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Abstract

Language model applications are becoming in-
creasingly popular and complex, often includ-
ing features like tool usage and retrieval aug-
mentation. However, existing frameworks for
such applications are often opinionated, decid-
ing for developers how their prompts ought
to be formatted and imposing limitations on
customizability and reproducibility. To solve
this we present Kani: a lightweight, flexible,
and model-agnostic open-source framework for
building language model applications. Kani
helps developers implement a variety of com-
plex features by supporting the core building
blocks of chat interaction: model interfacing,
chat management, and robust function calling.
All Kani core functions are easily overridable
and well documented to empower developers
to customize functionality for their own needs.
Kani thus serves as a useful tool for researchers,
hobbyists, and industry professionals alike to
accelerate their development while retaining
interoperability and fine-grained control.

1 Introduction

We introduce Kani, an open-source! framework
for building language model (LM) applications.
Kani takes care of the basics of chat interaction—
querying models, managing chat history, and call-
ing external functions—allowing developers to
write robust application code that is interoperable
across any underlying language model. From this
minimal base, developers can easily override the
core features to implement more complex function-
ality like retrieval, web hosting, dynamic model
routing, and tool usage tracking.

Unlike existing frameworks, Kani is lightweight
and highly hackable, allowing developers to control
their prompts, customize their models, and handle

*Equal contribution.
'Kani is available at https://github.com/zhudotexe/
kani, free for use under the MIT license.
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Figure 1: Kani is a lightweight and flexible framework
that tracks chat history, calls inference engines, and man-
ages callable functions in an un-opinionated manner—
allowing researchers and developers to implement cus-
tom functionality easily and quickly.

(.

errors with ease. Our design philosophy is minimal-
ist implementation with maximalist documentation:
we implement a small number of universally use-
ful core features while providing more complex
application-specific examples in documentation.

Kani is appealing to a wide range of develop-
ers. Hobbyists can get started with models like
GPT-4, LLaMA v2, and Vicuna with as few as five
lines of code. Industry professionals will enjoy the
added robustness of automatic chat management
and function retrying. Finally, researchers can ap-
preciate the improved reproducibility afforded by
fine-grained control over prompting.

In this paper we provide a quick-start guide for
developing with Kani (Section 2), an overview of
our philosophy with comparisons to other frame-
works (Sections 3-4), and a detailed tutorial on how
to build more complex applications (Sections 5-8).

2 Getting Started with Kani

Let’s start by discussing the basics of installing
and querying language models with Kani. To start,
Kani requires Python 3.10+ and is installed via pip.


https://github.com/zhudotexe/kani
https://github.com/zhudotexe/kani

Platform Engine Extra

ChatGPT OpenAlEngine openai

GPT-4 OpenAlEngine openai
HuggingFace HuggingEngine huggingface
LLaMA v2 LlamaEngine 1lama

Vicuna v1.3 VicunaEngine 1lama
ctransformers CTransformersEngine ctransformers

LLaMA v2 LlamaCTransformersEngine ctransformers

Table 1: The list of models and engines included in Kani
with associated pip extras to add when installing. For
example, to install Kani with support for HuggingFace
Transformers, use pip install 'kanil[huggingface]'.

$ pip install kani

This command will install the core Kani depen-
dencies. In order to use our pre-built engine classes
for HuggingFace or OpenAl (Table 1), you must
also include one or more “extras” with your pip
installation command.

$ pip install kanil[openail]

In Figure 2 we provide a minimal example to
quickly get started with Kani in only five lines
of code. We initialize the OpenAIEngine with
our OpenAl API key, pass it into a new Kani
object, and chat with the Kani using the built-in
chat_in_terminal () function. With this, novice
and advanced developers alike are able to easily
query a variety of language models through Kani.

3 Conceptual Overview

3.1 What is the Kani object?

The main atomic unit of processing in our frame-
work is the titular Kani.> When developing appli-
cations with Kani you will mostly be spawning and
manipulating different Kani objects. A Kani object
consists of the following three parts:

1. Inference Engine: The underlying language
model and associated framework.

2. Chat History: The state of the conversation
including system prompts.

3. Function Context: The list of available
callable functions, if any.

To initialize a Kani all you need to pass in is an
inference engine—the chat history will default to
an empty list and callable functions are optional.

*Kani (77 =) is Japanese for “crab”. *snip snip*

from kani import Kani, chat_in_terminal
from kani.engines.openai import OpenAIEngine

engine = OpenAlEngine(api_key, model="gpt-4")
ai = Kani(engine)
chat_in_terminal(ai)

Figure 2: A basic example showing how to initialize
a Kani object and chat with GPT-4 (OpenAl, 2023) in
only three lines of code.

3.2 What does a Kani object do?

When designing Kani, we wanted to implement the
minimal set of features that allowed for the largest
amount of flexibility and customization. Follow-
ing this design principle, a Kani object does the
following three things:

1. Interfaces with Models: Kani queries LMs
via inference engines, allowing developers to
swap models without editing the application.

2. Manages Chat History: Kani tracks the to-
ken counts and turns of the conversation en-
suring that models never exceed their context.

3. Exposes and Calls Functions: Kani exposes
functions to models, validates function calls,
runs code, and returns output back to the infer-
ence engine. Kani also propagates all errors
back to the model to allow for auto-retrying of
failed function calls ensuring that such calls
are robustly implemented.

This core is flexible and minimalist, allowing
for a wide array of emergent capabilities while
simultaneously optimizing for robustness and scal-
ability. For example, you can create a Kani that
calls a retrieval function to augment its chat re-
sponses, following Lewis et al. (2020), or a Kani
that dynamically routes queries to different engines.
All core functions of the Kani base class are asyn-
chronous by default, allowing for easy web hosting
and responsive applications.

3.3 Where does Kani fit in the LM Stack?

In Figure 3 we lay out our categorization of LM ap-
plication libraries into four distinct layers: Model,
Engine, Control, and Application. In this sub-
section, we will give a brief overview of what each
component of the stack accomplishes to help bet-
ter contextualize how Kani fits in to the broader
ecosystem of tools.



Application [Kani] [ LangChain ] [simpleaichat]

[HuggingFace ] [CTransformers] [OpenAI]

\ Kani simpleaichat LangChain

Size (in MB) 13 26 156
Dependencies 2 8 12
Lightweight X
Chat Management X X
Function Retry X X
Model-Agnostic X

Un-opinionated X X
Extensive Docs X

Model [ PyTorch ] [ JAX ] [TensorFIow] [ GGML]

Figure 3: The different layers of the modern LM ap-
plication stack. Kani sits at the Application layer and
is simpler and more flexible than the competing frame-
works. Additionally, Kani supports the usage of any
lower level control or engine library, allowing develop-
ers to use their favorite frameworks alongside Kani.

Model Layer. In this layer, LM libraries assist
with low-level procedures like matrix operations
and hardware acceleration. Examples include Py-
Torch (Paszke et al., 2019), TensorFlow (Abadi
etal., 2016), and JAX (Bradbury et al., 2018). Kani
is agnostic to the underlying model implementation
so all Model libraries are compatible.

Engine Layer. Libraries like HuggingFace (Wolf
et al., 2020) and OpenAl (OpenAl, 2022) in this
layer manage elements of model inference such as
sampling strategies and tokenization. Kani is inter-
operable across any Engine library by extending
the BaseEngine class (see Section 7). In an era
characterized by an ever-changing state of the art,
the ability to easily swap Engines without changing
the application code is invaluable.

Control Layer. Libraries in this optional layer
handle complex control logic like dynamic prompt
branching and tabular data prediction. Control li-
braries include LMQL (Beurer-Kellner et al., 2023)
and Guidance (Lundberg et al., 2023). Kani sup-
ports these libraries and can be configured to dy-
namically route queries on its own (see Section
8.1), allowing for more robust inference.

Application Layer. In the final layer, LM li-
braries provide the highest level of functionality by
managing chat history, compiling prompts, creating
function contexts, and handling errors. Examples
of Application libraries include LangChain (Chase
et al., 2022), simpleaichat (Woolf et al., 2023), and,
of course, Kani. Kani provides a more flexible,
interoperable, and streamlined experience to help
any developer build LM applications.

Table 2: A feature comparison between Kani and com-
peting frameworks. Kani is the only package that in-
cludes function retrying and chat management while
still being lightweight and un-opinionated.

4 Framework Comparison

In this section, we compare Kani with simpleaichat
(Woolf et al., 2023) and LangChain (Chase et al.,
2022) to highlight Kani’s strengths (see Table 2).

Lightweight. Kani is minimalist in both function-
ality and footprint: we implement essential features
with fewer dependencies and less library-specific
tooling while accomplishing more (see Table 2).
Paired with our detailed documentation, Kani’s
lean and efficient core of features allows develop-
ers to start easily and grow rapidly.

Chat History Management. Unlike our contem-
poraries, Kani automatically tracks token counts
and ensures that the maximum context length is
never exceeded—Iletting developers focus on more
exciting parts of their applications. Kani also lets
developers easily customize this behavior by over-
riding Kani.get_prompt () (see Section 7.1).

Robust Function Calling. In contrast to other
frameworks, Kani guarantees that function calls
are valid by the time they reach developers’ Python
code. If a model calls a function incorrectly, Kani
automatically provides feedback to the model and
allows it to try again or follows developers’ custom
error handling (see Sections 6.4 and 7.3).

Model-Agnostic. Kani provides a straightfor-
ward interface to use and interchange any model.
Developers can easily swap models without alter-
ing their source code, simplifying the process of
switching models as newer ones are released.

Un-opinionated Prompting. Unlike our con-
temporaries, Kani does not modify developers’
prompts under the hood (see Figure 4). We instead
give developers full control to override and con-
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Figure 4: A comparison of prompting behavior between Kani and other competing frameworks. Kani does not edit
developers’ prompts under the hood in unexpected ways and allows for full control over what is passed to the model.

struct prompts themselves, leading to more robust,
transparent, and reproducible source code.

Extensive Documentation. Kani provides thor-
ough and up-to-date documentation® on core li-
brary features with a particular focus on customiz-
ability. Our docs go beyond basic descriptions of
features by including numerous examples of com-
plex applications and guides on how to override
and customize default behaviors.

5 Developing Applications with Kani

Now that we understand Kani’s place in the broader
ecosystem of tools, we will dive deeper into exactly
how to develop LM applications with Kani.

5.1 The Chat History

Kani interacts with the user through ChatMessage
objects, which are tracked in the chat history:

>>> chat_in_terminal(ai, rounds=1)
USER: Hello Kani!
AIl: Hello! How can I help?
>>> ai.chat_history
[ChatMessage(role=ChatRole.USER,
content="Hello Kani!"),
ChatMessage(role=ChatRole.ASSISTANT,
content="Hello! How can I help?")]

Following the OpenAl convention, each mes-
sage contains the role (system, assistant, user, or

3https ://kani.readthedocs.io/

function) and content of the message.* Kani will
pass in as much of this chat history as the engine’s
context window can hold as a default, which can
be easily overridden (see Section 7). The chat his-
tory can also be saved or loaded in JSON format
with Kani.save() and Kani.load() for ultimate
control over the conversation context.

5.2 Prompting

Kani queries the underlying language model by
providing a prompt, which is made of four parts:

1. System Prompt (optional): Content specifi-
cally for the system role that typically defines
high-level instructions for model responses.

2. Persistent Messages (optional): Content that
always appears at the top of the context win-
dow and will never be truncated.

3. Chat History: The most recent messages that
have not exceeded the context length.

4. User Message: The current user input.

The bulk of chat application interactions are a
combination of these four components. For exam-
ple, the system prompt can define a chatbot persona
and the persistent messages can include a set of
few-shot examples in the context (see Figure 5).

A system prompt and list of persistent mes-
sages can be passed into the Kani constructor
at initialization: Kani(engine, system='...',
always_included_messages=[...]). You can

*Optionally, a user message can also contain a name (for

multi-user conversations), and an assistant message can con-
tain a function_call (discussed in Section 6).


https://kani.readthedocs.io/

shots = [ChatMessage.user("thank you"),
ChatMessage.assistant("arigato”),
ChatMessage.user("good morning"),
ChatMessage.assistant("”ohayo")]

ai = Kani(engine, always_included_messages=shots)

chat_in_terminal(ai)

# USER: crab

# AI: kani

Figure 5: A basic example showing how to initialize a
Kani with a few-shot prompt (Brown et al., 2020). We
can see that the Kani obeys the pattern and continues to
translate English to Japanese in the chat session despite
never being explicitly prompted to do so.

also define custom prompt behavior by overriding
Kani.get_prompt() (see Section 7.1).

5.3 Writing a Kani Application

So far we have interacted with Kani exclusively
through chat_in_terminal(). While this func-
tion is useful for testing, when building applica-
tions you may want to intercept the model output
for logging, content filtering, or any other operation
before serving it to the user. This can be done with
Kani.chat_round()?, which executes one turn of
the conversation and returns a ChatMessage from
the system or assistant. We can then complete ad-
ditional tasks and return the finalized response to
the user, as demonstrated in Figure 6.

6 Function Calling

Until this point, Kani objects had no abilities be-
yond text generation. Function calling (or “tool
usage”) makes Kani objects even more powerful as
intelligent assistants.

6.1 What is Function Calling?

Function calling is the process of a model au-
tonomously deciding to call a set of developer-
defined functions. Models that have been fine-
tuned to support function calling typically allow
developers to provide function headers and doc-
strings in the prompt. When appropriate, the model
will indicate that a certain function should be run
with the given parameters in a JSON request. The
developer then needs to receive this request, run

Kani .chat_round() is an asynchronous method. This
means that applications do not have to wait on it to finish
and can instead perform other tasks while responses are being
generated. To call these functions you must await them from
an asynchronous context such as asyncio.run().

def is_toxic(message):
# ... Run toxicity detection

async def chat_with_toxicity_filter(ai):
while True:
user_message = input(”USER: ")
message = await ai.chat_round(user_message)
if is_toxic(message.content):
message.content = "<Removed>"
print("AI:", message.content)

ai = Kani(OpenAIEngine(api_key, model="gpt-4"))
asyncio.run(chat_with_toxicity_filter(ai))

Figure 6: An example showing how to use Kani with
additional output parsing. We query the engine using the
Kani.chat_round() function and filter out toxic content.

the specified function with their own resources, and
return the output back to the model. Without Kani,
developers usually need to define and maintain their
own logic to handle these requests.

Giving language models access to callable func-
tions allows them to hook into various tools, like
sending text messages, browsing the web, or creat-
ing a calendar event. Kani provides easy ways to
document functions and handle errors, which let de-
velopers focus on writing full-featured applications
without the fuss of tedious boilerplate.

6.2 Function Calling with Kani

There are two ways to create a Kani with func-
tion calling capabilities. One way is to load them
statically by making a subclass of the Kani base
class and writing your functions as class methods
with the @ai_function() decorator (see Figure 7).
The other way to incorporate function calling is
to load the functions dynamically by passing them
in a list to the Kani constructor when instantiat-
ing a Kani base class or subclass (see Appendix
D). Querying a function-calling-enabled Kani is
similar to what we have previously seen, except
that Kani.full_round() should be used instead
of Kani.chat_round().°

6.3 Documenting a Function

Kani functions must be documented with native
Python type annotations’ and docstrings (triple-
quoted strings immediately following a function

6https: //kani.readthedocs.io/en/latest/api_
reference.html#kani.Kani.full_round
W imiti
e support primitive, compound, and enum Python types.
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class Unit(enum.Enum):
FAHRENHEIT = "fahrenheit”
CELSIUS = "celsius”

class WeatherKani(Kani):
@ai_function()
def get_weather(self, loc: Annotated[str,
AIParam(desc="The desired city”)], unit: Unit):
"""Get the weather in a given location.”""”
# ... Query some weather API

return weather

chat_in_terminal (WeatherKani(engine))

# USER: What's the weather in San Francisco?
# AI: Thinking (get_weather)...

# AI: It's currently 72F in San Francisco.

Figure 7: An example showing how to create a sub-
class of the base Kani and expose a function with
@ai_function. Functions are given type annotations,
triple-quoted docstrings, and AIParam descriptions to
indicate to the model how they should be used.

definition). You can optionally describe parameters
even further by providing an AIParam annotation.

Proper function documentation not only helps
language models use functions but also allows Kani
to validate that a function is being called properly.
For functions with proper type annotations, Kani
guarantees that all parameters are of the correct
type before they reach your code. This feature is
unique to Kani and allows for considerably more
robust function calling.

6.4 Retry & Model Feedback

When a function call returns an error, Kani will
raise one of the following exception types:

* NoSuchFunction: The requested function
was hallucinated and does not exist.

e WrappedCallException: The requested
function raised an exception during execution.

e TypeError: The function exists, but the
model hallucinated parameters that do not.

 ValidationError: The parameter names exist,
but the model got the data types wrong.

If the model calls a function incorrectly, Kani
will give it feedback by adding the error mes-
sage to the chat history. This gives the model a
chance to correct itself by retrying the call with
new arguments or another function. Developers
can customize the retry behavior or error messages

class AmnesiaKani(Kani):
async def get_prompt(self):
return self.always_included_messages
+ self.chat_history[-2:]

chat_in_terminal (AmnesiaKani(engine))

USER: Hi kani! My name is Andrew.

AIl: Hello Andrew! How can I assist you today?
USER: What does "kani"” mean in Japanese?

AIL: "Kani" in Japanese means "Crab"”.

USER: What is my name?

#
#
#
#
#
# AI: As an AL, I don't have access to that data.

Figure 8: A example showing how to customize the
default get_prompt () function to only include the most
recent two messages in the model prompt.

with the handle_function_call_exception()
method (see Section 7.3). By anticipating common
errors and automatically retrying function calls,
Kani helps developers build more robust applica-
tions without the extra effort.

7 Customization

Kani is built on the philosophy that the developer
should be in control of every aspect of an applica-
tion. To accomplish this, Kani allows you to over-
ride and customize virtually all default behaviors
of the library code. In this section we will briefly
g0 over some common customizations developers
may want to make.

7.1 Customizing the Prompt

Kani allows developers to control exactly what is
being exposed to the language model by customiz-
ing the prompt builder. This can best be done by
overriding the Kani.get_prompt() function.

In Figure 8 we show how you can customize
the Kani.get_prompt() function to include only
the most recent two messages, but this is just the
tip of the iceberg. With custom prompt builders,
developers can implement anything from dynamic
prompt templating to fine-grained LMQL-style con-
trol prompts (see Appendix B).

7.2 Implementing a Custom Engine

Kani interacts with language models through En-
gines. While Kani comes pre-packaged with a few
starter engines, developers are encouraged to im-
plement their own custom engines to adapt new
language models or inference libraries for use with



class CustomExceptionKani(Kani):
async def handle_function_call_exception(
self, call, err, attempt):
self.chat_history.append(ChatMessage.system(
"The call encountered an error. Relay”
f"it to the user sarcastically: {err}"))
return attempt < self.retry_attempts

@ai_function()

def get_time(self):
"""Get the current time.
raise RuntimeError("The API is offline")

nnn

chat_in_terminal (CustomExceptionKani(engine))
# USER: What time is it?

# AI: Thinking (get_time)...

# AI: Well, it seems like our handy-dandy time
# API decided to take a coffee break...

Figure 9: A example showing how to customize the
Kani.handle_function_call_exception() function to
return errors to the user in a sarcastic manner.

Kani. To create an engine, you must subclass the
BaseEngine class. A new engine must implement:

1. BaseEngine.message_len(): Takes as in-
put a ChatMessage and returns the token
length of the message.

2. BaseEngine.predict(): Takes in a list of
ChatMessage and returns a new Completion.

3. BaseEngine.max_context_size: Specifies
the model’s maximum token context length.

Optionally, you can also choose to imple-
ment BaseEngine.close() to clean up resources
or BaseEngine.function_token_reserve() if
your engine needs to reserve some tokens for func-
tions. Kani also comes with a few extra base classes
and utilities to help you quickly build engines for
models on HuggingFace (Wolf et al., 2020) (See
Appendix E) or with an available HTTP API.3

7.3 Custom Error Handling

Kani calls handle_function_call_exception()
whenever it encounters an error from a function.
In Figure 9, we provide an example of overriding
this function to tell our model to return function
errors to the user in a sarcastic tone. While this
is just a fun example, custom error messages can

8Built an engine for a popular model Kani doesn’t sup-
port yet? Kani is open-source and greatly appreciates PRs
with engine implementations for the latest models—see the
contribution page in our documentation.

class KaniWithSummary(Kani):
@ai_function()
async def summarize_conversation(self):
"""Get the summary of the conversation.”""
long_context_engine = OpenAlEngine(api_key,
model="gpt-4-32k")
sub_kani = Kani(long_context_engine,
chat_history=self.chat_history[:-2])
summary = await sub_kani.chat_round(
"Please summarize the conversation so far.")
return summary.content

chat_in_terminal (KaniWithSummary(engine))

# USER: Tell me about trains.

AIL: Trains are modes of long-distance transport
[Multiple turns of conversation...]

USER: Summarize the conversation.

AL: Thinking (summarize_conversation)...

AIL: Our chat began with a general overview

H OHF HF OHF ¥ =

about trains and how railway systems work. ..

Figure 10: A example showing how to use sub-kani
spawning to dynamically resize the context window of
the model depending on a user query. Note that the base
"gpt-4" kani spawns a "gpt-4-32k” sub-kani in order to
capture the full conversation for summarization.

and often do serve a more utilitarian purpose by
helping models retry functions more effectively.

8 Advanced Usage

In this section, we’ll look at some more advanced
examples. For each of these use cases, we provide
the full implementation in the GitHub repository.”’

8.1 Sub-Kanis

When used in conjunction with function call-
ing, Kani can choose to spawn ‘““sub-Kani”—self-
contained “agents” capable of performing their own
tasks then reporting to the parent with their results.

For example, you might have the parent Kani
use a cheaper, faster model with a smaller context
length. If you need it to perform a task that requires
more context, you can spawn a sub-Kani using a
more expensive, slower model with a larger context.
In Figure 10, we show how you can spawn a sub-
Kani inside a callable function and copy the chat
history to accomplish this.

Of course, the sub-Kani you spawn doesn’t have
to be a vanilla Kani—you could imagine having
multiple different Kani types with different sets of

*https://github.com/zhudotexe/kani/tree/main/
examples
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class WikipediaKani(Kani):
@ai_function()
async def wikipedia(self, title: Annotated[
str, AIParam(desc='The article title')]):
"""Get information from Wikipedia."""
if page := await wikipedia_client.get(title):
return page
return f"Page {title!r} does not exist”

@ai_function()
async def search(self, query: str):
"""Find article titles given a query."""

titles = await wikipedia_client.search(query)
return json.dumps(titles)

chat_in_terminal (WikipediaKani(engine))

# USER: Tell me about the Tokyo Yamanote line.

# AI: Thinking (search)...

# AI: Thinking (wikipedia)...

# AI: The Yamanote is a loop service in Tokyo...

Figure 11: A example showing how to make a retrieval
agent in Kani using custom Al function declarations.
The WikipediaKani exposes the two functions (search()
and wikipedia()) to the model which then calls both in
order to retrieve the page for generation.

functions or engines, each capable of performing
their own specialized tasks.

8.2 Retrieval

Language models can be augmented with an exter-
nal factual database that they can retrieve informa-
tion from, allowing them to access more relevant
and up-to-date information without having to re-
train on more recent events.

In Figure 11, we demonstrate how Kani’s func-
tion calling can be used to retrieve information
from a data source like Wikipedia. Since retrieved
articles might be longer than the model’s maxi-
mum context window, you may want to combine
this with the previous summarization example for
maximum efficacy.

8.3 Hosting a Kani Online

What if you want to host a web service to allow
users to chat with a Kani online? In Figure 12, we
show how you can host and connect to a Kani on a
webserver using a WebSocket connection.

We use FastAPI'® to run this webserver. To
connect to our server, we can use any client that

10https://fastapi.tiangolo.com/

engine = OpenAlEngine(api_key, model="gpt-4")
app = FastAPI()

@app.websocket("/chat™)
async def kani_chat(websocket: WebSocket):
await websocket.accept()
ai = Kani(engine)
while True:
data = await websocket.receive_text()
resp = await ai.chat_round(data)
await websocket.send_text(resp.content)

Figure 12: A example showing how to host and query
Kani on the web using FastAPI and WebSockets.

supports WebSockets, like Insomnia.!! Web frame-
works like FastAPI and Flask 2 allow route meth-
ods to be asynchronous, meaning you can await a
Kani method from within your route method with-
out needing to call asyncio.run().

9 Conclusion

In this paper we presented Kani, a lightweight
and highly customizable framework for building
chat applications. At its core, Kani lets developers
use the same application code across all language
model backends and robustly implements conve-
nient quality-of-life features like chat history man-
agement, function validation, and error handling.
We believe that the design of our tools is as
important as the tools themselves. Well-designed
tools impose far less friction when using them, free-
ing up developers’ hands from fighting bugs and
racking up tech debt. This is especially important
now that the LLM landscape is so turbulent with
new and improved models being released more of-
ten than ever. Kani offloads the burden of tedious
language model management without locking de-
velopers into onerous default paradigms, giving
developers back control over their applications—
hopefully making the landscape a bit less turbulent.

Limitations

One limitation of the Kani framework is that not
all models are natively chat models. Given our
design decision to maintain the internal state as
a chat, with such attributes as roles and system
prompts present, implementing interfaces for tradi-
tional completion-based language models is more

11https://insomnia.rest/
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difficult than it otherwise could have been with a
different internal memory organization scheme.

Another limitation of our work is the lack of na-
tive function calling support in all models, making
our defining features around robust function calling
irrelevant for such models (e.g. LLaMA). However,
the customizable nature of Kani allows developers
who want such a feature to simply create a new
Engine class and implement custom output parsing
logic to recognize and route function calls them-
selves. Kani thus gives developers maximum flexi-
bility in the creation of their applications.
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A Size Measurement

This section describes how we measured the num-
ber of dependencies of a library and its size in the
framework comparison table (Table 2). We de-
fine a library’s dependency count as the number
of top-level dependencies that are installed when
installing the library from pip without any extras.
We measure the size of a library by installing it in
a fresh Python virtual environment, running a com-
mand to measure the size of installed packages, and
removing the size of the pip and setuptools pack-
ages (packaging utilities included in every Python
environment). Specifically, we used the following
shell commands:

python3.10 -m venv venv

source venv/bin/activate

pip install {kani|simpleaichat|langchain}
du -h venv/lib/python3.10/site-packages

B Dynamic Prompt Templating

Below is an example of dynamically customizing
a system prompt to include the phrase “Always
act like <persona>” if a user types a chat message

containing the phrase “act like.” This is a flexi-
ble alternative to hard-coding persona logic as is
common in other repositories.

class PersonaKani(Kani):
def get_persona_prompt(self):
if self.persona:
return ChatMessage.system(
f"Always act like {self.persona}.”)

async def get_prompt(self):
prev = self.chat_history[-1].content
if match := re.search(r”act like (.+)", prev):
self.persona = match[1]
return [self.get_persona_prompt()] +
await super().get_prompt()

C Tracking Function Calls

Below we show an example of overriding the de-
fault do_function_call() method to additionally
keep track of how many times a model called a
function and how often it was successful.

class TrackCallsKani(Kani):
def __init__(self, xargs, *xkwargs):
super().__init__(*xargs, #*xkwargs)
self.successful_calls = collections.Counter()
self.failed_calls = collections.Counter()

async def do_function_call(self, call):

try:
res = await super().do_function_call(call)
self.successful_calls[call.name] += 1
return res

except FunctionCallException:
self.failed_calls[call.name] += 1
raise

@ai_function()
def get_time(self):
"""Get the current time.

nnn

raise RuntimeError(”"The time API is offline”)

@ai_function()

def get_date_and_time(self):
"""Get the current day and time.
return str(datetime.datetime.now())

nnn

After chatting with our Kani, we can print out the
new successful_calls and failed_calls vari-
ables to recover statistics on how well our models
are calling our custom Al functions.

>>> chat_in_terminal(TrackCallsKani(engine))
USER: What time is it?
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AIL: Thinking (get_time)...

AI: Thinking (get_date_and_time)...
AlL: The current time is 22:42.

>>> ai.successful_calls
Counter({'get_date_and_time': 1})
>>> ai.failed_calls
Counter({'get_time': 13})

This behavior is particularly useful for re-
searchers studying language model tool usage and
similar customizations can be easily made to other
core functions to add more tracking.

D Dynamic Function Loading

Rather than statically defining the list of functions
a Kani can use in a class, you can also pass a list of
functions to the Kani constructor when you initial-
ize a Kani. To do this we need to use the special
Kani.AIFunction class (which is similar to the
traditional @ai_function decorator).

def my_cool_function(foo: str,
bar: Annotated[int, AIParam(desc="Cool int")1):
"""Do some cool things."""

engine = OpenAIlEngine(api_key, model="gpt-4")
functions = [AIFunction(my_cool_function)]
ai = Kani(engine, functions=functions)

This is particularly useful when spawning sub-
Kani, as such agents can be dynamically given only
a particular subset of the functions defined in the
parent to help increase function call accuracy.

E Example Engine Implementations

In this section, we include the HuggingFace (Wolf
et al., 2020) and LLaMA v2 (Touvron et al., 2023)
engine implementations to demonstrate how a de-
veloper might implement new engines. The Hug-
gingFace engine acts as a base engine class that
implements common logic for all HuggingFace
models, while the LLaMA v2 engine extends the
base HuggingFace class with the model-specific
prompt and delimiting tokens.



class HuggingEngine(BaseEngine, abc.ABC):
def __init__(

self,
model_id: str,
max_context_size: int,
device: str | None = None,
tokenizer_kwargs: dict = {3},
model_load_kwargs: dict = {3},
*xhyperparams,

self.model_id = model_id

self.max_context_size = max_context_size

self.tokenizer = AutoTokenizer.from_pretrained(model_id, **tokenizer_kwargs)
self.model = AutoModelForCausallM.from_pretrained(model_id, **model_load_kwargs)
self.hyperparams = hyperparams

if device is None:
device = "cuda” if torch.has_cuda else "cpu”
self.device = device
if self.model.device.type != self.device:
self.model.to(device)

@abc.abstractmethod
def build_prompt(
self, messages: list[ChatMessage], functions: list[AIFunction] | None = None
) -> str | torch.Tensor:
"""Given the list of messages from kani, build either a single string
representing the prompt for the model, or build the token tensor."”""
raise NotImplementedError

async def predict(
self, messages: list[ChatMessage], functions: list[AIFunction] | None = None, **hyperparams
) -> Completion:
"""Given the current context of messages and available functions, get the next
predicted chat message from the LM."""
prompt = self.build_prompt(messages, functions)
if isinstance(prompt, str):
tokenized = self.tokenizer(prompt, return_tensors="pt", return_length=True)
input_len = int(tokenized.length)
input_toks = tokenized.input_ids
elif isinstance(prompt, torch.Tensor):
input_toks = prompt
input_len = len(input_toks[0])
else:
raise TypeError("build_prompt should either return a str or a Tensor.")
# move the input tensor to the right device
if input_toks.device.type != self.device:
input_toks = input_toks.to(self.device)
# set up hyperparams for HF decode
hyperparams = {*xself.hyperparams, *xhyperparams}
# run it through the model
output = self.model.generate(input_toks, *xhyperparams)
# decode to tokens
# the completion shouldn't include the prompt or stop token
content = self.tokenizer.decode(output[@][input_len:-1]1).strip()
return Completion(ChatMessage.assistant(content), prompt_tokens=input_len,
completion_tokens=len(output[0]) - (input_len + 1))




class LlamaEngine(HuggingEngine):
def __init__(self, model_id: str = "meta-llama/Llama-2-7b-chat-hf", *args, *xkwargs):
kwargs.setdefault(”"max_context_size", 4096) # LLaMA has 4096 token window
super().__init__(model_id, =*args, **kwargs)

def build_prompt(self, messages: list[ChatMessage], functions: list[AIFunction] | None = None):
tokens = []
prompt_buf = [] # parts of the user-assistant pair
for message in messages:
if message.role == ChatRole.USER:
prompt_buf.append(f"{B_INST} {message.content} {E_INST}")
elif message.role == ChatRole.ASSISTANT:
prompt_buf.append(f" {message.content} ")
# turn the current round into tokens
prompt_round = .join(prompt_buf)
# if we see a " {E_INST}{B_INST} " we should replace it with empty string
# (it happens immediately after a system + user message)
prompt_round.replace(f"” {E_INST}{B_INST} ", "")
tokens.extend(self.tokenizer (prompt_round))
# tokenizer adds the BOS token but not the EOS token
tokens. append(eos_token_id)
prompt_buf.clear()
else:
prompt_buf.append(f"{B_INST} {B_SYS}{message.content}{E_SYS} {E_INST}")
# flush rest of prompt buffer (probably a user message) into tokens
if prompt_buf:
tokens.extend(self.tokenizer("".join(prompt_buf)))
return torch.tensor([tokens], device=self.device)

nn

nn

def message_len(self, message: ChatMessage) -> int:
if message.role == ChatRole.USER:
# <s> [INST] {3} [/INST] -> 7
return self.tokenizer(message.content, return_length=True).length[0] + 7
elif message.role == ChatRole.ASSISTANT:
#{} </s> > 2
return self.tokenizer(f" {message.content} ", return_length=True).length[0] + 2
# <s> [INST] <<SYS>>\n{}\n<</SYS>>\n\n [/INST] -> 20
return self.tokenizer(message.content, return_length=True).length[0] + 20




