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Abstract

In this paper, we propose Learn, a unified, easy-
to-use tool to apply question generation and
selection in classrooms. The tool lets instruc-
tors and TAs create assignments that can write
and re-write themselves. Given existing course
materials, for example a reference textbook,
Learn can generate questions, select the high-
est quality questions, show the questions to
students, adapt question difficulty to student
knowledge, and generate new questions based
on how effectively old questions help students
learn. The modular, composable nature of the
tools for handling each sub-task allow instruc-
tors to use only the parts of the tool necessary
to the course, allowing for integration in a large
number of courses with varied teaching styles.
We also report on the adoption of the tool in
classes at the University of Pennsylvania with
over 1000 students. Learn is publicly released
at https://learn.withmartian.com.

1 Introduction

Advances in natural language processing, particu-
larly through large langauge models, will enable
the creation of powerful applications in many fields
(Bommasani et al., 2021). One of the most positive
and most promising may be education, where rapid
improvement has been achieved in fields like ques-
tion generation (Dugan et al., 2022; Drori et al.,
2022; Zhang et al., 2022).

In this paper, we propose Learn, a unified, easy-
to-use tool to apply question generation in class-
rooms. The tool allows instructors to create as-
signments that can write and re-write themselves.
Instructors provide existing course materials, and
the platform is able to generate new questions, se-
lect the best questions, show those questions to
students, provide analytics, and improve as it col-
lects more data on student performance. We also
report on a case study of the successful adoption of
Learn in classes at the University of Pennsylvania.

Figure 1: A diagram of steps, sub-steps, and features
in Learn. Learn is a tool for creating assignments that
write and re-write themselves. To write new assign-
ments, users upload material and the platform generates
questions. To re-write assignments and improve them,
the questions are first shown to students, then the data
from student interactions is analyzed to update the ques-
tions.

We hope this tool can be used by course staff to
save time and improve education, and that Learn
can serve as an example of a high-quality social-
good tool which inspires the development of further
applications.

2 Tool Tour and Design

We begin with a brief tour. Generating questions
is done simply by uploading the materials from
which the questions should be generated.
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Figure 2: The interface for uploading material to Learn.

Uploaded materials can be text, code, pdf, or
audio/video. In the case of PDF, they are converted
to text through OCR. In the case of audio/video,
they are converted to text through ASR.

Once the materials are uploaded and text is ex-
tracted, they are used to generate questions. The
generated questions are then shown to the course
staff.

Figure 3: The interface which allows course staff to
review questions. Users can accept, reject, or edit ques-
tions by clicking on the check, cross, and pencil buttons
respectively.

Members of the course staff can accept, reject,
or edit any question. Accepting a question adds it
either to the general question bank for the course
or to a particular assignment.

After questions are added to an assignment, the
assignment can be released to students, who can
then complete the assignment.

Figure 4: The interface through which a student com-
pletes assignments by answering questions.

When the student is completing the assignment,
their answers are stored, alongside relevant meta-
data such as the amount of time to complete the
question and whether the student got the question
correct. Students can also mark questions as being
“really good” for studying, or as “not helpful”.

The data collected in this way is then analyzed,
both to inform instructors and to improve future
question generation. That data is used to provide
suggestions to course staff.

Figure 5: The interface alerting instructors about issues
and potential improvement to existing questions.

Note 1: Uploading Material. Users have
multiple means of uploading material to Learn.
Although they can upload all their content
manually, that is typically not necessary. Instead,
if they have an existing course website, they can
point a scraper built into the Learn tool at that
website, and it will find the relevant material (e.g.
the course textbook, lecture notes, youtube links,
etc.) and only upload the material which cannot be
found on their course website. We also have an LTI
integration, allowing us to pull data from existing
learning management systems (like Canvas and
Moodle), as well as pushing data (like generated
questions or student grades) to those systems.
These alternative methods of uploading material
decrease effort required to adopt the platform,
making it something which can be used in minutes.
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Note 2: Rich Question Formats. In most
tools for creating assignments, questions are purely
text. This is not the case for Learn. Instead, all
questions are javascript functions of the type

() => ({question: HTML, answer: HTML})

If a user wants to create a question which
acts like text, we provide an interface which
lets them create such questions without writing
any code, just as they would in a traditional
assignment-creation software. However, we also
give users access to a coding environment which
they can use to create questions. This lets them
– or our question generation models – generate
questions in rich formats. That includes questions
with images, Latex, or interactive components
like coding challenges, animations, or full-fledged
games (see figure 8).

Note 3: Composability. Courses can use
the various parts of the tool independently. For ex-
ample, if a course largely uses written assignments
and does not want to switch to online assignments,
the tool can be used purely for question generation
by sending all questions to the question bank and
then copying them into the physical exams. A
course which has existing questions can bring them
onto the platform, display them to students, then
get analytics and have them re-written to be more
effective. Courses with an LTI or which use other
tools like gradescope can display all questions
through those platforms, link them to Learn, and
get analytics using their existing data. This allows
many different kinds of courses to use the tool, and
also for gradual adoption of those parts of the tool
which are most useful to any given course.

Complete Flow An instructor uploads the
material for their course, either manually, by
pointing our scraper to their course website, or
through an LTI integration. We then generate
richly-formatted questions which can include
interactive components through code. Those
questions are placed into assignments which can
be completed by students. Once students complete
the assignments, the results are used to re-write
the assignments and improve future question
generation.

3 How Natural Language Processing Is
Being Used To Augment Education

Although the most visible application of NLP in
Learn is that questions are generated automatically,
many aspects of writing and re-writing assignments
are enhanced by NLP research. In this section, we
detail the features of the platform enabled by NLP.

3.1 Question Generation

LLMs For Question Generation
Our platform uses multiple large langauge mod-

els, including GPT-3 (Brown et al., 2020), Codex
(Chen et al., 2021), and a fine-tuned T5 (Raffel
et al., 2019) variant to generate questions from
material uploaded by course staff. Recent work
has shown the ability of these models to generate
questions for STEM subjects such as mathematics
(Drori et al., 2022) and computer science (Zhang
et al., 2022) at a college level. Our prior work
(Dugan et al., 2022) showed that question quality
can be greatly enhanced by summarizing input
before using it to generate questions. Using
that insight, we first extractively summarize the
content using BERT (Devlin et al., 2018), before
passing the summarized inputs to the larger models.

Prompting For Question Style Transfer
When generating questions for a course, there

is a kind of cold-start problem. Courses use a
wide variety of different questions, from multiple-
choice to short-answer to long-form and proof-
based. Courses may even prefer more fine-grained
distinctions than those. How do we know what
kind of question to generate, and how do we get
our model to generate questions of that type?

Few-shot prompting, as in (Brown et al., 2020),
allows us to solve this problem. In the materials
which professors upload, there will often be
examples of questions from assignments used in
their class. We can then either generate question
and then re-write them using an arbitrary style
transfer method like that in (Reif et al.), or prepend
a course’s existing questions to our question
generation prompt. This allows us to generate
questions in a wide variety of styles, matching a
wide variety of courses. As a demonstration, we
can generate questions at all levels of Bloom’s
taxonomy (Bloom, 1956). Examples of questions
at the different levels can be seen in appendix A
(see table 1).
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Over-generation & Ranking
Despite the successes of large language models,

many of the questions which these models gen-
erate are still not acceptable according to human
annotators. Our prior work established that even
high-performing completely-automated methods
only generate acceptable questions 50% of the time
(Dugan et al., 2022). To mitigate this problem, we
over-generate and rank questions using BERT. So,
if a course needs 20 questions for an assignment,
we might generate 200 questions and surface the
top 20.

Course staff make the final decision about what
questions should be shown to students. In particu-
lar, course staff are shown the generated questions,
and either accept, reject, or edit questions. This has
two advantages. First, it ensure that all questions
which students see are of high quality. Second, it
provides data to train a ranking model. Accepted
questions are better than rejected questions, and
edited questions are better after editing than before.
As a result, our ranking model (and the quality of
questions shown to users) improves over time.

3.2 Showing Questions To Students

Spaced Repetition & Reinforcement Learning
Not all orders of presenting material to students

are equally effective. It is clear, for example, that
showing a student material on calculus before they
understand arithmetic is much less effective than
the other way around.

A particularly effective method of ordering ma-
terial to present it to students is spaced repetition
(Tabibian et al., 2019). The core idea is that, instead
of showing a piece of material to a student only
once or cramming many reviews all at once, they
should review that material multiple times at inter-
vals to avoid forgetting it. This technique has been
shown to improve student outcomes in subjects as
varied as mathematics (Smith and Rothkopf, 1984;
Mayfield and Chase, 2002; Patac and Patac JR,
2013), language learning (Cepeda et al., 2009), and
medicine (Kerfoot and Brotschi, 2009; Kerfoot,
2009). (Donovan and Radosevich, 1999) find an
overall mean weighted effect size of d=0.46 when
evaluating the effectiveness of spaced repetition
across 63 studies.

Learn implements spaced repetition to determine
what questions should be shown to students. This
improves student understanding without any addi-
tional effort for course instructors.

As noted in (Rafferty et al., 2016), the question
of what material should be shown to students can
be formulated as a Partially-Observable Markov
Decision Process (POMDP). That means we can
construct a schedule via reinforcement learning,
as in (Reddy et al., 2017), to determine what
material should be shown to a student in order to
maximize their understanding of the material. This
has the potential to significantly out-perform more
traditional spaced-repetition algorithms.

A/B Testing Assignments
In addition to allowing the platform to select

the questions shown to the students, we can
test collections of questions by A/B testing
assignments. This ability is also provided to
instructors, who can assign different versions of
an assignment to different students. This allows
instructors to collect information about their assign-
ments and get additional analytics (see section 3.3).

Automatically Identifying Course Concepts
A common criticism of spaced repetition is that

it primarily aids in "rote memorization": if a stu-
dent reviews the same question repeatedly, they
may only remember the content of the question, as
opposed to remembering the underlying concept.

A solution to this problem is to repeat a con-
cept with multiple different questions, rather than
a single question. For example, if asking questions
about breadth-first search, the first repetition might
ask about the running time, the second repetition
about the implementation of the algorithm, the third
repetition about a specific application, etc.

Learn implements both supervised and unsuper-
vised methods to identify concepts. First, we use
BERT to identify questions which are explicitly
asking the same thing in different ways. Then,
we cluster embedded vectors of the questions to
identify groups of questions with high semantic
similarity. By showing students questions selected
from these groups, we can avoid the problem of
memorization while still benefiting from spaced
repetition.

3.3 Analytics & Improving Questions

Item Response Theory
Item response theory (IRT) is a statistical frame-

work for analyzing the effectiveness of tests and
of individual questions within those tests. An in-
troduction to the theory can be found in (Partchev,
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Figure 6: Examples of two IRT curves from Columbia
Public Health. The x-axis represents a student’s ability,
as measured by standard deviations from average perfor-
mance in the overall course. They y-axis represents the
probability that a student gets the question correct. Both
curves here are 3 parameter logistic regression models.
Item 1 is a better question than item 2 because its IRT
curve is steeper, are therefore distinguishes ability bet-
ter. Both questions are of equal difficulty, as they are
centered around the same point (ability=0).

2004).
At a basic level, we want questions to tell us

what students know. A question is a good indicator
of a student’s knowledge if students who get that
question correct tend to do well in the course over-
all. So, we can measure the quality of a question
by seeing how strongly it correlates with overall
performance on assignments (see figure 6).

By computing this correlation, we can inform
course staff of particularly good or bad questions
(see figure 5), and refine assignments over time.

Automating The Creation of Autograders
Some questions are easy to grade, and the act of

creating them results in an auto-grader (e.g. multi-
ple choice questions, or questions that are solved
by invoking an algorithm such as linear algebra
problems). Many questions are harder to grade,
and in many classes a majority of TA time is spent
grading such questions.

To reduce the burden on TAs, Learn can
automatically construct auto-graders for questions
using data collected when students complete the
questions. There are multiple methods which
Learn uses to do this. The first is that students or
TAs can mark the questions as correct or incorrect,
then the platform looks for exact strings matches

in the future and is able to tell that those are
certainly correct. We can also use a BERT model
to classify the correctness of a new answer given
previous answers. These can both be done in
an automated manner, automatically reducing
the grading burden for course staff. We also
cluster the errors which students make, allow-
ing TAs to grade the work of many students at once.

RLHF For Question Generation
The annotations we collect from TAs (accepting,

rejecting, or editing questions) provides us with
data about human feedback for question generation
(see section 3.1). Following the methodology from
(Ziegler et al., 2019), we can then use this data to
improve our question generation models through
the following process:

1. Starting with a supervised policy, in this case,
our existing question generation model.

2. Training a reward model from the human feed-
back on question generation.

3. Optimizing a policy against the reward model
using Proximal Policy Optimization (PPO).
(Schulman et al., 2017)

This allows us to improve our question generation
models over time as we collect additional usage
data.

In the future, we will explore the use of other
data we collect (for example, IRT metrics) as addi-
tional supervision signals; if analytics can improve
questions that TAs have written, then they also ex-
press preferences which should be encoded in the
reward model, potentially allowing for more rapid
improvement.

4 Case Study

Learn has been integrated in multiple courses at the
University of Pennsylvania, and over 1000 students
have used the platform. The different classes used
the tool in different ways, verifying its composabil-
ity. In many of those classes, for example, Learn
was a supplementary tool, whereas the Introduction
to Artificial Intelligence class used it as a quizzing
platform for reading quizzes. In the latter class, we
were able to collect significant data on the efficacy
of the platform, which we report here.

4.1 Methodology
We conducted a control trial in the Introduction
to Artificial Intelligence course at the University
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of Pennsylvania. The course is divided into two
sections of approximately 300 students each. We
randomly assigned one section to use traditional
reading quizzes (which had been used in the class
during prior years), while the other section used
the Learn platform. On both platforms, the quizzes
were administered on a weekly basis. For the first
three weeks of the class, all students used the tra-
ditional quizzes, then the section using Martian
switched to using the new platform. The quizzes
covered the required readings for that week (from
the textbooks Artificial Intelligence: A Modern
Approach and Speech and Language Processing).
The students using Learn were also shown material
from prior weeks due to the integration of spaced
repetition (see section 3.2). Material on Learn was
created through a combination of automatic gener-
ation and TA-written questions.

There is one notable confounder in the experi-
ment, which is that one section of the class was en-
tirely online, while the other had the option of both
online and in-person classes. After random assign-
ment, the online-only section used traditional read-
ing quizzes, while the mixed section used Learn.
However, from exams scores in previous semesters,
we do not expect a difference in exam scores be-
tween the online and mixed sections.

We collected two evaluation metrics to deter-
mine the effectiveness of the platform. First, we
collected the students’ exam scores, which we
could compare across sections. Second, as a more
subjective metric, we asked the students who used
both traditional reading quizzes and Learn which
platform they preferred.

4.2 Results

The exam scores for students using Learn were
higher than those using traditional reading quizzes.
The students in the section that used Learn had
exam scores which were 0.29σ higher on average.
Among students who used Learn, every 15 minutes
of additional studying led to a 0.08σ improvement
in exam scores.

Similarly, Learn outperformed traditional read-
ing quizzes according to the subjective evaluations
of the students. 83% of students preferred Learn
to traditional reading quizzes (see figure 7). 11%
of students preferred traditional reading quizzes.
6% had no preference. We also received comments
from students regarding the platform, overwhelm-
ingly positive, some of which can be found in Ap-

Figure 7: At the end of the semester, students were
asked which section they preferred. A large majority of
students preferred Learn to traditional methods.

pendix A.

5 Conclusion

Learn is a unified, easy-to-use tool to apply ques-
tion generation in classrooms. The tool is able to
create assignments which write and re-write them-
selves. It achieves this through a number of features
enabled by recent advances in NLP. Having been
tested in multiple classes with over 1000 students,
it has been demonstrated to improve test scores and
is prefered by students to traditional alternatives.

Limitations

While the platform is well-featured, we hope to be
able to evaluate those features more thoroughly in
the future. The limitations to evaluating the system
so far stem from limits in how much the system has
been used.

This is a direct limit in the case of testing certain
features, like RLHF for question generation (see
section 3.3), which require more data than we have
currently collected. It is an indirect limit in the
kinds of classes which the tool has been tested
in. At the time of authorship, all the classes in
which the tool has been tested are computer science
classes. Although we see no reason why the tool
should not generalize to other courses (we have
tested the quesion generation outside of computer
science), that should be verified through further
expermentation.

Ethics Statement

If our platform works as intended and sees broader
use in higher-ed, course staff and students can ben-
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efit.

For course staff, it can reduce the time taken in
writing and grading assignments. It should also
help to alleviate concerns around cheating, as new
questions can be generated each semester, poten-
tially even creating new questions for each indi-
vidual student. By reducing this logistical burden,
Learn will allow course staff to focus on the parts of
teaching which are higher-leverage, and to improve
their courses in ways that weren’t before possible.

For students, the introduction of Learn into a
classroom is an opportunity to use more effective
methods for studying (such as spaced repetition), to
see higher-quality study material, and to have many
more questions with which to study. The ability
to automatically generate questions provides an
opportunity for students to get much more practice
– an arbitrarily large quantities of practice question
could be created, tailored to the topics in which
any particular student is struggling. As the system
improves over time we hope that students will have
study materials of higher quality than they would
without automated tools.

There are also large disparities in computer
science, especially for certain underrepresented
groups. These groups face structural issues which
may lead to differences in achievement. For ex-
ample, students in underrepresented groups may
feel uncomfortable asking questions of or reaching
out to course staff, and therefore may receive less
attention and aid from instructors. We can help
tackle those disparities by improving accessibility
through more effective learning systems.

It is also important to note, however, the po-
tential risks to privacy when building and using
education applications. Given the sensitive nature
of the data, such as grades, it is important to take
proper privacy and security safeguards when de-
ploying such systems. In order to minimize such
risks, we went through thorough evaluation by the
privacy office for the Computer and Information
Science Department at the University of Pennsyl-
vania. We also filled out the HECVAT lite security
questionnaire, receiving an A rating.

As education is downstream of many important
societal factors, such as economic growth and pub-
lic welfare, we are optimistic about the positive
impacts of new AI applications for education, like
Learn.
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A Select Comments From Students
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throughout hs/college and didn’t want to
change. But this has actually been so im-
mensely helpful and I now really believe in
the proven science behind how tools like this
can really help retain information."

2. “This is a great tool - amazing job overall!”
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Figure 8: A question created using code which can
randomly generate an graph from an adjacency list, and
display an image of the generated graph.

3. "It was very helpful (the repetitive review of
materials). The variety of some cards asking
the same material helped a lot too."

4. "I thought [Learn] was [a] very helpful way
to learn the material!"

5. "Thank you guys! This was really helpful!"

B Example Questions
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Level Question Answer
Remember What is the policy improvement

theorem?
The policy improvement theorem is a theorem that
says if we have two deterministic policies π and π′

such that, for all s ∈ S,
qπ (s, π

′(s)) ≥ vπ(s), then the policy π′ must be as
good as, or better than, π. That is, it must obtain
greater or equal expected return from all states s ∈ S
:
vπ′(s) ≥ vπ(s).

Understand Why is policy evaluation guar-
anteed to converge?

Because the value function is a fixed point of the
Bellman equation.

Apply What is vπ(15) for the equiprob-
able random policy in this case?

-1

Analyze What is the difference between
Synchronous DP and Asyn-
chronous DP?

Synchronous DP updates state values in a determin-
istic order, e.g. from small to large. Asynchronous
DP updates state values in a stochastic order.

Evaluate What are the limitations of Dy-
namic Programming?

The limitations of Dynamic Programming are that it
requires a perfect model of the environment and that
it is computationally expensive.

Create Draw a graph of 8 nodes, with
a completeness of 40%! Adja-
cency List = [[3, 6], [3], [6, 7],
[4, 6, 7], [6, 7], [], [7]]

Varies by response

Table 1: A collection of questions generated using Learn at each level of Bloom’s taxonomy (Bloom, 1956).
Bloom’s taxonomy establishes a series of levels of that represent different cognitive goals. The cognitive goals
become more difficult, going from remembering to creating.
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