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ABSTRACT

Many Natural Language Processing (NLP) tasks require knowing the sense of polysemous

words. Clustering the paraphrases of a word into distinct senses has been used as a step in

word sense disambiguation (WSD) algorithms. However, all previous word sense clustering

algorithms have relied exclusively on unimodal linguistic features, and in particular, using

word representations from distributional semantics. In our work, we incorporate visual

features derived from the image search engine into the tasks of word similarity prediction and

word sense clustering. Image search engine provide a way to link a query word and a set of

top n images for that query word. Based on previous work, n visual or image-based features

can be obtained by running n images through a convolutional neural network (CNN) and

extracting values from the pre-softmax layer. Following the linguistic approach of having a

single representation for a query word, we explore three ways to convert n visual or image-

based features into a single representation. For the task of word similarity prediction, we

conduct a comprehensive set experiments on thirteen datasets by varying the number of

image features n for all three approaches. In addition to comparing different models, we

provide a way to combine linguistic and visual features into a multimodal representation by

vector concatenation applied with dimensionality reduction. We show that the performance

of visual and multimodal representation is comparable to the linguistic representation for

some of the datasets. We report that on average the performance increases as n increases.

Moreover, we show that sets of image features corresponding to each word also provide a

powerful signal for the task of sense clustering, and that by incorporating visual information

into our clustering paradigm, we can achieve an alternative sense disambiguation than

by using text alone. We report our results on two existing datasets for different part-of-

speech (POS) and argue that visual features are better than linguistic features in predicting

clusterings for nouns, but are significantly worse for verbs. Finally, we provide limitations of

existing datasets, generate a new dataset for word sense, and report our results for different

POS.
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CHAPTER 1 : Introduction

A polysemous word is one that has several different meanings or senses. The task of word

sense disambiguation (WSD) involves determining the meaning of a word from its surround-

ing context given a predefined sense inventory. For example, the word ‘bug’ in the context

of biology could mean ‘parasite’ or ‘virus’. To a computer scientist, however, ‘bug’ is much

more likely to mean ‘error’ or ‘glitch’. WordNet (Miller, 1995) contains manually created

sense inventories. It contains the following senses for the noun ‘bug’:

• S1: bug (general term for any insect or similar creeping or crawling invertebrate)

• S2: bug, glitch (a fault or defect in a computer program, system, or machine)

• S3: bug (a small hidden microphone; for listening secretly)

• S4: hemipterous insect, bug, hemipteran, hemipteron (insects with sucking mouth-

parts and forewings thickened and leathery at the base; usually show incomplete

metamorphosis)

• S5: microbe, bug, germ (a minute life form (especially a disease-causing bacterium);

the term is not in technical use)

Many tasks in Natural Language Processing (NLP) like machine translation are incomplete

without knowing the sense of a word. Consider the following sentence: ‘The patient is

running a fever that seems to be the result of a mild bug’. This cannot be translated

accurately from English to French without knowing that the definition of ‘bug’ is most

similar to that of ‘virus’, given the context. The task of automatically identifying the

senses of a word is knows as word sense induction (WSI).

Hence, there is a need to represent the meaning of a word, as it serves as a prerequisite to

many tasks in NLP. One of the traditional approaches to represent the meaning of a word

is to use the context in which it appears. The context can be represented as a vector, com-
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Figure 1: An abstract representation of word vectors that represent a word using the
contexts in which it appears under the assumption of the distributional hypothesis

monly referred to as a word embedding. The key idea relies on the distributional hypothesis

(Harris, 1954), which tells that words that appear in similar context have similar vectors

and similar semantics. This representation allows to compare words via multiple vector sim-

ilarity metrics, for instance cosine similarity. Figure 1 denotes an abstract representation of

word embeddings along with the cosine similarity scores for a subset of those embeddings.

It can be seen that words ‘army’ and ‘navy’ have a relatively high similarity score, whereas

‘general’ and ‘navy’ have a relatively low similarity score. This is most likely justified by

the word ‘general’ being a polysemous word that could appear both as an adjective and as

a noun.

In our work, we focus on two tasks: word similarity prediction and clustering paraphrases

by word sense. The first task asks to predict a similarity and/or relatedness score between a

pair of words. For instance, in Figure 1 how similar are ‘navy’ and ‘general’ or how similar

are ‘admiral’ and ‘general’? The second task is to group paraphrases by word sense. The

task is summarised in Figure 2 and can be formulated as follows: given a query term and

a set of paraphrases for that query term, create a clustering such that a cluster in this

clustering represents a distinct sense.

2



(a) Input (b) Output

Figure 2: WordNet+ Gold 2.0 Dataset gold clustering for the word bug. The objective is to
cluster paraphrases such as bug into its different senses Cocos and Callison-Burch (2016)

The approach most closely related to our work is that of Cocos and Callison-Burch (2016)

which explores advanced clustering algorithms and similarity measures for clustering para-

phrases by word sense. A key component to clustering is choosing how to define the simi-

larity, or affinity, between two data points. Cocos and Callison-Burch (2016) experimented

with several text-based measures of affinity between two paraphrases, such as second-order

paraphrases and distributional semantics. Most clustering algorithms require a similarity

matrix as an input. A similarity matrix for a paraphrase set of n terms is n× n symmetric

matrix of non-negative values where each element gives a pairwise similarity score. There-

fore, the first task of similarity prediction is of great importance to the second task of sense

clustering.

Figure 3: The presence of an image can provide a useful, and at times complimentary signal
for several NLP tasks

In our work, we show that images provide a useful, and at times complementary signal to
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text for performing word similarity prediction and word sense induction. Image features

have been used in other NLP tasks like learning translations via visual similarity of words

(Bergsma and Van Durme, 2011). Images intuitively provide a level of information that is

often helpful in NLP tasks. For example, to disambiguate the meaning of bug, the presence

of a corresponding image can help with the understanding of the sense of a word, as can

be seen in Figure 3. Images search engines provide a way to associate a set of images with

a query word or phrase. Figure 4 shows top 5 images for some of the paraphrases seen in

Figure 2 collected by Callahan (2017) from the Google Image Search.

Figure 4: Top-5 images from the collected dataset (Callahan, 2017) for the paraphrases
observed in Figure 2

We propose a new method to cluster paraphrases based on word sense using their textual

as well as image features. Our goal is to determine the best way to leverage the information

provided by images to accurately predict the senses of a word given its paraphrases. We

conduct a broad range of experiments to address the following research questions:

• Can we create vector representations using images instead of text?

• Can image representations be used instead of text for word similarity and sense clus-

tering? Can image representation consistently help capture the different senses of a

word?

4



• What would be the best way to combine similarity measures from multiple modes

when clustering paraphrases?

• Does image representation work better for a particular part-of-speech (POS)?

• Can image concreteness values augment sense clustering? Concreteness is a concept

from psycholinguistics indicates the degree to which the concept denoted by a word

refers to a perceptible entity (Brysbaert et al., 2013).

The main contributions of our word are outlined below:

• Extend the results of word similarity prediction on a variety datasets

• Experiment with the number of image features, dimensionality and ways to combine

image features to represent a word

• Provide a novel approach to perform clustering paraphrases by word sense using im-

ages

• Provide a novel approach to perform clustering paraphrases by word sense by com-

bining multimodal data coming from images and text

• Breakdown evaluation by POS

• Generate a new dataset for clustering paraphrases by word sense that originates from

WordNet+ dataset

This thesis is organised in the following way: Chapter 2 describes approaches to incorpo-

rate visual features into a word representation from images retrieved from search engines.

Chapter 3 provides an overview, literature review, dataset descriptions, experiments and

discussion for the task of predicting similarity of word pairs. Chapter 4 provides an overview,

literature review, dataset descriptions, experiments and discussion for the task of clustering

paraphrases by word sense. The chapter also focuses on limitations of the existing datasets

and generation of the new dataset. Finally, Chapter 5 provides a conclusion and discussion

5



for future work.
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CHAPTER 2 : Incorporating visual features

2.1. Overview

This chapter provides a literature overview and approaches in using information from image

search engines for a variety of tasks, and describes several approaches taken for this thesis

research as a result of previous work.

2.2. Approach

Figure 5: Bergsma and Van Durme (2011) approach of learning translations via visual
similarity. The top row contains five images for the Indonesian word kucing. The bottom 4
rows display top 4 translations in English. Figure taken from Hewitt et al. (2018)

We build on data created by Callahan (2017) that was used by Hewitt et al. (2018). Callahan

(2017) re-created the experiments of Bergsma and Van Durme (2011) at a much larger scale.

Bergsma and Van Durme (2011) learn translations via visual similarity of images associated

with words in foreign languages. They retrieve images for a foreign word, convert them to

vectors via SIFT and colour histogram features, and then compare the foreign words vector

against vectors representing all English words. Figure 5 illustrates this approach for an

Indonesian word ‘kucing’ and top 4 English translations with ‘cat’ being the most similar

word to ‘kucing’ based on visual similarity.
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The collected dataset by Callahan (2017) contains 100 images for around 10000 words in

each of 100 foreign languages. The dataset also contains images and text from the web

pages where an image appeared at for each of their translations into English. In total,

the dataset contains 35 million images and web pages. In this setup, the word serves as a

query to the data that originates from an image search engine. Since the data originates

from Google Image Search, there is a question about how well a set of images represent a

query word since search engines automatically associate words and images. Hewitt et al.

(2018) show that on average 86% of images were evaluated by Amazon Mechanical Turk

workers to be good representations of their target word. For vocabulary words that occur

in datasets used in predicting similarity of word pairs seen in Chapter 3 and clustering

paraphrases using word sense seen in Chapter 4, the average number of images per word

is around 90. We chose to collect at most 100 images following the set up of Hewitt et al.

(2018) and contrary to the suggestions on the optimal number of images of between 10 and

20 proposed by Kiela et al. (2016) in order to perform systematic evaluation on our side.

Figure 6: An example of how n image features are generated for a word ‘microbe’

Kiela et al. (2015) showed that using CNN features is superior to using SIFT and colour

8



histograms for vector generation used by Bergsma and Van Durme (2011). As such, we

follow the setup of Kiela et al. (2015), where for each image extracted for a word in vocab-

ulary, we extract 4096-dimensional features from the FC7 layer of a CNN called AlexNet

trained on ImageNet (Krizhevsky et al., 2012). The FC7 layer is the fully connected 7th

layer and is the second to last layer in the AlexNet architecture. The process of retrieving

top images for a word ‘microbe’ and converting an image to a 4096-dimensional feature is

illustrated in Figure 6. Figure 7 shows an abstract representation of n image features for a

given word.

Figure 7: Abstract representation of n image features for a given word w

2.3. Using Multiple Images As The Representation For A Single Word

Since we have up to 100 vectors derived from the 100 images retrieved for each word, we

need a way of combining the vectors into a single representation of a word, or combining

them to make a comparison between a pair of words. The subsequent subsections describe

multiple approaches taken to compute similarity using extracted image features for a pair

of words.
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Let us denote the following:

• w = word

• n = number of image features for a given word w

• I(w) = set of image features for a given word w

2.3.1. Average Similarity for a Word

Figure 8: An average of n image features can be computed computed for to represent a
single word w

In this approach, we take n image features for a word w and produce a single 4096-vector

containing the average of each column as seen in Equation 2.1.

VECAVG(w) =
1

n

∑
i∈I(w)

i (2.1)

A diagram representing the VECAVG operation is given in Figure 8. Hence, this approach
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produce a vector embedding for a word w by averaging n image features. Computing

similarity between a pair of words w1 and w2 then becomes a similarity between their two

vector representations as seen in Equation 2.2.

Avg(w1, w2) = sim(VECAVG(w1),VECAVG(w2)) (2.2)

For sim a similarity metric, for instance, cosine similarity can be used to calculate similarity

between the averaged high-dimensional vectors. Cosine similarity as been shown to be a

very effective measure on many semantic benchmarks (Bullinaria and Levy (2007), Padó

and Lapata (2007)). Kiela and Bottou (2014) and Kiela et al. (2015) refer to this approach

of averaging n images as CNN-MEAN.

2.3.2. Average Maximum Similarity Between a Pair of Words

In this approach, we compute the average maximum similarity between the image feature

sets to compute the similarity between a pair of words w1 and w2 as seen in Equation 2.3.

AvgMax(w1, w2) =
1

n1

∑
i1∈I(w1)

max
i2∈I(w2)

(sim(i1, i2)) (2.3)

This measure was originally introduced for the task of translating words between English

and a foreign language by looking only at corresponding images (Bergsma and Van Durme,

2011; Kiela et al., 2015). Kiela et al. (2015) found AvgMax to be the best-performing

model in comparison to MaxMax or CNN-MEAN.

Figure 9 provides an abstract representation of how an AvgMax(w1, w2) is computed. It

can be seen that the first step is to compute maximum pairwise similarity of each one of

image features for w1 to image features for w2. The second step then averages the maximum

pairwise similarity computed and dividing by the number of image features for w1.
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Figure 9: Abstract representation of how an AvgMax(w1, w2) is computed

The value produced in Equation 2.3 might not be necessarily symmetric, for example, if two

images for w1 have the same closest image in the set of w2 or when the number of image

features for the first word might not be equal to the number of images features for the

second word. In order to demonstrate such case let us use integers instead of vectors as the

elements in each image set. Let: I1 = (1, 2) and I2 = (1, 5, 9). The average maximum pair-

wise similarity of I1 to I2 is then: max(sim(1,1),sim(1,5),sim(1,9))+max(sim(2,1),sim(2,5),sim(2,9))
2 =

sim(1,1)+sim(2,1)
2 . The average maximum pairwise similarity of I2 to I1 is equal to the follow-

ing: max(sim(1,1),sim(1,2))+max(sim(5,1),sim(5,2))+max(sim(9,1),sim(9,2))
2 = sim(1,1)+sim(5,2)+sim(9,1)

3 . There-

fore it can be seen that the average maximum pairwise similarity of I1 to I2 and average

maximum pairwise similarity of I2 to I1 are not equal to each other. Since most clustering

algorithms require the input affinity matrix to be symmetric, we use the following symmetric

form as seen in Equation 2.4.

SymAvgMax(w1, w2) =
AvgMax(w1, w2)

2
+

AvgMax(w2, w1)

2
(2.4)
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As seen in Section 2.3.1 we can use a measure such as cosine similarity to measure similarity

between a pair of vectors.

2.3.3. Average Average Similarity Between a Pair of Words

We replicate the approach Section 2.3.2, but instead of using average maximum to compute

the similarity between a pair of words w1 and w2, we use average of average to compute the

similarity between a pair of words as seen in Equation 2.5. The motivation behind using

average of average came from the lack of occurrence of such measure in the previous work.

AvgAvg(w1, w2) =
1

n1

∑
1∈I(w1)

avgi2∈I(w2)(sim(i1, i2)) (2.5)

2.4. Other Related Work

In this section, we describe other NLP work that uses multimodal data obtained from image

search engine. Bergsma and Van Durme (2011) were one of the first researchers to perform

word-to-word translations using multimodal data obtained from image search engine. They

used this monolingual connection between a word and an image to learn bilingual trans-

lations on 15 language pairs based on whether the corresponding images have resembling

visual features. Bergsma and Goebel (2011) used image to word connection to help pre-

dict lexical selectional preferences. In particular, the area of their focus lied on predicting

whether a noun argument occurs as the direct object of a verb predicate. In order to do so,

for each verb-noun pair they retrieved images of a noun, extracted visual information from

images and then used a model on those visual features to output a plausibility score for a

verb-noun pair. In addition, Bergsma and Goebel (2011) demonstrated that Google image

search yield representations of higher quality when compared to Flickr.

Bruni et al. (2014) proposed an architecture for integrating text and image-based distribu-

tional information that is superior to predicting semantic similarity and relatedness for a

13



pair of words. Kiela and Bottou (2014) presented a novel approach in constructing mul-

timodal representations by combining a Skip-gram linguistic representation vector and a

visual concept as an extracted layer of a deep CNN trained using ImageNet (Krizhevsky

et al., 2012) or ESP Game (von Ahn and Dabbish, 2004). Kiela and Bottou (2014) applied

this vector representation into semantic relatedness evaluation tasks and outperformed rep-

resentations that are linguistic or standard bag-of-visual-words (BoVW) (Sivic and Zisser-

man, 2003). Inspired by the traditional bag-of-words BoW method, BoVW gets a visual

representation from an image by connecting each of its local descriptors to a cluster his-

togram with a use of a clustering algorithm. In that year Kiela et al. (2014) published

another paper on improving the results of multimodal representation by deciding whether

to include perceptual input for a concept or not based on concreteness. Kiela et al. (2015)

used image search engine along with the query word for lexical entailment detection, and

in particular examining generality of the hypernym compared to the hyponym based on

their related images. Kiela et al. (2015) published another paper on using image features

obtained from the pre-softmax layer of CNNs for the task of bilingual lexicon induction.

The authors argued that the reason for choosing CNN-derived image representations was

that in comparison to traditional bag of visual models used in multimodal distributional

semantics (Bruni et al. (2014), Kiela and Bottou (2014)), this representation yields higher

quality representations. Furthermore, Kiela et al. (2015) experimented with various visual

similarity metrics between two sets of n images and the corresponding features.

The following year, a variety of NLP studies used the CNN-derived representation from top-

10 images in Google image search proposed by Kiela and Bottou (2014) in conjunction with

linguistic representation: Shutova et al. (2016) performed metaphor identification, Bulat

et al. (2016) obtained property norms, predictions, while Vulić et al. (2016) created bilin-

gual multimodal embeddings to perform bilingual lexicon learning. Lazaridou et al. (2015)

extended the Skip-gram model of Mikolov et al. (2013) by taking visual representation and

evaluating against a variety of semantic benchmarks. Following the success of multimodal

representation learning in a range of tasks, Kiela (2016) developed a MMFeat toolkit for
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obtaining feature representations for visual information.

Kiela et al. (2016) performed an evaluation in comparing CNNs architectures of state-of-

the-art models, explored raw input images coming from various engines, and identified

the optimal number of images. The approach proposed by Kiela and Bottou (2014) in

using deep CNNs trained on Google Images for visual groundings has also been applied for

decoding brain activity. Anderson et al. (2017) used both the linguistic representation and

CNN-derived image representation in isolation for decoding brain activity, and in particular,

decoding abstract nouns. Anderson et al. (2017) observed that the former representation

yields greater accuracies for abstract nouns, however the performance of both models is

similar for more concrete nouns. In another study Bulat et al. (2017) used MMFeat toolkit

(Kiela, 2016) to perform a systematic evaluation of text-based, image-based and multimodal

semantic models in their ability to predict patterns of conceptual representation in the

human brain.

Glavaš et al. (2017) presented research in semantic text similarity, which measures semantic

equivalence between short texts, using the MMFeat toolkit (Kiela, 2016). The authors used

Bing image search with 20 images per word and VGGNet (Simonyan and Zisserman, 2014)

pre-trained on the ImageNet classification task (Russakovsky et al., 2015) to extract visual

representation. Glavaš et al. (2017) found that multimodal representation achieves the best

performance than visual and linguistic measures in isolation.

Bhaskar et al. (2017) performed a comparison between textual, visual and combined modal-

ities for distinguishing between abstract and concrete nouns following the feature extraction

and suggestions of Kiela et al. (2016) and querying up to 25 images per word. While the

predictions achieved high performance, the authors found that the difference between uni-

modal and multimodal representations in terms of performance was negligible. In another

study Hartmann and Søgaard (2018) argue that the previous work on bilingual lexicon in-

duction with multimodal representation only applies to nouns and does not scale to other

part-of-speech (POS), for instance adjectives and verbs. Hewitt et al. (2018) address the
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challenges of translation outlined by Hartmann and Søgaard (2018) by finding that images

are just as effective for translating more complex phrases than simple nouns, and expanding

the dataset for over 260000 English words and 32 foreign languages.

Wang et al. (2018) proposed three novel methods for building a multimodal model that can

fuse the semantic word representation from various modalities according to different types

of words by obtaining visual representation from averaging CNN-derived representation.

Collell et al. (2017) proposed an integration between language and vision that provides a

way to ‘imagine’ missing visual information and a method to build a multimodal repre-

sentation with the use of mapped vectors. Collell and Moens (2018) uncovered that the

multimodal mappings from the CNNs can produce mapped vectors more similar to the

input than to the target with respect to the semantic structure. They proposed a new sim-

ilarity measure that explicitly quantifies similarity between the neighbourhood structure

of two sets of vectors. Kiros et al. (2018) published a large-scale lookup operation called

Picturebook. The Picturebook extracts top images from Google image search and extracts

image embeddings by feeding them into CNN. Kiros et al. (2018) report result across a

range of NLP tasks: similarity and relatedness between a pair of words, natural language

inference, sentiment or topic classification, image-sentence ranking and machine translation.

The main contributions of their research are in the collection of word representations from

GloVe (Pennington et al., 2014), which is orders of magnitude larger than previous work,

and in multimodal gate mechanism for choosing between GloVe and Picturebook that can

be applied in a task-dependent way.
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CHAPTER 3 : Predicting Similarity of Word Pairs

3.1. Overview

For this part of the research, we seek to understand how well visual-based word representa-

tions measure semantic similarity and relatedness between a pair of words. The motivation

behind conducting this set of experiments is that the similarity score between a pair of

words produced by our best word representation is used directly as an input into a sim-

ilarity matrix in the clustering algorithm described in Chapter 4. Moreover, knowledge

from these experiments provides an insight into understanding whether our image-based

word representations are comparable to existing state-of-art text-based vector representa-

tions. As importantly, these experiments allow us to identify the type of words for which

our approach is well-suited. This chapter contains a literature review on conventional and

multimodal distributional semantic models, descriptions of the datasets, evaluation metrics,

along with the experiments and results.

3.2. Literature Review

3.2.1. Distribution semantic models

Before the appearance of the multimodal representation, the task of predicting similarity

between a pair of words was approached using traditional distribution semantic models

(DSMs) that rely only on linguistic (unimodal) environment. DSMs are based on the

distributional hypothesis (Harris, 1954) that states that words are likely to be semantically

related if they occur in similar contexts (Bruni et al., 2014). The most common type of DSMs

is semantic space models commonly referred to as vector space models or word embeddings,

which approximate the meaning of words with vectors that record the distributional history

in a corpus (Turney and Pantel, 2010). DSMs have been extremely effective in a variety of

tasks in semantics like semantic composition and analogical mapping (Clark, 2015; Turney

and Pantel, 2010; Mikolov et al., 2013)).
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Word2vec is one of the most popular word embeddings techniques. Word2vec was developed

by Mikolov et al. (2013) and consists of two neural network language models: continuous

bag-of-words (CBOW) and Skip-gram. Both models are trained on words inside a window of

a pre-defined length, which is moved along the corpus. CBOW model predicts a word given

a surrounding window of context words, while a Skip-gram model predicts the surrounding

window of context words, given a word. Another commonly used word embedding is called

GloVe (Pennington et al., 2014). Like word2vec, GloVe is an unsupervised approach based

on the distributional hypothesis. FastText word representations (Joulin et al., 2016) is an

extension and improvement of word2vec, which allows to compute word representations for

out-of-vocabulary (OOV) words with a use of character n-grams. Recently, ELMo word

representation (Peters et al., 2018) have improved state-of-the-art across a range of NLP

tasks, one of which includes sentiment analysis. In ELMo, an embedding of a word is

computed from the the internal states of a deep bidirectional language model (LM) pre-

trained on a large corpus.

An alternative implementation of DSMs called probabilistic topic models have been explored

in the literature (Griffiths et al., 2007). The similarity between probabilistic models and

DSMs is that they also gather co-occurrence information from corpus, but the difference

between the two approaches is that probabilistic models have an assumption about words

in corpus having a probabilistic structure. In probabilistic model words are a probability

distributions over a set of topics and can define semantic meaning between a pair of words

using inference.

3.2.2. Multimodal Distribution Semantic Models

The conventional distributional semantic models lack visual information that could be ex-

tracted from the physical world. This observation gave rise to the development of multi-

modal distributional semantic models that combines data originating from two modalities:

linguistic and perceptual. A literature review on extracting visual information from image

search engine and applying a multimodal representation to a variety of NLP tasks was a
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provided in Section 2.4. When describing the applications of multimodal representation in

NLP tasks, a few of the research studies in predicting word pair similarity were mentioned

in that section, such as the research done by Kiela and Bottou (2014), Bruni et al. (2014),

Kiela et al. (2016), Collell et al. (2017), and Kiros et al. (2018).

In the context of word similarity, Kiela and Bottou (2014) proposed a novel model of

multimodal representation that combines Skip-gram model of Mikolov et al. (2013) trained

on Wikipedia (400M) and British National Corpus (100M) with image features extracted

from the deep CNN trained on ImageNet (Krizhevsky et al., 2012) or ESP Game dataset

(von Ahn and Dabbish, 2004). In order to combine linguistic and visual features, authors

concatenated the centred and L2-normalized feature vectors that were learned independently

from each other. The authors reported results on 2 datasets described in the next sections:

WordSimilarity-353 (Finkelstein et al., 2001) and MEN-3000 (Bruni et al., 2014). Kiela et al.

(2014) defined an unsupervised method called image dispersion to distinguish abstract from

concrete words based on the observation that average cosine distance between all the visual

representations of a word negative correlates with its concreteness.

The same year Bruni et al. (2014) proposed a similar pipeline as Kiela and Bottou (2014)

of training visual and linguistic representation independently, however for linguistic rep-

resentation Bruni et al. (2014) used semantic space model called Hyperspace Analog to

Language model (HAL) (Lund and Burgess, 1996) to determine a window of context words.

Bruni et al. (2014) reported various ‘fusion’ methods for combining visual and linguistics

features by first using concatenation and then applying feature and scoring fusion functions,

essentially applying the Singular Value Decomposition (SVD) (Golub and Reinsch, 1970)

to concatenated vectors. Silberer and Lapata (2014) used a different visual representation

that were annotated with high-level of visual attributes, and proposed a more complex mul-

timodal fusion strategy based on stacked auto-encoders. The idea behind this approach is

that the encoder is given both linguistic and perceptual features, from which multimodal

embeddings arise from the hidden representation.
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Lazaridou et al. (2015) extended a Skip-gram model of Mikolov et al. (2013) to support

multimodal representation by their skip-gram model as maximal margin objective function

that tries to minimise the distance between the two vectors. Essentially, in comparison

to previous work, the authors built multimodal representations with raw inputs of both

linguistic and visual information. As before, the evaluation was performed on set on MEN-

3000, SimLex-999 (Hill et al., 2015) and a few other datasets. Kiela et al. (2016) performed

a systematic evaluation in comparing three CNNs architecture, exploring multiple image

retrieval engines, and explored the optimal number of images. The experiments were per-

formed on predicting semantic similarity between a pair of words. Kiela et al. (2016)

found that the performance across AlexNet trained on ImageNet (Krizhevsky et al., 2012),

GoogleNet (Szegedy et al., 2015) and VGGNet (Simonyan and Zisserman, 2014) is similar

and proposed usage of AlexNet and VGGNet for overall best performance. Moreover, Kiela

et al. (2016) found both Google and Bing to be suited to perform full-coverage experiments,

meaning that when highly abstract words are included, there is no negative image on the

method’s performance. Lastly, the optimal number of images based on their systematic

evaluation is between 10 and 20 images, since the performance of a model stabilises around

10 images for Google and Bing as the data source.

Collell et al. (2017) proposed a new approach that uses a feed-forward neural network to

learn a mapping between visual and text modalities, which are directly used to build the

multimodal representations. Collell et al. (2017) found that in the process of mapping an

irrelevant visual information is discarded, hence, improving the performance on various

datasets. Some of the datasets that Collell et al. (2017) used are MEN-3000 along with

WordSimilarity-353-REL Agirre et al. (2009) to measure general relatedness and SimLex-

999 for measuring semantic similarity.

Wang et al. (2018) presented three novel fusion methods that combine modalities according

to different types of words by assigning importance weights to each modality. The weights

are learned using the weak supervision of word association pairs. The proposed method
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outperformed previous state-of-the-art multimodal as well as the traditional linguistic rep-

resentations on the datasets mentioned before. Wang et al. (2018) used Glove vectors for

representation. Similarly to Wang et al. (2018), Kiros et al. (2018) presented a framework

that fuses GloVe embeddings with visual representation obtained from the search engine

that were fed into the CNN. Although the representation presented by Kiros et al. (2018)

focused on other applications in NLP, their experiments on word similarity predictions

explored the optimal number of images and concreteness scores for the SimLex-999.

3.3. Word Similarity Data Sets

As described in Section 3.2, there is a large number of existing lexical semantics evaluation

benchmarks available to evaluate semantic similarity and relatedness between word pairs in

English. It is important to note that there is a discrepancy between existing gold standard

datasets, since some do not specify or clearly distinguish between similarity and relatedness

or association. Furthermore, the literature review for multimodal representations does not

clearly differentiate between semantic similarity and relatedness. We chose to perform a

system evaluation on all 13 dataset benchmarks, even though for the visual-based features

we hypothesise that the semantic similarity measure is of greater importance in comparison

to relatedness. The datasets used for evaluation are described in the subsequent sections.

3.3.1. RG-65 and MC-30

RG-65 dataset released by Rubenstein and Goodenough (1965) in 1965 contains 65 noun

word pairs evaluated by the human judgement. The similarity of each pair in the dataset

has a real value between 0 and 4, where the higher the value, the higher the similarity of

meaning between a word pair is. This dataset measures similarity between a pair of words

rather than relatedness. Rubenstein and Goodenough (1965) report the inter-annotator

agreement to be r = 0.85 of Pearson correlation. Table 1 contains examples from top 10

and bottom 10 of this dataset. MC-30 dataset by Miller and Charles (1991) is a dataset

with 30 noun word pairs taken from RG-65 dataset. MC-30 dataset has a wider use by the
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research community to assess the semantic similarity of words.

Word 1 Word 2 Score

gem jewel 3.94
midday noon 3.94

automobile car 3.92
cemetery graveyard 3.88
cushion pillow 3.84

boy lad 3.82
...

...
...

automobile wizard 0.11
autograph shore 0.06

fruit furnace 0.05
noon string 0.04

rooster voyage 0.04
chord smile 0.02

Table 1: Selected examples from top 10 and bottom 10 of RG-65 dataset

3.3.2. WordSimilarity-353

The WordSimilarity-353 Test Collection1 released by Finkelstein et al. (2001) contains 353

pairs of noun words in English along with the mean score of human-assigned similarity

judgements. The subjects of experiments were asked to give a score of relatedness of the

words in pairs on a scale from 0 to 10, where 0 indicates totally unrelated words and 10

indicates very much related or identical words. Based on the given instructions this dataset

measures association or relatedness between words and not similarity. The inter-annotator

agreement reported for this dataset is ρ = 0.611 of Spearman correlation coefficient. Table 2

displays selected examples from top 10 and bottom 10 of this dataset according to the

human judgements. There is an overlap of 30 word pairs between the WordSimilarity-353

and RG-65 dataset.

Word 1 Word 2 Score

tiger tiger 10.00
journey voyage 9.29
midday noon 9.29
money cash 9.15
coast shore 9.10

1http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
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football soccer 9.03
...

...
...

monk slave 0.92
sugar approach 0.88
noon string 0.54
chord smile 0.54

professor cucumber 0.31
king cabbage 0.23

Table 2: Selected examples from top 10 and bottom 10 of WordSimilarity-353 dataset

3.3.3. WordSimilarity-353-SIM and WordSimilarity-353-REL

The WordSimilarity-353 described in Section 3.3.2 was further split into two subsets2

by Agirre et al. (2009), where the first subset measures similarity (WordSimilarity-353-

SIM, referred in the literatures as WS-SIM or Wordsim) and the second subset measures

relatedness (WordSimilarity-353-REL). Agirre et al. (2009) argued that there is a difference

between similarity and relatedness, and WordSimilarity-353 does not distinguish between

the two relations. In order to split the dataset, they classified each pair of words based on

WordNet (Miller (1995)) data as one of the following:

• similar pairs (synonyms, antonyms, identical, hyponym-hypernym)

• related pairs (meronym-holonym, score > 5)

• unrelated pairs (none of the above, score ≤ 5)

The WordSimilarity-353-SIM was then created as the union of all similar and unrelated

pairs, whereas WordSimilarity-353-REL was the union of related and unrelated pairs. One of

their keys observations when comparing the performances of models for the divided dataset

was that two words are similar if their synsets are close in the hierarchy of WordNet,

and two words are related if there is a connection between them in the hierarchy. The

overall number of pairs in WordSimilarity-353-SIM is 203 and the overall number of pairs in

WordSimilarity-353-REL is 252. The reported inter-annotator agreement reached ρ = 0.667

2http://alfonseca.org/eng/research/wordsim353.html

23



of Spearman correlation for WordSimilarity-353-SIM and ρ = 0.72 for WordSimilarity-353-

REL. Tables 3 and 4 displays selected examples top 10 and bottom 10 of these two datasets.

As can be seen from these tables, there is an overlap in the bottom 10 examples, which can

be explained by the method the words were split up.

Word 1 Word 2 Score

tiger tiger 10.00
journey voyage 9.29
midday noon 9.29
money cash 9.15
coast shore 9.10

football soccer 9.03
...

...
...

monk slave 0.92
sugar approach 0.88
noon string 0.54
chord smile 0.54

professor cucumber 0.31
king cabbage 0.23

Table 3: Selected examples from top 10 and bottom 10 of WordSimilarity-353-SIM datasets

Word 1 Word 2 Score

environment ecology 8.81
Maradona football 8.62

OPEC oil 8.59
computer software 8.50

money bank 8.50
Jerusalem Israel 8.46

...
...

...
monk slave 0.92
sugar approach 0.88
noon string 0.54
chord smile 0.54

professor cucumber 0.31
king cabbage 0.23

Table 4: Selected examples from top 10 and bottom 10 of WordSimilarity-353-REL datasets

Tables 5 and 6 displays two tables with pairs of words and the corresponding scores for

words that are Similar but not Related and words that are Related but not Similar based on

the differences between the WordSimilarity-353 Similarity and Relatedness datasets. It can
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be seen from that that some of the word pairs in Table 5 are clear antonyms, for instance ‘life’

and ‘death’ or ‘king’ and ‘queen’, and other word pairs follow type-of relationship common

for when describing hypernym-hyponym, for instance ‘aluminium’ is a type of ‘metal’ or

‘water’ is a type of ‘liquid’. Table 6 displays words that are not similar, but related. For

instance ‘popcorn’ and ‘movie’ share association since popcorn is a snack commonly eaten

in front of a movie.

Word 1 Word 2 Score

seafood lobster 8.70
king queen 8.58

championship tournament 8.36
Harvard Yale 8.13
liquid water 7.89

life death 7.88
aluminum metal 7.83

Mexico Brazil 7.44
tiger cat 7.35

physics chemistry 7.35
street place 6.44
train car 6.31
bread butter 6.19
glass metal 5.56
cup artifact 2.92

Table 5: Selected examples from WordSimilarity-353-SIM that do not occur in
WordSimilarity-353-REL

Word 1 Word 2 Score

weather forecast 8.34
bank money 8.12
stock market 8.08
closet clothes 8.00

admission ticket 7.69
drug abuse 6.85

competition price 6.44
production crew 6.25

movie popcorn 6.19
announcement warning 6.00

game round 5.97
baseball season 5.97
journey car 5.85
territory surface 5.34

credit information 5.31

Table 6: Selected examples from WordSimilarity-353-REL that do not occur in
WordSimilarity-353-SIM
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3.3.4. MTurk-287

The MTurk-287 dataset released by Radinsky et al. (2011) contains 287 word pairs that

were constructed using Amazon Mechanical Turk (AMT) to get the human similarity scores.

Those 287 word pairs are generate from the New York Times papers, do not overlap with

RG-65 or WordSimilarity-353 datasets, and are on a scale from 1 to 5. Table 7 contains

selected examples from top 10 and bottom 10 of this dataset according to the human

judgements.

Word 1 Word 2 Score)

funeral death 4.71
scotch liquor 4.57
jazz music 4.53

aircraft plane 4.47
jurisdiction law 4.45

summer winter 4.38
...

...
...

texas death 1.53
africa theater 1.50

pennsylvania writer 1.46
germany worst 1.44
concrete wings 1.43

recreation dish 1.40

Table 7: Selected examples from top 10 and bottom 10 of MTurk-287 dataset

3.3.5. MTurk-771

MTurk-771 dataset3 released by Halawi et al. (2012) contains 771 word pairs that were

constructed using Amazon Mechanical Turk (AMT) to get the mean human-assigned relat-

edness judgements. The scores are on a scale from 1 to 5, where 1 stands for not related

and 5 stands for highly related. Table 8 contains selected examples from top 10 and bottom

10 of this dataset according to the human judgements.

Word 1 Word 2 Score

female woman 4.96
film movie 4.91

3http://www2.mta.ac.il/~gideon/mturk771.html
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quiet silence 4.91
child kid 4.86
ass donkey 4.85

sight vision 4.82
...

...
...

coat newspaper 1.09
scandal week 1.09

cup son 1.09
beach chain 1.05
shirt tiger 1.042

afternoon substance 1.0

Table 8: Selected examples from top 10 and bottom 10 of MTurk-771 dataset

3.3.6. MEN-3000

The MEN-3000 Test Collection4 released by Bruni et al. (2014) contains 3000 English word

pairs in along with the human-assigned similarity judgements, obtained by crowd-sourcing

using AMT. The word pairs were randomly select from word that occur in ukWaC and

Wackypedia combined5 at least 700 times and in the open-sourced subset of the ESP game

dataset6 at least 50 times. The data collection for this dataset differs to WordSimilarity-

353, since the annotators were asked to make binary decisions on which of two pairs are

more related. The human-assigned similarity judgements is an integer between 0 and 50

due to the way the data was collected. Bruni et al. (2014) sampled the pairs in a balanced

range of a text-based semantic score to avoid choosing unrelated pairs. The subjects of

the study were not informed about the differences between similarity and relatedness and

were presented with examples of similarity as a special case of relatedness. However, when

describing the dataset Bruni et al. (2014) use both similarity and relatedness terms. Table 9

contains selected examples from top 10 and bottom 10 of this dataset according to the human

judgements.

Word 1 Word 2 Score

sun sunlight 50.0
automobile car 50.0

4https://staff.fnwi.uva.nl/e.bruni/MEN
5http://wacky.sslmit.unibo.it/doku.php
6http://www.cs.cmu.edu/~biglou/resources/
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river water 49.0
stair staircase 49.0

morning sunrise 49.0
rain storm 49.0

...
...

...
giraffe harbor 1.0
feather truck 1.0
festival whisker 1.0
muscle tulip 1.0
bikini pizza 1.0
bakery zebra 0.0

Table 9: Selected examples from top 10 and bottom 10 of MEN-3000 dataset

3.3.7. SimLex-999

SimLex-999 dataset7 released by Hill et al. (2015) contains 999 word pairs and is used

to evaluate computation models that learn meanings of words and concepts. There were

multiple reasons that motivated the authors to create this dataset as supposed to using

existing ones. It is common in NLP to have a performance upper bound on evaluation

that is based on the average human performance or inter-annotator agreement (Resnik and

Lin, 2010). One of the main reasons was that state-of-the-art models achieved the average

performance of a human annotator on RG-65, WordSimilarity-353, MEN, and other gold

standard datasets, which implies that the problem of similarity model has been resolved.

Such implication is not true based on the performance of those models in automatically

generated dictionaries, thesauri, or ontologies as observed by Hill et al. (2015). The authors

argue that there are two further limitations in WordSimilarity-353 and MEN-3000 datasets

The first limitation states that there is a high rating for many dissimilar word pairs. This

phenomena can be observed in the previous section , where related word pairs ‘closet’ and

‘clothes’ seen in Tables 6 achieves a score that is higher than similar word pairs ‘train’

and ‘car’ seen in Tables 5. If WordSimilarity-353 rating for ‘closet’ and ‘clothes’ is 8, then

SimLex-99 rating is 1.96 for the same pair. The second limitation described by Hill et al.

(2015) is that word pairs pairs that are associated but not similar receive high ratings. RG

dataset and subsequently the MC-30 dataset both are affected by the second limitation.

7https://fh295.github.io/simlex.html
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In comparison to MEN-3000 or WordSimilarity-535 datasets, SimLex-999 provides a way

to quantify the similarity between word pairs rather than association or relatedness. A

computational model must therefore learn similarity of word pairs independent of associa-

tion. This presents a challenge to the research community as most language-based models

identify a relation between two words in terms of relatedness and conceptual association,

since the relation is inferred based on their co-occurrence in corpora.

SimLex-999 dataset consists of 666 Noun-Noun pairs, 222 Verb-Verb pairs and 111 Adjective-

Adjective pairs that are on a scale of 0 to 10. Furthermore, this dataset provides an inde-

pendent concreteness score for a pair of words that provides how concrete word 1 and word

2 are conceptually. The intuition behind this score is that if broken down by part-of-speech,

adjectives are more abstract than verbs which in turn are more abstract than nouns. Ta-

ble 10 contains selected examples from top 10 and bottom 10 of this dataset according to

the human judgements.

Word 1 Word 2 Score

vanish disappear 9.80
quick rapid 9.70

creator maker 9.62
stupid dumb 9.58
insane crazy 9.57
large big 9.55

...
...

...
island task 0.30
gun fur 0.30

chapter tail 0.30
dirty narrow 0.30
new ancient 0.23

shrink grow 0.23

Table 10: Selected examples from top 10 and bottom 10 of SimLex-999 dataset

3.3.8. YP-130

Yang and Powers (2006) released YP-130 dataset, which contains 130 word pairs, and

measures semantic relatedness scores based on human judgements for verbs. Yang and
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Powers (2006) identified 130 verb synonym tests from TOEFL8 and ESL9 language tests that

assess the level of English for a non-native speaker for the university entry or employment.

Human annotators were asked to indicate how strong the word pairs are related in meaning

on an integer scale: not at all related (0), vaguely related (1), indirectly related (2), strongly

related (3) and inseparably related (4). Table 11 contains selected examples from top 10

and bottom 10 of this dataset according to the human judgements.

Word 1 Word 2 Score

brag boast 4.00
concoct devise 4.00
divide split 4.00
build construct 4.00
end terminate 4.00

accentuate highlight 4.00
...

...
...

empty situate 0.17
flush spin 0.17
shake swell 0.17

imitate highlight 0.17
correlate levy 0.00

refer lean 0.00

Table 11: Selected examples from top 10 and bottom 10 of YP-130 dataset

3.3.9. Verb-143

The Verb-14310 dataset released by Baker et al. (2014) contains 143 pairs of verbs along

with the human judgement scores following the WordSimilarity-353 guidelines. 143 pairs

of verbs were constructed from 122 unique verb lemma types, where each verb appears at

least 10 times in total in the labour legislation and the environment datasets (Baker et al.,

2014). For each word pair, an averaged human-annotator similarity score between 1 and

10 was assigned. Table 12 contains selected examples from top 10 and bottom 10 of this

dataset according to the human judgements. It can be seen from that 4 word pairs in top

10 of most similar/related words share the same stem and are in a different tense.

8https://www.ets.org/toefl
9https://www.esl-languages.com/en/study-abroad/adults/online-tests/index.html

10https://ie.technion.ac.il/~roiri/#data
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Word 1 Word 2 Score

refuses refused 0.790
working worked 0.780
seemed seems 0.730
makes produced 0.720

showing showed 0.700
making establishing 0.590

...
...

...
seemed protects 0.100
refusing exist 0.090
dismiss finding 0.090

reducing increased 0.080
produce dismiss 0.070
starts refused 0.070

Table 12: Selected examples from top 10 and bottom 10 of Verb-143 dataset

3.3.10. SimVerb-3500

The SimVerb-350011 dataset released by Gerz et al. (2016) contains 3500 verb pairs with

semantic similarity ratings on a scale from 0 to 10, where 0 means not similar at all and 10

means synonymous. One of the main motivations for creating this dataset was the limited

amount of data in the previous gold datasets such as Verb-143, YP-130 and a subset of

SimLex-999 when evaluating verb similarity. When creating SimLex-999 dataset Hill et al.

(2015) provided guidelines as to what constitutes to be a high-quality evaluation resource,

where three criteria were provided: representative, clearly defined and consistent. When

constructing SimVerb-3500 Gerz et al. (2016) followed the same annotation guidelines as for

SimLex-999 to satisfy all criteria. SimVerb-3500 dataset contains 827 verb types, all normed

verb types from the USF free-association database12, and provides 3 member verbs for each

top-level VerbNet13 class. These two standard semantic resources, therefore, provided a wide

coverage of verb pairs, ensuring the first criteria of representation if fulfilled. Furthermore,

the annotators were explicitly instructed to give low ratings to antonyms and to make a

distinguish between similarity and relatedness, which covers the limitations of the previously

11http://people.ds.cam.ac.uk/dsg40/simverb.html
12http://w3.usf.edu/FreeAssociation/
13http://verbs.colorado.edu/verb-index/
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existing benchmarks explained by Hill et al. (2015). Table 13 contains selected examples

from top 10 and bottom 10 of this dataset according to the human judgements.

Word 1 Word 2 Score

repair fix 9.96
rip tear 9.96

build construct 9.96
flee escape 9.79

triumph succeed 9.79
obtain acquire 9.79

...
...

...
go stay 0.00

shut vomit 0.00
accept decline 0.00
create dive 0.00
lose keep 0.00

freeze thaw 0.00

Table 13: Selected examples from top 10 and bottom 10 of SimVerb-3500 dataset

3.3.11. RW

The Rare-Words (RW)14 dataset released by Luong et al. (2013) focused on constructing a

dataset on rare words to complement existing datasets on the frequent words. In order to

construct the data Luong et al. (2013) first selected a list of rare words, then found a word

(not necessarily rare) to form a word pair, and finally collected a human judgements score

on how similar each pair is. The selection of rare words was done by sampling words from

various frequency bins and the affixes they possess. To prevent selection of a non-English

word, one of the requirements for a word to be sampled was that it had a non-zero number

of synsets in WordNet (Miller (1995)). RW contains 2034 word pairs at human similarity

ratings on a scale from 0 to 10 collected by AMT. Due to the nature of the dataset, the

human annotators were asked to indicate if they are familiar with first word, second word or

neither, hence discarding pairs that had less than a particular number of scores. Table 14

contains selected examples from top 10 and bottom 10 of this dataset according to the

human judgements.

14https://nlp.stanford.edu/~lmthang/morphoNLM/
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Word 1 Word 2 Score

decapitated headless 10.00
cheapen devalue 10.00

nonnative foreign 10.00
symmetrical balanced 10.00
conjecture hypothesis 10.00

liveable habitable 10.00
...

...
...

intertwining raw 0.00
recorders box 0.00
grinder wisdom 0.00
stockers animal 0.00

characters scratch 0.00
prospector sourdough 0.00

Table 14: Selected examples from top 10 and bottom 10 of RW dataset

3.4. Evaluation Metrics

Before the emergence of WordSimilarity-353 dataset described in Section 3.3.2 it was a

common practice among researchers to perform evaluation with Pearson correlation often

denoted as r. Agirre et al. (2009) argue that one of the drawbacks of using Pearson correla-

tion is that this metric is less informative when the scores of two variables are not linearly

correlated, since Pearson correlation asses linear relationships. As such, Agirre et al. (2009)

proposed using Spearman correlation often denoted as ρ , which is independent of the

dataset and can assess the strength and direction of monotonic relationships. Hence, in

order to evaluate performance on each of the datasets described in Section 3.3, Spearmans

rank correlation coefficient between two variables can be used, where the first variable is the

human judgement score and the second variable are scores produced by the computational

model. Spearmans rank correlation coefficient is a score between -1 and 1 and indicates the

direction of association between the human judgements (independent variable) and scores

produced by a computation model (dependent variable). If the model predictions increases

when the human judgement score increases, then ρ is positive, else if model predictions de-

creases when human judgement score increases, then ρ is negative. If the model predictions

does not increase or decrease when human judgement score increase, the value of ρ is 0.
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ρ is equal to 1 when human judgement score and model score are perfectly monotonically

related.

3.5. Approach

In order to perform evaluation for each word in all datasets we extracted up to 100 cor-

responding image-based features explained in Section 2.2. Table 15 displays the dataset,

the number of word pairs for each of the corresponding dataset and the number of words

missing in the data collection of Callahan (2017). In total there are 5846 unique words and

11109 word pairs. For these 5864 words the average of the maximum number of images is

94.4. We say a word pair is missing in the data collection if either the first word or the

second word is not present. Other than for RW dataset, the coverage for word pairs is

sufficient to perform a set of experiments. For the retrieved words we extracted a linguistic

representation and used word2vec (Mikolov et al., 2013) trained on Google News 100B15.

Dataset
Number of
Word Pairs

Number of
Word Pairs Missing

RG-65 65 0
MC-30 30 0

WordSimilarity-353-ALL 353 0
WordSimilarity-353-SIM 203 0
WordSimilarity-353-REL 252 0

MTurk-287 287 5
MTurk-771 771 1
MEN-3000 3000 1
SimLex-999 999 1

YP-130 130 0
VERB-143 144 0

SimVerb-3500 3500 17
RW 2034 711

Table 15: Number of word pairs that are missing from image-based feature for a given
dataset names and their corresponding number of word pairs

We extended the existing scripts16 for evaluating word vectors released by Faruqui and

Dyer (2014). The original script provides an implementation of Spearman correlation rank

15http://magnitude.plasticity.ai/word2vec/medium/GoogleNews-vectors-negative300.magnitude
16https://github.com/mfaruqui/eval-word-vectors
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coefficient and a way to compute it given an input dataset and an input file containing word

to vector mapping. For our experiments, we extended the script to support an input file

containing a value mapping to a word pair in the input dataset, and an ability to read the

first n dimensions of a vector if an original input file is specified.

3.6. Experiments and Results

The following subsections describe the performance of various approaches taken to generate

visual representation.

3.6.1. Avg(w1, w2)

Figure 10: Performance of the averaged vector for various number of images on all datasets.
(Data taken from Table 31)

Figure 10 displays the performance of the averaged vector Avg(w1, w2) for various number

of images (1, 5, 10, 25, 50, 75, 100) on all datasets described in Section 3.3. In order to get a

similarity score for a pair of words, the cosine similarity is taken between the two averaged

vectors. As a reference point, word2vec performance in grey is plotted in addition to visual

representations. Based on the Figure, it can be seen that as the number of image increases
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the performance increases for almost all of the datasets other than WordSimilarity-353-

ALL, SimLex-222-Verbs, Verb-143, and SimVerb-3500. An important observation is that

the performance of visual embeddings is comparable to the performance on SimLex-999

dataset, which is thought to overcome limitations of datasets like WordSimilarity-353 and

MEN-3000 described in Section 3.3.

Figure 11: Performance of the averaged vector on SimLex-999 dataset for various number
of images and POS. (Data taken from Table 31)

Figure 11 displays the performance of the averaged vector for various number of images for

the SimLex-999 dataset in particular with the breakdown by POS. It can be seen that the

overall performance on the SimLex-999 dataset increases as the number of images increases,

since the performance increases for 666 nouns and 111 adjectives in this dataset. However,

the performance significantly decreases for 222 verbs when the number of images increases.

In addition, curves in the Figure suggest there is a plateau between 50 and 75 images for

the performance for 666 nouns and 111 adjectives.
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Figure 12: Performance of the averaged vector for Top-100 images on all datasets for various
number of dimensions (Data taken from Table 34)

Figure 12 displays the performance of averaged vector for the top 100 images on all datasets

with varying number of dimensions (100, 200, 300, 1000, 2000, 4096). The idea behind such

experiment is to get an idea whether simply taking first n number of points is results into

a drop in performance in comparison to taking all 4096 features. Based on this Figure,

there is an improvement in performance for almost all datasets excluding RG-65, MC-30,

WordSimilarity-353-ALL. This decrease in performance can be explained by the fact that

MC-30 is a subset of RG-65, which in turn is a subset of WordSimilarity-353-ALL. Perhaps

the small size of the dataset resulted in a slight decrease of a performance as the number

of dimensions increase, which is especially evident for related words in WordSimilarity-353-

REL. Overall, the results based on this set of experiments are counter-intuitive, since taking

the first 300 points of 4096 yields the performance that is not substantially different than

taking all data points.
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3.6.2. AvgMax

Figure 13: Performance of AvgMax for various number of images on all datasets. (Data
taken from Table 32)

Figure 13 displays the performance of the AvgMax for various number of images (2, 5,

10, 25, 50, 75, 100) on all datasets described in Section 3.3. In order to get a similarity

score for a pair of words, the scalar value is produced as a result of performing AvgMax

on a specified number of images. Similarly to Avg(w1, w2) in Figure 10, the performance

of visual embeddings increases as the number of images increases for datasets other than

WordSimilarity-353-ALL, SimLex-222-Verbs, Verb-143, and SimVerb-3500. There are sub-

tle differences in performance between Figure 10 and Figure 13, however the overall trend

stays the same.
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Figure 14: Performance of AvgMax on SimLex-999 dataset for various number of images
and POS. (Data taken from Table 32)

Figure 14 displays the performance of AvgMax for various number of images for the

SimLex-999 dataset broken down by POS. Similarly to Figure 11, in this Figure the over-

all performance on the SimLex-999 dataset increases as the number of images increases,

however for 222 verbs the performance significantly decreases. If Figure 14 and Figure 11

are to be compared, it seems that for 111 adjectives the performance of AvgMax slightly

degrades as the number of images reaches 50, which results in a lower overall performance

than in Avg(w1, w2) .

3.6.3. AvgAvg

Similarly to the previous subsection, Figure 15 displays the performance of the AvgAvg for

various number of images on all datasets described. The results are very similar to results

for AvgMax described in Figure 13. What can be noted here is that the performance of

AvgAvg on SimLex-999 dataset is by slightly lower (0.1) than AvgMax.
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Figure 15: Performance of AvgAvg for various number of images on all datasets. (Data
taken from Table 33)

3.6.4. Comparison of models

A few other approaches were attempted before comparing the performance for various rep-

resentations. One of the approaches was to perform dimensionality reduction via Principal

Component Analysis (PCA) on the vectors prior to producing an averaged vector. The

motivation behind applying dimensionality reduction on 4096 features was that it would

allow to perform concatenation of word2vec features and the reduced vector to combine two

unimodal representations into a multimodal representation. The reason why PCA is needed

to be applied is because the result of concatenating the original 4096-dimensional vector

with the 300-dimensional word2vec as the means of producing multimodal representation

had a similar performance as using 4096-dimensional vector by itself without concatenation.

We experimented the reduction to 300 dimensions, the same dimension as word2vec, as it

seemed fair to use the input to two modes of data evenly.
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Figure 16: Performance comparison of various models. (Data taken from Tables 31,
32, 33, 34 and 35)

Figure 16 displays the performance of various models on the given datasets. Based on the

results presented in the Figure it can be seen that linguistic word2vec representation still

surpasses the visual representation on all thirteen datasets. Moreover, concatenation of

word2vec with the visual representation does not yield better results as using word2vec by

itself. Such results have been observed by the previous work of Wang et al. (2018).

Figure 17: Performance comparison of selected models on SimLex-999 dataset. (Data taken
from Tables 31, 32, 33, 34 and 35)

Due to the different origin, size, and nature of the datasets, it is perhaps better to com-

pare the performance of models against one dataset, and in particular, SimLex-999 due to

reasons mentioned in Section 3.3. Figure 17 presents the comparison of selected top per-

forming models on SimLex-999 dataset. As can be seen from the Figure, the performance
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of linguistic word2vec representation is slightly better but comparable to the performance

of visual and multimodal representations. It can be seen that Avg(w1, w2) and Avg-

Max achieve best performances out of the selected visual representations followed by a

multimodal representation of word2vec and PCA to 300 of Avg(w1, w2).

3.6.5. Qualitative Analysis

(a) Scatter-plot of AvgMax score vs Human
Judgement Score

(b) Scatter-plot word2vec score vs Human Judge-
ment Score

Figure 18: AvgMax and word2vec side-by-side comparison of selected word pairs in the
SimLex-999 dataset

Figure 18 provides a side-by-side comparison of AvgMax and word2vec for selected word

pairs from the SimLex-999 dataset. The x-axis in both of those plots is the human judgement

score on the scale from 0 to 10. The y-axis in Figure 18a is the predicted score by AvgMax,

the y-axis in Figure 18b is the predicted score of word2vec, both of which are on a scale from

0 to 1, since both use cosine similarity between vectors. The better the representation, the

closer data points are to the diagonal. It can be seen from the Figures that word2vec has

data points more in a more sparse range, whereas AvgMax’s range is more dense. This is

an interesting observation, and further analysis needs to be made to understand the reason

for AvgMax’s scores to be in a smaller range. It seems that both models have a lot in
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common in terms of predicting, for instance the word pair ‘bad, great’ for both predictions

appears to be relatively close to the diagonal, however the value that prediction assigns is

greater than the human judgement score.

Word 1 Word 2
Human
Score

AvgMax
Score

word2vec
Score

vanish disappear 9.80 0.356 0.9
quick rapid 9.70 0.322 0.498

creator maker 9.62 0.365 0.261
stupid dumb 9.58 0.541 0.817
insane crazy 9.57 0.425 0.734
large big 9.55 0.314 0.556

...
...

...
...

...
island task 0.30 0.241 0.035
gun fur 0.30 0.162 0.139

chapter tail 0.30 0.31 0.101
dirty narrow 0.30 0.319 0.113
new ancient 0.23 0.268 0.166

shrink grow 0.23 0.335 0.571

Table 16: Selected examples from top 10 and bottom 10 of SimLex-999 dataset and the
predicted AvgMax and word2vec scores

Table 16 contains 6 examples of most similar word pairs and 6 least similar word pairs from

the SimLex-999 dataset along with the predictions made by AvgMax and word2vec. It can

be seen from the AvgMax scores that the range of values for least similar and most similar

word pairs is almost negligible, which is consistent with the observation in Figure 18. From

Table 16 it can also be observed that AvgMax and word2vec scores predict similar scores,

but the range for AvgMax is smaller. For instance, they both predict for the word pair

‘shrink, grow’ relatively high scores even though in SimLex-999 dataset this word pair is

considered to be the least similar. Same pattern can be observed for one of the most similar

pairs such as ‘creator, maker’, since both AvgMax and word2vec assign a relatively low

score.
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CHAPTER 4 : Clustering Paraphrases By Word Sense

4.1. Overview

For this part of the research, we seek to understand how to cluster paraphrases by word

sense using visual-based word representations or a combination of visual and linguistic rep-

resentations. This chapter contains previous work, descriptions of the datasets, generation

of a new dataset, along with the experiments and results.

4.2. Literature Review

Figure 19: A bilingual pivoting method assumes two strings have the same meaning if they
translate to the same foreign string. The method then pivots over bilingual parallel corpus
to extract paraphrases

Paraphrases are different textual representations that maintain the same meaning. The

Paraphrase Database (PPDB) contains over 100 million paraphrases in 23 languages gener-

ated using the bilingual pivoting method (Bannard and Callison-Burch, 2005), which posits

that two words are potential paraphrases of each other if they share one or more foreign

translations. Figure 19 displays the bilingual pivoting method that finds a pair of English

words ‘thrown into jail’ and ‘imprisoned’ to be paraphrases, since both translate to a Ger-

man word ‘festgenommen’. The paraphrases in PPDB are already partitioned by syntactic

type, following the work of Callison-Burch (2008). This is to say that the paraphrases of the

noun representation of a word would be separated from its verb representation. However,

there is still the inherent problem of dealing with paraphrases of different senses within the
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same syntactic type.

In earlier work by Apidianaki et al. (2014) a graph-based method was developed to cluster

the paraphrases of PPDB by word sense. In this approach, the paraphrases are represented

as nodes and pairs of words which share one or more foreign alignments are linked, with the

edge weighted by the contextual similarity between the two words. The clusters are com-

puted by removing the edges with similarity values below certain threshold and extracting

the remaining connected components, which are the final sense clusters.

We follow a similar approach to the research done by by Cocos and Callison-Burch (2016)

that explored more advanced clustering algorithms and similarity measures. A key compo-

nent to clustering is to build a similarity or affinity matrix that would represent a pairwise

similarity between two paraphrases. Cocos and Callison-Burch (2016) experimented with

several text-based measures of affinity between two paraphrases, such as second-order para-

phrases (Pavlick et al., 2015) and distributional semantics. Their work yielded sense clusters

which were qualitatively as well as quantitatively good.

4.3. Methodology

4.3.1. Graph Clustering

To create clusters, we use the Self-Tuning Spectral Clustering algorithm Zelnik-Manor and

Perona (2004), which is an improved version of the Spectral clustering that creates a flat

clustering for a pre-specified number of clusters. Cocos and Callison-Burch (2016) found

that Self-Tuning Spectral Clustering had one of the best performances under different simi-

larity matrices. Self-Tuning Spectral Clustering algorithm projects data into a lower dimen-

sional space where it is more easily separable. In our experiments we denote this clustering

algorithm simply as Spectral.

Most clustering algorithms, including Spectral clustering, require two inputs:

1. a number of clusters k.
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2. an adjacency / similarity / affinity matrix A, a non-negative symmetric matrix where

the similarity between words wi and wj is stored in cell aij visualised in Figure 20.

Figure 20: An adjacency / similarity / affinity matrix A, a non-negative matrix where the
similarity between words wi and wj is stored in cell aij

In order to ge the number of clusters k, two approaches have been chosen. In the first

approach the number of clusters k is known ahead of time based on the gold clusterings. In

the second approach k is inferred by re-running the clustering with several possible values

and choosing the clustering that has the highest mean Silhouette Coefficient (Rousseeuw,

1987). The silhouette score measures how similar a point is to its cluster and dissimilar to

other clusters and can be seen in Equation 4.1. Silhouette coefficients in the context of the

described clustering algorithm is SC = 1−A, since this matrix denotes pairwise distances.

SC =
b(pi)− a(pi)

max(a(pi), b(pi))
(4.1)

where

b(pi) = lowest average distance from pi to the nearest external centroid

a(pi) = average distance from pi to each other pj in the same cluster

The following subsections describe existing and novel similarity measures to populate or fill

the similarity matrix A visualised in Figure 21.
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Figure 21: Approaches to populate similarity matrix A: text-based and image-based

4.3.2. Existing Similarity Measures

Cocos and Callison-Burch (2016) introduced and implemented 4 different similarity mea-

sures:

• Paraphrase Scores PPDB2.0Score (PPDB2)

• Second-order Paraphrase Scores simPPDB.cos and simPPDB.js

• Similarity of Foreign Word Alignments simTRANS

• Monolingual Distributional Similarity simDISTRIB (word2vec (Mikolov et al., 2013))

Based on their experimental results, the two best performing similarity measures for forming

the similarity matrix and silhouette coefficients are PPDB2.0Score (PPDB2) and simDISTRIB

(word2vec (Mikolov et al., 2013)). PPDB2 scores (Pavlick et al., 2015) are non-negative real

number between a pair of words that were judged by human annotators for the paraphrase

quality of possible word pairs.

For the Spectral clustering method, the best configuration happens when PPDB2 scores are

used for similarities and word2vec are used for silhouette coefficients. As such, we decided

to use PPDB2 scores and word2vec similarity measures for our initial set of experiments.
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4.3.3. New similarity measures

Images In this approach, we populate the similarity matrix using AvgMax of top 100 im-

ages described in Section 2.3.2. The motivation of using AvgMax as supposed to AvgAvg

comes from performance results in Chapter 3.

Contextual Information In this approach, we populate the similarity matrix based on

the contextual information of images used to compute image features. For each word in a

paraphrase set of a target word, we retrieve up to 100 html pages that are linked to 100

images from the dataset. For a word in a paraphrase set, we join all of the collected html

pages into a single document with a new line. This means that one paraphrase in a set maps

to one document with all html pages joined. We then build a Term Frequency - Inverse

Document Frequency (TF-IDF) using sub-linear TF Scaling for a paraphrase set, where the

row maps to a vector representation of a paraphrase. We then populate a similarity matrix

by taking the cosine similarity between the extracted embedding. What is important to

note is that the vocabulary used to build TF-IDF matrix is not the overall vocabulary of

the paraphrase file, but consists of vocabulary occurring inside the paraphrase set.

4.3.4. Combining similarity measures

As can be inferred, there are numerous ways to combine existing and new similarity mea-

sures to populate the similarity matrix. In our approach, we chose to simply average the

scores produced by various representations and apply L2 norm to already populated sim-

ilarity matrix. However, there are other proposed ways to combine the multiple modes of

similarities as explained in Chapter 5.

4.3.5. Evaluation Measures

We use the same evaluation measures as was used by 2010 SemEval Word Sense Induction

Task (Manandhar et al., 2010), Apidianaki et al. (2014) and Cocos and Callison-Burch

(2016). The two evaluation measures are Paired F-Score and V-Measure. To compute
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paired F-Score all possible word pairs are labelled as being in the same cluster or not. The

labelling of word pairs is done for both predicted and ground-truth or gold clusterings.

The F-Score is then computed on the labelled word pairs using precision and recall. V-

Measure is an entropy-based measure which explicitly measures how successfully the criteria

of homogeneity and completeness have been satisfied. Homogeneity denotes conditional

entropy of the class distribution given the clustering and completeness denotes the opposite.

What is important to note is that these evaluation metrics are averages of paired F-Score

and V-Measure for each polysemous word, weighted by the number of clusters in for this

word in the gold file. In order to find the best clustering method performance, we seek to

find balance between paired F-Score and V-Measure.

4.3.6. Incorporating entailment

PPDB2.0 (Pavlick et al., 2015) contains automatically predicted semantic entailment re-

lationships such as equivalence, exclusive, independent, forward and reverse. Cocos and

Callison-Burch (2016) exploit positive entailment relationship of equivalence and forward/reverse

entailment by multiplying each pairwise entry by entailment probability and recording the

result in the similarity matrix after it has been normalised.

4.3.7. Baselines

Similarly to Cocos and Callison-Burch (2016) we implemented the following baselines:

• Most Frequent Sense (MFS) = all paraphrases in a single cluster

• One Cluster per Paraphrase (1c1Par) = each paraphrase in a paraphrase list has its

own cluster

• Random (RAND) = randomly assigns paraphrases to k clusters, where k is static and

is equal to 5

The intuition behind these baselines is that 1c1Par favours V-Measure, whereas MFS favours

F-Score, so the top performing model should take a position in between the two extremes.
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The main challenge we faced during evaluation was the lack gold standard clusters against

which we could compare our solutions. Therefore, we started evaluating our results against

WordNet+ and CrowdClusters datasets used by Cocos and Callison-Burch (2016) and de-

scribed in the subsequent sections.

4.4. Wordnet+ Dataset

4.4.1. Description

WordNet+1 paraphrase file contains 201 polysemous words from the SEMEVAL 2007 dataset,

where a list of paraphrases originates from the intersection of the PPDB 2.0 XXXL para-

phrases, WordNet synsets and their immediate hyponyms and hypernyms. Gold clusterings2

for this dataset consist of a WordNet synset along with the hypernyms and hyponyms of

words for a given synset.

Tables 17, 18 and 19 provide paraphrase and gold files statistics for the WordNet+ dataset.

Tables 17 and 18 display information, such as the number of paraphrases for a target word

in both paraphrase and gold files. Table 19 provides information from the gold file about

the number of clusters per target word as well as the number of paraphrases within the

corresponding cluster.

POS
No of target

words
No of

paraphrases
No of unique
paraphrases

Mean No of
paraphrases
per target

word

Median No of
paraphrases
per target

word

Std No of
paraphrases
per target

word

noun 65 1222 1007 18.8 16 12.2
verb 56 2918 1271 52.1 45.5 40

adjective 59 424 344 7.2 7 4.3
adverb 35 224 169 6.4 6 2.5

all 215 4788 2953 22.3 11 28.4

Table 17: WordNet+ Paraphrase File POS Breakdown – Number of Paraphrases Statistics

1https://github.com/acocos/cluster_paraphrases/blob/master/data/pp/combined_semeval_

handpicked_multiword_xxxl_PPDB2.0Score_plusself_wnfilt.ppsets
2https://github.com/acocos/cluster_paraphrases/blob/master/data/gold/wordnet_eval_

targets.wngold
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POS
No of target

words
No of

paraphrases
No of unique
paraphrases

Mean No of
paraphrases
per target

word

Median No of
paraphrases
per target

word

Std No of
paraphrases
per target

word

noun 60 4621 3915 77 73 45.4
verb 52 8565 4355 164.7 111.5 169.3

adjective 54 754 625 14 11 9.1
adverb 35 275 213 7.9 7 3.7

all 201 14215 8667 70.7 32 109.1

Table 18: WordNet+ Gold File POS Breakdown – Number of Paraphrases Statistics

POS
Mean No of
clusters per
target word

Median No of
clusters per
target word

Std No of
clusters per
target word

Mean No of
paraphrases
per cluster

Median No of
paraphrases
per cluster

Std No of
paraphrases
per cluster

noun 8.1 7 5 9.6 6 12.9
verb 16 11.5 11 10.3 5 29.3

adjective 5.5 4.5 3.2 2.6 2 2.4
adverb 3.1 3 1.2 2.5 2 1.9

all 8.5 6 8 8.3 4 21.8

Table 19: WordNet+ Gold File POS Breakdown – Number of Cluster and Paraphrases
within a Cluster Information

A few details can be observed from this evaluation of the paraphrase and gold files. To start

with, there are three times more paraphrases in the gold file as there are in the paraphrase

file. As a consequence, it can be seen in Tables 17 and 18 that there is a difference in

proportion between the mean, median and standard deviation in number of paraphrases for

a target word for nouns and verbs. According to Table 19 the number of clusters per target

word is around 8.5 across all words, however, the mean and median number of clusters per

each POS varies, in particular, with adverbs having the least number of clusters and verbs

have the most number of clusters. The mean number of clusters per target word for adverbs

can be justified by the little amount of data in comparison to other POS. Based on these

observations, it can be concluded that there is a need to separate the evaluation by POS, as

the number of paraphrases supplied as an input as well as the number of clusters expected as

an output for a target word varies between different types of words for WordNet+ dataset.
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4.4.2. Gold Clusters Examples

(a) ‘Good’ examples

(b) ‘Bad’ examples

Figure 22: Examples for nouns from the WordNet+ Gold File

Nouns Figure 22 contains selected examples of clusterings for nouns from the WordNet+

gold file. Based on our observations, the clustering for the word ‘rest.n’ seen in Figure 22a

contains a good representation of distinct senses. For ‘rest.n’ a few senses can be clearly

observed: sleep, inactivity, pause, musical notation, and component remainder from math-
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ematics. Figure 22b contains gold clustering for the word ‘job.n’ and ‘letter.n’. The reason

we believe ‘job.n’ does not separate paraphrases in a clean manner is because there are many

clusters that are very specific and obfuscate the more general senses of the target word. For

instance the clusters ‘Job’, ‘Job Book of Job‘, and ‘Job unfortunate person unfortunate’ do

not seem to create a good understanding of senses for ‘job.n’.

It can also be seen that ‘letter.n’ in Figure 22b does not separate paraphrases in a clean

manner. The reason to believe so is that there are two clusters that contain the majority

of paraphrase, while the other clusters contain very little amount of paraphrases that are

not representatives of a sense. Furthermore, the bottom right cluster contains letters from

the Latin and Greek alphabets along with other paraphrases, for instance ‘D’, ‘U’, ‘alpha’,

‘omega’, ‘sigma’ etc. While such cluster depicts the alphabetic meaning of a letter, it also

contains words that create noise, for instance ‘block capital’, ‘descender’, ‘digraph’.

Verbs Figure 23 displays two examples of clusterings for verbs from the WordNet+

dataset. Figure 23a contains a clustering for the verb ‘bring.v’, which we believe sepa-

rates the word into distinct senses. The senses that can be observed for this word are

roughly as follows: throw, bring back, retrieve, make, create and alter. Figure 23b contains

a clustering for the verb ‘change.v’, which we believe does not separate the target word into

distinct senses. The reason to believe this is not a good representation is similar to the rea-

sons for the clustering of ‘letter.n’ in Figure 22b. While the other seven clusters represent

distinct senses such as travel, dress, exchange, replace, and shift, the top and bottom left

clusters contain way too many paraphrases in a single cluster. The top left cluster contains

691 paraphrases and it seems that the sense of the cluster is lost, since it contains words

like ‘sanitize’, ‘demoralize’, ‘alcoholize’ in the same cluster. This cluster most likely depicts

the change in human behaviour along with the change in environment and the world that

would make sense to separate.
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(a) ‘Good’ examples

(b) ‘Bad’ examples

Figure 23: Examples for verbs from the WordNet+ Gold File

Adverbs Figure 24 displays few examples of clusterings for adverbs from this dataset.

Figure 24a contains clusterings for the target word ‘so.r’, ‘softly.r’, and ‘earlier.r’ that seems

to separate senses in a clear manner. For instance, for the target word ‘earlier.r’ there is a

differentiation between the concept of time. For the word ‘earlier.r’ there the absolute and
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relative difference of time clearly seen in the clustering. Figure 24b contains a clustering

for the word ‘thus.r’ that does not seem to differentiate senses. It perhaps would have been

more intuitive to combine two clusters into one, but introduce a new cluster where ‘like

this’, ‘in this way’, ‘like so’ would have been placed to illustrate ‘thus.r’ in the manner to

exemplify something.

(a) ‘Good’ examples (b) ‘Bad’ examples

Figure 24: Examples for adverbs from the WordNet+ Gold File

Adjectives Figure 25 displays a few examples of clusterings for the adjectives in this

dataset. Based on our observations there are many more adjectives that have been clustered

by senses in a clear way in the gold file as seen in Figure 25a. While ‘vital.a’, ‘reasonable.a’,

and ‘prominent.a’ contain relatively little amount of paraphrases and perhaps makes the

task of separating by senses a little easier, the clustering for ‘flat.a’ has many more words,

but the quality of clustering remains high. For instance, ‘flat.a’ has senses that are concerned

with the geometrical shape, with the material, with the taste and with the mathematical

interpretation of the word. It was relatively hard to find a ‘bad’ example of clustering for

the adjectives, however Figure 25b contains one such example for the target word ‘blue.a’.

The reason why it might not be a good representative of senses is because there are many

outdated senses for the target word, such as ‘puritanical’ or ‘profane’. Furthermore, it seems

that the two clusters representing the mood of a person could be combined.
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(a) ‘Good’ examples

(b) ‘Bad’ examples

Figure 25: Examples for adjectives from the WordNet+ Gold File

4.4.3. Baseline Results

Let us denote the top-scoring Spectral method of Cocos and Callison-Burch (2016) as fol-

lows: Spectral (sm=PPDB2 sc=word2vec e=True). This method has entailment enable

(e=True), takes PPDB2 scores as a similarity matrix (sm=PPDB2), and silhouette coeffi-

cients of word2vec for choosing k (sc=word2vec).
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Figure 26: Clustering method performance against WordNet+

Figure 26 displays clustering method performance against the WordNet+ dataset. It can

be seen that the results are within 1 standard deviations of the results produced by (Cocos

and Callison-Burch, 2016) for all of the baselines and their top performing Spectral method.

It can be seen that the performance of the top performing Spectral method by Cocos and

Callison-Burch (2016) has the highest F-Score, surpassing MFS. On the other hand, V-

Measure is 0.24 less than V-Measure for 1c1par baseline method. Based on the results it

seems that the Spectral method has a good balance between the F-Score and V-Measure.
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(b) 1c1par
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(c) Spectral (sm=PPDB2 sc=word2vec e=True)

Figure 27: Clustering method performance against WordNet+ separated by POS

Figure 27 displays the of the same algorithms as in Figure 26 broken down by POS. MFS

seen in Figure 27a has a a relatively stable performance for F-Score and V-Measure across

different types of words. The performance for 1c1par observed in Figure 27b is stable for V-

Measure across different types of words, but the F-Score varies significantly, being very low

for nouns and verbs, and exceptionally high for adjectives and adverbs. This can indicate

that putting a word in its own cluster does not work for nouns and verbs, but works much

better for adjectives and adverbs. Finally, based on the performance of Spectral seen in
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Figure 27c, the performance of the algorithm relative to baselines is quite stable across

POS. The difference between F-Score and V-Measure is relatively small for noun, adjective

and adverbs, but is significant for verbs. The results suggest that the strategy for verbs

needs to be improved improved in order to improve the overall performance on this dataset.

4.4.4. Results for individual features

Table 20 displays the performance for a subset of combinations of individual similarity mea-

sures on WordNet+ dataset. Based on the results from the Table it can be observed that

when the entailment is enabled the performance is slightly better, especially for combina-

tions other than PPDB2 as a similarity matrix and word2vec as silhouette coefficients. It

seems that with entailment enabled the F-Score and V-Measure go up by 0.1 if image fea-

tures are used as an input to the similarity matrix. The best performance is still achieved

when PPDB2 is used as an input to the similarity matrix and word2vec is used as an input

to silhouette coefficients. The other combination that is within 1 standard deviation from

the best performing model is when word2vec is used as both an input to the similarity

matrix and input to silhouette coefficients.

Similarity
Matrix

Silhouette
Coefficients

Entail F-Score V-Measure
Mean No

of Clusters

PPDB2 PPDB2 T 0.361 0.420 3.58
PPDB2 images T 0.345 0.325 3.10
PPDB2 word2vec T 0.354 0.449 4.26

contextual word2vec T 0.330 0.412 4.21
images PPDB2 T 0.342 0.379 2.95
images images T 0.327 0.275 2.44
images word2vec T 0.341 0.411 3.58

word2vec PPDB2 T 0.344 0.365 2.83
word2vec images T 0.330 0.268 2.55
word2vec word2vec T 0.340 0.456 4.37
PPDB2 PPDB2 F 0.358 0.419 3.60
PPDB2 images F 0.343 0.322 3.04
PPDB2 word2vec F 0.357 0.446 4.10
images PPDB2 F 0.287 0.222 2.22
images images F 0.283 0.207 2.02
images word2vec F 0.272 0.289 2.95

word2vec PPDB2 F 0.330 0.316 2.39
word2vec images F 0.318 0.259 1.97
word2vec word2vec F 0.288 0.522 5.75
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Table 20: WordNet+ performance of Spectral algorithm on a subset of individual features
for enabled and disabled entailment

4.4.5. Results for combined features

Table 21 displays the WordNet+ performance of the subset of combinations of individual

and combined similarity measures. Based on the results the combination that achieves the

best performance is when individual features are used, so when PPDB2 are used as an

input to the similarity matrix, and word2vec is used as silhouette coefficients. It seems that

combining features performs slightly worse than using individual features alone.

Similarity Matrix Silhouette Coefficients F-Score V-Measure
Mean No

of Clusters

PPDB2 PPDB2 0.361 0.420 3.58
PPDB2 PPDB2 images 0.358 0.369 3.21
PPDB2 images 0.345 0.325 3.10
PPDB2 word2vec 0.354 0.449 4.26
PPDB2 word2vec PPDB2 0.359 0.437 3.78
PPDB2 word2vec PPDB2 images 0.362 0.388 3.29
PPDB2 word2vec images 0.356 0.350 3.10
PPDB2 contextual word2vec 0.340 0.422 3.70
PPDB2 images PPDB2 0.346 0.378 2.87
PPDB2 images PPDB2 images 0.340 0.318 2.47
PPDB2 images images 0.332 0.283 2.47
PPDB2 images word2vec 0.347 0.416 3.53
PPDB2 images word2vec PPDB2 0.352 0.408 3.13
PPDB2 images word2vec PPDB2 images 0.347 0.347 2.58
PPDB2 images word2vec images 0.339 0.304 2.51
PPDB2 images contextual word2vec 0.341 0.417 3.64
contextual word2vec 0.330 0.412 4.21
images PPDB2 0.342 0.379 2.95
images PPDB2 images 0.336 0.323 2.56
images images 0.327 0.275 2.44
images word2vec 0.341 0.411 3.58
images word2vec PPDB2 0.345 0.406 3.20
images word2vec PPDB2 images 0.342 0.346 2.63
images word2vec images 0.338 0.303 2.51
images contextual word2vec 0.342 0.422 3.67
word2vec PPDB2 0.344 0.365 2.83
word2vec PPDB2 images 0.338 0.287 2.42
word2vec images 0.330 0.268 2.55
word2vec word2vec 0.340 0.456 4.37
word2vec word2vec PPDB2 0.352 0.401 3.19
word2vec word2vec PPDB2 images 0.344 0.330 2.56
word2vec word2vec images 0.335 0.287 2.57
word2vec PPDB2 PPDB2 0.346 0.383 2.90
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word2vec PPDB2 PPDB2 images 0.341 0.324 2.47
word2vec PPDB2 images 0.330 0.286 2.47
word2vec PPDB2 word2vec 0.340 0.428 3.76
word2vec PPDB2 word2vec PPDB2 0.358 0.421 3.20
word2vec PPDB2 word2vec PPDB2 images 0.347 0.352 2.61
word2vec PPDB2 word2vec images 0.338 0.306 2.45
word2vec PPDB2 contextual word2vec 0.341 0.434 3.81
word2vec PPDB2 images PPDB2 0.348 0.384 2.88
word2vec PPDB2 images PPDB2 images 0.340 0.322 2.47
word2vec PPDB2 images images 0.330 0.285 2.47
word2vec PPDB2 images word2vec 0.345 0.426 3.69
word2vec PPDB2 images word2vec PPDB2 0.355 0.412 3.16
word2vec PPDB2 images word2vec PPDB2 images 0.344 0.350 2.59
word2vec PPDB2 images word2vec images 0.337 0.307 2.52
word2vec PPDB2 images contextual word2vec 0.347 0.428 3.73
word2vec contextual word2vec 0.332 0.445 4.22
word2vec images PPDB2 0.349 0.384 2.91
word2vec images PPDB2 images 0.339 0.316 2.50
word2vec images images 0.329 0.282 2.47
word2vec images word2vec 0.343 0.425 3.74
word2vec images word2vec PPDB2 0.356 0.417 3.22
word2vec images word2vec PPDB2 images 0.346 0.348 2.61
word2vec images word2vec images 0.338 0.307 2.53
word2vec images contextual word2vec 0.355 0.426 3.65

Table 21: WordNet+ Performance of Spectral algorithm on a subset of individual and
combined features with entailment enabled

4.5. CrowdClusters Dataset

4.5.1. Description

CrowdClusters3 paraphrase file contains 78 randomly selected target words from the SE-

MEVAL 2007 dataset, where each target word has a list of paraphrases originating from

the unfiltered PPDB2.0 XXL entries. CrowdClusters gold file4 for this paraphrase file is

produced with the help of crowd workers on Amazon Mechanical Turk.

Similarly to Section 4.4, Tables 22, 23 and 24 provide paraphrase and gold files statistics

for the CrowdClusters dataset. Table 24 provides information from the gold file about the

number of clusters per target word and the number of paraphrases within the corresponding

3https://github.com/acocos/cluster_paraphrases/blob/master/data/pp/semeval_tgtlist_

rand80_multiword_xxl_PPDB2.0Score_plusself.ppsets
4https://github.com/acocos/cluster_paraphrases/blob/master/data/gold/crowd_eval_targets.

crowdgold
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cluster.

POS
No of target

words
No of

paraphrases
No of unique
paraphrases

Mean No of
paraphrases
per target

word

Median No of
paraphrases
per target

word

Std No of
paraphrases
per target

word

noun 21 4185 2940 199.3 157 137.3
verb 21 8501 4305 404.8 310 269.4

adjective 22 5602 3025 254.6 261 129.9
adverb 14 2541 1151 181.5 163.5 80

all 78 20829 10099 267 214.5 195.5

Table 22: CrowdClusters Paraphrase File POS Breakdown – Number of Paraphrases Statis-
tics

POS
No of target

words
No of

paraphrases
No of unique
paraphrases

Mean No of
paraphrases
per target

word

Median No of
paraphrases
per target

word

Std No of
paraphrases
per target

word

noun 21 148 136 7.1 6 4.7
verb 21 1018 915 48.5 50 20.2

adjective 22 656 598 29.8 23 22.3
adverb 14 286 243 20.5 19 8.6

all 78 2109 1882 27 19 22.6

Table 23: CrowdClusters Gold File POS Breakdown – Number of Paraphrases Statistics

POS
Mean No of
clusters per
target word

Median No of
clusters per
target word

Std No of
clusters per
target word

Mean No of
paraphrases
per cluster

Median No of
paraphrases
per cluster

Std No of
paraphrases
per cluster

noun 2.7 2 1.2 2.6 2 1.7
verb 5.5 5 1.7 8.9 5 10.7

adjective 4.4 4 2.4 6.8 4 8.6
adverb 3.7 3.5 1.4 5.5 4 4.7

all 4.1 3.5 2.1 6.6 3 8.5

Table 24: CrowdClusters Gold File POS Breakdown – Number of Clusters and Paraphrases
within a Cluster Statistics

Unlike for the WordNet+ dataset, there are many more paraphrases in the paraphrase

file as there are in the gold file, most likely justified by the way the gold file was created

and the lower number of paraphrases supplied to the crowd workers. It can be seen that

there is roughly 10 times more paraphrases in the paraphrase file than there is in the gold
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file. Similarly to WordNet+ dataset, it can be seen in Tables 22 and 23 that there is a

difference in proportion between the mean, median and standard deviation in number of

paraphrases for a target word for nouns and verbs. It can also be seen that there are a

lot more paraphrases for verbs than there are for adverbs, verbs or nouns, and in fact,

the number of paraphrases for a noun is the least from the four POS. Based on Table 24,

the number of clusters per target word is around 4.1 across all words, however, the mean

and median number of clusters per each POS varies, in particular, with nouns having the

least number of clusters and verbs have the most number of clusters. The mean, median,

and standard deviation of number of paraphrases per cluster also varies between nouns and

verbs, but not as much for adjective and adverbs. Based on these observations it is evident

that the algorithm needs to account for different POS.

4.5.2. Gold Clusters Examples

(a) ‘Good’ examples

(b) ‘Bad’ examples

Figure 28: Examples for nouns from the CrowdClusters Gold File
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Nouns Figure 28 displays examples of clusterings for some of the nouns from the Crowd-

Clusters gold file. It seems that for nouns ‘job.n’ and ‘functions.n’ seen in Figure 28a some

of distinct senses are observed in a clear manner. For instance, for ‘job.n’ the cluster ‘va-

cancies post’ might refer to the job opening, whereas ‘task data report’ cluster might refer

to what a person can produce as part of the job. Figure 28b displays clusterings for nouns

‘mass.n’, ‘shot.n’ and ‘cross.n’, and in our opinion, such clusterings do not represent dis-

tinct senses of a polysemous word in a clear manner. Both ‘cross.n’ and ‘mass.n’ have words

that have some noise, for instance what can be interpreted as extra punctuation, but more

importantly, for ‘mass.n’ more so than for ‘cross.n’ or ‘shot.n’, there is no clear separation

of senses. An observation that can be made here is that for some target words, such as

‘mass.n’, there are not enough paraphrases to represent it.

(a) ‘Good’ examples (b) ‘Bad’ examples

Figure 29: Examples for verbs from the CrowdClusters Gold File

Verbs Figure 29 displays examples of clusterings for some of the verbs from the Crowd-

Clusters gold file. Figure 29a displays clustering for the word ‘run.v’, which seems to have

a good quality clusters based on word sense. Some of the senses that can be observed for

the word ‘run.v’ are pursuing, managing, physically exercising and finishing. On the other

hand, in Figure 29b the target word ‘pull.v’ seems to have low quality verbs more resembling

informal context such as ‘re coming’, ‘s coming’, ‘’m coming’ and a lot of paraphrases per
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cluster.

(a) ‘Good’ examples (b) ‘Bad’ examples

Figure 30: Examples for adverbs from the CrowdClusters Gold File

Adverbs Figure 30 displays examples of clusterings for some of the adverbs from the

gold file. Figure 30a displays a clustering for the word ‘close.r’, which seems to separate

paraphrases in a clear manner. Based on our observation, ‘close.r’ contains the following

sense: nearby, no longer and far way. In comparison, for the target word ‘finally.r’ seen in

Figure 30b, the cluster at the top contains numbers embedded to words and some foreign

characters, which can indicate the defects of the data.

(a) ‘Good’ examples (b) ‘Bad’ examples

Figure 31: Examples for adjectives from the CrowdClusters Gold File

Adjectives Finally, Figure 31 displays examples of clusterings for some of the adjectives

from the gold file. Figure 31a displays a clustering for the word ‘stiff.a’, which seems to

have two distinct clusters for a word. The first cluster represents rigid, whereas the second

cluster represents sever or strong conditions. In comparison, for the target word ‘raw.a’

in Figure 31a, the cluster at the top contains is basically the cluster at the bottom plus

one extra word. Even though ‘raw.a’ can have two distinct senses: ‘rough’ in a sense of
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conditions and ‘unprocessed’ in a sense of food, those gold file clusters do not make the

senses obvious.

4.5.3. Baseline Results

MFS Rand(5.5)1c1par Spectral
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Figure 32: Clustering method performance against CrowdClusters

Figure 32 denotes clustering method performance against tis dataset. It can be seen that the

results are within 2 standard deviations of the results seen in the paper (Cocos and Callison-

Burch, 2016) for all of the baselines and their top performing Spectral method. Based on

the results, MFS method has a relatively high F-Score and a low V-Measure, whereas

1c1par method has a relatively high V-Measure and a low F-Score. The performance of the

top performing Spectral method by Cocos and Callison-Burch (2016) has a relatively high

V-Measure similar to 1c1par and a relatively high F-Score similar to MFS.
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(b) 1c1par
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(c) Spectral (sm=PPDB2 sc=word2vec e=True)

Figure 33: Clustering method performance against CrowdClusters separated by POS

Measure Score

Mean No of Gold Clusters 4.10
Mean No of Solution Clusters 4.63
Std No of Solution Clusters 2.81
Mean of |No of Gold Clusters - No of Solution Clusters| 1.77
Std of |No of Gold Clusters - No of Solution Clusters| 2.22

Table 25: Statistics on the number of gold clusters and predicted clusters for Spectral
(sm=PPDB2 sc=word2vec e=True) on CrowdClusters
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Figure 33 displays clustering method performance of the same baselines as in Figure 32,

but separated by POS. Based on the performance of MFS in Figure 33a, V-Measure is 0

for verbs, adjective and adverbs and slightly higher for nouns, while F-Score varies at most

by 0.9 between the POS, being the lowest for verbs and highest for adverbs. Based on the

performance of 1c1par in Figure 33b, there are slight differences between V-Measure and

F-Score across all present POS. Nouns for this method has the highest V-Measure and the

lowest F-Score, while verbs have the highest F-Score and second highest V-Measure. Finally,

based on the performance of Spectral seen in Figure 33c and Table, the performance of the

algorithm varies within POS greatly. Verbs have the lowest paired F-Score and V-Measure,

followed by adjectives and adverbs, while nouns have the highest paired F-Score and V-

Measure. Based on Figure 33c, there is a need to treat POS differently when performing

clustering. Table 25 displays the basic statistics of the number of gold clusters and predicted

clusters. It can be seen from the Table that the mean difference between the number of

gold clusters and predicted clusters is 1.77, which indicates that the algorithm predicts the

number of in accordance to the gold clusters.

4.5.4. Results for individual features

Table 27 displays the CrowdClusters performance for a subset of combinations of individual

similarity measures. It can be seen that when the entailment is enabled the performance

becomes better by a slight margin. Similarly to WordNet+ dataset, based on this table the

best performance is still achieved when PPDB2 is used as an input to the similarity matrix

and word2vec is used as an input to silhouette coefficients. Other combinations that do well

on this dataset are contextual or word2vec as similarity matrix and word2vec as an input

to silhouette coefficients.

Similarity
Matrix

Silhouette
Coefficients

Entail F-Score V-Measure
Mean No

of Clusters

PPDB2 PPDB2 T 0.497 0.427 4.05
PPDB2 images T 0.492 0.388 4.10
PPDB2 word2vec T 0.493 0.463 4.63

contextual word2vec T 0.455 0.405 4.65
images PPDB2 T 0.123 0.551 23.24
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images images T 0.126 0.550 23.05
images word2vec T 0.122 0.551 23.17

word2vec PPDB2 T 0.513 0.380 2.78
word2vec images T 0.497 0.328 2.81
word2vec word2vec T 0.470 0.432 4.26
PPDB2 PPDB2 F 0.497 0.429 4.08
PPDB2 images F 0.497 0.385 4.04
PPDB2 word2vec F 0.495 0.435 4.18

contextual word2vec F 0.322 0.476 9.52
images PPDB2 F 0.118 0.546 23.24
images images F 0.121 0.545 23.06
images word2vec F 0.120 0.547 23.12

word2vec PPDB2 F 0.511 0.356 2.30
word2vec images F 0.495 0.303 2.04
word2vec word2vec F 0.420 0.483 5.57

Table 26: CrowdClusters performance of Spectral algorithm on a subset of individual fea-
tures for enabled and disabled entailment
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Figure 34: POS performance breakdown for Spectral (sm=images sc=word2vec e=True)
configuration from Table 26

It can also be seen that the performance of images as an input to the similarity matrix

is very low in the F-Score and high in V-Measure. The mean number of clusters for such

configuration is very high, which can indicate that there is a problem with inferring the

number of clusters for certain words. This observation is further confirmed in Figure 34

when there is a breakdown by POS. It can be seen that the algorithm produces good

results for verbs, but behaves like 1c1par for adjectives, adverbs and nouns. Such results

indicate the need to tune the algorithm for different types of datasets and different similarity
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measures.

4.5.5. Results for combined features

Table 27 displays the CrowdClusters performance of the subset of combinations of individ-

ual and combined similarity measures described in Section 4.3.4. Based on the results the

combination that achieves the best performance is when PPDB2 and images are used as an

input to the similarity matrix, and word2vec is used as silhouette coefficients. This perfor-

mance is slightly better than the performance of just PPDB as an input to the similarity

matrix. It seems that for CrowdClusters dataset the combining features yields a higher

performance as supposed to combining features for the WordNet+ dataset.

Similarity Matrix Silhouette Coefficients F-Score V-Measure
Mean No

of Clusters

PPDB2 PPDB2 0.497 0.427 4.05
PPDB2 PPDB2 images 0.506 0.399 3.92
PPDB2 images 0.492 0.388 4.10
PPDB2 word2vec 0.493 0.463 4.63
PPDB2 word2vec PPDB2 0.499 0.441 4.15
PPDB2 word2vec PPDB2 images 0.508 0.408 3.90
PPDB2 word2vec images 0.495 0.400 4.19
PPDB2 contextual word2vec 0.502 0.410 3.55
PPDB2 images PPDB2 0.501 0.426 4.01
PPDB2 images PPDB2 images 0.508 0.401 3.92
PPDB2 images images 0.499 0.391 4.04
PPDB2 images word2vec 0.503 0.466 4.54
PPDB2 images word2vec PPDB2 0.504 0.445 4.14
PPDB2 images word2vec PPDB2 images 0.511 0.410 3.90
PPDB2 images word2vec images 0.503 0.404 4.14
PPDB2 images contextual word2vec 0.504 0.409 3.50
contextual word2vec 0.455 0.405 4.65
images PPDB2 0.123 0.551 23.24
images PPDB2 images 0.123 0.551 23.24
images images 0.126 0.550 23.05
images word2vec 0.122 0.551 23.17
images word2vec PPDB2 0.123 0.551 23.24
images word2vec PPDB2 images 0.123 0.551 23.21
images word2vec images 0.126 0.550 23.04
images contextual word2vec 0.416 0.414 6.52
word2vec PPDB2 0.513 0.380 2.78
word2vec PPDB2 images 0.520 0.331 2.37
word2vec images 0.497 0.328 2.81
word2vec word2vec 0.470 0.432 4.26
word2vec word2vec PPDB2 0.514 0.402 2.95
word2vec word2vec PPDB2 images 0.521 0.365 2.62
word2vec word2vec images 0.519 0.351 2.65
word2vec PPDB2 PPDB2 0.503 0.368 2.88
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word2vec PPDB2 PPDB2 images 0.512 0.323 2.37
word2vec PPDB2 images 0.498 0.321 2.73
word2vec PPDB2 word2vec 0.513 0.407 3.27
word2vec PPDB2 word2vec PPDB2 0.513 0.407 2.99
word2vec PPDB2 word2vec PPDB2 images 0.518 0.349 2.54
word2vec PPDB2 word2vec images 0.512 0.339 2.59
word2vec PPDB2 contextual word2vec 0.508 0.410 3.28
word2vec PPDB2 images PPDB2 0.501 0.367 2.86
word2vec PPDB2 images PPDB2 images 0.513 0.322 2.35
word2vec PPDB2 images images 0.498 0.320 2.71
word2vec PPDB2 images word2vec 0.496 0.401 3.36
word2vec PPDB2 images word2vec PPDB2 0.510 0.403 2.95
word2vec PPDB2 images word2vec PPDB2 images 0.518 0.349 2.54
word2vec PPDB2 images word2vec images 0.512 0.339 2.59
word2vec PPDB2 images contextual word2vec 0.503 0.409 3.37
word2vec contextual word2vec 0.462 0.419 4.01
word2vec images PPDB2 0.505 0.370 2.78
word2vec images PPDB2 images 0.514 0.320 2.33
word2vec images images 0.494 0.321 2.78
word2vec images word2vec 0.465 0.421 4.17
word2vec images word2vec PPDB2 0.503 0.394 2.99
word2vec images word2vec PPDB2 images 0.513 0.354 2.62
word2vec images word2vec images 0.508 0.343 2.68
word2vec images contextual word2vec 0.464 0.423 4.18

Table 27: CrowdClusters performance of Spectral algorithm on a subset of individual and
combined features with entailment enabled

4.6. WordNet+ Gold 2.0 Dataset

4.6.1. Motivation: Limitations of existing datasets and other problems

Previous sections on WordNet+ and CrowdClusters datasets, specifically Sections 4.4.2

and 4.5.2, outlined the examples of clusterings for each part-of-speech from gold files that

we believe might not cluster distinct senses for a target word in a clear manner. The

most common problem for the ‘bad’ examples included clustering too many paraphrases

in the same cluster, which made the cluster loose its sense. Another problems included

outliers, clear word mistakes, almost complete repetition of clusters and so on. Based

on the qualitative observations it is evident that there exist target words for which gold

clusterings are not of a high quality.

However, if we assume that the quality of a gold file is high, there is one main limitation

we found in implementation of Cocos and Callison-Burch (2016). It has to do with the
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way the evaluation is done on WordNet+ and CrowdClusters datasets. In order to evaluate

the performance of an algorithm an intersection of predicted clustering from the input

paraphrase file and gold clustering from the output gold file needs to be performed. The

evaluation is not able to take into account unknown words. We refer to such operation as

post-filtering. As a consequence, taking an intersection produces a low quality clustering.

In order to illustrate this problem, let us take a real example from the WordNet+ dataset

for the target word ‘saint.n’. The input paraphrase file referenced in Section 4.4 contains

‘saint.n’ that has 3 paraphrases: god, angel, saint. Those 3 paraphrases need to be clustered

by senses. In the gold file referenced in Section 4.4 ‘saint.n’ has 3 clusters that can be seen

in Figure 35.

Figure 35: WordNet+ gold file clustering of target word ‘saint.n’

The Spectral method (with PPDB2 scores as an input to the similarity matrix and word2vec

scores as an silhouette coefficients) clusters each of the three paraphrases into 3 distinct clus-

ters, acting as 1c1par baseline. In order to evaluate the clustering, the predicted clustering

is compared against gold clustering, where only intersected words get evaluated.
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Figure 36: WordNet+ gold file clustering of target word ‘saint.n’ post-filtering

That means that the word ‘saint’ is removed from the predicted clustering since it does not

occur in the gold clustering, and the words ‘fakeer, faqir, holy person, good person, Buddha,

fakir, faquir, holy man, nonesuch, jimhickey, crackerjack, nonsuch, paragon, humdinger,

apotheosis, class act, ideal, jimdandy, model, role model, nonpareil, deity, divinity, pa-

tron saint, and immortal’ also get removed from the gold clustering since they do not occur

in the paraphrase file and cannot be evaluated. As observed in Figure 36, the post-filtering

of gold clustering produces just 2 clusters with the words ‘god’ and ‘angel’ being in separate

clusters. The post-filtering of predicted clustering produces also 2 clusters with ‘god’ and

‘angel’ being in separate clusters. The F-Score and V-Measure are both predicted to be 1,

thus being a perfect match between predicted and gold clustering. What this evaluation

for ‘saint.n’ fails to observe is that 33% was removed from the paraphrase file and 93%

was removed from the gold file. Could the gold clustering be trusted if 93% of the data is

removed?

4.6.2. Generation

In order to generate this new WordNet+ Gold 2.0 dataset, we have disregarded the para-

phrase file described in Section 4.4 and only taken the WordNet+ Gold file5. We then re-

moved all words in the gold file for which there are no image representation, since word2vec

5https://github.com/acocos/cluster_paraphrases/blob/master/data/gold/wordnet_eval_

targets.wngold
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score can be obtained for unknown words, but the image representation cannot (we use

static version of the dataset (Callahan, 2017)).

As a result, from 8667 unique words that occur in the WordNet+ gold file 3006 were re-

moved, which accounts for around 35%. Over 60% of those removed words contained at

least one underscore or a dash. Some of the examples from the removed words are: rake off,

charge per unit, business enterprise, Agenise, progress to, balaclava, deglycerolize, chop-

ping board, cornice, go wrong and jump off. Therefore, for each target word and clustering

of a target word in the filtered gold file we generated the input paraphrase file but extracted

words from the clustering and aggregated them into a single list. The new gold file, para-

phrase file and words that were removed are available to view offline. As a side note, we

decided to completely disregard PPDB2 scores as a similarity measure since there was no

data for more than 50% of the paraphrases from WordNet+ dataset. Even though PPDB2

scores as an input to the similarity matrix score was the top performing algorithm for both

WordNet+ and CrowdClusters datasets, we believe that word2vec as a similarity measure

had a comparable performance within 1 standard deviation of PPDB2 score. We justify the

high performance of PPDB2 score due to but sparse but strong signal for the clustering of

paraphrases.

4.6.3. Description

Tables 28 and 29 provide paraphrase and gold files statistics for the WordNet+ dataset, in

particular the number of paraphrases and clusters per target word broken down by POS.

POS
No of target

words
No of

paraphrases
No of unique
paraphrases

Mean No of
paraphrases
per target

word

Median No of
paraphrases
per target

word

Std No of
paraphrases
per target

word

noun 60 2752 2320 45.9 45 28.5
verb 52 5797 3056 111.5 80.5 98.911

adjective 54 616 527 11.4 9 7.3
adverb 35 242 194 6.9 7 3.2

all 201 9407 5661 46.8 20 66.9
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Table 28: WordNet+ Gold 2.0 Paraphrase and Gold File POS Breakdown – Number of
Paraphrases Statistics

POS
Mean No of
clusters per
target word

Median No of
clusters per
target word

Std No of
clusters per
target word

Mean No of
paraphrases
per cluster

Median No of
paraphrases
per cluster

Std No of
paraphrases
per cluster

noun 7.6 7 4.6 6.4 4 8.2
verb 15.9 11.5 11 8.3 5 18.8

adjective 5.2 4.5 2.9 2.3 2 1.9
adverb 3 3 1.2 2.4 2 1.8

all 8.3 6 7.8 6.4 3 14.1

Table 29: WordNet+ Gold 2.0 Gold File POS Breakdown – Number of Clusters and Para-
phrases within a Cluster Statistics

Based on Table 28 the number of paraphrases per target word varies for different POS,

where verbs have the largest number and adverbs have the smallest number. According

to Table 29 the number of clusters per target word is around 8.3 across all words, is just

0.2 smaller than the number of clusters per target word in the the original gold file seen in

Table 19. Similarly to the original dataset, the mean and median number of clusters per

each POS for the new dataset varies significantly with verbs having the most number of

clusters and adverbs having the least number of clusters. One other observation is that the

statistics for the number of paraphrases per cluster for adverbs and adjectives are almost

identical even though there are three times as much paraphrases for adjectives as there are

for adverbs, which is reflected in the number of clusters per target word. The conclusion

that can be derived from these observations is that the algorithm needs to account for

different POS tag, since the distribution of paraphrases and clusters per target word varies

greatly between different types of words.

4.6.4. Results

Table 30 displays the clustering performance of baselines along with the top models against

the WordNet+ Gold 2.0 dataset.
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Clustering Method F-Score V-Measure

Baselines

MFS 0.31 0.0
1c1Par 0.08 0.65
RAND 0.19 0.27

Similarity Matrix K

Images Static 0.32 0.49
Word2vec Static 0.31 0.48
Word2vec, Images Static 0.31 0.49
Images Word2vec 0.31 0.32
Word2vec Word2vec 0.3 0.37
Images Images 0.31 0.22
Word2vec Images 0.31 0.25
Wordvec, Images Word2vec 0.3 0.32
Wordvec, Images Images 0.31 0.26

Table 30: Clustering method performance of baseline models and top models of Spectral
algorithm against the WordNet+ Gold 2.0 dataset

Based on the results for the baseline, MFS achieves an F-Score of 0.31 and V-Measure of 0,

while 1c1Par achieves an F-Score of 0.08 and V-Measure of 0.65. The performance of RAND

is much more balanced in comparison to MFS or 1c1Par with an F-Score of 0.27 and V-

Measure of 0.19. When k is known ahead of time based on the gold clusterings (static), the

performance of an algorithm is higher in V-Measure by around 0.15, as supposed to when

k is inferred using silhouette coefficients. The performance of image features and word2vec

is equivalent for when k is static, and in fact the performance of image features is slightly

better. However, hen k is determined using silhouette coefficients, the performance of image

features is slightly worse when word2vec is used as silhouette coefficients and significantly

worse when image features are used as silhouette coefficients.

76



adjective adverbnoun verb
0

0.2

0.4

0.6

0.8

0
.6

8

0.
4
3

0.
3
9

0
.4

1

0
.4

2

0.
3
2

0.
3
1

0
.2

3

POS

S
co

re
s

V-Measure F-Scores

(a) Similarity Matrix = Word2Vec, Static K
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(b) Similarity Matrix = Images, Static K
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(c) Similarity Matrix = Word2Vec, Silhouette Co-
efficients = Word2Vec
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(d) Similarity Matrix = Images, Silhouette Coef-
ficients = Word2Vec

Figure 37: Clustering method performance of four models against WordNet+ Gold 2.0
separated by POS

An interesting insight into how image features differ from word2vec can be observed in

Figure 37 for the two approaches of selecting k. When static k is used, the performance

of image features is higher for nouns and adverbs and is lower for verbs and adjectives

in comparison to word2vec. This can be explained by the inherent nature of the images.

Same phenomena is observed when k is chosen based on word2vec as silhouette coefficients.

What is important to note is that the combination of image features as similarity matrix
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and word2vec as silhouette coefficients is worse by 0.05 in V-Measure as seen in Table 30,

a direct impact of a drop in V-Measure for verbs.

4.6.5. Gold and Predicted Clusters Examples

The following section contains examples of predicted and gold clusters for nouns, adjectives,

verbs, and adverbs. Please note that the word ‘insect’ appears in multiple clusters according

to the gold file and thus is highlighted with burgundy colour. Words inside the predicted

clusters are highlighted with the colour of the gold cluster other than the words in the

burgundy colour.

(a) Gold Clustering

(b) Similarity Matrix = Images, Silhouette Coef-
ficients = Word2vec,
F-Score: 0.667, V-Measure: 0.846

(c) Similarity Matrix = Word2vec, Silhouette Co-
efficients = Word2vec,
F-Score: 0.529, V-Measure: 0.643

Figure 38: Gold clustering along with the predicted clusterings for the word ‘bug.n’
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Nouns Figure 38 displays a gold clustering along with the predicted clusterings for the

word ‘bug.n’. The clustering algorithm performs hard clustering and thus is unable to place

a word into multiple clusters. In this example image features achieve higher performance

in both F-Score and V-Measure when compared to word2vec as an input to the similarity

matrix. It can be seen that both of the predicted clusterings are quite similar to each other in

the way they cluster paraphrases. Both configurations cluster blue and red clusters perfectly.

They both misplace the words ‘bed bug’ and ‘bedbug’ in different clusters and cannot cluster

them with ‘chinch’. Image features place ‘micro-organism’ and ‘microorganism’ together,

while word2vec separates them. Based on the figure it seems that both configurations have

trouble placing ‘microorganism’, ‘bedbug’, ‘germ’, and ‘chinch’.

Verbs Figure 39 displays a gold clustering along with the predicted clusterings for the

word ‘decline.v’. There are lots of words that occur in multiple clusters, such as ‘go down’,

‘fall’, ‘drop’, ‘reject’ and so on. More importantly, there a lot more paraphrases within

a cluster, which is consistent with observations made in Table 29. Predicted clusterings

achieve a lower F-Score and V-Measure relative to the previous example of the word bug.n

seen in Figure 38. Word2vec as a similarity matrix achieves a more balanced performance

on both evaluation metrics. It seems that images features and word2vec have at least 3

predicted clusters that are equivalent. for example ‘react’ and ‘respond’ are placed together,

similarly to ‘regress’ and ‘retrogress’. Furthermore, image features separate paraphrases in

16 clusters, 7 more clusters than word2vec. Both configurations have clusters that have a

lot of paraphrases from different clusters, as can be seen by a variation of colours inside

boxes. While there is little confused for the purple cluster, there seems to be a lot more

problem in clustering paraphrases from orange, green and blue clusters.
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(a) Gold Clustering

(b) Similarity Matrix = Images, Silhouette Coef-
ficients = Word2vec,
F-Score: 0.18, V-Measure: 0.593

(c) Similarity Matrix = Word2vec, Silhouette Co-
efficients = Word2vec,
F-Score: 0.307, V-Measure: 0.403

Figure 39: Gold clustering along with the predicted clusterings for the word ‘decline.v’

Adverbs Figure 40 shows gold and predicted clusterings for the word ‘around.a’. The

gold clustering contains a paraphrase ‘about’ that is placed as its own cluster, but also inside

a green cluster. A clear distinction of senses can be observed for this target word. Image

features achieve a significantly higher performance in F-Score and similar performance n

V-Measure. Based on the predictions, image features seem to to a better job in bring para-

phrases that belong to the green cluster together. What is interesting to see is that ‘close to’

is being placed with ‘about’ in both configurations. Both configurations can’t separate the

word ‘round’ from the paraphrases in green cluster such as ‘some’, ‘approximately’, and
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‘roughly’.

(a) Gold Clustering

(b) Similarity Matrix = Images, Silhouette Coef-
ficients = Word2vec,
F-Score: 0.615, V-Measure: 0.727

(c) Similarity Matrix = Word2vec, Silhouette Co-
efficients = Word2vec,
F-Score: 0.35, V-Measure: 0.7

Figure 40: Gold clustering along with the predicted clusterings for the word ‘around.r’

(a) Gold Clustering

(b) Similarity Matrix = Images, Silhouette Coef-
ficients = Word2vec,
F-Score: 0.167, V-Measure: 0.25

(c) Similarity Matrix = Word2vec, Silhouette Co-
efficients = Word2vec,
F-Score: 0.308, V-Measure: 0.4

Figure 41: Gold clustering along with the predicted clusterings for the word ‘fundamental.a’
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Adjectives Figure 41 contains an example of clusterings for the adjective ‘fundamental.a’.

The gold clustering contains 3 distinct senses for the target word, which can perhaps be

summarised as central, profound, and rudimentary. The performance of image features as

supposed to word2vec is significantly worse. The difference between predicted clusterings

produced by image atures and word2vec is that the paraphrase ‘primal’ is removed and

made as a separate cluster. Such move penalises image features in both V-Measure and

F-Score, since ‘primal’ had the word ‘cardinal’ that belonged together in the original green

cluster. Such change has 0.15 drop in performance in both of the evaluation metrics. None

of the configurations seem to misplace ‘profound’, ‘underlying’, and ‘rudimentary’, but more

importantly, separate ‘primal’ and/or ‘cardinal’ with ‘central, key’.

4.6.6. Concreteness

The concreteness of a word can also play a helpful role in incorporating features into clus-

tering tasks. The concreteness of a target word is inversely proportional to the degree of

vagueness of its meaning. For example, ‘strawberry’ is highly concrete, but ‘job’ is relatively

less concrete, since it can assume multiple meanings. The intuition behind this metric is

that if the concreteness of the target word is high, the more likely it is that the image

features will be highly complementary to the clustering task. In order to evaluate the per-

formance by concreteness for each target word we extracted a concreteness score based on

the values from Brysbaert et al. (2013). For WordNet+ Gold 2.0 dataset the minimum

concreteness score is 1.19, maximum is 5.0, and the mean at 3.17. The higher the score, the

more concrete the word is. For instance, the word ‘mood’ has 1.75 set as the concreteness

score, but the word ‘soil’ has a score of 4.87. In order to perform the analysis, we separated

the dataset by POS and decided to plot F-Score against V-Measure with concreteness score

visualised by the colour. Blue displays a low concreteness score, whereas red displays a high

concreteness score.

Nouns For nouns the minimum concreteness score is 1.75, maximum is 5 and mean is

3.93. Figure 42 displays the performance of two configurations, where on the left images
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are set as the input to the similarity matrix and on the right word2vec is set as the input

to the similarity matrix. For nouns the F-Score and V-Measure in both configurations are

clustered together in the lower left corner with colours mixed. For both image features and

word2vec a clear pattern cannot be observed for concreteness.

(a) Similarity Matrix = Images, Static K (b) Similarity Matrix = Word2vec, Static K

Figure 42: F-Score vs V-Measure plot of predicted scores for a target word coloured by
concreteness for nouns from WordNet+ Gold 2.0 dataset

Verbs For verbs the minimum concreteness score is 2, maximum is 4.68 and mean is 3.21.

Figure 43 displays the performance of image features and word2vec configurations on verbs.

Unlike nouns, for verbs F-Score and V-Measure in both configurations are more distributed,

with V-Measure reaching higher values than the F-Score on average. For image features, a

pattern can be observed, where there values that fall under F-Score of less than 0.4 and V-

Measure of less than 0.4 have low concreteness scores. A similar observation, but a smaller

window size can be be observed for word2vec.
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(a) Similarity Matrix = Images, Static K (b) Similarity Matrix = Word2vec, Static K

Figure 43: F-Score vs V-Measure plot of predicted scores for a target word coloured by
concreteness for verbs from WordNet+ Gold 2.0 dataset

Adverbs For adverbs the minimum concreteness score is 1.33, maximum is 3.87 and mean

is 2.25. Figure 44 displays the performance of image features and word2vec configurations

on adverbs. Similarly to verbs, the points in the plot for both configurations are very sparse.

It can be seen that majority of the words have a low concreteness score, hence there colour

of majority of points are blue. In the right upper corner words that achieved the best

possible performance in terms of F-Score and V-Measure can be seen. Some of the words

include ‘hard’, ‘possibly’, ‘entirely’, ‘apparently’ and so on.
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(a) Similarity Matrix = Images, Static K (b) Similarity Matrix = Word2vec, Static K

Figure 44: F-Score vs V-Measure plot of predicted scores for a target word coloured by
concreteness for adverbs from WordNet+ Gold 2.0 dataset

(a) Similarity Matrix = Images, Static K (b) Similarity Matrix = Word2vec, Static K

Figure 45: F-Score vs V-Measure plot of predicted scores for a target word coloured by
concreteness for adjectives from WordNet+ Gold 2.0 dataset
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Adjectives For adjectives the minimum concreteness score is 1.57, maximum is 4.44

and mean is 2.74. Figure 45 displays the performance of image features and word2vec

configurations on adjectives. The distribution of points on the plot for adjectives resemble

the distribution of verbs. What can be observed from both of the configurations is on

average, the more concrete the target word is, the higher is the V-Measure score is for

adjectives. Similarly to adverbs, the right upper corner words that achieved the best possible

performance in terms of F-Score and V-Measure can be seen. Some of the words include

‘worthy’, ‘poor’, ‘strange’, and ‘civil’.
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CHAPTER 5 : Discussion and Future Work

For the task of word similarity prediction, certain observations can be made based on the

results seen in Chapter 3. To start with, even though thirteen datasets were used to evaluate

the performance of different vector representations, only a small subset of datasets provide

a sufficient number of data points with reliable human judgement scores. As a result, we

prioritised datasets such as SimLex-999 in our quantitative and qualitative analysis. Based

on the results on SimLex-999 dataset, as the number of image features increases, the per-

formance increases for all three visual representations. This is especially evident by the

performance on 666 nouns and 111 adjectives from SimLex-999 dataset. A similar pattern

can be observed on MEN-3000, MTurk-287, and MTurk-771 datasets. On the other hand,

as the number of image features increases the performance decreases for 222 verbs from

SimLex-999 dataset. In general, all three visual representations have a significantly worse

performance on datasets that consist only with verbs, for instance Verb-143, SimVerb-3500,

and 222 verbs from SimLex-999 datasets. This suggests that part-of-speech should play

a role when choosing to use visual representation. While the performance of linguistic

representation is better for other datasets, visual representation is comparable to linguis-

tic on SimLex-999 dataset. This suggests that image-based representation can be used as

an alternative way of predicting similarity of word pairs. We have tried combining visual

and textual representations through concatenation of vectors, however the performance of

this multimodal representation was worse as supposed to using visual or lingustic features

in isolation. Further comparison of two representations done as part of qualitative analy-

sis revealed that those unimodal representations predict certain word pairs very similarly.

However, the range of values predicted using AvgMax approach is much more narrow in

comparison to the linguistic approach. Such observation needs further investigation and

can be done as part of future work.

For the task of clustering paraphrases by word sense seen in Chapter 4, many conclusions

can be made based on the results. First, most clustering algorithms require an affinity
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or similarity matrix as an input, which denotes a pairwise similarity between paraphrases.

This thesis explored are a variety of choices for populating a similarity matrix, for example

linguistic, image-based or contextual (from images) representations. In addition to running

existing similarity measures in isolation, there are numerous way of combining those uni-

modal representations to form a multimodal representation. This thesis explored one of the

simplest ways of combining representations by averaging a similarity score between a pair

of paraphrases from various modes and then performing normalisation. The results have

shown that a multimodal representation of textual and visual representations work best on

CrowdClusters dataset, but does not work so well for the WordNet+ dataset. Another way

to combine different modes of data would have been to assign weights for a particular repre-

sentation based on a target word or its properties, such as part-of-speech. This approach of

combining was not explored in the thesis, but could be done in future. Going forward from

our approach of combining the similarities of embeddings before clustering, another exten-

sion would be to explore an ensembling technique to combine the clusters obtained by each

of the features independently. To paraphrase, a clustering algorithm would run on different

unimodal representations in isolation and then an ensembling happens post-clustering.

The reason why such approaches were not explored in the thesis was due to time constraints,

but also because the evaluation of different models resulted in similar performances on

WordNet+ and CrowdClusters datasets. We believe that the existing datasets suffer from

a low quality of clusters due to various reasons: noisiness, over 90% of paraphrases in

one cluster, depiction of outdated senses, foreign characters, informal words and so on.

Moreover, the input file and gold file do not have sufficient overlap between the two sets

of paraphrases for a given target word, making the quality of clusters even lower. These

limitations served as a motivation for creating a new dataset from the gold file of WordNet+

dataset and removing certain number of paraphrases that do not appear in the collection

of Callahan (2017). The results on a new dataset showed that visual representation and

textual representation are comparable to each other in terms of performance. In addition,

we observed that the performance of image features in comparison to textual features is
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higher for nouns and adverbs and is lower for verbs and adjectives. This can be explained

by the inherent nature of the images.

Overall, we believe that the idea of linking a query word to a set of images from the search

engine is very powerful, since in theory, sets of images can be extracted for any query word

or phrase, no matter how complex a query word is. One obvious extension from this thesis

would be to use a different neural network architecture when converting a set of images to

a set of image features. This could mean varying the number of dimensions created for each

image features, perhaps reducing the size of dimensions to be comparable to dense textual

representations. For both of the explored tasks, there are numerous ways of combining

different modes of data into a multimodal representation. Perhaps there is a need to think

of alternative ways of combining text and images. Finally, one of the most noticeable

observations was that visual features suffer from representing verbs. There should be a

consideration on how to treat verbs, perhaps using videos instead of image features as a

representation.
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APPENDIX

Dataset No Images
Top-1 Top-5 Top-10 Top-25 Top-50 Top-75 Top-100

RG-65 0.48 0.4658 0.5105 0.56 0.6295 0.6397 0.6422
MC-30 0.4041 0.4262 0.4251 0.4903 0.5848 0.5726 0.5978
WordSimilarity-353-ALL 0.2295 0.2985 0.2726 0.2583 0.2473 0.2401 0.2366
WordSimilarity-353-SIM 0.3638 0.3579 0.3601 0.3442 0.3424 0.3311 0.3267
WordSimilarity-353-REL 0.108 0.1877 0.1397 0.1275 0.109 0.1046 0.1016
MTurk-287 0.2088 0.3073 0.3144 0.3171 0.31 0.3115 0.3042
MTurk-771 0.275 0.3649 0.3848 0.4007 0.4199 0.4193 0.4153
MEN-3000 0.4394 0.5206 0.5297 0.5331 0.5415 0.54 0.5405
SimLex-999 0.2271 0.3127 0.3367 0.3596 0.3795 0.3789 0.376
SimLex-666-Nouns 0.2753 0.3586 0.3974 0.4273 0.4682 0.4773 0.4774
SimLex-222-Verbs 0.2004 0.2103 0.1731 0.1747 0.1406 0.107 0.0898
SimLex-111-Adjectives 0.0217 0.2095 0.27 0.3403 0.3492 0.3687 0.3721
YP-130 0.0801 0.0996 0.0989 0.0951 0.1208 0.1308 0.1325
VERB-143 -0.0075 0.0324 -0.0227 -0.0755 -0.0503 -0.0417 -0.0323
SimVerb-3500 0.0603 0.0967 0.1066 0.1085 0.1046 0.0995 0.094
RW 0.0819 0.238 0.251 0.2849 0.2785 0.2809 0.2854

Table 31: Performance of Avg(w1, w2) on predicting word similarity. (Section 2.3.1)

Dataset No Images
Top-2 Top-5 Top-10 Top-25 Top-50 Top-75 Top-100

RG-65 0.4691 0.4892 0.5575 0.5647 0.5785 0.5901 0.55
MC-30 0.332 0.4564 0.4829 0.4818 0.4535 0.442 0.373
WordSimilarity-353-ALL 0.2886 0.3462 0.316 0.2859 0.3006 0.2984 0.2807
WordSimilarity-353-SIM 0.3721 0.4216 0.4121 0.4036 0.4146 0.4187 0.395
WordSimilarity-353-REL 0.1629 0.2256 0.1883 0.1413 0.1741 0.1537 0.132
MTurk-287 0.3237 0.3266 0.3308 0.3618 0.377 0.3883 0.3754
MTurk-771 0.3167 0.3607 0.401 0.4231 0.4466 0.4467 0.4401
MEN-3000 0.5173 0.5352 0.551 0.5754 0.5928 0.5974 0.6032
SimLex-999 0.2666 0.2959 0.3231 0.3342 0.3566 0.3527 0.3464
SimLex-666-Nouns 0.3186 0.3537 0.3873 0.4041 0.4457 0.4474 0.4417
SimLex-222-Verbs 0.212 0.1786 0.1586 0.1427 0.1084 0.0953 0.0887
SimLex-111-Adjectives 0.0731 0.1862 0.2292 0.2549 0.249 0.2603 0.2434
YP-130 0.1022 0.1245 0.1069 0.0918 0.1534 0.1475 0.1782
VERB-143 -0.0677 -0.0041 -0.0101 -0.0607 -0.0771 -0.0322 -0.0039
SimVerb-3500 0.0859 0.0936 0.108 0.1086 0.1056 0.0991 0.0958
RW 0.1772 0.2108 0.2116 0.2558 0.2414 0.2295 0.2267

Table 32: Performance of AvgMax on predicting word similarity. (Section 2.3.2)

Dataset No Images
Top-2 Top-5 Top-10 Top-25 Top-50 Top-75 Top-100

RG-65 0.4496 0.4521 0.4646 0.4724 0.5005 0.5255 0.534
MC-30 0.3145 0.3966 0.3607 0.3574 0.3765 0.401 0.4093
WordSimilarity-353-ALL 0.2913 0.3255 0.3022 0.2926 0.2931 0.3023 0.2964

90



WordSimilarity-353-SIM 0.3818 0.4127 0.4109 0.4081 0.4158 0.4241 0.42
WordSimilarity-353-REL 0.1645 0.2097 0.1707 0.163 0.1632 0.1695 0.1621
MTurk-287 0.3233 0.3366 0.3387 0.3704 0.3891 0.3973 0.3897
MTurk-771 0.3382 0.3615 0.393 0.4088 0.4264 0.4248 0.4215
MEN-3000 0.5292 0.5468 0.5625 0.5833 0.6006 0.6065 0.6094
SimLex-999 0.2548 0.2603 0.2667 0.2726 0.2875 0.2838 0.2797
SimLex-666-Nouns 0.3089 0.322 0.3314 0.3347 0.361 0.3667 0.3641
SimLex-222-Verbs 0.2094 0.1854 0.134 0.141 0.1222 0.0765 0.0519
SimLex-111-Adjectives 0.0278 0.0693 0.1186 0.1404 0.1496 0.1282 0.1391
YP-130 0.0962 0.0962 0.0881 0.1008 0.1501 0.1664 0.1917
VERB-143 -0.0545 -0.0138 -0.0445 -0.0911 -0.0914 -0.0762 -0.0698
SimVerb-3500 0.0725 0.0726 0.0759 0.0781 0.0718 0.0655 0.0628
RW 0.1566 0.1835 0.1832 0.1953 0.1904 0.1836 0.1815

Table 33: Performance of AvgAvg on predicting word similarity. (Section 2.3.3)

Dataset No Images
First 100 First 200 First 300 First 1000 First 2000 All 4096 points

RG-65 0.6877 0.6713 0.6415 0.644 0.6439 0.6422
MC-30 0.6727 0.7008 0.6158 0.6055 0.6026 0.5978
WordSimilarity-353-ALL 0.2782 0.2654 0.2652 0.2541 0.2422 0.2366
WordSimilarity-353-SIM 0.3405 0.3495 0.3459 0.3382 0.3264 0.3267
WordSimilarity-353-REL 0.1611 0.1358 0.1334 0.1227 0.1114 0.1016
MTurk-287 0.2842 0.287 0.3107 0.3055 0.3056 0.3042
MTurk-771 0.4168 0.4176 0.4133 0.4153 0.4152 0.4153
MEN-3000 0.4928 0.5123 0.5216 0.5345 0.5355 0.5405
SimLex-999 0.3583 0.3688 0.3718 0.3787 0.3766 0.376
SimLex-666-Nouns 0.4696 0.4767 0.4711 0.4807 0.4803 0.4774
SimLex-222-Verbs 0.0206 0.0558 0.0787 0.0867 0.0901 0.0898
SimLex-111-Adjectives 0.3342 0.3304 0.3465 0.3663 0.3688 0.3721
YP-130 0.1072 0.1145 0.1207 0.1327 0.1304 0.1325
VERB-143 0.0142 0.0142 0.0183 -0.0276 -0.0335 -0.0323
SimVerb-3500 0.0903 0.092 0.0921 0.0926 0.0934 0.094
RW 0.2714 0.2875 0.2901 0.2869 0.2841 0.2854

Table 34: Performance of Avg(w1, w2) For Top-100 images varying the number of dimen-
sions

Dataset
PCA to 100

averaged
PCA to 300

averaged
Word2Vec +

First 300

Word2Vec +
PCA to 300

averaged

RG-65 0.5447 0.5476 0.6422 0.5847
MC-30 0.4818 0.4869 0.6222 0.535
WordSimilarity-353-ALL 0.3936 0.3959 0.2702 0.1539
WordSimilarity-353-SIM 0.5106 0.5155 0.3529 0.2098
WordSimilarity-353-REL 0.2622 0.2605 0.1367 0.0404
MTurk-287 0.469 0.4748 0.3181 0.2173
MTurk-771 0.4649 0.4686 0.4184 0.3154
MEN-3000 0.6087 0.6089 0.5262 0.2339
SimLex-999 0.2892 0.2952 0.3756 0.3392
SimLex-666-Nouns 0.3806 0.3878 0.4731 0.3825
SimLex-222-Verbs 0.0757 0.0772 0.0848 0.2495
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SimLex-111-Adjectives 0.2867 0.2914 0.3531 0.5341
YP-130 0.2065 0.2092 0.126 0.1969
VERB-143 0.0382 0.0324 0.0225 0.1277
SimVerb-3500 0.1221 0.1229 0.0964 0.1801
RW 0.2763 0.279 0.296 0.3792

Table 35: Performance of additional models on predicting word similarity
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