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† LIMSI, CNRS, Université Paris-Saclay, 91403 Orsay
{acocos,marapi,ccb}@seas.upenn.edu

Abstract

WordNet has facilitated important re-
search in natural language processing but
its usefulness is somewhat limited by its
relatively small lexical coverage. The
Paraphrase Database (PPDB) covers 650
times more words, but lacks the semantic
structure of WordNet that would make it
more directly useful for downstream tasks.
We present a method for mapping words
from PPDB to WordNet synsets with 89%
accuracy. The mapping also lays impor-
tant groundwork for incorporating Word-
Net’s relations into PPDB so as to increase
its utility for semantic reasoning in appli-
cations.

1 Introduction

WordNet (Miller, 1995; Fellbaum, 1998) is one of
the most important resources for natural language
processing research. Despite its utility, Word-
Net1 is manually compiled and therefore relatively
small. It contains roughly 155k words, which does
not approach web scale, and very few informal
or colloquial words, domain-specific terms, new
word uses, or named entities. Researchers have
compiled several larger, automatically-generated
thesaurus-like resources (Lin and Pantel, 2001;
Dolan and Brockett, 2005; Navigli and Ponzetto,
2012; Vila et al., 2015). One of these is the
Paraphrase Database (PPDB) (Ganitkevitch et al.,
2013; Pavlick et al., 2015b). With over 100 million
paraphrase pairs, PPDB dwarfs WordNet in size
but it lacks WordNet’s semantic structure. Para-
phrases for a given word are indistinguishable by
sense, and PPDB’s only inherent semantic rela-
tional information is predicted entailment relations
between word types (Pavlick et al., 2015a). Sev-
eral earlier studies attempted to incorporate se-

1In this work we refer specifically to WordNet version 3.0

RULE-PRESCRIPT: imperative*, demand*, duty*, re-

quest, gun, decree, ranking
RULE-REGULATION: constraint*, limit*, derogation*,
notion
RULE-FORMULA: method*, standard*, plan*, proceed-
ing
RULE-LINGUISTIC RULE: notion

Table 1: Example of our model’s top-ranked para-
phrases for three WordNet synsets for rule (n).
Starred paraphrases have a predicted likelihood of
attachment of at least 95%; others have predicted
likelihood of at least 50%. Bold text indicates
paraphrases that match the correct sense of rule.

mantic awareness into PPDB, either by clustering
its paraphrases by word sense (Apidianaki et al.,
2014; Cocos and Callison-Burch, 2016) or choos-
ing appropriate PPDB paraphrases for a given con-
text (Apidianaki, 2016; Cocos et al., 2017). In
this work, we aim to marry the rich semantic
knowledge in WordNet with the massive scale of
PPDB by predicting WordNet synset membership
for PPDB paraphrases that do not appear in Word-
Net. Our goal is to increase the lexical coverage
of WordNet and incorporate some of the rich rela-
tional information from WordNet into PPDB. Ta-
ble 1 shows our model’s top-ranked outputs map-
ping PPDB paraphrases for the word arms onto
their corresponding WordNet synsets.

Our overall objective in this work is to map
PPDB paraphrases for a target word to the Word-
Net synsets of the target. This work has two
parts. In the first part (Section 4), we train
and evaluate a binary lemma-synset member-
ship classifier. The training and evaluation data
comes from lemma-synset pairs with known class
(member/non-member) from WordNet. In the
second part (Section 5), we predict membership
for lemma-synset pairs where the lemma appears
in PPDB, but not in WordNet, using the model
trained in part one.



2 Related Work

There has been considerable research directed at
expanding WordNet’s coverage either by integrat-
ing WordNet with additional semantic resources,
as in Navigli and Ponzetto (2012), or by au-
tomatically adding new words and senses. In
the second case, there have been several efforts
specifically focused on hyponym/hypernym detec-
tion and attachment (Snow et al., 2006; Shwartz
et al., 2016) There is also previous work aimed
at adding semantic structure to PPDB. Cocos and
Callison-Burch (2016) clustered paraphrases by
word sense, effectively forming synsets within
PPDB. By mapping individual paraphrases to
WordNet synsets, our work could be used in co-
ordination with these previous results in order to
extend WordNet relations to the automatically-
induced PPDB sense clusters.

3 WordNet and PPDB Structure

The core concept in WordNet is the synonym set,
or synset – a set of words meaning the same thing.
Since words can be polysemous, a given lemma
may belong to multiple synsets corresponding to
its different senses. WordNet also defines rela-
tionships between synsets, such as hypernymy, hy-
ponymy, and meronymy. In the rest of the pa-
per, we will use S(w

p

) to denote the set of Word-
Net synsets containing word w

p

, where the sub-
script p denotes the part of speech. Each synset
s

i

p

2 S(w

p

) is a set containing w

p

as well as
its synonyms for the corresponding sense. PPDB
also has a graph structure, where nodes are words,
and edges connect mutual paraphrases. We will
use PPDB(w

p

) to denote the set of PPDB para-
phrases connected to target word w

p

.

4 Predicting Synset Membership

Our objective is to map paraphrases for a target
word, t, to the WordNet synsets of the target. For
a given target word in a vocabulary, we make a
binary synset-attachment prediction between each
of t’s paraphrases, w

p

2 PPDB(t), and each of
t’s synsets, si

p

2 S(t). We predict the likelihood
of a word w

p

belonging to synset si
p

on the basis
of multiple features describing their relationship.
We construct features from four primary types of
information.

PPDB 2.0 Score The PPDB 2.0 Score is a su-
pervised metric trained to estimate the strength of

the paraphrase relationship between pairs of words
connected in PPDB (Pavlick et al., 2015b). Scores
range roughly from 0 to 5, with 5 indicating a
strong paraphrase relationship. We compute sev-
eral features for predicting whether a word w

p

be-
longs to synset si

p

as follows. We call the set of
all lemmas belonging to s

i

p

and any of its hyper-
nym or hyponym synsets the extended synset s+i

p

.
We calculate features that correspond to the aver-
age and maximum PPDB scores bewteen w

p

and
lemmas in s

+i

p

:
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Distributional Similarity Our distributional sim-
ilarity feature encodes the extent to which the
word and lemmas from the synset tend to appear
within similar contexts. Word embeddings are
real-valued vector representations of words that
capture contextual information from a large cor-
pus. Comparing the embeddings of two words is
a common method for estimating their semantic
similarity and relatedness. Embeddings can also
be constructed to represent word senses (Iacobacci
et al., 2015; Flekova and Gurevych, 2016; Jauhar
et al., 2015; Ettinger et al., 2016). Camacho-
Collados et al. (2016) developed compositional
vector representations of WordNet noun senses –
called NASARI embedded vectors – that are com-
puted as the weighted average of the embeddings
for words in each synset. They share the same
embedding space as a publicly available2 set of
300-dimensional word2vec embeddings cover-
ing 300 million words (hereafter referred to as the
word2vec embeddings) (Mikolov et al., 2013a,b).
We calculate a distributional similarity feature for
each word-synset pair by simply taking the co-
sine similarity between the word’s word2vec vec-
tor and the synset’s NASARI vector:

x

distrib

= cos(v

NASARI

(s

i

p

), v

word2vec(wp

))

where v

NASARI

and v

word2vec denote the target
word and synset embeddings respectively. Since
NASARI covers only nouns, and only 80% of
the noun synsets for our target vocabulary are in
NASARI, we construct weighted vector represen-
tations for the remaining 20% of noun synsets and
all non-noun synsets as follows. We take the vec-
tor representation for each synset not in NASARI

2https://code.google.com/archive/p/word2vec/



to be the weighted average of the word2vec em-
beddings of the synset’s lemmas, where weights
are determined by the PPDB2.0 Score between the
lemma and the target word, if it exists, or 1.0 if it
does not:

v(s

i

p

) =

P
l2s

i
p
PPDBScore(t, l) · v

word2vec(l)

P
l2s

i
p
PPDBScore(t, l)

Lesk Similarity Among the information con-
tained in WordNet for each synset is its definition,
or gloss. The simplified Lesk algorithm (Vasilescu
et al., 2004) identifies the most likely sense of
a target word in context by measuring the over-
lap between the given context and the definition
of each target sense. We use a slightly modi-
fied version of the algorithm to compute features
that measure the overlap between the PPDB para-
phrases for the target and the gloss of a synset.
For calculating these Lesk-based features, we find
synset glosses from WordNet 3.0 and from Babel-
Net v3.0 (Navigli and Ponzetto, 2012). First, we
find D, the set of content words of the gloss for
synset si

p

, by taking all nouns, verbs, adjectives,
and adverbs that appear within the gloss. In cases
where more than one gloss is available, we take
D to be the set of all content words in all glosses.
We also calculate an extended version of each fea-
ture, in which we take D to be the set of content
words, plus the PPDB paraphrases for each con-
tent word. Next, we calculate features that mea-
sure the relationship between the paraphrase w

p

and the words in D in terms of PPDB2.0 Scores.
These features include the maximum PPDB score
between the paraphrase and any word in D, the
average score over all words in D, the percent of
words in D that are connected to the paraphrase in
PPDB, and the count of words in D that are con-
nected to the paraphrase in PPDB:

x

lesk.max

= max

d2D

PPDBScore(w

p

, d)

x

lesk.avg

=

P
d2D

PPDBScore(w
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x

lesk.cnt

= |{d 2 D : PPDBScore(w
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x
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|{d 2 D : PPDBScore(w
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, d) > 0}|
|D|

Lexical Substitutability The fourth feature type
that we compute to predict whether word w

p

be-
longs to synset si

p

is based on the substitutability of
w

p

for instances of si
p

in context. To compute this
feature we measure lexical substitutability using
a simple but high-performing vector space model,

AddCos (Melamud et al., 2015). The AddCos
method quantifies the fit of substitute word s for
target word t in context C by measuring the se-
mantic similarity of the substitute to the target, and
the similarity of the substitute to the context:

AddCos(s, t, C) =

|C|·cos(s, t) +
P

c2C

cos(s, c)

2 · |C|

The vectors s and t are word embeddings of the
substitute and target generated by the skip-gram
with negative sampling model (Mikolov et al.,
2013b,a). The context C is the set of words ap-
pearing within a fixed-width window of the tar-
get t in a sentence (we use a window of 2), and
the embeddings c are context embeddings gener-
ated by skip-gram. In our implementation, we
train 300-dimensional word and context embed-
dings over the 4B words in the Annotated Giga-
word (AGiga) corpus (Napoles et al., 2012) us-
ing the gensim word2vec package (Mikolov et al.,
2013b,a; Řehůřek and Sojka, 2010). 3

To compute the lexical substitutability score be-
tween a word w

p

and synset si
p

, we first retrieve
example sentences e 2 E containing t in sense s

i

p

from BabelNet v3.0 (Navigli and Ponzetto, 2012).
Then, for each example e, we compute the Ad-
dCos lexical substitutability between w

p

and the
target word in context C

e

. We compute two types
of this feature: The average AddCos score over all
synset examples, and the maximum AddCos score
over all synset examples.

x

addcos.max

= max

e2EAddCos(w

p

, t, C

e

)
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e2EAddCos(w

p
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e

)

Derived Features For each paraphrase, we also
compute a set of derived features using the soft-
max and logodds functions over all synsets with
which that paraphrase is paired. This is to en-
code the relative strength of association with each
synset as compared to the others.

For a given feature x⇤ calculated between
lemma w

p

and synset si
p

, the derived versions of
the feature are calculated as:

x

softmax

⇤ (w

p

, s

i

p

) =

e

x⇤(wp,s
i
p)

P
s

j
p2S(wp)

e

x⇤(wp,s
j
p)

3The word2vec training parameters we use are a context
window of size 3, learning rate alpha from 0.025 to 0.0001,
minimum word count 100, sampling parameter 1e�4, 10 neg-
ative samples per target word, and 5 training epochs.



Cross-Validation Cross-Validation-LexSplit Test
Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc.

Baseline: All negative attachments 0 0.854 0 0.854 0 0.854 0 0.854 0 0.858 0 0.858
Baseline: PPDB2.0 Score Match 0.536 0.419 0.471 0.862 0.536 0.419 0.471 0.862 0.268 0.718 0.390 0.681
Gaussian Naive Bayes (All Feat.) 0.528 0.369 0.372 0.800 0.527 0.310 0.352 0.825 0.496 0.282 0.359 0.858
Gaussian Naive Bayes (Sel. Feat.) 0.605 0.600 0.600 0.883 0.606 0.572 0.581 0.882 0.622 0.558 0.588 0.889

Table 2: Precision, recall, F1, and accuracy results over the training set (normal 10-fold Cross-Validation,
and lexical split 20-fold Cross-Validation-LexSplit) and test set for predicting paraphrase-synset attach-
ment.
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Model Training We train a binary classification
model that takes lemma-synset pairs as input, and
predicts whether the lemma belongs in the synset.
We train the model by generating features for a set
of lemma-synset pairs from WordNet for which
we know the correct classification. We evalu-
ate whether the resulting model correctly finds
lemma-synset pairs that belong together.

Our target vocabulary comes from the SensE-
val3 English Lexical Sample Task data (Mihal-
cea et al., 2004) which contains sentences corre-
sponding to 57 noun, verb, and adjective lemmas.
Each sentence may contain a different form of the
lemma (i.e. different in number or tense), and
PPDB paraphrases vary depending on the form.
So we take the set of all forms of all lemmas (251
word types in total) as our target vocabulary. To
generate pairs for training and evaluation, for each
of the 251 targets w

p

, we find the lemmas in the in-
tersection of w

p

’s synsets – S(w

p

) – and its para-
phrases – PPDB(w

p

). We call the set of lem-
mas in the intersection L(w

p

). Then, we take the
lemma-synset pairs in L(w

p

)⇥S(w

p

) as instances
for training and evaluation. The total number of
resulting lemma-synset pairs is 7459. We ran-
domly divide these into 80% training and 20% test
pairs.

We then generate all variations of each of the
four feature types for the lemma-synset pairs in
our training and test sets. In the case of positive
synset-lemma pairs – i.e. those pairs for which
the lemma actually belongs to the WordNet synset
– we exclude the lemma from the synset before
calculating the PPDB Score and distributional fea-
tures.

Finally, we train a Gaussian Naive Bayes
(GNB) classification model over the training data.

GNB is advantageous for our setting, as 10% per-
cent of our instances have missing data (e.g. in
the case where a synset does not have an ex-
ample). For feature selection, we use two ver-
sions of cross-validation. The first is standard 10-
fold Cross-Validation. In order to estimate how
well our model will generalize to unseen lem-
mas, we also experiment with a lexical split tech-
nique described in Roller and Erk (2016) (Cross-
Validation-LexSplit). This method ensures that for
each cross-validation fold, none of the lemmas in
that fold’s validation lemma-synset pairs are seen
in the training split. Specifically, for each split we
randomly select 5% of training pairs for validation
and take the remainder of the training set that does
not share a lemma with the validation set as that
fold’s training instances. As a result, the valida-
tion set size remains constant for each fold, but
the training set sizes may vary between folds.

We train two versions of the model. The first
(All Features) uses all computed features. The sec-
ond (Selected Features) includes features selected
using cross validation (the selected features were
the same using standard and lexical split cross-
validation). We select one feature of each type
(PPDB Score, distributional, Lesk, and lexical
substitutability) whose combination maximizes
cross-validation F1 score. The selected features
are x

lesk.cnt

(non-extended), x
distrib

, x
addcos.max

,
and softmax(x

ppdb.max

).

Model Evaluation We report results of the model
using all features, and the results of the best model
achieved after feature selection (Table 2). In
each case we give both the Cross-Validation and
Cross-Validation-LexSplit performances, and per-
formance on the held-out test set. We compare
our model to two simple baselines. The first pre-
dicts all negative attachments, which yields an ac-
curacy of 85.8% on the test set (with F1 of 0).
The second baseline maps each paraphrase to the
synset of t with which it has the highest-scoring



Figure 1: Precision-Recall curve for our
paraphrase-synset attachment classifier.

PPDB feature (x
ppdb.max

) and yields an accuracy
of 68.1% on the test set. In comparison, our GNB
model with selected features yields an accuracy
of over 88% on the cross-validation and test sets.
Both cross-validation and test accuracies are sig-
nificantly higher than baselines (based on McNe-
mar’s test, p < .001).

Ablated Feature Type Change in Cross-Val. F1
PPDB 0.042
Lexical Substitution 0.031
Distributional 0.009
Lesk -0.092

Table 3: Absolute decrease in mean cross-
validation F1 with different feature types ablated.
Higher numbers indicate greater feature impor-
tance.

In order to interpret the importance of each feature
type, we also run an ablation experiment where
we train our GNB model with all features except
those from a particular type (Table 3). We find that
removing the PPDB features leads to the greatest
drop in cross-validation F1, indicating that these
are the most important for our classifier. Ablating
all Lesk features improved F1, but on further anal-
ysis we found that ablating only the derived Lesk
log-odds features led to a decrease in F1. This
suggests that the Lesk features in general are use-
ful for classification, but the derived Lesk log-odds
features are not.

5 Mapping PPDB to WordNet

Using our trained lemma-synset attachment clas-
sifier, we can now augment the lexical coverage of
WordNet with PPDB paraphrases. For the 251 tar-
gets in our original dataset, we retrieve the PPDB
paraphrases (with PPDB score greater than 2.5, to
ensure high-quality paraphrases) that do not be-

long to any synset of the target or any of their di-
rect hypernyms or hyponyms. We then make an at-
tachment prediction between each remaining para-
phrase and each of the target’s WordNet synsets.
In total, we make 160,813 unique paraphrase-
synset attachment predictions for the 4821 unique
paraphrase lemmas and 458 unique synsets asso-
ciated with the targets in our dataset.

When we map PPDB to WordNet we can esti-
mate the expected precision and recall of attach-
ment decisions based on the results of our model
evaluation on the test set. If we would like to em-
phasize precision over recall in the predicted at-
tachments, we can adjust a threshold for attach-
ment corresponding to the predicted likelihood of
our model (as shown in Figure 1). At a threshold
of 50% predicted likelihood, our classifier predicts
attachment for 7032 (4.4%) of the paraphrase-
synset pairs with an estimated precision of 62.2%.
If we increase the threshold to 95% predicted like-
lihood, the number of predicted attachments is
3690 (2.3%) with an estimated precision of 66.3%.
With the publication of this paper we release our
PPDB to WordNet mapping results.

6 Conclusion

We have proposed a method for mapping PPDB
paraphrases to WordNet synsets. Our classifier
makes accurate paraphrase-synset attachment pre-
dictions using features that capture paraphrase and
distributional similarity, and the substitutability of
paraphrases and synsets in context. The results
show that the classifier can successfully add new
PPDB paraphrases to WordNet synsets and in-
crease their coverage.

Acknowledgments

This research is supported in part by DARPA
grant FA8750-13-2-0017 (the DEFT program).
The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes.
The views and conclusions contained in this pub-
lication are those of the authors and should not be
interpreted as representing official policies or en-
dorsements of DARPA and the U.S. Government.

This work is also supported by the French Na-
tional Research Agency under project ANR-16-
CE33-0013.

We would like to thank our anonymous review-
ers for their thoughtful and helpful comments.



References

Marianna Apidianaki. 2016. Vector-space models for
ppdb paraphrase ranking in context. In Proceedings
of EMNLP. Austin, Texas, pages 2028–2034.

Marianna Apidianaki, Emilia Verzeni, and Diana Mc-
Carthy. 2014. Semantic Clustering of Pivot Para-
phrases. In Proceedings of LREC. Reykjavik, Ice-
land, pages 4270–4275.
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