second task of sense

clustering.
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Figure 3: The presence of an image can provide a useful, and at times complimentary signal
for several NLP tasks

In our work, we show that images provide a useful, and at times complementary signal to



text for performing word similarity prediction and word sense induction. Image features
have been used in other NLP tasks like learning translations via visual similarity of words
(Bergsma and Van Durme, 2011). Images intuitively provide a level of information that is
often helpful in NLP tasks. For example, to disambiguate the meaning of bug, the presence
of a corresponding image can help with the understanding of the sense of a word, as can
be seen in Figure 3. Images search engines provide a way to associate a set of images with
a query word or phrase. Figure 4 shows top 5 images for some of the paraphrases seen in

Figure 2 collected by Callahan (2017) from the Google Image Search.

P
¢ 3

Figure 4: Top-5 images from the collected dataset (Callahan, 2017) for the paraphrases
observed in Figure 2

We propose a new method to cluster paraphrases based on word sense using their textual
as well as image features. Our goal is to determine the best way to leverage the information
provided by images to accurately predict the senses of a word given its paraphrases. We

conduct a broad range of experiments to address the following research questions:
e Can we create vector representations using images instead of text?

e Can image representations be used instead of text for word similarity and sense clus-
tering? Can image representation consistently help capture the different senses of a

word?



e What would be the best way to combine similarity measures from multiple modes

when clustering paraphrases?
e Does image representation work better for a particular part-of-speech (POS)?

e Can image concreteness values augment sense clustering? Concreteness is a concept
from psycholinguistics indicates the degree to which the concept denoted by a word

refers to a perceptible entity (Brysbaert et al., 2013).

The main contributions of our word are outlined below:

Extend the results of word similarity prediction on a variety datasets

e Experiment with the number of image features, dimensionality and ways to combine

image features to represent a word

e Provide a novel approach to perform clustering paraphrases by word sense using im-

ages

e Provide a novel approach to perform clustering paraphrases by word sense by com-

bining multimodal data coming from images and text

e Breakdown evaluation by POS

e Generate a new dataset for clustering paraphrases by word sense that originates from

WordNet+ dataset

This thesis is organised in the following way: Chapter 2 describes approaches to incorpo-
rate visual features into a word representation from images retrieved from search engines.
Chapter 3 provides an overview, literature review, dataset descriptions, experiments and
discussion for the task of predicting similarity of word pairs. Chapter 4 provides an overview,
literature review, dataset descriptions, experiments and discussion for the task of clustering
paraphrases by word sense. The chapter also focuses on limitations of the existing datasets

and generation of the new dataset. Finally, Chapter 5 provides a conclusion and discussion



for future work.



CHAPTER 2 : Incorporating visual features

2.1. Overview

This chapter provides a literature overview and approaches in using information from image
search engines for a variety of tasks, and describes several approaches taken for this thesis

research as a result of previous work.

2.2. Approach

-~ B Sl niﬁé‘::ﬂ e

Figure 5: Bergsma and Van Durme (2011) approach of learning translations via visual
similarity. The top row contains five images for the Indonesian word kucing. The bottom 4
rows display top 4 translations in English. Figure taken from Hewitt et al. (2018)

We build on data created by Callahan (2017) that was used by Hewitt et al. (2018). Callahan
(2017) re-created the experiments of Bergsma and Van Durme (2011) at a much larger scale.
Bergsma and Van Durme (2011) learn translations via visual similarity of images associated
with words in foreign languages. They retrieve images for a foreign word, convert them to
vectors via SIFT and colour histogram features, and then compare the foreign words vector
against vectors representing all English words. Figure 5 illustrates this approach for an
Indonesian word ‘kucing’ and top 4 English translations with ‘cat’ being the most similar

word to ‘kucing’ based on visual similarity.



The collected dataset by Callahan (2017) contains 100 images for around 10000 words in
each of 100 foreign languages. The dataset also contains images and text from the web
pages where an image appeared at for each of their translations into English. In total,
the dataset contains 35 million images and web pages. In this setup, the word serves as a
query to the data that originates from an image search engine. Since the data originates
from Google Image Search, there is a question about how well a set of images represent a
query word since search engines automatically associate words and images. Hewitt et al.
(2018) show that on average 86% of images were evaluated by Amazon Mechanical Turk
workers to be good representations of their target word. For vocabulary words that occur
in datasets used in predicting similarity of word pairs seen in Chapter 3 and clustering
paraphrases using word sense seen in Chapter 4, the average number of images per word
is around 90. We chose to collect at most 100 images following the set up of Hewitt et al.
(2018) and contrary to the suggestions on the optimal number of images of between 10 and

20 proposed by Kiela et al. (2016) in order to perform systematic evaluation on our side.

4096 neurons: Reshaped 64x64

800x600 image of microbe
Ty i 1 A A output of FC7 Layer of AlexNet  output of FC7 Layer of AlexNet

index

— 4095 =

0 1 2

0 10 20 0 40 0 &

Figure 6: An example of how n image features are generated for a word ‘microbe’

Kiela et al. (2015) showed that using CNN features is superior to using SIFT and colour



histograms for vector generation used by Bergsma and Van Durme (2011). As such, we
follow the setup of Kiela et al. (2015), where for each image extracted for a word in vocab-
ulary, we extract 4096-dimensional features from the FCT7 layer of a CNN called AlexNet
trained on ImageNet (Krizhevsky et al., 2012). The FC7 layer is the fully connected 7th
layer and is the second to last layer in the AlexNet architecture. The process of retrieving
top images for a word ‘microbe’ and converting an image to a 4096-dimensional feature is
illustrated in Figure 6. Figure 7 shows an abstract representation of n image features for a

given word.

e
. R
. 1 2 4095
1st image 0.1 0.0 0.7 0.0
feature
2
B
s 2ndimage | 0.3 [ 0.0 | 00 | .. 1.0
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Figure 7: Abstract representation of n image features for a given word w

2.3. Using Multiple Images As The Representation For A Single Word

Since we have up to 100 vectors derived from the 100 images retrieved for each word, we
need a way of combining the vectors into a single representation of a word, or combining
them to make a comparison between a pair of words. The subsequent subsections describe
multiple approaches taken to compute similarity using extracted image features for a pair

of words.



Let us denote the following:
e w = word
e n. = number of image features for a given word w
e 7(w) = set of image features for a given word w

2.8.1. Average Similarity for a Word

index
e
. R
. 1 2 4095
1st image 0.1 0.0 0.7 0.0
feature
H
B
; 2ndimage | 0.3 | 00 | 0.0 | .. 1.0
= feature
)
: average across n images features averaged vector
] indices of n
E image features
6 < 3rd image 00 | 00 | 02 | .. 0.15 —» [ 015|021 | 01 | .. 0.3
3 feature
(7]
o
o
[
E
2
o
o
<]
(]
nth image 0.8 0.3 0.0 0.117
feature

Figure 8: An average of n image features can be computed computed for to represent a
single word w

In this approach, we take n image features for a word w and produce a single 4096-vector

containing the average of each column as seen in Equation 2.1.

VECAVG(w):% d i (2.1)

A diagram representing the VECAVG operation is given in Figure 8. Hence, this approach

10



produce a vector embedding for a word w by averaging n image features. Computing
similarity between a pair of words w; and wy then becomes a similarity between their two

vector representations as seen in Equation 2.2.

AVG(wy,ws) = sim(VECAVG(w;), VECAVG(w2)) (2.2)

For siM a similarity metric, for instance, cosine similarity can be used to calculate similarity
between the averaged high-dimensional vectors. Cosine similarity as been shown to be a
very effective measure on many semantic benchmarks (Bullinaria and Levy (2007), Padé
and Lapata (2007)). Kiela and Bottou (2014) and Kiela et al. (2015) refer to this approach

of averaging n images as CNN-MEAN.
2.8.2. Average Mazimum Similarity Between a Pair of Words

In this approach, we compute the average maximum similarity between the image feature

sets to compute the similarity between a pair of words w; and wsy as seen in Equation 2.3.

1
AveMaX(wi, wy) = p— ‘ IE%%X )(Sim(il,ig)) (2.3)
1 71 EI(wl) ‘2 w2

This measure was originally introduced for the task of translating words between English
and a foreign language by looking only at corresponding images (Bergsma and Van Durme,
2011; Kiela et al., 2015). Kiela et al. (2015) found AVGMAX to be the best-performing
model in comparison to MAXMAX or CNN-MEAN.

Figure 9 provides an abstract representation of how an AvGMAX(w1,ws) is computed. It
can be seen that the first step is to compute maximum pairwise similarity of each one of
image features for wj to image features for we. The second step then averages the maximum

pairwise similarity computed and dividing by the number of image features for w;.

11



r R Step 1: Maximum Pairwise similarity r 0
0 1 2 4095 of each one of image features for w1 to 0 1 2 4095
s image features for w2

i 0.1 00 | 07 0.0 i1 0.3 05 | 06 | .. 0.0
L e . [
s sim(i11,i23) = 0.5 and is max S
Q
s Q
s i12 i22 =
g 0.3 0.0 | 0.0 1.0 _sim(i12, i22) = 0.7 and is max i 0.1 0.1 00 | .. 0.2 g
. D
g H
x \ 8
< =
c " r g%
-§ ~ i13 0.0 0.0 0.2 0.15 AN : i23 0.0 0.0 0.0 0.78 o
S 3
[} =
% sim(i13, i2k) = 0.3 And is max g
E sim(i1n, i21) = 0.4 and is max z
o a

[-d
8 g
o
in 0.8 03 | 0.0 0.117 / i2k 0.0 [0.09 | 00 | .. 0.01
-

L - J
Step 2: Adding max scores from Step 1
and dividing by n

(05+0.7+03+..+04)/n=0.8 Final Score is average max similarity
\of each one of image features for w1
to image features for w2

Figure 9: Abstract representation of how an AvGMAX (w1, ws) is computed

The value produced in Equation 2.3 might not be necessarily symmetric, for example, if two
images for w; have the same closest image in the set of we or when the number of image
features for the first word might not be equal to the number of images features for the
second word. In order to demonstrate such case let us use integers instead of vectors as the

elements in each image set. Let: Z; = (1,2) and Zy = (1,5,9). The average maximum pair-

max(sim(1,1),sim(1,5),sim(1,9))+max(sim(2,1),sim(2,5),sim(2,9)) __
3 =

wise similarity of Z; to Zs is then:

w The average maximum pairwise similarity of Zs to Z; is equal to the follow-

max(sim(1,1),sim(1,2))+max(sim(5,1),sim(5,2))+max(sim(9,1),sim(9,2)) _  sim(1,1)4sim(5,2)+sim(9,1) There
2 - 3 : g

ing:
fore it can be seen that the average maximum pairwise similarity of Z; to Zo and average
maximum pairwise similarity of Zs to Z; are not equal to each other. Since most clustering

algorithms require the input affinity matrix to be symmetric, we use the following symmetric

form as seen in Equation 2.4.

AveMAX(wi,w2)  AVGMAX(w2, w1)
2 2

SYMAVGMAX (w1, wg) = (2.4)
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As seen in Section 2.3.1 we can use a measure such as cosine similarity to measure similarity

between a pair of vectors.
2.3.8. Average Average Similarity Between a Pair of Words

We replicate the approach Section 2.3.2; but instead of using average maximum to compute
the similarity between a pair of words wy and ws, we use average of average to compute the
similarity between a pair of words as seen in Equation 2.5. The motivation behind using

average of average came from the lack of occurrence of such measure in the previous work.

1 P
AVGAVG(wy,wy) = o Z AV, cT(wy) (SIM (71, i2)) (2.5)
1€Z(wr)

2.4. Other Related Work

In this section, we describe other NLP work that uses multimodal data obtained from image
search engine. Bergsma and Van Durme (2011) were one of the first researchers to perform
word-to-word translations using multimodal data obtained from image search engine. They
used this monolingual connection between a word and an image to learn bilingual trans-
lations on 15 language pairs based on whether the corresponding images have resembling
visual features. Bergsma and Goebel (2011) used image to word connection to help pre-
dict lexical selectional preferences. In particular, the area of their focus lied on predicting
whether a noun argument occurs as the direct object of a verb predicate. In order to do so,
for each verb-noun pair they retrieved images of a noun, extracted visual information from
images and then used a model on those visual features to output a plausibility score for a
verb-noun pair. In addition, Bergsma and Goebel (2011) demonstrated that Google image

search yield representations of higher quality when compared to Flickr.

Bruni et al. (2014) proposed an architecture for integrating text and image-based distribu-

tional information that is superior to predicting semantic similarity and relatedness for a
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pair of words. Kiela and Bottou (2014) presented a novel approach in constructing mul-
timodal representations by combining a Skip-gram linguistic representation vector and a
visual concept as an extracted layer of a deep CNN trained using ImageNet (Krizhevsky
et al., 2012) or ESP Game (von Ahn and Dabbish, 2004). Kiela and Bottou (2014) applied
this vector representation into semantic relatedness evaluation tasks and outperformed rep-
resentations that are linguistic or standard bag-of-visual-words (BoVW) (Sivic and Zisser-
man, 2003). Inspired by the traditional bag-of-words BoW method, BoVW gets a visual
representation from an image by connecting each of its local descriptors to a cluster his-
togram with a use of a clustering algorithm. In that year Kiela et al. (2014) published
another paper on improving the results of multimodal representation by deciding whether
to include perceptual input for a concept or not based on concreteness. Kiela et al. (2015)
used image search engine along with the query word for lexical entailment detection, and
in particular examining generality of the hypernym compared to the hyponym based on
their related images. Kiela et al. (2015) published another paper on using image features
obtained from the pre-softmax layer of CNNs for the task of bilingual lexicon induction.
The authors argued that the reason for choosing CNN-derived image representations was
that in comparison to traditional bag of visual models used in multimodal distributional
semantics (Bruni et al. (2014), Kiela and Bottou (2014)), this representation yields higher
quality representations. Furthermore, Kiela et al. (2015) experimented with various visual

similarity metrics between two sets of n images and the corresponding features.

The following year, a variety of NLP studies used the CNN-derived representation from top-
10 images in Google image search proposed by Kiela and Bottou (2014) in conjunction with
linguistic representation: Shutova et al. (2016) performed metaphor identification, Bulat
et al. (2016) obtained property norms, predictions, while Vulié¢ et al. (2016) created bilin-
gual multimodal embeddings to perform bilingual lexicon learning. Lazaridou et al. (2015)
extended the Skip-gram model of Mikolov et al. (2013) by taking visual representation and
evaluating against a variety of semantic benchmarks. Following the success of multimodal

representation learning in a range of tasks, Kiela (2016) developed a MMFeat toolkit for
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obtaining feature representations for visual information.

Kiela et al. (2016) performed an evaluation in comparing CNNs architectures of state-of-
the-art models, explored raw input images coming from various engines, and identified
the optimal number of images. The approach proposed by Kiela and Bottou (2014) in
using deep CNNs trained on Google Images for visual groundings has also been applied for
decoding brain activity. Anderson et al. (2017) used both the linguistic representation and
CNN-derived image representation in isolation for decoding brain activity, and in particular,
decoding abstract nouns. Anderson et al. (2017) observed that the former representation
yields greater accuracies for abstract nouns, however the performance of both models is
similar for more concrete nouns. In another study Bulat et al. (2017) used MMFeat toolkit
(Kiela, 2016) to perform a systematic evaluation of text-based, image-based and multimodal
semantic models in their ability to predict patterns of conceptual representation in the

human brain.

Glavas et al. (2017) presented research in semantic text similarity, which measures semantic
equivalence between short texts, using the MMFeat toolkit (Kiela, 2016). The authors used
Bing image search with 20 images per word and VGGNet (Simonyan and Zisserman, 2014)
pre-trained on the ImageNet classification task (Russakovsky et al., 2015) to extract visual
representation. Glavas et al. (2017) found that multimodal representation achieves the best

performance than visual and linguistic measures in isolation.

Bhaskar et al. (2017) performed a comparison between textual, visual and combined modal-
ities for distinguishing between abstract and concrete nouns following the feature extraction
and suggestions of Kiela et al. (2016) and querying up to 25 images per word. While the
predictions achieved high performance, the authors found that the difference between uni-
modal and multimodal representations in terms of performance was negligible. In another
study Hartmann and Sggaard (2018) argue that the previous work on bilingual lexicon in-
duction with multimodal representation only applies to nouns and does not scale to other

part-of-speech (POS), for instance adjectives and verbs. Hewitt et al. (2018) address the
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challenges of translation outlined by Hartmann and Sggaard (2018) by finding that images
are just as effective for translating more complex phrases than simple nouns, and expanding

the dataset for over 260000 English words and 32 foreign languages.

Wang et al. (2018) proposed three novel methods for building a multimodal model that can
fuse the semantic word representation from various modalities according to different types
of words by obtaining visual representation from averaging CNN-derived representation.
Collell et al. (2017) proposed an integration between language and vision that provides a
way to ‘imagine’ missing visual information and a method to build a multimodal repre-
sentation with the use of mapped vectors. Collell and Moens (2018) uncovered that the
multimodal mappings from the CNNs can produce mapped vectors more similar to the
input than to the target with respect to the semantic structure. They proposed a new sim-
ilarity measure that explicitly quantifies similarity between the neighbourhood structure
of two sets of vectors. Kiros et al. (2018) published a large-scale lookup operation called
Picturebook. The Picturebook extracts top images from Google image search and extracts
image embeddings by feeding them into CNN. Kiros et al. (2018) report result across a
range of NLP tasks: similarity and relatedness between a pair of words, natural language
inference, sentiment or topic classification, image-sentence ranking and machine translation.
The main contributions of their research are in the collection of word representations from
GloVe (Pennington et al., 2014), which is orders of magnitude larger than previous work,
and in multimodal gate mechanism for choosing between GloVe and Picturebook that can

be applied in a task-dependent way.
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CHAPTER 3 : Predicting Similarity of Word Pairs

3.1. Overview

For this part of the research, we seek to understand how well visual-based word representa-
tions measure semantic similarity and relatedness between a pair of words. The motivation
behind conducting this set of experiments is that the similarity score between a pair of
words produced by our best word representation is used directly as an input into a sim-
ilarity matrix in the clustering algorithm described in Chapter 4. Moreover, knowledge
from these experiments provides an insight into understanding whether our image-based
word representations are comparable to existing state-of-art text-based vector representa-
tions. As importantly, these experiments allow us to identify the type of words for which
our approach is well-suited. This chapter contains a literature review on conventional and
multimodal distributional semantic models, descriptions of the datasets, evaluation metrics,

along with the experiments and results.
3.2. Literature Review
3.2.1. Distribution semantic models

Before the appearance of the multimodal representation, the task of predicting similarity
between a pair of words was approached using traditional distribution semantic models
(DSMs) that rely only on linguistic (unimodal) environment. DSMs are based on the
distributional hypothesis (Harris, 1954) that states that words are likely to be semantically
related if they occur in similar contexts (Bruni et al., 2014). The most common type of DSMs
is semantic space models commonly referred to as vector space models or word embeddings,
which approximate the meaning of words with vectors that record the distributional history
in a corpus (Turney and Pantel, 2010). DSMs have been extremely effective in a variety of
tasks in semantics like semantic composition and analogical mapping (Clark, 2015; Turney

and Pantel, 2010; Mikolov et al., 2013)).
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Word2vec is one of the most popular word embeddings techniques. Word2vec was developed
by Mikolov et al. (2013) and consists of two neural network language models: continuous
bag-of-words (CBOW) and Skip-gram. Both models are trained on words inside a window of
a pre-defined length, which is moved along the corpus. CBOW model predicts a word given
a surrounding window of context words, while a Skip-gram model predicts the surrounding
window of context words, given a word. Another commonly used word embedding is called
GloVe (Pennington et al., 2014). Like word2vec, GloVe is an unsupervised approach based
on the distributional hypothesis. FastText word representations (Joulin et al., 2016) is an
extension and improvement of word2vec, which allows to compute word representations for
out-of-vocabulary (OOV) words with a use of character n-grams. Recently, ELMo word
representation (Peters et al., 2018) have improved state-of-the-art across a range of NLP
tasks, one of which includes sentiment analysis. In ELMo, an embedding of a word is
computed from the the internal states of a deep bidirectional language model (LM) pre-

trained on a large corpus.

An alternative implementation of DSMs called probabilistic topic models have been explored
in the literature (Griffiths et al., 2007). The similarity between probabilistic models and
DSMs is that they also gather co-occurrence information from corpus, but the difference
between the two approaches is that probabilistic models have an assumption about words
in corpus having a probabilistic structure. In probabilistic model words are a probability
distributions over a set of topics and can define semantic meaning between a pair of words

using inference.
3.2.2. Multimodal Distribution Semantic Models

The conventional distributional semantic models lack visual information that could be ex-
tracted from the physical world. This observation gave rise to the development of multi-
modal distributional semantic models that combines data originating from two modalities:
linguistic and perceptual. A literature review on extracting visual information from image

search engine and applying a multimodal representation to a variety of NLP tasks was a
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provided in Section 2.4. When describing the applications of multimodal representation in
NLP tasks, a few of the research studies in predicting word pair similarity were mentioned
in that section, such as the research done by Kiela and Bottou (2014), Bruni et al. (2014),

Kiela et al. (2016), Collell et al. (2017), and Kiros et al. (2018).

In the context of word similarity, Kiela and Bottou (2014) proposed a novel model of
multimodal representation that combines Skip-gram model of Mikolov et al. (2013) trained
on Wikipedia (400M) and British National Corpus (100M) with image features extracted
from the deep CNN trained on ImageNet (Krizhevsky et al., 2012) or ESP Game dataset
(von Ahn and Dabbish, 2004). In order to combine linguistic and visual features, authors
concatenated the centred and L2-normalized feature vectors that were learned independently
from each other. The authors reported results on 2 datasets described in the next sections:
WordSimilarity-353 (Finkelstein et al., 2001) and MEN-3000 (Bruni et al., 2014). Kiela et al.
(2014) defined an unsupervised method called image dispersion to distinguish abstract from
concrete words based on the observation that average cosine distance between all the visual

representations of a word negative correlates with its concreteness.

The same year Bruni et al. (2014) proposed a similar pipeline as Kiela and Bottou (2014)
of training visual and linguistic representation independently, however for linguistic rep-
resentation Bruni et al. (2014) used semantic space model called Hyperspace Analog to
Language model (HAL) (Lund and Burgess, 1996) to determine a window of context words.
Bruni et al. (2014) reported various ‘fusion’ methods for combining visual and linguistics
features by first using concatenation and then applying feature and scoring fusion functions,
essentially applying the Singular Value Decomposition (SVD) (Golub and Reinsch, 1970)
to concatenated vectors. Silberer and Lapata (2014) used a different visual representation
that were annotated with high-level of visual attributes, and proposed a more complex mul-
timodal fusion strategy based on stacked auto-encoders. The idea behind this approach is
that the encoder is given both linguistic and perceptual features, from which multimodal

embeddings arise from the hidden representation.
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Lazaridou et al. (2015) extended a Skip-gram model of Mikolov et al. (2013) to support
multimodal representation by their skip-gram model as maximal margin objective function
that tries to minimise the distance between the two vectors. Essentially, in comparison
to previous work, the authors built multimodal representations with raw inputs of both
linguistic and visual information. As before, the evaluation was performed on set on MEN-
3000, SimLex-999 (Hill et al., 2015) and a few other datasets. Kiela et al. (2016) performed
a systematic evaluation in comparing three CNNs architecture, exploring multiple image
retrieval engines, and explored the optimal number of images. The experiments were per-
formed on predicting semantic similarity between a pair of words. Kiela et al. (2016)
found that the performance across AlexNet trained on ImageNet (Krizhevsky et al., 2012),
GoogleNet (Szegedy et al., 2015) and VGGNet (Simonyan and Zisserman, 2014) is similar
and proposed usage of AlexNet and VGGNet for overall best performance. Moreover, Kiela
et al. (2016) found both Google and Bing to be suited to perform full-coverage experiments,
meaning that when highly abstract words are included, there is no negative image on the
method’s performance. Lastly, the optimal number of images based on their systematic
evaluation is between 10 and 20 images, since the performance of a model stabilises around

10 images for Google and Bing as the data source.

Collell et al. (2017) proposed a new approach that uses a feed-forward neural network to
learn a mapping between visual and text modalities, which are directly used to build the
multimodal representations. Collell et al. (2017) found that in the process of mapping an
irrelevant visual information is discarded, hence, improving the performance on various
datasets. Some of the datasets that Collell et al. (2017) used are MEN-3000 along with
WordSimilarity-353-REL Agirre et al. (2009) to measure general relatedness and SimLex-

999 for measuring semantic similarity.

Wang et al. (2018) presented three novel fusion methods that combine modalities according
to different types of words by assigning importance weights to each modality. The weights

are learned using the weak supervision of word association pairs. The proposed method
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outperformed previous state-of-the-art multimodal as well as the traditional linguistic rep-
resentations on the datasets mentioned before. Wang et al. (2018) used Glove vectors for
representation. Similarly to Wang et al. (2018), Kiros et al. (2018) presented a framework
that fuses GloVe embeddings with visual representation obtained from the search engine
that were fed into the CNN. Although the representation presented by Kiros et al. (2018)
focused on other applications in NLP, their experiments on word similarity predictions

explored the optimal number of images and concreteness scores for the SimLex-999.
3.3. Word Similarity Data Sets

As described in Section 3.2, there is a large number of existing lexical semantics evaluation
benchmarks available to evaluate semantic similarity and relatedness between word pairs in
English. It is important to note that there is a discrepancy between existing gold standard
datasets, since some do not specify or clearly distinguish between similarity and relatedness
or association. Furthermore, the literature review for multimodal representations does not
clearly differentiate between semantic similarity and relatedness. We chose to perform a
system evaluation on all 13 dataset benchmarks, even though for the visual-based features
we hypothesise that the semantic similarity measure is of greater importance in comparison

to relatedness. The datasets used for evaluation are described in the subsequent sections.
3.3.1. RG-65 and MC-30

RG-65 dataset released by Rubenstein and Goodenough (1965) in 1965 contains 65 noun
word pairs evaluated by the human judgement. The similarity of each pair in the dataset
has a real value between 0 and 4, where the higher the value, the higher the similarity of
meaning between a word pair is. This dataset measures similarity between a pair of words
rather than relatedness. Rubenstein and Goodenough (1965) report the inter-annotator
agreement to be r = 0.85 of Pearson correlation. Table 1 contains examples from top 10
and bottom 10 of this dataset. MC-30 dataset by Miller and Charles (1991) is a dataset

with 30 noun word pairs taken from RG-65 dataset. MC-30 dataset has a wider use by the
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research community to assess the semantic similarity of words.

‘Word 1 Word 2 Score

gem jewel 3.94
midday noon 3.94
automobile car 3.92
cemetery  graveyard 3.88
cushion pillow 3.84
boy lad 3.82
automobile wizard 0.11
autograph shore 0.06
fruit furnace 0.05
noon string 0.04
rooster voyage 0.04
chord smile 0.02

Table 1: Selected examples from top 10 and bottom 10 of RG-65 dataset

3.8.2. WordSimilarity-353

The WordSimilarity-353 Test Collection! released by Finkelstein et al. (2001) contains 353
pairs of noun words in English along with the mean score of human-assigned similarity
judgements. The subjects of experiments were asked to give a score of relatedness of the
words in pairs on a scale from 0 to 10, where 0 indicates totally unrelated words and 10
indicates very much related or identical words. Based on the given instructions this dataset
measures association or relatedness between words and not similarity. The inter-annotator
agreement reported for this dataset is p = 0.611 of Spearman correlation coefficient. Table 2
displays selected examples from top 10 and bottom 10 of this dataset according to the
human judgements. There is an overlap of 30 word pairs between the WordSimilarity-353

and RG-65 dataset.

Word 1 Word 2 Score

tiger tiger 10.00
journey voyage 9.29
midday noon 9.29

money cash 9.15

coast shore 9.10

"http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
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football soccer 9.03

monk slave 0.92

sugar approach 0.88
noon string 0.54
chord smile 0.54
professor  cucumber 0.31
king cabbage 0.23

Table 2: Selected examples from top 10 and bottom 10 of WordSimilarity-353 dataset

3.83.3. WordSimilarity-353-SIM and WordSimilarity-353-REL

The WordSimilarity-353 described in Section 3.3.2 was further split into two subsets?
by Agirre et al. (2009), where the first subset measures similarity (WordSimilarity-353-
SIM, referred in the literatures as WS-SIM or Wordsim) and the second subset measures
relatedness (WordSimilarity-353-REL). Agirre et al. (2009) argued that there is a difference
between similarity and relatedness, and WordSimilarity-353 does not distinguish between
the two relations. In order to split the dataset, they classified each pair of words based on

WordNet (Miller (1995)) data as one of the following:
e similar pairs (synonyms, antonyms, identical, hyponym-hypernym)
e related pairs (meronym-holonym, score > 5)
e unrelated pairs (none of the above, score < 5)

The WordSimilarity-353-SIM was then created as the union of all similar and unrelated
pairs, whereas WordSimilarity-353-REL was the union of related and unrelated pairs. One of
their keys observations when comparing the performances of models for the divided dataset
was that two words are similar if their synsets are close in the hierarchy of WordNet,
and two words are related if there is a connection between them in the hierarchy. The
overall number of pairs in WordSimilarity-353-SIM is 203 and the overall number of pairs in

WordSimilarity-353-REL is 252. The reported inter-annotator agreement reached p = 0.667

*http://alfonseca.org/eng/research/wordsim353.html
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of Spearman correlation for WordSimilarity-353-SIM and p = 0.72 for WordSimilarity-353-
REL. Tables 3 and 4 displays selected examples top 10 and bottom 10 of these two datasets.
As can be seen from these tables, there is an overlap in the bottom 10 examples, which can

be explained by the method the words were split up.

Word 1 Word 2 Score

tiger tiger 10.00
journey voyage 9.29
midday noon 9.29

money cash 9.15

coast shore 9.10
football soccer 9.03

monk slave 0.92

sugar approach 0.88

noon string 0.54

chord smile 0.54

professor  cucumber 0.31

king cabbage 0.23

Table 3: Selected examples from top 10 and bottom 10 of WordSimilarity-353-SIM datasets

Word 1 Word 2  Score

environment ecology 8.81
Maradona football 8.62
OPEC oil 8.59
computer software 8.50
money bank 8.50
Jerusalem Israel 8.46
monk slave 0.92
sugar approach 0.88
noon string 0.54
chord smile 0.54
professor cucumber 0.31
king cabbage 0.23

Table 4: Selected examples from top 10 and bottom 10 of WordSimilarity-353-REL datasets

Tables 5 and 6 displays two tables with pairs of words and the corresponding scores for
words that are Similar but not Related and words that are Related but not Similar based on

the differences between the WordSimilarity-353 Similarity and Relatedness datasets. It can
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be seen from that that some of the word pairs in Table 5 are clear antonyms, for instance ‘life’
and ‘death’ or ‘king’ and ‘queen’, and other word pairs follow type-of relationship common
for when describing hypernym-hyponym, for instance ‘aluminium’ is a type of ‘metal’ or
‘water’ is a type of ‘liquid’. Table 6 displays words that are not similar, but related. For
instance ‘popcorn’ and ‘movie’ share association since popcorn is a snack commonly eaten

in front of a movie.

Word 1 Word 2 Score
seafood lobster 8.70
king queen 8.58
championship  tournament 8.36
Harvard Yale 8.13
liquid water 7.89
life death 7.88
aluminum metal 7.83
Mexico Brazil 7.44
tiger cat 7.35
physics chemistry 7.35
street place 6.44
train car 6.31
bread butter 6.19
glass metal 5.56
cup artifact 2.92

Table 5: Selected examples from WordSimilarity-353-SIM that do not occur in
WordSimilarity-353-REL

Word 1 ‘Word 2 Score
weather forecast 8.34
bank money 8.12
stock market 8.08
closet clothes 8.00
admission ticket 7.69
drug abuse 6.85
competition price 6.44
production crew 6.25
movie popcorn 6.19
announcement warning 6.00
game round 5.97
baseball season 5.97
journey car 5.85
territory surface 5.34
credit information 5.31

Table 6: Selected examples from WordSimilarity-353-REL that do not occur in
WordSimilarity-353-SIM
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8.8.4. MTurk-287

The MTurk-287 dataset released by Radinsky et al. (2011) contains 287 word pairs that
were constructed using Amazon Mechanical Turk (AMT) to get the human similarity scores.
Those 287 word pairs are generate from the New York Times papers, do not overlap with
RG-65 or WordSimilarity-353 datasets, and are on a scale from 1 to 5. Table 7 contains
selected examples from top 10 and bottom 10 of this dataset according to the human

judgements.

Word 1 Word 2 Score)

funeral death 4.71
scotch liquor 4.57
jazz music 4.53
aircraft plane 4.47
jurisdiction law 4.45
summer winter 4.38
texas death 1.53
africa theater 1.50
pennsylvania writer 1.46
germany worst 1.44
concrete wings 1.43
recreation dish 1.40

Table 7: Selected examples from top 10 and bottom 10 of MTurk-287 dataset

3.8.5. MTurk-771

MTurk-771 dataset® released by Halawi et al. (2012) contains 771 word pairs that were
constructed using Amazon Mechanical Turk (AMT) to get the mean human-assigned relat-
edness judgements. The scores are on a scale from 1 to 5, where 1 stands for not related
and 5 stands for highly related. Table 8 contains selected examples from top 10 and bottom

10 of this dataset according to the human judgements.

Word 1 Word 2 Score

female woman 4.96
film movie 4.91

Shttp://www2.mta.ac.il/~gideon/mturk771.html
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quiet silence 4.91

child kid 4.86
ass donkey 4.85
sight vision 4.82
coat newspaper 1.09
scandal week 1.09
cup son 1.09
beach chain 1.05
shirt tiger 1.042
afternoon  substance 1.0

Table 8: Selected examples from top 10 and bottom 10 of MTurk-771 dataset

3.3.6. MEN-3000

The MEN-3000 Test Collection® released by Bruni et al. (2014) contains 3000 English word
pairs in along with the human-assigned similarity judgements, obtained by crowd-sourcing
using AMT. The word pairs were randomly select from word that occur in ukWaC and
Wackypedia combined® at least 700 times and in the open-sourced subset of the ESP game
dataset® at least 50 times. The data collection for this dataset differs to WordSimilarity-
353, since the annotators were asked to make binary decisions on which of two pairs are
more related. The human-assigned similarity judgements is an integer between 0 and 50
due to the way the data was collected. Bruni et al. (2014) sampled the pairs in a balanced
range of a text-based semantic score to avoid choosing unrelated pairs. The subjects of
the study were not informed about the differences between similarity and relatedness and
were presented with examples of similarity as a special case of relatedness. However, when
describing the dataset Bruni et al. (2014) use both similarity and relatedness terms. Table 9
contains selected examples from top 10 and bottom 10 of this dataset according to the human

judgements.

Word 1 Word 2 Score

sun sunlight 50.0
automobile car 50.0

‘https://staff.fnwi.uva.nl/e.bruni/MEN
*http://wacky.sslmit.unibo.it/doku.php
Shttp://www.cs.cmu.edu/~biglou/resources/

27



river water 49.0

stair staircase 49.0
morning sunrise 49.0
rain storm 49.0
giraffe harbor 1.0
feather truck 1.0
festival whisker 1.0
muscle tulip 1.0
bikini pizza 1.0
bakery zebra 0.0

Table 9: Selected examples from top 10 and bottom 10 of MEN-3000 dataset

3.83.7. SimLex-999

SimLex-999 dataset” released by Hill et al. (2015) contains 999 word pairs and is used
to evaluate computation models that learn meanings of words and concepts. There were
multiple reasons that motivated the authors to create this dataset as supposed to using
existing ones. It is common in NLP to have a performance upper bound on evaluation
that is based on the average human performance or inter-annotator agreement (Resnik and
Lin, 2010). One of the main reasons was that state-of-the-art models achieved the average
performance of a human annotator on RG-65, WordSimilarity-353, MEN, and other gold
standard datasets, which implies that the problem of similarity model has been resolved.
Such implication is not true based on the performance of those models in automatically
generated dictionaries, thesauri, or ontologies as observed by Hill et al. (2015). The authors
argue that there are two further limitations in WordSimilarity-353 and MEN-3000 datasets
The first limitation states that there is a high rating for many dissimilar word pairs. This
phenomena can be observed in the previous section , where related word pairs ‘closet’ and
‘clothes’” seen in Tables 6 achieves a score that is higher than similar word pairs ‘train’
and ‘car’ seen in Tables 5. If WordSimilarity-353 rating for ‘closet’ and ‘clothes’ is 8, then
SimLex-99 rating is 1.96 for the same pair. The second limitation described by Hill et al.
(2015) is that word pairs pairs that are associated but not similar receive high ratings. RG

dataset and subsequently the MC-30 dataset both are affected by the second limitation.

"https://fh295.github.io/simlex.html
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In comparison to MEN-3000 or WordSimilarity-535 datasets, SimLex-999 provides a way
to quantify the similarity between word pairs rather than association or relatedness. A
computational model must therefore learn similarity of word pairs independent of associa-
tion. This presents a challenge to the research community as most language-based models
identify a relation between two words in terms of relatedness and conceptual association,

since the relation is inferred based on their co-occurrence in corpora.

SimLex-999 dataset consists of 666 Noun-Noun pairs, 222 Verb-Verb pairs and 111 Adjective-
Adjective pairs that are on a scale of 0 to 10. Furthermore, this dataset provides an inde-
pendent concreteness score for a pair of words that provides how concrete word 1 and word
2 are conceptually. The intuition behind this score is that if broken down by part-of-speech,
adjectives are more abstract than verbs which in turn are more abstract than nouns. Ta-
ble 10 contains selected examples from top 10 and bottom 10 of this dataset according to

the human judgements.

Word 1 Word 2 Score

vanish disappear 9.80

quick rapid 9.70
creator maker 9.62
stupid dumb 9.58
insane crazy 9.57
large big 9.55
island task 0.30
gun fur 0.30
chapter tail 0.30
dirty narrow 0.30
new ancient 0.23
shrink grow 0.23

Table 10: Selected examples from top 10 and bottom 10 of SimLex-999 dataset

3.3.8. YP-130

Yang and Powers (2006) released YP-130 dataset, which contains 130 word pairs, and

measures semantic relatedness scores based on human judgements for verbs. Yang and
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Powers (2006) identified 130 verb synonym tests from TOEFL® and ESL? language tests that
assess the level of English for a non-native speaker for the university entry or employment.
Human annotators were asked to indicate how strong the word pairs are related in meaning
on an integer scale: not at all related (0), vaguely related (1), indirectly related (2), strongly
related (3) and inseparably related (4). Table 11 contains selected examples from top 10

and bottom 10 of this dataset according to the human judgements.

Word 1 ‘Word 2 Score

brag boast 4.00
concoct devise 4.00
divide split 4.00
build construct 4.00
end terminate 4.00

accentuate  highlight 4.00

empty situate 0.17

flush spin 0.17
shake swell 0.17
imitate highlight 0.17
correlate levy 0.00
refer lean 0.00

Table 11: Selected examples from top 10 and bottom 10 of YP-130 dataset

3.5.9. Verb-143

The Verb-143'0 dataset released by Baker et al. (2014) contains 143 pairs of verbs along
with the human judgement scores following the WordSimilarity-353 guidelines. 143 pairs
of verbs were constructed from 122 unique verb lemma types, where each verb appears at
least 10 times in total in the labour legislation and the environment datasets (Baker et al.,
2014). For each word pair, an averaged human-annotator similarity score between 1 and
10 was assigned. Table 12 contains selected examples from top 10 and bottom 10 of this
dataset according to the human judgements. It can be seen from that 4 word pairs in top

10 of most similar/related words share the same stem and are in a different tense.

Shttps://wuw.ets.org/toefl
“https://wuw.esl-languages.com/en/study-abroad/adults/online-tests/index.html
Ohttps://ie.technion.ac.il/~roiri/#data
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‘Word 1 ‘Word 2 Score

refuses refused 0.790
working worked 0.780
seemed seems 0.730
makes produced 0.720
showing showed 0.700

making establishing 0.590

seemed protects 0.100

refusing exist 0.090
dismiss finding 0.090

reducing increased 0.080
produce dismiss 0.070
starts refused 0.070

Table 12: Selected examples from top 10 and bottom 10 of Verb-143 dataset

3.8.10. SimVerb-3500

The SimVerb-3500! dataset released by Gerz et al. (2016) contains 3500 verb pairs with
semantic similarity ratings on a scale from 0 to 10, where 0 means not similar at all and 10
means synonymous. One of the main motivations for creating this dataset was the limited
amount of data in the previous gold datasets such as Verb-143, YP-130 and a subset of
SimLex-999 when evaluating verb similarity. When creating SimLex-999 dataset Hill et al.
(2015) provided guidelines as to what constitutes to be a high-quality evaluation resource,
where three criteria were provided: representative, clearly defined and consistent. When
constructing SimVerb-3500 Gerz et al. (2016) followed the same annotation guidelines as for
SimLex-999 to satisfy all criteria. SimVerb-3500 dataset contains 827 verb types, all normed
verb types from the USF free-association database!?, and provides 3 member verbs for each
top-level VerbNet!3 class. These two standard semantic resources, therefore, provided a wide
coverage of verb pairs, ensuring the first criteria of representation if fulfilled. Furthermore,
the annotators were explicitly instructed to give low ratings to antonyms and to make a

distinguish between similarity and relatedness, which covers the limitations of the previously

"http://people.ds.cam.ac.uk/dsg40/simverb.html
2http://w3.usf.edu/FreeAssociation/
Bhttp://verbs.colorado.edu/verb-index/
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existing benchmarks explained by Hill et al. (2015). Table 13 contains selected examples

from top 10 and bottom 10 of this dataset according to the human judgements.

Word 1 Word 2 Score

repair fix 9.96
rip tear 9.96
build construct 9.96
flee escape 9.79
triumph succeed 9.79
obtain acquire 9.79
go stay 0.00
shut vomit 0.00
accept decline 0.00
create dive 0.00
lose keep 0.00
freeze thaw 0.00

Table 13: Selected examples from top 10 and bottom 10 of SimVerb-3500 dataset

3.53.11. RW

The Rare-Words (RW)!* dataset released by Luong et al. (2013) focused on constructing a
dataset on rare words to complement existing datasets on the frequent words. In order to
construct the data Luong et al. (2013) first selected a list of rare words, then found a word
(not necessarily rare) to form a word pair, and finally collected a human judgements score
on how similar each pair is. The selection of rare words was done by sampling words from
various frequency bins and the affixes they possess. To prevent selection of a non-English
word, one of the requirements for a word to be sampled was that it had a non-zero number
of synsets in WordNet (Miller (1995)). RW contains 2034 word pairs at human similarity
ratings on a scale from 0 to 10 collected by AMT. Due to the nature of the dataset, the
human annotators were asked to indicate if they are familiar with first word, second word or
neither, hence discarding pairs that had less than a particular number of scores. Table 14
contains selected examples from top 10 and bottom 10 of this dataset according to the

human judgements.

“phttps://nlp.stanford.edu/~1mthang/morphoNLM/
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Word 1 ‘Word 2 Score

decapitated headless 10.00

cheapen devalue 10.00
nonnative foreign 10.00
symmetrical  balanced 10.00

conjecture hypothesis 10.00
liveable habitable 10.00

intertwining raw 0.00

recorders box 0.00
grinder wisdom 0.00
stockers animal 0.00
characters scratch 0.00

prospector  sourdough 0.00

Table 14: Selected examples from top 10 and bottom 10 of RW dataset

3.4. Evaluation Metrics

Before the emergence of WordSimilarity-353 dataset described in Section 3.3.2 it was a
common practice among researchers to perform evaluation with Pearson correlation often
denoted as r. Agirre et al. (2009) argue that one of the drawbacks of using Pearson correla-
tion is that this metric is less informative when the scores of two variables are not linearly
correlated, since Pearson correlation asses linear relationships. As such, Agirre et al. (2009)
proposed using Spearman correlation often denoted as p , which is independent of the
dataset and can assess the strength and direction of monotonic relationships. Hence, in
order to evaluate performance on each of the datasets described in Section 3.3, Spearmans
rank correlation coefficient between two variables can be used, where the first variable is the
human judgement score and the second variable are scores produced by the computational
model. Spearmans rank correlation coefficient is a score between -1 and 1 and indicates the
direction of association between the human judgements (independent variable) and scores
produced by a computation model (dependent variable). If the model predictions increases
when the human judgement score increases, then p is positive, else if model predictions de-
creases when human judgement score increases, then p is negative. If the model predictions

does not increase or decrease when human judgement score increase, the value of p is 0.
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p is equal to 1 when human judgement score and model score are perfectly monotonically

related.
3.5. Approach

In order to perform evaluation for each word in all datasets we extracted up to 100 cor-
responding image-based features explained in Section 2.2. Table 15 displays the dataset,
the number of word pairs for each of the corresponding dataset and the number of words
missing in the data collection of Callahan (2017). In total there are 5846 unique words and
11109 word pairs. For these 5864 words the average of the maximum number of images is
94.4. We say a word pair is missing in the data collection if either the first word or the
second word is not present. Other than for RW dataset, the coverage for word pairs is
sufficient to perform a set of experiments. For the retrieved words we extracted a linguistic

representation and used word2vec (Mikolov et al., 2013) trained on Google News 100B*°.

Dataset Number of Number of
Word Pairs Word Pairs Missing

RG-65 65 0
MC-30 30 0
WordSimilarity-353-ALL 353 0
WordSimilarity-353-SIM 203 0
WordSimilarity-353-REL 252 0
MTurk-287 287 5
MTurk-771 771 1
MEN-3000 3000 1
SimLex-999 999 1
YP-130 130 0
VERB-143 144 0
SimVerb-3500 3500 17
RW 2034 711

Table 15: Number of word pairs that are missing from image-based feature for a given
dataset names and their corresponding number of word pairs

We extended the existing scripts'® for evaluating word vectors released by Faruqui and

Dyer (2014). The original script provides an implementation of Spearman correlation rank

Yhttp://magnitude.plasticity.ai/word2vec/medium/GoogleNews-vectors-negative300.magnitude
https://github. com/mfaruqui/eval-word-vectors
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coefficient and a way to compute it given an input dataset and an input file containing word
to vector mapping. For our experiments, we extended the script to support an input file
containing a value mapping to a word pair in the input dataset, and an ability to read the

first n dimensions of a vector if an original input file is specified.
3.6. Experiments and Results

The following subsections describe the performance of various approaches taken to generate

visual representation.
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Figure 10: Performance of the averaged vector for various number of images on all datasets.
(Data taken from Table 31)

Figure 10 displays the performance of the averaged vector AvG(w1, w2) for various number
of images (1, 5, 10, 25, 50, 75, 100) on all datasets described in Section 3.3. In order to get a
similarity score for a pair of words, the cosine similarity is taken between the two averaged
vectors. As a reference point, word2vec performance in grey is plotted in addition to visual

representations. Based on the Figure, it can be seen that as the number of image increases
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the performance increases for almost all of the datasets other than WordSimilarity-353-
ALL, SimLex-222-Verbs, Verb-143, and SimVerb-3500. An important observation is that
the performance of visual embeddings is comparable to the performance on SimLex-999
dataset, which is thought to overcome limitations of datasets like WordSimilarity-353 and

MEN-3000 described in Section 3.3.

Performance of averaged vector for various number of
images for SimLex-999 dataset when broken by POS
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Figure 11: Performance of the averaged vector on SimLex-999 dataset for various number
of images and POS. (Data taken from Table 31)

Figure 11 displays the performance of the averaged vector for various number of images for
the SimLex-999 dataset in particular with the breakdown by POS. It can be seen that the
overall performance on the SimLex-999 dataset increases as the number of images increases,
since the performance increases for 666 nouns and 111 adjectives in this dataset. However,
the performance significantly decreases for 222 verbs when the number of images increases.
In addition, curves in the Figure suggest there is a plateau between 50 and 75 images for

the performance for 666 nouns and 111 adjectives.
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Performance of averaged vector of Top-100 images for various dimensions
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Figure 12: Performance of the averaged vector for Top-100 images on all datasets for various
number of dimensions (Data taken from Table 34)

Figure 12 displays the performance of averaged vector for the top 100 images on all datasets
with varying number of dimensions (100, 200, 300, 1000, 2000, 4096). The idea behind such
experiment is to get an idea whether simply taking first n number of points is results into
a drop in performance in comparison to taking all 4096 features. Based on this Figure,
there is an improvement in performance for almost all datasets excluding RG-65, MC-30,
WordSimilarity-353-ALL. This decrease in performance can be explained by the fact that
MC-30 is a subset of RG-65, which in turn is a subset of WordSimilarity-353-ALL. Perhaps
the small size of the dataset resulted in a slight decrease of a performance as the number
of dimensions increase, which is especially evident for related words in WordSimilarity-353-
REL. Overall, the results based on this set of experiments are counter-intuitive, since taking
the first 300 points of 4096 yields the performance that is not substantially different than

taking all data points.
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3.6.2. AvaMAX
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Figure 13: Performance of AvGMAX for various number of images on all datasets. (Data
taken from Table 32)

Figure 13 displays the performance of the AvGMAX for various number of images (2, 5,
10, 25, 50, 75, 100) on all datasets described in Section 3.3. In order to get a similarity
score for a pair of words, the scalar value is produced as a result of performing AvGMax
on a specified number of images. Similarly to AvG(w1, w2) in Figure 10, the performance
of visual embeddings increases as the number of images increases for datasets other than
WordSimilarity-353-ALL, SimLex-222-Verbs, Verb-143, and SimVerb-3500. There are sub-
tle differences in performance between Figure 10 and Figure 13, however the overall trend

stays the same.
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Performance of AvgMax for various number of images for
SimLex-999 dataset when broken by POS
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Figure 14: Performance of AvGMAX on SimLex-999 dataset for various number of images
and POS. (Data taken from Table 32)

Figure 14 displays the performance of AvGMAX for various number of images for the
SimLex-999 dataset broken down by POS. Similarly to Figure 11, in this Figure the over-
all performance on the SimLex-999 dataset increases as the number of images increases,
however for 222 verbs the performance significantly decreases. If Figure 14 and Figure 11
are to be compared, it seems that for 111 adjectives the performance of AvGMAX slightly
degrades as the number of images reaches 50, which results in a lower overall performance

than in AvGa(wl, w2) .
3.6.5. AVGAvG

Similarly to the previous subsection, Figure 15 displays the performance of the AvGAvc for
various number of images on all datasets described. The results are very similar to results
for AvGMAX described in Figure 13. What can be noted here is that the performance of

AVGAVG on SimLex-999 dataset is by slightly lower (0.1) than AVGMAX.
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Performance of AvgAvg for various number of images
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Figure 15: Performance of AVGAVG for various number of images on all datasets. (Data
taken from Table 33)

3.6.4. Comparison of models

A few other approaches were attempted before comparing the performance for various rep-
resentations. One of the approaches was to perform dimensionality reduction via Principal
Component Analysis (PCA) on the vectors prior to producing an averaged vector. The
motivation behind applying dimensionality reduction on 4096 features was that it would
allow to perform concatenation of word2vec features and the reduced vector to combine two
unimodal representations into a multimodal representation. The reason why PCA is needed
to be applied is because the result of concatenating the original 4096-dimensional vector
with the 300-dimensional word2vec as the means of producing multimodal representation
had a similar performance as using 4096-dimensional vector by itself without concatenation.
We experimented the reduction to 300 dimensions, the same dimension as word2vec, as it

seemed fair to use the input to two modes of data evenly.
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Performance Comparison of All Models

IH

SR )

09
08
07
06 = Word2Vec
05 = Top-100 Averaged
4
03
0.2
1 '.
0
& @JP &xy 5}9‘“\ & &:\‘9 g(\»

o

 Top-100 Reduced to 100 Averaged

Top-100 Reduced to 300 Averaged

m Top-100 Averaged First 300
= AvgMaxTop-100

. ] W AvgAvg Top-100

o1

> (d & S
&
& & 5%

Spearman correlation p

°

W Word2Vec +Top-100 Averaged First 300
B Word2Vec +Top-100 Reduced to 300 Averaged +Scaled

0.1 R
¢ < & &

< &
A N
7

N4 B

< > k4 »
0.2 & & & &
&

& N
3 &
& &
&

&
¢ o

O o & AN

& & & °

Figure 16: Performance comparison of various models. (Data taken from Tables 31,
32, 33, 34 and 35)

Figure 16 displays the performance of various models on the given datasets. Based on the
results presented in the Figure it can be seen that linguistic word2vec representation still
surpasses the visual representation on all thirteen datasets. Moreover, concatenation of
word2vec with the visual representation does not yield better results as using word2vec by

itself. Such results have been observed by the previous work of Wang et al. (2018).

Comparison of top performing models on SimLex-999 Dataset
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Figure 17: Performance comparison of selected models on SimLex-999 dataset. (Data taken
from Tables 31, 32, 33, 34 and 35)

Due to the different origin, size, and nature of the datasets, it is perhaps better to com-
pare the performance of models against one dataset, and in particular, SimLex-999 due to
reasons mentioned in Section 3.3. Figure 17 presents the comparison of selected top per-

forming models on SimLex-999 dataset. As can be seen from the Figure, the performance
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of linguistic word2vec representation is slightly better but comparable to the performance
of visual and multimodal representations. It can be seen that AvG(wl, w2) and AvG-
MaAX achieve best performances out of the selected visual representations followed by a

multimodal representation of word2vec and PCA to 300 of AvG(wl, w2).

3.6.5. Qualitative Analysis
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Figure 18: AvGMAX and word2vec side-by-side comparison of selected word pairs in the
SimLex-999 dataset

Figure 18 provides a side-by-side comparison of AVGMAX and word2vec for selected word
pairs from the SimLex-999 dataset. The x-axis in both of those plots is the human judgement
score on the scale from 0 to 10. The y-axis in Figure 18a is the predicted score by AVGMAX,
the y-axis in Figure 18b is the predicted score of word2vec, both of which are on a scale from
0 to 1, since both use cosine similarity between vectors. The better the representation, the
closer data points are to the diagonal. It can be seen from the Figures that word2vec has
data points more in a more sparse range, whereas AVGMAX’s range is more dense. This is
an interesting observation, and further analysis needs to be made to understand the reason

for AVGMAX’s scores to be in a smaller range. It seems that both models have a lot in
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common in terms of predicting, for instance the word pair ‘bad, great’ for both predictions
appears to be relatively close to the diagonal, however the value that prediction assigns is

greater than the human judgement score.

Word 1 Word 2 Human AvgMax word2vec

Score Score Score

vanish disappear 9.80 0.356 0.9
quick rapid 9.70 0.322 0.498
creator maker 9.62 0.365 0.261
stupid dumb 9.58 0.541 0.817
insane crazy 9.57 0.425 0.734
large big 9.55 0.314 0.556
island task 0.30 0.241 0.035
gun fur 0.30 0.162 0.139
chapter tail 0.30 0.31 0.101
dirty narrow 0.30 0.319 0.113
new ancient 0.23 0.268 0.166
shrink grow 0.23 0.335 0.571

Table 16: Selected examples from top 10 and bottom 10 of SimLex-999 dataset and the
predicted AVvGMAX and word2vec scores

Table 16 contains 6 examples of most similar word pairs and 6 least similar word pairs from
the SimLex-999 dataset along with the predictions made by AvGMAX and word2vec. It can
be seen from the AvGMAX scores that the range of values for least similar and most similar
word pairs is almost negligible, which is consistent with the observation in Figure 18. From
Table 16 it can also be observed that AvGMAX and word2vec scores predict similar scores,
but the range for AvGMAX is smaller. For instance, they both predict for the word pair
‘shrink, grow’ relatively high scores even though in SimLex-999 dataset this word pair is
considered to be the least similar. Same pattern can be observed for one of the most similar
pairs such as ‘creator, maker’, since both AvGMAX and word2vec assign a relatively low

score.
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CHAPTER 4 : Clustering Paraphrases By Word Sense

4.1. Overview

For this part of the research, we seek to understand how to cluster paraphrases by word
sense using visual-based word representations or a combination of visual and linguistic rep-
resentations. This chapter contains previous work, descriptions of the datasets, generation

of a new dataset, along with the experiments and results.
4.2. Literature Review

... 5 farmers were ' thrown into jail in Ireland ...

... finf Landwirte | festgenommen , well ...

... oder wurden | festgenommen , gefoltert ...
/ A i | \
/ S [} | 1
/ EA g i \

... or have been imprisoned , tortured...

Figure 19: A bilingual pivoting method assumes two strings have the same meaning if they
translate to the same foreign string. The method then pivots over bilingual parallel corpus
to extract paraphrases

Paraphrases are different textual representations that maintain the same meaning. The
Paraphrase Database (PPDB) contains over 100 million paraphrases in 23 languages gener-
ated using the bilingual pivoting method (Bannard and Callison-Burch, 2005), which posits
that two words are potential paraphrases of each other if they share one or more foreign
translations. Figure 19 displays the bilingual pivoting method that finds a pair of English
words ‘thrown into jail’ and ‘imprisoned’ to be paraphrases, since both translate to a Ger-
man word ‘festgenommen’. The paraphrases in PPDB are already partitioned by syntactic
type, following the work of Callison-Burch (2008). This is to say that the paraphrases of the
noun representation of a word would be separated from its verb representation. However,

there is still the inherent problem of dealing with paraphrases of different senses within the
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same syntactic type.

In earlier work by Apidianaki et al. (2014) a graph-based method was developed to cluster
the paraphrases of PPDB by word sense. In this approach, the paraphrases are represented
as nodes and pairs of words which share one or more foreign alignments are linked, with the
edge weighted by the contextual similarity between the two words. The clusters are com-
puted by removing the edges with similarity values below certain threshold and extracting

the remaining connected components, which are the final sense clusters.

We follow a similar approach to the research done by by Cocos and Callison-Burch (2016)
that explored more advanced clustering algorithms and similarity measures. A key compo-
nent to clustering is to build a similarity or affinity matrix that would represent a pairwise
similarity between two paraphrases. Cocos and Callison-Burch (2016) experimented with
several text-based measures of affinity between two paraphrases, such as second-order para-
phrases (Pavlick et al., 2015) and distributional semantics. Their work yielded sense clusters

which were qualitatively as well as quantitatively good.

4.3. Methodology

4.3.1. Graph Clustering

To create clusters, we use the Self-Tuning Spectral Clustering algorithm Zelnik-Manor and
Perona (2004), which is an improved version of the Spectral clustering that creates a flat
clustering for a pre-specified number of clusters. Cocos and Callison-Burch (2016) found
that Self-Tuning Spectral Clustering had one of the best performances under different simi-
larity matrices. Self-Tuning Spectral Clustering algorithm projects data into a lower dimen-
sional space where it is more easily separable. In our experiments we denote this clustering

algorithm simply as Spectral.
Most clustering algorithms, including Spectral clustering, require two inputs:

1. a number of clusters k.
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2. an adjacency / similarity / affinity matrix A, a non-negative symmetric matrix where

the similarity between words w; and wj; is stored in cell a;; visualised in Figure 20.
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Figure 20: An adjacency / similarity / affinity matrix A, a non-negative matrix where the
similarity between words w; and wj is stored in cell a;;

In order to ge the number of clusters k, two approaches have been chosen. In the first
approach the number of clusters k is known ahead of time based on the gold clusterings. In
the second approach k is inferred by re-running the clustering with several possible values
and choosing the clustering that has the highest mean Silhouette Coefficient (Rousseeuw,
1987). The silhouette score measures how similar a point is to its cluster and dissimilar to
other clusters and can be seen in Equation 4.1. Silhouette coefficients in the context of the

described clustering algorithm is SC = 1 — A, since this matrix denotes pairwise distances.

_ b(pi) — a(p:)
5C = max(alp). b(py)

where
b(p;) = lowest average distance from p; to the nearest external centroid

a(p;) = average distance from p; to each other p; in the same cluster

The following subsections describe existing and novel similarity measures to populate or fill

the similarity matrix A visualised in Figure 21.
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Figure 21: Approaches to populate similarity matrix A: text-based and image-based

4.83.2. Existing Similarity Measures

Cocos and Callison-Burch (2016) introduced and implemented 4 different similarity mea-

sures:

Paraphrase Scores PPD By Score (PPDB2)

Second-order Paraphrase Scores simpppp.cos and simpppB.js

Similarity of Foreign Word Alignments simrrans

Monolingual Distributional Similarity simprsrrrp (word2vec (Mikolov et al., 2013))

Based on their experimental results, the two best performing similarity measures for forming
the similarity matrix and silhouette coefficients are PP D By ¢Score (PPDB2) and simprsrrip
(word2vec (Mikolov et al., 2013)). PPDB2 scores (Pavlick et al., 2015) are non-negative real
number between a pair of words that were judged by human annotators for the paraphrase

quality of possible word pairs.

For the Spectral clustering method, the best configuration happens when PPDB2 scores are
used for similarities and word2vec are used for silhouette coefficients. As such, we decided

to use PPDB2 scores and word2vec similarity measures for our initial set of experiments.

47



4.8.8. New similarity measures

Images In this approach, we populate the similarity matrix using AvGéMAX of top 100 im-
ages described in Section 2.3.2. The motivation of using AvGMAX as supposed to AVGAVG

comes from performance results in Chapter 3.

Contextual Information In this approach, we populate the similarity matrix based on
the contextual information of images used to compute image features. For each word in a
paraphrase set of a target word, we retrieve up to 100 html pages that are linked to 100
images from the dataset. For a word in a paraphrase set, we join all of the collected html
pages into a single document with a new line. This means that one paraphrase in a set maps
to one document with all html pages joined. We then build a Term Frequency - Inverse
Document Frequency (TF-IDF) using sub-linear TF Scaling for a paraphrase set, where the
row maps to a vector representation of a paraphrase. We then populate a similarity matrix
by taking the cosine similarity between the extracted embedding. What is important to
note is that the vocabulary used to build TF-IDF matrix is not the overall vocabulary of

the paraphrase file, but consists of vocabulary occurring inside the paraphrase set.
4.8.4. Combining similarity measures

As can be inferred, there are numerous ways to combine existing and new similarity mea-
sures to populate the similarity matrix. In our approach, we chose to simply average the
scores produced by various representations and apply L2 norm to already populated sim-
ilarity matrix. However, there are other proposed ways to combine the multiple modes of

similarities as explained in Chapter 5.
4.8.5. Fvaluation Measures

We use the same evaluation measures as was used by 2010 SemEval Word Sense Induction
Task (Manandhar et al., 2010), Apidianaki et al. (2014) and Cocos and Callison-Burch

(2016). The two evaluation measures are Paired F-Score and V-Measure. To compute
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paired F-Score all possible word pairs are labelled as being in the same cluster or not. The
labelling of word pairs is done for both predicted and ground-truth or gold clusterings.
The F-Score is then computed on the labelled word pairs using precision and recall. V-
Measure is an entropy-based measure which explicitly measures how successfully the criteria
of homogeneity and completeness have been satisfied. Homogeneity denotes conditional
entropy of the class distribution given the clustering and completeness denotes the opposite.
What is important to note is that these evaluation metrics are averages of paired F-Score
and V-Measure for each polysemous word, weighted by the number of clusters in for this
word in the gold file. In order to find the best clustering method performance, we seek to

find balance between paired F-Score and V-Measure.
4.8.6. Incorporating entailment

PPDB2.0 (Pavlick et al., 2015) contains automatically predicted semantic entailment re-
lationships such as equivalence, exclusive, independent, forward and reverse. Cocos and
Callison-Burch (2016) exploit positive entailment relationship of equivalence and forward /reverse
entailment by multiplying each pairwise entry by entailment probability and recording the

result in the similarity matrix after it has been normalised.

4.8.7. Baselines

Similarly to Cocos and Callison-Burch (2016) we implemented the following baselines:
e Most Frequent Sense (MFS) = all paraphrases in a single cluster

e One Cluster per Paraphrase (1c1Par) = each paraphrase in a paraphrase list has its

own cluster

e Random (RAND) = randomly assigns paraphrases to k clusters, where k is static and

is equal to 5

The intuition behind these baselines is that 1c1Par favours V-Measure, whereas MFS favours

F-Score, so the top performing model should take a position in between the two extremes.
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The main challenge we faced during evaluation was the lack gold standard clusters against
which we could compare our solutions. Therefore, we started evaluating our results against
WordNet+ and CrowdClusters datasets used by Cocos and Callison-Burch (2016) and de-

scribed in the subsequent sections.
4.4. Wordnet+ Dataset

4.4.1. Description

WordNet+! paraphrase file contains 201 polysemous words from the SEMEVAL 2007 dataset,
where a list of paraphrases originates from the intersection of the PPDB 2.0 XXXL para-
phrases, WordNet synsets and their immediate hyponyms and hypernyms. Gold clusterings?
for this dataset consist of a WordNet synset along with the hypernyms and hyponyms of

words for a given synset.

Tables 17, 18 and 19 provide paraphrase and gold files statistics for the WordNet+ dataset.
Tables 17 and 18 display information, such as the number of paraphrases for a target word
in both paraphrase and gold files. Table 19 provides information from the gold file about
the number of clusters per target word as well as the number of paraphrases within the

corresponding cluster.

Mean No of Median No of Std No of

No of target No of No of unique paraphrases paraphrases paraphrases
POS
words paraphrases paraphrases per target per target per target
word word word
noun 65 1222 1007 18.8 16 12.2
verb 56 2918 1271 52.1 45.5 40
adjective 59 424 344 7.2 7 4.3
adverb 35 224 169 6.4 6 2.5
all 215 4788 2953 22.3 11 28.4

Table 17: WordNet+ Paraphrase File POS Breakdown — Number of Paraphrases Statistics

"https://github. com/acocos/cluster_paraphrases/blob/master/data/pp/combined_semeval_
handpicked_multiword_xxxl_PPDB2.0Score_plusself_wnfilt.ppsets

2https://github.com/acocos/cluster_paraphrases/blob/master/data/gold/wordnet_eval_
targets.wngold
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Mean No of Median No of Std No of
POS No of target No of No of unique paraphrases paraphrases paraphrases

words paraphrases paraphrases per target per target per target
word word word
noun 60 4621 3915 77 73 45.4
verb 52 8565 4355 164.7 111.5 169.3
adjective 54 754 625 14 11 9.1
adverb 35 275 213 7.9 7 3.7
all 201 14215 8667 70.7 32 109.1

Table 18: WordNet+ Gold File POS Breakdown — Number of Paraphrases Statistics

Mean No of Median No of Std No of Mean No of Median No of Std No of
POS clusters per clusters per clusters per paraphrases paraphrases paraphrases
target word target word target word per cluster per cluster per cluster

noun 8.1 7 5 9.6 6 12.9
verb 16 11.5 11 10.3 5 29.3
adjective 5.5 4.5 3.2 2.6 2 2.4
adverb 3.1 3 1.2 2.5 2 1.9
all 8.5 6 8 8.3 4 21.8

Table 19: WordNet+ Gold File POS Breakdown — Number of Cluster and Paraphrases
within a Cluster Information

A few details can be observed from this evaluation of the paraphrase and gold files. To start
with, there are three times more paraphrases in the gold file as there are in the paraphrase
file. As a consequence, it can be seen in Tables 17 and 18 that there is a difference in
proportion between the mean, median and standard deviation in number of paraphrases for
a target word for nouns and verbs. According to Table 19 the number of clusters per target
word is around 8.5 across all words, however, the mean and median number of clusters per
each POS varies, in particular, with adverbs having the least number of clusters and verbs
have the most number of clusters. The mean number of clusters per target word for adverbs
can be justified by the little amount of data in comparison to other POS. Based on these
observations, it can be concluded that there is a need to separate the evaluation by POS, as
the number of paraphrases supplied as an input as well as the number of clusters expected as

an output for a target word varies between different types of words for WordNet+ dataset.
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4.4.2. Gold Clusters Examples

headrest support
chin_rest armrest

sleep eternal_sleep
quietus eternal_rest

death

half_rest
musical_notation
whole_rest
quarter_rest

rest.n

inactivity

inactiveness inaction

inactivity dormancy bedrest ease
laziness quiescency repose
sleeping lie-in quiescence leisure
relaxation bed_rest

residue residuum
component_part remnant
component residual portion part
leftover constituent balance
remainder

interruption pause breathing_place intermission

breathing_space relief breath break rest_period

breathing_time suspension breather
breathing_spell respite

work workplace
work

applications_programme
application
application_program

difficulty problem job.n

race_problem balance-
of-payments_problem

office profession trade sport accounting
vocation employment post occupation
confectionery metier line_of_work treadmill
farming billet accountancy medium
appointment business photography spot
catering game craft biz situation line
salt_mine berth land career work calling

(a) ‘Good’ examples

product production

Job

Job Book_of_Job

literal_interpretation

honour varsity_letter
award accolade
laurels honor

owner proprietor

letter.n

unfortunate

Job unfortunate_person

business_letter personal_letter
text aerogram covering_letter

duty chore task ball-
buster scut_work ball-
breaker shitwork stint

caper robbery

place activity position

duty obligation
responsibility

Figure 22:

Nouns

textual_matter dead_mail
air_letter pastoral crank_letter
epistle encyclical document
dead_letter letter_of_intent
round_robin chain_letter missive
form_letter cover_letter
open_letter aerogramme
airmail_letter invitation
encyclical_letter fan_letter

(b) ‘Bad’ examples

sadhe zed zee V samekh resh digram double-u character
ezed ayin gimel heth grapheme H ascender L P zayin T X
d polyphonic_letter h | sin p t x nun yodh ex daleth
graphic_symbol theta omicron C G mem lamedh KO S W
descender g k o s eta w gamma lambda xi vowel digraph
alphabetic_character zeta kaph chi initial polyphone pe
waw pi iota B F epsilon J ¢ N R aleph delta upsilon
consonant Z he qoph b kappa f j letter_of_the_alphabet n
mu r v z tau taw shin khi psi D izzard block_capital nu A
phi E | M block_letter Q beta U rho Y alpha beth omega a
e im q teth wye uy sigma

Examples for nouns from the WordNet+ Gold File

Figure 22 contains selected examples of clusterings for nouns from the WordNet+

gold file. Based on our observations, the clustering for the word ‘rest.n’ seen in Figure 22a

contains a good representation of distinct senses. For ‘rest.n’ a few senses can be clearly

observed: sleep, inactivity, pause, musical notation, and component remainder from math-
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ematics. Figure 22b contains gold clustering for the word ‘job.n’ and ‘letter.n’. The reason
we believe ‘job.n’ does not separate paraphrases in a clean manner is because there are many
clusters that are very specific and obfuscate the more general senses of the target word. For
instance the clusters ‘Job’, ‘Job Book_of_Job‘, and ‘Job unfortunate_person unfortunate’ do

not seem to create a good understanding of senses for ‘job.n’.

It can also be seen that ‘letter.n’ in Figure 22b does not separate paraphrases in a clean
manner. The reason to believe so is that there are two clusters that contain the majority
of paraphrase, while the other clusters contain very little amount of paraphrases that are
not representatives of a sense. Furthermore, the bottom right cluster contains letters from
the Latin and Greek alphabets along with other paraphrases, for instance ‘D’ ‘U’, ‘alpha’,
‘omega’, ‘sigma’ etc. While such cluster depicts the alphabetic meaning of a letter, it also

contains words that create noise, for instance ‘block_capital’, ‘descender’, ‘digraph’.

Verbs Figure 23 displays two examples of clusterings for verbs from the WordNet+
dataset. Figure 23a contains a clustering for the verb ‘bring.v’, which we believe sepa-
rates the word into distinct senses. The senses that can be observed for this word are
roughly as follows: throw, bring back, retrieve, make, create and alter. Figure 23b contains
a clustering for the verb ‘change.v’, which we believe does not separate the target word into
distinct senses. The reason to believe this is not a good representation is similar to the rea-
sons for the clustering of ‘letter.n’ in Figure 22b. While the other seven clusters represent
distinct senses such as travel, dress, exchange, replace, and shift, the top and bottom left
clusters contain way too many paraphrases in a single cluster. The top left cluster contains
691 paraphrases and it seems that the sense of the cluster is lost, since it contains words
like ‘sanitize’, ‘demoralize’, ‘alcoholize’ in the same cluster. This cluster most likely depicts
the change in human behaviour along with the change in environment and the world that

would make sense to separate.
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pull pull_in draw_in

attract draw throw_in tinsel lend contribute

modify add bestow instill impart
factor transfuse alter change

modify alter change
play create work

wreak make_for
make

land modify alter
change

get make induce bring.v
h:t‘i’;j:\?:e tube land return whisk channel
bring_back transit conduct

take_back transmit take
3 | convey impart carry ferry fetch
institute make create | |retrieve get transfer deliver transport
channelise channel convey
transmit channelize fetch
transport

(a) ‘Good’ examples

A A 111 AR A AR N S50 A B SIS
arterialize mix humanize deprave blunt Islamize demist transubstantiate customize elevate evaporate simplify barbarise liquidise energise mythologize oxidate energize clear camp
demagnetize devalue calcily deactivate disaffect clean classicise detransitivize vulgarise round_down officialize thicken industrialise remodel incapacitate mince bring alkalinise exacerbate

brighten destabilize alcoholise digitise stain make_grow plump pressurise exteriorize

personalise transaminate deform impact aggravate ionalise territorialize
ighten smut legitimate tone_down deaden slow_down intensify wake_up amalgamate rusticate humanise chasten heat_up assimilate effeminise cry depolarise flesh_out obscure neutralise set

misdirect allegorize shake vitalize freeze arouse glamourize inseminate corrupt internationalize laicize visualize westernise harshen reform begrime etherealize omament beef_up blot_out
internationalise beautify vascularize refreshen decorate sexualize oxidize radicalize extend opsonize visualise transpose personalize emulsify cut allegorise animalize animalise reverse
straighten_out disharmonize alcoholize equal contract demulsify concentrate officialise unclutter vesiculate widen color decarboxylate steepen inactivate transfigure cohere supple civilize
coarsen ugiify raise regenerate denaturalise invert round_off ease_off mark improve empty enable minify exasperate glamourise dismiss excite change_over harmonize lift wake overturn chill
solvate unify profane sancify amend sauce lessen ripen plasticise sentimentalize weaken make_clean immaterialize prostrate dynamise magnetize Americanize liberalise soil womanize
shorten lize check uniformize i deflate

bear_on dizzy sanitise ready demoralise saponify iodinate capture demythologise opalise patent make
spiritualize mythologise politicise de-emphasize expand transitivise de-emphasise retard mechanise fill_up humble renormalise diversify recombine romanticize restore orientalise chord mingle
fatten_up clot shape harmonise mythicize touch speed schematize denature mythicise acetylize brutalise isomerise pall add feminise crack habituate
domesticise reinstate match slenderise acetylise normalise awaken militarize depersonalise isomerize change_intensity disorder deconcentrate antique centralize right colour_in redress
desensitize accelerate bolshevise vitrify glamorize solemnise glamorise bolshevize merge untune flatten cloud decentralise moderate turn_back accustom suburbanize achromatise efiolate
lubricate individualise opalize digitalize pressurize eroticize digitalise bear_upon colourise subvert commix equalize indispose individualize muddy decimalize transmute rectify set_up Frenchity

paganise gear_up opacify colorize rationalise bedim prepare condense tame sensibilise fertilise paganize translate bubble perplex form fatien_out virilize desensitise heat rouse dull spice
destabilise contrib i inise nationalise cause_to_sleep

darken commercialise vaporise dirty centralise temper adorn communize naturalize demonise saturate
denationalize vivify antiquate animate filliberalize intransitivise weaponize inspissate demonize spice_up relax overcloud nick demagnetise polarize vulgarize colly draw devilise unscramble

lend depolarize sensify flocculate cool_down replace objectify democratize fasten veil dissonate occidentalize land fertilize defog liquefy unsex obliterate intransitivize change_taste tense ransom interchange sell

barter cash_in exchange
transfer stand_in cash trade

switch redeem swap fill_in
trade_in swop substitute sub

change.v
go transfer travel
move locomote

convert exchange capitalise
utilize launder replace break
commute rectify capitalize

incandesce fall_for get_dressed acetylate founder industrialise undulate fall obtain change_shape soften reorient catch settle
alkalinise suburbanise conk_out stabilise go prim find move_up deform move acetylize oxidise keratinise decay ionise promote
brutalise desalinate destabilize change._integrity decalcify feminise crack hydrolyze synthesize arrange spot frost_over shear

mat_up stiflen catch_on crash format acetylise lighten rise swing break fall_in go_bad foul capacitate deaden cool occult dim
indurate sublimate stabilize assimilate die give_out drop feminize refresh roll leave commute isomerize change_surface stratify deepen
break_down vulcanise transmute conform stagnate ionize uicerate recede relax ascend deoxidise matt-up become_flatfold oxidize
pall pass fail run dawn modernize desalinise introject professionalize glass_over solarise transpire jump separate glaze melt repress

adjust cave_in adapt alkalinize gelatinise sequester vascularize refreshen reticulate climb_up felt mildew hydrolyse resume modify
transpose flocculate liberalise hydrate te come felt_up come_around dry convert mellow_out . " e
- o " L P " X surf jump cut shift transition leap
animalise reverse receive shift deoxidize modernise lighten_up experience turn solarize change_magnitude regress digest break switch diphthongize
h: tate late tize depart divide ch: fi i lor decarboxylate distil matte st I_off ify . )
change_state vesiculate concretize depart divide change_form ice_up color decarboxylate distil matte steepen cool_off opacify channel-surf diphthongise

change_posture vitrify isomerise desalinize reflate shallow dilapidate regenerate concretise carbonate transform gradate fold_up

(b) ‘Bad’ examples

Figure 23: Examples for verbs from the WordNet+ Gold File

Adverbs Figure 24 displays few examples of clusterings for adverbs from this dataset.
Figure 24a contains clusterings for the target word ‘so.r’; ‘softly.r’, and ‘earlier.r’ that seems
to separate senses in a clear manner. For instance, for the target word ‘earlier.r’ there is a

differentiation between the concept of time. For the word ‘earlier.r’ there the absolute and
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relative difference of time clearly seen in the clustering. Figure 24b contains a clustering
for the word ‘thus.r’ that does not seem to differentiate senses. It perhaps would have been
more intuitive to combine two clusters into one, but introduce a new cluster where ‘like
this’, ‘in this way’, ‘like so’ would have been placed to illustrate ‘thus.r’ in the manner to

exemplify something.

indee
-
then and_so so.r thusly thus earlier.r

and_then

in_the_first_place
in_the_beginning originally
to_begin_with

hence thus therefore
thence

gently lightly
hence so therefore
softly.r thence
thus.r

(a) ‘Good’ examples (b) ‘Bad’ examples

Figure 24: Examples for adverbs from the WordNet+ Gold File

Adjectives Figure 25 displays a few examples of clusterings for the adjectives in this
dataset. Based on our observations there are many more adjectives that have been clustered
by senses in a clear way in the gold file as seen in Figure 25a. While ‘vital.a’, ‘reasonable.a’,
and ‘prominent.a’ contain relatively little amount of paraphrases and perhaps makes the
task of separating by senses a little easier, the clustering for ‘flat.a’ has many more words,
but the quality of clustering remains high. For instance, ‘flat.a’ has senses that are concerned
with the geometrical shape, with the material, with the taste and with the mathematical
interpretation of the word. It was relatively hard to find a ‘bad’ example of clustering for
the adjectives, however Figure 25b contains one such example for the target word ‘blue.a’.
The reason why it might not be a good representative of senses is because there are many
outdated senses for the target word, such as ‘puritanical’ or ‘profane’. Furthermore, it seems

that the two clusters representing the mood of a person could be combined.
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lively life-sustaining

reasonable.a
2-dimensional two- plane level

dimensional
categoric
matt matte mat flat.a unconditional — -
matted " categorical striking salient
spectacular

outstanding

prominent.a large big

compressed monotone monotonic

monotonous
vapid flavorless insipid

savorless savourless bland

flavourless

bland

(a) ‘Good’ examples

‘ blasphemous profane

dingy drear disconsolate puritanical puritanic

dreary dark gloomy
dismal drab sorry grim

blue-blooded gentle
aristocratic

aristocratical
blueish bluish blue.a patrician

downhearted dispirited naughty!umy gamy
down_in_the_mouth depressed racy spicy risque
e gamey

downcast down gloomy low low-
spirited grim

(b) ‘Bad’ examples

Figure 25: Examples for adjectives from the WordNet+ Gold File

4.4.3. Baseline Results

Let us denote the top-scoring Spectral method of Cocos and Callison-Burch (2016) as fol-
lows: Spectral (sm=PPDB2 sc=word2vec e=True). This method has entailment enable
(e=True), takes PPDB2 scores as a similarity matrix (sm=PPDB2), and silhouette coeffi-

cients of word2vec for choosing k (sc=word2vec).
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Figure 26: Clustering method performance against WordNet-+

Figure 26 displays clustering method performance against the WordNet+ dataset. It can
be seen that the results are within 1 standard deviations of the results produced by (Cocos
and Callison-Burch, 2016) for all of the baselines and their top performing Spectral method.
It can be seen that the performance of the top performing Spectral method by Cocos and
Callison-Burch (2016) has the highest F-Score, surpassing MFS. On the other hand, V-
Measure is 0.24 less than V-Measure for lclpar baseline method. Based on the results it

seems that the Spectral method has a good balance between the F-Score and V-Measure.
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Figure 27: Clustering method performance against WordNet+ separated by POS

Figure 27 displays the of the same algorithms as in Figure 26 broken down by POS. MFS
seen in Figure 27a has a a relatively stable performance for F-Score and V-Measure across
different types of words. The performance for 1clpar observed in Figure 27b is stable for V-
Measure across different types of words, but the F-Score varies significantly, being very low
for nouns and verbs, and exceptionally high for adjectives and adverbs. This can indicate
that putting a word in its own cluster does not work for nouns and verbs, but works much

better for adjectives and adverbs. Finally, based on the performance of Spectral seen in
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Figure 27c, the performance of the algorithm relative to baselines is quite stable across
POS. The difference between F-Score and V-Measure is relatively small for noun, adjective
and adverbs, but is significant for verbs. The results suggest that the strategy for verbs

needs to be improved improved in order to improve the overall performance on this dataset.

4.4.4. Results for individual features

Table 20 displays the performance for a subset of combinations of individual similarity mea-
sures on WordNet+ dataset. Based on the results from the Table it can be observed that
when the entailment is enabled the performance is slightly better, especially for combina-
tions other than PPDB2 as a similarity matrix and word2vec as silhouette coefficients. It
seems that with entailment enabled the F-Score and V-Measure go up by 0.1 if image fea-
tures are used as an input to the similarity matrix. The best performance is still achieved
when PPDB2 is used as an input to the similarity matrix and word2vec is used as an input
to silhouette coefficients. The other combination that is within 1 standard deviation from
the best performing model is when word2vec is used as both an input to the similarity

matrix and input to silhouette coefficients.

Similarit Silhouette . Mean No
Matrixy Coefficients Entail - F-Score V-Measure of Clusters
PPDB2 PPDB2 T 0.361 0.420 3.58
PPDB2 images T 0.345 0.325 3.10
PPDB2 word2vec T 0.354 0.449 4.26

contextual word2vec T 0.330 0.412 4.21
images PPDB2 T 0.342 0.379 2.95
images images T 0.327 0.275 2.44
images word2vec T 0.341 0.411 3.58

word2vec PPDB2 T 0.344 0.365 2.83

word2vec images T 0.330 0.268 2.55

word2vec word2vec T 0.340 0.456 4.37
PPDB2 PPDB2 F 0.358 0.419 3.60
PPDB2 images F 0.343 0.322 3.04
PPDB2 word2vec F 0.357 0.446 4.10
images PPDB2 F 0.287 0.222 2.22
images images F 0.283 0.207 2.02
images word2vec F 0.272 0.289 2.95

word2vec PPDB2 F 0.330 0.316 2.39

word2vec images F 0.318 0.259 1.97

word2vec word2vec F 0.288 0.522 5.75
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Table 20: WordNet+ performance of Spectral algorithm on a subset of individual features
for enabled and disabled entailment

4.4.5. Results for combined features

Table 21 displays the WordNet+ performance of the subset of combinations of individual
and combined similarity measures. Based on the results the combination that achieves the
best performance is when individual features are used, so when PPDB2 are used as an
input to the similarity matrix, and word2vec is used as silhouette coefficients. It seems that

combining features performs slightly worse than using individual features alone.

Similarity Matrix Silhouette Coefficients F-Score V-Measure Mean No
of Clusters
PPDB2 PPDB2 0.361 0.420 3.58
PPDB2 PPDB2 images 0.358 0.369 3.21
PPDB2 images 0.345 0.325 3.10
PPDB2 word2vec 0.354 0.449 4.26
PPDB2 word2vec PPDB2 0.359 0.437 3.78
PPDB2 word2vec PPDB2 images 0.362 0.388 3.29
PPDB2 word2vec images 0.356 0.350 3.10
PPDB2 contextual word2vec 0.340 0.422 3.70
PPDB2 images PPDB2 0.346 0.378 2.87
PPDB2 images PPDB2 images 0.340 0.318 2.47
PPDB2 images images 0.332 0.283 2.47
PPDB2 images word2vec 0.347 0.416 3.53
PPDB2 images word2vec PPDB2 0.352 0.408 3.13
PPDB2 images word2vec PPDB2 images 0.347 0.347 2.58
PPDB2 images word2vec images 0.339 0.304 2.51
PPDB2 images contextual word2vec 0.341 0.417 3.64
contextual word2vec 0.330 0.412 4.21
images PPDB2 0.342 0.379 2.95
images PPDB2 images 0.336 0.323 2.56
images images 0.327 0.275 2.44
images word2vec 0.341 0.411 3.58
images word2vec PPDB2 0.345 0.406 3.20
images word2vec PPDB2 images 0.342 0.346 2.63
images word2vec images 0.338 0.303 2.51
images contextual word2vec 0.342 0.422 3.67
word2vec PPDB2 0.344 0.365 2.83
word2vec PPDB2 images 0.338 0.287 2.42
word2vec images 0.330 0.268 2.55
word2vec word2vec 0.340 0.456 4.37
word2vec word2vec PPDB2 0.352 0.401 3.19
word2vec word2vec PPDB2 images 0.344 0.330 2.56
word2vec word2vec images 0.335 0.287 2.57
word2vec PPDB2 PPDB2 0.346 0.383 2.90
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word2vec PPDB2 PPDB2 images 0.341 0.324 2.47
word2vec PPDB2 images 0.330 0.286 2.47
word2vec PPDB2 word2vec 0.340 0.428 3.76
word2vec PPDB2 word2vec PPDB2 0.358 0.421 3.20
word2vec PPDB2 word2vec PPDB2 images 0.347 0.352 2.61
word2vec PPDB2 word2vec images 0.338 0.306 2.45
word2vec PPDB2 contextual word2vec 0.341 0.434 3.81
word2vec PPDB2 images PPDB2 0.348 0.384 2.88
word2vec PPDB2 images PPDB2 images 0.340 0.322 2.47
word2vec PPDB2 images images 0.330 0.285 2.47
word2vec PPDB2 images word2vec 0.345 0.426 3.69
word2vec PPDB2 images word2vec PPDB2 0.355 0.412 3.16
word2vec PPDB2 images word2vec PPDB2 images 0.344 0.350 2.59
word2vec PPDB2 images word2vec images 0.337 0.307 2.52
word2vec PPDB2 images contextual word2vec 0.347 0.428 3.73
word2vec contextual word2vec 0.332 0.445 4.22
word2vec images PPDB2 0.349 0.384 2.91
word2vec images PPDB2 images 0.339 0.316 2.50
word2vec images images 0.329 0.282 2.47
word2vec images word2vec 0.343 0.425 3.74
word2vec images word2vec PPDB2 0.356 0.417 3.22
word2vec images word2vec PPDB2 images 0.346 0.348 2.61
word2vec images word2vec images 0.338 0.307 2.53
word2vec images contextual word2vec 0.355 0.426 3.65

Table 21: WordNet+ Performance of Spectral algorithm on a subset of individual and
combined features with entailment enabled

4.5. CrowdClusters Dataset
4.5.1. Description

CrowdClusters® paraphrase file contains 78 randomly selected target words from the SE-
MEVAL 2007 dataset, where each target word has a list of paraphrases originating from
the unfiltered PPDB2.0 XXL entries. CrowdClusters gold file* for this paraphrase file is

produced with the help of crowd workers on Amazon Mechanical Turk.

Similarly to Section 4.4, Tables 22, 23 and 24 provide paraphrase and gold files statistics
for the CrowdClusters dataset. Table 24 provides information from the gold file about the

number of clusters per target word and the number of paraphrases within the corresponding

3https://github.com/acocos/cluster_paraphrases/blob/master/data/pp/semeval _tgtlist_
rand80_multiword_xx1l_PPDB2.0Score_plusself.ppsets

‘https://github.com/acocos/cluster_paraphrases/blob/master/data/gold/crowd_eval_targets.
crowdgold
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cluster.

Mean No of Median No of Std No of

No of target No of No of unique paraphrases paraphrases paraphrases
POS
words paraphrases paraphrases per target per target per target

word word word
noun 21 4185 2940 199.3 157 137.3
verb 21 8501 4305 404.8 310 269.4
adjective 22 5602 3025 254.6 261 129.9

adverb 14 2541 1151 181.5 163.5 80
all 78 20829 10099 267 214.5 195.5

Table 22: CrowdClusters Paraphrase File POS Breakdown — Number of Paraphrases Statis-
tics

Mean No of Median No of Std No of

No of target No of No of unique paraphrases paraphrases paraphrases
POS
words paraphrases paraphrases per target per target per target

word word word

noun 21 148 136 7.1 6 4.7
verb 21 1018 915 48.5 50 20.2
adjective 22 656 598 29.8 23 22.3
adverb 14 286 243 20.5 19 8.6
all 78 2109 1882 27 19 22.6

Table 23: CrowdClusters Gold File POS Breakdown — Number of Paraphrases Statistics

Mean No of Median No of Std No of Mean No of Median No of Std No of
POS clusters per clusters per clusters per paraphrases paraphrases paraphrases
target word target word target word per cluster per cluster per cluster

noun 2.7 2 1.2 2.6 2 1.7
verb 5.5 5 1.7 8.9 5 10.7
adjective 4.4 4 2.4 6.8 4 8.6
adverb 3.7 3.5 1.4 5.5 4 4.7
all 4.1 3.5 2.1 6.6 3 8.5

Table 24: CrowdClusters Gold File POS Breakdown — Number of Clusters and Paraphrases
within a Cluster Statistics

Unlike for the WordNet+ dataset, there are many more paraphrases in the paraphrase
file as there are in the gold file, most likely justified by the way the gold file was created
and the lower number of paraphrases supplied to the crowd workers. It can be seen that

there is roughly 10 times more paraphrases in the paraphrase file than there is in the gold
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file. Similarly to WordNet+ dataset, it can be seen in Tables 22 and 23 that there is a
difference in proportion between the mean, median and standard deviation in number of
paraphrases for a target word for nouns and verbs. It can also be seen that there are a
lot more paraphrases for verbs than there are for adverbs, verbs or nouns, and in fact,
the number of paraphrases for a noun is the least from the four POS. Based on Table 24,
the number of clusters per target word is around 4.1 across all words, however, the mean
and median number of clusters per each POS varies, in particular, with nouns having the
least number of clusters and verbs have the most number of clusters. The mean, median,
and standard deviation of number of paraphrases per cluster also varies between nouns and
verbs, but not as much for adjective and adverbs. Based on these observations it is evident

that the algorithm needs to account for different POS.

4.5.2. Gold Clusters Examples

officials tradesmen

abilities qualifications
capabilities

functionality functioning
functioning role functional

jobs working work

job.n profession labour functions.n
workplace position

employment .
task data reports functions data
operatlon

(a) ‘Good’ examples

cross-references
crosses crossed

cross-
e cross.n
crucifix
crossing crossover

shoot gunshot

mass.n hot shootings shots
shot.n i
masse masses shooting
ShOOter

(b) ‘Bad’ examples

Figure 28: Examples for nouns from the CrowdClusters Gold File



Nouns Figure 28 displays examples of clusterings for some of the nouns from the Crowd-
Clusters gold file. It seems that for nouns ‘job.n’ and ‘functions.n’ seen in Figure 28a some
of distinct senses are observed in a clear manner. For instance, for ‘job.n’ the cluster ‘va-
cancies post’ might refer to the job opening, whereas ‘task data report’ cluster might refer
to what a person can produce as part of the job. Figure 28b displays clusterings for nouns
‘mass.n’, ‘shot.n’ and ‘cross.n’, and in our opinion, such clusterings do not represent dis-
tinct senses of a polysemous word in a clear manner. Both ‘cross.n’ and ‘mass.n’ have words
that have some noise, for instance what can be interpreted as extra punctuation, but more
importantly, for ‘mass.n’ more so than for ‘cross.n’ or ‘shot.n’, there is no clear separation
of senses. An observation that can be made here is that for some target words, such as

‘mass.n’, there are not enough paraphrases to represent it.

be_running am_leaving 'm_going . .
're_going_away 'm_going_now be_ pursued 'm_coming_over comes_up 's_happening
are_running be_going checking_out e_p Is_arrving CFm'"g—‘,hm‘fgh shows_up
was_going is_going are_going being_pursued comes_in 'm_coming_in be_drawn
b — — running_from is_coming is_on_his_way 'm_coming_up
1l_be_gone ‘m_running 'm_coming coming_in 're_coming -
be_making is_happening coming_up been,f!red
doing be_performed 's_coming comes_along 's_coming start_shooting shot
_perforn P PSR i keep_firin,
worked fur{ctlonlng comes_along 's_coming_in 's_coming_up been_shﬁ:t getgshot
operates
introduced opened initiated run.v t laid |
commenced championed is_to_be_done be_accomplished getladlay
circulated decreed should_be_done going_to_do
be_made to_be_made be_achieved pull.v
be_undertaken to_be_done ferred d
supposed_to_do can_be_done conferred earne
are_complete finished .
being_managed acted N
exezél;t::dpézr:\nii e;:::sted structured organized owned is_taken gone took drew
- enhanced organised worked learnt derived be_learned drc amr;;k_:e_dxr‘e:w; |Z_r?mt;\:e3v n
been_organized designated interpreted been_learned amo":;; oua1 weasa deraw:
conducted administrated be_derived be_learnt learned withdrew remove l;e,taken
served are_taken withdraw got pulled
3 ’ ¢ ’
(a) ‘Good’ examples (b) ‘Bad’ examples

Figure 29: Examples for verbs from the CrowdClusters Gold File

Verbs Figure 29 displays examples of clusterings for some of the verbs from the Crowd-
Clusters gold file. Figure 29a displays clustering for the word ‘run.v’, which seems to have
a good quality clusters based on word sense. Some of the senses that can be observed for
the word ‘run.v’ are pursuing, managing, physically exercising and finishing. On the other
hand, in Figure 29b the target word ‘pull.v’ seems to have low quality verbs more resembling

informal context such as ‘re_coming’, ‘s_coming’, “‘m_coming’ and a lot of paraphrases per
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cluster.

at_last 3.4_finally a¢_finally 4.5_finally
after_all very_finally at_long_last
now_finally 4.4_finally eventually lastly

closer close_enough almost more_closely
very_closely any_closer even_closer

just_close near nearly closely very_close 3.5_finally
nearby
S . inally.r definitively
close.r

closure closes last last_of_all lastly

closing no_longer

(a) ‘Good’ examples (b) ‘Bad’ examples

Figure 30: Examples for adverbs from the CrowdClusters Gold File

Adverbs Figure 30 displays examples of clusterings for some of the adverbs from the
gold file. Figure 30a displays a clustering for the word ‘close.r’, which seems to separate
paraphrases in a clear manner. Based on our observation, ‘close.r’ contains the following
sense: nearby, no longer and far way. In comparison, for the target word ‘finally.r’ seen in
Figure 30b, the cluster at the top contains numbers embedded to words and some foreign

characters, which can indicate the defects of the data.

rigid stiffness almost_frozen unprocessed crude rough
stiff.a raw.a
stringent tough harsh strict severe strongly_worded
fierce strong steep rough crude
(a) ‘Good’ examples (b) ‘Bad’ examples

Figure 31: Examples for adjectives from the CrowdClusters Gold File

Adjectives Finally, Figure 31 displays examples of clusterings for some of the adjectives
from the gold file. Figure 31a displays a clustering for the word ‘stiff.a’, which seems to
have two distinct clusters for a word. The first cluster represents rigid, whereas the second
cluster represents sever or strong conditions. In comparison, for the target word ‘raw.a’
in Figure 31a, the cluster at the top contains is basically the cluster at the bottom plus

one extra word. Even though ‘raw.a’ can have two distinct senses: ‘rough’ in a sense of
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conditions and ‘unprocessed’ in a sense of food, those gold file clusters do not make the

senses obvious.

4.5.8. Baseline Results

00 V-Measure lB F-Scores

i)
0.6 | @ 2 g Qﬁ s
wn
% 04 [ & -
A °C N
9 S
0.2 7C? o |
o i
S .
i)
0 — \- I
MFS lclpar Rand(5.5)  Spectral
(sm=PPDB2
sc=word2vec
e=True)

Clustering Algorithm

Figure 32: Clustering method performance against CrowdClusters

Figure 32 denotes clustering method performance against tis dataset. It can be seen that the
results are within 2 standard deviations of the results seen in the paper (Cocos and Callison-
Burch, 2016) for all of the baselines and their top performing Spectral method. Based on
the results, MFS method has a relatively high F-Score and a low V-Measure, whereas
lclpar method has a relatively high V-Measure and a low F-Score. The performance of the
top performing Spectral method by Cocos and Callison-Burch (2016) has a relatively high

V-Measure similar to lclpar and a relatively high F-Score similar to MFS.
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Figure 33: Clustering method performance against CrowdClusters separated by POS

Measure Score
Mean No of Gold Clusters 4.10
Mean No of Solution Clusters 4.63
Std No of Solution Clusters 2.81
Mean of |No of Gold Clusters - No of Solution Clusters|  1.77
Std of |No of Gold Clusters - No of Solution Clusters| 2.22

Table 25: Statistics on the number of gold clusters and predicted clusters for Spectral
(sm=PPDB2 sc=word2vec e=True) on CrowdClusters
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Figure 33 displays clustering method performance of the same baselines as in Figure 32,
but separated by POS. Based on the performance of MFS in Figure 33a, V-Measure is 0
for verbs, adjective and adverbs and slightly higher for nouns, while F-Score varies at most
by 0.9 between the POS, being the lowest for verbs and highest for adverbs. Based on the
performance of 1clpar in Figure 33b, there are slight differences between V-Measure and
F-Score across all present POS. Nouns for this method has the highest V-Measure and the
lowest F-Score, while verbs have the highest F-Score and second highest V-Measure. Finally,
based on the performance of Spectral seen in Figure 33c and Table, the performance of the
algorithm varies within POS greatly. Verbs have the lowest paired F-Score and V-Measure,
followed by adjectives and adverbs, while nouns have the highest paired F-Score and V-
Measure. Based on Figure 33c, there is a need to treat POS differently when performing
clustering. Table 25 displays the basic statistics of the number of gold clusters and predicted
clusters. It can be seen from the Table that the mean difference between the number of
gold clusters and predicted clusters is 1.77, which indicates that the algorithm predicts the

number of in accordance to the gold clusters.

4.5.4. Results for individual features

Table 27 displays the CrowdClusters performance for a subset of combinations of individual
similarity measures. It can be seen that when the entailment is enabled the performance
becomes better by a slight margin. Similarly to WordNet+ dataset, based on this table the
best performance is still achieved when PPDB2 is used as an input to the similarity matrix
and word2vec is used as an input to silhouette coefficients. Other combinations that do well
on this dataset are contextual or word2vec as similarity matrix and word2vec as an input

to silhouette coefficients.

Similarit Silhouette . Mean No
Matrixy Coefficients Entail - F-Score V-Measure of Clusters
PPDB2 PPDB2 T 0.497 0.427 4.05
PPDB2 images T 0.492 0.388 4.10
PPDB2 word2vec T 0.493 0.463 4.63

contextual word2vec T 0.455 0.405 4.65
images PPDB2 T 0.123 0.551 23.24
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images
images
word2vec
word2vec
word2vec
PPDB2
PPDB2
PPDB2
contextual
images
images
images
word2vec
word2vec
word2vec

images
word2vec
PPDB2
images
word2vec
PPDB2
images
word2vec
word2vec
PPDB2
images
word2vec
PPDB2
images
word2vec

el s B ey Ml M e N e N e e N

0.126
0.122
0.513
0.497
0.470
0.497
0.497
0.495
0.322
0.118
0.121
0.120
0.511
0.495
0.420

0.550
0.551
0.380
0.328
0.432
0.429
0.385
0.435
0.476
0.546
0.545
0.547
0.356
0.303
0.483

23.05
23.17
2.78
2.81
4.26
4.08
4.04
4.18
9.52
23.24
23.06
23.12
2.30
2.04
5.57

Table 26: CrowdClusters performance of Spectral algorithm on a subset of individual fea-
tures for enabled and disabled entailment
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Figure 34: POS performance breakdown for Spectral (sm=images sc=word2vec e=True)
configuration from Table 26

It can also be seen that the performance of images as an input to the similarity matrix

is very low in the F-Score and high in V-Measure. The mean number of clusters for such

configuration is very high, which can indicate that there is a problem with inferring the

number of clusters for certain words. This observation is further confirmed in Figure 34

when there is a breakdown by POS. It can be seen that the algorithm produces good

results for verbs, but behaves like 1clpar for adjectives, adverbs and nouns. Such results

indicate the need to tune the algorithm for different types of datasets and different similarity
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measures.

4.5.5. Results for combined features

Table 27 displays the CrowdClusters performance of the subset of combinations of individ-
ual and combined similarity measures described in Section 4.3.4. Based on the results the
combination that achieves the best performance is when PPDB2 and images are used as an
input to the similarity matrix, and word2vec is used as silhouette coefficients. This perfor-
mance is slightly better than the performance of just PPDB as an input to the similarity
matrix. It seems that for CrowdClusters dataset the combining features yields a higher

performance as supposed to combining features for the WordNet+ dataset.

Similarity Matrix Silhouette Coefficients F-Score V-Measure Mean No
of Clusters
PPDB2 PPDB2 0.497 0.427 4.05
PPDB2 PPDB2 images 0.506 0.399 3.92
PPDB2 images 0.492 0.388 4.10
PPDB2 word2vec 0.493 0.463 4.63
PPDB2 word2vec PPDB2 0.499 0.441 4.15
PPDB2 word2vec PPDB2 images 0.508 0.408 3.90
PPDB2 word2vec images 0.495 0.400 4.19
PPDB2 contextual word2vec 0.502 0.410 3.95
PPDB2 images PPDB2 0.501 0.426 4.01
PPDB2 images PPDB2 images 0.508 0.401 3.92
PPDB2 images images 0.499 0.391 4.04
PPDB2 images word2vec 0.503 0.466 4.54
PPDB2 images word2vec PPDB2 0.504 0.445 4.14
PPDB2 images word2vec PPDB2 images 0.511 0.410 3.90
PPDB2 images word2vec images 0.503 0.404 4.14
PPDB2 images contextual word2vec 0.504 0.409 3.50
contextual word2vec 0.455 0.405 4.65
images PPDB2 0.123 0.551 23.24
images PPDB2 images 0.123 0.551 23.24
images images 0.126 0.550 23.05
images word2vec 0.122 0.551 23.17
images word2vec PPDB2 0.123 0.551 23.24
images word2vec PPDB2 images 0.123 0.551 23.21
images word2vec images 0.126 0.550 23.04
images contextual word2vec 0.416 0.414 6.52
word2vec PPDB2 0.513 0.380 2.78
word2vec PPDB2 images 0.520 0.331 2.37
word2vec images 0.497 0.328 2.81
word2vec word2vec 0.470 0.432 4.26
word2vec word2vec PPDB2 0.514 0.402 2.95
word2vec word2vec PPDB2 images 0.521 0.365 2.62
word2vec word2vec images 0.519 0.351 2.65
word2vec PPDB2 PPDB2 0.503 0.368 2.88
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word2vec PPDB2 PPDB2 images 0.512 0.323 2.37
word2vec PPDB2 images 0.498 0.321 2.73
word2vec PPDB2 word2vec 0.513 0.407 3.27
word2vec PPDB2 word2vec PPDB2 0.513 0.407 2.99
word2vec PPDB2 word2vec PPDB2 images 0.518 0.349 2.54
word2vec PPDB2 word2vec images 0.512 0.339 2.59
word2vec PPDB2 contextual word2vec 0.508 0.410 3.28
word2vec PPDB2 images PPDB2 0.501 0.367 2.86
word2vec PPDB2 images PPDB2 images 0.513 0.322 2.35
word2vec PPDB2 images images 0.498 0.320 2.71
word2vec PPDB2 images word2vec 0.496 0.401 3.36
word2vec PPDB2 images word2vec PPDB2 0.510 0.403 2.95
word2vec PPDB2 images word2vec PPDB2 images 0.518 0.349 2.54
word2vec PPDB2 images word2vec images 0.512 0.339 2.59
word2vec PPDB2 images contextual word2vec 0.503 0.409 3.37
word2vec contextual word2vec 0.462 0.419 4.01
word2vec images PPDB2 0.505 0.370 2.78
word2vec images PPDB2 images 0.514 0.320 2.33
word2vec images images 0.494 0.321 2.78
word2vec images word2vec 0.465 0.421 4.17
word2vec images word2vec PPDB2 0.503 0.394 2.99
word2vec images word2vec PPDB2 images 0.513 0.354 2.62
word2vec images word2vec images 0.508 0.343 2.68
word2vec images contextual word2vec 0.464 0.423 4.18

Table 27: CrowdClusters performance of Spectral algorithm on a subset of individual and

combined features with entailment enabled

4.6. WordNet+ Gold 2.0 Dataset

4.6.1. Motivation: Limitations of existing datasets and other problems

Previous sections on WordNet+ and CrowdClusters datasets, specifically Sections 4.4.2
and 4.5.2, outlined the examples of clusterings for each part-of-speech from gold files that
we believe might not cluster distinct senses for a target word in a clear manner. The
most common problem for the ‘bad’ examples included clustering too many paraphrases
in the same cluster, which made the cluster loose its sense. Another problems included
outliers, clear word mistakes, almost complete repetition of clusters and so on. Based
on the qualitative observations it is evident that there exist target words for which gold

clusterings are not of a high quality.

However, if we assume that the quality of a gold file is high, there is one main limitation

we found in implementation of Cocos and Callison-Burch (2016). It has to do with the
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way the evaluation is done on WordNet+ and CrowdClusters datasets. In order to evaluate
the performance of an algorithm an intersection of predicted clustering from the input
paraphrase file and gold clustering from the output gold file needs to be performed. The
evaluation is not able to take into account unknown words. We refer to such operation as
post-filtering. As a consequence, taking an intersection produces a low quality clustering.
In order to illustrate this problem, let us take a real example from the WordNet+ dataset
for the target word ‘saint.n’. The input paraphrase file referenced in Section 4.4 contains
‘saint.n’ that has 3 paraphrases: god, angel, saint. Those 3 paraphrases need to be clustered
by senses. In the gold file referenced in Section 4.4 ‘saint.n’ has 3 clusters that can be seen

in Figure 35.

fakeer faqir angel holy_person
good_person Buddha fakir
faquir holy_man

god deity divinity
patron_saint immortal

saint.n

nonesuch jimhickey crackerjack
nonsuch paragon humdinger
apotheosis class_act ideal
jimdandy model role_model
nonpareil

Figure 35: WordNet+ gold file clustering of target word ‘saint.n’

The Spectral method (with PPDB2 scores as an input to the similarity matrix and word2vec
scores as an silhouette coefficients) clusters each of the three paraphrases into 3 distinct clus-
ters, acting as lclpar baseline. In order to evaluate the clustering, the predicted clustering

is compared against gold clustering, where only intersected words get evaluated.
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fakeerfagir angel hely—persen
good—person-Buddhafakir

faguir-hely—man-

god-deity-divinity

saint.n

Figure 36: WordNet+ gold file clustering of target word ‘saint.n’ post-filtering

That means that the word ‘saint’ is removed from the predicted clustering since it does not
occur in the gold clustering, and the words ‘fakeer, faqir, holy_person, good_person, Buddha,
fakir, faquir, holy_man, nonesuch, jimhickey, crackerjack, nonsuch, paragon, humdinger,
apotheosis, class_act, ideal, jimdandy, model, role_model, nonpareil, deity, divinity, pa-
tron_saint, and immortal’” also get removed from the gold clustering since they do not occur
in the paraphrase file and cannot be evaluated. As observed in Figure 36, the post-filtering
of gold clustering produces just 2 clusters with the words ‘god’ and ‘angel’ being in separate
clusters. The post-filtering of predicted clustering produces also 2 clusters with ‘god’ and
‘angel’ being in separate clusters. The F-Score and V-Measure are both predicted to be 1,
thus being a perfect match between predicted and gold clustering. What this evaluation
for ‘saint.n’ fails to observe is that 33% was removed from the paraphrase file and 93%
was removed from the gold file. Could the gold clustering be trusted if 93% of the data is

removed?
4.6.2. Generation

In order to generate this new WordNet+ Gold 2.0 dataset, we have disregarded the para-
phrase file described in Section 4.4 and only taken the WordNet+ Gold file®>. We then re-

moved all words in the gold file for which there are no image representation, since word2vec

Shttps://github.com/acocos/cluster_paraphrases/blob/master/data/gold/wordnet_eval_
targets.wngold
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score can be obtained for unknown words, but the image representation cannot (we use

static version of the dataset (Callahan, 2017)).

As a result, from 8667 unique words that occur in the WordNet+ gold file 3006 were re-
moved, which accounts for around 35%. Over 60% of those removed words contained at
least one underscore or a dash. Some of the examples from the removed words are: rake_off,
charge_per_unit, business_enterprise, Agenise, progress_to, balaclava, deglycerolize, chop-
ping_board, cornice, go_wrong and jump_off. Therefore, for each target word and clustering
of a target word in the filtered gold file we generated the input paraphrase file but extracted
words from the clustering and aggregated them into a single list. The new gold file, para-
phrase file and words that were removed are available to view offline. As a side note, we
decided to completely disregard PPDB2 scores as a similarity measure since there was no
data for more than 50% of the paraphrases from WordNet+ dataset. Even though PPDB2
scores as an input to the similarity matrix score was the top performing algorithm for both
WordNet+ and CrowdClusters datasets, we believe that word2vec as a similarity measure
had a comparable performance within 1 standard deviation of PPDB2 score. We justify the
high performance of PPDB2 score due to but sparse but strong signal for the clustering of

paraphrases.
4.6.3. Description

Tables 28 and 29 provide paraphrase and gold files statistics for the WordNet+ dataset, in

particular the number of paraphrases and clusters per target word broken down by POS.

Mean No of Median No of Std No of

No of target No of No of unique paraphrases paraphrases paraphrases
POS
words paraphrases paraphrases per target per target per target
word word word
noun 60 2752 2320 45.9 45 28.5
verb 52 5797 3056 111.5 80.5 98.911
adjective 54 616 527 11.4 9 7.3
adverb 35 242 194 6.9 7 3.2
all 201 9407 5661 46.8 20 66.9
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Table 28: WordNet+ Gold 2.0 Paraphrase and Gold File POS Breakdown — Number of
Paraphrases Statistics

Mean No of Median No of Std No of Mean No of Median No of Std No of
POS clusters per clusters per clusters per paraphrases paraphrases paraphrases
target word target word target word per cluster per cluster per cluster

noun 7.6 7 4.6 6.4 4 8.2
verb 15.9 11.5 11 8.3 5 18.8
adjective 5.2 4.5 2.9 2.3 2 1.9
adverb 3 3 1.2 2.4 2 1.8
all 8.3 6 7.8 6.4 3 14.1

Table 29: WordNet+ Gold 2.0 Gold File POS Breakdown — Number of Clusters and Para-
phrases within a Cluster Statistics

Based on Table 28 the number of paraphrases per target word varies for different POS,
where verbs have the largest number and adverbs have the smallest number. According
to Table 29 the number of clusters per target word is around 8.3 across all words, is just
0.2 smaller than the number of clusters per target word in the the original gold file seen in
Table 19. Similarly to the original dataset, the mean and median number of clusters per
each POS for the new dataset varies significantly with verbs having the most number of
clusters and adverbs having the least number of clusters. One other observation is that the
statistics for the number of paraphrases per cluster for adverbs and adjectives are almost
identical even though there are three times as much paraphrases for adjectives as there are
for adverbs, which is reflected in the number of clusters per target word. The conclusion
that can be derived from these observations is that the algorithm needs to account for
different POS tag, since the distribution of paraphrases and clusters per target word varies

greatly between different types of words.

4.6.4. Results

Table 30 displays the clustering performance of baselines along with the top models against

the WordNet+ Gold 2.0 dataset.

75



Clustering Method F-Score V-Measure

Baselines

MFS 0.31 0.0

lclPar 0.08 0.65

RAND 0.19 0.27
Similarity Matrix K
Images Static 0.32 0.49
Word2vec Static 0.31 0.48
Word2vec, Images Static 0.31 0.49
Images Word2vec 0.31 0.32
Word2vec Word2vec 0.3 0.37
Images Images 0.31 0.22
Word2vec Images 0.31 0.25
Wordvec, Images Word2vec 0.3 0.32
Wordvec, Images Images 0.31 0.26

Table 30: Clustering method performance of baseline models and top models of Spectral
algorithm against the WordNet+ Gold 2.0 dataset

Based on the results for the baseline, MFS achieves an F-Score of 0.31 and V-Measure of 0,
while 1c1Par achieves an F-Score of 0.08 and V-Measure of 0.65. The performance of RAND
is much more balanced in comparison to MFS or 1cl1Par with an F-Score of 0.27 and V-
Measure of 0.19. When £ is known ahead of time based on the gold clusterings (static), the
performance of an algorithm is higher in V-Measure by around 0.15, as supposed to when
k is inferred using silhouette coefficients. The performance of image features and word2vec
is equivalent for when k is static, and in fact the performance of image features is slightly
better. However, hen k is determined using silhouette coefficients, the performance of image
features is slightly worse when word2vec is used as silhouette coefficients and significantly

worse when image features are used as silhouette coefficients.
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Figure 37: Clustering method performance of four models against WordNet+ Gold 2.0
separated by POS

An interesting insight into how image features differ from word2vec can be observed in
Figure 37 for the two approaches of selecting k. When static k is used, the performance
of image features is higher for nouns and adverbs and is lower for verbs and adjectives
in comparison to word2vec. This can be explained by the inherent nature of the images.
Same phenomena is observed when k is chosen based on word2vec as silhouette coefficients.

What is important to note is that the combination of image features as similarity matrix
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and word2vec as silhouette coefficients is worse by 0.05 in V-Measure as seen in Table 30,

a direct impact of a drop in V-Measure for verbs.

4.6.5. Gold and Predicted Clusters Examples

The following section contains examples of predicted and gold clusters for nouns, adjectives,

verbs, and adverbs. Please note that the word ‘insect’ appears in multiple clusters according

to the gold file and thus is highlighted with burgundy colour. Words inside the predicted

clusters are highlighted with the colour of the gold cluster other than the words in the

burgundy colour.

microbe, micro-organism,
microorganism, germ

glitch, flaw,
defect, fault

bed_bug, insect,
bedbug, chinch

bug.n insect

microphone, mike

(a) Gold Clustering

microbe, micro-organism,
microorganism bed_bug, germ
bedbug

micro-organism germ |

microbe,
microorganism

bug.n
glitch, flaw,
defect, fault

insect, chinch

glitch, flaw,
defect, fault

microphone, mike

bug.n

microphone, mike

insect

bed_bug

bedbug

(b) Similarity Matrix = Images, Silhouette Coef- (c¢) Similarity Matrix = Word2vec, Silhouette Co-
efficients = Word2vec,

ficients = Word2vec,
F-Score: 0.667, V-Measure: 0.846

F-Score: 0.529, V-Measure: 0.643

Figure 38: Gold clustering along with the predicted clusterings for the word ‘bug.n’
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Nouns Figure 38 displays a gold clustering along with the predicted clusterings for the
word ‘bug.n’. The clustering algorithm performs hard clustering and thus is unable to place
a word into multiple clusters. In this example image features achieve higher performance
in both F-Score and V-Measure when compared to word2vec as an input to the similarity
matrix. It can be seen that both of the predicted clusterings are quite similar to each other in
the way they cluster paraphrases. Both configurations cluster blue and red clusters perfectly.
They both misplace the words ‘bed_bug’ and ‘bedbug’ in different clusters and cannot cluster
them with ‘chinch’. Image features place ‘micro-organism’ and ‘microorganism’ together,
while word2vec separates them. Based on the figure it seems that both configurations have

trouble placing ‘microorganism’, ‘bedbug’, ‘germ’, and ‘chinch’.

Verbs Figure 39 displays a gold clustering along with the predicted clusterings for the
word ‘decline.v’. There are lots of words that occur in multiple clusters, such as ‘go_down’,
‘fall’, ‘drop’, ‘reject’ and so on. More importantly, there a lot more paraphrases within
a cluster, which is consistent with observations made in Table 29. Predicted clusterings
achieve a lower F-Score and V-Measure relative to the previous example of the word bug.n
seen in Figure 38. Word2vec as a similarity matrix achieves a more balanced performance
on both evaluation metrics. It seems that images features and word2vec have at least 3
predicted clusters that are equivalent. for example ‘react’ and ‘respond’ are placed together,
similarly to ‘regress’ and ‘retrogress’. Furthermore, image features separate paraphrases in
16 clusters, 7 more clusters than word2vec. Both configurations have clusters that have a
lot of paraphrases from different clusters, as can be seen by a variation of colours inside
boxes. While there is little confused for the purple cluster, there seems to be a lot more

problem in clustering paraphrases from orange, green and blue clusters.
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inflect descend, slump, correct,
come_down, go_down, fall

sink,
dip, dro i
p. P dishonor, pass_up,
' bounce,
decline.v turn_down, refuse, reject

wane, lessen, decrease,
diminish,
dip, drop, go_down, fall

retrogress, impoverish, tumble, lose,

respond, spurn, deprive, inflame, slip, fail,
regret, disdain, suffer, degenerate, turn, worsen, sicken,
repudiate, retrograde, regress, devolve,
disobey, react, scorn, deteriorate,
refuse, reject, turn_down turn_down, come_down, drop

(a) Gold Clustering

diminish, lessen, pass_up, bounce

wane dishonor - regret slump, descend, sink,
' turn_down dip, drop, fall
, s
repudiate, refuse correct go_dodwn,
come_down
diminish, decrease,
descend,

go_down, come_down lessen, wane

react, respond

slump, sink, . )
scorn, disdain decline.v X X scorn, disdain
dip decline.v
disobey, : ) react, respond
’ decrease,
fall, drop f f
regret, repudiate, disobey, spurn, refuse

bounce, pass_up, dishonor,

’ 3 ’

’—‘ correct,

reject, turn_down

(b) Similarity Matrix = Images, Silhouette Coef- (c) Similarity Matrix = Word2vec, Silhouette Co-
ficients = Word2vec, efficients = Word2vec,
F-Score: 0.18, V-Measure: 0.593 F-Score: 0.307, V-Measure: 0.403

Figure 39: Gold clustering along with the predicted clusterings for the word ‘decline.v’

Adverbs Figure 40 shows gold and predicted clusterings for the word ‘around.a’. The
gold clustering contains a paraphrase ‘about’ that is placed as its own cluster, but also inside
a green cluster. A clear distinction of senses can be observed for this target word. Image
features achieve a significantly higher performance in F-Score and similar performance n
V-Measure. Based on the predictions, image features seem to to a better job in bring para-
phrases that belong to the green cluster together. What is interesting to see is that ‘close_to’
is being placed with ‘about’ in both configurations. Both configurations can’t separate the

word ‘round’ from the paraphrases in green cluster such as ‘some’, ‘approximately’, and
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‘roughly’.

about, some, roughly,
approximately, just_about, or_so,
more_or_less, close_to

about

(a) Gold Clustering

some, roughly, approximately, just_about,
or_so, more_or_less, round some, roughly
approximately, round

just_about, or_so,
more_or_less

around.r around.r

about, close_to about, close_to

(b) Similarity Matrix = Images, Silhouette Coef- (c) Similarity Matrix = Word2vec, Silhouette Co-
efficients = Word2vec,
F-Score: 0.35, V-Measure: 0.7

ficients = Word2vec,
F-Score: 0.615, V-Measure: 0.727

Figure 40: Gold clustering along with the predicted clusterings for the word ‘around.r’

central, cardinal, key, primal

fundamental.a profound

‘ underlying, rudimentary ‘

(a) Gold Clustering

central, key cardinal, rudimentary
| central, key | | primal, cardinal, rudimentary

primal fundamental.a
fundamental.a

underlying,

underlying, |

(b) Similarity Matrix = Images, Silhouette Coef- (c) Similarity Matrix = Word2vec, Silhouette Co-
ficients = Word2vec, efficients = Word2vec,

F-Score: 0.167, V-Measure: 0.25 F-Score: 0.308, V-Measure: 0.4

Figure 41: Gold clustering along with the predicted clusterings for the word ‘fundamental.a’
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Adjectives Figure 41 contains an example of clusterings for the adjective ‘fundamental.a’.
The gold clustering contains 3 distinct senses for the target word, which can perhaps be
summarised as central, profound, and rudimentary. The performance of image features as
supposed to word2vec is significantly worse. The difference between predicted clusterings
produced by image atures and word2vec is that the paraphrase ‘primal’ is removed and
made as a separate cluster. Such move penalises image features in both V-Measure and
F-Score, since ‘primal” had the word ‘cardinal’ that belonged together in the original green
cluster. Such change has 0.15 drop in performance in both of the evaluation metrics. None
of the configurations seem to misplace ‘profound’, ‘underlying’, and ‘rudimentary’, but more

importantly, separate ‘primal” and/or ‘cardinal’ with ‘central, key’.
4.6.6. Concreteness

The concreteness of a word can also play a helpful role in incorporating features into clus-
tering tasks. The concreteness of a target word is inversely proportional to the degree of
vagueness of its meaning. For example, ‘strawberry’ is highly concrete, but ‘job’ is relatively
less concrete, since it can assume multiple meanings. The intuition behind this metric is
that if the concreteness of the target word is high, the more likely it is that the image
features will be highly complementary to the clustering task. In order to evaluate the per-
formance by concreteness for each target word we extracted a concreteness score based on
the values from Brysbaert et al. (2013). For WordNet+ Gold 2.0 dataset the minimum
concreteness score is 1.19, maximum is 5.0, and the mean at 3.17. The higher the score, the
more concrete the word is. For instance, the word ‘mood’ has 1.75 set as the concreteness
score, but the word ‘soil” has a score of 4.87. In order to perform the analysis, we separated
the dataset by POS and decided to plot F-Score against V-Measure with concreteness score
visualised by the colour. Blue displays a low concreteness score, whereas red displays a high

concreteness score.

Nouns For nouns the minimum concreteness score is 1.75, maximum is 5 and mean is

3.93. Figure 42 displays the performance of two configurations, where on the left images
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are set as the input to the similarity matrix and on the right word2vec is set as the input

to the similarity matrix. For nouns the F-Score and V-Measure in both configurations are

clustered together in the lower left corner with colours mixed. For both image features and

word2vec a clear pattern cannot be observed for concreteness.
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Figure 42: F-Score vs V-Measure plot of predicted scores for a target word coloured by
concreteness for nouns from WordNet+ Gold 2.0 dataset

Verbs

For verbs the minimum concreteness score is 2, maximum is 4.68 and mean is 3.21.

Figure 43 displays the performance of image features and word2vec configurations on verbs.

Unlike nouns, for verbs F-Score and V-Measure in both configurations are more distributed,

with V-Measure reaching higher values than the F-Score on average. For image features, a

pattern can be observed, where there values that fall under F-Score of less than 0.4 and V-

Measure of less than 0.4 have low concreteness scores. A similar observation, but a smaller

window size can be be observed for word2vec.
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Figure 43: F-Score vs V-Measure plot of predicted scores for a target word coloured by
concreteness for verbs from WordNet+ Gold 2.0 dataset

Adverbs For adverbs the minimum concreteness score is 1.33, maximum is 3.87 and mean
is 2.25. Figure 44 displays the performance of image features and word2vec configurations
on adverbs. Similarly to verbs, the points in the plot for both configurations are very sparse.
It can be seen that majority of the words have a low concreteness score, hence there colour
of majority of points are blue. In the right upper corner words that achieved the best
possible performance in terms of F-Score and V-Measure can be seen. Some of the words

include ‘hard’, ‘possibly’, ‘entirely’, ‘apparently’ and so on.
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Figure 44: F-Score vs V-Measure plot of predicted scores for a target word coloured by
concreteness for adverbs from WordNet+ Gold 2.0 dataset
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Figure 45: F-Score vs V-Measure plot of predicted scores for a target word coloured by
concreteness for adjectives from WordNet+ Gold 2.0 dataset
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Adjectives For adjectives the minimum concreteness score is 1.57, maximum is 4.44
and mean is 2.74. Figure 45 displays the performance of image features and word2vec
configurations on adjectives. The distribution of points on the plot for adjectives resemble
the distribution of verbs. What can be observed from both of the configurations is on
average, the more concrete the target word is, the higher is the V-Measure score is for
adjectives. Similarly to adverbs, the right upper corner words that achieved the best possible
performance in terms of F-Score and V-Measure can be seen. Some of the words include

‘worthy’, ‘poor’, ‘strange’, and ‘civil’.
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CHAPTER 5 : Discussion and Future Work

For the task of word similarity prediction, certain observations can be made based on the
results seen in Chapter 3. To start with, even though thirteen datasets were used to evaluate
the performance of different vector representations, only a small subset of datasets provide
a sufficient number of data points with reliable human judgement scores. As a result, we
prioritised datasets such as SimLex-999 in our quantitative and qualitative analysis. Based
on the results on SimLex-999 dataset, as the number of image features increases, the per-
formance increases for all three visual representations. This is especially evident by the
performance on 666 nouns and 111 adjectives from SimLex-999 dataset. A similar pattern
can be observed on MEN-3000, MTurk-287, and MTurk-771 datasets. On the other hand,
as the number of image features increases the performance decreases for 222 verbs from
SimLex-999 dataset. In general, all three visual representations have a significantly worse
performance on datasets that consist only with verbs, for instance Verb-143, SimVerb-3500,
and 222 verbs from SimLex-999 datasets. This suggests that part-of-speech should play
a role when choosing to use visual representation. While the performance of linguistic
representation is better for other datasets, visual representation is comparable to linguis-
tic on SimLex-999 dataset. This suggests that image-based representation can be used as
an alternative way of predicting similarity of word pairs. We have tried combining visual
and textual representations through concatenation of vectors, however the performance of
this multimodal representation was worse as supposed to using visual or lingustic features
in isolation. Further comparison of two representations done as part of qualitative analy-
sis revealed that those unimodal representations predict certain word pairs very similarly.
However, the range of values predicted using AVGMAX approach is much more narrow in
comparison to the linguistic approach. Such observation needs further investigation and

can be done as part of future work.

For the task of clustering paraphrases by word sense seen in Chapter 4, many conclusions

can be made based on the results. First, most clustering algorithms require an affinity

87



or similarity matrix as an input, which denotes a pairwise similarity between paraphrases.
This thesis explored are a variety of choices for populating a similarity matrix, for example
linguistic, image-based or contextual (from images) representations. In addition to running
existing similarity measures in isolation, there are numerous way of combining those uni-
modal representations to form a multimodal representation. This thesis explored one of the
simplest ways of combining representations by averaging a similarity score between a pair
of paraphrases from various modes and then performing normalisation. The results have
shown that a multimodal representation of textual and visual representations work best on
CrowdClusters dataset, but does not work so well for the WordNet+ dataset. Another way
to combine different modes of data would have been to assign weights for a particular repre-
sentation based on a target word or its properties, such as part-of-speech. This approach of
combining was not explored in the thesis, but could be done in future. Going forward from
our approach of combining the similarities of embeddings before clustering, another exten-
sion would be to explore an ensembling technique to combine the clusters obtained by each
of the features independently. To paraphrase, a clustering algorithm would run on different

unimodal representations in isolation and then an ensembling happens post-clustering.

The reason why such approaches were not explored in the thesis was due to time constraints,
but also because the evaluation of different models resulted in similar performances on
WordNet+ and CrowdClusters datasets. We believe that the existing datasets suffer from
a low quality of clusters due to various reasons: noisiness, over 90% of paraphrases in
one cluster, depiction of outdated senses, foreign characters, informal words and so on.
Moreover, the input file and gold file do not have sufficient overlap between the two sets
of paraphrases for a given target word, making the quality of clusters even lower. These
limitations served as a motivation for creating a new dataset from the gold file of WordNet+
dataset and removing certain number of paraphrases that do not appear in the collection
of Callahan (2017). The results on a new dataset showed that visual representation and
textual representation are comparable to each other in terms of performance. In addition,

we observed that the performance of image features in comparison to textual features is
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higher for nouns and adverbs and is lower for verbs and adjectives. This can be explained

by the inherent nature of the images.

Overall, we believe that the idea of linking a query word to a set of images from the search
engine is very powerful, since in theory, sets of images can be extracted for any query word
or phrase, no matter how complex a query word is. One obvious extension from this thesis
would be to use a different neural network architecture when converting a set of images to
a set of image features. This could mean varying the number of dimensions created for each
image features, perhaps reducing the size of dimensions to be comparable to dense textual
representations. For both of the explored tasks, there are numerous ways of combining
different modes of data into a multimodal representation. Perhaps there is a need to think
of alternative ways of combining text and images. Finally, one of the most noticeable
observations was that visual features suffer from representing verbs. There should be a
consideration on how to treat verbs, perhaps using videos instead of image features as a

representation.
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APPENDIX

Dataset No Images

Top-1 Top-5 Top-10 Top-25 Top-50 Top-75 Top-100
RG-65 0.48  0.4658 0.5105 0.56 0.6295 0.6397 0.6422
MC-30 0.4041 0.4262 0.4251 0.4903 0.5848 0.5726  0.5978
WordSimilarity-353-ALL 0.2295 0.2985 0.2726 0.2583 0.2473 0.2401  0.2366
WordSimilarity-353-SIM 0.3638 0.3579 0.3601 0.3442 0.3424 0.3311 0.3267
WordSimilarity-353-REL 0.108 0.1877 0.1397 0.1275 0.109 0.1046 0.1016
MTurk-287 0.2088 0.3073 0.3144 0.3171 0.31 0.3115  0.3042
MTurk-771 0.275 0.3649 0.3848 0.4007 0.4199 0.4193 0.4153
MEN-3000 0.4394 0.5206 0.5297 0.5331 0.5415  0.54 0.5405
SimLex-999 0.2271 0.3127 0.3367 0.3596 0.3795 0.3789  0.376
SimLex-666-Nouns 0.2753 0.3586 0.3974 0.4273 0.4682 0.4773 04774
SimLex-222-Verbs 0.2004 0.2103 0.1731 0.1747 0.1406  0.107  0.0898
SimLex-111-Adjectives 0.0217 0.2095 0.27 0.3403 0.3492 0.3687 0.3721
YP-130 0.0801 0.0996 0.0989 0.0951 0.1208 0.1308 0.1325
VERB-143 -0.0075 0.0324 -0.0227 -0.0755 -0.0503 -0.0417 -0.0323
SimVerb-3500 0.0603 0.0967 0.1066 0.1085 0.1046 0.0995  0.094
RW 0.0819 0.238 0.251 0.2849 0.2785 0.2809 0.2854

Table 31: Performance of AvG(w1, w2) on predicting word similarity. (Section 2.3.1)

Dataset No Images

Top-2  Top-5 Top-10 Top-25 Top-50 Top-75 Top-100
RG-65 0.4691 0.4892 0.5575 0.5647 0.5785 0.5901 0.55
MC-30 0.332 0.4564 0.4829 0.4818 0.4535  0.442 0.373
WordSimilarity-353-ALL 0.2886 0.3462 0.316 0.2859 0.3006 0.2984 0.2807
WordSimilarity-353-SIM 0.3721 0.4216 0.4121 0.4036 0.4146 0.4187  0.395
WordSimilarity-353-REL 0.1629 0.2256 0.1883 0.1413 0.1741 0.1537  0.132
MTurk-287 0.3237 0.3266 0.3308 0.3618 0.377 0.3883 0.3754
MTurk-771 0.3167 0.3607  0.401 0.4231 0.4466 0.4467  0.4401
MEN-3000 0.5173 0.5352  0.551 0.5754 0.5928 0.5974 0.6032
SimLex-999 0.2666 0.2959 0.3231 0.3342 0.3566 0.3527  0.3464
SimLex-666-Nouns 0.3186 0.3537 0.3873 0.4041 0.4457 0.4474  0.4417
SimLex-222-Verbs 0.212 0.1786 0.1586 0.1427 0.1084 0.0953 0.0887
SimLex-111-Adjectives 0.0731 0.1862 0.2292 0.2549 0.249 0.2603  0.2434
YP-130 0.1022 0.1245 0.1069 0.0918 0.1534 0.1475 0.1782
VERB-143 -0.0677 -0.0041 -0.0101 -0.0607 -0.0771 -0.0322 -0.0039
SimVerb-3500 0.0859 0.0936  0.108 0.1086 0.1056 0.0991  0.0958
RW 0.1772 0.2108 0.2116 0.2558 0.2414 0.2295 0.2267

Table 32: Performance of AvGMAX on predicting word similarity. (Section 2.3.2)

Dataset No Images
Top-2 Top-5 Top-10 Top-25 Top-50 Top-75 Top-100
RG-65 0.4496 0.4521 0.4646 0.4724 0.5005 0.5255  0.534
MC-30 0.3145 0.3966 0.3607 0.3574 0.3765 0.401  0.4093
WordSimilarity-353-ALL 0.2913 0.3255 0.3022 0.2926 0.2931 0.3023 0.2964
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WordSimilarity-353-SIM 0.3818 0.4127 0.4109 0.4081 0.4158 0.4241 0.42

WordSimilarity-353-REL 0.1645 0.2097 0.1707 0.163 0.1632 0.1695 0.1621
MTurk-287 0.3233 0.3366 0.3387 0.3704 0.3891 0.3973  0.3897
MTurk-771 0.3382 0.3615  0.393 0.4088 0.4264 0.4248 0.4215
MEN-3000 0.5292 0.5468 0.5625 0.5833 0.6006 0.6065 0.6094
SimLex-999 0.2548 0.2603 0.2667 0.2726 0.2875 0.2838  0.2797
SimLex-666-Nouns 0.3089 0.322 0.3314 0.3347 0.361  0.3667 0.3641
SimLex-222-Verbs 0.2094 0.1854 0.134 0.141 0.1222 0.0765 0.0519
SimLex-111-Adjectives 0.0278 0.0693 0.1186 0.1404 0.1496 0.1282 0.1391
YP-130 0.0962 0.0962 0.0881 0.1008 0.1501 0.1664 0.1917
VERB-143 -0.0545 -0.0138 -0.0445 -0.0911 -0.0914 -0.0762 -0.0698
SimVerb-3500 0.0725 0.0726  0.0759 0.0781 0.0718 0.0655 0.0628
RW 0.1566 0.1835 0.1832 0.1953 0.1904 0.1836 0.1815

Table 33: Performance of AVGAVG on predicting word similarity. (Section 2.3.3)

Dataset No Images
First 100 First 200 First 300 First 1000  First 2000 All 4096 points
RG-65 0.6877 0.6713 0.6415 0.644 0.6439 0.6422
MC-30 0.6727 0.7008 0.6158 0.6055 0.6026 0.5978
WordSimilarity-353-ALL 0.2782 0.2654 0.2652 0.2541 0.2422 0.2366
WordSimilarity-353-SIM 0.3405 0.3495 0.3459 0.3382 0.3264 0.3267
WordSimilarity-353-REL 0.1611 0.1358 0.1334 0.1227 0.1114 0.1016
MTurk-287 0.2842 0.287 0.3107 0.3055 0.3056 0.3042
MTurk-771 0.4168 0.4176 0.4133 0.4153 0.4152 0.4153
MEN-3000 0.4928 0.5123 0.5216 0.5345 0.5355 0.5405
SimLex-999 0.3583 0.3688 0.3718 0.3787 0.3766 0.376
SimLex-666-Nouns 0.4696 0.4767 0.4711 0.4807 0.4803 0.4774
SimLex-222-Verbs 0.0206 0.0558 0.0787 0.0867 0.0901 0.0898
SimLex-111-Adjectives 0.3342 0.3304 0.3465 0.3663 0.3688 0.3721
YP-130 0.1072 0.1145 0.1207 0.1327 0.1304 0.1325
VERB-143 0.0142 0.0142 0.0183 -0.0276 -0.0335 -0.0323
SimVerb-3500 0.0903 0.092 0.0921 0.0926 0.0934 0.094
RW 0.2714 0.2875 0.2901 0.2869 0.2841 0.2854

Table 34: Performance of Ava(w1, w2) For Top-100 images varying the number of dimen-
sions

PCA to 100 PCA to 300 Word2Vec + ordzvec +
Dataset . PCA to 300
averaged averaged First 300
averaged

RG-65 0.5447 0.5476 0.6422 0.5847
MC-30 0.4818 0.4869 0.6222 0.535
WordSimilarity-353-ALL 0.3936 0.3959 0.2702 0.1539
WordSimilarity-353-SIM 0.5106 0.5155 0.3529 0.2098
WordSimilarity-353-REL 0.2622 0.2605 0.1367 0.0404
MTurk-287 0.469 0.4748 0.3181 0.2173
MTurk-771 0.4649 0.4686 0.4184 0.3154
MEN-3000 0.6087 0.6089 0.5262 0.2339
SimLex-999 0.2892 0.2952 0.3756 0.3392
SimLex-666-Nouns 0.3806 0.3878 0.4731 0.3825
SimLex-222-Verbs 0.0757 0.0772 0.0848 0.2495
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SimLex-111-Adjectives 0.2867
YP-130 0.2065
VERB-143 0.0382
SimVerb-3500 0.1221
RW 0.2763

0.2914
0.2092
0.0324
0.1229
0.279

0.3531
0.126

0.0225

0.0964
0.296

0.5341
0.1969
0.1277
0.1801
0.3792

Table 35: Performance of additional models on predicting word similarity
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