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ABSTRACT

FINE-GRAINED AND COARSE-GRAINED CAUSAL REASONING IN

PROCEDURAL TEXTS

Hainiu Xu

Christopher Callison-Burch

The ability to make causal inferences is inherent to humans and substantial to our intelli-

gence and civilization. Yet, such a crucial capability is lacking even in the state-of-the-art

Large Language Models (LLMs). To pave the pathway toward Artificial General Intelli-

gence, granting machines a similar capability of conducting causal inferences is an indis-

pensable building block. Causalities come in different granularity. At a coarse-grained level,

causal relations exist between events. At a fine-grained level, causal relations exist between

events and participating entities. From an event-centric perspective, an intelligent agent

shall be able to infer the causal effects that one event could bring to related entities as

well as other events. For instance, the event of heating up a pan will cause the attribute,

temperature, of the participating entity, pan, to rise. Being able to comprehend the causal

effect of events at both a coarse-grained and fine-grained level will bring significant ben-

efits to downstream tasks such as commonsense reasoning, multi-hop question answering,

planning, and so on. My thesis research focused on constructing benchmarks and building

learning systems that can (1) discern entity state changes by inferring their causal relation-

ship with events; (2) estimate the likelihood of an event happening by deducing its causal

relation with context entities; (3) mitigate reporting bias in languages by leveraging external

modalities such as vision (video) to provide extra information on participating entities; and

(4) constructing dynamic causal diagrams based on fine-grained entity state information in

procedural texts.
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CHAPTER 1 : Introduction

1.1. Historical Background

Statistical Learning and Machine Learning have achieved great success in the last decade

in light of Artificial Neural Networks and Deep Learning. The increasingly large models

are adept at exploiting the associative information between features and labels. Indeed,

using associative information alone is sufficient for achieving a good performance on a wide

range of tasks. For instance, in sentiment analysis, where a machine identifies the mood of

a writer through a piece of text, exploiting the associative relationship at a semantic- or

even syntactic-level oftentimes lead to promising results.

The exploitation of associative information dates back to the early age of statistics. In

the late 19th century, Fracis Galton and Karl Pearson, attempted to tackle heredity from

a causal perspective. They later concluded that causality is unsolvable at the time and

decoupled associativity from causality. This causal-free, associative-based ideology greatly

impacted the development of modern statistics and its effects extend all the way to deep

learning.

Originally built based on the Perceptron, deep neural networks inherent spirits from regres-

sion models, which dedicate to capturing only the associative relationship amongst features.

Leveraging associative information alone, deep learning models achieved superhuman per-

formance on a variety of tasks. Yet, ignoring causality comes with a price. As deep learning

models become more integrated with our daily life, the issue of associativity-oriented learn-

ing magnifies. For instance, people start to notice that deep learning models contain societal,

gender, and racial biases. While some blame the training data, it is associativity-oriented

learning that captured such inappropriate associations. Further, the lack of causal reasoning

capabilities hinders the interpretability and faithfulness of deep learning models, severely

limiting their application in domains like medical and pharmaceutical research. Therefore,

can we integrate existing capable deep learning models with causal reasoning frameworks

1



to improve their reliability and intelligence?

1.2. Commonsense Causal Reasoning

The ability to make causal inferences is inherent to humans and substantial to our in-

telligence and civilization. As shown in Figure 1, our ability of making causal inference

is reflected by the unique capability of reasoning about intervention and counterfactuals.

Intervention allows humans to discern causal relationships by observing the difference in

the outcomes of alternative actions. Based the rudimentary causal information obtained

from intervention, counterfactuals helps humans to concretely conduct causal inference by

reasoning about the imaginary events.

Historically, causal inference is done using controlled experiments such as Randomized Con-

trolled Trials (RCTs) [23]. The major obstacle of conducting controlled trials is that they

are extremely expensive to collect large amount of data. This is especially troublesome for

deep learning as large models demand large amount of data to train. Advancements in Large

Language Models (LLMs) introduced a new deep learning paradigm– In-Context Learning

(ICL) [14]. In ICL, the model performs few-shot learning by looking over several in-context

examples and learning the syntactic structure and semantic association. This learning

approach alleviates the burden of data curation and avoids the risk of learning spurious

correlations during finetuning. Furthermore, benefitting from training with a tremendous

amount of data, LLMs encapsulate a vast amount of high-level knowledge. Therefore, RCT

can be conveniently applied to conduct causal inference in NLP where LLMs are used to

simulate RCT experiments. An example is the ROCK framework [138] for causal inference

about events in which the intervention events are generated using the GPT-J model [113]

(see Figure 3 for a demonstration of the ROCK framework and see Section 2.4 for details).

To pave the pathway toward Artificial General Intelligence, granting machines a similar

capability of conducting causal inferences is an indispensable building block. Causalities

come in different granularity. At a coarse-grained level, causal relations exist between

2



Figure 1: An illustration of the ladder of causation. Figure adapted from pearl2018book.
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Figure 2: An illustration of the process of Randomized Controlled Trials. Figure adopted
from RCT. To adept the RCT framework to NLP with language models, the “New treat-
ment” and “Control treatment” group of texts can be autoregressively generated by language
models.

events. At a fine-grained level, causal relations exist between events and participating

entities. From an event-centric perspective, an intelligent agent shall be able to infer the

causal effects that one event could bring to both the related entities and to other events

[12]. For instance, the event of heating up a pan will cause the attribute, temperature, of

the participating entity, pan, to rise. Being able to comprehend the causal effect of events

at both a coarse-grained and fine-grained level will bring significant benefits to downstream

tasks such as commonsense reasoning, multi-hop question answering, planning, and so on.

Figure 3: A demonstration of the ROCK framework adopted from the original paper [138].
E1 is the potential cause and E2 is the observed effect. The event X1 is some event happened
before E1, which is used to regular the temporal relation between the intervention events
and E1. The event A1 is an example of model-generated intervention event.

4
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1.3. Procedural Texts

Instructions are educational texts composed by domain experts to help amateurs achieve

a certain goal. Depending on the nature of the task, an instruction can be temporally

ordered or not. For instance, “operating a surgery” needs to be done in a certain order

while “making a friend” does not. The group of instructions that follow a strict temporal

order is often referred to as procedures.

A procedure typically consists a goal and a series of steps. The temporality of procedures is

manifested through its steps in that the successful execution of each step depends on that

of the previous step. For instance, in a procedure of “making a cup of tea”, the step “pour

hot water onto the tea bag” depends on the execution of the previous step, “pick a flavor

and place the tea bag in the cup”.

As opposed to user manuals or text books, whose purpose is to give an all-around instruction,

procedural texts aim at providing concise and accessible instruction. Therefore, procedures

are extremely goal-oriented and the steps oftentimes only contain the most salient objects

and high-level events. This conciseness brings two challenges– reporting bias and entity

state tracking.

1.4. Commonsense and Reporting Bias

Reporting bias refers to the discrepancy between reality and its decription in text [41]. In

the context of procedural texts, reporting bias mainly manifest through the circumstances

where curtain information regarding either the entity or the events is ignored in a step.

For example, in a procedure of “doing laundry”, a step “take out the washed clothes and

put them into the drier” ignore numerous entities and events such as “laundry machine

door (entity)”, “drier door (entity)”, “open the laundry machine door (event)”, and “open

the drier door (event)”. Humans are capable of inferring these information from the high-

level text description, which makes explicitly mentioning of such fine-grained information

redundant. People usually refer to this family of knowledge that humans understand without

5



explicit description as commonsense knowledge.

Commonsense is the capability of perceiving, understanding, and judging things that is

shared by all people [42]. Therefore, to make communication concise and efficient, com-

monsense knowledge are oftentimes made implicit in both spoken and written language as

it is reasonable to assume that all humans can fill in the missing information with their

commonsense. This seemingly trivial and redundant task for humans turn out to be chal-

lenging and necessary for machines. The absence of commonsense knowledge in language

(training data) hinders deep learning models’ capability of conduct commonsense reasoning

tasks [103].

1.5. Entity State Tracking

Entity State Tracking is a commonsense reasoning task targeting the issue of reporting bias.

Entity refers to the participating objects in an event and state refers to the physical and

psychological property of an entity. For example, the event “put coffee beans in a grinding

machine” involves entities such as “coffee beans”, “grinding machine”, “coffee bean bags”,

and “machine lid”. Some of their states are “coffee beans are in bags before (pre-condition)

and in grinding machine afterwards (post-condition)”, “coffee bean bags are full before (pre-

condition) and emptier afterwards (post-condition)”. Through the course of a procedure,

entity states are constantly affected by events at each step. The association between step and

entity state changes are commonsense and usually made implicit in procedures. Therefore,

improving machine’s capability of deducing the pre- and post-condition of entity states in

each step of the procedure is crucial for commonsense reasoning with machines.

Entity state tracking has been a trendy research topic in multiple disciplines of AI. In CV

and robotics, studies focus on reason about the existence and location of entities. Hence,

such works are grouped under the term object detection or object tracking [142, 114]. In NLP,

early efforts focus on tracking entity states in synthetic texts [122, 70]. Recent studies shifted

attention to entity state tracking in human-written passages including recipes [59, 11],

6



scientific process [25, 83], short stories [98], and articles from online how-to websites such as

WikiHow1 and Instructables.com2 [108, 125]. Due to the sequential nature of entity state

changes, previous modeling attempts have mainly focused on building rule-based systems

[22] or using RNN-based architectures [104, 11, 106, 46, 43]. Recent works opt for in-context

learning models such as the GPT family [108, 140, 96, 14].

1.6. Thesis Statement

In this thesis, I argue that solely focusing on causal reasoning about high-level events are

not sufficient for machines to learn causality. With the same arguments about reporting

bias made above, fine-grained causal relationships between entities states are the key to

granting machines a real sense of causality. My research aims to build learning systems

that can (1) discern entity state changes by inferring their causal relationship with events

(Chapter 3); (2) estimate the likelihood of an event happening by deducing its causal relation

with context entities (Chapter 3); and (3) mitigate reporting bias in languages by leveraging

external modalities such as vision (video) to provide information on participating entities

(Chapter 4).

1wikihow.com
2instructables.com
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CHAPTER 2 : Literature Review

2.1. Reasoning About Procedures in NLP

Extracting entities and attributes from unstructured texts and documenting their relations

as structured or latent representations is at the core of procedural reasoning. The evolution

of methods for representing entity-attribute relations has largely relied on the proposi-

tion of new tasks and datasets. Hence, after a brief review of the non-neural methods,

works involving neural systems will be presented according to the specific task and dataset

that they focused on. Despite the recent spike of research on neural networks, numerous

studies proposed methods using rule-based or statistical learning models to represent entity-

attribute relations as directed graphs [38, 141, 88, 7, 76, 58] or structured logical expressions

[71, 17, 22]. Yet, due to the limited expressivity of the non-neural models, these works are

domain-specific, demand laborious engineering effort, and assume a set of predetermined

logical relations. Further, issues like entity co-reference, which is prevalent in natural lan-

guage, will also hinder the accuracy of these representations. For instance, in a procedure

describing the metabolism of the sunflowers, the entity, ”sunflowers” can be also referred

to as ”the plant”, ”flower”, or even its pronoun, ”it”. Therefore, using statistical learning

method overlooked the flexibility that entity state tracking demands and have led to great

loss in information during learning.

Neural networks alleviated these concerns by introducing versatile word embeddings [79, 91].

One pioneering works of using neural models for entity state tracking is [123], who proposed

a LSTM-based Memory Neural Network model (MemNN) for simple question-answering

(QA) tasks [50]. Originally designed to answer multihop questions, MemNN is later applied

to a set of synthesized QA tasks (bAbI tasks1) that require more in-depth reasonings [122].

The bAbI tasks such as Time Reasoning, Basic Deduction and Induction, and Positional

and Size Reasoning are the first set of tasks that are closely related to procedural reasoning.

Inspired by MemNN and the bAbI tasks, [45] proposed Recurrent Entity Network (Ent-

1https://github.com/facebook/bAbI-tasks
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Net), which uses the control-gates mechanism introduced by [50] to dynamically document

implicit entity-related information via embeddings in a fixed number of memory cells. Sim-

ilarly, Query-Reduction Networks (QRN) [104] implicitly document answer-related entity

attributes using modified vanilla-RNN. QRN avoids the gradient-vanishing issue of vanilla

RNN by conducting implicit answer-related entity attribute updates for every input sen-

tence. This line of work based on the bAbI tasks showcased the neural network’s capability

of performing entity-attribute tracking. The bAbI dataset, however, has its limitation–

texts in bAbI are machine-generated. Such synthesized texts, although easy to collect, will

potentially cause poor generalization to real-world data.

To address this issue, ProPara dataset [24] uses human-written texts on simple scientific

procedures. The label of the procedures describes two attributes of an entity, namely

its existence and location. The ProPara dataset excels comparing to previous entity state

tracking datasets in that it is the first entity state tracking dataset that is completely human-

annotated. Further, ProPara narrows the state of entity to the existence and location.

Although such a reduction might seem undesirable nowadays, it makes the entity state

tracking task more well-defined and allows researchers to draw connections with object

tracking task in computer vision. Base on the ProPara dataset, a large group of works focus

on entity state tracking, the most prominent of which include ProLocal and ProGlobal [24],

which adopts a biLSTM with Attention approach, the KG-MRC model [27], which is the

first graph neural network model tailored to entity-attribute tracking, the ProGraph model

[143], which builds on the idea of KG-MRC by including more knowledge in the graph,

the NCET model [43], which treats ProPara as a tagging problem and adepted the Neural

Conditional Random Field (CRF) model from Named Entity Recognition, the REAL model

[52], which combines the NCET framework with graph neural networks by constructing

a graph representation of the relationships between entities, actions, and locations, and

embeds the corresponding node with a Graph Attention Network [112].

ProPara challenges models to reason about an entity’s two attributes: existence and loca-
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tion. Procedural reasoning, however, demands a much more in-depth understanding and

reasoning about entity attributes. To build a neural system that can conduct more com-

plicated reasoning about procedural events, [11] annotated cooking procedures from Now

You’re Cooking! recipe library through crowd-sourcing and trained the Neural Process Net-

work based on the resulting RECIEPS dataset. Neural Process Network tracks entity states

by simulating the causal effects of actions applied to entities. Hence, the resulting entity

attributes are much more versatile and informative than existence and location alone.

To further facilitate the model’s capability of conducting complicated entity-attribute track-

ing and understanding causal relations between entity and actions, more recent works have

shifted their source of data to large-scale how-to websites such as WikiHow2 and Instructa-

bles 3 where diversified real-world procedural instructions are easily accessible. OPENPI [108]

utilizes rich how-to guides from WikiHow and annotated entities’ states change through

crowd-sourcing. To model entity state dynamics, [108] follows the trend of pretraining-

finetuning pipeline in NLP and proposed to fine-tune GPT-2 on the OPENPI dataset [96].

This work demonstrated the capability of foundation models on making complicated infer-

ences and opened a new route toward conducting procedural reasoning. Also using the power

of foundation models, [105] proposed to tackle procedural reasoning by injecting knowledge

of the environment during pretraining. By sampling entity-action pairs from the SCoNE,

RECIPES, and ProPara dataset, a BART model is pretrained with an auxiliary task of

predicting the resulting entity state given an action [71, 11, 25, 61]. [125] crawled data from

both WikiHow and Instructables and proposed an action conditions learning task where,

given an action in the procedure, the model needs to infer the action’s precondition as well

as the resulting postcondition of the entities. [125] finetuned pretrained RoBERTa-LARGE

model on labeled action pairs and again showcased that the modern pretrain-and-finetune

strategy of foundation models can reliably learn the complicated entity dynamics in proce-

dural texts.

2https://www.wikihow.com/Main-Page
3https://www.instructables.com/
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In this thesis, we focus on application of entity state tracking models. Specifically, we look

into how entity state information can be leveraged to conduct causal inference between

events in procedures (Chapter 3). We utilized the OpenPI dataset to conduct experiment

on how entity state produced by the OpenPI-finetuned model can help with elicit the

causal relationship between events by completing a causal chain with the entity states (see

the bottleneck model in Figure 4).

2.2. Reasoning About Procedures with External Modality

Similar to procedural reasoning with NLP, most multimodal procedural reasoning tasks are

formulated as QA problems, the precursor to multimodal procedural reasoning in CV is the

Visual Question Answering (VQA) task [5]. In the VQA task, the model is given an image

and is required to answer a question regarding the image content. A significant work based

on VQA is the Neural Module Networks (NMN) [4]. NMN is composed of several jointly

trained neural network modules tailored for specific types of questions. During inference

time, the intention of the question is determined by semantic parsing, and the specific task is

passed to the designated neural network module. NMN inspired as a line of work [51, 55, 92]

targeting visual reasoning tasks based on the CLEVR dataset [54].

VQA using a single static image imposes severe limitations on models’ capability of inferring

temporal information, which is indispensable to procedural reasoning. To address such an

issue, [109] extended visual reasoning using images to multimodal reasoning by introducing

the MovieQA task and dataset, which consists of both natural language (plot synopses, sub-

titles, movie scripts) and video clips. MovieQA is formulated as a multiple-choice reasoning

task where, given a source of information (text or image) and 5 candidate answers, the model

needs to pick the correct answer. For questions that involve multimodality, visual-semantic

embeddings [145] are used to fuse independently-learned representations. The answer is

then predicted by passing the aligned multimodal representation to the MemNN model

[123]. Such an approach of independently learning the representation of different modalities

and later aligning them with a fusion model is widely used in later research works with
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different choices of text/image encoders and fusion methods [53, 56, 3, 132, 36, 135].

Concurrent with MovieQA are several other multimodal reasoning tasks that involve reason

about simple scientific concepts [56], temporal information from comic panels [53], and

cooking recipes [127]. These proposed tasks contain multiple-choice questions about visual

cloze, visual coherence, visual ordering, multimodal textbook exercises as well as fill-in-the-

blank questions formulated as textual cloze problems.

Another significant work in multimodal procedural reasoning is the Visual Commonsense

Reasoning (VCR) task [132]. The VCR task is formulated as another multiple-choice prob-

lem consisting of an image with marked Regions of Interest (RoI), a textual question, and a

set of answers that contain special tokens referring to the RoIs. Besides choosing the correct

answer, VCR takes one step further by requiring the model to do another multiple-choice

problem of choosing the correct justification for its previous choice. This extra multiple-

choice problem makes this task significantly harder than the previous tasks as the model

not only need to reason about the original procedural instructions but also to comprehend

given explanations and determine their relevance to the original question.

To tackle the complicated multihop reasoning task, [132] proposed the Recognition to Cog-

nition (R2C) Networks. Given an image, a question prompt, and a set of candidate answers,

R2C first obtains independent representations of natural language and image through pre-

trained foundation models (BERT, ResNet-50) [28, 44]. These modality-specific represen-

tations are fused with a biLSTM network. Further, two separate attention mechanisms are

applied between (1) pairwise fused question prompt representation and fused answer repre-

sentation as well as (2) fused answer representation and raw visual representation of RoIs

for further fusion. The resulting two representations are concatenated and passed through

another biLSTM network to produce the final rationale. A similar modeling approach is

taken by the Procedural Reasoning Networks [3] to tackle the RecipeQA tasks. RecipeQA

consists of data crawled from the cooking section of Instructables and proposes reason-

ing tasks including visual cloze, visual coherence, visual ordering, and textual cloze[127].
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Also based on the visual tasks of the RecipeQA dataset (excluding the textual cloze task),

MLMM-Trans model [68] adopts the original Transformer architecture [111] to tackle mul-

timodal tasks. The original encoder is used to encode instructions from each step. The

image representations are input to the decoder. Instead of the original masked multi-head

attention module, the decoder block in MLMM-Trans consists an identical multi-head at-

tention module as the encoder to conduct modality fusion. The fused representation is

then concatenated with original image embeddings and passed to the uni-directional LSTM

network to conduct another sequence modeling. Since MLMM-Trans only solve the visual

multiple-choice tasks, the final representation is input to a feed-forward network to conduct

the final prediction.

[137] extended the RecipeQA dataset by adding crafting procedures also from Instructables.

Based on the extended dataset, [137] takes a multimodal graph neural network approach and

proposed TMEG. TMEG first constructs two homogeneous graphs of different modalities.

For language content, noun phrases, which are regarded as entities, are extracted via POS

tagging. The embedded entity nodes from the same instruction are connected to form a

homogeneous (text) graph. Similarly, RoIs of instruction images are extracted using Faster-

RCNN, and a homogeneous (image) graph is constructed per instruction [99]. Further,

a heterogeneous graph is built by adding temporal edges, which document the temporal

evolution of entities as well as modal edges, which indicate the interaction between the

two modalities. The node encoding different modalities is first projected to a common

embedding space via two MLPs and further fused with a modified VisualBERT framework

where information from temporal edges, as well as modal edges, are also injected into the

modal [64].

There is also a line of work utilizing the multimodal how-to instructions from WikiHow [130,

124, 128]. While the instructions from WikiHow are less noisy compared to Instructables,

the majority of images from WikiHow are human drawings of a particular style instead of

real-world scenes. Such a discrepancy, similar to the issue with using synthesized data, will
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cause generalization concerns.

A recent line of work shifted attention from discrete text-image instruction to continuous

instructional videos. [136] proposed the MERLOT model that follows the pretraining-

finetuning pipeline. MERLOT is pretrained via self-supervised learning tasks based on

video and automatic transcriptions curated from YouTube. Instead of using the represen-

tation of RoIs, MERLOT’s vision encoder produces grid-based feature representation based

on Vision Transformers [30] which is computationally more efficient than traditional object

recognition algorithms. The visual features and text embeddings from automatic tran-

scriptions are fused using a modified RoBERTa model [69]. The pretraining objectives of

MERLOT include (1) CLIP-style contrastive learning where the model aims at maximizing

the similarity between encoded video clips and the corresponding transcription embeddings.

(2) VisualBERT style Masked Language Modeling where the joint vision-language model

learns to reconstruct input text with 20% corrupted tokens. (3) Temporal reordering ob-

jective, which is akin to the Sentence Order Prediction but applied to a sequence of images.

The resulting MERLOT model showed promising performance both on video commonsense

reasoning tasks as well as VCR tasks with static images. MERLOT demonstrated the ne-

cessity of utilizing visual sources that contain rich temporal information. A follow-up work,

MERLOT Reserve [134] further included audio modality and improved model performance

by a small margin.

In this thesis, we follow the ideologies proposed by the previous studies and attempt to

incorporate external modalities to aid procedural reasoning. Specifically, we focus on us-

ing external modalities such as video and audio transcription to mitigate the reporting

bias procedural texts (Chapter 4). We leverage multiple multimodal approaches including

object detection, image captioning, and visual question answering to extract entities that

participated in the procedure what are unmentioned in the texts.
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2.3. In-Context Learning

The research of NLP with deep learning has gone through numerous stages, of which

the most impactful are the Pretrain-and-Finetune paradigm and the in-context learning

paradigm. The Pretrain-and-Finetune paradigm contains milestone works such as the

Transformer architecture, and its applications such as BERT, GPT-1, and GPT-2 [111,

28, 95, 96]. This line of work had profound impacts on numerous areas including NLP,

Computer Vision, Robotics, and Multi-modal learning [63, 30, 2, 94].

The In-Context Learning (ICL) paradigm is pioneered by Large Language Models (LLMs)

such as GPT-3, GPT-4, ChatGPT, Flan-T5, T0, LaMDA, and PaLM[14, 1, 21, 102, 110, 20].

Different from the Pretrain-and-Finetune paradigm, where the workflow involves finetuning

a pretrained model with training data, ICL is a few-shot learning approach and learns new

tasks solely based on understanding the syntactic and semantic information provided in

the few-shot demonstrations. While supervised finetuning risks the model from picking up

spurious correlations in the training dataset, ICL conveniently mitigates the issue as no

gradient is backpropagated– blocking one major source of spurious correlation.

Dataset Quantity (Tokens) Fraction in Training

Common Crawl 410 Billion 60%
WebText2 19 Billion 22%
Books1 12 Billion 8%
Books2 55 Billion 8%

Wikipedia 3 Billion 3%

Table 1: Training data used to pretrain GPT-3 (175B). These statistics are acquired from
the original GPT-3 paper [14]

ICL is only possible with LLMs as ICL relies heavily on the instruction following capability

of language models, which is one of the emergent abilities that are only present in mod-

els with more than 10 billion parameters [119]. Further, although ICL is a gradient-free

learning method, the capability of ICL models heavily depends on the pretraining data.

Traditionally, LLMs are pretrained with a massive amount of text data (see Table 1). Re-

cent studies unveiled the benefit of pretrain language models with a combination of code and
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text data [35]. The direct benefit of pretraining with code is the Chain-of-Thought (CoT)

reasoning capability [120]. CoT is a prompting strategy for tackling complex, multi-hop

reasoning tasks. Instead of showing LLMs in-context examples that directly solve complex

reasoning tasks, CoT provides a reasoning chain that decomposes a complex reasoning task

into a series of simpler components and combines them with logic. The CoT prompting

paradigm brought huge improvements in complex reasoning problems such as mathematical

reasoning, commonsense reasoning, multihop QA, planning, and logical reasoning [74].

Building on these ideas, we focus all our study on In-Context Learning to minimize the

potential impact that subjectivity in the data annotation could have on our study. We

conducted ICL with primarily OpenAI models such as GPT-3 and Codex as they are the

state-of-the-art LLMs available during the time of our study. Further, we also investigate

methods that utilize CoT prompting both as an Engligh prompt and as a Python code

prompt. These results will be presented in Chapter 3 and Chatper 5.

2.4. Commonsense Causal Reasoning

Causal reasoning has been studied extensively in statistical inference and statistical learning

[34, 89, 90]. In the early attempts of studying causality with machine learning, causal

reasoning is formulated as a binary semantic relation classification task, where a model

needs to classify whether there exists a cause-effect relationship between an entity pair given

the context[39]. Enlightened by the SemEval task, several subsequent studies dedicated to

curating datasets for semantic causal reasoning from online articles such as CNN news and

Wikipedia45[8, 29, 18, 48]. Further, these pioneering works on learning causal relationships

draw the connection between causal and temporal relationships. In fact, numerous works

have argued the relationship between temporal reasoning and causality can be leveraged for

causal inference [101, 49, 15]. This relationship between causal and temporal relationship

greatly affected the causal framework of later works.

4https://www.cnn.com/
5https://www.wikipedia.org/
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In the era of deep learning, causal reasoning tasks are mostly formulated as classification

problems with a fixed label space typically consisting of labels such as causal, non-causal,

and difference degrees/types of causal relationship. A line of work focuses on the breadth of

causal information and opts for the automatic curation of causal reasoning datasets such as

the CausalNet dataset [73] and the CausalBank [66] dataset. There have also been efforts

to construct high-quality, human-annotated datasets such as the SemEval 2007 dataset [39],

the COPA dataset[40], and the e-CARE dataset [32]. Further, works on causal inference

tackle causal reasoning with different syntactic granularity with works focusing on word-

level granularity[39, 47, 29, 73, 84, 82, 86, 118], phrase-level causality [9, 81, 33, 18, 66], and

sentence-level causality [100, 86, 32].

In NLP and CV, Commonsense reasoning is often used as an umbrella term for causal rea-

soning. Elements of causal inference are present in multiple commonsense reasoning works

such as inductive reasoning [133], abductive reasoning [10], goal-step inference [139], entity

state tracking [108], and choosing alternatives of events [100]. Recent works in causal NLP

shifted attention to utilizing the notion of causality in model distillation [126] as well as

probing the causal knowledge of pre-trained language models [65]. In the intersection of

CV and NLP, works incorporate causal reasoning in the form of Visual Question Answer-

ing, Visual Commonsense Reasoning, Visual Abductive Reasoning, and Visual Goal-Step

Inference [6, 132, 67, 130].

As most causal reasoning tasks are formulated as either a classification task or a Multi-

Choice Reading Comprehension task, models used for causal reasoning are mostly autoen-

coding language models such as BERT, RoBERTa, ALBERT, and XLNet [57, 69, 60, 131].

Entering the era of LLMs, there are also attempts to use autoregressive or encoder-decoder

models such as BART, GPT-2, and GPT-3 to conduct causal inference [62, 96, 14]. Since

the prevalence of In-Context Learning (ICL), many works attempt to improve the inter-

pretability and faithfulness of LLMs by including explanations for causal relation as a part

of the dataset [129, 32]. Further, there are also primitive studies that propose LLM-based
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causal reasoning frameworks such as the ROCK framework[138]. In the ROCK framework,

the authors leveraged the close relation between temporal relation and causal relation and

used the strength of temporality as a surrogate for measuring causality. The authors of the

ROCK framework used the concept of Average Treatment Effect (ATE), which is widely

used in the study of causality. The ATE is often used with invertention studies. In the

ROCK framework, the interventions are generated by GPT-J [113] and the strength of tem-

poral relationships are computed using the label probability given by a RoBERTa model

finetuned for temporal prediction. The causal relationship is then determined by computing

the propensity score, which is the difference in the strength of the temporal relationship

between the effect following the treatment versus that of following the interventions.
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CHAPTER 3 : Causal Reasoning about Entities and Events

3.1. Motivation

Event-centric natural language processing has been studied extensively from various aspects

[19]. Among these studies, there are works that involve elements of causal reasoning such

as event-wise causal reasoning [133, 107, 31, 125, 10], which dedicates to reason about the

temporal and causal relation between high-level events, and event-entity causal reasoning

[13, 26, 85, 108], which reasons about the cause and effect of high-level events on low-level

entity states. Many of the previous studies choose procedural texts as the media because

of their richness in events and dynamically changing entity states (Chapter 1.3).

The majority of previous works solely focus on causal reasoning between either two events

or an event and an entity state– very few explored the possibility of using low-level entity

state information as a bottleneck to aid the reasoning between high-level events (Figure 4).

For instance, in a procedure of “making coffee”, the event “coffee can be made by pouring

hot water onto the coffee beans” is entailed by the entity state “coffee beans are ground”.

This bottleneck model of event-centric causal reasoning ties the aforementioned two tasks,

namely event-and-event and event-and-entity causal reasoning.

As shown in Figure 4, we wish to first deduce some salient entity state change by conducting

event-and-entity causal reasoning. In the language of probability, this bottleneck model is

providing a prominent prior to our causal reasoning process (e.g. converting the problem

of P(event1 → event2) to P(event1 → event2 | salient-entity-state)). Ideally, the deduced

entity state shall serve as a necessary component of the causal chain. For instance, it

is difficult to deduce the causal relationship between “pour coffee bean into the grinding

machine” and “coffee can be made by pouring hot water onto the coffee beans” due to

missing information about the state of the coffee beans. Therefore, we wish to inject the

knowledge that “coffee beans are ground” and form a causal chain as shown in Figure 4.

With the deduced low-level entity state information, we then conduct another round of
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entity-and-event causal reasoning by deducing the causal relationship between the entity

state and the targeting event. We wish to demonstrate that, although implicit to humans,

understanding the state of entities that are of mutual interest for both events is key to

causal reasoning.

Figure 4: An illustration of the event-centric causal reasoning pipeline where the entity
state coffee beans are ground serves as a bottleneck. Texts in the blue box are steps of the
procedure. The red box shows an entity state. The yellow box shows the entity state status
at each step of the procedure. In this example, the entity state has a causal relationship
with the second step. This is reflected by the status of the entity state shift from False to
True. The green box shows an imaginary event of which we wish to deduce the change in
the likelihood of happening.

This idea is in line with the Chain-of-Though prompting paradigm where one elicits a multi-

hop reasoning task by decomposing it into a chain of single-hop reasoning problems [121].

In our case, we break a multi-hop causal reasoning chain that involves both coarse-grained

inter-event causal reasoning and fine-grained event-entity causal reasoning into two single-

hop causal reasoning problems– one for event-and-entity causal reasoning and another for

entity-and-event causal reasoning.

To demonstrate the effectiveness of the multi-hop bottleneck model of causal reasoning,

we propose the task of Causal Reasoning of Entities and Events in Procedural Texts

(CREPE) with a demonstration in Figure 5. Given a procedure consisting of a goal (“stir fry

vegetables”) and a series of steps (“rinse vegetables” ...), a model is to predict the likelihood

of some unobserved events (“there is a sizzling sound”) after the execution of each step. To
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benchmark the helpfulness of entity state information in event-wise causal reasoning, we

proposed two causal reasoning tasks: a traditional event-wise causal reasoning task (how do

events in a step alter the likelihood of another event) and a bottleneck reasoning task (how

do events in a step alter the state of some entity, which entails a change in the likelihood

of another event).

Figure 5: Demonstration of the CREPE task. Given a goal and a series of steps (texts in
the yellow box), a Large Language Model (blue box) is asked to predict the change in the
likelihood of some unobserved events (black box titled “Event Likelihood”). We compared
the approaches of (1) direct reason between events (bottom left of the pipeline) and (2)
reason with entity state information (entity state information is shown in the gray box at
the bottom right of the figure).

3.2. Dataset

Aiming for In-Context Learning, the CREPE dataset is constructed with an emphasis on the

quality, objectivity, and diversity of contents and annotations. To ensure quality, all data

are curated and annotated by students at the University of Pennsylvania via an extra credit

assignment. To reduce subjectivity and increase topic diversity, the annotated dataset is

inspected and modified by two other students to remove annotations that are subjective
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(1) Put pineapple on a baking tray
(2) Preheat the oven to 350 degrees F by rotating the oven dial to 350
(3) Open the baking oven’s door
(4) Put the baking tray into the baking oven
(5) Close the baking oven’s door
(6) When finished, open the baking oven’s door
(7) Take out the baking tray and move the baked pineapple to a plate
(8) (Optional) Close the door of the baking oven

Figure 6: A more detailed instruction for step 3 of the procedure in Figure 7.

and of similar topics.

Subjectivity is a major concern in the annotation as people tend to have slightly different

living habits. For instance, consider the annotated procedure shown in Figure 7. The

imaginary event is “I can see the inside of the oven” and a likelihood change is annotated

to be “more likely” at step 3. First, the narrative of this procedure is concise to humans but

vague to machines. While we humans can easily follow step 3 by using our commonsense

knowledge, machines will struggle as “baking a pineapple” involves numerous un-mentioned

sub-steps shown in Figure 6. In the causal reasoning chain, the event “see the inside of the

oven” depends on the entity, “the oven’s door”, and its state, “open/close”. Therefore,

depending on one’s living habits, it is reasonable to assume the “oven door” to be either

“open” or “closed” after step 3 of the procedure. Hence, the annotation will vary between

annotators due to this subjectivity.

With a high standard for the diversity and quality of the procedure, the resulting CREPE

dataset contains 183 human-annotated, high-quality procedures that cover a wide range of

topics (refer to Table 2 for detailed statistics). Of the 183 procedures, we use 42 procedures

as a development set, based on which we construct prompt and conduct primitive stud-

ies. With the established pipeline, we then conduct testing runs based on the 141 testing

samples, which are strictly held out during development.
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Data Statistics

Dev Test Total

Num. procedures 42 141 183
Num. steps 295 924 1219
Num. event changes 144 180 324
Avg. step per procedure 7.0 6.6 6.7
Avg. token per step 6.8 6.8 6.8

Procedure Topics

Dev Test Total

Recipe 10 33 43
Household 12 40 52
Craft 4 17 21
Technology 5 19 24
Travel 4 4 8
Sports 2 13 15
Others 5 15 20

Table 2: Statistics of the CREPE dataset.

3.3. Baselines

We measured the performance of 2 simple baselines and 4 LLMs baselines on the CREPE

datasets. Since the CREPE task is a ternary classification problem, our simple baselines are

a chance baseline and a majority baseline. The chance baseline randomly assigns one of

the “more likely”, “less likely”, “equally likely” labels and the majority baseline assigns the

mode, which is “equally likely”, to all predictions.

For the LLMs baseline, we selected models from two mainstream In-Context Learning archi-

tectures, namely encoder-decoder language models and decoder-only language models (see

Figure 8). For the encoder-decoder model, we used the state-of-the-art at the time of this

study, which are T5 (3B) and T0 (11B) [97, 102]. T5-3B is a prompt-based model with 3

billion parameters. Different from decoder-only models, the context of T5 is encoded using

the Transformer encoder, which introduces bi-directionality, and the decoder is the stan-

dard Transformer decoder. T0-11B is a larger version of T5 with 11 billion parameters and

it is finetuned on a large set of NLP tasks with natural language prompts. For decoder-only

models, we used the GPT-3 family. For the general-purpose language model, we tested the

following GPT-3 checkpoints: text-curie-001, text-davinci-002, text-davinci-003,
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Goal: Bake a Pineapple
Steps:
1. Preheat oven to 350 degrees F (175 degrees C). Grease a 9x9 inch baking dish.

2. In a mixing bowl, mix together the pineapple, sugar, cornstarch, water,
eggs, and vanilla. Pour the mixture into the prepared baking dish. Dot the
mixture with butter and sprinkle with cinnamon.

3. Bake in a preheated 350 degrees F (175 degrees C) oven for 1 hour.

Event: I can see the inside of the oven

Annotation:
1. Unlikely 2. Unlikely 3. Likely

Figure 7: An example procedure annotated with an imaginary event and the corresponding
likelihood of the event happening at each step.

and ChatGPT1 Except for text-curie-002 that has 13 billion parameters, all other check-

points are GPT-3 model with 175 billion parameters. In addition, we also tested Codex,

which is a code language model obtained by finetuning GPT-3 with code. The Codex

checkpoint we used is code-davinci-002, which has 175 billion parameters and it is the

InstructGPT model finetuned with codes scraped from GitHub [35].

Naive Large Language Models Human
Cha. Maj. T5 T0 GPT3C GPT3C+S GPT3D2 GPT3D3 ChatGPT Codex

(ours)
Params - - 3B 11B 13B 13B 175B 175B 175B 175B -

Dev .262 .297 .343 .336 .346 .341 .350 .424 .470 .585 .868
Test .251 .296 .343 .337 .356 .346 .533 .423 .462 .591 -

Table 3: Macro F1 of baseline models on the CREPE dataset. Human performance is not
benchmarked on the test set as we strictly hold out its labels during all experiments. GPT3C
represents the text-curie-001 model. GPT3D2 represents the text-davinci-002 model
with an abnormal performance on the test set that we have confirmed but regrettably cannot
explain. GPT3D3 represents the text-davinci-003 model. GPT3C+S represents the
GPT-3 curie model finetuned on StrategyQA. All of the above models work with textual
prompts. Codex represents the code-davinci-002 model and works with our proposed
code-like prompts.

As shown in Table 3, the CREPE dataset poses a challenge to all existing LLMs including

1The official ChatGPT API is not available at the time of this study. Therefore, we used an unofficial API
implementation from https://github.com/acheong08/ChatGPT
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Figure 8: Comparison between the attention mask and the architecture of an Encoder-
Decoder language model (figures (b) and (d)) in comparison between a Decoder-Only lan-
guage model (figures (a) and (c)). This figure is adapted from the original T5 paper [97]

ChatGPT. More importantly, we see that there is a large performance gap between human-

language language models, namely T5, T0, GPT3, and code-language models, namely Codex

(see Figure 9 for the prompts used for GPT3, more details on code language prompt in

Section 3.4). Further, while we see that while Reinforcement Learning with Human Feed-

back brings improvements to text-davinci-003 and ChatGPT on this task, their perfor-

mance is still not on par with code-language models trained without Reinforcement Learning

(code-davinci-002) [87].

CREPE task can be thought of as a multi-hop reasoning problem, where, to reason about

the change in the likelihood of an event, one needs to reason about the potential effects

that the event brought to an entity state. From this perspective, we wish to examine the

transfer learning capability of LLMs finetuned with existing multi-hop reasoning tasks. The

dataset we used is the StrategyQA dataset [37]. In StrategyQA, given a multi-hop reasoning
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question, a QA agent is responsible for first decomposing the multi-hop reasoning questions

to single-hop questions, retrieving or generating answers to the single-hop questions, and

producing the final answer by reasoning on the logical relationships between the answers

to the sub-questions and the original multi-hop question. In this study, observed no per-

formance gap between the text-curie-001 and the text-davinci-002 model, we opt to

fine-tune the more economic text-curie-001 model with the training set of StrategyQA.

As shown in Table 3, the finetuning brings no performance gain to text-curie-001, further

demonstrating the unique challenge that the CREPE dataset introduced.

Goal: Wash sneakers

Context: I remove shoelaces. I rinse.

Question: What is the likelihood that my feet get wet by wearing the sneakers?

Answer: likely

Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my feet get wet by wearing the sneakers?
Answer: likely

Figure 9: The best-performing GPT-3 language prompt on the CREPE dataset.

3.4. Prompting Code Language Model

As shown in Section 3.3, in addition to traditional language models that output spoken

language, we also attempted to use code language models. The attempt of using a code

language model is enlightened by the previous work which shows that code language models

are sometimes more capable of conducting reasoning tasks compared to traditional language

models [75]. In this study, we use the most capable code language models, namely Codex.

Codex (code-davinci-002) is a checkpoint of GPT-3 that is pretrained with an integration

of the original text datasets that are used to train the original GPT-3 with the addition

of Python and Java code. Similar to the other GPT-3 models, Codex is an autoregressive

language model that is capable of generating code either conditioning on a given chunk of
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codes or from a doc-string. Therefore, to unleash the full power of Codex, we converted our

original prompt (Figure 9) to the format of Python code (Figure 10).

To be specific, there are 4 key features of our code prompt.

Class Definition Each procedure is represented as a class object with the goal as the

class name. In the example from Figure 10, the goal is “Wash Sneakers”. Following the

class definition is the steps of the procedure listed as comments.

Initial State One thing missing from the procedure is the initial environment. Without

an initial environment, deducing the change in the likelihood of events is vague for the first

step as it is unclear whether the model should treat the first step as the initial environ-

ment. Continue the “washing sneakers” example, it is unclear whether the event likelihood

that “I can wear the sneakers and go out” will change in the first step without an initial

environment. One can reason that the shoelaces are attached to the shoes before the first

step and it is taken off afterward hence the likelihood decreases. One can also reason that

the initial environment is defined by the first step where the shoelaces are detached from

the shoe– hence the likelihood of the event does not change. To avoid this subjectivity, we

additionally append an Init state before the first step that serves as an imaginary definition

of the initial environment.

Function Definition Besides listing the steps beneath the class definition, each step is

explicitly defined using a function definition. The content of the step is concatenated with

an underscore to mimic the naming convention in Python. For instance, the step “remove

shoelaces” will be defined as a function with the name “remove shoelaces”. A special case

for this naming convention is the “Init” step. “Init” is defined as the “ init ” function

of the class, in which the imaginary event is defined (see Figure 10).

Variables All the other components of the code prompt is represented as a variable. For

instance, the imaginary event is “assigned” to event0 by adding the narrative of the event

as a comment following this variable:
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Event Comment

self.event0 = event0 # My feet get wet by wearing the sneakers.

Further, we create some imaginary attributes to document the desired properties of a vari-

able. For instance, deducing the change in the likelihood of an event is at the core of CREPE.

Therefore, we assume that the variable event0 has an imaginary attribute change, which

documents the change in the likelihood of event0. To reiterate the content of the event,

we again insert the event following the variable as a comment:

Event Change with Comment

self.event0.change = "more likely"

# My feet get wet by wearing the sneakers.

With all the above elements defining our code prompt, the overarching hypothesis we made

here is that the structured representation (Python class object) can help with reasoning

tasks like CREPE. The rationale behind our hypothesis is that procedural texts are semi-

structured per se as they are oftentimes represented in an ordered list. Further, CREPE is

asking for a change in the likelihood of events after every step, which demands a clear and

concise representation of the relationship between steps (temporal). With all these design

choices comes the final code prompt (Figure 10).

To study the effect of varying our formulation of the code prompt, we carried out an ablation

study, which gradually moves from a Pythonic structured code prompt back to a free-form

spoken language prompt.

3.5. Chain-of-Thought Reasoning in CREPE

Chain-of-Though (CoT) prompting methods have brought significant improvements in a

range of reasoning tasks [120]. CoT exploits the reasoning capability of LLMs by requesting
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class Wash_Sneakers:

# Init

# Remove shoelaces

# Rinse

def __init__(self , event0 ):

self.event0 = event0 # My feet get wet by wearing the

sneakers.

def remove_shoelaces(self):

self.event0.change = "equally likely"

# My feet get wet by wearing the sneakers.

def rinse(self):

self.event0.change = "more likely"

# My feet get wet by wearing the sneakers.

Figure 10: The best-performing Python code (bottom) representation of a procedure and
hypothetical events from the CREPE dataset.

the model to explicitly generate the reasoning process. We attempted to adapt techniques

and ideologies from the CoT prompting paradigm to the CREPE task by incorporating our

bottleneck causal reasoning chain (Figure 4).

Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my feet get wet by wearing the sneakers?
Answer: To get feet wet by wearing the sneakers, the sneakers must be wet. In the
given context, the sneakers are wet. Therefore, comparing to the previous step,
the likelihood change is ‘‘more likely".

Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my feet get wet by wearing the sneakers?
Follow up: Are the sneakers wet?
Intermediate answer: Yes
Follow up: Will my feet get wet by wearing wet sneakers?
Intermediate answer: Yes
Answer: likely

Figure 11: Our GPT-3 prompt with intermediate questions, mimicking the CoT prompt
(top) and the Self-Ask prompt (bottom).

Overall, we attempted two types of CoT prompting methods with GPT3, namely the vanilla

CoT prompt and the Self-Ask prompt [120, 93]. The vanilla CoT prompt simply adds

the phrase “take it step by step” to the prompt, which magically triggers the LLMs to
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autoregressively generate the reasoning process. The generated reasoning chain thus serves

as a good context and leads to better generation (see Figure 11 for an example). Self-Ask

improves upon the vanilla CoT prompt by eliciting LLMs to explicitly propose and answer

reasoning questions. For instance, in the Self-Ask style prompt shown in Figure 11, to

answer the question “What is the likelihood that my feet gets wet by wearing the sneakers?”,

LLMs need to first come up with a follow-up question regarding an entity state like “Are

the sneakers wet?”, which is concerned with the wetness (state) of sneakers (entity), and

then another follow-up question regarding the logical relationship between the first question

and the original event, “Will my feet get wet by wearing wet sneakers”, which clearly has

an entailment relationship (e.g. sneakers being wet → feet will be wet if wear sneakers).

In this way, we incorporate our bottleneck model with the Self-Ask prompting method by

explicitly asking the LLMs to first complete the causal chain by deducing some entity state

change of interest and then reason about the causal relationship between the entity state

(sneakers being wet) and the imaginary event (feet will be wet by wearing sneakers).

In addition to CoT with GPT3, we also attempted to incorporate CoT prompting with our

novel code prompt by adding the following additional variables.

Entity Variable As shown in the earlier part of this section, we represent the imaginary

event as a variable event0. To incorporate CoT prompting, we additionally add an “entity

variable”. Analogous to other variables in our code prompt, we first ask the code language

model to initialize an entity variable in the init function. Continuing with the “Wash

Sneakers” example where the imaginary event is “my feet get wet by wearing the sneakers.”,

a code language model shall generate the following init function:
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Code Prompt Init (Hard-Variable)

def __init__(self , event0 ):

self.sneakers = Sneakers ()

self.event0 = event0

# My feet get wet by wearing the sneakers.

In the init function, a code language model creates another imaginary object, which is

named after the entity of interest (Sneakers() in this case). Following the initialization of

the entity, the language model is to first predict the state change of the entity and then

deduce the event likelihood change. Hence, the generation of each step of the procedure

becomes:

Code Prompt (Hard-Variable)

def rinse(self):

self.sneakers.wet = True

self.event0.change = "more likely"

# My feet get wet by wearing the sneakers.

where the state of the entity is represented as an imaginary attribute of the entity variable

(self.sneakers.wet) and the state change is represented with a simple boolean variable.

This pipeline of generating answers, again, is in line with our bottleneck causal chain. We

refer to this prompt where the entity state is explicitly encoded as variables as the hard-

variable prompt

In addition to the above representation where the entity state is encoded as an imaginary

attribute, we also attempted an alternative prompt where the entity state is thought of as

a “subevent” and the explicit content of the entity state is represented as a comment. We

refer to this way of representing the entity state information as soft-variable prompt. In
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this case, the init function becomes:

Code Prompt Init (Soft-Variable)

def __init__(self , event0 , subevent0 ):

self.event0 = event0

# My feet get wet by wearing the sneakers.

self.event0.subevent = subevent0

# The sneakers are wet

subsequently, the generation for each step of the procedure becomes:

Code Prompt (Soft-Variable)

def rinse(self):

self.event0.subevent.change = "more likely"

# The sneakers are wet

self.event0.change = "more likely"

# My feet get wet by wearing the sneakers.

Naive LLMs CoT Large Language Models Human

Majority GPT-3 Codex GPT-3 + CoT GPT-3+self-ask Codex soft(ours) Codex hard(ours)

Dev .297 .346 .585 0.359 .342 .624 .667 .868
Test .296 .356 .591 0.379 .345 .626 .609 -

Table 4: Macro F1 of chain-of-thought models on the CREPE dataset. GPT-3 + CoT—self-
ask represents the text-davinci-002 model prompted with the CoT or self-ask style
prompt.

3.6. Discussion

The performance of CoT prompting is shown in Table 4. Surprisingly, the CoT prompting

does not bring any performance gain for GPT-3 on the CREPE tasks as all GPT-3 models

score roughly similar to the regular prompt. We suspect that this is largely due to GPT-3

does not understand the bottleneck model. In other words, GPT-3 has limited capabil-
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ity of building a causal chain leveraging the fine-grained entity state information through

generating spoken language.

To our surprise, CoT prompting methods brought significant performance boost to Codex–

especially Codex with hard-variable prompt. This result shows that, depending on the

nature of the reasoning task, having a structured representation (code) could be beneficial

and significantly outperforms the standard spoken-language prompt. In addition, contrary

to the observation from GPT-3 result where the model does not know how to leverage entity

state information to form a causal chain, Codex has a much better grasp of this intention

and demonstrated that fine-grained information such as entity states could bring significant

help to causal reasoning between events.

To elicit how CoT prompting works with Codex, here we provide a detailed explanation

with examples. To have a better understanding of CoT with CREPE, first recall that the

CREPE is a ternary classification task where the label space is {“more likely”, “less likely”,

“equally likely”}. The majority label is “equally likely”. This is because the world we live

in is very sparse– when some event happens, the state of most objects remains unchanged.

Likewise, the likelihood of some event happening is rarely changed by other events. Take

the event of “playing basketball” as an example, most other events related to the player

such as “doing homework”, “feeding cats”, “having dinner”, and so on are not effected by

the aforementioned event. Using this sparsity, we hypothesize that, for one event to affect

the likelihood of another event, there must be an entity state change that connects the

two events. This hypothesis can be thought of as an application of our bottleneck model

(Figure 4). Therefore, there will be two scenarios in our code prompt. One prevalent

scenario is that the current events do not alter the likelihood of another event (“equally

likely”). In this case, the model shall not predict any entity state change and the generation

result looks like
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Code Prompt with no Entity State Change

def remove_shoelaces(self):

self.event0.change = "equally likely"

# My feet get wet by wearing the sneakers

The other scenario is when the current events in the step change the likelihood of another

event. In this case, there must be some mutual entity state that is caused by the step,

which in turn causes the change in the likelihood of another event. Here, the model shall

first deduce the entity state change caused by the given step and then generate how this

entity state change could affect the likelihood of the imaginary event

Code Prompt with CoT

def rinse_the_shoes(self):

self.sneakers.wet = True

self.event0.change = "more likely"

# My feet get wet by wearing the sneakers.

To summarize, when the likelihood of the imaginary event does not change, we expect Codex

to produce no entity state change. On the other hand, when the likelihood changes, we

expect Codex to first produce some entity state change and then deduce how the likelihood

of the imaginary event would change.

There are 3 variables in this CoT process:

1. Can Codex predict the entity state change at steps where the likelihood of

the imaginary event changes?

2. How relevant are the predicted entity state?

3. Are the entity state change correctly predicted?

34



It turns out that the gap between our best performing CoT Codex (0.67) and human perfor-

mance (0.87) is due to the first factor– We observed that there are many cases where there

is a change in the likelihood of the imaginary event but Codex did not produce any entity

state change to construct its chain of thought. For the second factor, 71/74 (96%) generated

entities are mutually relevant to both the step and the imaginary event, which shows that

Codex is competent at completing the causal chain. For the third factor, we computed the

F1 score exclusively for Codex results that generated entity state change. In this case, the

F1 score of Codex reaches 0.85, which is very close to human performance. Therefore, a

future direction of tackling the CREPE task is to study ways to address the first factor. In

other words, current language models are lacking in understanding the causal relationship

between events and entities. Hence, the entity state changes are oftentimes ignored and

the CoT style reasoning is broken in the first stage of reasoning. We suspect that this

event-entity causal reasoning task is particularly challenging due to reporting bias. In prac-

tice, the steps of a procedure typically contain only high-level events. The causal relation

between events and participating entities is what we perceive as commonsense knowledge

and is rarely mentioned in the text. Trained with texts that contain very little fine-grained

commonsense knowledge such as entity state changes, it makes intuitive sense that LLMs

suffer with the event-entity reasoning tasks. In the following sections, I attempted two

approaches to mitigate this issue– one with the aid of external modality (Chapter 4) and

another with a newly proposed fine-grained causal reasoning task (Chapter 5)
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CHAPTER 4 : Mitigate Reporting Bias with External Modalities

4.1. Introduction

In Chapter 3, we see that one of the main challenges that LLMs face is the incapabil-

ity of doing fine-grained reasoning tasks. This is largely due to the reporting bias in its

pretraining data. In this study, the specific reporting bias we are concerned with is the

fine-grained commonsense causal knowledge. Continuing with the “Wash Sneakers”

example, a typical initial step would be “First, remove shoelaces”. While semantic informa-

tion might be scarce, much of the causal information can be easily and sufficiently deduced

by humans using commonsense causal knowledge. On a high level, it is obvious to hu-

mans that the action of “removing shoelaces” is a direct effect of the goal “wash sneakers”

([wash sneakers] → [remove shoelaces]). While each step might contain a limited amount of

high-level event-event causal relationships, there are bountiful fine-grained causal relation-

ships. For instance, here is a list of (entity, pre-state, post-state) tuples that are causally

related to the step, “remove shoelaces”

• remove shoelaces → (shoelace, attached to the shoe, detached from the shoe)

• remove shoelaces → (shoelace, twisted, expanded)

• remove shoelaces → (shoe, tied, untied)

• remove shoelaces → (shoe, worn, unworn)

• remove shoelaces → (shoe, normal weight, lighter)

• remove shoelaces → (tongue, covered by shoelaces, uncovered)

• remove shoelaces → (eyelets, filled by shoelaces, empty)

These causal relationships between event and entity states are oftentimes ignored in writing,

resulting in reporting bias. In this study, we aim to address the issue that some of the

entities that are causally related to the current step are ignored in the narrative. In the
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simple example above, the entities explicitly mentioned in the step “remove shoelaces” are

• {shoelaces}

and the unmentioned causally related entities are

• {shoe, tongue, eyelets}

In other words, in this simple example, 75% of the affected entities are implicit in written

texts. Trained solely with written text, LLMs are likely to be severely affected by this

reporting bias, which will give them a hard time conducting fine-grained reasoning tasks

like deducing the causal relationship between events and entities.

As mentioned in Section 1.5, there have been extensive studies that aim to model the

causal relationship between high-level events and low-level entity states. These tasks are

often conducted with the umbrella term “entity state tracking”. In this study, our main

objective is to investigate if explicitly using external modalities such as videos and audio

transcriptions can mitigate the effect of implicit commonsense knowledge in written text.

Different from the implicit use of external modalities in the OpenPI dataset where the

authors provided images from wikiHow to aid annotators with annotating entities that are

implicit in the written procedure, we explicitly involve external modalities such as videos,

images, and audio transcriptions to enrich the entity set.

4.2. Dataset

To have a fair comparison with the OpenPI dataset, which is based on procedural texts, we

use the YouCook2 dataset [144]. The two datasets are very similar in the narrative of the

procedure. The only difference is that OpenPI is a uni-modal and open-domain entity state

tracking dataset whereas YouCook2 is a multimodal object detection dataset that focuses

on recipes. In this study, we only use the procedural texts and the instruction videos in

the YouCook2 dataset to conduct multimodal entity extraction. Therefore, the results from

the YouCook2 dataset, which cover a subset of topics from the OpenPI dataset, can be
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Figure 12: A comparison between procedure examples from YouCook2 and OpenPI. The
procedure on the left is an example from YouCook2 whereas the procedure on the right is an
example from OpenPI. The two datasets are very similar in the narrative of the procedure.
The only difference is that OpenPI is a uni-modal and open-domain entity state tracking
dataset whereas YouCook2 is a multimodal object detection dataset.

generalized to procedures in the OpenPI dataset.

The original YouCook2 dataset contains 175 hours of videos on 89 different cooking recipes

scraped from YouTube1. Each recipe video is segmented based on the step of the recipe. The

annotation contains the start and end time stamps of the segment as well as a description

of the current step. To limit the size of this study and to compensate for the computational

resources available, we take a subset of the YouCook2 dataset which contains 22 distinct

recipe videos. Unlike procedures, which contain a goal and a series of steps, the YouCook2

dataset does not contain information on the goal. Therefore, the video title is scraped and

used as the goal for each recipe. The resulting YouCook2 cooking recipe looks analogous to

the cooking procedures from OpenPI (Figure 12).

The resulting subset contains 22 procedures, 149 steps, and 846 human-annotated entities.

On average, each step is annotated with 5.68 participating entities. The largest amount of

1https://www.youtube.com/
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entities annotated for one step is 13 entities where as the least amount of entities annotated

for a single step is 2 entities. Inevitably, the annotations are vulnerable to subjectivity.

We make our best effort to mitigate these risks by having multiple annotators annotate the

same dataset and aggregate the final results. Further, annotating entities in a step is heavily

context-dependent as the annotator oftentimes needs to know the state of the world before

and after the current step. For instance, in a recipe for “Making Coffee”, the entities that

participated in the step, “grind the coffee beans”, are dependent on the next step– If the

next step is “pour hot water into the cup”, then we can deduce that the coffee beans have

been transferred from the grinding machine to a mug. On the other hand, if the next step

is “pour grounded coffee beans into a mug”, then we can deduce that the grounded coffee

beans are still in the grinding machine at the current step. To better address the demand

for contextual information, we first ask annotators to read through the whole procedure

and then start annotating for each step. Below is an example of the annotation following

the above pipeline:

Annotation Example (Implicit Entities are Bolded)

Goal: How To Make Pierogi

Steps:

1. Combine flour and salt in a bowl.

2. Add two eggs into water and mix it well.

3. ......

Participating Entities in Each Step:

1. ["flour", "salt", "bowl", ”whisk”, ”counter”, ”salt bag”, ”flour

bag”]

2. ["egg", "water", ”bowl”, ”whisk”, ”egg shell”, ”tap”, ”trash can”]

3. ......
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4.3. Models and Approaches

First, we simplify the task of object detection from video to image object detection by

discretizing videos into frames (still images). Specifically, we set the sampling rate to be

one image per second as we assume that salient events in the procedure will at least span

several seconds in the video. After this simplification, we are able to deploy a large amount

of object detection and other general-purpose text-image models to this study. With the

above naive sampling strategy, there are be a large amount of redundant information as

the contiguous sampled frames will likely be capturing similar scenes, thus containing the

same set of objects. While such redundancy is acceptable for moderate-sized models, it

severely impacts the computational efficiency when we apply large-scale models to this

task. Therefore, we deal with large-scale models, we additionally eliminated the redundancy

leveraging the Structured Similarity Index between contiguous frames [116, 117] (Figure 13).

Figure 13: Sample frames extracted from the YouCook2 dataset. Pictures in the first row
are sampled every second, leading to a large amount of repetitive content. Pictures in
the bottom role are further filtered using Structured Similarity Index, resulting in a set of
images that contain distinct semantic information

Recall that the purpose of incorporating visual information is to help language models to

deduce implicit participating entities and mitigate reporting bias. Therefore, we are essen-

tially tackling an object detection task. The only nuance is that the context information

(the content of the procedure) is crucial as we only want entities that participated in the

given step. For example, since we are exclusively targeting recipes, we oftentimes see ob-

jects such as refrigerators and stoves in the video. These objects, however, do not always
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participate in the current step. To this extent, we attempted 3 approaches to extracting

entities.

Figure 14: The DETR model architecture. Figure adopted from the original DETR paper
[16].

Figure 15: An example of the Object Detection + CLIP-Based Filtering approach. On the
left are the sample frames that correspond to this step. On the right are the step narrative
and model outputs. The top block displays the narrative for the current step, the middle
block shows the raw objects detected by the ConditionalDETR model. The bottom block
shows the objects grounded by the OWL-ViT model. The objects that are mistakenly
detected and grounded are colored in red.

Object Detection with DEtection TRansformer (DETR) [16]. DETR is a Transformer-

based object detection model (see Figure 14). Specifically, we employed the Conditional

DETR which is more efficient in training and achieves better generalization capability com-

pared to the DETR model of similar size [78]. Based on the output confidence score of the

entity, we do the first round of filtering where we discarded objects with low (< 0.2) confi-

dence scores. This first round of filtering is a lenient way with the intention to only filter

out the obvious errors. After obtaining a list of candidate entities, we took two attempts
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to further filter entities that are unrelated to the current step.

• CLIP-Based Filtering In this filtering approach, we used a Transformer-based open-

vocabulary object detection model trained with contrastive learning as seen in CLIP,

Vision Transformer for Open-World Localization (OWL-ViT) [80, 94]. On a high

level, the vision input is encoded with a Vision Transformer, and the text is encoded

with a Trasnformer-encoder model. The encodings are aligned with contrastive learn-

ing as seen in the original CLIP [94] (Figure 17). The OWL-ViT model achieves

open-vocabulary object detection by allowing users to input the object candidate as

a text prompt. In our case, the text prompt is replaced with the entity state list

from the DETR model. Since the OWL-ViT model outputs a probability distribution

on the given entity candidates, we set the threshold to 0.1 and discarded the other

entities (Figure 15).

• LLM-based Filtering In this filtering approach, we used LLMs, namely Codex to

help with filtering participating entities (Figure 16). The main advantage of LLM-

based filtering is that we are able to incorporate context information (goal and steps

of the procedure), which is crucial to this object detection task. With this in mind,

we formulate the following code prompt template:

Code Prompt for Filtering

goal = {goal}

previous_steps = {prev_steps}

current_step = {cur_step}

candidate_objects = {candidate_entities}

involved_objects = {involved_entities}

Image Captioning with general-purpose, unified models. In this case, we used the OFA

model [115]. Different from the previous Object Detection approach where we put emphasis

on the breadth of entities that the model can capture, here we emphasize the saliency of
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Figure 16: An example of the Object Detection + Codex-Based Filtering approach. On
the left are the sample frames that correspond to this step. On the right are the step
narrative and model outputs. The top block displays the narrative for the current step, the
middle block shows the raw objects detected by the ConditionalDETR model. The bottom
block shows the objects grounded by prompting the Codex model. The objects that are
mistakenly detected and grounded are colored in red.

the entity. Concretely, we hypothesize that objects that are salient in the video may not

necessarily be salient in the step. For instance, “human”, a salient object in the video,

is less relevant to understanding the events of the current step as we assume that all the

recipe videos are made by some human cook and that the state of the human does not

have a big impact on the content of the procedure. On the other hand, kitchen gadgets,

which may only occupy a small portion of the video, are oftentimes an integral part of the

step. Therefore, we wish the model to output only the most salient objects in the current

step. One possible approach to doing so is to conduct image captioning, where the model

narrative is the most salient event in the current step. After obtaining the image caption,

we then use the off-the-shelf Stanford CoreNLP parser [77] to get the Part-of-Speech tags,

based on which we then extracted all the noun phrases in the caption (see Figure 18).

Visual Question Answering with general-purpose, unified models. In this case, we

used the Unified-IO model [72]. The ideology of this approach is similar to that of Image

Captioning. Since it is implausible for any existing model to give a complete and reasonable

set of objects in a step of a procedure, we opt to ask the model to provide only the salient

objects. In Visual Question Answering, we have more control over the behavior of the
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Figure 17: An illustration of the pre-training and inference of the OWL-ViT model. This
figure is adapted from the original OWL-ViT paper [80].

model by adjusting the wording of the textual question. In this study, the question we ask

Unified-IO is “What are the important objects in the scene?”. Analogous to the Image

Captioning approach, we run the Stanford CoreNLP parser on the generated answer to

extract all the noun phrases and treat it as the list of salient objects (see Figure 19).

4.4. Result and Discussion

To measure the effectiveness of using visual information to mitigate reporting bias in recipes,

we computed the coverage probability of the model-deduced entities with respect to human

annotations. Our preliminary experiment shows that vision alone cannot be used to deduce

participating entities in a step due to the large difference in the reasoning capabilities

between vision and language models. Therefore, we use the language-model-only result as

the baseline and investigate how much improvement visual information could bring. For the

language model baseline, we used a GPT-32 model finetuned with the OpenPI dataset. We

acknowledge that the annotation of the OpenPI dataset also involves multi-modality where

the annotators are provided images from wikiHow to assist their entity state annotation

[108]. Therefore, our OpenPI finetuned GPT-3 may also pick up some vision information

by exploiting the association between steps and the OpenPI annotations.

2We fine-tuned the davinci model, which is the original GPT-3 release without any instruction fine-
tuning.
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Figure 18: An example of the image captioning pipeline. The left column shows the original
input image to the OFA model. The middle column shows the caption that the OFA model
outputs for the given image. The right column displays the objects extracted from the
image caption. The bottom block shows all objects obtained from the image captioning.

Table 5 show the coverage probability of different methods. The main conclusion is that

current vision models are not capable of mitigating the reporting bias in language. On the

contrary, they may bring more noise by producing entities that do not participate in the

event (see “False Positive Count” in Table 5).

Method Coverage False Positive Count

OpenPI GPT-3 0.86 3.34
OpenPI GPT-3 with Object Detection 0.86 17.56
OpenPI GPT-3 with OFA caption 0.86 11.04

OpenPI GPT-3 with Unified-IO VQA 0.86 7.72
OpenPI GPT-3 with Audio Transcription 0.86 12.92

Table 5: The entity coverage probability of each method compared to human annotation. All
methods are based on GPT-3 annotation, where we compute coverage probability by adding
extra entities obtained from vision to existing GPT-3 annotations. The false positive count
shows how many entities are there in the model-generated results that are not annotated
by humans. Less “False Positive Count” means that the model is more precise and efficient
at predicting participating entities.

From the sample output examples from the three different approaches (Figure 15, Figure 16,

Figure 18, Figure 19), we can see the difficulty of this task. First of all, the recipe videos

do not always have close-up shots. Take the images in Figure 18 as an example, the video
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Figure 19: An example of the VQA pipeline. On the left column are the original input
images. The upper right column displays the answer to the question, “What are the impor-
tant objects in the scene?”, from the Unified-IO model. The lower right column shows the
entities extracted from the answer. The block on the bottom is all the entities extracted
for the current step.

oftentimes focuses on the cook herself, instead of the equipment or ingredients. Therefore,

when asking for the caption of the image, “person in the kitchen of her home” is an unwanted

but reasonable description of the images. This leads to the second challenge in using visual

cues to mitigate reporting bias– lack of concise context information. For the previous

example where there is no close-up shot of the cooking instrument or ingredients that

the cook is using, it is hard for a human to deduce participating entities without context

information. Even for the cases of close-up shots like the ones in Figure 19, it is still hard

for us to tell what are the ingredients in the bowls– they could be flour, salt, sugar, MSG,

etc. Therefore, to be able to deduce the ingredients in the bowl, one must retrospectively

access the previous context to see where the ingredients come from and ideally be able to

read the text on the package. Therefore, the straightforward remedy to this lack of context

information is to build a multimodal pipeline that can understand both context information
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Figure 20: An example of audio transcriptions and the entities extracted from the tran-
scription. The top blue box shows the human annotation from the YouCook2 dataset and
all the boxes below shows the audio transcription and the extracted entities from each cor-
responding transcription.

provided as texts and the visual cues provided as video/images.

For audio transcription, since the Youcook2 data is curated using cooking videos from

YouTube, we conveniently leveraged the YouTube Transcript API3 to scrape the official

audio transcriptions provided by YouTube. We then applied an off-the-shelf Part-of-Speech

Tagging model4 to extract the entities from the transcriptions. From the example shown in

Figure 20, we see that the audio transcription is a noisier version of the written annotation–

the only implicit participating entity that audio transcription introduced is “teaspoon”

whereas entities such as “marinade” and “pinch” are wrong entities with regard to the

current step. The same conclusion can be reached from the result shown in Table 5– The

entities extracted from audio transcription does not contribute to the coverage probability.

For a detailed description of the top-5 most frequently missed/deduced entities predicted

3https://github.com/jdepoix/youtube-transcript-api
4We used the Stanford CoreNLP package to obtain the POS tags. https://stanfordnlp.github.io/

stanza/corenlp_client.html
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Approach Entity

OpenPI GPT-3 (ingredients, mixture, bowl, pan, food)
OpenPI GPT-3 + Object Detection (spoon, fork, cup, cake, oven)
OpenPI GPT-3 + OFA Caption (food, ingredients, mixture, bowl, dish)

OpenPI GPT-3 + Unified-IO VQA (spoon, ingredients, bowl, mixture, pan)
OpenPI GPT-3 + Audio Transcription (ingredients, mixture, bowl, oil, pan)

OpenPI GPT-3 (bowl, pan, water, pot, stove)
OpenPI GPT-3 + Object Detection (bowl, pan, water, pot, knife)
OpenPI GPT-3 + OFA Caption (food, ingredients, mixture, bowl, dish)

OpenPI GPT-3 + Unified-IO VQA (pan, bowl, oil, chickpeas, chicken)
OpenPI GPT-3 + Audio Transcription (bowl, pan, water, oil, chickpeas)

Table 6: On the top half of the table are the top-5 missed entities by count using different
approaches. The Entity column shows the top-5 missed entities names. On the bottom
half of the table are the top-5 covered entities by count using different approaches.

by each approach, please refer to Table 6. We were able to identify some common patterns

across different approaches. All approaches are having a hard time deducing ingredients,

mixture, bowl, and pan from the step. While misses on entities such as ingredients and

mixture are comprehensible as the object that these two entity names referring to is vague,

misses on bowl and pan show that current multimodal models are incapable of identifying

participating entities in a scene. Notice that entities that commonly appear in recipes such

as bowl, pan, and ingredients exist both among the top-5 missed and deduced entities.

This further demonstrate that external modalities such as vision and audio are incapable of

tracking entities due to the absent of common sense knowledge and the flexibility of taking

the context of the procedure into consideration.
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CHAPTER 5 : Fine-Grained Causal Inference with Entitiy States

5.1. Introduction

From Chapter 3, the CREPE benchmark and the Chain-of-Though code prompt demonstrated

the significant role that fine-grained causal relationship between events and entity states

plays in the causal reasoning between high-level events. As mentioned in previous chapters,

information on fine-grained causal relationships are largely absent from written texts as

they are considered commonsense knowledge, which is the knowledge that most people

comprehend without explicitly mentioning. In Chapter 4, we tackled the issue of reporting

bias in the training dataset of LLMs. We showed that the capability of current multimodal

models is insufficient for deducing implicit participating entities from modalities other than

texts. Therefore, in this chapter, we aim to investigate how LLMs perform in fine-grained

causal reasoning with entity states.

To better demonstrate the fine-grained causal inference between entities, consider the fol-

lowing example: In a procedure of “doing laundry”, when asking LLMs “can I open the

washing machine door?” after observing that “the laundry is finished”, a proper interme-

diate reasoning question would be “Does finishing laundry result in washing machine door

unlock?”. Essentially, the previous question is asking for the causal relationship between

two entities and their states. Suppose we represent the entity states with (entity, state)

tuples, the question can then be formulated as “Does (laundry, finished) cause (washing

machine door, open)?”.

In this chapter, we introduce the Commonsense Causal Reasoning about Entity States

(C2RES) benchmark for causal inference between entity states. We perceive entity states as

the fundamental unit of events. From this perspective, an event is composed of multiple

entity state changes, and an event is a high-level, concise description of the aggregated effect

of entity state changes that occurred in a time frame. For example, consider the event

“Sear the steak until both sides are golden.”
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The entity state change tuples that one can derive from this event are

(oil bottle, open) (oil bottle, up-side-down) (oil bottle, lighter)
(oil, in pan) (oil, heated) (pan heated)
(pan, greasy) (stove dial, rotated) (stove, heated)

(pan, on top of the stove) (steak, in pan) (steak, heated)
(steak, seared) (sizzling sound, heard)

Table 7: Entity state changes that can be deduced from the event “Sear the steak until both
sides are golden.”.

In the C2RES framework, we build on the idea of considering entity states as the unit of

events and propose the task of deducing the causal relationships between the entity state

changes that happened in the current step, which could contain multiple events. Take entity

states listed in Table 7 as an example, some causal relationships are:

• (stove dial, rotated) → (stove, heated)

• (oil bottle, open) ∧ (oil bottle, up-side-down) → (oil, in pan)

• (pan, on top of stove) ∧ (stove, heated) → (pan, heated)

• (oil, in pan) → (oil bottle, lighter)

• (oil, in pan) → (pan, greasy)

• (oil, in pan) ∧ (pan, heated) → (sizzling sound, heard)

• (oil, in pan) ∧ (pan, heated) → (oil, heated)

• (pan heated) ∧ (steak, in pan) → (steak, heated)

• (steak, heated) → (steak, seared)

As a by-product of inferring the causal relationship between entity states, a causal diagram

can be constructed for each step of the procedure (Figure 21).

Therefore, with a reliable causal reasoning agent that can accurately predict fine-grained
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Figure 21: A sample causal diagram constructed from the causal relationships listed above.
The direction of the edge represents the direction of the effect.

causal relationships between entity states, one can conveniently construct a dynamic causal

diagram throughout the procedure, which can be used to study the interpretability and

faithfulness of the neural reasoning models and pipelines.

5.2. Dataset

The C2RES dataset is constructed based on a subset of cooking procedures available in the

YouCook2 dataset. Here is a sample cooking instruction from YouCook2:

Procedure Example from YouCook2

Goal: Garlic Steamed Mussels Recipe

Steps:

1. Rinse the mussels in water.

2. Add the onion to the pot.

3. Add the wine and the mussel.

4. Cover the pot.

5. Garnish with green onion.

To come up with the potential entity state changes in each step of the procedure, we

leverage the OpenPI dataset, which consists of procedures with human-annotated entity

state changes. As an open-domain entity state tracking dataset, there are bountiful cooking

instructions in the OpenPI dataset, which matches the distribution of texts in the YouCook2

dataset. Furthermore, the annotators of the OpenPI dataset are also provided with images
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Figure 22: Demonstration of the data annotation pipeline of the C2RES benchmark. The
original input (white box) is first input into an OpenPI-finetuned GPT-3 model. The output
is entity state changes narrated in the original OpenPI format (blue box). The raw output of
the GPT-3 model is first parsed to (entity, post-condition) tuples (left orange box) and
then modified by humans (left green box). The causal relationships between the resulting
set of entity state changes (right orange box) are then labeled by human annotators (right
orange box).

to aid entity state annotation. Therefore, the existing state changes in the OpenPI dataset

implicitly contains multimodal information.

Figure 22 shows the overall annotation pipeline of the C2RES benchmark, which consists

of a collaboration between language models and human annotators. In the initial stage

of the annotation, we first use a GPT-3 model1 finetuned with the OpenPI dataset. The

finetuned GPT-3 model is capable of generating potential entity state changes that occur

at the current step in the following template

The {A} of {E} is {PRE} before and {POS} afterwards.

1We finetuned the GPT-3 davinci model that has 175B parameters.
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where “{A}” is replaced by the attribute of the current entity, “{E}” is replaced by the

entity itself, “{PRE}” and “{POS}” is replaced by the pre-condition and post-condition

of the entity (see the blue box of Figure 22 for examples). Since the C2RES task is only

concerned with the current entity state, we then parse the GPT-3 generation to (entity,

state) tuples, where the state is the post-condition from above. The (entity, state) tuples

provide a promising list of potential entity states at the current step.

In the next step, a human annotator is to edit the machine-generated list of entity states.

Specifically, each annotator is assigned two tasks: (1) selected the correct entity states

from the machine-generated list and (2) add entity states that machine did not generate.

Figure 23 shows a screenshot of the annotation script. The annotators have access to

the complete procedure and the current step so that they can have a better grasp of the

contextual information in the procedure. In addition, the (entity, state) tuples are

converted to a narrative following the template, “{entity} is {state}”. To select correct

machine-generated entity states, the annotators simply input the indices of the entity state

and separate them with a comma. After selecting from the existing list of entity states, the

annotator also has the option to write down entity states that are not in the list following

the same template (“{entity} is {state}”).

After human annotation, we now have a promising set of entity states for the current step.

The next task is to annotate causal relationships between the entity states. At this stage of

annotation, the annotator is provided with a description of the current step, a pivot entity,

and a list of alternative entities (Figure 24). The pivot entity is the cause and the list of

alternative entities are potential effects. The annotator is to select all entities from the

alternative list that is a direct effect of the pivot entity.

The resulting C2RES dataset contains 67 cooking procedures, which consist of 565 steps.

There are a total of 4896 entities annotated and there are 4842 causal relationships anno-

tated amongst these entities.
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Figure 23: A screenshot of the annotation script. For each step, the annotator has access
to the complete procedure and a list of machine-generated entity state candidates. The
(entity, state) tuples are combined with “is” to form a sentence, which is more natural
for the annotators.
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Figure 24: A screenshot of the annotation script. For each step, the annotator has access
to the complete procedure and a list of machine-generated entity state candidates. The
(entity, state) tuples are combined with “is” to form a sentence, which is more natural
for the annotators.
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5.3. Discussion

Annotating causal relationships between entity states turn out to be a challenging process

even for humans. We suspect the main difficulty is that we humans do not explicitly work

with fine-grained causal inference such as deducing the causal relationships between entity

states. Therefore, the annotators oftentimes mistake the direction of cause and effect or

consider the spurious correlation with causation. Furthermore, many fine-grained entity

states happen almost concurrently, which makes it difficult to draw a conclusion on cause

and effect (see Table 8 for examples).

Entity State 1 Entity State 2 Source of Difficulty

steak is heated steak is seared concurrency of entity states
steak is seared steak is cooked concurrency of entity states
plate is full plate is dirty concurrency of entity states

plate is empty steak is in pan direction of causation

Table 8: Some sample entity state pairs and the corresponding difficulty of annotating the
causal relationships between these entity state pairs.

With the aforementioned challenges, the inter-annotator agreement on the C2RES is 0.876.

The reason for this seemingly high agreement is that most entity pairs have no causal

relationships between them. Concretely, with 4896 annotated entities, there are only 4842

annotated pairwise causal relationships. Therefore, much of the agreement goes to the

consensus on non-causal entity state pairs. When it comes to the macro-F1 score, the

inter-annotator agreement drops to 0.443, which reflects a more realistic agreement score.

Experiments show that the fine-grained causal reasoning task is even more challenging for

LLMs. For the baseline models, we used the most prominent model at the time of this

study, which are GPT3.5 and ChatGPT2 and we attempted two formulations of the C2RES

task.

The formulation follows the classical binary Natural Language Inference (NLI) setup, where

the premise is the cause entity state and the hypothesis is the effect entity state. The labels

2We utilize these models through OpenAI API. The model indices are text-davinci-003 for GPT3.5
and gpt-3.5-turbo for ChatGPT.
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dictate whether the two entity states are causally related and whether the current direction

of cause and effect is sound. For the NLI formulation, we employed the following prompt

Code Prompt (NLI)

Goal: {goal}

Steps: {steps}

Causal Relation at the most recent

step: {causal rel}

Is the above causal relation correct?

Answer with True or False. {ans}

where the placeholders are replaced with current information about the procedure and entity

states. For {steps}, we replace it with the steps of the procedure up to the current step.

For {causal rel}, we replace it with a narrative of the causal relation in the following format

({entity state 1}) causes ({entity state 2})

we additionally surround the entity states with parenthesis to emphasize the syntactic

structure of the template. For ChatGPT, we employed the same template with a slight

tweak to match the style of a conversation:

ChatGPT Prompt (NLI)

{"role": "user", "content": "I am going to {goal}."},

{"role": "assistant", "content": "OK, sounds good."},

{"role": "user", "content": "{steps}"},

{"role": "assistant", "content": "OK, got it."},

{"role": "user", "content": "During the latest step, {causal rel}. Is this causal

relation correct? Answer with True or False." },

{"role": "assistant", "content": "{ans}"}

The alternative formulation is a clustering task, where given a complete setup of entity states

at the current step, LLMs need to determine all the causal relationships. This formulation

mimics how human annotators are prompted during the annotation process.
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Formulation Precision Recall Macro-F1 Accuracy

Human Performance 0.468 0.421 0.443 0.876

ChatGPT-NLI 0.125 0.630 0.209 0.455
GPT3.5-NLI 0.130 0.478 0.205 0.577

ChatGPT-Cluster 0.175 0.214 0.192 –
GPT3.5-Cluster 0.147 0.236 0.181 –

Table 9: Performance score of GPT3.5 and ChatGPT on the C2RES dataset using two
formulations.

Code Prompt

Goal: {goal}

Steps: {steps}

Current Object States: {entity states}

What are the causes and effects of these object state

changes? Represent with their corresponding indices.

{ans}

Similarly, we adjusted the ChatGPT prompt to make it more dialogue-oriented:

ChatGPT Prompt

{"role": "user", "content": "I am going to {goal}"},

{"role": "assistant", "content": "OK, sounds good."},

{"role": "user", "content": "First, I spread the butter on two toast."},

{"role": "assistant", "content": "OK, got it."},

{"role": "user", "content": "During the latest step, the following object states

are changed:{entity states}"},

{"role": "assistant", "content": "Ok, got it."},

{"role": "user", "content": "What are the causes and effects of these object

state changes? Represent with their corresponding indices."},

{"role": "assistant", "content": "The causes and effects are:{ans}"}

Table 9 shows the result of the two formulations. We see that while C2RES is already a

challenging task for humans, it is even more challenging for machines. Under the NLI

formulation, both ChatGPT and GPT3.5 are falling way behind human performance both
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in the precision and accuracy scores. Un the clustering formulation, both models are way

behind human performance across all performance metrics. These results demonstrate that

the C2RES reasoning task is challenging for state-of-the-art LLMs albeit with low inter-

annotator agreement. Therefore, we believe that the C2RES benchmark will be of promising

research resource once the annotation pipeline is refined and the quantity is increased.
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CHAPTER 6 : Conclusion

In this thesis, we proposed a new perspective of tackling commonsense causal reasoning

tasks in Chapter 3. Specifically, we used event likelihood change as a surrogate for causal

relationships and demonstrated the effectiveness of leveraging fine-grained entity state infor-

mation when deducing causal relationships between coarse-grained events (the bottleneck

model for causal reasoning). Further, we also showed that formulating reasoning tasks to

a structured representation (Python code) brings significant performance gain to LLMs.

Inspired by the Chain-of-Thought (CoT) prompting paradigm and the effectiveness of code

language models such as Codex, we integrated the bottleneck reasoning model using CoT

prompting with code language prompt.

In Chapter 3, we see that current language models are lacking in their capability of reasoning

about the fine-grained causal relationships between an event and an entity state change.

We hypothesize that this issue is caused by reporting bias in the training data of LLMs. In

our study of procedural texts and commonsense reasoning, we specifically investigate the

reporting bias on commonsense causal knowledge in the effect of events on entities. To this

extent, one possible approach is to leverage information in external modalities such as vision

and audio to extract entities that appeared in the image/speech but do not exist in written

texts. In Chapter 4, we attempted to leverage visual information and audio transcriptions.

The results from both visual-guided entity extraction and audio-guided entity extraction

show large research gaps. For visual information, the vision and multimodal models are not

capable of understanding the context of the procedure at the level of pure language models.

This limitation, combined with the emphasis on entity coverage rather than saliency in vision

tasks like object detection, results in a large number of redundant entities being extracted

from visual information. Yet, there is no adequate method to reliably filter entities that

participate in a procedure from the large number of entities that exist in the current scene.

This thesis leads to the following challenges and future research directions for the field of
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commonsense reasoning:

• In the CREPE benchmark (Chapter 3), we utilized event likelihood change as a sur-

rogate for causal relationships. While this definition of causal relationship has good

inter-annotator agreement, future work can be done to formalize this definition and

potentially blend this definition with other established causal reasoning pipelines and

frameworks.

• The error analysis in Chapter 3 shows that current LLMs are bad at reasoning about

the causal relationship between events and entities. A potential future work would be

to further investigate the capability of current LLMs on finer-grained causal inference.

In the case of procedural texts, one possible task would be to reason about the causal

relationships between entity states.

• The multimodal models are lacking in understanding the semantics of image condi-

tioning on some context information. The studies carried out in Chatper 4 showed

that the entities extracted by current multimodal models are oftentimes non-existent

in the scene or did not participate in the current event. Ideally, a multimodal model

should be able to reason about the semantics of an image or video using some language

input as a prior. In the case of procedural reasoning, a multimodal agent should rea-

son about the saliency of the entities presented in a scene conditioning on the current

events in the step.

• The C2RES benchmarks is shown to be challenging even for state-of-the-art LLMs like

ChatGPT and GPT3.5. However, the low inter-annotator agreement poses a question

about the reliability of the performance scores. Therefore, a vital next step is to refine

the annotation process and reformulate the annotation protocols. Furthermore, we

discovered that existing definition of causality are tailored towards high-level events

and may not be applicable for fine-grained causal inference. Therefore, another future

step is to come up with a novel definition of fine-grained causality.
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