
IMAGE-BASED BILINGUAL LEXICON INDUCTION  

   

 

FOR LOW RESOURCE LANGUAGES 

   

   

   

 

Brendan Daniel Callahan  

   

   

   

 

A THESIS  

   

 

in  

   

 

Robotics  

   

   

   

 

Presented to the Faculties of the University of Pennsylvania in Partial 

Fulfillment of the Requirements for the Degree of Master of Science in Engineering  

   

 

2017 

 

 

 

 

_______________________________ 

Chris Callison-Burch 

Supervisor of Thesis  

   

 

_______________________________ 

Camillo J. Taylor 

Graduate Group Chairperson 
 



Abstract

Can images help us learn the translations of words? We introduce a new large-scale
multilingual corpus of labeled images collected to facilitate research into learning trans-
lations through visual similarity. We collected 100 images for up to 10,000 words in
each of 100 foreign languages, plus images for each of their translations into English.
In addition to the images, we crawled the text from the web pages where each of the
images appeared. Our dataset contains 35 million images and web pages, totaling 25
terabytes of data. As a basis for similarity, we use Scale Invariant Feature Transform
(SIFT), color histograms and convolutional neural network (CNN) based features to
compare images. Our generated bilingual lexicons show a significant increase in accu-
racy over previous work that used five high resource languages and concrete nouns. We
see similar accuracies in many of our lower resource languages, and find that there is
still plenty of signal when using abstract words, other parts of speech, and language-
confident results only.
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1 Introduction

In machine translation (MT), translations are usually automatically acquired from bilin-

gual sentence-aligned parallel texts (Brown et al., 1990). However, parallel texts do not

exist for many domains and languages. Bilingual lexicon induction (BLI) is the task of

learning translations without parallel corpora (Irvine and Callison-Burch, 2017). These

bilingual lexicons are used for several tasks in the Natural Language Processing arena,

including cross-language information retrieval (Lavrenko et al., 2002; Levow et al.,

2005) and statistical machine translation (Och and Ney, 2003).

In order to find potential translation pairs using sets of monolingual text data in

different languages, information that relates to the words must be used. Some re-

searchers have used similar spellings across related languages to find potential transla-

tions (Koehn and Knight, 2002; Haghighi et al., 2008). Other researchers have exploited

similar frequencies over time to induce translation pairs (Schafer and Yarowsky, 2002;

Klementiev and Roth, 2006). Others still have tried using seed bilingual lexicons to

help infer the context of unknown words, inducing additional bilingual pairings when a

high contextual similarity exists (Fung and Yee, 1998; Rapp, 1999).

Given the volume of image data available on the web, images are another potential

source of data for translation equivalence. Visual data can also be thought of as a

language-independent way of representing information. Typically, the images appear

on pages along with text in one or more languages. Facebook reported in 2008 that they

had stored 10 billion photos, and currently they support 70 plus languages (Facebook,

2008). Google reported in 2010 that they had 10 billion images in their index, and they

currently support over 100 languages (Google, 2010). When users upload images on

Facebook, they will often provide some descriptive text in their native language. When

Google indexes images, they typically pull in textual information from the websites that

display the images, which can be in the form of image captions, targeted text snippets

on the page, or the page text as a whole. This descriptive and identifying text can be

thought of as a labeling scheme, where words and phrases are associated with images.

Using these labels and exploiting the universality of images, we can find translations by
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identifying images associated with words in different languages that have a high degree

of visual similarity (Bergsma and Van Durme, 2011).

Several researchers have begun tapping this massive resource by deriving features

from Google image search results and comparing them in order to induce bilingual

lexicons. They evaluated lexicon induction with respect to English for each of Spanish,

French, German, Italian and Dutch. They experienced substantial performance gains

over the linguistic data alone when they combined these image-based features with

linguistic data (Bergsma and Van Durme, 2011; Kiela et al., 2015). It has not been tried

yet with very different languages like Arabic, Chinese or Hindi. Nor has it been tried

with any lower resource languages like Indonesian, Turkish or Uzbek.

Though the previous corpora were available to us, we know of no corpus that con-

tains a much larger set of words and languages. In order to assess how well image simi-

larity can facilitate the task of learning translations on a much broader set of languages,

our first goal was to establish a new dataset with many more words and languages.

How we differ from previous work
1. We work on a much larger scale (more words, more images)
2. We run experiments on many more languages
3. We try a mix of high and low resource languages
4. We use words other than just concrete nouns: other parts of speech and abstract

concepts

The dataset we created is an improvement over previous datasets for this task, which

were limited to a few high resource languages and to the translation of nouns. Our

dataset contains images for 100 languages, and is not restricted by part of speech. We

collected images using Google Image Search for up to 10,000 words in each of 100

foreign languages, and gathered images for a total of 263,098 English words. For each

word, we collected up to 100 images. This allows us to test bilingual lexicon induction

for low resource languages (where there is not enough sentence-aligned bilingual par-

allel data to train a machine translation system), and to investigate the performance of

bilingual lexicon induction on different types of words (including verbs and adjectives

as well as nouns). This paper introduces our methodology for creating the resource

(which buffers against the criticism that Google may use bilingual dictionaries as part
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of its image search).

We are interested in how our results compare to prior work on several fronts, in

direct comparison with the high resource languages they used, when compared to more

varied languages, and finally when compared to lower resource languages. Given a set

of images associated with any foreign word, our task is to find the English word(s) that

are most similar to it by comparing its images with the images of all English words. To

accomplish this, we have created a pipeline that can take in images from two languages,

compare the similarity of each set of images from both languages, and then rank the

most likely translations in each case using Mean Reciprocal Ranking. Our pipeline is

flexible and allows for experimentation with a variety of image features, including the

SIFT, Histogram, and, Alexnet features. Our goal is to see how these techniques work

when the languages start to differ more significantly than in previous tests.

We first re-ran the SIFT-based (Bergsma and Van Durme, 2011) and CNN-based

(Kiela et al., 2015) experiments with our new corpus. We found that a noticeable im-

provement in our results over previous research for concrete words in five high resource

languages. We also find a good amount of signal in our results on other high resource

languages and even a few of our lower resource languages. We continue to find signal

when we include abstract words and other parts of speech. In contrast to previous work,

we perform two additional steps: filtering to use only language-confident images, and

to skip same translation words. Our results decline somewhat after filtering, but much

of the signal is still there.

2 Image Datasets

Corpus Languages Source Num words Nouns only? Concrete only? Used by
(Bergsma and Van
Durme, 2011)

French, German, Spanish,
Italian, Dutch

Google image search 500 yes yes (Bergsma and Van
Durme, 2011; Kiela et al.,
2015)

(Kiela et al., 2015; Vulic
and Moens, 2013)

Spanish, Italian, Dutch Wikipedia image captions 1,000 yes mostly (Kiela et al., 2015)

Table 1: Shows the breakdown of existing corpora used by prior work: what languages
they cover, the source, how many words, the parts of speech, and the concreteness.

The most closely related work to ours is research into bilingual lexicon induction
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using image similarity by Bergsma and Van Durme (2011) and Kiela et al. (2015). Their

work differs from ours in that theirs focused more narrowly on the translation of con-

crete nouns for a limited number of high resource languages. Bergsma and Van Durme

(2011) compiled datasets for Dutch, English, French, German, Italian, and Spanish by

downloading 20 images for up to 500 concrete in each of the foreign languages, and

20,000 English words. Approximately 15% of the word pairs in their lexicon were

same translation words.

Vulic and Moens (2013) generated another dataset, where they collected images

for 1,000 words in Spanish, Italian, and Dutch, along with the English translations for

each. This dataset consists of all nouns, but includes some abstract nouns along with the

concrete nouns. We show a breakdown of the existing corpora in Table 1. Our corpus

will allow researchers to explore image similarity for bilingual lexicon induction on

a much wider range of languages and parts of speech, which is especially desirable

given the potential utility of the method for improving MT between languages with

little parallel text.

Recent research in the NLP and computer vision communities has been enabled by

large collections of images associated with words or longer texts. Object recognition

has seen dramatic gains in part due to the ImageNet database (Deng et al., 2009), which

contains 500-1000 images associated with 80,000 synsets in WordNet. To our knowl-

edge, there is no known equivalent for ImageNet in other languages. The ESP Game

(Von Ahn and Dabbish, 2004) has also been used to label images with words, though

like ImageNet it is only available in English.

Other NLP+Vision tasks that have been enabled by the availability of large datasets

include caption generation for images, action recognition in videos, visual question

answering, and others. Ferraro et al. (2015) surveys existing corpora that are used in

vision and language research. Within the survey (Ferraro et al., 2015), we did find

several additional corpora containing images labeled for English words with captions,

including one data set of multilingual sentences describing short YouTube videos (Chen

and Dolan, 2011). However, we were unable to find any image corpora that contained
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multiple languages, with or without direct translations.

Kilgarriff (2007) aptly notes that it is difficult for academic researchers to compete

with the resources of the tech giants with respect to availability of corpora. Our own

attempts at finding existing corpora available to academics to broaden the set of lan-

guages and words we could work with also ended in failure, and therefore we opted to

create our own.

3 Corpus creation

Our goal in establishing a new data set was to ensure we could use it for evaluating how

well image similarity facilitates the task of learning translations. Rather than limiting

our data to a few high resource languages and to the translation of nouns, we gath-

ered images for many languages and did not filter out abstract words or restrict part

of speech. We collected images from Google image search results for up to 10,000

words in each of 100 foreign languages. We also gathered images for a total of 263,098

English words 1. For each word, we collected up to 100 images. This allows us to

test bilingual lexicon induction for low resource languages (where there is not enough

sentence-aligned bilingual parallel data to train a machine translation system), and to

investigate the performance of bilingual lexicon induction on different types of words

(including verbs and adjectives as well as nouns). A full breakdown of our dataset can

be found in Table 22.

3.1 Example images

Figures 1, 2, 3, 4, 5 show the Google image search results for five known translation

pairs. In each case, we show the top 50 words for the English word and its French

translation. For the English word cat and the French word chat, we see a relatively

consistent picture across the languages with lots of cat pictures, though in the French

case, we see a few icons for the English word chat. In the case of the English word
1 We split up the english superset into batches of 10,000
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Figure 1: The top 50 images for the English word cat and the French word chat.

Figure 2: The top 50 images for the English word mouse and the French word souris.

mouse and the French word souris, we see also see consistency across the languages

with lots of pictures of mice (the animal) as well as some pictures of computer mice.

Computer mouse seems to be slightly more frequent an occurrence in the top results for

English than for French. As we look at the English word gold and the French word or,

we see mostly similar images across the languages with lots of pictures of gold bricks

and other gold items. The one interesting case is that we see the words gold and or

spelled out in their respective languages. For the English word dam and the French

word barrage, we see with lots of pictures of dams in the result set for both languages.

We do however start to see more blueprints of dams for barrage that are not coming

up for dam. Finally, for the English word metal and the French word métal , we see a

near identical set of images across the languages with lots of pictures of what looks like

sheet metal.
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Figure 3: The top 50 images for the English word gold and the French word or.

Figure 4: The top 50 images for the English word dam and the French word barrage.

Figure 5: The top 50 images for the English word metal and the French word métal .
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3.2 Process

To meet our goal of working with more languages and not restricting part of speech,

we began looking at existing corpora with bilingual dictionaries in many languages.

We found a set of bilingual dictionaries for 100 foreign languages, each paired with

English translations (Pavlick et al., 2014). Pavlick et al. (2014) generated these bilingual

dictionaries from a large-scale crowdsourcing experiment on mechanical turk. Only

the most agreed upon translation results were used to create the dictionaries. Most

of the dictionaries contain approximately 10,000 words, though due to the agreement

threshold used in creating them, the exact number varies per language. As with Bergsma

and Van Durme (2011)’s corpus, we find that approximately 15% of the words in our

corpus for the five high resource languages described in 2 are same translation words.

The first decision we made was where to obtain the images from. We decided to

use Google image search because we felt it would help us maximize the coverage of

words in our bilingual dictionaries that produced image results. Google is the most

popular search engine and it supports language-boosted search results for many of the

languages we wanted to include in our corpus. Other researchers have attempted to eval-

uate Google-sourced datasets vs. others. One found that images from Google tend to

provide higher quality representations than other sources (Bergsma and Goebel, 2011),

while another found that Google-sourced datasets could compete with hand curated

datasets (Fergus et al., 2005). Still another found that both Google and Bing were well

suited to experiments with abstract words (Douwe Kiela and Clark, 2016). There are

still valid concerns of doing research using Googleology (Kilgarriff, 2007), we felt that

because our input dictionaries were created using mechanical turk and we attempt to

filter out images that appear on pages not in the correct language (see Section 5.1), we

are providing a reasonable simulation of a what monolingual image corpora might look

like in various languages. We discuss this further in Section 4. We did not try using

additional search engines due to time constraints.

The next thing we looked for was existing software that could help us create the

corpus with minimal development. We researched a couple of open source solutions,
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but none met our direct needs. To generate a corpus from simple bilingual dictionaries

and Google image search, we decided to create our own purpose-driven solution. The

overarching design behind our custom Google image scraper was to make it simple,

flexible, and easy to maintain. With this design in place, we created a simple proof of

concept so that we could evaluate initial results and see if our solution would help us

create the corpus the way we wanted it. We decided to write our code in Python due

to familiarity with the language and the ready availability of topically relevant and well

maintained libraries.

It was also clear that we needed to find somewhere to run our scraper code, which

would be downloading large quantities of data from a large number of web hosts. We

were wary of running a massive scraping job on our personal or school resources, and

decided that Amazon Web Services (AWS) ready availability of ephemeral resources

was a natural fit. We had prior experience managing servers with AWS, and the ability

to change the hostname generating web requests sealed the deal. AWS also offered

a student credit of $100 that we were able to use to get our first experiments up and

running with.

We wanted to make the process of starting a new scraping job for each language to

be as easy as possible, especially given the number of languages we wanted to cover.

We were able to achieve that simplicity by using several tools provided by AWSs Elas-

tic Compute service (EC2). The first step was to create an instance based on the stock

Ubuntu image provided by AWS. Once the instance was ready, we installed every pack-

age and library required to run our code. After making a few changes to the config-

uration details, we took an snapshot of the system volume for that instance, and fed

that snapshot to the Amazon Machine Image (AMI) creation process (Figure 6). The

only steps we left before images started downloading were those that were specific to

the language being scraped. At this point, we could spin up as many instances as we

needed with the exact same configuration, without having to repeat the setup steps.

This approach allowed us to create as many instances as AWS supports that we were

willing to manage and pay for. Since scraping jobs are mostly network and storage
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Figure 6: Screenshot when creating an AMI in AWS’s console.

intensive, we were able to use a very cheap and small t2.micro instance to run our

jobs. We chose to run our servers in the standard AWS region in Northern Virginia,

which is relevant because that is where all of our web requests were originating from.

The process for starting a scraping job took a couple of minutes and is outlined in the

list below

1. Load an EC2 instance based on the AMI (Figure 7)

2. Attach and mount a second storage volume to it

3. Run a few commands on the server to kick off the job.

Figure 7: Screenshot when creating an EC2 instance from our pre-made AMI.

We decided to interact with Google as if we were a normal user, rather than using

their custom search API. While their API would have been preferable, we decided it was
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not feasible for a corpus of our size due to request volume restrictions and cost consider-

ations. We used several tools to ensure Google would treat our custom scraper running

on a remote Ubuntu machine as a normal user. First, we turned to the selenium

library (Selenium, 2006), which allows us to connect to a real web browser and pro-

grammatically control that browsers behavior. Figure 8 shows how simple it is to get

started with it. We chose Firefox as the browser for mostly arbitrary reasons. In or-

der to ensure our real browser worked in a headless environment, we used the xvfb

package, which allows us to create a fake display that we can tell our browser to use.

By starting up xvfb as a background process and configuring an environment vari-

able, selenium and Firefox would know to use this fake display. Simpler prototypes

before this (without a real browser) ran into various issues where Google searches re-

quired us to perform extra steps such as responding to Captchas. The solution was not

without trickiness though, as the connection via selenium, xvfb, and Firefox would

randomly fail and timeout. We also had to differentiate failure scenarios from when

Google genuinely had 0 image results for a search term.

from s e l e n i u m i m p o r t w e b d r i v e r
d r i v e r = w e b d r i v e r . F i r e f o x ( )
d r i v e r . i m p l i c i t l y w a i t ( 1 0 ) # w a i t f o r b rowse r t o

l o a d
s e a r c h u r l = ’ h t t p s : / / www. g oog l e . com / s e a r c h ?# tbm=

i s c h&s t a r t =0& h l = f r&l r = l a n g f r&q= cha t ’
d r i v e r . g e t ( s e a r c h u r l )

Figure 8: Simple example that uses selenium to fetch a Google image search results
with French language tuning for the word chat

In order to interact with Google image search, we needed to create a base set of

query parameters that could be easily extended on a per-language basis. The base pa-

rameters consisted of the flag to indicate we wanted to search for images and the flag to

indicate we wanted to get the first 100 images for our query. Then, for each language,

we decided to use Googles per-search language settings. They support two flags that re-

late to the language of the user making searches, hl (host language) 2 and lr (language
2 ”Explicitly setting this parameter improves the performance and the quality of your search results.” (Google,

2017a)
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restriction) 3. The hl flag sets the user interface language and was available for approx-

imately 85 languages in our corpus. The lr flag is an automatic language filter and was

available for approximately 45 languages in our corpus. Unfortunately, documentation

on the allowed values for this field is difficult to come across, but we found a list created

by a third-party that helped us get a reasonable picture. We had to do minimal manual

mapping of the source dictionaries with two letter language identifiers to the values for

the hl and lr flags that only sometimes were identical.

Upon inspecting the search result html, we used XPath 4 to pick out the link ele-

ments that contained the source image information and a regular expression 5 to extract

the links to the search images themselves. The raw link we extracted was a bit garbled

though, and initially we had a successful download rate of 50%. Through experimen-

tation, we determined that if we unquoted the raw link three times, we improved the

rate of successful downloads to over 90%. In the node adjacent to the image links, we

found that Google was dumping a bunch of JSON-based metadata about the source im-

ages. We augmented Googles metadata with the image link that we had extracted and

parsed, the original filename, whether the download was successful, error information

if it failed, and the filename used to store the result.

In order to facilitate downloading the source images, we needed a structure for

storing the scraped images. We decided to use one outer folder for each language,

one inner folder for each word’s index in the dictionary, and then named the files based

on their order of appearance in the search results, i.e. 01.jpg, 02.png, etc. We then set

out to try downloading the source files using Python’s urllib library. In our initial

implementation to download the files, we experienced a large number of failures, due

to a wide variance in size, format, and server host quality. We also found many files

that had unknown or non-image extensions, which we worked around by inferring the

extension from the content type when we went to download the file. There were also

files that downloaded very slowly and/or timed out, which we worked around by setting
3”Language filters limit a search to pages in the specified languages. The Google Search Appliance has built-in

language filters that detect the language of a query and return appropriate results.” (Google, 2017b)
4//a[@class=’rg l’]
5r’imgres\?imgurl=(?P<url>.*?)(&imgrefurl)’
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a timeout value of 30 seconds. A timeout of 30 seconds was a compromise where we

could end downloads that were definitely going to timeout and fail while still trying

to download files that would pause here and there, but ultimately finish successfully.

Download times are generally out of the developer’s control, since they depend on the

route used between our server and the hosting server, as well as the configuration of

each of those servers controlled by third parties along the way. We found that download

times for files varied widely from our servers hosted in Northern Virginia. Anecdotally,

the vast majority of the files seemed to download very fast for web hosts in the USA

and Europe, but very slowly for web hosts in China.

In downloading each of the source images serially, we estimated the time it would

take to scrape just one of our 10,000 word dictionaries to be a couple of months. We

felt this was completely intractable, and created a threaded implementation to download

source images for each word that finished one 10,000 word dictionary in just under a

week. This improvement was achieved with 6 threads running the downloads concur-

rently. We were wary of increasing the thread count too high, due to the possibility of

flooding servers and being perceived as a denial of service (DoS) attack.

When testing the threaded implementation on our first dictionary, we received an

email from the AWS EC2 Abuse team (Figure 9) that one of our instances ”has been

web-crawling at an excessive or disruptive rate” and that we should stop flooding those

servers. The EC2 Abuse team had been forwarded server logs from one or more web

host administrators that showed the IP address of our test server making multiple web

requests with the Python-urllib user-agent header, which according to the logging

software used by the administrators, constituted a DoS attack. We were fairly certain

that the software they were using was looking for a specific list of user-agent headers

in requests rather than looking at per-IP request rates. Immediately upon receiving this

request, we shut down our scraping jobs and responded to the email that we were scrap-

ing for a school project and would temporarily stop until we finished improvements that

addressed their concerns.

Regardless of the actual reason for being flagged, we still wanted to make a good
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Figure 9: Snippet from AWS logs

faith attempt to reduce the potential for flooding any specific server with requests. In

order to mitigate our risk, we decided to use an in memory cache to track the web hosts

that we were downloading from. We felt it was overkill to limit downloads on any one

host to one at a time, as it is common to make multiple requests to the same host while

viewing a web site in your web browser. Therefore, we created a simple approach for

throttling requests. If we had downloaded from a particular web host in the last 15

seconds 6, we paused initiating the next download against that host for 3 seconds 7. We

chose the Python library beaker, because it was recently maintained, and manages in

memory caches reasonably well out of the box.

In order to address the likely root cause of being flagged by the EC2 Abuse team, we

also needed to use something other than Python-urllib for our user-agent header.

We decided to use a set of 120 commonly used user-agent headers on the web, which

would allow us to blend right into their usual mix of requests. At minimum, we knew

we’d no longer be flagged for using urllib’s default header value. The EC2 Abuse

team had suggested identifying ourselves explicitly in the user-agent header, but the

prospect of receiving emails from less than expert system administrators about scraping

image files that Google had already scraped anyways was unlikely to be constructive.

M o z i l l a / 5 . 0 ( Windows NT 6 . 1 ; WOW64; rv : 2 5 . 0 ) Gecko /20100101 F i r e f o x / 2 5 . 0
M o z i l l a / 5 . 0 ( X11 ; Linux x86 64 ) AppleWebKit / 5 3 5 . 1 9 (KHTML, l i k e Gecko ) Chrome / 1 8 . 0 . 1 0 2 5 . 4 5 S a f a r i / 5 3 5 . 1 9
M o z i l l a / 5 . 0 ( Android ; Mobile ; rv : 2 9 . 0 ) Gecko / 2 9 . 0 F i r e f o x / 2 9 . 0
M o z i l l a / 5 . 0 ( c o m p a t i b l e ; MSIE 1 0 . 0 ; Windows Phone 8 . 0 ; T r i d e n t / 6 . 0 ; IEMobi le / 1 0 . 0 ; ARM; Touch )
M o z i l l a / 5 . 0 ( iPhone ; CPU iPhone OS 7 0 6 l i k e Mac OS X) AppleWebKit / 5 3 7 . 5 1 . 1 (KHTML, l i k e Gecko ) V e r s i o n

/ 7 . 0 Mobile / 1 1 B651 S a f a r i / 9 5 3 7 . 5 3

Figure 10: A couple example user agent headers that we used

Because our scraper jobs took multiple days, we ran them in named screen sessions.

We ran xvfb in one screen session, and the scraper in the other. Both needed to be
6Based on experimentation
7Based on experimentation
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running for the duration of each scraping job. Occasionally, we would see random

failures to start our scraper due to Firefox being unable to connect to the xvfb display,

but restarting xvfb would always fix the problem. Once the scraping job completed,

we had occasional issues where search result requests would fail for one or more words.

To address this problem, we created a flag for our scraper that allowed us to re-run the

scraper only for words that had no image results. This second pass over the words

was helpful for expanding the coverage of words in our dictionaries that had images

downloaded for them.

We decided use AWS’s Simple Cloud Storage Service (S3) service for the long

term storage of our scraped corpora, given that we were already using AWS for the

scraping jobs. For the first month of storage, we could store our data for approximately

$0.03 per gigabyte, dropping to approximately $0.01 per gigabyte after the first month.

Based on the first set of foreign words that we scraped ( 250GB), we estimated that 100

languages would conservatively take 25 terabytes to store. Our back of the envelope

price estimate for the first month then came in around $750 per month, dropping to

about $300 afterwards.

We created a single zipped file per language that we would upload to S3 as the

result. We found that transferring the images individually was incredibly slow, due

to the overhead incurred with each request. We tried to optimize our file structure by

using a single outer tar file that contained a tar.gz file for each word. This structure

allowed us to extract the results for specific words, rather than always needing to extract

the entire package just to access the images for a few words. We also decided to create

a sample file for each language, consisting of 100 (1%) of the approximately 10,000

words in the corpus. This would allow somebody to download a sample file sized at

approximately 2.5 GB instead of a package sized at 250 GB and evaluate if our files

would work for them without needing to download an entire language first.

We wrote a separate Python script that creates both the package and the sample

file, and then uploads them to S3. We also created the reverse script so that we could

easily extract the results when we were done. In order to store the large amount of
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Figure 11: Top level AWS S3 view of our bucket

intermediate data needed to generate our package file, we attached an additional storage

volume to our instance, with approximately two times the amount of storage used by

the downloaded files. Using cheaper, slower storage volumes on AWS, the approximate

time to package and upload a 250GB package was 2 days. On a related note, we also

needed a bucket key naming scheme to organize our results reasonably, we decided to

create a single bucket with two top-level folders: packages and samples (Figure 11).

Inside those folders was a file for each languages scraped results, and 27 distinct files

for the English superset (Figures 12 and 13).

Figure 12: List of sample files as stored
in our S3 bucket

Figure 13: List of package files as
stored in our S3 bucket

Given that all we required for running a scraping job was a newline separated text

file with one word per line, we were able to run additional jobs as they came up. Part-

way through the scraping process, we decided to create a dictionary for the Uighur

language. In addition to this, based on the 2016 events surrounding an attempted coup

in Turkey, we decided to scrape Turkish again after this news broke, as we thought it
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might be an interesting comparison point for words that might relate to the coup and

how their images changed after the event. The final amount of data that we scraped with

100 languages, plus 25 sections of the English superset, Uighur, and Turkish a second

time was approximately 21 terabytes.

We have open sourced the code we used in a repository named multilingual-google-

image-scraper on Github8. The code is generalizable to any input dictionary and we

provided instructions on how to run it on a variety of platforms.

Dependencies:
1. AMI: ubuntu-trusty-14.04-amd64-server-20160114.5
2. Additional aptitude packages: python-virtualenv libxslt-dev libxml2-dev python-

dev python3-dev zlib1g-dev git unzip xvfb firefox
3. Python version: 3.4.5 with virtualenv
4. Pip libraries: beaker awscli selenium

4 Is this Googleology?

One concern of ours has been: what if Google is just using a bilingual dictionary under

the hood and serving up images from English webpages for foreign language searches?

There are potential downsides to using Google image search in general, and the hl

and lr language customization flags specifically. We don’t know what Google is doing

behind the scenes when running searches, and it is possible that they are translating

queries into English (or other high resource languages) and returning images associated

with the translated queries (Kilgarriff, 2007), rather than in the actual language we are

trying to generate images for, in an attempt to improve the relevancy of their search

results. It is even conceivable that in using image data from Google that we are effec-

tively reverse engineering internal bilingual dictionaries that they have built in a variety

of languages.

To counter this, we take steps to filter out images that did not appear on pages

written in the language that we were gathering images for. We do so by performing

language identification on the text that is associated with the images. First we create a
8https://github.com/brendandc/multilingual-google-image-scraper
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parallel corpora of the text from the pages the images appeared, as recorded in Google

Image Searchs metadata. Then for the text of each image, we use the Chrome Language

Detector 2 (Sites, 2013) to detect that pages native language. Then, we try evaluating

our corpus again by removing those images where the language detected on the page

differed from the language of the set of words they are assigned to.

5 Complementary Text Corpus9

Source Language Arabic Dutch French

Detected Language

Arabic .5543 Dutch .5139 French .5822
English .4189 English .4539 English .4038
Persian .0051 German .0078 Spanish .0022
French .0020 French .0056 Norwegian .0017
Norwegian .0015 Norwegian .0022 German .0013

Source Language German Italian Spanish

Detected Language

German .5946 Italian .5856 Spanish .6144
English .3847 English .3797 English .3609
Dutch .0038 Spanish .0109 Portuguese .0115
French .0032 Portuguese .0063 Galician .0017
Norwegian .0019 French .0036 Italian .0015

Table 2: The top-5 most common languages detected in individual pages for each of 6
high-resource languages. With each language is the fraction of web pages represented
by that language.

A heuristic used with great success by search engines is that the words used on

a webpage containing an image are likely to be related to that image. By extracting

the text of the webpages that displayed the files in our image corpus, we are able to

accomplish dual goals of ensuring the text is in the language of interest and enhancing

the dataset by providing a “comparable corpus.” A comparable corpus is a multilingual

dataset with some noisy signal of translation equivalence. In our case, words extracted

from webpages of similar images are likely to be topically similar. Because the image

similarities are language-independent, we get a noisy multilingual signal.

Due to the vagaries of the internet, we were able to extract text for approximately

78% of the images in the corpus. Tables 2 and 3 show the top-5 most common languages
9John Hewitt (Student, CIS, University of Pennsylvania) did most of the work in this section.
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detected in the text corpus, along with the fraction of web pages represented by that

language, for 6 high- and low-resource languages of interest, respectively. Each web

page does not necessarily correspond to a single image in the image corpus; any web

page could be shared by many images.

Source Language Bengali Cebuano Indonesian

Detected Language

Bengali .7256 English .8318 English .4972
English .2300 Spanish .0401 Indonesian .4667
Russian .0160 Tagalog .0264 Malay .0114
Tajik .0083 Cebuano .0227 Turkish .0034
Bulgarian .0073 French .0129 German .0026

Source Language Turkish Uighur Uzbek

Detected Language

Turkish .6772 Uighur .6609 English .6035
English .3077 English .1140 Uzbek .1882
Spanish .0013 Inupiaq .0778 Russian .1169
Indonesian .0011 Arabic .0291 Turkish .0290
German .0011 Persian .0290 Azerbaijani .0128

Table 3: The top-5 most common languages detected in individual pages for each of 6
low-resource languages. With each language is the percent of web pages represented
by that language. Note that we used a separate, unpublished language detection system
for Uighur because CLD2 does not support Uighur detection.

The percentage of web pages written in the language of interest varied greatly from

language to language, but was typically between 50% and 60% for high-resouce lan-

guages. Qualitatively, many pages were from YouTube or other English-speaking sites

that happened to rank highly on foreign-language image searches. This motivates the

necessity of filtering images used in the bilingual lexicon induction task to just those

coming from in-language web pages.

Figures 14 and 15 show examples of text extracted from a page retrieved from the

image search metadata. The text is paired with the image that appeared on its web page,

as well as the Indonesian word used in the image search.

5.1 Language-confidence

We used a heuristic for language-confidence such that if an expected language showed

up in the top-3 most likely languages as output by our language detection system on

a web page, images on that page were kept. This relatively lenient heuristic is well-
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Referring url
http://thayyiba.com/2015/12/15/2799/keistimewaan-
memelihara-kucing/
Indonesian (extracted from web page)
Kucing merupakan salah satu jenis hewan yang banyak dipelihara oleh ke-
banyakan orang. Wajahnya yang lucu dan imut menjadika n kucing adalah teman
bermain yang menggemaskan. Belum lagi tingkah polah dari kucing yang kerap
manja serta menarik perhatian membuat kita betah berlama-lama bermain dengan
kucing.

Translation (done for illustrative purposes)
Cats are one of the animals that many people keep. Their funny and cute faces
make cats adorable playmates. Not to mention their behaviors are often affec-
tionate and done to attract attention, which makes us enjoy spending a lot of time
playing with cats.

Figure 14: Example text extracted from a web page corresponding to an image found
for the Indonesian word kucing (cat), and the same text manually translated to English.

motivated because of the nature of automatically-scraped text from the web. English

text is pervasive on the internet, even when the primary language of content of the page

is not English. Further, many pages with our images have small amounts of text.

In all cases, we jointly attempt to detect all languages on a given page using the

CLD2 library (Sites, 2013). When the language of interest shows up in the top 3

guesses, we have reasonable evidence that some of the webpage’s text is in that lan-

guage, even if there’s also a substantial amount of English or some other language. Any

multilingual web pages are valid for our purposes and should be kept. Table 4 shows the

percentage of pages in the expected language for an 11 language subset of our corpus.
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Referring url
http://www.bbc.com/indonesia/vertearth/2015/09/
150911vertearthkucingstres
Indonesian (extracted from web page)
Apa yang terjadi jika kucing stres ?

Translation (done for illustrative purposes)
What happens if the cat is stressed?

Figure 15: Example text extracted from a web page corresponding to an image found
for the Indonesian word kucing (cat), and the same text manually translated to English.

6 Concreteness of words

In order to measure the concreteness of words, we use two sets of English words labeled

with concreteness ratings: the University of South Florida norms (USF) (Nelson et al.,

2004) and the University of Ghent dataset (Ghent) (Brysbaert et al., 2014).

The USF dataset uses a scale of 1 to 7 to represent concreteness, where 1 is the

most abstract, and 7 is the most concrete. They borrowed most of the values from prior

research. The Ghent dataset uses a scale of 1 to 5 to represent concreteness, where 1 is

the most abstract, and 5 is the most concrete. They created their results via a large-scale

internet crowdsourcing experiment in the form of a norming study.

The USF dataset has concreteness ratings for 3,260 words, while the Ghent dataset

has concreteness ratings for 39,954 words. Table 5 shows a breakdown of word counts

and percent coverage for the English words in their corpora and our corpus.
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language percent in expected language
Bengali 76%
Turkish 69%
Spanish 64%
Arabic 64%
German 64%
Italian 62%
French 61%
Dutch 54%
Indonesian 50%
Uzbek 23%
Indonesian 6%

Table 4: Language identification statistics for 11 languages in our corpus using CLD2

USF Ghent
English words in their corpus 3,260 39,954
Words covered in our corpus 3,125 19,871
Percentage of words they have concreteness scores for that are in our corpus 96% 50%
Percentage of our corpus they have concreteness scores for 1% 8%

Table 5: Summary statistics for the concreteness corpora relative to the words in our
corpus

Concrete words

USF
1. ambulance - 7.0
2. arrow - 7.0
3. elephant - 7.0
4. strawberry - 7.0
5. flask - 7.0

Ghent
1. tulip - 5.0
2. telescope - 5.0
3. elephant - 5.0
4. strawberry - 5.0
5. bedsheet - 5.0

Figure 16: Some examples of very concrete words in (Nelson et al., 2004) and (Brys-
baert et al., 2014).

Figure 16 shows some very concrete word examples, while Figures 17 and 18 show

the top 50 image results in our corpus for some of those same very concrete words.

For the top 50 images for the word elephant, we saw a relatively consistent situa-

tion where all of the images are photographs or drawings of elephants, with the head

and trunk visible, sometimes showing one elephant and other times showing multiple

elephants. For the top 50 images for strawberry, we see a similar situation, where ev-

erything is either a clear picture or drawing of a strawberry or strawberries, with the

body and stem clearly identifiable in all cases.
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Figure 17: The top 50 image results for
the concrete word elephant that has the
maximum concreteness rating in both
corpora.

Figure 18: The top 50 image results
for the concrete word strawberry that
has the maximum concreteness rating
in both corpora.

Abstract words

USF
1. hope - 1.18
2. thought - 1.28
3. moral - 1.39
4. morals - 1.39
5. virtue - 1.46

Ghent
1. essentialness - 1.04
2. eh - 1.04
3. spirituality - 1.07
4. although - 1.07
5. possibility - 1.33

Figure 19: Some examples of very abstract words in (Nelson et al., 2004) and (Brysbaert
et al., 2014).

Figure 19 shows some very abstract word examples, while Figures 20 and 21 show

the top 50 image results in our corpus for some of those same very abstract words.

In the top 50 images for the word hope, it is difficult to pin down a consistent

theme to the images. We see the word itself spelled out in many fonts and with many

backgrounds. We can see some themes like bright rays of sunlight, but they are still on

varied backgrounds and other identifiable objects are present. For the word possibility,

we see another situation where we would struggle to identify a consistent theme to the

images. We do see some cases where the word itself is written (typically with some

other prose), and a few places where doors are opening to signify possibilities, but there

is a lot of variance in the set.
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Figure 20: The top 50 image results
for the abstract word hope that rates at
1.25 in the Ghent corpus and 1.18 in the
USF corpus.

Figure 21: The top 50 image results for
the abstract word possibility that rates
at 1.33 in the Ghent corpus and 1.52 in
the USF corpus.

7 Visual features

7.1 SIFT

Figure 22: Original picture on the left with matching features highlighted for a rotated
and scaled up version of itself.

Scale-invariant feature transform (SIFT) (Lowe, 2004), is an algorithm for trans-

forming image content into local feature coordinates that are invariant to translation,

rotation, and scale. These features (keypoints) are also robust enough to work through

changes in illumination, noise, and distortion. These SIFT keypoints can then be gen-

erated for different images, and we can use features that appear in both images to help
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930 128
11 4 0 0 0 0 0 6 127 12 0 0 0 2 2 141 24 0 0 7 78

13 4 64 0 0 0 9 57 0 0 0 44 23 0 0 0 10 29 11
141 86 1 5 6 7 19 66 68 7 1 82 141 21 2 13 0 0
0 24 103 1 0 0 15 1 0 0 0 53 141 24 141 9 4 47
26 23 129 131 32 5 5 141 93 0 0 5 0 0 0 29 11 0

0 0 12 1 0 0 0 3 17 7 1 0 0 37 80 6 27 10 0 0
0 44 83 7 0 0 0 0 0 1 0 0 0 0

Figure 23: First two lines of an example SIFT keypoint representation for an image. 930
represents the number of SIFT keypoints in the file, 128 is the number of dimensions in
the vectors. Note: that 128 is the number of dimensions returned by the SIFT keypoint
algorithm.

gauge similarity between those images. Figure 22 shows SIFT features being matched

from an original image and a version that is rotated and scaled up.

The number of SIFT keypoints generated for each image file varies widely, but the

number of dimensions per feature is constant (128). The set of SIFT keypoints can be

thought of as a bag of visual words. Figure 24 shows five cat pictures with the strongest

SIFT keypoints in each highlighted. We show an example raw SIFT keypoint vector in

Figure 23.

Figure 24: Five individual cat pictures with the strongest features highlighted and
visualized.

(Bergsma and Van Durme, 2011) adapted the library written by (Lowe, 2004) to

generate and store SIFT keypoints for candidate images with a c++ library of their

own. We have in turn adapted their library to generate keypoints for a larger and less

standardized corpus of images in Python.

In order to make meaningful comparisons, we need to group similar SIFT keypoints

together. In order to convert the sift keypoints (represented as 128-dimensional vectors)

into an easily comparable bag of visual words, we cluster the keypoints (Bergsma and

Van Durme, 2011) using the k-means clustering algorithm. We used the mini batch k-

25



means (Sculley, 2010) approximation to speed up computation and randomly sampled

20% of the SIFT keypoints to avoid memory constraints. Following the lead of previ-

ous researchers (Bergsma and Van Durme, 2011), we configure k-means to output 100

clusters, though experimenting with different values would surely be worthwhile.

1 : 40
2 : 30
3 : 30

1 : 0 . 4
2 : 0 . 3
3 : 0 . 3

Figure 25: SIFT cluster occurrence
snippet

Figure 26: Normalized SIFT cluster
count snippet

We then assigned each SIFT keypoint to the cluster nearest to it, counting the num-

ber of keypoints in each cluster per image file. Finally, we normalize the per-file counts

of each of the 100 dimensions so that the relative number of SIFT keypoints between

images is irrelevant. We use these normalized cluster counts as the input representation

for computing image similarity (Bergsma and Van Durme, 2011). We show examples

of the raw and normalized cluster counts in Figures 25, 26.

7.2 Color histogram

Figure 27: Picture of a cat with the graph of RGB color intensities (0-255) and occur-
rence counts. Note that in this example the colors skew towards higher intensities and
therefore lighter colors.

We also create features using color histograms (Deselaers et al., 2008) for each

of the images in our corpus in parallel with the SIFT features. We abbreviate color
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histogram as HIST. We first generate a raw histogram of the RGB values for each pixel

in the image using the ImageMagick utility. (ImageMagick Studio, 2008).

Figure 28: Picture of a cat with the graph of RGB color intensities (0-255) and occur-
rence counts. Note that in this example the colors skew towards lower intensities and
therefore darker colors.

We then use the first hexadecimal digit of each R, G, and B value for each pixel

to create a slightly generalized count of the number of pixels that fall into each of the

4,096 possible combinations (feature dimensions) of the three hexadecimal digits.

461 : ( 1 , 9 , 1 ) #010901 s r g b ( 1 , 9 , 1 )
319 : ( 4 , 20 , 28) #04141C s r g b ( 4 , 2 0 , 2 8 )
891 : ( 4 , 23 , 35) #041723 s r g b ( 4 , 2 3 , 3 5 )

Figure 29: Raw histogram result snippet

F02 : 30
EA3 : 20
6A1 : 50

F02 : 0 . 3
EA3 : 0 . 2
6A1 : 0 . 5

Figure 30: Histogram occurrence snip-
pet

Figure 31: Normalized histogram
count snippet

We then normalize these feature counts so that the relative number of pixels between

images is irrelevant. The normalized counts that result from this process are used as the

input representation for computing image similarity (Bergsma and Van Durme, 2011).

We show examples of the three steps in the process in Figures 29, 30, 31.
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7.3 Convolutional neural network

Figure 32: Strongly activating feature in first convolutional layer compared to the
source image. We can still make out the overall outline of the cat fairly easily here.

Figure 33: Strongly activating feature in second convolutional layer compared to the
source image. The outline of the cat is much more difficult to see.

In addition to evaluating the corpus using SIFT features, we also try to use image

features that are created with deep convolutional neural networks (CNNs). CNNs are a

type of feed forward neural network that attempt to model visual perception in animals.

They include a set of convolutional layers, within which sets of filters (kernels) are

applied to (convolved with) the two-dimensional image data. CNNs provide top perfor-
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mance for tasks like object recognition and have advanced the field of Computer Vision

by a similar amount to when SIFT features were first introduced (Sharif Razavian et al.,

2014). See Figures 32, 33, 34, 35, and 36 to compare source image data with strongly

activating convolutional layer features at different levels.

Figure 34: Strongly activating feature in third convolutional layer compared to the
source image. The outline of the cat is difficult to see and we start to see areas of
interest around the eyes and nose.
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Figure 35: Strongly activating feature in fourth convolutional layer compared to the
source image. The outline of the cat is mostly gone here, but we see what looks like a
cat mask, with the eyes clearly identifiable.

Figure 36: Strongly activating feature in fifth convolutional layer compared to the
source image. We can’t see the overall outline of the cat here, but can still identify what
look to be the eyes and the bell.
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We choose to start by replicating past work where image features extracted from

the fc7 layer of a trained AlexNet (Kiela et al., 2015) were used. The AlexNet neural

network (Krizhevsky et al., 2012) starts with five convolutional layers, continues with

two fully connected layers (including the fc7 layer), before feeding into the softmax

regression algorithm. It has been pre-trained with the ImageNet (Deng et al., 2009) clas-

sification task using the Caffe deep learning framework (Jia et al., 2014). Douwe Kiela

and Clark (2016) found that circa-2012 AlexNet CNNs perform comparably to VG-

GNet (Simonyan and Zisserman, 2014) and GoogLeNet (Szegedy et al., 2015) CNNs

in multi-modal tasks.

We use the Python extensions for Caffe (Jia et al., 2014) via an adaptation of the

mmfeat library (Kiela, 2016) for working with AlexNet features. By taking the output

of the fc7 layer as our featurized image, we can directly compare the features for two

images using cosine similarity. We can skip the k-means clustering step that we needed

to do for the SIFT features because the CNN features can be directly compared.
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Figure 37: Synthesized deep dream image strongly activating the Siamese cat feature
in the fc7 layer.
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7.4 Image similarity

Figure 38: Matching SIFT features between two different cat pictures.

In order to compute similarity for any image pairing, we take the feature vectors

for each image. In the SIFT+HIST case (shown in Figure 38), we take each images

normalized SIFT cluster counts and vectors of histogram feature counts, respectively,

and compare them using cosine similarity. In the AlexNet scenario, we can directly

compare the 4,096 dimension fc7 layer using cosine similarity. In the SIFT+HIST

case, we arbitrarily weight the SIFT features 2 times more than the HIST features.

AVGMAX

Cosine similarity is a commonly used distance metric for vector-space models of lan-

guage (Turney and Pantel, 2010). We take these cosine similarity scores and use a linear

combination of the results for SIFT cluster counts and histogram features to create a

weighted similarity score between the two vectors (Bergsma and Van Durme, 2011).

The next step is to get similarity scores for pairs of words or phrases. We start by

taking the maximum cosine similarity score for each of the foreign words N images

with each of the M images for the English word. We then take the average of those

maximum cosine similarity results. We refer to this as the AVGMAX method. wf and

we are the sets of images for the English and foreign word being compared, while if

and ie refer to the member images of each set. Figures 39, 40, and 41 show an example
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walkthrough of the AVGMAX method with one foreign word vs. three English words.

AvgMax(wf , we) =
1

|wf |
∑
if∈wf

max
ie∈we

(cosine(if , ie))

Figure 39: Step 1 AVGMAX process, comparing the Indonesian word kucing to three
English words: cat, pet, and light
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Figure 40: Step 2 AVGMAX process, comparing each image for the Indonesian word
kucing to each image in each of the three English words: cat, pet, and light. The result
at this step is the maximum cosine similarity for each image in kucing vs. the three
options in each English word.

Figure 41: Step 3 AVGMAX process, averaging the max cosine similarity of each image
for the Indonesian word kucing vs. the possible options in each of the three English
words: cat, pet, and light. The result at this step is the AVGMAX value that feeds into
ranking for MRR and P@N.
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MRR

To evaluate a foreign language pair against English, we use the AVGMAX method to

get a score between each possible word pairing. We have the known translations for

each language from our bilingual dictionary corpus (Pavlick et al., 2014). We then rank

the possible English results for each foreign word based on these scores and use Mean

Reciprocal Rank (MRR) to evaluate the per-language results.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(1)

We also evaluate based on the precision of the correct translation being the top

option, or part of the top 5 or 20 options, which we call the Top-N accuracy metric and

is otherwise known as precision at N (P@N) (Gaussier et al., 2004; Tamura et al., 2012;

Vulic and Moens, 2013).

8 Image dispersion

To help us better understand our dataset, we are also interested in the similarity be-

tween the images in the image sets for each of the words in our corpus. Kiela et al.

(2014) proposed using Image Dispersion scores to measure this intra-word similarity of

images.

For each word in our corpus, we have compared all of the images for that word

to each other and outputted a single value that represents how similar the images are

to each other. We can calculate the Image Dispersion score for a word by computing

the average pairwise cosine distance between all of the image representations for any

given word. Kiela et al. (2014) chose average pairwise distance to emphasize the total

variation.

d(w) =
1

2n(n− 1)

∑
i≤j≤n

1−
−→wi · −→w j

|−→wi||−→wj|

We first tried generating image dispersion scores using dense SIFT features (Bosch

et al., 2007). We also tried generating dispersion scores with Pyramid Histogram of
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Visual Word (PHOW) features (Vedaldi and Fulkerson, 2010), as done by Kiela et al.

(2014). Dispersion scores generated from CNN features also seems like a worthwhile

experiment.

The mmfeat (Kiela, 2016) library provides an excellent basis for starting our work

on this. mmfeat has a pipeline for generating dispersion scores for two sets of images.

We have adapted this pipeline to support images from our corpus, and to generate results

for all images, the top 50, top 25, and top 10. We output our results to a JSON file so

that we can easily aggregate them later. We also track the number of images for each

word, so that we can ignore words that had 0 or 1 images.

{
” top50 ” : 0 .39761144600075921 ,
” top10 ” : 0 .38607501524692089 ,
” a l l ” : 0 .40102423120324254 ,
” t o t a l i m a g e s ” : 94 ,
” top25 ” : 0 .40653262346612978

}

Figure 42: Example dispersion results for a word

8.1 Proxy for concreteness

According to Kiela et al. (2014), these image dispersion scores for each word can be

thought of as a proxy for concreteness. At a high level, we can reasonably assume that

concrete words would have images that are very similar to each other, while abstract

words would have images that are very different to each other. In order to validate

that our results are reasonable, we need to compare them against concreteness scores

generated for words via other means. Image dispersion scores range from 0 to 1, lower

scores are more concrete and higher scores are more abstract.

For English, we can compare our image dispersion results against the two gold

standard datasets we discussed in section 6: the University of South Florida norms

(Nelson et al., 2004) and the University of Ghent dataset (Brysbaert et al., 2014). We

use spearmans correlation to check if our results correlate with these two gold standard
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datasets.

For our English superset (263,098 words), we compare our dispersion results against

the gold standard datasets and found a weak (0.20-0.39), but consistent correlation. In

table 6 we see the results: for all words, we scored -0.25, for the top 50 images, -0.24,

for the top 25, around -.23, and for the top 10, around 0.19.

USF dataset correlation Ghent dataset correlation
All images -0.242 -0.263
Top 50 images -0.232 -0.258
Top 25 images -0.223 -0.245
Top 10 images -0.185 -0.199

Table 6: Spearman’s correlation between our generated image dispersion scores and
the gold standard concreteness scores

We also generated dispersion scores for our English words with Pyramid Histogram

of Words (PHOW) features (Vedaldi and Fulkerson, 2010) using modified mmfeat code

(Kiela, 2016) and an octave script but found no correlation between the scores and either

dataset. We can’t rule out there being a bug in our and/or their code when generating

those PHOW features.

8.2 Pipeline integration

One approach place where we could integrate this with our current pipeline is to use the

dispersion scores for foreign words to pick out the most concrete and abstract examples.

We then try to take those results and re-compute our MRR and top N results for concrete

and abstract words based on the threshold used by (Kiela et al., 2014), the median score.

Another idea would be to use the dispersion scores to help filter the words we in-

clude in our final results. We can find words whose normalized dispersion scores are

some threshold away from where we expect them to be based on the gold standard con-

creteness ratings. We could then assume that any such cases would suggest a failure

in the image search algorithm, which would invalidate those words from our dataset.

Alternatively or additionally, we could try ignoring words whose image sets are all very

different (they appear very abstract) since we dont have a great way of capturing multi-

ple word senses. Our interest would be if our evaluation metrics improve after filtering
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out this data.

8.3 Per language averages

We also calculated the average dispersion scores for each language in order to get a

clearer picture of how similar the average image set is from one language to the next.

In Table 7, we see that the per-language scores range from 0.459 to 0.515, which is

relatively concise when we compare it to the per-language minimum and maximum

dispersion scores. The overall average did not vary noticeably when using the top 10,

25, 50 or all images.

language avg min max
Swahili 0.459 0.155 1.000
Chinese 0.465 0.122 0.758
Vietnamese 0.467 0.138 0.801
Somali 0.471 0.023 0.899
Hindi 0.474 0.180 0.714
Thai 0.475 0.229 0.760
Nepali 0.478 0.205 0.945
Gujarati 0.479 0.167 0.714
Uighur 0.482 0.234 0.910
Persian 0.482 0.219 0.670
Telugu 0.484 0.274 0.763
Azerbaijani 0.484 0.176 0.835
Tamil 0.486 0.263 0.942
Hungarian 0.486 0.187 0.836
Spanish 0.489 0.175 0.805
Bulgarian 0.490 0.136 0.781
Turkish 0.490 0.201 0.798
Uzbek 0.490 0.059 0.952
Serbian 0.494 0.148 0.809
Indonesian 0.494 0.172 0.828
Arabic 0.495 0.181 0.705
Cebuano 0.495 0.068 0.865
Bengali 0.495 0.244 0.970
Bosnian 0.496 0.213 0.764
Romanian 0.498 0.187 0.807
French 0.498 0.097 0.829
Albanian 0.498 0.232 0.809
Yoruba 0.501 0.003 0.998
Ukrainian 0.502 0.127 0.747
Filipino 0.502 0.220 0.827
Italian 0.502 0.112 0.848
English 0.503 0.002 0.996
Urdu 0.503 0.130 0.997
Dutch 0.507 0.129 0.824
Swedish 0.507 0.046 0.812
German 0.511 0.170 0.842
Slovak 0.512 0.191 0.835
Latvian 0.512 0.126 0.766
Welsh 0.515 0.165 0.856

Table 7: Average dispersion scores (using SIFT features) for all images. For context,
we have also included the minimum and maximum dispersion scores.
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9 Process

9.1 Computing resources

For most of our work, we use a distributed cluster (nlpgrid) run by the School of

Engineering and Applied Sciences at the University of Pennsylvania. The system con-

tains 12 nodes, each with 64 cores and 512GB of memory. It uses Open Grid Scheduler

to manage the queue of jobs that users have requested the cluster to process. For some

other work, such as generating our corpus and generating AlexNet CNN features, we

use Amazon Web Services (AWS).

9.2 Preparation

Before we could start working with the images for any language, we had to extract the

files from the package format we put them in upon creating the corpus. Before we could

extract the files, we needed to transfer the package files to nlpgrid from Amazon S3. It

takes several hours to download a 200 GB package file from S3, and then takes another

10 hours or so to extract a package file of that size.

Once the package file is fully extracted, we run a couple of processes on that pack-

age. The first process is to generate a package level report that provides useful statistics

on the corpus. The package report runs completes in under an hour. A summary of some

interesting fields for a few languages is in Table 8 while a full example is in Figure 58

in the Appendix.

French Spanish Indonesian Turkish Arabic
Total size 250GB 200GB 199.4GB 174.4GB 130GB
Total images 962,222 959,099 946,444 984,243 941,011
Average file size 260KB 208.5KB 210.7KB 177.2KB 138.1KB
Average width 858 658 775 655 610
Average height 662 497 592 485 457
Median images per word 98 98 97 99 97
Number of unique hosts 246,610 196,571 252,514 150,937 60,254

Table 8: Summary statistics for packages in a few languages

We also generate a metadata-only version of the corpus, which takes significantly

less space to store. It allows people to get a feel for how many images are in the corpus,
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where they were sourced from, how large they are, etc. Finally, we generate a list of

unique links of web pages where the images appear. This list of web pages is used to

generate the complementary text corpus described in Section 5.

9.3 SIFT + HIST

Figure 43: Big picture view of the SIFT+HIST pipeline.

The steps to generate MRR and top N accuracy results for SIFT and histogram

features are shown in Figure 43 and are enumerated as follows:

1. The first step is to create raw SIFT keypoint features for all of the images in the

dataset. We create one job per word that requests 4 cores and 32GB of memory,

yielding 10,000 jobs in the typical case. The other step we take at the outset is

the creation of histogram features, which are also split into one job per word with

the same settings. Running the roughly 20,000 jobs for SIFT keypoint generation

and histogram feature generation takes 4-6 hours. At this step, we output 2 new

folders per word, one for SIFT features, one for HIST features. Inside these

folders, we output 3 files per word, the raw SIFT and HIST features, and the

normalized HIST features.

2. The next step we run for every language is the language-wide clustering of the

SIFT keypoints. We run one job for this, requesting 1 full node in the cluster; 64
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cores and 512GB of memory. With these settings, clustering takes approximately

1 day to run to completion. Our output at this step is a single file with 100 128-

dimension cluster centroids.

3. After clustering completes, we need to run two batches of jobs that assign the

each of the raw SIFT keypoints to the cluster closest to it. We create 1 job per

word in the foreign language, as well as 1 job per possible translation word in

english. This usually gives us another 20,000 jobs, and for each job we request 1

core and 8GB of memory. They take 2-4 hours to run to completion. The output

at this step is one new folder for the English translations of the foreign words with

files that contain the normalized cluster counts, in addition to normalized cluster

counts for the image set of the foreign word.

4. Finally, with all of the features in hand, we run a single evaluation job to compute

MRR and top N accuracy results, for which we request a full node in the cluster.

The evaluation job takes approximately 36 hours to complete.

5. Our final output is a file that contains the AVGMAX similarity scores for all of the

English words for each foreign word.

9.4 CNN

The steps to generate MRR and top N accuracy results for CNN features are shown in

Figure 44 and are enumerated as follows:

1. The first step is to extract the fc7 layer for all of the images in the dataset.

Initially, we tried running one job per word with 16 cores and 128GB of memory,

yielding 10,000 jobs in total. The 10,000 jobs took 3-4 days to run through the

cluster. We then switched to running the 10,000 words on a single GPU-based

system each. One system was local others running on p2.xlarge size EC2

machines. In both GPU cases, the time to complete a language was 40 hours.

We output one file per image at this step, which contains the 4,096 dimensional

vector extracted from the fc7 layer.
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2. Because we were running the GPU-based jobs on systems external to our shared

storage, we had to transfer our dataset into these servers, and the resulting features

out of these servers and that added 10 hours to the process.

3. With all of the features in hand, we run a single evaluation job to compute MRR

and top N accuracy results, for which we request a full node in the cluster. The

evaluation job takes approximately 48 hours to complete.

4. Our final output is a file that contains the AVGMAX similarity scores for all of the

English words for each foreign word.

Figure 44: Big picture view of the CNN pipeline from (Kiela et al., 2015).

GPU systems (CUDA) and a highly-optimized implementation of 2D convolutions

(cuDNN) massively improved performance at this step over distributed CPU-only im-

plementations.

9.5 Image Dispersion

Generating image dispersion scores is a one step process. We adapted code from Kiela

(2016) that generates SIFT features, runs k-means clustering and compares the images

in a single process for each word. We create 10,000 jobs with 2 cores and 16GB of
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memory. These 10,000 jobs take 3-5 hours to run through the cluster. We output a

single json file for each word.

9.6 Scaling

Given the size of our corpus, at nearly every step of our process, we had to address

concerns about the scale of our experiments. To run experiments against any foreign

language, we had the pre-requisite of generating the features for the full set of poten-

tial English translations. We have 263,098 English words, yielding approximately 25

million images. Each foreign language adds 10,000 words and approximately 950,000

images. Therefore, we had to create SIFT, Histogram, and AlexNet features for 26 mil-

lion images just to run our first full experiment for a foreign language. In total, for the 38

language subset, we created SIFT, Histogram, and AlexNet features for approximately

33 million images. To make this whole process tractable, we used several techniques

to process our images. The first thing we did was to use Python’s threading and multi-

processing libraries to process multiple images simultaneously. The next thing we did

was to split our corpus into smaller chunks so that we could parcel the work out to the

nlpgrid cluster. We broke the task down so that one word equaled one job, tuning

the job parameters such that we maximized our throughput.

The next big area where we ran into scaling concerns was with loading the generated

features into memory from disk for both the SIFT clustering and overall evaluation

steps. Without any optimization, just loading the features into memory would take days,

before we even start thinking about the time it would take to actually do something with

those features. We found the best way to deal with this was to use Python’s threading

and multiprocessing libraries to massively parallelize loading the features into memory.

We reserved a full 64 core node on nlpgrid for this task, and that along with the

concurrency allowed us to load features for a language evaluation (20,000 words or 1.9

million features) in 5-8 hours. Later on in our experiments we did hit another scaling

consideration that we had not thought of before. In an attempt to organize our feature

files in a sane way, we stored them all on a single disk cluster. We started to see a
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slowdown when 3 or more nodes on nlpgrid were loading features from the same

disk cluster at the same time in a massively parallelized way. When this happened,

simple ls commands that usually returned in less than a second took 15+ seconds.

The final area where we addressed scalability concerns was in computing the simi-

larity between images using our features. To evaluate each foreign language, we com-

pared approximately 1 million images for the foreign words against each of the 1 mil-

lion images for English words (1 trillion similarities per language). The first optimiza-

tion we made was heavily limit the number of times we called into scikit-learn’s

cosine_similarity method. For each foreign word, we ran that method one time,

comparing the 100 images against the full 1,000,000 images for all English words. The

second optimization we made was to run those 100 x 1,000,000 cosine similarity cal-

culations concurrently. Finally, we decided to use sparse matrices to limit our overall

memory footprint. The SIFT and Histogram matrices were relatively sparse, and we

were able to run 32 simultaneously without running out of memory. The CNN matri-

ces were less sparse and we could only run 16 simultaneously without running out of

memory. The nodes each have 512GB of memory.

10 Results

We replicated the experiments from previous research using features generated from

our corpus and our results showed notable improvements. We also performed novel

experiments on low-resource languages and after filtering to use language-confident

images only.

10.1 Replicating previous work

We validated our dataset by replicating prior models for learning translations from im-

ages, and testing them on our dataset. We reproduced Bergsma and Van Durme (2011)’s

SIFT and color histogram (SIFT+HIST) approach and Kiela et al. (2015)’s AlexNet-

based (CNN) approach, testing them on the same five high resource languages that
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were focus of prior work. For both approaches, we rank the English words as candi-

date translations based on their visual similarity with the foreign words (with different

feature sets representing the images). We use the AVGMAX approach described in Sec-

tion 7.4 to represent the similarity between each foreign word and English word. The

number of candidate English words is equal to the number of entries in the bilingual dic-

tionary after filtering. We evaluate the models’ rankings using Mean Reciprocal Rank

(MRR) and top-N accuracy.

dataset Bergsma intersection concrete all
# words 500 250 500 8,500
MRR 0.367 0.595 0.402 0.116
Top 1 0.311 0.53 0.341 0.09
Top 5 0.414 0.659 0.475 0.14
Top 20 0.537 0.764 0.577 0.186

Table 9: Our SIFT+HIST results compared to those reported by Bergsma and Van
Durme (2011)

We compare 4 distinct scores using averages of 5 high resource languages (Dutch,

French, German, Italian, Spanish).

1. Original results from prior research with their 500 word corpus

2. Our results using the 250 words that intersect our corpus and their corpus

3. Our results using the 500 most concrete words in our corpus for each language

4. Our results using the 8,500 non same translation words (stw)

Tables 9 and 10 show the results reported in previous work, along with our repli-

cation of their models on our dataset. Since our dictionaries contain different words

than theirs, we intersect the words in our corpus and the words in their corpora, along

with the 500 most concrete words in our dataset (since concrete nouns were the focus

of previous work). The tables show the average score between Dutch, French, Ger-

man, Italian, and Spanish. Contrary to the previous experiments, we have used only

language-confident images and have filtered out same translation words in calculating

our results.
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dataset Kiela intersection concrete all
# words 500 250 500 8,500
MRR 0.658 0.829 0.653 0.277
Top 1 0.567 0.789 0.619 0.229
Top 5 0.692 0.872 0.71 0.326
Top 20 0.774 0.913 0.768 0.385

Table 10: Our CNN results compared to those reported by Kiela et al. (2015)

We successfully replicated the previous work, which shows that the concrete nouns

in our corpus can serve as a reasonable basis for image-based similarity in BLI tasks.

We highly outperformed previous results when using an intersection of words in the

corpora (ours and theirs) in the results generated with SIFT and Histogram features

in Table 9, as well as those generated with AlexNet features in Table 10. In looking

at the 500 most concrete words in our corpus only, we achieve higher accuracies than

they did on their 500 hand curated word set, which is better than we expected. We see

a significant dip in our scores when we look at our full word sets, but this is fully in

line with expectations given that we are also ranking translations for abstract words and

there are many more distractors to choose from. We also confirm the previous finding

that CNN features result in a substantial performance improvement over SIFT features.

10.2 Concrete word analysis

Unlike previous work, our corpus contains more than just concrete nouns. The third

result column in Tables 9 and 10 compare the 500 most concrete words in our corpus

versus for the full sets of words (which contain 8,500 words rather than 10,000 as a

result of our filtering steps).

ghent usf both avg >.7 avg >.8
German 6661 3138 3079 831 553
Spanish 7002 2985 2926 890 605
French 6727 3141 3084 948 630
Italian 6413 3049 2994 915 605
Dutch 6189 2922 2868 922 654

Table 11: Breakdown for the number of English words from our corpus that appear in
the concreteness corpora, with normalized scores (0-1) & specific thresholds

We used a relatively straightforward approach to find the 500 most concrete words
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based on our two datasets with concreteness ratings (Nelson et al., 2004; Brysbaert

et al., 2014). As a reminder, the USF dataset has concreteness ratings for 3,260 words,

while the Ghent dataset has concreteness ratings for 39,954 words.

1. First we analyze the English words in our corpus, finding only those that appear

in both of our datasets (USF & Ghent)

2. Next we normalize and average the concreteness scores of those words

3. Finally, we select the foreign words whose English translations have the highest

concreteness score

Table 11 shows a breakdown of the number of our English translations that appear

in the concreteness corpora, with normalized scores (0-1) & specific thresholds. In each

of the five high resource languages, more than 500 words scored with this metric had

concreteness ratings of 80% or more of the maximum score. We then picked the 500

foreign words whose English translations have the highest concreteness ratings in both

datasets.

In order to better understand how the concreteness scores for this metric compared

across languages, we calculated the average concreteness scores for each language we

report results for in Table 12. The scores show relatively steady averages for the lan-

guages that are slightly above the middle possible score (3.5 for USF, 2.5 for Ghent, and

0.5 for the normalized average of the two). This means that the words in our datasets

that we have coverage for all lean slightly concrete.
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language norm USF Ghent
Thai 0.67 4.79 3.64
Chinese 0.63 4.60 3.48
Vietnamese 0.63 4.47 3.45
Persian 0.62 4.52 3.30
Indonesian 0.61 4.45 3.23
Welsh 0.61 4.44 3.30
Azerbaijani 0.61 4.43 3.25
Uighur 0.61 4.41 2.95
Uzbek 0.61 4.38 3.31
Swahili 0.60 4.39 3.25
Hindi 0.60 4.40 3.18
Telugu 0.60 4.40 3.25
Tamil 0.60 4.39 3.22
Turkish 0.60 4.38 3.18
Latvian 0.60 4.36 3.19
Bengali 0.60 4.35 3.17
Bulgarian 0.60 4.36 3.18
Dutch 0.60 4.36 3.17
Urdu 0.59 4.33 3.17
Slovak 0.59 4.35 3.13
Italian 0.59 4.32 3.14
Filipino 0.59 4.32 3.15
Cebuano 0.59 4.30 3.16
Bosnian 0.59 4.32 3.17
French 0.59 4.32 3.10
Hungarian 0.59 4.30 3.09
Spanish 0.59 4.31 3.08
Nepali 0.59 4.29 3.17
Serbian 0.58 4.30 3.14
Albanian 0.58 4.28 3.09
Somali 0.58 4.27 3.23
Romanian 0.58 4.29 3.12
German 0.58 4.27 3.06
Swedish 0.58 4.26 3.11
Arabic 0.58 4.27 3.11
Gujarati 0.58 4.26 3.11
Ukrainian 0.57 4.23 3.07
Yoruba 0.56 4.14 3.10

Table 12: Average concreteness scores using USF, Ghent, and normalized average
(norm) datasets.
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10.3 Qualitative examples

In order to help understand what the results look like visually, we created image grids of

the images for some foreign words in French and Indonesian. We included the images

for the top 4 ranked English translation candidates along with the images for the foreign

words.

French

Figure 45: Top 10 images for French word: eau and the top 4 ranked translations using
SIFT+HIST features.

The first case we examine is the top 10 images for the French word eau, along with

its top 4 ranked English translation candidates. Figure 45 shows a consistent theme

where we see bodies of water, water droplets, and glasses of water. The set of images

for water looks very similar to the French image set and having the correct translation

as the top ranked option seems very reasonable. We think the near identical shapes are

likely to have produced similar SIFT features, while the near identical colors led to a

high degree of similarity in the color histogram features. Two other top options: liquid

and fluid are both similar in meaning. While their image sets deviate slightly (like with

the different colors for liquids), we still see similar shapes and colors on the whole. For

the other top ranked option ice, it is also quite reasonable, given that it is another form

of water. We do see some new shapes with the ice cubes but the colors are still nearly

identical and therefore kept the overall similarity very high.

In the next example (Figure 46), we examine is the top 10 images for the French

word étoile along with the top 4 ranked English translation candidates for it. For étoile,
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Figure 46: Top 10 images for French word: étoile and the top 4 ranked translations
using CNN features.

we see mostly drawings of stars along with some pictures of the night sky with stars

visible. The top ranked translation star has the exact same theme, and we suspect

that the star shapes and star-like dots in the night sky led to the similarity in the SIFT

features. The prevalence of yellow colored star shapes also seems to have contributed to

similarity on the color histogram front. We see the roles reversed in the second option

for stars, having mostly pictures of the night sky and just a few star shapes. We expect

the dots in the night sky provided a lot of shape-based similarity for the SIFT features,

while the colors in the night sky also were very similar. For the next option of point,

we think the dots were similar shape-wise to the starts in the night sky, and therefore

contributed to the SIFT similarity. We see an interesting scenario for points where we

are getting lots of image results for the sense of the word that reflects shopping rewards

points. These images have lots of images with star shapes in them, which surely boosted

the similarity of the SIFT-based features.

Indonesian

The first example (Figure 47) we look at for Indonesian is one where the SIFT+HIST

features did a reasonably good job of finding candidate translations. For the Indonesian

word cahaya, that translates to light, we do get the correct translation in the lead. The

image set for cahaya shows a relatively consistent picture of bright lights, many from
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Figure 47: Top 10 images for Indonesian word: cahaya (light) and the top 4 ranked
translations using SIFT+HIST features.

stars including our sun. When we look at the image set for light, we also see many

stars and other pictures of bright lights. We expect that the shapes of the stars produced

similar SIFT features, and the background of the dark sky with a bright star in the

middle produced many similar colors in the histogram features. One note about these

images is that we do see what appear to be identical images in the sets for English and

Indonesian. While they do appear to be derived from the same source image, we did

confirm that the images were present on websites in the correct language, and were not

exact matches (different scale/quality/etc). In the image sets for two of the other words

(further and bright), we have some pictures of the (day) sky with bright lights, as well

as pictures of the night sky with a star showing. We expect that these still produced a

strong degree of shape and color similarity for the SIFT and color histogram features

respectively. On the surface, the images for the other top ranked option (enlightenment)

look much different, however when we think about what the underlying comparisons

are of, we can see why they would rank highly for similarity. For the SIFT features,

we are also focused on bright circular objects with light rays protruding outwards. We

also see many bright colors from lights that are shining on the human-like shapes in the

images, which likely boosted the color histogram similarity.

We also look at the SIFT+HIST results (Figure 48) for the Indonesian word kucing,

which translates to cat. In the image set for kucing, we see a relatively consistent series

of images that contain one or more cats in them. Looking at the top ranked option,

golden, the image set shows exclusively golden retriever dogs. Looking at the colors
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Figure 48: The top 4 ranked translations of the Indonesian word kucing using
SIFT+HIST features. Compare to the rankings produced with our CNN features in
Figure 49.

of the dogs (which look similar to the cats in kucing) and the grassy backgrounds, we

think that there was a high degree of similarity color-wise. We also think the shapes of

the cats and the golden retrievers are similar at a high level and expect a decent degree

of similarity in the SIFT features as well. Looking at the next option, shellfish, the

shapes don’t look very similar to us, and we expect similar colors in the pictures of

shellfish contributed to the similarity for this word. In the case of mammals, it seems

like a reasonable option on the surface, and when we look at the shapes (some of big

cats), we can see why there would be some similarities in the SIFT features. We also

think the colors in the grassy backgrounds were similar and added similarity in the

histogram features. The correct translation, cat, is ranked fourth, and we think the

shapes in particular appear very similar, however the colors the cats themselves and the

backgrounds (not grassy) are notably different.

In Figure 49, we examine the same word (kucing) with CNN features. We see

immediate benefits from the CNN features, with the correct translation cat jumping to

the top. We expect the AlexNet features that activate strongly for cats led to a high

degree of similarity here. We also notice the image sets for two of the other top ranked

words (persian and pet) contain many pictures of pet cats. In the case of persian, we are

honing in on a specific cat breed, while in the case of pet, it is showing cats and dogs

together. We expect in both of these cases, features that relate to cats were activating

very strongly. Finally, animal also seems like a reasonable option to get as a top ranked
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Figure 49: Our dataset allows translations to be discovered by comparing the images as-
sociated with foreign and English words. Shown here are five images for the Indonesian
word kucing, along with its top 4 ranked translations using CNN features. Compare to
the rankings produced with our SIFT+HIST features in Figure 48.

translation candidate. We see some pictures of big cats, and other animals that have

some features that might be cat-like.

Abstract examples

Concrete words yield fairly easy to understand results visually. We were curious to see

if visual analysis of abstract words would provide similar insights. We examine the

CNN-based results for two Indonesian words to try and better understand what may be

happening with abstract words.

Figure 50: Shown here are the top 10 images for the abstract Indonesian word berharap,
along with its top 4 ranked translations using CNN features. At the bottom are images
for the actual translation hope, which was ranked 536.
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In the first example (Figure 50), we look at the Indonesian word berharap, whose

English translation is hope. When examining the images for berharap, we see examples

of various sayings written in Indonesian about hope. The backgrounds, fonts, and text

colors vary a lot for he writings. When we look at the top 4 ranked English transla-

tion candidates (betrayal, underestimate, hurt, appreciate), the words don’t have much

similarity meaning-wise, and the images all contain sayings in English about each re-

spective word. We expect that there are some CNN features that activate very strongly

when there is text present, though it is also probable that some of the text backgrounds

have features are slightly more similar for these words than others. Looking at the image

set for the actual translation hope, we see English text with the word itself (not sayings

about it) as well as some bright lights, new growths, and other things that may sym-

bolize hope. Given how different the image sets are, we are not surprised that the real

translation ranked above 500. It also shows some of the difficulties in using images for

abstract words to represent similarity, when the top images for the Indonesian searches

mostly include longer sayings and the top images for the English searches show both

the word itself and much more symbolism.

Figure 51: Shown here are 10 images for the abstract Indonesian word konsep, along
with its top 4 ranked translations using CNN features. The actual translation, concept,
was ranked 3,465.

In the next abstract word example (Figure 51), we see a completely different prob-

lem as to why the correct translation ranks very low. We examine the Indonesian word
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konsep, which translates to concept. When we look at the top images for konsep, we

see various attempts to make visually concrete what a concept might look like. Looking

down at some of the top ranked results, we see some similarities in some of the images.

For example, when we look at oriented, we see a very similar looking dartboard and

some diagrams that appear similar visually to the bubbles around the woman’s head. In

the image set for department, we see silhouettes of humans, which probably activated

AlexNet features for humans, and might have been similar to the konsep features that

were activated for the human head. In the image set for gifted, we see drawings and

pictures of children, where the same human and human-head based features were ac-

tivating strongly on both sides. We see a different set of images that look similar for

top level. The three apples from konsep looks similar to the stacked metal balls. We

expect they both strongly activated the features for round objects, which increased the

similarity. Looking at the image set for the actual translation (ranked over 3,000), we

immediately notice why it did yield much similarity: all of the pictures are of concept

cars. In this image set, the sense of the word is actually concrete , as the abbreviated

version of concept car, whereas Indonesian does not use konsep as an abbreviation for

mobil konsep, the direct translation. When we tested searching for mobil konsep, the

image set looked much more similar and we expect the English word concept would

have been a top rank for it.

10.4 Results for 38 language subset

Table 13 presents the performance results for a wide range of languages, varying in

the amount of resources that are typically available for MT systems. We find good

performance in high resource languages like French, Spanish, Arabic, as well as in

some lower resource languages like Indonesian and Turkish. We also find much poorer

results for other very resource languages like Gujarati and Somali.

An important note is that we noticed in the translations for our dataset and for the

previous dataset was that there was a significant number of words whose translation

was an exact match. When we used the raw translations without filtering, several lan-
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guages exceeded expectations by a large margin. We inspected the bilingual dictionaries

to figure out how many same translation words were there for each language, and we

found a correlation between the languages that scored higher than we expected and the

languages that had a relatively high number of the same translation words (stw). To

counter-act this, we took an additional filtering step of generating results with those

words omitted. We also included the set of possible English translations in each lan-

guage’s bilingual dictionary, to provide context when looking at the scores.

method All words 500 most concrete eng wordsS+H CNN S+H CNN
Spanish 0.182 0.382 0.495 0.724 9,918
Persian 0.156 0.323 0.212 0.374 950
French 0.17 0.321 0.385 0.61 10,483
Thai 0.14 0.32 0.229 0.46 5,555
Chinese 0.131 0.317 0.222 0.397 4,352
Dutch 0.131 0.311 0.353 0.641 10,528
Italian 0.109 0.262 0.382 0.651 8,926
German 0.113 0.254 0.396 0.636 10,064
Bulgarian 0.115 0.253 0.327 0.565 8,605
Indonesian 0.104 0.244 0.35 0.618 10,297
Turkish 0.113 0.224 0.373 0.567 10,231
Serbian 0.118 0.218 0.216 0.488 8,264
Swedish 0.097 0.207 0.287 0.517 9,565
Arabic 0.088 0.207 0.265 0.51 10,189
Vietnamese 0.1 0.196 0.233 0.46 6,633
Romanian 0.088 0.193 0.245 0.467 9,118
Hungarian 0.076 0.189 0.278 0.53 10,945
Bosnian 0.084 0.184 0.265 0.47 7,494
Ukrainian 0.078 0.17 0.277 0.456 4,964
Uighur 0.138 0.165 0.028 0.112 21,250
Slovak 0.064 0.159 0.217 0.446 6,539
Latvian 0.057 0.153 0.152 0.447 7,102
Hindi 0.062 0.147 0.15 0.442 9,446
Cebuano 0.082 0.131 0.096 0.263 7,745
Albanian 0.053 0.124 0.157 0.333 6,043
Uzbek 0.085 0.119 0.058 0.106 12,416
Azerbaijani 0.053 0.118 0.175 0.425 6,281
Filipino 0.045 0.106 0.125 0.401 9,772
Urdu 0.039 0.091 0.105 0.283 11,128
Bengali 0.028 0.088 0.128 0.328 12,487
Nepali 0.038 0.086 0.087 0.254 11,633
Tamil 0.031 0.077 0.1 0.289 9,888
Swahili 0.028 0.056 0.077 0.178 7,167
Telugu 0.025 0.051 0.042 0.17 9,577
Yoruba 0.036 0.049 0.015 0.029 1,585
Welsh 0.027 0.048 0.043 0.149 7,567
Gujarati 0.013 0.041 0.041 0.181 12,026
Somali 0.03 0.039 0.031 0.082 8,617

Table 13: MRR scores for additional languages filtering out same translation words
(stw). The results are sorted so the best MRR score with CNN features for all words
is at the top. For comparison purposes, we included the number of possible English
translations for each language.

Another interesting way to slice the results is to look at the languages that had the

largest % gain when between the SIFT+HIST results and the CNN results (Table 14).
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We see the strongest gains when looking at lower resource languages like Gujarati and

Bengali, however the improved MRR scores for those languages still don’t appear to

have a lot of signal. Aside from a few lower resource outliers, we see across the board

improvement of 100% or more the languages in our set. If there is signal to be found,

the CNN based approach does a consistently better job of finding it than the SIFT+HIST

based approach.

method All words 500 most concrete
% gain S+H CNN % gain S+H CNN

Gujarati 215.38 0.013 0.041 341.46 0.041 0.181
Bengali 214.29 0.028 0.088 156.25 0.128 0.328
Latvian 168.42 0.057 0.153 194.08 0.152 0.447
Hungarian 148.68 0.076 0.189 90.65 0.278 0.53
Slovak 148.44 0.064 0.159 105.53 0.217 0.446
Tamil 148.39 0.031 0.077 189 0.1 0.289
Chinese 141.98 0.131 0.317 78.83 0.222 0.397
Italian 140.37 0.109 0.262 15.97 0.382 0.651
Dutch 137.4 0.131 0.311 48.16 0.353 0.641
Hindi 137.1 0.062 0.147 194.67 0.15 0.442
Filipino 135.56 0.045 0.106 220.8 0.125 0.401
Swedish 135.23 0.088 0.207 59.25 0.265 0.51
Indonesian 134.62 0.104 0.244 18 0.35 0.618
Albanian 133.96 0.053 0.124 112.1 0.157 0.333
Urdu 133.33 0.039 0.091 169.52 0.105 0.283
Thai 128.57 0.14 0.32 100.87 0.229 0.46
Nepali 126.32 0.038 0.086 191.95 0.087 0.254
German 124.78 0.113 0.254 30.56 0.396 0.636
Azerbaijani 122.64 0.053 0.118 142.86 0.175 0.425
Bulgarian 120 0.115 0.253 72.78 0.327 0.565
Romanian 119.32 0.088 0.193 90.61 0.245 0.467
Bosnian 119.05 0.084 0.184 77.36 0.265 0.47
Ukrainian 117.95 0.078 0.17 64.62 0.277 0.456
Arabic 113.4 0.097 0.207 80.14 0.287 0.517
Spanish 109.89 0.182 0.382 12.53 0.495 0.724
Persian 107.05 0.156 0.323 76.42 0.212 0.374
Telugu 104 0.025 0.051 304.76 0.042 0.17
Swahili 100 0.028 0.056 131.17 0.077 0.178
Turkish 98.23 0.113 0.224 11.8 0.373 0.567
Vietnamese 96 0.1 0.196 97.42 0.233 0.46
French 88.82 0.17 0.321 35.58 0.385 0.61
Serbian 84.75 0.118 0.218 125.93 0.216 0.488
Welsh 77.78 0.027 0.048 246.51 0.043 0.149
Cebuano 59.76 0.082 0.131 173.96 0.096 0.263
Uzbek 40 0.085 0.119 82.76 0.058 0.106
Yoruba 36.11 0.036 0.049 93.33 0.015 0.029
Somali 30 0.03 0.039 164.52 0.031 0.082
Uighur 19.57 0.138 0.165 300 0.028 0.112

Table 14: MRR scores for additional languages filtering out same translation words
(stw). The results are sorted by the largest percentage gain for all words.
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10.5 Language-confident results on 11 language subset

Table 15 presents the performance results for a subset of the languages in Section 10.4,

which also vary in the amount of resources that are typically available for MT systems.

We find good performance in high resource languages like Spanish, French, Dutch, as

well as in some lower resource languages like Indonesian and Turkish. We also find

much poorer results for other very resource languages like Bengali and Uzbek. As with

before, we have filtered out same translation words from our result sets.

method non-stw words 500 most concrete
S+H CNN S+H (c) CNN (c)

Spanish 0.127 0.322 0.436 0.711
French 0.136 0.288 0.396 0.61
Dutch 0.11 0.286 0.38 0.663
Italian 0.105 0.25 0.405 0.676
Indonesian 0.1 0.238 0.353 0.634
German 0.103 0.237 0.392 0.637
Turkish 0.086 0.196 0.321 0.554
Arabic 0.068 0.162 0.224 0.466
Cebuano 0.022 0.129 0.049 0.254
Bengali 0.027 0.081 0.123 0.304
Uzbek 0.049 0.068 0.036 0.085

Table 15: MRR scores for language-confident images only with AlexNet (CNN) and
SIFT+HIST (S+H) features

As in Section 10.4, we show the results sorted by the largest % gain between

SIFT+HIST results and CNN results (Table 16. Again, we see the strongest gains when

looking at lower resource languages like Cebuano and Bengali. The improved MRR

scores for those languages still don’t appear to have a lot of signal. Aside from a single

outlier (Uzbek), we see across the board improvement of 100% or more the languages

in our set. Using only language-confident images, the CNN features still does a much

better job of helping us find translations than SIFT+HIST based features.
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method All words 500 most concrete
% gain S+H CNN % gain S+H CNN

Cebuano 486.36 0.022 0.129 418.37 0.049 0.254
Bengali 200 0.027 0.081 147.15 0.123 0.304
Dutch 160 0.11 0.286 74.47 0.38 0.663
Spanish 153.54 0.127 0.322 63.07 0.436 0.711
Arabic 138.24 0.068 0.162 108.04 0.224 0.466
Italian 138.1 0.105 0.25 66.91 0.405 0.676
Indonesian 138 0.1 0.238 79.6 0.353 0.634
German 130.1 0.103 0.237 62.5 0.392 0.637
Turkish 127.91 0.086 0.196 72.59 0.321 0.554
French 111.76 0.136 0.288 54.04 0.396 0.61
Uzbek 38.78 0.049 0.068 136.11 0.036 0.085

Table 16: MRR scores for additional languages filtering out same translation words
(stw). The results are sorted by the largest percentage gain for all words.

10.6 Precision at N

While we focused overall on MRR scores, as they provide an all inclusive view of how

translations are ranked in our results, we still think it is valuable to look at the results

for the top N results at different thresholds.

method All words 500 most concrete
Top 1 Top 5 Top 20 Top 1 Top 5 Top 20

Spanish 0.264 0.383 0.45 0.675 0.766 0.823
Dutch 0.237 0.336 0.395 0.612 0.725 0.777
French 0.24 0.339 0.393 0.578 0.665 0.719
Italian 0.205 0.297 0.354 0.638 0.743 0.804
German 0.197 0.277 0.334 0.599 0.716 0.774
Indonesian 0.197 0.28 0.333 0.585 0.706 0.797
Turkish 0.156 0.236 0.287 0.513 0.626 0.7
Arabic 0.126 0.198 0.246 0.428 0.536 0.644
Cebuano 0.112 0.143 0.165 0.224 0.293 0.375
Bengali 0.058 0.102 0.138 0.255 0.383 0.495
Uzbek 0.057 0.075 0.097 0.05 0.12 0.191

Table 17: Top 1,5,20 scores for additional languages filtering out same translation
words (stw), using CNN features. The results are sorted by the highest Top 20 score for
all words.

In Table 17, we show the language-confident precision at N scores for the correct

translation appearing in the top 1, 5, and 20 results for CNN features. We show for the

case of all words (minus same translation words) and the 500 most concrete words for

each language.
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10.7 CNN improvement examples

French

In Table 18, we show a selection of the French words where we had the largest gains in

the rank of the correct translation between SIFT+HIST features and CNN features.

French word English word Change in rank SIFT+HIST rank CNN rank
comtesse countess +5001 5002 1
gnral general +4962 4963 1
mythe myth +4932 4953 21
martienne martian +4882 4956 74
royaume kingdom +4828 4855 27
romain roman +4635 4636 1
niveau level +3722 3723 1

Table 18: Examples of some French words where we saw large gains in rank between
SIFT+HIST and CNN results.

For one of the examples, we look a little deeper. Specifically, we look at the top 10

images for the French word vs. the top 10 images for the 4 English words that were

most highly ranked by similarity. We chose the French word romain, which translates

to roman.

Figure 52: The top 4 ranked translations of the French word romain using SIFT+HIST
features. Compare to the rankings produced with our CNN features in Figure 53. This
is a case where CNN scores massively improved on the SIFT+HIST scores.

The SIFT+HIST feature version is shown in 52. The image set for romain paints

a fairly consistent picture, with pictures or drawings of roman soldiers in red uniforms
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with metal armor. Looking at the images for two of the words (carried and frequented),

it doesn’t make a whole lot of sense to us why they rank highly. However, when looking

at the image set for knight templar, we think the men in armor have similar shapes to the

roman soldiers in their own armor and therefore generated similar SIFT features. We

also think that the red uniform on the roman soldiers and the red cross for the knights

could show highly in the histogram features. In the case of the image set for the word

monk, we suspect the similarity is down to shapes common in pictures of humans and

the reddish colors in the clothing of the monks.

Figure 53: The top 4 ranked translations of the French word romain using CNN features.
Compare to the rankings produced with SIFT+HIST features in Figure 52. This is a case
where CNN scores massively improved on the SIFT+HIST scores.

We show the version based on CNN features in shown in 53. The image set for

romain stays the same, with pictures or drawings of roman soldiers in red uniforms

with metal armor. In this case, the top ranked result comes back as roman, and in the

image set for the English word, we do see more drawings of roman soldiers, as well as

drawings of roman citizens, pictures of the coliseum and a map of the Roman empire. It

is interesting to see a slightly less soldier-centric image set for English than for French,

and we wonder if it has something to do with France’s territory once belonging to

the Roman empire. While the other top translation options don’t seem too similar to

the correct translation, if we look for visual similarities between the images and think

about what features AlexNet might be picking up on, we can get some idea. For king,
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it seems like the helmets of the soldiers and the king’s crown could activate strongly

for the same features. Likewise, the scepter in the king’s hand could fire for the same

features as the sword in the soldier’s hand. We suspect that in the cases of human

and merchant, features for the human shapes and faces played a prominent role in the

similarity. Overall, the deeper CNN-based features helped significantly in finding the

correct translation, probably due to features that strongly activate in humans, weapons,

and armor.

Indonesian

In Table 19, we show a selection of the Indonesian words where we had the largest gains

in the rank of the correct translation between SIFT+HIST features and CNN features.

Indonesian word English word Change in rank SIFT+HIST rank CNN rank
silinder cylinder +5103 5104 1
laksamana admiral +5079 5081 2
fisika physics +4983 5067 84
jendral general +4905 4907 2
naga dragon +4786 4787 1
komik comic +4733 4740 7
merpati pigeon +3815 3816 1

Table 19: Examples of some Indonesian words where we saw large gains in rank be-
tween SIFT+HIST and CNN results.

For one of the examples, we look a little deeper. Specifically, we look at the top 10

images for the French word vs. the top 10 images for the 4 English words that were

most highly ranked by similarity. We chose the Indonesian word naga, which translates

to dragon.

The SIFT+HIST feature version is shown in 54. The image set for naga paints a

fairly consistent picture, with drawings of dragons in various backgrounds. Two of the

words that appear in the top ranks, napoleon and abraham don’t make a whole lot of

sense to us. The only similarities we can glean is that some of the images appear to be

drawn on similar backgrounds. In the case of a third word (shaman), the backgrounds

of the images look even more mythical, and we suspect again that the color similarities

played a strong role. The other top ranked word’s image set (creatures) actually seems
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Figure 54: The top 4 ranked translations of the Indonesian word naga using SIFT+HIST
features. Compare to the rankings produced with our CNN features in Figure 55. This
is a case where CNN scores massively improved on the SIFT+HIST scores.

somewhat reasonable, both from the images we see and the meaning of the word. We

see mythical creatures, some of which are dragons, others of which are lizard-like. We

expect that the shapes and colors both contributed to the similarity for creatures.

Figure 55: The top 4 ranked translations of the Indonesian word naga using CNN fea-
tures. Compare to the rankings produced with SIFT+HIST features in Figure 54. This
is a case where CNN scores massively improved on the SIFT+HIST scores.

We show the version based on CNN features in shown in 55. The image set for naga

stays the same, with drawings of dragons in various backgrounds. In this case, the top

ranked result comes back as dragon, and in the image set for the English word, we also

see a string of pictures of dragons. One interesting difference comes to light when we

compare them, the dragon images for naga seem to be slightly more water-based than
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the dragon images for dragon. We wonder if this has to do with Indonesia being an

island nation and their mythical dragons taking a bias to the local environment. This

also might explain why one of the top 4 results we see is the word poseidon, where

the image set shows primarily pictures of the Greek god, oftentimes with a serpent-like

bottom, which is likely to trigger similar features to the more water-bound Indonesian

dragons that also have serpent-like bottoms. We also see creatures again in the top

results, likely because both sides had features that activate strongly for lizards. Finally,

when we look at the results for indra, we suspect that the similarity might be coming

about due to the elephant’s trunk being serpent-like and/or the many arms of the Hindu

god being similar looking to a dragon’s claws or wings. The deeper features, and most

likely those relating to lizards and serpents, helped significantly in making the correct

translation the most similar option.

10.8 CNN decrease examples

While on average, the ranks of CNN results were lower than SIFT+HIST results, we

also found some cases where the rank for the CNN results went massively downwards

in comparison. We show a sampling of these words in Table 21. We do note that

most of these decreases are not by words that appeared in the top results overall. Most

of the examples we found were no higher than rank 150 with SIFT+HIST features.

Nonetheless, we think it is informative to examine these results in closer detail so we

can understand why this might have happened.

Table 20: French decrease examples
French word English word Change in rank SIFT+HIST rank CNN rank
pens thought -4646 500 5146
jumelles twins -4204 658 4862
femelles females -4074 169 4243
dispersion dispersal -3659 1486 5145
luimłme himself -3604 179 3783
fantastique fantastic -3549 1549 5143
noblesse nobility -2423 177 2600

Table 21: Examples of some French words where we saw a large decrease in rank
between SIFT+HIST and CNN results. These were fewer and farther between, as the
overall scores improved heavily, but are still worth noting.
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The SIFT+HIST feature version is shown in 56. The image set for noblesse paints

a fairly consistent picture, though not one we would have expected. Instead of pictures

of things that might relate to nobility, we see pictures from an anime series named

noblesse. As such, some of the results we see actually make quite a bit of sense. In

the image set for the word mangas, we find pictures from other anime that have similar

profiles of characters with similar colors. To a lesser extent in the image set for the

plot, we find the words on top of images that are also from anime. The image sets for

the other two words, adversary and vengeance both have some drawings in styles other

than anime of human characters, other than that though, we don’t see a lot of similarity.

Figure 56: The top 4 ranked translations of the French word noblesse using SIFT+HIST
features. Compare to the rankings produced with our CNN features in Figure 57. This
was a more unusual case where the SIFT+HIST features outperformed the CNN fea-
tures.

In 57, we show the version based on CNN features. The image set for noblesse

stays the same. The top result we get back using CNN features is very apt: anime.

There are lots of drawings of faces, and we suspect there are some features in AlexNet

that trigger very strongly for scenes from anime. We see mangas again as well, which

seems likely to activate strongly for those same features. We also see sasuke, a popular

character from an anime show, and bleach, a popular anime show, which are likely

showing a high degree of similarity for the same reasons as anime and mangas. With

bleach specifically, it is interesting to see that another meaning of the word, bleach as

in the chemical, is mostly washed out from the image set by the results from a popular

tv series by the same name. Finally, when we look at the image set for nobility, we see
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pictures for individual nobles or groups of nobles, which is what we would expect to

see. It appears that noblesse is the name of the anime series for both English and French

speaking viewers, they have just co-opted a French word, which explains why we don’t

see results for that show in the image set for nobility. This turns out to be another case

where grouping the images for each sense of the word together would be useful.

Figure 57: The top 4 ranked translations of the French word noblesse using CNN fea-
tures. Compare to the rankings produced with SIFT+HIST features in Figure 56. This
was a more unusual case where the SIFT+HIST features outperformed the CNN fea-
tures.

11 Conclusion

Our results compare favorably with past research. We see an across the board improve-

ment for the 5 high resource languages previously experimented on (Bergsma and Van

Durme, 2011; Kiela et al., 2015). We see these improvements even when filtering out

same translation words and only using language-confident images (something past re-

search did not do). We think part of the improvement is down to improved quality of

Google image search results, the previous corpora was created in 2011, 5 years earlier

than ours.

We see a mixed picture in our results for other languages (excluding same transla-

tion words). Some like Indonesian, Arabic, Turkish perform comparably to the 5 high
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resource languages (Dutch, French, German, Italian, Spanish). Others like Somali, Gu-

jarati, and Telugu performed quite poorly in comparison. We also see a minor drop in

the MRR scores when we re-evaluate our results using language-confident images only.

For the full set of words vs. the most concrete words in the group, we also see an

across the board dip in the scores. However, this is in line with our expectations, as ab-

stract words appear more difficult to compare from qualitative analyses. Another reason

the results decline for the full set of words is that there are more potential distractors in

the mix. Regardless, we still think that there is adequate signal in our dataset to enhance

the Bilingual Lexicon Induction task.

In the course of our research, we have also created a large-scale image resource for

bilingual lexicon induction for words of arbitrary parts of speech in 100 languages. The

corpus is substantially larger than any before it, in terms of languages, image count,

word count, and word variability. In replicating prior work using SIFT, Histogram and

CNN features, we have demonstrated the utility of the corpus. We also feel that the

number of languages and types of language (many low-resource languages) provide a

basis for highly varied experiments. Along with the images we provide a complemen-

tary text corpus of substantial size, extracted from the web pages from which the images

were drawn. Using only images from webpages in the expected languages provides an-

other useful resource for BLI tasks.

Our dataset (25TB raw) will be distributed via the LDC, with memory compact fea-

turized versions available for download. Links to data samples will be made available

for free. Our code has also been open sourced 10, allowing the other researchers to eas-

ily create their own corpora for other source dictionaries. We will also open source the

code used to run our experiments.

12 Future work

There are a multitude of ways our work could be extended and improved upon. Some

of the more obvious ways are to use new and different techniques that might be better
10https://github.com/brendandc/multilingual-google-image-scraper
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than the ones we used. For example, we could use the newer and better CNN models

like ResNet (He et al., 2016) to generate image features. We could also see how the

results compare when using different numbers of images per word. We could also try

additional comparison metrics between words and translations. We could try using

Jaccard or Dice similarity instead of cosine similarity, or try swapping AVGMAX for

MAXMAX or AVGAVG.

We might also want to improve the quality of the source data, by filtering and re-

categorizing. We could try disambiguating various senses of words with images (i.e.

ImageNet), creating a distinct set of images for each sense. We could use human an-

notators to assist us to that end, or also use them to help us filter out images that don’t

belong in the set. We could try clustering similar images for a word together and have

human annotators assign the word senses. Yet another thing we could try is to identify

the relevant portions of images (via bounding boxes) so those portions alone can be

used for the comparison. We could also try improving our language-detection results

with more advanced language detection utilities.

Another thing we could try is to run new experiments with each of our foreign

languages, comparing against all 263,098 English words in our English superset. Using

a much larger number of distractors (possible translations) would be a more realistic

experiment, given the set of potential translation words that exist in the real world. We

would have to use top-N accuracy, and our expectation is that the scores would tank.

Further, it would be interesting to see how the advantage that concrete words hold over

the larger set holds with more distractors in the mix.

The last and perhaps most interesting extension of our work is to try combining

image-based features with state of the art text-based features for the bilingual lexicon

induction task. One idea is that we could use text-only or image-only features to pro-

vide an initial ranked list of translations candidates and then the other option could

re-rank them. Another idea is that we could find and extract the caption text directly

associated with the images and use it to create text features, or use image features to

support the translation task for image captions, as (Hitschler et al., 2016) did for Ger-
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man and English only. Future work could also exploit the image-text parallel properties

of our dataset (Vulić et al., 2016). Furthermore, image dispersion scores can be used

as weights for the image similarity calculation, where less disperse image sets would

get a higher weight than more disperse image sets. Using common or similar images

as a bridge, associations could be drawn between the text of web pages across 100

languages. These associations might be useful for distributional methods in bilingual

lexicon induction and multilingual semantics tasks.

A Appendices

A.1 Size of the bilingual dictionaries

Our images were based on the crowdsourced bilingual dictionaries assembled by (Pavlick

et al., 2014). Most of the bilingual dictionaries contain approximately 10,000 foreign

words, but the exact number varies per language, since Pavlick et al filtered the dictio-

naries based on the estimated quality of the crowd workers making the contribution in

order to discard poor translations. As a helpful guide, we have grouped the languages

by ranges of word counts, so that readers can get a sense of how large the corpus for

each language is.

• 8,000-10,000 words: Afrikaans, Albanian, Amharic, Arabic, Azerbaijani, Basque,

Belarusian, Bengali, Bishnupriya Manipuri, Bosnian, Bulgarian, Catalan, Central

Bicolano, Croatian, Danish, Dutch, Esperanto, Filipino, Finnish, French, Gali-

cian, German, Greek, Gujarati, Haitian, Hebrew, Hindi, Hungarian, Ilokano, In-

donesian, Italian, Japanese, Javanese, Kannada, Kapampangan, Latvian, Lithua-

nian, Macedonian, Malay, Malayalam, Marathi, Nepali, Norwegian Nynorsk,

Norwegian, Piedmontese, Polish, Portuguese, Punjabi, Romanian, Russian, Ser-

bian, Serbo-Croatian, Slovak, Slovenian, Somali, Spanish, Sundanese, Swedish,

Tamil, Telugu, Turkish, Ukrainian, Waray, Welsh, Urdu, Uzbek

• 5,000-8,000 words: Breton, Czech, Frisian, Georgian, Irish, Korean, Low Saxon,
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Luxembourgish, Swahili, Uighur, Vietnamese

• 1,000-5,000 words: Aragonese, Armenian, Chinese, Neapolitan, Sicilian, Thai,

Yoruba

• 100-1,000 words: Icelandic, Malagasy, Newar, Pashto, Persian, Sindhi

• <100 words: Ido, Kazakh, Kurdish, Wolof

A.2 Size of the corpus

We show a full breakdown of our corpus in Table 22. As a reminder, a same translation

word (stw) refers to words whose translations are exact matches of the word itself,

non-stw words show the count where that is not the case.
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Words in Dict Before Filtering After Filtering
Language All Non-stw Images Web Pages Webcrawl Words Images Web Pages Webcrawl Words
Afrikaans 9,719 8,147 923,000 692,000 456,860,000 324,000 541,000 322,327,000
Albanian 9,600 9,036 923,671 665,880 439,126,000 324,000 520,000 309,815,000
Amharic 8,051 8,051 765,000 574,000 378,324,000 268,000 448,000 266,918,000
Arabic 9,813 9,811 941,011 685,467 421,236,351 329,826 542,544 360,831,818
Aragonese 3,141 2,557 298,000 224,000 147,783,000 105,000 175,000 104,265,000
Armenian 1,652 1,652 157,000 118,000 77,691,000 55,000 92,000 54,813,000
Asturian 3,486 2,535 331,000 248,000 163,828,000 116,000 194,000 115,585,000
Azerbaijani 9,942 9,287 931,691 665,843 439,126,000 327,000 520,000 309,815,000
Basque 9,686 8,728 920,000 690,000 455,171,000 323,000 539,000 321,135,000
Belarusian 10,087 9,973 958,000 719,000 474,594,000 336,000 562,000 334,838,000
Bengali 10,086 10,083 936,666 615,264 584,644,773 401,984 429,246 495,398,451
Bishnupriya Manipuri 9,874 9,871 938,000 704,000 464,460,000 329,000 550,000 327,689,000
Bosnian 10,022 9,425 974,803 765,833 504,995,000 342,000 598,000 356,287,000
Breton 6,895 2,285 655,000 491,000 324,278,000 230,000 384,000 228,786,000
Bulgarian 10,181 10,180 988,989 754,797 498,239,000 347,000 590,000 351,521,000
Catalan 9,999 9,046 950,000 713,000 470,371,000 333,000 557,000 331,860,000
Cebuano 8,510 6,547 791,476 558,039 350,153,208 278,000 441,184 32,841,835
Central Bicolano 9,935 6,406 944,000 708,000 466,993,000 331,000 553,000 329,476,000
Chinese 3,315 3,314 292,521 221,305 146,094,000 103,000 173,000 103,073,000
Croatian 9,903 9,301 941,000 706,000 466,149,000 330,000 552,000 328,881,000
Czech 7,392 6,960 702,000 527,000 347,923,000 246,000 412,000 245,469,000
Danish 8,376 6,998 796,000 597,000 393,524,000 279,000 466,000 277,642,000
Dutch 9,877 8,082 957,554 814,109 507,544,154 335,186 663,886 337,735,314
English 263,098 N/A 24,596,102 18,447,000 12,170,541,000 8,629,000 14,412,000 8,586,641,000
Esperanto 8,024 7,336 762,000 572,000 377,479,000 267,000 447,000 266,322,000
Filipino (Tagalog) 9,436 8,063 906,702 693,036 456,860,000 318,000 541,000 322,327,000
Finnish 10,018 8,700 952,000 714,000 471,216,000 334,000 558,000 332,455,000
French 9,887 8,166 962,222 816,834 613,624,883 374,849 673,147 451,973,804
Frisian 6,383 4,497 606,000 455,000 299,788,000 213,000 355,000 211,508,000
Galician 9,987 8,763 949,000 712,000 469,527,000 333,000 556,000 331,264,000
Georgian 5,315 5,314 505,000 379,000 249,964,000 177,000 296,000 176,356,000
German 9,807 8,175 953,052 826,086 522,788,572 381,520 662,193 406,915,283
Greek 9,899 9,897 940,000 705,000 465,304,000 330,000 551,000 328,285,000
Gujarati 9,979 9,975 945,875 305,097 200,985,000 332,000 238,000 141,800,000
Haitian 9,188 5,865 873,000 655,000 432,370,000 306,000 512,000 305,049,000
Hebrew 8,195 8,195 779,000 584,000 385,080,000 273,000 456,000 271,684,000
Hindi 9,150 9,147 889,789 626,673 413,792,000 312,000 490,000 291,941,000
Hungarian 9,850 9,020 958,540 756,537 499,083,000 336,000 591,000 352,117,000
Icelandic 822 738 78,000 59,000 38,846,000 27,000 46,000 27,407,000
Ido 68 48 6,000 5,000 3,378,000 2,000 4,000 2,383,000
Ilokano 9,333 4,449 887,000 665,000 439,126,000 311,000 520,000 309,815,000
Indonesian 9,773 7,683 946,444 834,041 467,016,410 269,457 612,703 299,680,811
Irish 7,301 6,334 694,000 521,000 343,700,000 243,000 407,000 242,490,000
Italian 9,518 8,310 927,027 814,854 579,321,695 363,685 666,641 449,642,224
Japanese 8,071 8,071 767,000 575,000 379,168,000 269,000 449,000 267,513,000
Javanese 9,877 7,575 938,000 704,000 464,460,000 329,000 550,000 327,689,000
Kannada 9,924 9,921 943,000 707,000 466,149,000 331,000 552,000 328,881,000
Kapampangan 9,870 3,646 938,000 704,000 464,460,000 329,000 550,000 327,689,000
Kazakh 30 30 3,000 2,000 1,689,000 1,000 2,000 1,192,000
Korean 7,435 7,434 706,000 530,000 349,612,000 248,000 414,000 246,660,000
Kurdish 33 33 3,000 2,000 1,689,000 1,000 2,000 1,192,000
Latvian 9,939 9,585 962,034 604,692 398,591,000 337,000 472,000 281,217,000
Lithuanian 9,939 7,741 944,000 708,000 466,993,000 331,000 553,000 329,476,000
Low Saxon 7,344 5,637 698,000 524,000 345,389,000 245,000 409,000 243,681,000
Luxembourgish 6,609 4,545 628,000 471,000 310,766,000 220,000 368,000 219,254,000
Macedonian 10,095 9,972 959,000 719,000 474,594,000 336,000 562,000 334,838,000
Malagasy 164 159 16,000 12,000 7,600,000 6,000 9,000 5,362,000
Malay 9,351 7,823 888,000 666,000 439,126,000 312,000 520,000 309,815,000
Malayalam 10,124 10,124 962,000 722,000 476,283,000 337,000 564,000 336,030,000
Marathi 9,988 9,987 949,000 712,000 469,527,000 333,000 556,000 331,264,000
Neapolitan 4,493 3,441 427,000 320,000 211,118,000 150,000 250,000 148,950,000
Nepali 9,916 9,915 700,479 396,109 260,942,000 246,000 309,000 184,102,000
Newar 262 262 25,000 19,000 12,667,000 9,000 15,000 8,937,000
Norwegian (Nynorsk) 8,473 6,976 805,000 604,000 398,591,000 282,000 472,000 281,217,000
Norwegian 9,083 7,603 863,000 647,000 426,459,000 303,000 505,000 300,878,000
Pashto 331 331 31,000 23,000 15,201,000 11,000 18,000 10,724,000
Persian (Farsi) 921 921 87,843 76,894 50,668,000 31,000 60,000 35,748,000
Piedmontese 9,294 7,308 883,000 662,000 436,592,000 310,000 517,000 308,028,000
Polish 9,764 9,159 928,000 696,000 459,393,000 326,000 544,000 324,114,000
Portuguese 9,873 8,695 938,000 704,000 464,460,000 329,000 550,000 327,689,000
Punjabi 9,827 9,827 934,000 701,000 462,771,000 328,000 548,000 326,497,000
Romanian 9,880 8,819 963,377 758,086 499,928,000 338,000 592,000 352,712,000
Russian 9,962 9,958 946,000 710,000 468,682,000 332,000 555,000 330,668,000
Serbian 10,146 10,039 979,731 764,291 504,150,000 344,000 597,000 355,691,000
Serbo-Croatian 10,057 9,590 955,000 716,000 472,060,000 335,000 559,000 333,051,000
Sicilian 1,751 1,491 166,000 125,000 82,758,000 58,000 98,000 58,388,000
Sindhi 36 36 3,000 2,000 1,689,000 1,000 2,000 1,192,000
Slovak 9,939 9,283 893,962 648,120 427,303,000 314,000 506,000 301,474,000
Slovenian 7,927 7,354 753,000 565,000 372,412,000 264,000 441,000 262,747,000
Somali 9,907 7,177 904,728 579,501 382,546,000 317,000 453,000 269,897,000
Spanish 9,825 8,778 959,099 699,244 450,079,676 305,749 553,368 380,362,877
Sundanese 9,909 4,726 941,000 706,000 466,149,000 330,000 552,000 328,881,000
Swahili 7,019 6,132 666,805 500,104 330,189,000 234,000 391,000 232,957,000
Swedish 9,551 8,086 928,935 720,860 475,438,000 326,000 563,000 335,434,000
Tamil 9,449 9,448 901,355 511,136 336,945,000 316,000 399,000 237,723,000
Telugu 9,751 9,751 933,566 364,407 240,675,000 328,000 285,000 169,802,000
Thai 4,487 4,487 423,768 334,513 220,407,000 149,000 261,000 155,503,000
Turkish 10,007 9,263 984,243 781,376 483,687,039 372,415 609,274 439,236,149
Uighur 5,650 5,650 495,402 176,736 104,323,748 174,000 122,660 54,723,339
Ukrainian 10,027 9,990 972,517 720,864 475,438,000 341,000 563,000 335,434,000
Urdu 9,999 9,998 930,003 625,048 412,103,000 326,000 488,000 290,749,000
Uzbek 9,696 5,630 904,713 579,421 326,562,177 188,211 430,682 108,250,659
Vietnamese 5,911 4,586 558,470 494,680 325,966,000 196,000 386,000 229,978,000
Waray 8,489 5,368 806,000 605,000 399,436,000 283,000 473,000 281,812,000
Welsh 9,923 7,272 917,093 562,247 370,724,000 322,000 439,000 261,555,000
Wolof 45 36 4,000 3,000 1,689,000 1,000 2,000 1,192,000
Yoruba 1,802 1,523 140,134 92,334 60,802,000 49,000 72,000 42,897,000

Table 22: Statistics about the number of images and words in our data set. Estimated numbers
are rounded to the nearest 1,000. 72



A.3 Package report

We show a full example of a package report in Figure 58.

Figure 58: Example package report for French
{
” t o t a l f i l e s i z e ” : ” 2 5 0 . 2 GB” ,
” a v g f i l e s i z e ” : ” 2 6 0 . 0 kB ” ,
” t o t a l w o r d s ” : 9887 ,
” e x t e n s i o n c o u n t s ” : {
” o t h e r ” : 1343 ,
”bmp ” : 471 ,
” j p g ” : 816925 ,
” png ” : 108234 ,
” g i f ” : 33922 ,
” svg ” : 1171 ,
” i c o ” : 156
} ,
” a v g w i d t h ” : 858 ,
” m i n i m a g e s p e r w o r d ” : 20 ,
” m e d i a n i m a g e s p e r w o r d ” : 98 ,
” t o p 1 0 h o s t n a m e c o u n t s ” : {
” f r . d reams t ime . com ” : 10813 ,
”www. you tube . com ” : 14041 ,
”www. p i n t e r e s t . com ” : 5833 ,
” f r . w i k i p e d i a . o rg ” : 17740 ,
” en . w i k i p e d i a . o rg ” : 19294 ,
” f r . 1 2 3 r f . com ” : 6985 ,
”www. p u r e p e o p l e . com ” : 5484 ,
”www. o u e s t−f r a n c e . f r ” : 7154 ,
” t w i t t e r . com ” : 10906 ,
”commons . wik imed ia . o rg ” : 6520
} ,
” n u m u n i q u e h o s t s ” : 246610 ,
” max images pe r word ” : 100 ,
” a v g h e i g h t ” : 662 ,
” t o t a l i m a g e s ” : 962222
}

A.4 Visualizations

In this section, we will quickly walk through the process we used to generate the visu-

alizations of SIFT, Histogram, and AlexNet features.

SIFT

In Figure 22, we show matching features from two grayscale images, an original one on

the left and a rotated and scaled up one on the right. For this visualization, we used the

Computer Vision System Toolbox in MATLAB. More specifically, we used the exam-

ples here: https://www.mathworks.com/help/vision/ref/showmatchedfeatures.html

We combined the approaches in both examples, and used SURF features (Bay et al.,

2006), which at a high level are an improved version of SIFT. After reading in our

original image and creating a rotated and resized version, we detected and extracted the

SURF features in both images. We then match the features between the two images,

plotting the images side by side with the matching points highlighted and connected.
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We show the code in Figure 59. Note: Figure 38 uses this same approach except with

two distinct original images.

Figure 59: MATLAB code snippet for matching features

I1 = imread ( ’ o r i g i n a l −image−f i l e ’ ) ;
I2 = i m r e s i z e ( i m r o t a t e ( I1 ,−20) , 1 . 2 ) ;
p o i n t s 1 = d e t e c t S U R F F e a t u r e s ( I1 ) ;
p o i n t s 2 = d e t e c t S U R F F e a t u r e s ( I2 ) ;
[ f1 , v p t s 1 ] = e x t r a c t F e a t u r e s ( I1 , p o i n t s 1 ) ;
[ f2 , v p t s 2 ] = e x t r a c t F e a t u r e s ( I2 , p o i n t s 2 ) ;
i n d e x P a i r s = m a t c h F e a t u r e s ( f1 , f2 ) ;
m a t c h e d P o i n t s 1 = v p t s 1 ( i n d e x P a i r s ( : , 1 ) ) ;
m a t c h e d P o i n t s 2 = v p t s 2 ( i n d e x P a i r s ( : , 2 ) ) ;
f i g u r e ; ax = axes ;
showMatchedFea tu res ( I1 , I2 , ma t c he d Po i n t s 1 , m a t c he d Po i n t s 2 , ’

montage ’ , ’ P a r e n t ’ , ax ) ;
l e g e n d ( ax , ’ Matches − o r i g i n a l ’ , ’ Matches − r o t a t e + r e s i z e ’ ) ;

In Figure 24, we show a grid of five images with the strongest features identified.

Once again, we used the Computer Vision System Toolbox in MATLAB. More specif-

ically, we used the example here: https://www.mathworks.com/help/vision/

ref/surfpoints.plot.html

We first loaded each image, detected and extracted SURF features for it. We then

selected the strongest N points (where N is determined by experimentation) and plotted

them on top of the image. We show the code in Figure 60.

Figure 60: MATLAB code snippet for strongest features

I = imread ( ’ o r i g i n a l −image−f i l e ’ ) ;
N = <number o f p o i n t s d e s i r e d >;
p o i n t s = d e t e c t S U R F F e a t u r e s ( I ) ;
[ f e a t u r e s , v a l i d p o i n t s ] = e x t r a c t F e a t u r e s ( I , p o i n t s ) ;
imshow ( I ) ;
ho ld on ;
s t r o n g e s t P o i n t s = v a l i d p o i n t s . s e l e c t S t r o n g e s t (N) ;
s t r o n g e s t P o i n t s . p l o t ( ’ s h o w O r i e n t a t i o n ’ , t r u e ) ;

Histogram

For Figures 27 and 28, we used MATLAB’s histogram plot and colormap to plot the

occurrences of each R, G, and B channel. We show the code in Figure 61.
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Figure 61: MATLAB code snippet for strongest features

i n p u t = d oub l e ( imread ( ’ o r i g i n a l −image−f i l e ’ ) ) ;
h i s t ( r e s h a p e ( i n p u t , [ ] , 3 ) , 1 : max ( i n p u t ( : ) ) ) ;
co lormap ( [ 1 0 0 ; 0 1 0 ; 0 0 1 ] ) ;
x l a b e l ( ’ Co lo r i n t e n s i t y ’ )
y l a b e l ( ’ O c c u r r e n c e count ’ )

AlexNet

For Figures 32, 33, 34, 35 and 36, we show the original image next to the strongest

activating feature for the specified convolutional layer, when the image is fed forward

through the AlexNet. For this visualization, we used the Neural Network Toolbox,

Image Processing Toolbox and the Neural Network Toolbox Model for AlexNet Net-

work in MATLAB. More specifically, we followed the examples here: http://www.

mathworks.com/help/nnet/examples/visualize-activations-of-a-convolutional-neural-

network.html

We show the code in Figure 62. To get results for layer N, just swap conv1 for

convN.

Figure 62: MATLAB code snippet for AlexNet layer 1

n e t = a l e x n e t ;
im = imread ( ’ o r i g i n a l −image−f i l e ’ ) ;
imgSize = s i z e ( im ) ;
imgSize = imgSize ( 1 : 2 ) ;
a c t 1 = a c t i v a t i o n s ( ne t , im , ’ conv1 ’ , ’ OutputAs ’ , ’ c h a n n e l s

’ ) ;
s z = s i z e ( a c t 1 ) ;
a c t 1 = r e s h a p e ( ac t1 , [ s z ( 1 ) sz ( 2 ) 1 sz ( 3 ) ] ) ;
[ maxValue , maxValueIndex ] = max ( max ( max ( a c t 1 ) ) ) ;
act1chMax = a c t 1 ( : , : , : , maxValueIndex ) ;
act1chMax = mat2gray ( act1chMax ) ;
act1chMax = i m r e s i z e ( act1chMax , imgSize ) ;
imshowpai r ( im , act1chMax , ’ montage ’ )

For the example in Figure 37, we constructed what a deep dream image (Google,

2015) that strongly activates the channel of the network’s layers that relates to Siamese

cats (285). This allows us to highlight the image features that were learned by the

network for a particular channel. AlexNet has 1,000 channels and each one relates via
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ImageNet to a specific thing, like Siamese cat, African elephant, or strawberry.

Deep Dream is a feature visualization technique in deep learning that synthesizes

images that strongly activate network layers. By visualizing these images, you can

highlight the image features learned by a network. These images are useful for under-

standing and diagnosing network behavior.

Figure 63: MATLAB code snippet for deep dream images with AlexNet

n e t = a l e x n e t ;
l a y e r = 2 0 ;
c h a n n e l s = 285 ;
I = deepDreamImage ( ne t , l a y e r , c h a n n e l s , . . .
’ Verbose ’ , f a l s e , . . .
’ N u m I t e r a t i o n s ’ , 5 0 ) ;
f i g u r e
montage ( I )
name = n e t . La y e r s ( l a y e r ) . Name ;
t i t l e ( [ ’ Layer ’ , name , ’ F e a t u r e s ’ ] )
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metric view on bilingual lexicon extraction from comparable corpora. In Proceedings of
the 42nd Annual Meeting on Association for Computational Linguistics. Association for
Computational Linguistics, page 526.

Google. 2010. Ooh! Ahh! Google Images presents a nicer way to surf the visual web.
https://googleblog.blogspot.com/2010/07/ooh-ahh-google-images-presents-nicer.html.

Google. 2015. Inceptionism: Going deeper into neural networks.
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html.

Google. 2017a. Google custom search api reference. https://developers.google.com/custom-
search/json-api/v1/reference/cse/list.

Google. 2017b. Google search request format - language filters.
https://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa doc set/xml -
reference/request format.html#1077312.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick, and Dan Klein. 2008. Learning bilingual
lexicons from monolingual corpora. In ACL. volume 2008, pages 771–779.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pages 770–778.

Julian Hitschler, Shigehiko Schamoni, and Stefan Riezler. 2016. Multimodal pivots for image
caption translation. arXiv preprint arXiv:1601.03916 .

LLC ImageMagick Studio. 2008. Imagemagick. https://www.imagemagick.org/.

Ann Irvine and Chris Callison-Burch. 2017. A comprehensive analysis of bilingual lexicon
induction. Computational Linguistics .

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the 22nd ACM international conference on Multime-
dia. ACM, pages 675–678.

Douwe Kiela. 2016. Mmfeat: A toolkit for extracting multi-modal features. In Proceedings of
ACL.

Douwe Kiela, Felix Hill, Anna Korhonen, and Stephen Clark. 2014. Improving multi-modal
representations using image dispersion: Why less is sometimes more. In ACL (2). pages
835–841.
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