
You Have Thirteen Hours in Which to Solve the Labyrinth:
Enhancing AI Game Masters with Function Calling

Jaewoo Song, Andrew Zhu, Chris Callison-Burch
University of Pennsylvania

{jwsong05,andrz,ccb}@seas.upenn.edu

Abstract

Developing a consistent and reliable AI game
master for text-based games is a challenging
task due to the limitations of large language
models (LLMs) and the complexity of the
game master’s role. This paper presents a
novel approach to enhance AI game masters
by leveraging function calling in the context of
the table-top role-playing game "Jim Henson’s
Labyrinth: The Adventure Game." Our method-
ology involves integrating game-specific con-
trols through functions, which we show im-
proves the narrative quality and state update
consistency of the AI game master. The experi-
mental results, based on human evaluations and
unit tests, demonstrate the effectiveness of our
approach in enhancing gameplay experience
and maintaining coherence with the game state.
This work contributes to the advancement of
game AI and interactive storytelling, offering
insights into the design of more engaging and
consistent AI-driven game masters.

1 Introduction

Imagine a world where the power of storytelling
meets the ingenuity of artificial intelligence, giving
rise to game masters that can weave captivating
narratives and adapt to the players’ choices in real-
time. This is the vision that drives our research
into enhancing AI game masters for table-top role-
playing games (TTRPGs). However, the realiza-
tion of this vision is hindered by the limitations of
current large language models (LLMs) and the in-
herent complexity of the game master’s role (Liapis
et al., 2014).

The popularity of LLMs sparked a wave of re-
search on AI game masters (Hua and Raley, 2020;
Callison-Burch et al., 2022; Zhou et al., 2022; Zhu
et al., 2023a; Ang et al., 2023; Triyason, 2023),
but the challenge of maintaining consistency and
coherence with the game state across multiple turns
remains largely unaddressed. Indeed, using an

LLM for a game master allows a variety of in-
puts and diverse narratives, unlike the traditional
keyword-matching approach that requires rigid in-
put commands and fixed outputs. However, an
LLM-based game master is prone to going off the
rails with respect to game rules and flow due to
its unpredictability and limitation in performing
game-specific functionalities. This is where our
work comes in, proposing a novel approach that
leverages function calling (Schick et al., 2024; Li
et al., 2024) to provide fine-grained controls to the
AI game master, enabling it to generate narratives
that are not only engaging but also consistent with
the game rules and state.

The main contributions of this paper are as fol-
lows:

• We present a methodology for enhancing AI
game masters by integrating function calling,
which allows for game-specific controls and
state management.

• We implement a simulation of the TTRPG
“Jim Henson’s Labyrinth: The Adventure
Game” to evaluate the effectiveness of our
approach in a realistic game setting.

• We conduct human evaluations and unit tests
to assess the impact of function calling on the
narrative quality, state update consistency, and
overall gameplay experience.

• We provide insights and guidelines for design-
ing more engaging and consistent AI-driven
game masters, contributing to the advance-
ment of game AI and interactive storytelling.

2 Related Work

The integration of AI in game design and develop-
ment has been a topic of growing interest in recent
years. In this section, we review the relevant litera-
ture on AI game masters, with a focus on the use
of LLMs and function calling.

Figure 1: An example of a pre-written adventure location in “Jim Henson’s Labyrinth: The Adventure Game”.

2.1 AI Game Masters in TTRPGs
One of the most actively researched TTRPGs in
the domain of LLMs would be Dungeons & Drag-
ons (D&D) (Gygax and Arneson, 1974). Callison-
Burch et al. (2022) model D&D as a dialogue chal-
lenge and experiment on the LLM’s performance
on the next utterance prediction and game state
tracking, using the model to generate the next state.
Zhu et al. (2023a) present a dataset based on the
ground-truth game states collected from real game-
play and test their effects on narration generation.

Zhu et al. (2023c) show that GPT-3 (Brown et al.,
2020) can be used as a game master’s assistant to
help brainstorm and create random encounters in
D&D. Santiago et al. (2023) use an LLM as a story-
telling assistant in D&D including a few generated
story examples. Both these projects focus on using
an LLM as an assistant, not a fully functional GM.

2.2 LLMs with Function Calling
The integration of function calling with LLMs
has shown promising results in various domains.
Schick et al. (2024) propose a method for fine-
tuning LLMs with API call annotations, enabling
them to perform tasks such as question answering,

calculation, and translation. Li et al. (2024) apply
function calling to dialogue state tracking by map-
ping domains to functions and slot-value pairs to
argument-value pairs.

In the context of games, Volum et al. (2022) and
Wang et al. (2023) leverage LLM-generated func-
tions to perform actions in Minecraft. However,
these projects focus on open-ended gaming agents
rather than game masters, which arguably have
more complex requirements and responsibilities.

Our work builds upon these previous studies
by integrating function calling with LLMs to en-
hance AI game masters in the context of TTRPGs.
We propose a methodology that allows for game-
specific controls and state management, enabling
more consistent and engaging gameplay experi-
ences.

3 Overview of Labyrinth

To evaluate the effectiveness of our approach, we
implement a simulation of the TTRPG “Jim Hen-
son’s Labyrinth: The Adventure Game” (Milton,
2020) using the chat-based framework Kani (Zhu
et al., 2023b). Labyrinth is a TTRPG inspired by
the 1986 fantasy film “Labyrinth,” directed by Jim

Henson. In Labyrinth, players take on the roles
of adventurers navigating a magical and treacher-
ous maze filled with challenges and obstacles. The
game master is responsible for describing the game
world, controlling non-player characters (NPCs),
and enforcing the game rules. Here are some key
features of the game:

• System and Rules: The game is designed with
newcomers in mind, and has a simpler rule set
than D&D. In the character creation process,
players pick a class, with one character trait
and one flaw (which affect their skill checks).

• Dice-Based “Tests”: The game primarily uses
six-sided dice (d6) to determine the outcome
whenever a character tries something that has
a chance of failure. If the result is higher
or equal to the difficulty number set by the
GM, the character succeeds, otherwise they
fail. Relevant character traits cause dice to be
rolled with advantage (rolling 2d6 and keep-
ing the highest), and flaws cause dice to be
rolled with disadvantage (2d6, keeping the
lower).

• Locations: The game includes pre-written ad-
ventures through a variety of locations in the
Labyrinth. Each location describes criteria
that players must achieve in order to move
on to the next location. Most locations con-
tain objects, NPCs and random tables which
are used for initializing the scene or defining
random encounters.

• Time tracking: The players are given 13 hours
to reach the center of the Labyrinth and defeat
the Goblin King. Any failure to pass the exit
criteria or succeed in a certain task increments
the clock.

4 Labyrinth Game Simulation

In our simulation of Labyrinth, the players create
characters to explore the Labyrinth, and our AI
agent takes on all of the responsibilities of the game
master. More details in the implementation are in
Appendix A.

4.1 Game State

There are two types of game states in this system.

• The scene state, which represents the cur-
rent state of the game world, including the

scene description, NPCs, objects, and suc-
cess/failure conditions. The details of the
scene state are elaborated in Appendix B.

• The player state encompasses the specifica-
tions of each player character, such as their
name, kin, persona, traits, flaws, and inven-
tory. The details of the player state are written
in Appendix C.

These game states are initialized before each
scene starts and can be updated during the game by
the AI game master using the provided functions,
discussed below. The scene state and player states
are represented as Python objects or variables and
are included in the input prompt for every genera-
tion by default.

4.2 Rule Retrieval
To maintain consistency with the game rules, we
manually summarized the game rules by extract-
ing the essential parts from the book. This rule
summary, which consists of about 50 sentences, is
injected into the prompt as a whole or a few sen-
tences are retrieved according to the importance.
More details are in Appendix A.4.

4.3 Dialogue history
The dialogue history represents all of the turns in
the chat, including player input, GM descriptions
(output to the player), and function calls made by
the GM. A sample dialogue is given in Figure 2.
The chat messages in the history form the prompt
to the game master depending on the pre-defined
prompt design configurations, which are elaborated
in Appendix A.5.

4.4 Function Types
We define two types of functions in our game sys-
tem:

1. Dice roll function: This function simulates
the rolling of dice when a player attempts an
action with a certain difficulty. For example,
the activate_test function generates ran-
dom numbers to mimic dice rolls and deter-
mines the success or failure of the action based
on the outcome and the game rules. A dice
roll function affects the game flow but does
not directly modify the game state.

2. State functions: These functions directly
modify the game state variables. For instance,
the create_npc function adds a new NPC to

Figure 2: A dialogue between a player character
(PC) and the game master (GM). This example shows
how the AI GM uses different functions calls. Here,
activate_test is called when the PC tries to do some-
thing challenging, add_item is called when the PC
wants to add a new item to the inventory, and use_item
is called when the PC tries to use an item in the inven-
tory. The use_item fails because the PC asks to use a
“Super Speed potion" (which they do not have) instead
of the “Super Strength potion” (which they do).

the current scene, while the add_item func-
tion updates a player’s inventory by adding
a new item. State functions are essential for
maintaining consistency between the game
narrative and the underlying game state.

The list of all functions we used for this work
and their specifications are attached in Appendix

D. And the examples of function definitions we use
based on Kani’s format are shown in Appendix E.

4.5 Function Calling Process
During gameplay, the AI game master determines
when to call a function based on the current game
context and the predefined function definitions.
The function definitions, along with the chat his-
tory and game state, are passed to the language
model as part of the input prompt. The model then
selects the appropriate function to call and parses
the necessary arguments from the dialogue context.

Figure 2 shows an example of multi-turn inter-
action between a player and the game master with
functions. Normally, the game master generates a
natural language response, but a function can be
called anytime when it is necessary. Note that func-
tion calls can be sequential, where another function
might be called after the previous one depending
on the context or the result. Until the game mas-
ter determines that no more functions or responses
are needed (i.e. generates a stop token without a
function call), the game master’s turn continues.

Figure 3 illustrates the steps involved in a single
function call. The AI game master first generates a
response based on the current game state and chat
history. If a function call is required, the model
selects the appropriate function and provides the
necessary arguments. The function is then exe-
cuted, updating the game state if necessary, and the
result is appended to the chat history. This process
continues until the game master determines that no
further functions or responses are needed.

5 Experimental Design

In this section, we discuss the data collection and
unit test procedures used to evaluate the perfor-
mance of the AI game master.

5.1 Data Collection
To collect gameplay data, we simulate 24 game
scenes from the Labyrinth game book using GPT-
4(Achiam et al., 2023) to play the roles of both the
players and the game master. We create four player
characters with diverse kins, traits, and flaws, and
use the SentenceBERT (Reimers and Gurevych,
2019) model for retrieving relevant rule sentences
based on the current input messages. We test six
different game master settings, varying the use of
functions and game state management:

• FG-all: Using all states and functions.

Figure 3: Steps involved in a single function call during gameplay: (1) The player message is added. (2) The game
master agent makes a prompt with the chat history, game state, and function definitions. Then it requests an API call
with the prompt. (3) The API determines whether to call a function or not. If it is needed, it chooses a function
and parses/sets corresponding arguments from the chat history. (4) The API returns a function call message. It
also comes with the parsed arguments. (5) When a function call is triggered, the pre-defined logic of it runs and
returns the result message. (6) The game master calls the API with the updated chat history. (7) Again, it determines
whether a function should be called or not. (8) If it is not needed, a normal response message is returned.

• FG-dice: Using all states and only dice roll
function.

• FG-states: Using all states and only state
functions.

• FG-default: Using all states, but no functions.
All states stay the same after initialization.

• FG-gen: Using all states and the states are
updated by GPT-4, not by functions.

• DG: Using no states and no functions. It sees
the game states at the beginning, but they can
be excluded due to the context size limit later.

Table 1 summarizes the statistics of the collected
gameplay data.

5.2 Human Evaluation
We recruit seven evaluators to assess the generated
responses. Each evaluator is assigned 12 game
scripts (two scenes with six different settings) and
asked to rate the responses on a Likert scale along
three dimensions: consistency, which is how well
the model remains grounded in previous turns the
game states, reliability, which is how well the
model follows the Labyrinth rules and role as GM,
and interest, which is how interesting the model’s
generation is. Full details of the human evaluation
can be found in Appendix F.

Labyrinth Gameplay Data
Total scripts 144
Total scenes 24
Total utterances 4,937
Average utterances per script 34.28
Total generated responses 1,021
Average generated responses 7.09
Total function calls 620
Average function calls per script 8.64

Table 1: The statistics of generated transcripts. The
responses which have null content have been excluded.
And the number of function calls has been calculated
only from the scenes where the functions are used.

5.3 Unit Tests

In addition to the gameplay data, we design 30
unit tests to compare the state update correctness
between the different game master settings. Each
test case consists of input states, input dialogue,
and expected output states. The objective is to
predict the output states correctly given the input
states and dialogue.

The unit test cases are generated by augmenting
the collected gameplay data, focusing on instances
where state variables are changed after the game
master generates a response. We use GPT-4 to para-
phrase the dialogues while preserving the overall

Consistency

Setting FG-all FG-dice FG-states FG-default FG-gen DG
1 4.422 3.867 3.711 3.356 3.756 3.600
2 4.333 3.800 3.244 3.667 3.689 3.667
3 4.378 4.000 3.311 3.467 3.578 3.689

Average 4.378 3.889 3.422 3.496 3.674 3.652
Total 4.388 3.983 3.358 3.420 3.698 3.691

Reliability

Setting FG-all FG-dice FG-states FG-default FG-gen DG
1 3.922 3.511 3.444 3.444 3.711 3.778
2 4.033 3.556 3.267 3.644 3.711 3.711
3 3.878 3.600 3.222 3.311 3.600 3.889

Average 3.944 3.556 3.311 3.467 3.674 3.793
Total 3.949 3.650 3.272 3.364 3.628 3.855

Interest

Setting FG-all FG-dice FG-states FG-default FG-gen DG
1 3.744 3.267 3.600 2.667 3.022 3.333
2 3.722 3.311 3.356 3.156 2.844 3.311
3 3.811 3.422 3.444 2.933 2.889 3.422

Average 3.759 3.333 3.467 2.919 2.919 3.356
Total 3.765 3.400 3.444 2.795 2.942 3.364

Table 2: The human evaluation scores from 3 different samplings. A bolded score is the best score among each
comparison. We also include the average of 3 samplings and the total average score of all evalauted responses
without random sampling.

FG-all FG-states FG-gen
1 0.400 0.433 0.233
2 0.417 0.483 0.300
3 0.450 0.467 0.267
Avg 0.422 0.461 0.267

Table 3: Unit test results for state update correctness.
Underlined scores are the best score for each trial, and
the bold score is the best among the average scores.

content and manually inspect the correctness of
the state updates and the validity of the generated
dialogues.

6 Experimental Results

6.1 Human Evaluation Results

Table 2 presents the human evaluation scores for
each setting, averaged over three different sam-
plings.

6.1.1 Consistency
For consistency, the FG-all setting, which uses
both dice roll and state functions, outperforms the
other settings. This demonstrates the effectiveness
of integrating function calling in enhancing the

consistency with the game progress. Appendix G
shows the statistical significance of FG-all calcu-
lated against other settings.

We found that the game easily fell into an un-
desired loop, where both players and game master
infinitely wait for the dice roll without proceeding
with anything. This "dice roll deadlock" hugely
hurts the overall game experience and prevents
the game master from following the game flow
correctly. This is why FG-dice gets the second-
best scores, showing the importance of the dice
roll function to avoid this deadlock. Appendix H.1
presents two different gameplay logs with and with-
out the dice roll function.

FG-default and FG-states particularly fall be-
hind in consistency. Especially, FG-states calls
state functions too frequently, introducing new
game states before resolving the previous chal-
lenges. This degrades the performance of the
agent even worse. Appendix H.3.1. shows one
of the examples. Interestingly, DG shows the de-
cent scores in consistency. We believe that DG
is good at making up the dice result without the
function since it does not leverage any states, al-
lowing the game master to focus on the game rules
better. We infer that the reason why FG-gen is also

good at avoiding the deadlock is thanks to updating
action_scene=True variable. The action scene is
activated when each player should take one dice
roll action at a time to overcome an urgent circum-
stance. So it produces a signal like: "This is an
action scene and you need to determine the result
of each action!".

6.1.2 Reliability
For reliability, the FG-all also got the best scores
in almost every sampling. This shows that using
both function types helps the game master control
and manage the game robustly. DG hits the nearly
highest scores in reliability. By qualitative analysis,
we found that DG tends to state the game rules
explicitly and correct the player’s trial more often.
Again, this is an advantage of using only game
rules without the extensive game states or function
descriptions. This renders the game master seem
more strict, whether its intervention is valid or not.
Appendix H.2 shows a few cases of how the game
master corrected the user’s requests.

Unlike in consistency, FG-dice performs mod-
erately in terms of reliability. While having the
dice roll function mitigates the dice roll deadlock,
that does not necessarily mean it is always ben-
eficial. One of the feedbacks says that FG-dice
often allows the player’s unrealistic moves too eas-
ily without determining whether they are valid or
reasonable. Appendix H3.2 includes a more de-
tailed example. We conclude that the dice roll func-
tion and state functions intervene with each other,
preventing excessive calls of certain functions and
setting a proper balance during the game.

According to the appendix G, FG-all shows a
meaningful improvement compared to FG-states
and FG-default. However, its performance is not
statistically significant enough against FG-gen and
DG. We believe the reliability metric has a lack of
clarity and produces an unexpected bias even if the
response is not good enough. This shows designing
a more straightforward metric is essential for future
works.

6.1.3 Interest
Overall, the settings with function calling (FG-all,
FG-dice, FG-states) generate more specific and
interesting responses. We see that functions are
beneficial for improving the details and engage-
ment of the output since the function message is
integrated into the chat history and introduces ad-
ditional context. Appendix G presents that FG-all

shows a worthwhile improvement in interest com-
pared to FG-default, FG-gen and DG.

Interestingly, DG performs as great as FG-dice
in interest among the settings that do not use func-
tion calling. While DG might introduce unrelated
content during the game, this hallucination is ac-
tually considered interesting, regardless of its cor-
rectness.

6.2 Unit Tests Results

We conduct unit tests to evaluate the correctness
of state updates for the FG-all, FG-states, and
FG-gen settings. Table 3 presents the unit test re-
sults, showing the proportion of correctly predicted
output states for each setting.

The FG-states setting consistently outperforms
FG-all and FG-gen in the unit tests. This is be-
cause state functions can update the game state be-
fore the game master’s turn is completed, whereas
dice roll functions may cause the game master to
consider the current challenge resolved without
calling additional state functions. However, it is
important to note that the unit tests assume short-
term interactions, and the superior performance
of FG-states in this context does not necessarily
translate to better performance in actual gameplay,
where the lack of dice roll functions can lead to
excessive function calls and disrupt the game flow.
Appendix I presents an example of a dialogue in
one test case, and how the existence of a dice roll
function causes the difference between the results
of FG-all and FG-states.

7 Conclusions

In this research, we have demonstrated the effec-
tiveness of integrating function calling with large
language models (LLMs) to enhance the capabil-
ities of AI game masters in the context of "Jim
Henson’s Labyrinth: The Adventure Game." Our
experiments show that a combination of dice roll
and state functions leads to the highest quality nar-
ratives and most engaging gameplay experiences,
as evaluated by human raters. However, we also dis-
covered that the optimal balance between these two
types of functions is not always straightforward,
with dice roll functions being crucial for smooth
game flow and state functions being essential for
maintaining consistency with the underlying game
state.

Our work contributes to the growing body of
research on the application of LLMs and function

calling to game AI and interactive storytelling. By
demonstrating the benefits and trade-offs of dif-
ferent function configurations in the context of a
specific TTRPG, we provide valuable insights and
guidelines for designing more engaging and con-
sistent AI-driven game masters.

8 Limitations and Future Work

While our approach has shown promising results
in the context of "Jim Henson’s Labyrinth: The
Adventure Game," there are several limitations to
consider. First, the functions used in our study
were specifically designed for this particular game,
which may limit the generalizability of our findings
to other TTRPGs or game genres. Future research
could explore methods for automatically generat-
ing or adapting game-specific functions based on
game manuals and rules, potentially enabling the
application of our approach to a wider range of
games.

Another limitation is the subjectivity inherent in
human evaluations of the AI game master’s perfor-
mance. While we aimed to mitigate this by pro-
viding clear evaluation criteria and using multiple
raters, the complexity and length of the game tran-
scripts may have introduced some variability and
bias in the ratings. Future work could investigate
the use of more objective evaluation metrics and the
potential for AI-assisted evaluation tools to handle
longer and more complex interaction sequences.

Finally, while our work has implications for
the broader field of game AI and interactive sto-
rytelling, these connections could be explored in
more depth. Future research could investigate how
the insights gained from our study of AI game mas-
ters in TTRPGs could be applied to other domains,
such as video game NPCs, interactive fiction, or
educational simulations. By continuing to bridge
the gap between LLMs, function calling, and game
AI, we can unlock new possibilities for creating
engaging, adaptive, and immersive interactive ex-
periences.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Charlene Ang, Lorraine Renee Cortel, Carlo Luis San-
tos, and Ethel Ong. 2023. Fable reborn: Investigating

gameplay experience between a human player and a
virtual dungeon master. In Extended Abstracts of the
2023 CHI Conference on Human Factors in Comput-
ing Systems, pages 1–7.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Chris Callison-Burch, Gaurav Singh Tomar, Lara J
Martin, Daphne Ippolito, Suma Bailis, and David
Reitter. 2022. Dungeons and dragons as a dialog
challenge for artificial intelligence. arXiv preprint
arXiv:2210.07109.

Gary Gygax and Dave Arneson. 1974. Dungeons &
Dragons. TSR, Inc.

Minh Hua and Rita Raley. 2020. Playing with unicorns:
AI dungeon and citizen NLP. DHQ: Digital Human-
ities Quarterly, 14(4).

Zekun Li, Zhiyu Zoey Chen, Mike Ross, Patrick Hu-
ber, Seungwhan Moon, Zhaojiang Lin, Xin Luna
Dong, Adithya Sagar, Xifeng Yan, and Paul A Crook.
2024. Large language models as zero-shot dialogue
state tracker through function calling. arXiv preprint
arXiv:2402.10466.

Antonios Liapis, Georgios N Yannakakis, and Julian To-
gelius. 2014. Computational game creativity. ICCC.

Ben Milton. 2020. Jim Henson’s Labyrinth: The Adven-
ture Game. River Horse.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3980–3990. Association for Computational Linguis-
tics.

Jose Ma Santiago, Richard Lance Parayno, Jordan Aiko
Deja, and Briane Paul V Samson. 2023. Rolling
the dice: Imagining generative AI as a Dungeons
& Dragons storytelling companion. arXiv preprint
arXiv:2304.01860.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Tuul Triyason. 2023. Exploring the potential of Chat-
GPT as a dungeon master in Dungeons & Dragons
tabletop game. In Proceedings of the 13th Interna-
tional Conference on Advances in Information Tech-
nology, pages 1–6.

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

Ryan Volum, Sudha Rao, Michael Xu, Gabriel Des-
Garennes, Chris Brockett, Benjamin Van Durme,
Olivia Deng, Akanksha Malhotra, and William B
Dolan. 2022. Craft an iron sword: Dynamically
generating interactive game characters by prompting
large language models tuned on code. In Proceedings
of the 3rd Wordplay: When Language Meets Games
Workshop (Wordplay 2022), pages 25–43.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Pei Zhou, Andrew Zhu, Jennifer Hu, Jay Pujara, Xiang
Ren, Chris Callison-Burch, Yejin Choi, and Prithviraj
Ammanabrolu. 2022. I cast detect thoughts: Learn-
ing to converse and guide with intents and theory-
of-mind in Dungeons and Dragons. arXiv preprint
arXiv:2212.10060.

Andrew Zhu, Karmanya Aggarwal, Alexander Feng,
Lara J Martin, and Chris Callison-Burch. 2023a.
FIREBALL: a dataset of Dungeons and Dragons
actual-play with structured game state information.
arXiv preprint arXiv:2305.01528.

Andrew Zhu, Liam Dugan, Alyssa Hwang, and Chris
Callison-Burch. 2023b. Kani: A lightweight
and highly hackable framework for building
language model applications. arXiv preprint
arXiv:2309.05542.

Andrew Zhu, Lara Martin, Andrew Head, and Chris
Callison-Burch. 2023c. CALYPSO: LLMs as dun-
geon master’s assistants. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 19, pages 380–390.

A Implementation details of Labyrinth

A.1 Overview

Figure 4: Overview of the game simulation. 1) The scene initialization step generates the starting scene state. 2)
The player character creation step returns the created player states. 3) In the main logic, the actual game proceeds
by the game master and player party. 4) The game terminates according to the success/failure condition and exports
the gameplay log data.

A.2 Scene initialization

We manually parsed all scene text from the game book into a large JSON file. The data file has a list
of JSON objects and each object represents the specifications of one scene, including the description,
locations, notes, random tables, etc. However, these raw scene data are not formalized and have a low
readability. Since most of the components are pure natural language texts, it is hard to parse a certain
keyword or object from the scene. Also, the raw scene lacks details and the game master should improvise
most of them in real-time during the game. To increase the consistency, we need more specific and
informative initialization of scene components before the game, so that the model can keep track of the
game states more easily.

In the scene initialization step, we convert a raw scene JSON object into a formalized scene state using
GPT-4. Given a JSON input of the scene and the game rule summary, the model extracts, paraphrases, or
creates the required scene state components. In more detail, the model generates the overall summary of
the scene, the specifications of existing NPCs, the success condition of the scene, the failure condition of
the scene, the intended game flow, and the environmental objects with their descriptions. All scene state
components are organized in Appendix B.

One of the most interesting components in Labyrinth is the random tables. The game master can use
the randomly sampled entries from a table in various ways. For instance, the random samples can be new
information or hints which might be useful for the players. Or they can be new challenges the players
should overcome. The game master is also able to make random encounters such as new NPCs, objects or
urgent circumstances. For scene initialization, we assume that a random table can be used for 1) nothing
(only used during the game), 2) initializing NPCs, 3) initializing objects, or 4) initializing both NPCs and
objects. We instructed GPT-4 to use the random tables for initializing a scene in the Chain-of-Thought
approach, following these steps: First, GPT-4 determines which usage each random table falls into. If a
table should be used for 2, 3, or 4, we ask GPT-4 how many samples should be retrieved from this table.

If the raw scene input specifies the exact number, the model parses it. Otherwise, we just let the model
decide a reasonable number. After that, we randomly sample the entries from the tables and feed the
samples as the required conditions when GPT-4 generates other scene components, such as NPCs and
objects. The tables used for initialization are removed and only those that have not been used remain in
the scene state when the game starts.

A.3 Player character generation

Unlike the scene initialization, the player character is made by each human player. We parsed the "Creating
character" section from the book and organized the available options a player can choose. Each player
chooses one kin and each kin has the persona, default traits, flaws, or items accordingly. Then the player
can set the name and goal freely. Finally, the player chooses one trait and flaw from the given list to
complete the character creation. The created player information is converted into a player state in JSON
format. All player state components are elaborated in Appendix C.

A.4 Rule injection

There are two ways of injecting the rules into the prompt. First, full injection simply attaches the full rule
summary. On the other hand, retrieval injection parses the top 5 relevant rule sentences given the current
input messages and adds them to the prompt. In more detail, assume that there are R rule sentences and Q
input messages. All of them are encoded into the vectors in size of E. With the rule matrix G ∈ RE×R

and query matrix M ∈ RE×Q, the cosine similarity matrix C is calculated as follows:

C ∈ RR×Q, Cij =
g ·m

||g||||m||
, g =


G1i

G2i
...

GEi

 , m =


M1j

M2j
...

MEj

 (1)

Then, we take the max-pooled vector C ′ ∈ RR×1 to get the maximum score of each rule sentence.
Finally, we pick the top 5 sentences with the highest scores and put them into the prompt.

A.5 Prompt designs

In this work, the user is able to set various combinations of prompt design approaches. By default, Kani
provides a prompt construction algorithm to set the given messages to fit into the limited context window
size. It excludes the least recent messages first until the total number of tokens in the messages is less
than or equal to the context size, including the system instruction, function descriptions, and any other
messages that are set to be always included. Besides that, we implemented the following variants in
prompt design methodologies:

• Concatenation
Simple concatenation is just concatenating the messages in order, which is mostly used in a wide
range of interactive AI systems. Retrieval concatenation, on the other hand, fetches the most
relevant chat messages from the history given the current queries to process. This is actually the
same mechanism as the retrieval rule injection, but the only difference is that the system attends to
the utterances in the past chat history, not the rule sentences.

• Maximum number of messages
The user can specify the maximum number of messages in the prompt. If it is not set, the system
takes as many messages as possible within the context size. If a certain number is set, the system
only takes a limited number of messages as specified.

• Summarization
Summarization can be used in various ways. By default, summarization requires the summarization
period, which indicates how frequently the chat history should be summarized. For example, if the
period is 2, when every 2 interactions between the player party and the game master are finished, the

game master summarizes the history so far and adds the result to the chat history. This summary can
be used when the system concatenates the messages either with simple concatenation or retrieval
concatenation. If the summarization period doesn’t exist, the system summarizes the whole chat
history every time it creates an input prompt. In this case, none of the other variants for prompt
design matter.

• Raw chat message handling
When the system leverages summarization, it can also either remove the original chat messages
or keep them. In other words, the summary replaces the original chat messages that are used for
summarization. In this way, the number of chat messages remaining in the history can be efficiently
maintained.

B Scene state details

Component Type Description
chapter str The chapter name.
scene str The scene name.
scene_summary list[str] The brief summary of the current scene. Each string is one

sentence.
npcs dict[str, dict] The initialized NPCs. Each key is an NPC name and the

value is the specification, which is another dictionary. The
specification includes kin, persona, goal, trait and flaw.

success_condition str The condition for the players to win this scene.
failure_condition str The condition for the players to fail this scene.
game_flow list[str] The intended game flow of the current game scene. Each

string is one sentence.
environment dict[str, str] The environmental objects. Each key is an object name

and the value is the description.
random_tables dict[str, list[str]] The random tables. Each key is a table name and the value

includes the string entries.
consequences str The consequences after finishing the scene.
is_action_scene bool Indication of whether the action scene is currently acti-

vated or not.

Table 4: The list of all components in the scene state. Note that each component is represented as the data type
above in Python and put into the prompt after being converted into a flat string format.

C Player state details

Component Type Description
name str The name of the player.
kin str The kin of the player.
goal str The goal of the player.
traits dict[str, str] The traits of the player. Each key is a trait name and the

value is the description.
flaws dict[str, str] The flaws of the player. Each key is a flaw name and the

value is the description.
inventory dict[str, str] The inventory of the player. Each key is an item name and

the value is the description.
additional_notes list[str] This adds an additional notes regarding the player charac-

ter. This is something like: A player does something, add
a new trait/flaw, etc.

Table 5: The list of all components in the player state. Note that each component is represented as the data type
above in Python and put into the prompt after being converted into a flat string format.

D List of all functions

Function Description Sub-tasks Category
activate_test It performs a dice roll when

a player tries a test. The diffi-
culty is set by the game mas-
ter.

If the player’s attribute
improves/hinders the test,
two dice should be rolled
and a larger/smaller value
is picked.

Dice roll

activate_action_scene It starts an action scene. - State
terminate_action_scene It ends an action scene. -
create_npc It creating a new NPC in the

scene and add it into the scene
state.

A sub-LLM generates the
NPC specifications in a
JSON form.

add_trait It adds a new trait into a
player’s trait list.

-

add_flaw It adds a new flaw into a
player’s flaw list.

-

add_item It adds a new item into a
player’s inventory.

-

remove_trait It removes a trait from a
player’s trait list.

-

remove_flaw It removes a flaw from a
player’s flaw list.

-

remove_item It removes an item from a
player’s inventory and leav-
ing it in the environment.

-

use_item It lets a player use an item in
the inventory.

If the item should be re-
moved after usage, it is re-
moved from the inventory.

add_object It adds a new object in the en-
vironment.

-

use_environment It lets a player get access to
an object in the environment.

If the object is obtain-
able, the player can choose
whether to take it or not.

use_random_table It samples some random en-
tries from a random table.
The results can introduce
a new context or triggers
another functions, such as
create_npc or add_object.

If the sampled entries or
the table itself should be
removed after usage, they
are removed.

Table 6: The list of all functions which are used for this work. Each function has its name, description, category
(dice roll / state) and sub-tasks depending on the design.

E Function definition examples

E.1 activate_test (Dice roll)

Figure 5: The definition of activate_test function which is called when a player should roll the dice. Each
function definition has @ai_function annotation, function name, argument annotations, docstring, function logic,
and the return value. In the actual implementation, the function logic part is a code block to perform the logic.

E.2 create_npc (State)

Figure 6: The definition of create_npc function which is called when a new NPC should be introdued during the
scene. Likewise, in the actual implementation, the function logic part is a code block to perform the logic.

F Survey questions

F.1 Consistency

How consistent is the target response to the current game progress, including the chat history and
the game states?

1. The target response is consistent with the chat history between the players and the master so far.

• The model remembers the past interactions.
• The response is relevant to the player party’s queries or requests.

2. The target response is consistent with the updates in the scene and players so far.

• The model acknowledges the existing components in the current scene, such as NPCs, objects,
and random table entries.

• The model acknowledges the existing properties of the players, such as traits, flaws, and
inventories.

※If the model output assumes or fakes up any non-existing components, ignore it for this question.This
will be penalized in the reliability check question.

(1=The model does not follow the progress at all, 3=The model makes a narration that is plausible
but misses some components in the scene or players, 5=The model’s response correctly follows the chat
history while acknowledging the existing components in the states well too)

F.2 Reliability

How well does the model control and manage the game reliably?

1. The game master fully understands the game and performs its task as a master correctly.

• The model keeps the general game rules in Labyrinth.
• The model understands the scene-specific rules, instructions, and specifications of the current

scene and guides the players to proceed with the game as intended.

2. When a player tries to do something invalid, the game master rejects it robustly.

• The model rejects it when the player attempts to do something which cannot be performed by a
player character or which is not the player’s task.

• The model rejects it when the player tries to use a trait, flaw, or item which does not exist in the
player.

• The model rejects it when the player tries to leverage or get access to non-existing objects,
NPCs, or random tables.

3. Any unexpected behavior which might hurt the players’ gameplay experience or make the game flow
far from intended should be penalized.

※Note that this metric does not evaluate the quality of the response. Even if the response looks perfect,
it can contain an invalid content or the model might just let the player do an unallowed trial.

(1=The model blatantly ignores the rules or is completely generous with the players’ invalid moves,
which makes the game go into a bad state, 3=The model gets some rules incorrect or accepts the players’
some violations, but the game generally progresses as it should, 5=The model keeps the rules correctly
and corrects the players’ invalid or unacceptable behaviors)

F.3 Interest
How interesting is the generated response?

1. The response describes the scene funny, entertaining and specific.

2. The response makes the user engaged and immersed in the game.

(1=The response is too bland, simple, or half-hearted, 3=The response is not highly entertaining, but at
least it is not boring, 5=The response is so engaging and immersive that I wouldn’t want to stop the game
if I were a player)

G Statistical significance

FG-dice FG-states FG-default FG-gen DG
Consistency 0.0835 0.0000 0.0001 0.0025 0.0064
Reliability 0.2722 0.0094 0.0338 0.1806 0.7400
Interest 0.0965 0.1248 0.0000 0.0005 0.0427

Table 7: The p-values of FG-all against other settings in each metric after conducting t-tests. The bolded values
are p < 0.05, which are considered statistically significant.

H Examples of the model’s responses

H.1 Dice roll behaviors
H.1.1 With a dice roll function

Figure 7: With the dice roll function, the game master properly notifies the result and let the game smoothly proceed.

H.1.2 Without a dice roll function

Figure 8: Without the dice roll function, the game master does not produce the dice roll result and keeps waiting for
the result.

H.2 Controlling the behavior from the player

Figure 9: The game master properly corrects the player’s behavior. In this case, it restrict a dice roll attempt from
Sir Lukas and points out the player Carl’s invalid move, which plays the game master’s role. However, this is not
perfect, since the master does not say anything about Jake’s improper behavior, which is setting the difficulty.

Figure 10: The game master corrects Sir Lukas’s attempt to use Enchanted Quill. However, it is actually valid, since
the player has the item. Still, the evaluator gave 5 points in reliability regardless of correctness.

H.3 Limitation of using one function type
H.3.1 Excessive calls of functions only with state functions

Figure 11: Without the dice roll function, one of the state functions, use_random_table, is called without resolving
the previous challenge, introducing a new context again.

H.3.2 Accepting the requests too generously only with a dice roll function

Figure 12: The evaluator gave the lowest score to this response, since he thought Carl’s help was completely
ridiculous but the game master called the dice roll function without validating it. Also, it failed to point out Jake’s
invalid behavior.

I Unit test example

Figure 13: A sample dialogue in one of the unit tests. Since a new object "Sleeping gas canister" has been sampled
from a random table, it should be added to the scene via add_object function.

Figure 12 shows a sample dialogue from one of the test cases we crafted. In this dialogue, a humongous
fired sleeping gas canister, which has been sampled from a random table. To pass this test case, the game
master should call add_object function to add a new object "Sleeping gas canister".

Figure 13 shows the result after feeding the input dialogue into FG-all. We can see that activate_test
function was called multiple times, but the function add_object was not, on the other hand. This can be
helpful in terms of the actual gameplay, since it allows the players to resolve the given challenge via dice
rolls. However, in terms of the game state update, it is considered as wrong since the object has not been
added to the scene.

On the other hand, FG-states correctly called add_object function as intended, which is shown in
Figure 14. Since there is no dice roll function to call, the API could fetch a proper state function without
distraction. Since it successfully added the new object, it passed this test case. However, as we saw from
the human evaluation results, this is not always beneficial in terms of the game’s progress.

Figure 14: Generated responses and function call results from FG-all. The dice roll function was called multiple
times and the master didn’t call add_object function.

Figure 15: Generated responses and function call results from FG-states. Without a dice roll, add_object function
was correctly called.

	Introduction
	Related Work
	AI Game Masters in TTRPGs
	LLMs with Function Calling

	Overview of Labyrinth
	Labyrinth Game Simulation
	Game State
	Rule Retrieval
	Dialogue history
	Function Types
	Function Calling Process

	Experimental Design
	Data Collection
	Human Evaluation
	Unit Tests

	Experimental Results
	Human Evaluation Results
	Consistency
	Reliability
	Interest

	Unit Tests Results

	Conclusions
	Limitations and Future Work
	Implementation details of Labyrinth
	Overview
	Scene initialization
	Player character generation
	Rule injection
	Prompt designs

	Scene state details
	Player state details
	List of all functions
	Function definition examples
	activate_test (Dice roll)
	create_npc (State)

	Survey questions
	Consistency
	Reliability
	Interest

	Statistical significance
	Examples of the model's responses
	Dice roll behaviors
	With a dice roll function
	Without a dice roll function

	Controlling the behavior from the player
	Limitation of using one function type
	Excessive calls of functions only with state functions
	Accepting the requests too generously only with a dice roll function

	Unit test example

