
FEATURE-DRIVEN QUESTION ANSWERING

WITH NATURAL LANGUAGE ALIGNMENT

by

Xuchen Yao

A dissertation submitted to Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
July, 2014

To My Mother’s Father

Abstract

Question Answering (QA) is the task of automatically generating answers to nat-

ural language questions from humans, serving as one of the primary research areas

in natural language human-computer interaction. This dissertation focuses on En-

glish fact-seeking (factoid) QA, for instance: when was Johns Hopkins founded?.1

The key challenge in QA is the generation and recognition of indicative signals

for answer patterns. In this dissertation I propose the idea of feature-driven QA,

a machine learning framework that automatically produces rich features from lin-

guistic annotations of answer fragments and encodes them in compact log-linear

models. These features are further enhanced by tightly coupling the question and

answer snippets via monolingual alignment. In this work monolingual alignment

helps question answering in two aspects: aligning semantically similar words in

QA sentence pairs (with the ability to recognize paraphrases and entailment) and

aligning natural language words with knowledge base relations (via web-scale data

mining). With the help of modern search engines, database and machine learning

tools, the proposed method is able to efficiently search through billions of facts in

the web space and optimize from millions of linguistic signals in the feature space.

QA is often modeled as a pipeline of the form:

question (input) → information retrieval (“search”) → answer extraction (from

either text or knowledge base) → answer (output).

This dissertation demonstrates the feature-driven approach applied through-

1January 22, 1876

iii

Abstract

out the QA pipeline: the search front end with structured information retrieval,

the answer extraction back end from both unstructured data source (free text)

and structured data source (knowledge base). Error propagation in natural lan-

guage processing (NLP) pipelines is contained and minimized. The final system

achieves state-of-the-art performance in several NLP tasks, including answer sen-

tence ranking and answer extraction on one QA dataset, monolingual alignment on

two annotated datasets, and question answering from Freebase with web queries.

This dissertation shows the capability of a feature-driven framework serving as

the statistical backbone of modern question answering systems.

Primary Advisor: Benjamin Van Durme

Secondary Advisor: Chris Callison-Burch

iv

Acknowledgments

To my dissertation committee as a whole, Benjamin Van Durme, Chris Callison-

Burch, David Yarowsky and Dekang Lin. Thank you for your time and advice.

I am very grateful to the following people:

Benjamin Van Durme, my primary advisor: Ben admitted me to Hopkins and

completely changed my life forever. He wrote me thousands of emails during the

course of my study, met with me every week, advised me, helped me, encouraged

me and never blamed me a single time for my wrongdoing. He was always there

whenever I needed help and he gave me a lot of freedom. Ben is a great person

with extraordinary leadership, integrity, fairness, and management skills. I have

learned more than enough from him. Thank you, Ben.

Chris Callison-Burch, my secondary advisor: Chris is extremely kind and gen-

erous with his students. He read the whole dissertation word by word front to

back and marked every page with detailed comments. Chris has taught me things

beyond research: networking, entrepreneurship, and artistic thinking. Thank you,

Chris.

Peter Clark, who was my mentor when I interned at Vulcan (now his group is

part of the Allen Institute of Artificial Intelligence). Pete is the one who inspired

me to do a dissertation on question answering. His group also funded two and

a half years of my PhD study. He is such a gentleman with an encouraging and

supportive heart. Thank you, Pete.

Dekang Lin, who was my mentor when I interned at Google Research on their

v

Acknowledgments

question answering project. Dekang reshaped my mind in problem solving and

finding a balanced point between research and industry. He will have a profound

impact on how I work in the future, just like what his research has influenced the

entire community. Thank you, Dekang.

Jason Eisner, for whose Natural Language Processing class I was the teaching

assistant at Hopkins for two years. Jason helped me with a deep understanding

of log-linear models, which are the statistical backbone of the entire dissertation.

He is a great person, an intellectual giant, and he treats everyone equally. Thank

you, Jason.

David Yarowsky, for whose Information Retrieval class I was the teaching as-

sistant at Hopkins. David’s focus on research novelty and originality heavily in-

fluenced this dissertation. He also set a good example that finishing a PhD (with

high quality) in less than four years was possible. Thank you, David.

Professors and researchers who taught me, mentored me or helped me at grad-

uate school: John Wierman, Mark Dredze, Kyle Rawlins, David Chiang, Liang

Huang, Adam Lopez, Matt Post, Sanjeev Khudanpur, Paul McNamee, Phil Har-

rison, Shane Bergsma, Veselin Stoyanov, and others. Thank you.

Colleagues and friends at the Center for Language and Speech Processing and

JHU: Adam Teichert, Adithya Renduchintala, Andong Zhan, Ann Irvine, Aric

Velbel, Brian Kjersten, Byung Gyu Ahn, Carl Pupa, Cathy Thornton, Chan-

dler May, Chunxi Liu, Courtney Napoles, Da Zheng, Darcey Riley, Debbie De-

ford, Delip Rao, Ehsan Variani, Feipeng Li, Frank Ferraro, Hainan Xu, Hong

Sun, Jason Smith, Jonathan Weese, Juri Ganitkevitch, Katharine Henry, Keisuke

Sakaguchi, Matt Gormley, Michael Carlin, Michael Paul, Nanyun Peng, Naomi

Saphra, Nicholas Andrews, Olivia Buzek, Omar Zaidan, Pegah Ghahremani, Pe-

ter Schulam, Pushpendre Rastogi, Rachel Rudinger, Ruth Scally, Ryan Cotterell,

Samuel Thomas, Scott Novotney, Sixiang Chen, Svitlana Volkova, Tim Vieira,

Travis Wolfe, Vijayaditya Peddinti, Xiaohui Zhang, and Yiming Wang. Thank

vi

Acknowledgments

you.

My very best Chinese friends at Hopkins: Cao Yuan, Chen Guoguo, Huang

Shuai, Sun Ming, and Xu Puyang. All together we went through so much in grad

school. Thank you.

Finally, thank you to my family. I wouldn’t have been myself without your

support.

vii

Contents

Abstract iii

Acknowledgments v

List of Tables xv

List of Figures xviii

1. Introduction 1

1.1. Motivation . 7

1.2. Main Idea: Feature-driven Question Answering 9

1.2.1. QA on Text . 11

1.2.2. QA on KB . 12

1.2.3. With Hard Alignment on Text 14

1.2.4. With Soft Alignment on KB 16

1.3. Contributions . 18

1.4. How to Read this Dissertation . 23

1.5. Related Publications . 25

2. 50 Years of Question Answering 27

2.1. Overview . 27

2.2. Conferences and Evaluation . 31

2.2.1. TREC (Text REtrieval Conference) QA Track 31

viii

Contents

2.2.2. QA@CLEF (Cross Language Evaluation Forum) 35

2.2.3. Evaluation Methods . 38

2.2.3.1. Precision, Recall, Accuracy, Fβ for IR/QA 38

2.2.3.2. MAP, MRR for IR 40

2.2.3.3. Precision-Recall Curve for IR/QA: Drawn Very Dif-

ferently . 41

2.2.3.4. Micro F1 vs. Macro F1 vs. Averaged F1 for QA . . 42

2.2.3.5. Permutation Test 44

2.3. Significant Approaches . 46

2.3.1. IR QA: Document and Passage Retrieval 46

2.3.2. NLP QA: Answer Extraction 48

2.3.2.1. Terminology for Question Analysis 48

2.3.2.2. Template Matching 49

2.3.2.3. Answer Typing and Question Classification 51

2.3.2.4. Web Redundancy 53

2.3.2.5. Tree/Graph Matching 54

2.3.3. IR4QA: Structured Retrieval 55

2.3.4. KB QA: Database Queries 60

2.3.4.1. Early Years: Baseball, Lunar and 15+ More . . 60

2.3.4.2. Statistical Semantic Parsing 63

2.3.5. Hybrid QA (IR+NLP+KB) 67

2.3.5.1. IBM Watson . 69

2.4. A Different View: Linguistic Features vs. Machine Learning 78

2.4.1. Linguistics: Word, POS, NER, Syntax, Semantics and Logic 80

2.4.2. Learning: Ad-hoc, Small Scale and Large Scale 82

2.4.3. Appendix: Publications Per Grid 84

3. Feature-driven QA from Unstructured Data: Text 86

ix

Contents

3.1. Introduction . 88

3.2. Tree Edit Distance Model . 90

3.2.1. Cost Design and Edit Search 91

3.2.2. TED for Sentence Ranking 94

3.2.3. QA Sentence Ranking Experiment 97

3.3. Answer Extraction as Sequence Tagging 98

3.3.1. Sequence Model . 98

3.3.2. Feature Design . 99

3.3.3. Overproduce-and-vote . 104

3.3.4. Experiments . 105

3.3.4.1. QA Results . 105

3.3.4.2. Ablation Test . 109

3.3.5. Summary . 110

3.4. Structured Information Retrieval for QA 110

3.4.1. Motivation . 110

3.4.2. Background . 115

3.4.3. Method . 116

3.4.4. Experiments . 120

3.4.4.1. Data . 122

3.4.4.2. Document Retrieval 125

3.4.4.3. Passage Retrieval 125

3.4.4.4. Answer Extraction 128

3.4.5. Summary . 128

3.5. Conclusion . 129

4. Discriminative Models for Monolingual Alignment 134

4.1. Introduction . 136

4.2. Related Work . 139

x

Contents

4.2.1. Bilingual Alignment . 139

4.2.1.1. Evaluation . 140

4.2.1.2. Phrase Extraction 141

4.2.2. Monolingual Alignment . 143

4.2.2.1. Evaluation . 144

4.2.2.2. Phrase/Block Alignment 146

4.2.3. Open-source Aligners . 147

4.2.3.1. GIZA++ (Adapted) 147

4.2.3.2. Meteor . 148

4.2.3.3. TED . 148

4.2.3.4. Example . 149

4.3. Our Alignment Model . 150

4.3.1. Markov Token Alignment 150

4.3.1.1. Symmetrization . 152

4.3.2. Semi-Markov Phrase Alignment 154

4.3.3. Feature Design . 156

4.3.3.1. Feature Value for Phrase Alignment 160

4.3.4. Implementation and Training 160

4.4. Experiments . 161

4.4.1. Datasets . 161

4.4.1.1. MSR06 and Edinburgh++ 161

4.4.1.2. New Dataset: MTReference 163

4.4.2. Notes on Evaluation and Datasets 163

4.4.2.1. Datasets . 163

4.4.2.2. Evaluation Metrics: Token vs. Phrase 164

4.4.2.3. “Natural Phrase” Alignment 165

4.4.3. Evaluation: the General Picture 166

4.4.3.1. Baselines . 166

xi

Contents

4.4.3.2. Results . 167

4.4.4. Evaluation: Identical vs. Nonidentical 171

4.4.5. Evaluation: Token vs. Phrasal 172

4.4.6. Error Analysis . 175

4.4.7. Ablation Test and Feature Weights 177

4.5. Summary on Alignment . 178

4.6. QA with Alignment . 180

4.6.1. Motivation . 180

4.6.2. Using Alignment . 181

4.6.3. QA on TREC . 184

4.6.4. QA on Jeopardy! . 185

4.6.4.1. Data Preparation 185

4.6.4.2. Training and Decoding 186

4.6.4.3. Evaluation . 188

4.6.5. Discussion . 190

4.6.6. Summary . 191

4.7. Discussion: Various Aligners . 192

4.8. Conclusion . 193

5. Feature-driven QA from Structured Data: Freebase 198

5.1. Introduction . 198

5.2. Approach . 200

5.3. Background . 201

5.3.1. SEMPRE . 202

5.4. Graph Features . 204

5.4.1. Question Graph . 204

5.4.2. Freebase Topic Graph . 207

5.4.3. Feature Production . 208

xii

Contents

5.5. Relation Mapping . 209

5.5.1. Formula . 209

5.5.2. Implementation . 210

5.5.3. Evaluation . 213

5.6. Experiments . 215

5.6.1. Notes on Evaluation Metrics 217

5.6.2. Data . 218

5.6.3. Search . 218

5.6.4. Model Tuning . 221

5.6.5. Test Results . 222

5.6.6. Error Analysis . 223

5.7. Comparison: Information Extraction vs. Semantic Parsing 224

5.7.1. Evaluation Metrics . 227

5.7.2. Accuracy vs. Coverage . 228

5.7.3. Accuracy by Question Length and Type 229

5.7.4. Learned Features . 231

5.7.5. Summary . 232

5.8. Conclusion . 232

6. Conclusion and Future Directions 236

6.1. Summary . 236

6.1.1. Feature-driven Question Answering 236

6.1.2. Discriminative Methods for Monolingual Alignment 240

6.2. Take-home Messages . 241

6.3. Future Directions . 243

7. Curriculum Vita 246

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets 247

A.1. MSR06 . 248

xiii

Contents

A.2. Edinburgh++ . 252

A.3. MTReference . 256

A.4. Summary . 259

B. Examples of jacana-align vs. Meteor on Jeopardy! 260

B.1. jacana-align Helped Answering . 263

B.2. Meteor Helped Answering . 268

B.3. Summary . 271

C. Examples of jacana-freebase vs. SEMPRE on WebQuestions 272

C.1. Both Correct . 272

C.2. Only jacana-freebase Was Correct 273

C.3. Only SEMPRE Was Correct . 274

C.4. Both Wrong . 276

C.5. Errors Due to MTurk Annotation Error 277

C.6. Summary . 278

Bibliography 280

xiv

List of Tables

2.1. Summary of 9 years of TREC QA 34

2.2. Corpora used in the TREC QA track 34

2.3. Tasks and exercises conducted with QA@CLEF 37

2.4. QA templates examples . 50

2.5. Question categories or answer type taxonomies 53

2.6. Linguistic features vs. machine learning scales in QA 79

3.1. Features for ranking QA pairs . 92

3.2. TREC QA data distribution . 96

3.3. Results on the QA Sentence Ranking task 97

3.4. Features based on edit script for answer sequence tagging 101

3.5. A sample sequence tagging output 106

3.6. Performance on TREC QA test set 108

3.7. QA F1 based on feature ablation tests 108

3.8. Learned feature weights from CRF 111

3.9. The format of document retrieval and passage retrieval for both

unstructured and structured retrieval. 115

3.10. Statistics for MTurk-collected data 122

3.11. Structured vs. unstructured document retrieval 124

3.12. Structured vs. unstructured sentence retrieval 124

3.13. Recall numbers of structured and unstructured retrieval 125

xv

List of Tables

3.14. Learned feature weights from CRF 130

4.1. Illustrative examples phrase/block alignment in bilingual vs. mono-

lingual alignment . 142

4.2. Selected publications on monolingual alignment. 145

4.3. GIZA++, Meteor and TED alignment example 151

4.4. Statistics of MSR06 and Edinburgh++ 162

4.5. Percentage of various alignment sizes 163

4.6. Percentage of various alignment sizes with respect to how phrase

alignments were created . 166

4.7. Alignment results on MSR06, Edinburgh++ and MTReference . . . 170

4.8. Alignment results on identical and non-identical alignment 173

4.9. Alignment results on 1x1 and non-1x1 blocks 176

4.10. Ablation test for alignment . 178

4.11. Selected alignment features and their optimized weights 179

4.12. Merged TREC dataset distribution 184

4.13. jacana-qa with alignment features from different aligners 185

4.14. Summary and comparison of four open-source aligners 193

5.1. Percentage of answer relations from CluewebMapping 213

5.2. Evaluation on answer relation ranking prediction 215

5.3. Top Freebase relations and top aligned words 216

5.4. A sample of the WebQuestions dataset. 219

5.5. Freebase Search API examples. 220

5.6. Evaluation on the Freebase Search API 220

5.7. F1 on WebQuestions dev . 223

5.8. F1 on WebQuestions test . 223

5.9. A sample of the top 50 features from Freebase QA 224

5.10. Full list of top 40 positive features for jacana-freebase. 225

xvi

List of Tables

5.11. Full list of top 40 negative features for jacana-freebase. 226

5.12. Sempre vs. jacana-freebase matrix on Freebase QA 228

5.13. Learned top features for jacana-freebase and Sempre 231

xvii

List of Figures

1.1. IBM Watson vs. jacana-qa on Jeopardy! 6

1.2. QA from text and knowledge base 13

1.3. Desired Viterbi decoding path for Markov model alignment 15

1.4. A made-up example of the Freebase annotation of ClueWeb 17

2.1. QA research by year and conferences 31

2.2. Python script for permutation test 45

2.3. IBM Watson performance curve . 69

3.1. Tree edit distance illustration . 91

3.2. Tree edit sequence according to the Zhang and Shasha (1989) algo-

rithm . 95

3.3. An example of CRF for answer sequence tagging 100

3.4. A real example of CRF tagging. 105

3.5. Ablation test on alignment features 108

3.6. CRF-based sequence tagging task 117

3.7. Structured information retrieval workflow 121

3.8. A short artificial example of annotated AQUAINT 122

3.9. F1 values for answer extraction on MIT99 127

3.10. An example of linear-chain CRF for answer sequence tagging 129

4.1. Alignment between a question and two candidate sentences 136

xviii

List of Figures

4.2. Semi-Markov phrase-based model and decoding 153

4.3. An alignment example of a QA pair and the pair’s dependency parse

trees. 183

4.4. Precision-recall curve for jacana-qa on Jeopardy! 187

5.1. Dependency parse and excerpted Freebase topic graph 206

5.2. Snippets from Annotated Clueweb. 211

5.3. Accuracy-recall curve on Freebase QA 229

5.4. Accuracy by question length on WebQuestions 230

5.5. Accuracy by question type on WebQuestions 230

xix

1. Introduction

Question Answering (QA) is the task of automatically generating answers to nat-

ural language questions from humans. It provides a natural interface (often via

text, image or speech) for human computer interaction (HCI), with the goal of

satisfyingly answering as many questions as possible. Question answering is one of

the few natural language tasks most humans perform daily, among other common

tasks such as natural language understanding and generation. There are a wide

variety of types of questions asked every day:

• fact-seeking (factoid), questions about general world knowledge. Usually

they come with standard answers and can be judged as either correct or

incorrect. For instance:

– How old is the earth? (answered with a single short phrase)

– What are the planets in the solar system? (answered with a list of phrases)

– What is a planet? (answered with a definition)

– Why is water essential to life? (answered with an explanation)

• opinion-seeking, questions about subjective belief. Usually they do not have

definite answers but they can be judged as either relevant/acceptable or

irrelevant/unacceptable. For instance:

– What’s the most epic photo ever taken? (most popular question on

Quora.com, a community-based QA website)

1

1. Introduction

– What if the chicken didn’t cross the road? (hypothetical)

– Which dress should I pick? (gentlemen, be careful with the answer)

– How to grow a garden? (with a process answer)

With gold-standard answers, factoid question answering can be quantitatively

measured in terms of precision and recall values. Opinion-seeking questions on

the other hand have no standard answers and often use the strategy of user voting

to rank the whole list of answer candidates. Answers in fact-seeking questions can

often be automatically extracted from existing sources, while answers in opinion-

seeking questions are mostly usually produced from scratch or aggregated. We

acknowledge the fact humans should play the most important role in opinion-

seeking questions, especially in the process of generating original and intelligent

content. Thus this dissertation focuses on factoid question answering, as it is still

a challenging problem for machines, and it has a standard and widely accepted

evaluation method.

Over the years, factoid QA systems have evolved in various ways:

• from closed-domain to open-domain: early QA systems such as Baseball

and Lunar (introduced more in § 2.3.4.1 on page 60) had very limited

knowledge about the world: they only knew about baseball games and rocks

on the moon; later QA systems are open to almost any questions.

• from text-based to speech-enabled: a QA system can be assisted with a

speech interface with which questions can be transcribed by speech recogni-

tion software and answers can be pronounced by speech synthesis software.

This is a popular setup on mobile devices or in hands-free environment.

• from out-of-context to contextual: questions used to be understood inde-

pendently without previous context; now QA systems have a limited under-

standing of state-changing in conversational dialogues.

2

1. Introduction

The current state-of-the-art factoid QA system is represented by IBM Watson

(Ferrucci et al., 2010), which defeated two human champion-level contestants in

the Jeopardy! game show in 2011. The Jeopardy! quiz show is a long lasting TV

show on the air originated back in 1964. Jeopardy-style “questions” are presented

in declarative sentences, commonly called “clues”, such as: In 1903, with presidential

permission, Morris Michtom began marketing these toys. The contestants must then

identify the missing information in the clue, and propose a question that can be

answered by the given clue, such as: what are Teddy Bears?. The Jeopardy-style

clue-and-question pairs can be easily converted into conventional question-and-

answer pairs.

By defeating the reigning human champion, Watson represents the most promi-

nent success for factoid QA systems so far. Many questions naturally arose after

Watson’s success:

1. Did Watson solve Artificial Intelligence?

2. Can Watson really think?

3. What is left for QA research anyway after Watson beat humans?

A closer look at the technology behind IBM Watson will be provided in § 2.3.5.1

on page 69, based on some existing published articles of high-level descriptions.

My own short answers to these questions are:

1. No, Watson did not solve AI.

2. Watson has a limited ability to reason among evidence, but not to the level

of intellectual process in the human brain.

3. Did the existence of Google stop information retrieval research? 1

1The act of answering a question with a question can be referred as maieutics (in a positive
sense), quanswer (a coined word, neutral sense), or question dodging (in a negative sense).

3

1. Introduction

The success of Watson marked the progress of QA (or in more general sense, AI, IR

and NLP) research. It was a “showstopper” (in a positive sense) in the human’s

Jeopardy! quiz show, but it will not be a “show stopper” (in a negative sense)

for QA research. Watson is a trained decision maker gathering judgements from

hundreds of classifiers, each of which targets on one or several specific types of

Jeopardy-style questions. For instance, it has an extractor for answering questions

about the US presidents, and a pun detector for facts humans normally consider

interesting. Watson was a highly optimized system to excel in the Jeopardy!

quiz show with classifiers specifically designed for Jeopardy questions. Based on

Watson’s success at Jeopardy, IBM has secured contracts to adapt Watson for

health care and government.

This dissertation instead focuses on more general techniques that can be easily

applied towards questions of various domains. I propose the feature-driven ar-

chitecture that can be established as the core and robust backbone of a general

purpose QA system. It is able to model specialized routines for particular types

of questions by incorporating corresponding features. Thus I am also interested in

how this general purpose architecture compares with the expert system, Watson,

on the Jeopardy data. To have a quick peek at the result, a comparison with the

Watson performance curve is drawn in Figure 1.1 (technical details are presented

in Chapter 3 on page 86 and experiments in Chapter 4.6 on page 180). Watson

started with a re-implementation of research papers but ended up with a lower than

expected baseline, dated “12/06” in Figure 1.1 (a)). With a major breakthrough

utilizing the DeepQA architecture in 12/07 (the “v0.1” system), the Watson team

was able to iteratively push the curve up towards human performance (colored

dots in the figure).

The QA system described in this dissertation, jacana-qa (blue line in Figure

1.1(b)), roughly overlaps with the v0.1 version of Watson. jacana-qa does not con-

4

1. Introduction

tain any classifiers specifically designed for Jeopardy questions.2 If the baseline

Watson was an authentic reimplementation of previous years’ QA research dur-

ing the trec era, then the breakthrough to v0.1 would also mark an equivalent

breakthrough of jacana-qa over previously published work. I consider jacana-qa a

“lightweight Watson” due to its simplicity and high potential to be easily adapted

towards various domains, closed or open.

In the era of mobile computing, question answering has been widely applied as

a natural extension to search, especially in conjunction with speech technologies

on mobile devices. To name a few commercial systems: Siri (Apple), Google Now

(Google), Graph Search (Facebook) and Cortana (Microsoft). These systems start

with a concentrated focus on the user, thus deliver an experience in the flavor

of personalized search. To deal with the awkward moment of failing to answer

a question, different strategies are employed. For instance, Siri often prepares

humorous response; Google Now and Cortana fall back to text search; Facebook

Graph Search prompts and constrains the users with only questions that it is able

to answer. The fundamental research question in QA: increasing recall at a high

precision, still persists. Thus even though QA has been in existence as a natural

language understanding task since the 1960s, research is still very active in this

area.

I predict that the focus of current commercial QA services will gradually shift

from user-aware towards more world-aware. Imagine that a user asks his or her

phone for directions to a museum or a cinema. The personal assistant on the phone

should not only be able to calculate the optimal route, but also answer questions

regarding various facts during the museum visit or prior to the movie. IBMWatson

has shown that this kind of factoid question answering, at least in the Jeopardy

domain, can be successfully accomplished. This dissertation explores and presents

one encouraging technique, entitled “feature-driven question answering”, that is

2As a matter of fact, when I designed the algorithms for jacana-qa, my references were all trec
questions.

5

1. Introduction

free of any painful manual effort, gives promising result, and does not utilize too

much heavy machinery.

1.1. Motivation

Question answering is such an amazing application for AI and NLP that people

have imagined creating knowledgeable and/or conversational robots in so many

fictional novels and movies. But it is still unsolved. This is the most fundamen-

tal motivation. Previous years’ QA research has been mostly stimulated by the

following three high-profile campaigns:

• TREC QA (1999-2007, details in § 2.2.1 on page 31). Almost 10 years of

TREC QA evaluation promoted the task of question answering, with a major

focus on short, fact-based questions. By current standard, TREC QA used

a static and small corpus, and fixed types of questions (mostly wh-questions

plus a few how/why questions). One example was: What year was Alaska

purchased?. TREC was funded by the ARDA (Advanced Research Develop-

ment Agency) AQUAINT (Advanced Question Answering for Intelligence)

program.3

• CLEF Multi-language QA (2003-present, details in § 2.2.2 on page 35). This

European QA campaign is similar to TREC-style QA but has a broad reach

of major European languages. It also contains bilingual QA, i.e., query in

one language and search answers from sources of another language.

• The Jeopardy! quiz show (1964-1975, 1984-present).4 This American TV

show has always hosted human contestants until the IBM Watson computer
3http://www-nlpir.nist.gov/projects/aquaint/
4http://www.jeopardy.com/ all questions and answers can be found at http://j-archive.
com/

6

http://www-nlpir.nist.gov/projects/aquaint/
http://www.jeopardy.com/
http://j-archive.com/
http://j-archive.com/

1. Introduction

(a) IBM Watson. Curves are from Watson and
dots are from human contestants.

0 10 20 30 40 50 60 70 80 90 100
% Answered

0

10

20

30

40

50

60

70

80

90

100

P
re

ci
si

o
n
 (

%
%

)

Precision w.r.t. %% of questions answered

gold, 0.8760
jacana-qa, 0.4909

(b) jacana-qa (blue line, second from the top), using
only web text as the answer source.

(c) a crude overlay of (a) and (b). Note the overlap between blue line of jacana-qa and
v0.1 of Watson.

Figure 1.1.: Performance curve comparison (c) on Jeopardy data between IBM
Watson (a) and the techniques described in this dissertation (b), with
written permission to reuse the Watson curve published in the IBM
Journal of Research and Development article (Ferrucci, 2012). Note
that this is not a strictly direct comparison: the Watson curve was
drawn on about 12, 000 questions from 200 games while the jacana-qa
curve was drawn on 18, 725 randomly sampled questions from my own
re-creation of the Jeopardy data set.

7

1. Introduction

system made an entry and “beat” the former human winners. The show

covers a very wide aspect of world knowledge, sometimes involving inference

making, pun and irony detection, beyond fact seeking. One example question

under the category of toys is: In 1903, with presidential permission, Morris

Michtom began marketing these toys.5

These events have provided valuable resources and motivated various techniques

(such as question analysis, answer typing and information retrieval) for QA, but

not without limitations. For instance, earlier years’ QA systems heavily relied on

question and answer templates, which were mostly manually constructed and very

time consuming. Research in this area prospered for nearly a decade, then cooled

off following the closing of TREC QA.

However, technologies have never stopped evolving. The very recent and rapid

development of other closely related disciplines, such as AI, knowledge discovery,

machine learning, and automatic speech recognition, have created new data and

tools for QA research. The feature-driven question answering techniques described

in this dissertation are due to these new changes, specifically, motivated by the

following factors:

• Large amount of training data. The three QA campaigns have created hun-

dreds of thousands of questions with standard answers, perfect for supervised

learning. Amazon Mechanical Turk has also made labeling data in a speedy

and large-scale way more affordable than before.

• Machine learning advances. Log-linear models and Markov networks have

shown the power in NLP, especially with the maturity of highly optimized

tools for large-scale discriminative training.

• Knowledge base creation. Knowledge has been either automatically curated

or manually organized into databases for wider coverage and leaner presen-
5Answer: What are Teddy Bears?

8

1. Introduction

tation of information. Techniques utilizing KBs should find answers more

precisely.

• Increased demand from users. The joint progress of speech technology, mo-

bile device, wireless Internet and search has gradually changed people’s habit

of typing individual keywords into speaking a whole natural sentence for

seeking information. Search engines now receive more queries in natural

language questions than ever before.

Thus I revisit the QA challenge by incorporating new machine learning algorithms

and tools in current QA research.

1.2. Main Idea: Feature-driven Question

Answering

Treating question answering as a machine learning problem, the most fundamental

challenge is capturing the most useful signals of the answer to the question. Or put

it another way, question answering is a patten recognition problem for answers.

However, answer patterns do not come out of the box automatically: they need

to be produced first. This production process usually requires a lot of linguistic

insight, and years of experience. One central challenge for this dissertation is to

design methods for generating these answer patterns, then recognizing them, both

in an automatic way.

We hypothesize that answer signals can be learned from basic linguistic anno-

tations of the QA pairs. Specifically, given a question and related search snippets

from text or KB, the annotations (anno) used in this dissertation are:

• q: a simple analysis of the question, such as question word, focus, topic, and

main verb (detailed examples are shown in § 2.3.2.1 on page 48);

• if the search snippets are sentences:

9

1. Introduction

– pos: part-of-speech tags of the words in the snippet;

– ner: named entity labels in the snippet;

– dep: dependency parse of the sentences in the snippet;

• if the search snippets are from a knowledge graph:

– rel: incoming and outgoing relations of an answer candidate node in

the graph, such as people.person.spouse_s;

– prop: property of an answer candidate node in the graph, such as

type:person;

• align: (soft or hard) alignment between the question and the snippet.

These annotations are then combined as features to the pattern recognition prob-

lem of QA. It is usually very difficult to decide which features are useful. Thus we

first over-generate them, then use machine learning to weigh all the features. We

apply this idea to both text (§ 1.2.1) and a knowledge base (§ 1.2.2). Furthermore,

we devise our own devices to align questions with the answer source, and show

that features based on alignment can significantly improve QA performance, no

matter whether it is from hard alignment on text (§ 1.2.3), or soft alignment on

KB (§ 1.2.4).

Throughout this section, we illustrate with the following example with two

questions and two snippets (one from text and one from KB):

• Q1: Who was President Cleveland’s wife?

• Q2: When did President Cleveland marry?

• S1 from text: President Cleveland married Frances Folsom in 1886.

• S2 from Freebase (c.f. Figure 1.2 on page 13(b)):

– rel: /people/person/spouse_s(Grover Cleveland, marriage_super_node)

10

1. Introduction

– prop: marriage_super_node{Spouse: Frances Folsom, From: 1886,

To: 1908}

– prop: Frances Folsom{Type: Person, Gender : Female, ...}

– prop: Cleveland{Type: Person, Gender : Male, ...}

1.2.1. QA on Text

We frame answer extraction with text as a sequence tagging task: a linear-chain

Conditional Random Field (Lafferty et al., 2001) is used to tag answer segments in

retrieved sentences (Figure 1.2(a)). It inspects each token in a sentence and tag it

with either: b-ans (beginning of answer), i-ans (inside of answer), or o (outside of

answer) – a task very similar to chunking with a CRF. Annotations of each token

in the snippet are combined with their local context to generate features. Suppose

0 is the current token position, then the chunking-like features are expanded with

unigram, bigram and trigram annotations: anno0, anno-1|anno0, anno0|anno1,

anno-2|anno-1|anno0, anno-1|anno0|anno1, anno0|anno1|anno2, where anno

is either pos, ner or dep, or a mixture of the three (examples immediately follow).

Chunking-like features are combined with the question word to capture a gen-

eral pattern of answer typing. The basic intuition is, for instance, when the

question asks for a “who”, we expect the annotation of pos=nnp (proper noun) or

ner=person from the answer. This form of answer typing is reflected through

the learned feature weight: the larger the learned weight, the stronger the typing.

For instance, compare the following three features and their learned weights for

predicting b-ans on the answer candidate at position 0:

feature token weight

1 q=who|ner0=person|ner1=person Frances 0.5

2 q=when|pos-1=in|pos0=cd 1886 0.6

3 q=when|ner0=person|ner1=person Frances -0.4
These features are combination between the question word and bigram chunking-

11

1. Introduction

like features. A literal translation of the feature in line 1 reads: if the question is

a who question, and the current token’s entity type is a person (ner0=person),

followed by another person name (ner1=person), then there is a positive fea-

ture weight (0.5) learned. This feature actually fires on the token “Frances” in

the example of Figure 1.2(a), since “Frances” as a first name would be tagged as

a person name and the token “Folsom” following it is also a person name.

Similarly, in line 2, the CRF learned a good positive weight (0.6) for a feature

extracted on the current token, describing the case that there is a when question

(q=when), and the current token’s pos tag is a cardinal number (pos0=cd),

preceded by a preposition (pos-1=in). This feature would fire on the token “1886”

from the string “in 1886” if the question was a when question, such as “when did

President Cleveland get married?”.

On the contrary in line 3, when the question asks for a time (q=when) but

the token and its context is about a person (ner0=person|ner1=person), then a

negative feature weight is learned. For instance, in Figure 1.2(a), if the question

was the same when question introduced above, then the feature would fire on the

token “Frances”, discouraging it to be an answer. Negative feature weight can be

intuitively understood as discouraging the anno pattern from being classified the

right answer type for the question.

The automatically generated features can have millions of distinct types given

a large training corpus. We applied L1 regularization during training to reduce

the feature space. Still, the final model could use thousands of both positive and

negative features. A lot of these features are fairly intuitive. Manually writing

rules for these scale of model training immediately becomes painfully impossible in

this task. But we instead let the automatically generated and optimized features

speak for the answer patterns. That is the basic idea of feature-driven question

answering.

12

1. Introduction

Cleveland married Frances Folsom in 1886

O O B-ANS I-ANS O O

President

O

(a) An example of linear-chain CRF for answer sequence tagging in response to the
question “Who was President Cleveland’s wife?”. The answer tokens “Frances
Folsom” are labeled as b-ans/i-ans (beginning/inside of answer) and other tokens
are labeled as o (outside of answer).

Grover Cleveland marriage_super_node Frances Folsom

people.person.
spouse_s Spouse

person

type

female

gendertype

person male

gender

1886 1906

ToFrom

(b) An excerpt of related Freebase graph nodes about Grover Cleveland for answering the ques-
tions “Who was President Cleveland’s wife?” and “When did President Cleveland marry?”.
Hatched nodes are answers. Solid arrows: relations; solid nodes: entities; dotted lines: prop-
erties; dotted nodes: values.

Figure 1.2.: Question answering from either text (a) or knowledge base (b).

1.2.2. QA on KB

The same feature-driven idea can be applied on a knowledge base for extracting

answer nodes. Question answering now is treated as a binary classification prob-

lem on whether each node in the knowledge graph is the answer, using logistic

regression. For each node, we still generate features based on the question and

the relation/property of that node, for instance:

feature node weight

1 q=who|focus=wife|type=person|rel=Spouse Frances Folsom 0.5

2 q=when|prop=From 1886 0.6

3 q=when|type=person Frances Folsom -0.4
Line 1 reads: if the question asks for the name of a wife (q=who|focus=wife),

and the node is a person node (type=person) connected with the spouse relation

(rel=Spouse), then there is a high chance that this node (Frances Folsom) is the

13

1. Introduction

answer.

The feature at Line 2 would fire on the 1886 node, where we learn a close

correlation between the when question word in Q2 and the from property to a

node. Normally it is not obvious to the eyes what the From property in the KB

means: a date or a location or something else? We just let the logistic regression

learner figure it out.

Finally, a negative weight is learnt for the feature q=when|type=person: nor-

mally we would not expect a person node to answer a when question. This feature

weight makes sense and votes down person nodes.

We present more details in Chapter 5 on page 198 and show that this simple

and intuitive technique works on par with more sophisticated semantic parsing

approaches. Detailed performance analysis and comparison also make it clear

that these two techniques are essentially learning the same answer patterns from

the data, except that our feature-driven method is much less complicated.

1.2.3. With Hard Alignment on Text

Combining question features and snippet features provides a loose coupling be-

tween the question and the snippet. However it is not precise enough. For instance,

we have previously learned that the following feature is a good signal for answers:

q=who|ner0=person|ner1=person: 0.5

This feature would fire on Frances, Ruth and Esther in the following sentence:

President Cleveland married Frances Folsom and they had two children: Ruth Cleve-

land and Esther Cleveland,

given the question:

Who was President Cleveland’s wife?

If we had a mechanism to precisely align President Cleveland↔President Cleveland

and married↔wife, then we would know that Frances Folsom has a much higher

14

1. Introduction

shops ClevelandPresident married Frances Folsom in 1886 .

NULL

Cleveland

President

was

who

's

wife

0

1

2

3

4

5

6

(a) Markov token-based alignment. null state represents
deletion.

shops ClevelandPresident married Frances Folsom in 1886 .

NULL

Cleveland

President

was

who

's

wife

President.-
Cleveland.

7

0

1

2

3

4

5

6

...-...
15

(b) Semi-Markov phrase-based alignment. Semi-Markov
state aligns phrases on the source (horizontal) side;
Phrasal state aligns phrases on the target (vertical)
side.

Figure 1.3.: Alignment between QA pairs. The graph shows the desired Viterbi
decoding path.

15

1. Introduction

chance to be the answer than Ruth Cleveland and Esther Cleveland, since it is

both adjacent to married in word order and depended on married according to the

dependency parse.

This mechanism is monolingual alignment. We devise two monolingual aligners,

one for token alignment with CRF, the other for phrase alignment with semi-

Markov CRF, to connect semantically equivalent words in a pair of sentences.

They are able to align lexically similar words, and also make shallow inference

through various lists of synonyms, hypernyms, paraphrases etc. Figure 1.3 shows

an example.

The two aligners are the first open-source discriminative aligners specifically

designed for the task of monolingual alignment. Unlike other aligners based on

unsupervised learning or generative models, these aligners are able to optimize

over multiple lexical resources, extending the types of alignment beyond word

similarity and common co-occurrences.

The major intuitions of using alignment in Question Answering are:

• Aligned tokens (known information w.r.t. the question) are most usually

not the answer: since they appear in the question as well.

• Deleted tokens (missing information w.r.t. the question) from the answer

sentence might be the answer: but we need to learn the patterns and differ-

entiate them from deleted and irrelevant tokens.

Then these alignment-based features are also fed into the feature-driven framework

and weighted on the training data. We show significant improvement with these

features later in § 4.6 on page 180.

1.2.4. With Soft Alignment on KB

One challenge for asking questions from a knowledge base is to align knowledge

base relations with natural language text. Recall the previous example:

16

1. Introduction

• Sandra then was cast in Gravity, a two actor spotlight film.

• Sandra Bullock plays an astronaut hurtling through space in new block-
buster Gravity.

• Sandra Bullock stars/acts/performs in Gravity.

• Sandra Bullock conquered her fears to play the lead in Gravity.

Figure 1.4.: A made-up example of the Freebase annotation of ClueWeb. Blue
words are linked back to Freebase entities. Red italic words are what
we would map to the Freebase /film/film/starring relation. The whole
corpus annotated 11 billion Freebase entities in 800 million documents.

• Q1: Who was President Cleveland’s wife?

• S2 from Freebase:

– rel: /people/person/spouse_s(Grover Cleveland, marriage_super_node)

A QA engine should know the mapping between wife and /people/person/spouse_s.

While this is relatively easy since wife can be considered as a hyponym of spouse,

according to a dictionary or semantic ontology, normally it is difficult to recognize

these mappings. Two more examples:

• Q: What to see near Austin?

• Freebase relation: /travel/travel_destination/tourist_attractions

and,

• Q: Who acted in Gravity?

• Freebase relation: /film/film/starring

Mapping between, for instance, see and /travel/travel_destination/tourist_attractions,

is a very difficult task. We resort to web-scale data mining for a solution.

The Freebase Annotation of the ClueWeb Corpora (Gabrilovich et al., 2013)

annotated about 11 billion Freebase entities in 800 million web documents. If

17

1. Introduction

two Freebase entities appear in a close local context (e.g., a sentence) and they

are also connected by a direct binary relation according to Freebase, then we

hypothesize that the words in the local context are natural language realizations of

this relation. Figure 1.4 gives an example: actress Sandra Bullock and movie Gravity

are connected by the /film/film/starring relation. We observe that words like cast,

play, and in appear much more than other words such as fears and astronaut and

would like to either remove these noise words or rank down them. The task is

then:

1. build a co-occurrence matrix c(w,R) between any Freebase relation R and

words w in a vocabulary V by trying to maximize the total data probability

using EM;

2. compute the conditional probability table P (w | R) and P (R | w);

3. given a relation R, predict the top n most probable words according to

P (w | R);

4. given a word w, predict the top n most probable relations according to

P (R | w).

If we map the local contexts for all arguments of the same relation (e.g., /film/-

film/starring(Gravity, Bullock) and /film/film/starring(The Matrix, Reeves)) to this

relation, we can reduce the task to simple counting the co-occurrence between the

context words and the relation. This provides a MapReduce solution for min-

ing co-occurrence matrix in web scale (800 million documents). Note that the

final mapping is a soft alignment between words and relations: we do not tell

for sure that given a question what correct relation it maps to; but instead we

predict several relations that are most probable fit to this question. Chapter 5 on

page 198 systematically examines the effectiveness of this soft alignment technique

and shows significant improvement to end QA performance.

18

1. Introduction

1.3. Contributions

The substance of this dissertation involves four main aspects:

• feature-driven question answering : generating and learning answer patterns

directly and automatically from linguistic signals in the data, in contrast to

traditional manual template matching (c.f. § 2.3.2.2 on page 49). Further,

answer patterns learned directly from data can improve the information

retrieval front end for question answering.

• monolingual alignment : developing the algorithm, tool and application for

the task of monolingual alignment; open souring the first discriminative

monolingual aligners with state-of-the-art performance

• alignment interface to text : connecting the question with retrieved answer

snippets with monolingual alignment and demonstrating that answer sig-

nals from monolingual alignment improve question answering performance

significantly, over both without and with bilingual alignment.

• alignment interface to knowledge base: answering questions directly from

knowledge base entries with state-of-the-art performance, via web-scale min-

ing the mapping between knowledge base relations and natural language

realizations.

The contributions of this dissertation, both in theory and in practice, to science

and research are:

A fast, automatic and discriminative method for quickly kick-starting a sta-

tistical question answering system using both unstructured and structured

sources. A mature QA system is often a very complex engineering assembly,

involving but not limited to the following fields:

• Information Retrieval (IR), from text or Knowledge Base;

19

1. Introduction

• Natural Language Processing (NLP), with various techniques from tagging,

chunking, parsing, named entity recognition, coreference resolution, dialogue

state tracking, summarization and generation, etc;

• Artificial Intelligence (AI) and Machine Learning (ML), involving reasoning

over world knowledge and learning from data.

As a result, building modern QA systems usually needs dozens of engineers and

various complex components, let alone painful manual template writing. The

resulting system is very hard to describe clearly in research papers and difficult

to replicate as well. The feature-driven idea in this dissertation, on the other

hand, is easy to grasp, uses modern discriminative machine learning theories,

applies well to both text and knowledge base, and helps the performance of both

answer extraction in the back end and information retrieval in the front end.

I acknowledge the fact that any commercial QA systems would inevitably use

heuristics to guarantee very high precision for some important question types.

But I think (and this dissertation later argues) that the feature-driven method can

serve as the statistical backbone of a large-scale QA system, while still maintaining

the flexibility of quickly adapting to other smaller or focused domains.

Specifically, the novel contributions down to the details are:

• the first to cast the problem of answer extraction as sequence tagging ;

• the first to automatically couple the answer extraction back end with the IR

front end using shallow structured information retrieval;

• a novel method to use information extraction over structured data for ques-

tion answering.

Systematically developing, demonstrating, and justifying the task of mono-

lingual alignment in the application of question answering. Prior to this

20

1. Introduction

dissertation, researchers have mostly used natural language alignment in the fol-

lowing fields:

• Machine translation with bilingual alignment, using mostly the open-source

tool GIZA++ (Och and Ney, 2003);

• Monolingual tasks with the “bilingual” aligner GIZA++, because there was

no suitable monolingual aligners;

• Recognizing Textual Entailment (RTE) with the manli monolingual aligner

(MacCartney et al., 2008), which is not open-source and was only used in

the NatLog Natural language Logic system (MacCartney, 2009).

There is a strong need for developing discriminative monolingual aligners in re-

search, especially when machine learning theories on discriminative training have

matured, more and more lexical resources have been created and similarity mea-

sures have been proposed. GIZA++ is not able to take advantage of all of them

and there is no available monolingual solution off the shelf.

This dissertation describes jacana-align, an open-source discriminatively trained

monolingual aligner. We use a different model (CRF and semi-CRF) than manli

(perceptron) and more lexical resources. We have achieved state-of-the-art per-

formance in alignment accuracy on two common evaluation corpora. Finally, we

apply the aligner in the task of question answering and show that alignment-based

features give significant boost to QA performance. Thus the task of monolingual

alignment in question answering is justified, following the justification in the task

of RTE (MacCartney, 2009). To be fair, previous QA research has explored in

the direction of fuzzy-matching words or structures in QA pairs, i.e., a soft kind

of alignment. But this topic has never been examined to the detail and extent of

this dissertation.

Alignment performance greatly relies on external lexical resources. However,

putting together multiple resources is an engineering burden. jacana-align ships

21

1. Introduction

with various collection of such resources. It is platform-independent and runs on

all modern computers. I believe the release of this software would have a profound

impact on future researchers’ choice of aligners and even their approaches in NLP

tasks.

Specifically, the novel contributions down to the details are:

• the first open-source and state-of-the-art monolingual word aligner;

• the first to use semi-Markov CRF models for phrase-based alignment;

• the first to systematically justify monolingual alignment in question answer-

ing;

• the first to do web-scale data mining for aligning natural language words

with knowledge base relations.

State-of-the-art performance in several NLP tasks. The technologies de-

scribed in this dissertation achieved state-of-the-art performance in the following

tasks by the time of related publication:

• Answer sentence ranking on the TREC QA dataset contributed by Wang

et al. (2007), Heilman and Smith (2010);

• Answer extraction on the TREC QA dataset contributed by Yao et al.

(2013d);

• Monolingual alignment on the MSR06 (Brockett, 2007) and Edinburgh++

(Cohn et al., 2008, Thadani et al., 2012) datasets;

• Question answering from Freebase on the WebQuestions dataset (Berant

et al., 2013).

22

1. Introduction

Easy and fair comparison for future research. All the algorithms described

in this dissertation and implementation codes are open-source, even though (and

because) I am not producing a QA giant like Watson or search giant like Google.

The resulting software is called jacana (/dZ@"kA:n@/)6 consisting of three parts:

• jacana-qa, a question answering engine for trec-and-Jeopardy-style ques-

tions, written in Java;

• jacana-align, a monolingual word aligner for English, written in Java and

Scala;

• jacana-freebase, a question answering engine for web-style questions on Free-

base, written in Java and Scala.

Along with the code, I have also made almost all datasets and evaluation scripts

available to facilitate fair and easy comparison for researchers in the general field of

question answering and monolingual alignment. Every single data point and eval-

uation score reported in this dissertation can be exactly reproduced by a specific

snapshot of the above software given the version control number upon submission

to corresponding conferences.

1.4. How to Read this Dissertation

The outline for each chapter is:

• Chapter 2 surveys related literature (about 150 publications) covering 50

years of progress in the general field of question answering. Both historical

background in QA and IR and the current state of the art are reviewed. The

interaction between linguistic analysis and machine learning on the problem

of question answering is also explained as a dynamic process.

6https://code.google.com/p/jacana released with the Apache license with written permis-
sion from the Johns Hopkins Technology Transfer Office.

23

https://code.google.com/p/jacana

1. Introduction

• Chapter 3 kick-starts a statistical QA system and introduces the general

idea of generating and learning rich features from data.

• Chapter 4 describes two discriminative models for monolingual alignment

and compares them with other monolingual and bilingual aligners on the

task of aligning English words, achieving state-of-the-art results. Specifi-

cally, section 4.6 justifies the task of monolingual alignment for QA and

shows that it improves QA significantly than simply using a bilingual aligner

(GIZA++).

• Chapter 5 extends the idea of feature-driven QA from unstructured data

source (text) to structured source (Freebase) and shows that this technique

is both speedy and state-of-the-art on one question corpus collected from

popular web searches.

If you only have 20 minutes: read Chapter 1, which uses one single example

to illustrate all important ideas in this dissertation.

If you have 40 minutes: read Chapter 1, every Conclusion section in each

Chapter, and the final Chapter 6 on page 236.

If you are a first-timer in question answering: Chapter 2 on page 27 should

be a good reference, with most important approaches explained and evaluation

methods described.

If you are interested in monolingual alignment: Chapter 4 on page 134 on

discriminative models on monolingual alignment has been completely rewritten

with models trained with new features and evaluated on additional dataset. It

also includes a detailed comparison with bilingual alignment on literature review,

evaluation method, and some ambiguous definition.

24

1. Introduction

If you have read all my papers and are looking for something new: thank

you! Here is a list of unpublished material in this dissertation:

• Chapter 1 on page 1 (Introduction), Chapter 2 on page 27 (Literature Re-

view), new results and evaluation analysis in Chapter 4 on page 134 (Dis-

criminative Models on Monolingual Alignment) and Chapter 6 on page 236

(Conclusion and Future Directions);

• Section 4.6 on page 180 describes experiments on a new dataset from the

Jeopardy! quiz show;

• Chapters 3, 4 and 5 also include additional materials on background, datasets

and illustrative figures that were not presented in conference publications due

to space limit.

• Appendices include examples of error analysis and comparison on three tasks:

monolingual alignment, QA from Jeopardy!, and QA from Freebase.

1.5. Related Publications

This dissertation is based on the following publications:

1. Xuchen Yao, Benjamin Van Durme, Peter Clark and Chris Callison-Burch.

Answer Extraction as Sequence Tagging with Tree Edit Distance. NAACL.

Atlanta, GA, USA. 2013.

2. Xuchen Yao, Benjamin Van Durme and Peter Clark. Automatic Coupling of

Answer Extraction and Information Retrieval. ACL Short. Sofia, Bulgaria.

2013.

3. Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch and Peter Clark.

A Lightweight and High Performance Monolingual Word Aligner. ACL

Short. Sofia, Bulgaria. 2013.

25

1. Introduction

4. Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch and Peter Clark.

Semi-Markov Phrase-based Monolingual Alignment. EMNLP. Seattle, WA,

USA. 2013.

5. Xuchen Yao and Benjamin Van Durme. Information Extraction over Struc-

tured Data: Question Answering with Freebase. ACL. Baltimore, MD, USA.

2014.

6. Xuchen Yao, Benjamin Van Durme and Jonathan Berant. Freebase QA:

Information Extraction or Semantic Parsing?. ACL Workshop on Semantic

Parsing. Baltimore, MD, USA. 2014.

Acronyms for conference names are:

• ACL: Annual Meeting of the Association for Computational Linguistics

• NAACL: the annual meeting of the North American Chapter of the Associ-

ation for Computational Linguistics

• EMNLP: Conference on Empirical Methods in Natural Language Processing

26

2. 50 Years of Question

Answering

2.1. Overview

Due to its bountiful amount of publications and rapid progress, survey papers for

question answering are frequently authored. The following is a few of them on

different areas of question answering:

• Simmons (1965): Answering English Questions by Computer: A Survey

• Simmons (1970): Natural language question-answering systems: 1969

• Androutsopoulos et al. (1995): Natural Language Interfaces to Databases -

An Introduction

• Rahm and Bernstein (2001): A survey of approaches to automatic schema

matching

• Voorhees (2001): The TREC question answering track

• Hirschman and Gaizauskas (2001): Natural language question answering:

The view from here

• Andrenucci and Sneiders (2005): Automated question answering: Review of

the main approaches

27

2. 50 Years of Question Answering

• Wang (2006): A Survey of Answer Extraction Techniques in Factoid Ques-

tion Answering

• Prager (2006): Open-Domain Question-Answering

• Mollá and Vicedo (2007): Question Answering in Restricted Domains: An

Overview

• Athenikos and Han (2010): Biomedical Question Answering: A Survey

• Kolomiyets and Moens (2011): A survey on question answering technology

from an information retrieval perspective

• Allam and Haggag (2012): The Question Answering Systems: A Survey

• Gupta and Gupta (2012): A Survey of Text Question Answering Techniques

The techniques surveyed above are mainly of three types:

1. IR QA: retrieving answer passages with a search engine, then filtering or

reranking the retrieved snippets. This was the form of evaluation in early

years of TREC QA.

2. NLP QA: further extracting answer fragments from retrieved snippets, with

different linguistic intuitions and machine learning methods.

3. KB QA: finding answers from structured data source (a knowledge base)

instead of unstructured text. Normally standard database queries are used

in replacement of word-based searches.

IR QA and NLP QA have different focuses. IR QA focuses on reranking retrieved

snippets while NLP QA on extracting exact answer fragments. Both use mostly

keyword based search engines as its front end, especially via commercial search

engines with the web as the answer source. Note that almost all IR engines are

designed serving the need of keyword search, rather than a whole natural language

28

2. 50 Years of Question Answering

question. Thus research was done calling for information retrieval specifically for

the purpose of question answering. Back-end NLP methods are applied backward

to the IR front end to increase retrieval qualities. We summarize these approaches

as IR+NLP QA, or IR4QA (Gaizauskas et al., 2004).

NLP QA and KB QA are answer extraction technologies from different sources:

text and knowledge base. There are also hybrid approaches combining evidence

from both sources. We also outline them as IR+NLP+KB QA, or hybrid QA.

Two outstanding examples are the MIT START system (Katz et al., 2006) and

IBM Watson (Ferrucci et al., 2010).

This dissertation covers all of the above except hybrid QA:

• § 3.2 on page 90 for answer sentence ranking (IR QA);

• § 3.3 on page 98 for answer extraction for TREC questions and § 4.6 on

page 180 for answer extraction for Jeopardy! questions (NLP QA);

• § 3.4 on page 110 for structured information retrieval for question answering

(IR4QA);

• Chapter 5 on page 198 for question answering with Freebase (KB QA).

Thus I intend to write yet another survey trying to cover an almost complete set

of core techniques both important to this field and relevant to this dissertation.

But it is not without limitation. I only focus on English factoid QA: providing

fact-based answers (in either short phrases or snippets) to English questions.

Besides the above categorization of QA methods, the timeline is also noticeable:

QA is a technology that has been constantly evolving over the last 50 years. During

this time, theories, technologies and resources all have developed to a great extent.

Among them, there are the following prominent evolvement:

• computing infrastructure, including both static and dynamic storage, central

processing unit, and world wide web. Abundant information and knowledge

29

2. 50 Years of Question Answering

are stored, organized and shared online. Modern search engines are able to

retrieve public information in real time.

• machine learning, including various learning and classification methods, gen-

erative and discriminative models, data mining and pattern recognition tech-

niques. Along with either manually or automatically created resources, ma-

chine learning enables QA systems with the ability to capture the norms of

answers in a much larger scale and more systematic and automatic way.

• linguistic theories and tools, including systematic development of syntactic

and semantic structures, and mature and robust software to label pos tags,

named entities, chunked phrases, dependency trees, semantic roles, logic

forms, etc.

Thus various QA technologies can also be viewed with respect to the types of

applied linguistic signal and level of machine learning scale. There is a clear tra-

jectory here: as time goes by, deeper linguistic structures are applied and machine

learning algorithms are used in larger scale. Ad-hoc rules are gradually replaced

by statistical predictions. In § 2.4 we contrast linguistic features with machine

learning scales in existing work, hoping to enlighten future research directions.

Finally, this literature review is based on the following material and my own

thoughts:

• significant mentions in the above survey papers;

• first 100 papers by relevance/rank according to Google Scholar and Microsoft

Academic Search;

• authors with more than 10 publications in this field according to Microsoft

Academic Search;

• selected most recent papers that take distinct approaches other than those

that have been explored.

30

2. 50 Years of Question Answering

(a) citation and publication per year

(b) top 20 conferences by publication numbers

Figure 2.1.: Publication and most-published conferences in question answering,
according to statistics by Microsoft Academic Search

Microsoft Academic Search also gives some overview of the publication distribution

over the years and over different conferences. Figure 2.1 gives a snapshot. We see a

surge of publications along the timeline of TREC QA (1999-2007) and QA@CLEF

(2000-now), both of which will be introduced immediately in the next section.

2.2. Conferences and Evaluation

2.2.1. TREC (Text REtrieval Conference) QA Track

The Text REtrieval Conference started in 1992 as a pure information retrieval

challenge: how to scale up the retrieval system then from searching 2MB of texts

to 2GB of text. The conference expanded with multiple tracks in various areas

(interactive, legal, medical, genomics, video, terabyte, cross-language, etc) and is

still very active. Harman and Voorhees (2006) overviewed the first 12 years until

31

2. 50 Years of Question Answering

2004 with a lot of background explained.

The TREC Question Answering track started in 1999 and had run for 9 years

until the last one in 2007. It started more like an information retrieval task: for

every question 5 snippets of 50 bytes and 250 bytes were retrieved and human

raters ranked these snippets with whether they answer the question. Evaluation

was performed in the form of Mean Reciprocal Rank (MRR), a standard IR eval-

uation metric. Later TREC QA ran much like an information extraction task: the

exact answers were matched to compute accuracy or F1. As for the information

retrieval front end, participants can either use their own tool or use a retrieved

document list provided by the organizers. Table 2.1 summarizes each year and

Table 2.2 lists the corpora used.

The first 5 TREC runs used independent questions: each question is self-

contained and can be asked out of the blue. The last 4 runs grouped questions

into question series. A question series focused on a target and consisted of several

factoid questions, one to two list questions, and exactly one “other” question. For

instance:

target: Britain’s Prince Edward marries

• factoid: When did Prince Edward engage to marry?

• factoid: Who did the Prince marry?

• factoid: Where did they honeymoon?

• factoid: Where was Edward in line for the throne at the time of the wedding?

• factoid: What was the Prince’s occupation?

• factoid: How many people viewed the wedding on television?

• list: What individuals were at the wedding?

32

2. 50 Years of Question Answering

• other: (much like a definition question) “Tell me other interesting things

about this target I don’t know enough to ask directly”.

The introduction of question series brought context into QA: a step towards

dialogue-based question answering systems. This has great implications to fu-

ture mobile personal assistants. In a human-to-computer interaction, users may

assume that the subject can be changed as the conversation goes on, just like a

human-to-human conversation. However, 10 years after the TREC QA track in-

troduced context-based question answering, modern commercial QA systems still

have very limited ability in this task.

I also want to make the comment, which took me a long time to realize, that it

is very difficult to compare a QA system at the present time straightly and fairly

to the TREC results back then, for two reasons:

1. Early TREC QA used humans to judge whether a 50/250-byte long snip-

pet answers the question. The task was much easier to than strict answer

extraction.

2. Later TREC QA allowed participants to search the web thus some systems

explored answer redundancy. A static corpus was still provided and as long

as the answer candidate (from the web) existed in the static corpus it can

be used as the system output. If modern QA systems use the now much

better search engine and much richer web content, it would not be a fair

comparison with the previous approaches.

Based on the above arguments, if future QA publication were to compare with

the previous result, they can only do it in an approximate way. The major con-

cern is the information retrieval front end: both commercial search engines and

open-source indexing systems have advanced; thus it is hard to conclude whether

any improvement, if any, is from a better IR component, or from a better answer

33

2. 50 Years of Question Answering

trec questions tasks source evaluation groups

8 (1999)

2393

factoid
TREC disks 4-5,

1.9GB
50/250 bytes

snippets, human
ranks top 5 in MRR

20

9 (2000) factoid, def. TREC disks 1-5,
3GB

28
2001 factoid, def., list 36
2002 factoid, list

AQUAINT
(LDC2002T31),

3GB
exact answer match,
in accuracy and F1

34
2003 factoid, def., list 25
2004 351

factoid, list,
other, in

question series

28
2005 530 30
2006 567 27

2007 515
Blog06 (25G),
AQUAINT-2

(2.5G)
21

Table 2.1.: Summary of 9 years of TREC QA on the main task. Overall it con-
tributed about 4000 question answer pairs with about 250 groups par-
ticipated (and a large collection of publications over the years).

extraction method. In other words, any standard QA dataset for fair compari-

son should contain three parts: the question, the standard answer, and a list of

retrieved snippets for each question.

The MIT109 test collection by Lin and Katz (2006) satisfies the above condition.

It contains 109 questions from TREC 2002 and provides a near-exhaustive judg-

ment of relevant documents for each question. In practice researchers (e.g., Ogilvie,

2010) have removed an additional 10 questions without an answer supported by

the documents, leaving the final set with 99 questions. Future researchers should

be warned that it might be hard to show statistical significance given the small

size of this dataset.

Finally, 9 years of TREC QA has left us with more than 4 thousand question

answer pairs as training data and publications from about 250 participations. I

describe some significant approaches in the next section by impact and relevance

to this dissertation.

34

2. 50 Years of Question Answering

Corpus Publisher URL
TREC disks 1-3 (aka TIPSTER) LDC93T3A http://catalog.ldc.upenn.edu/LDC93T3A

TREC disks 4-5 NIST http://www.nist.gov/srd/nistsd{22,23}.cfm

AQUAINT LDC2002T31 http://catalog.ldc.upenn.edu/LDC2002T31

AQUAINT-2 LDC2008T25 http://catalog.ldc.upenn.edu/LDC2008T25

Blog06 University
of Glasgow

http://ir.dcs.gla.ac.uk/test_collections/

blogs06info.html

Table 2.2.: Corpora used in the TREC QA track. More source and statistics details
of TREC disks 1-5 can be found in Table 2 of Voorhees and Harman
(2000).

2.2.2. QA@CLEF (Cross Language Evaluation Forum)

The Conference and Labs of the Evaluation Forum (CLEF, previously known as

Cross Language Evaluation Forum) started in 2000 with a focus on multilingual

and multimode information systems. The Multiple Language Question Answering

Track (QA@CLEF) ran from 2003 (Magnini et al., 2003) to 2010.

The first pilot track in 2003 consisted of both monolingual and bilingual tasks:

monolingual QA was conducted on Dutch, Italian and Spanish, while bilingual

QA contained 200 queries in each language of Italian, Spanish, Dutch, French and

German searching over an English corpus from Los Angeles Times 1994. Evalu-

ation was on MRR of 50-byte snippet. QA@CLEF 2004 (Magnini et al., 2005)

expanded to 9 query languages and 7 corpus languages. Almost all pair-wise com-

binations were exploited, so in theory there were 63 combinations and in practice

19 combinations were visited by 18 teams. The questions in different languages

were translations of each other. The corpora were local newspaper articles of the

same time span. Evaluation was on accuracy of exact answers. The following

QA@CELF expanded with more language combinations and teams until 2008.

The first 6 years (2003-2008) of QA@CLEF also produced some sub-tasks in-

cluding:

• The Answer Validation Exercise (AVE) from 2006 to 2008;

35

http://catalog.ldc.upenn.edu/LDC93T3A
http://www.nist.gov/srd/nistsd{22,23}.cfm
http://catalog.ldc.upenn.edu/LDC2002T31
http://catalog.ldc.upenn.edu/LDC2008T25
http://ir.dcs.gla.ac.uk/test_collections/blogs06info.html
http://ir.dcs.gla.ac.uk/test_collections/blogs06info.html

2. 50 Years of Question Answering

• A time constrained exercise in 2006;

• WiQA in 2006: Evaluating Multi-Lingual Focused Access To Wikipedia;

• WSD QA: An evaluation exercise on Word Sense Disambiguation for Cross-

Lingual Question Answering;

• QAST: Question Answering on Speech Transcript;

• GikiCLEF: Cross-language Geographic Information Retrieval fromWikipedia.

Into 2009 and 2010, QA@CLEF investigated whether the previous years’s tech-

nology based on QA from newswire and Wikipedia can be adapted to the law

domain (specifically, European legislation), thus ResPubliQA (Peñas et al., 2010).

The finding was that scores were generally higher than in previous QA campaigns

but no specific reasons were given.

After 2010, QA@CLEF corresponded to one big concern rising from previous

years: the phenomenon of answer redundancy. It is hard to say whether a correct

answer is actually from a correct understanding of the text, or just that it highly

co-occurs with the question. QA systems also very often rely on the IR front end.

Since a search engine almost always returns something, it is hard to produce no

answer for a question even if the question does not have an answer from a corpus.

The QA4MRE challenge, Question Answering for Machine Reading Evaluation,

was designed to test the understanding ability of machine reading systems (Peñas

et al., 2011) given a short text. It deliberately ruled out the IR front end. Attention

was put on negation and modality in questions as well, two very difficult problems

in QA to tackle. QA4MRE is presented in the form of multiple choice questions:

given a document, there are ten questions with 5 choices each. Seven languages

were used (Arabic, Bulgarian, English, German, Italian, Romanian, Spanish) and

the test sets had four topics: AIDS, climate change, music, society and Alzheimer’s

disease.

36

2. 50 Years of Question Answering

Along with QA4MRE, there were the following sub-tasks:

• two pilot tasks on machine reading on biomedical texts (66, 222 Medline

abstracts) about Alzheimer’s disease using scientific language;

• two pilot tasks on processing modality and negation;

• two challenges on Japanese university entrance exams (in English);

• two BioASQ workshops on large-scale biomedical semantic indexing and

question answering;

• four (the first two were run at other conferences) workshops of QALD: mul-

tilingual question answering over linked data (DBpedia, Drugbank, etc).

QA@CLEF overall has experimented with various ideas through its pilot tasks

and exercises. It has always had a focus on truly improving the understanding

of question answering systems. It started with traditional IR-base QA: ranking a

50-byte passage (2003), then measured answer accuracy in the following years. By

2005 the organizers realized that systems reached an upper bound of 60% due to

error propagation in the NLP pipeline (Peñas et al., 2013) while more than 80% of

questions were answered by at least one participant. Thus the Answer Validation

Exercise was introduced in 2006, forcing systems to re-rank their proposed answers.

After a brief technology transfer to the European legislation domain, the main task

returned to the machine reading challenge. The aim is to remove the influence

of the IR front end, and focus on deep understanding of a single document to

produce correct answers. Results showed that this is still a challenging task:

most systems still used “shallow” technologies up to dependency parsing, without

further resorting to logic or inference. The average accuracy was around 25%,

while a random baseline is 20%.

A year-by-year overview of the major and pilot QA@CLEF tasks is shown in

Table 2.3.

37

2. 50 Years of Question Answering

’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14
Multiple Language QA Main Task ResPubliQA QA4MRE

Ans. Validation Exer. Giki Biomedical

Real

Time

WSD

QA

Modality&

Negation

Entrance

Exams

WiQA QA on Speech Trans. QA over Linked Data

BioASQ

Table 2.3.: Tasks and exercises conducted with QA@CLEF. The structure of table
is inspired by Anselmo Peñas’s public slides on QA4MRE summary.

2.2.3. Evaluation Methods

One of the most tragic things that can and have happened to research is that the

evaluation method is wrong, with or without the author knowing. Thus I decide to

write a detailed description of evaluation methods used in this dissertation. The

most commonly used evaluation metrics in QA are F1 and accuracy; in IR they

are MAP, MRR, and F1. They are defined in a straight-forward way but often

in practice cause a lot of confusion. In this section I spell out the definition and

explain how they are used in research papers.

2.2.3.1. Precision, Recall, Accuracy, Fβ for IR/QA

These categories are usually measures for binary classification tasks: the prediction

is either correct or wrong. When used in information retrieval, the prediction is

whether the document is relevant or not, then precision and recall are defined as:

Precision =
| {relevant} ∩ {retrieved} |}

| {retrieved} |

Recall =
| {relevant} ∩ {retrieved} |}

| {relevant} |

38

2. 50 Years of Question Answering

The numerator part is the same: how many documents or snippets are retrieved

as relevant. The denominator part is different: precision cares about the percent-

age of relevance within retrieved while recall cares about the percentage within all

that should have retrieved (more like coverage).

When used in QA, the corresponding terms would be roughly that relevant

means correctly answered and retrieved means attempted to answer.

Fβ is defined as:

Fβ =
(1 + β2) · precision · recall
β2 · precision+ recall

Usually we take β = 1 to value precision and beta equally, then:

F1 =
2 · precision · recall
precision+ recall

β decides how much we weigh recall with respect to precision. If β = 0.5, then

recall is weighted half as important as precision; if β = 2, then recall is weighted

twice as important.

In most QA tasks, it is general the case that every question has an answer,

especially when using the web as a corpus, or in the case of Jeopardy! quiz show.

Thus sometimes the term accuracy is used. In this situation all questions are

relevant:

| {relevant} |=| {all} |

and accuracy is actually recall:

Accuracy = Recall =
| {relevant} ∩ {retrieved} |}

| {relevant} |
=
| {relevant} ∩ {retrieved} |}

| {all} |

Furthermore, some QA systems answer every question, then in this case the

39

2. 50 Years of Question Answering

“retrieved” questions are actually all questions:

| {retrieved} |=| {relevant} |=| {all} |

and the four terms are equal to each other:

Accuracy = F1 = Precision = Recall =
| {relevant} ∩ {retrieved} |}

| {all} |

Based on the above two special cases where each question has an answer, also

assume that there are two QA systems:

1. S1 answers all questions, so Accracy = F1 = Precision = Recall for S1.

2. S2 answers some questions but not all of them, so Accracy = Recall for S2.

It is often tricky to compare these two systems, depending on how bad it is to

answer a question wrong: S1 tries to answer all of them since there is an answer

for every question; S2 tries not to answer a question if it does not have enough

confidence, or could not find an answer. S1 often chooses to report accuracy; S2

often chooses to report F1. Some people value accuracy more since it pushes a

QA system to its limit and forces it to answer every question; if it chooses not to,

then the final result in terms of accuracy will suffer. Other people value F1 more

since it is less bad to say “I don’t know” than giving a wrong answer to the user.

2.2.3.2. MAP, MRR for IR

Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) are standard

measures for IR. Given a query, suppose there are n retrieved documents with

rank, then the average precision (AveP) is defined as:

AveP =

∑n
k=1 P (k)× rel(k)
| {relevant} |

40

2. 50 Years of Question Answering

where k is the rank of each document and rel(k) is a binary indicator ∈ {0, 1}

about whether document k is relevant or not. P (k) is the precision up to document

k. The existence of rel(k) decides whether we will count P (k) into AveP if k is

relevant, otherwise not.

Given two rankings, both of which find 5 relevant documents from their 10

retrieved results. Then the ranking that puts the five relevant ones front in its list

gets better AveP.

AveP is defined over a single query, if there are Q queries, then MAP is defined

as:

MAP =

∑Q
q=1AveP (q)

Q

MAP is defined on the entire retrieved list of Q queries. It is an average over

ranks. Mean Reciprocal Rank (MRR) on the other hand only cares about the

rank of the first relevant document:

MRR =
1

Q

Q∑
q=1

1

rankq

where rankq is the rank of the first relevant document for query q.

In terms of TREC evaluation, the organizers provide a tool to compute MAP

and MRR, commonly referred as trec_eval.1

2.2.3.3. Precision-Recall Curve for IR/QA: Drawn Very Differently

One difference between IR and QA is that, for each query, the returned list of IR

can compute a real precision and recall value (precision, recall) ∈ ([0, 1], [0, 1]) at

each rank, while a QA system can only answer it right or wrong (I will talk about

partial credit later), thus a binary indicator ∈ {0, 1}.

Also, for each query in IR, there is usually not an exhaustive list of all relevant

1http://trec.nist.gov/trec_eval/

41

http://trec.nist.gov/trec_eval/

2. 50 Years of Question Answering

documents. Assume for a query q an IR model returns with n ordered results with

rank k = 1..n, m of which are relevant, then we assume the number of relevant

documents for q is m. At each rank k, we can compute the precision and recall

value p(k) and r(k). Then for result at rank k + 1:

• if the result is relevant, then both p(k + 1) and r(k + 1) increase.

• if the result is irrelevant, then p(k+1) decreases and r(k+1) stays the same.

After computing the p(·) and r(·) values for all rank point k, we can plot the

precision-recall curve with recall the x axis and precision the y axis. But this

curve is only for one query, the curve might have a saw-tooth shape. Early TREC

evaluations interpolate these points with 11-point interpolated precision with re-

call values ∈ {0.0, 0.1, ..., 1.0} (assume precision is 1.0 at recall 0.0). For a total

of Q queries, we average all precisions at each recall point and draw 11-point

interpolated average precision. This is the precision-recall curve for IR.

QA systems usually do not have a precision-recall curve for each query since the

evaluation is binary. But we can draw a precision-recall curve based on system

confidence.

A QA system normally outputs a confidence about its answer. A confidence is

meaningful if its value is proportional to the chance that the answer is correct.

Suppose the confidence score is in the range of [min,max]. Then we run a threshold

from max down to min, and compute the precision and recall values for all answers

answered with a confidence above this threshold. This is the precision-recall curve

for QA. We can also draw the corresponding F1-threshold curve to find out the

threshold value that yields the best F1.

2.2.3.4. Micro F1 vs. Macro F1 vs. Averaged F1 for QA

For questions with a list of multiple answers, a system might not answer every item

in the list perfectly. In this case we can compute a score with a partial credit. For

42

2. 50 Years of Question Answering

each question, we can compute precision and recall by treating the gold standard

answers as the relevant set and the predicted answers at the retrieved set. Then

we take an average of precision and recall over all questions. Finally we compute

macro F1 by taking the harmonic mean of the average precision and recall. Macro

F1 treats each question equally by taking the harmonic mean of precision and

recall values on each questions.

Instead of harmonic mean, we can also compute average F1: first compute F1

for each question, then average them.

Another form of averaging over all instances ismicro F1, which takes each predic-

tion equally instead of each instance (each instance contains multiple predictions).

For example, in alignment each instance is a sentence and each prediction is an

alignment; in QA each instance is a question and each prediction is an answer.

The way to compute micro F1 is to keep global counters on each prediction and

compute precision and recall only once after going through each prediction in each

instance. The following is a mini example of prediction on two instances:

instance gold standard prediction macro micro

1 a a p = 1, r = 1, F1 = 1 ret = 1, rel = 1, correct = 1

2 a,b,c b,d p = 1/2, r = 1/3, F1 = 2/5 ret = 2, rel = 3, correct = 1

avg./sum p = 3/4, r = 2/3, F1 = 7/10 ret = 3, rel = 4, correct = 2

Then the final macro F1 is:

macro F1 =
2pr

p+ r
=

2× 3/4× 2/3
3/4 + 2/3

=
12

17
≈ 70.1%

The final average F1 is:

average F1 =
7

10
= 70%

43

2. 50 Years of Question Answering

The final micro F1 is:

p =
correct

retrieved
=

2

3

r =
correct

relevant
=

1

2

micro F1 =
2pr

p+ r
=

2× 2/3× 1/2
2/3 + 1/2

=
4

7
≈ 57.1%

Here the system had prediction on instance 1 entirely correct. Macro F1 weighs

each instance evenly, thus the macro F1 is larger than micro F1.

In QA, it makes sense to compute macro F1 since each question should be

weighed equally. In alignment, macro F1 gives per-sentence performance while

micro F1 gives per-token performance. But it is traditionally computed as macro

F1 (MacCartney et al., 2008).

2.2.3.5. Permutation Test

Parametric significance test assumes prior conditions on the data and should only

be used with caution. Paired randomization (or permutation) test, as a version of

nonparametric test, has been empirically recommended by Smucker et al. (2007)

for IR evaluation. I also found it very easy to understand and implement. It is

nonparametric and gives exact answers without parametric assumptions.

Paired permutation test can be applied in deciding which system is “better”

in a binary classification problem. The null hypothesis goes as follows. Given

two systems A and B and their separate predictions on k instances, if there is no

statistical significance between A and B, then it should make no difference if we

randomly swapped the prediction of A and B on any instance. The pseudo code

goes like this:2

2From Dan Ventura’s page (Thanks to Jason Eisner for pointing me to this): http://axon.

44

http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php

2. 50 Years of Question Answering

1. Obtain k pairs of output from A and B: {(a1, b1), (a2, b2), . . . (ak, bk)}; note

that ak and bk have to be the output on the same instance

• for instance, a and b here can be precision or partial F1 on a question

(in QA), a query (in IR), or a sentence (in alignment).

2. Compute the absolute difference: µdiff =|
∑k

i=1(ai − bi) |

3. Let n = 0

4. For each possible permutation of swapping ai and bi (perhaps most easily

computed by permuting the signs of the k differences):

a) Compute the new absolute difference: µnew =|
∑k

i=1(ai − bi) |

b) If µnew ≥ µdiff : n+ = 1

5. Report p = n/2k as the “p-value”

In practice, k can be too large and we do not have time to run all 2k permutations.

Often we just run, say, 100 thousand or 1 million times.

Note that the p value from the paired permutation test can only suggest whether

to reject the null hypothesis: there is no statistically significant difference between

A and B. But it does not tell which one is “better” if significant. The obvious thing

to do here is to look at the final averaged measure on all instances and determine

which one is better.

The first author of Smucker et al. (2007) also provides a Perl script3 to com-

pute statistical significance for any measure (MAP, MRR, etc) from the output of

trec_eval utility. Figure 2.2 gives the 10-line Python script I used for the test.

cs.byu.edu/Dan/478/assignments/permutation_test.php
3http://www.mansci.uwaterloo.ca/~msmucker/software/paired-randomization-test-v2.
pl

45

http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php
http://www.mansci.uwaterloo.ca/~msmucker/software/paired-randomization-test-v2.pl
http://www.mansci.uwaterloo.ca/~msmucker/software/paired-randomization-test-v2.pl

2. 50 Years of Question Answering

1 def perm_test(a_f1, b_f1, k = 100000):
2 import random
3 diff = [a−b for a,b in zip(a_f1, b_f1)]
4 mu_diff = abs(sum(diff))
5 n = 0
6 for i in range(k):
7 new_diff = [d if random.random()>0.5 else −d for d in diff]
8 mu_new_diff = abs(sum(new_diff))
9 if mu_new_diff >= mu_diff: n += 1
10 print "p = %f (n = %d)" % (n∗1.0/k, n)

Figure 2.2.: Python script for permutation test. Input is assumed to be two lists
of equal size.

2.3. Significant Approaches

In this section we introduce significant approaches in question answering, most of

which were spawned from TREC QA. These approaches are divided into:

• IR QA (§ 2.3.1): a retrieve-and-rerank strategy;

• NLP QA (§ 2.3.2): answer extraction;

• IR4QA (§ 2.3.3): IR for the purpose of QA;

• KB QA (§ 2.3.4): database queries and semantic parsing;

• Hybrid QA (§ 2.3.5): a mixture of above technologies, represented by IBM

Watson (§ 2.3.5.1).

2.3.1. IR QA: Document and Passage Retrieval

Document retrieval is the task of retrieving a ranked list of relevant documents in

response to a query. It is usually the fist step towards finding an answer. Besides

web search engines, four systems have been commonly used in TREC QA: Smart,

Prise, Indri and Lucene.

The Smart (System for the Mechanical Analysis and Retrieval of Text) infor-

mation retrieval system (Salton, 1971, Buckley, 1985, Salton and Buckley, 1988)

46

2. 50 Years of Question Answering

was developed by Gerard Salton at Cornell University from the 1960s to 1990s. It

utilizes the vector space model with tf-idf term weighting to provide relevance

ranking of documents to the query. Light preprocessing of corpus is applied,

including stopword filtering, suffix stemming, proper noun detection, statistical

phrases grouping using high frequency adjacent word pairs, etc. Prise was NIST’s

in-house system (Harman and Candela, 1990) that utilized tf-idf weighting, with

a focus of high speed indexing and searching of gigabytes of data.

Indri and Lucene are two recent open-source and widely used rivals. Indri

(Strohman et al., 2005) was developed at University of Massachusetts Amherst,

after its predecessor Inquery (Callan et al., 1992). Indri combines the techniques

of probabilistic language models (Ponte and Croft, 1998) and inference network

(Turtle and Croft, 1989). It supports a complex query language and structured

retrieval with the ability to search through terabytes of data. Lucene is devel-

oped by Doug Cutting and supported by the Apache Software Foundation for

web-scale and single-site search. It employs the boolean model and vector space

model for scoring documents. Turtle et al. (2012) compared the performance of

Indri and Lucene with TREC 6-8 queries searching TREC disks 4 and 5 and con-

cluded that “using precision at rank 20, Lucene rankings are roughly 30% worse for

short queries and roughly 10% worse for long queries”. This result is not surpris-

ing given that the two techniques Indri is based on, language models (Ponte and

Croft, 1998) and inference network (Turtle and Croft, 1989), all claimed to per-

form significantly better than conventional tf-idf weighting or boolean models,

which are how Lucene scores documents. For a review of more recent information

retrieval methods, check out Baeza-Yates et al. (1999), Singhal (2001), Manning

et al. (2008), Croft et al. (2010).

Passage retrieval further extracts the location of relevant snippets from the

result of document retrieval. However, the line between documents and passages

can be blurred by dividing a whole document into multiple pseudo documents: in

47

2. 50 Years of Question Answering

this case each paragraph, or a fixed number of sentences, or a fixed-length window

defines a pseudo document. Tellex et al. (2003) compared various algorithms

used for passage retrieval. The finding was that density-based scoring in general

performed well (note that this was prior to Indri). Some of the algorithms used in

comparison can be applied to both passage and document retrieval. Furthermore,

both Tellex et al. (2003) and Clarke and Terra (2003) had consistent findings that

passage retrieval algorithms interacted heavily with the more front-end document

retrieval.

The difference between document and passage retrieval becomes much more

distinctive when viewing in terms of scale: a document retriever is usually designed

to search through millions or billions of documents, while a passage retriever can

only choose to process a few hundred documents; thus a document retriever usually

needs to build the inverted index, while a passage retriever can choose not to.

Document retrieval provides coarse pruning of relevant documents. Then passage

retrieval can afford more fine-grained search with more sophisticated methods.

In later publications, researchers focused on refined passage retrieval algorithms.

The firs step, document retrieval, was usually taken care of by standard search

tools, such as Indri, Lucene, or commercial web search engines. When experi-

menting on the TREC corpus, researchers also had the choice of using a standard

list of answer-bearing documents provided by NIST to save the burden of employ-

ing a search engine. Lin and Katz (2006) provided a list of exhaustive judgment

of relevant documents for 109 TREC questions, which can serve as an oracle for

document retrieval.

We next review more heavy-weighted but precise answer extraction methods for

question answering.

48

2. 50 Years of Question Answering

2.3.2. NLP QA: Answer Extraction

2.3.2.1. Terminology for Question Analysis

We start with some question terminologies used in the rest of this dissertation,

defined by Prager (2006). Most of the terms are very intuitive. Thus we omit the

exact definition but use an example for illustration. Given the question:

What is the height of Mt. Everest?

The corresponding “part of question” properties are:

• question phrase/word: what

• question focus: height

• question topic: Mt. Everest

• question type∗: factoid (among list, definition, yes-no, opinion, cause&effect,

etc)

• question category/type∗: numeric, numerical value, etc (depending on the

question category hierarchy/topology).

• (expected) answer type∗: number (depending on the ner output)

∗: the last three terms do not have standard usage conformity. In a lot of literature

(including this dissertation) question type actually means question category. In

some literature question category refers to expected answer types. Readers should

differentiate them by the context.

The differentiation between the question focus word and the question topic

word can be tricky. For instance, when asking for the height of Mt. Everest,

how should a computer determine the focus (height) and the topic (Mt. Everest)?

Usually it involves with finding the head word. A handful of rules based on the

constituent parse trees should give good enough precision and coverage, given that

most questions are not too complicated. I found Silva et al. (2011) a good source

49

2. 50 Years of Question Answering

for this. Note that hand-written rules are highly dependent on the parser output,

thus be careful while following the rules: your parser output might be different!

In practice I found that different versions of a parser could also give different

output. Thus one should practice extreme caution when practicing handwritten

rules. Furthermore, if using a statistically trained parser for question analysis, it

is better to use a grammar trained with the QuestionBank (Judge et al., 2006),

which contains about 4 thousand parse-annotated questions.

2.3.2.2. Template Matching

Template based approaches use question templates to recognize the question types

and answer templates to extract answers. Rankings of answers are usually summed

weighting among various extraction methods, combining confidence scores from

the templates, search engine, named entity types etc. Table 2.4 shows some ex-

amples from early TREC QA research papers.

Templates can be manually authored (Kupiec, 1993, Hovy et al., 2000, Soub-

botin, 2001, Soubbotin and Soubbotin, 2002, Xu et al., 2003, Jijkoun et al., 2004,

Peng et al., 2005, Schlaefer et al., 2006) or automatically learned (Ravichandran

and Hovy, 2002, Fleischman et al., 2003, Ravichandran et al., 2003, Wu et al.,

2005). They can be constructed from surface text, pos tags, named entity labels

and syntactic paths. They were often written in the form of regular expressions

to increase generality. Some of the patterns were of fairly high precision. Most of

these templates were unfortunately not shared publicly.

As an effective early TREC QA approach, template matching was widely used.

Lin (2002) made the observation that the types of TREC questions followed the

Zipf’s Law (Zipf, 1935). Thus a handful of templates can capture a good portion of

question and answer patterns. Even though, these templates were highly optimized

over both the TREC-style questions, and the specific NLP pipeline used in each

participant’s system. This was a technique difficult to be transferred to another

50

2. 50 Years of Question Answering

question question template
Who was Johnny Mathis’ high school track coach?

who be <entity>’s <role>
Who was Lincoln’s Secretary of State?

Who was President of Turkmenistan in 1994?
who be <role> of <entity>Who is the composer of Eugene Onegin?

Who is the CEO of General Electric?

answer snippet answer template
Lou Vasquez, track coach of...and Johnny Mathis <person>, <role> of <entity>
...Turkmenistan’s President Saparmurad Niyazov. <entity>’s <role> <person>

...in Tchaikovsky’s Eugene Onegin... <person>’s <entity>
Mr. Jack Welch, GE chairman... <role-title> <person> ... <entity> <role>

...Chairman John Welch said ...GE’s <subject>|<psv object> of related role-verb

(a) Selected question and answer templates used in Hovy et al. (2000)

BIRTHYEAR
1.0 <NAME> (<ANSWER> -)
0.85 <NAME> was born on <ANSWER> ,
0.6 <NAME> was born in <ANSWER>
0.59 <NAME> was born <ANSWER>
0.53 <ANSWER> <NAME> was born
0.5 - <NAME> (<ANSWER>

DISCOVERER
1.0 when <ANSWER> discovered <NAME>
1.0 <ANSWER> ’ s discovery of <NAME>
1.0 <ANSWER> , the discoverer of <NAME>
1.0 <ANSWER> discovers <NAME> .
0.95 <NAME> was discovered by <ANSWER>
0.91 of <ANSWER> ’ s <NAME>

(b) Selected answer templates and their precision used in Ravichandran and Hovy (2002)

Table 2.4.: Question and answer templates examples in early TREC QA.

system, another domain or another language.

2.3.2.3. Answer Typing and Question Classification

Answer typing and question classification are twins from two opposite aspects of

the QA problem. Their names communicate their focus: answer typing seeks for

answer phrases whose types conform with the question’s intention; question clas-

sification purely concentrates on classifying questions into meaningful categories,

without sometimes even looking at the answers.

Answer typing tightens the correspondence between the question and the answer

51

2. 50 Years of Question Answering

types, an obvious idea commonly used starting from the first TREC QA track

(Voorhees, 1999). The answer types are commonly called either Expected Answer

Types (EATs) or Lexical Answer Types (LATs). The most common answer types

are named entity labels, and sometimes pos tags (Abney et al., 2000, Ittycheriah

et al., 2001a,b, Kwok et al., 2001, Mann, 2001, Xu et al., 2002, Prager et al., 2006,

Schlobach et al., 2007). Works later derived answer types from an ontology, such

as WordNet (Pasca and Harabagiu, 2001, Prager et al., 2001, Schlobach et al.,

2007).

Question classification developed into an individual subtask as the release of a

dataset from Li and Roth (2002), which categorized TREC questions into 6 coarse

and 50 fine classes. Various machine learning and feature engineering methods

were proposed aiming at high prediction accuracies, including the Winnow algo-

rithm (Li and Roth, 2002, 2006), Support Vector Machine (Metzler and Croft,

2005, Huang et al., 2008, Pan et al., 2008, Silva et al., 2011), log-linear models

(Blunsom et al., 2006), and Conditional Random Field (Li et al., 2008). Loni

(2011) provided an excellent survey on this topic. A “byproduct” of question clas-

sification is a detailed analysis of question structures, especially in finding question

topic and focus in terms of syntactic headwords. Silva et al. (2011) analyzed this

in detail with linguistic rules and headword extraction algorithms. Due to the

share of this public dataset, the problem of question classification was well stud-

ied. However, the mapping between question categories and expected answer types

was little presented.

There are two major problems with pre-defined question categories and answer

types. First, the mapping between expected answer types and real answer types

is hard to determine, or even not straightforward. For instance, to answer where

questions, the expected answer types should be a location. But oftentimes an ner

tagger could mistaken location names with person names, as a lot of places are

named after person names (e.g., JFK can either mean a person or an airport).

52

2. 50 Years of Question Answering

Pinchak and Lin (2006) gave another example: for the question what are tourist

attractions in Reims?, the expected answer types can be a lot of things, such as

a park and a statue. The second problem is granularity: most ner taggers gave

from 3 different labels (location, person, organization) up to dozens. For

instance, BBN’s proprietary ner tagger IdentiFinder (Bikel et al., 1999) recognizes

31 different named entities. Table 2.5 summaries various proposals of question and

answer type taxonomies. All of these papers showed success. But none of them

dealt with the granularity problem.

To alleviate the first problem (mapping), Mann (2001) mapped between ex-

pected answer types with named entity types using mutual information; Yao et al.

(2013c) learned the mapping automatically from data. To attack the second prob-

lem (granularity), Pinchak and Lin (2006) dropped pre-determined answer types,

proposed a probabilistic models for word-based answer type clusters and question

context, and later refined the model with discriminative reranking (Pinchak et al.,

2009a). Both approaches require large corpora to estimate statistics, which is not

a problem given today’s computing resource.

Do we use pre-defined answer classes or not? My personal opinion on this

question can be summarized as:

• When solving very open-domain QA problems (such as the questions queried

on Google everyday), do not pre-define answer types.

• When focusing on a relative small domain (such as TREC QA), a carefully

handcrafted and fine-grained answer type hierarchy could give very good

performance. That is one of the reasons why LCC excelled in several years

of TREC QA evaluation.

• Always use statistics to estimate the mapping between expected answer types

and real answer types. Do not ever write manual rules, unless you know your

ner tagger well enough and do not care about portability.

53

2. 50 Years of Question Answering

work question/answer types domain
Harabagiu et al. (2000) 27 named entity labels with many-to-many

mapping to answer types of 15 top nodes
TREC

Hovy et al. (2000, 2002) topology of 94 nodes (47 leaf nodes) analyzing
17, 384 questions

answers.com

Hermjakob (2001) 122 question targets from above questions answers.com
Pasca and Harabagiu (2001) taxonomy connecting 153 WordNet

sub-hierarchies
TREC

Li and Roth (2002) 6 coarse classes and 50 fine classes TREC
Prager et al. (2006) flat hierarchy with 80 semantic classes TREC

Table 2.5.: Question categories or expected answer type taxonomies.

2.3.2.4. Web Redundancy

Around 2001, TREC QA started to permit usage of external resources for answer

extraction, as long as the proposed answers can be found from the official TREC

corpus. Participants started to explore web redundancy for answers. One com-

monly used example was who shot Abraham Lincoln?. The claim was that this

kind of information was so abundant that it provided a good clue about the final

answer. Clarke et al. (2001a,b) and Magnini et al. (2002) explored web redun-

dancy for answer validation. The AskMSR system (Brill et al., 2001) on the other

hand directly experimented with this idea in their TREC participation. Answer

candidates extracted from the web were projected back to the TREC corpus for

finding supporting documents. Other early systems using the web as the source

include Mulder (Kwok et al., 2001), Nsir (Radev et al., 2005) and Aranea (Lin,

2007).

The large volume of the web has incomparable advantage over other closed

corpus (Dumais et al., 2002). Using the web as the answer source has become the

norm for open-domain question answering systems. The constantly changing web

provides up-to-date information about time-sensitive queries. The information it

54

2. 50 Years of Question Answering

contains is also expanding every second. However, careful attention has to be

paid to using the web as the answer source, which contains a lot of noise and

unauthentic information. For instance, a search of “king in the united states”

gives various information about Martin Luther King and Burger King. Lin (2002,

2007) discussed various issues in this matter.

2.3.2.5. Tree/Graph Matching

Tree and graph matching methods take a deeper step towards linguistic analysis

of QA pairs. The structures of the pair are usually presented as dependency trees

or semantic role graphs. Then answer ranking or extraction becomes the task of

matching two structures. Several significant methods are introduced below.

Lin and Pantel (2001) computed inference (or paraphrase) rules in the forms of

dependency parse paths, such as X is author of Y ↔ X writes Y. The similarity of

paths is computed through computing the mutual information of their co-shared

arguments X and Y. There was no keyword based document or passage retrieval.

A whole 1GB of news text was parsed and stored in a triple database. For a

given question, the most similar dependency paths were retrieved and their cor-

responding arguments were treated as candidate answers. Lin and Pantel (2001)

converted question answering into a dependency path matching problem, with

paraphrase paths measured by monolingual distributional similarity. The scale of

text files was comparable to the official TREC corpora. Evaluation results were

mixed: inference rules headed by verbs were in general better than those headed

by nouns. But question answering cannot be satisfyingly accomplished with only

inference rules.

The method of Lin and Pantel (2001) was essentially strict matching relation

paths: recall cannot be great in their case. Various methods have been proposed

to do fuzzy matching. Cui et al. (2005) applied alignment between dependency

parses in passage ranking. For the dependency parse of a given question, all

55

2. 50 Years of Question Answering

possible alignments to dependency parses in each retrieved passage were summed

over to compute a score for the best possible passage that answers the question.

The IBM translation model 1 (Brown et al., 1993) implementation in GIZA++

(Och and Ney, 2003) was used to estimate the parameters. Evaluation showed that

the fuzzy matching method outperformed density-based passage retrieval methods,

some of which were examined in Tellex et al. (2003).

Shen and Klakow (2006) computed the correlation between dependency paths

with Dynamic Time Warping (Rabiner et al., 1978). Wang et al. (2007) hypothe-

sized that both the question and the answer sentence were generated by a Quasi-

Synchronous Grammar (Smith and Eisner, 2006). Other works include aligning

two parse trees with Tree Edit Distance models and kernel methods (Heilman and

Smith, 2010, Wang and Manning, 2010, Yao et al., 2013d, Severyn and Moschitti,

2013). Finally, Kaisser (2012) connected two dependency parses of the question

and the sentence with their common phrases and drew answer patterns based on

the path from the question word to the answer.

All the previous work was based on syntactic parse trees. A syntax tree does

not bear too much information regarding named entity types, paraphrases and

semantic roles. These extra annotation was mostly attached to the tree by a

separate process, or used as features in a machine learning framework. Researchers

noticed that semantic role labeling might provide a more unified solution. For

instance, the previous paraphrase X is author of Y↔ X writes Y would both trigger

the Text_creation frame in FrameNet. So there is no need to either use WordNet to

recognize the paraphrase in the relations, or monolingual distributional similarity

for statistical correlation evidence. Works applying either FrameNet or PropBank

style semantic role labeling include that of (Narayanan and Harabagiu, 2004, Sun

et al., 2005, Shen and Lapata, 2007). Experimental results varied on the findings.

But a general concern with using semantic roles is that the coverage provided by

existing tools is very limited, thus recall was not great (more explained in § 2.4.1

56

2. 50 Years of Question Answering

on page 80).

2.3.3. IR4QA: Structured Retrieval

Information retrieval and question answering have very different objectives: infor-

mation retrieval seeks the best correlated snippets to what is known in a given

query while question answering seeks the best correlated snippets to what is un-

known in a query. For instance, for the question what country is Berlin in, a density

based search would retrieve snippets mostly surrounding the words country and

Berlin. However, what an information retrieval front end should really look for

is a place that is a country instead of the word country itself. Moreover, the

preposition in here takes an important role in indicating the relationship between

Berlin and country. However, a lot of density based search would simply rate down

stopwords. Information retrieval, serving the purpose of finding the most relevant

snippets to country and Berlin, simply cannot satisfy the information need of the

answer extraction back end. Thus there has been a call for information retrieval

specifically designed for question answering, i.e., information retrieval for question

answering, or IR4QA.

The idea of retrieving the answer by its expected answer type was firstly pro-

posed as predicted annotation by Prager et al. (2000) and later described in

more detail in Prager et al. (2006). Expected answer types of questions are man-

ually mapped to about 80 named entity types. Documents are annotated and

indexed in a predicted manner with words recognized with these entity types.

Then they can be retrieved with the preference of containing words that match

the expected answer type when a new question comes in. Harabagiu et al. (2001)

had a similar idea without describing details. Predicted annotation was shown

most effective for questions that seek definition, person or place names. It also

has a few limitations. First, it is labor intensive. New answer types need to

57

2. 50 Years of Question Answering

be manually defined for each new question type observed. Also, it cannot easily

scale up to multiple different annotations as adding more types of annotations

quickly become unmanageable. Yao et al. (2013c) attacked these limitations by

automatically learning useful annotations from the answer extraction back end,

which directly guided what to search from the retrieval front end. Indexing on

multiple layers of annotation (pos and ner used in their work) on the same token

was made possible with Indri.

We call the line of work from predicted annotation flat structured retrieval:

texts are analyzed with relatively flat annotations (pos, ner, chunking). This

technique serves the purpose of retrieving words of expected answer types. Re-

lations in the question (such as in(Berlin, country)) are approximated by favoring

a dense neighborhood of words. Another thread of work, mostly represented by

Bilotti et al. (2007), addressed the structured matching problem by going deeper

to predicate-argument relations. This technique was published in paper as struc-

tured retrieval. But we call it deep structured retrieval in contrast. Specifically,

Bilotti et al. (2007) proposed indexing text with their semantic roles and named

entities. Queries then include constraints of semantic roles and named entities

for the predicate and its arguments in the question. Improvements in recall of

answer-bearing sentences were shown over the flat structured retrieval baseline

(called bag-of-words baseline in the paper, which also queried named entities be-

yond words). Zhao and Callan (2008) later extended this work with approximate

matching and smoothing.

Next we discuss these retrieval techniques in several different aspects.

unstructured vs. flat structured vs. deep structured. We reuse the

example from Bilotti et al. (2007) to illustrate how these retrieval methods differ.

The query is written in the Indri query language:

58

2. 50 Years of Question Answering

Question: What year did Wilt Chamberlain score 100 points?

unstructured (possibly with the question word removed):

#combine(what year wilt chamberlain score 100 point)

flat structured:

#combine(#any:date wilt chamberlain score 100 point)

deep structured (simplified version):

#combine[target](score #combine[./argm-tmp](#any:date) #com-

bine[./arg0] (#combine[person](chamberlain)) #combine[./arg1](100 point))

An annotated and indexed example snippet:

<arg0><person>Wilt Chamberlain</person></arg0> <tar-

get>set</target> <arg1>the single-game scoring record</arg1> ...

by <target>scoring</target> <arg1>100 points</arg1> ... on <argm-

tmp><date>March 2, 1962</date></argm-tmp>.
The #combine operator is the default unweighted operator for combining mul-

tiple queries used in Indri. Both the flat and deep structured queries require

the date annotation in the retrieved snippets. The deep structured query is more

specific on the parent-child relation between the predicate score and its arguments.

Both flat and deep structured queries require building extra inverted indices

for corresponding annotations, with deep structured retrieval building many more

indices due to the massive annotation of predicate-argument structures. In the

example given above, both flat and deep structured queries would successfully

retrieve the annotated example snippet. How do they compare with each other?

Table 4 in Bilotti et al. (2010b) showed that there is no significant difference

between retrieving with only named entities or only semantic roles. But combining

59

2. 50 Years of Question Answering

both of them would yield a significant improvement over a single one. Table 4.10 in

Ogilvie (2010) even showed that the flat structured retrieval with named entities

outperformed deep structured retrieval with semantic roles. He explained that

this different observation can “be attributed to the differences in queries, the more

thorough tuning provided by the grid search, or the inclusion of the length prior”.

structured retrieval vs. structured reranking. Structured retrieval re-

trieve passages with structured constraints directly from an annotated corpus;

structured reranking instead relies first on traditional bag-of-words approaches

for document retrieval, then refines the ranking of passages by approximately

matching their syntactic or semantic structures. From the aspect of computing,

structured retrieval has a much bigger static indexing overhead during corpus pre-

processing while structured reranking has a bigger dynamic parsing overhead after

documents are retrieved. Structured matching is done at query time for structured

retrieval and after query time for structure reranking.

The document retrieval part is the bottleneck for structured reranking methods:

reranking would not work if the retrieved documents do not contain answers. Yao

et al. (2013c) showed an example that for the question when was Alaska purchased,

none of the top 1000 retrieved snippets based on a plain bag-of-words approach

contained the correct answer, simply because the bag-of-words approach would

not retrieve any date information. In this case the structured reranking method

will never find the answer-bearing sentence.

How do structured retrieval and structured reranking compare in performance?

Bilotti et al. (2010b) made a comparison. The experiments showed that the struc-

tured reranking methods by Cui et al. (2004) and Moschitti et al. (2007) were

statistically indistinguishable from the flat structured retrieval baseline using In-

dri. Bilotti et al. (2010b) actually also reranked the structurally retrieved passages

with multiple features based on (long distance) syntactic and semantic constraints,

a typical learning to rank task for reordering of search engine results. In their

60

2. 50 Years of Question Answering

work it is vaguely that:

learning to rank = structured retrieval + structured reranking.

So far we have reviewed some of the QA techniques using information retrieval

and natural language processing, both of which seek answers from unstructured

text. Next we review approaches seeking answers from encoded databases.

2.3.4. KB QA: Database Queries

In this section we first review rule-based procedures in early years. Then we move

on to modern statistical semantic parsing techniques.

2.3.4.1. Early Years: Baseball, Lunar and 15+ More

Early (prior to TREC or Internet) QA systems were constrained by its source of

knowledge and computing power: there was no large amount of electronic data to

extract answers from; or even if there was, there was not enough computing power

and storage. For instance, the fist personal computer, IBM 5100, had up to 64KB

RAM and 64KB ROM. An early 3.5 inch “high density” floppy disk holds 1.44MB,

while the complete works of Shakespeare take 5MB.4 Thus early QA systems all

worked in a small domain with internally hand-crafted knowledge base.

Baseball (Green et al., 1961) was a pioneer of “many future computer-centered

systems [that] will require men to communicate with computers in natural lan-

guage”. It read simple questions about baseball games from punched cards and

printed lookup answers from its internal dictionary representation of knowledge.

It was invented in the 1960s and thus limited linguistic processing was expected.

Baseball avoided complex questions by prohibiting questions with multiple de-

pendent clauses, or logical connectives (e.g., and, or, not). Still it was able to

answer quite some questions with constraints. To give an example of how it

4To have an idea of how NLP was done in the 1970s, check out Ken Church’s Master thesis at
MIT: On memory limitations in natural language processing (Church, 1980).

61

2. 50 Years of Question Answering

worked. For the question:

Where did the Red Sox play on July 7?

The following shallow syntactic structure was obtained (very much like the

modern chunking task):

[Where] did [the Red Sox] play (on [July 7])?

Noun phrases are bracketed in [] and preposition phrases in (). A meaning

lookup table converts the actual words into “attribute = value” pairs. The above

question can be converted into:

Place = ?

Team = Red Sox

Month = July

Day = 7
Then the missing answer is searched from its internal KB and printed.

Baseball discussed the problem of domain adaptation: “considerable pains

were taken to keep the program general”. Most of the issues came from the in-

ternal domain-specific knowledge representations. Very similarly, 40 years later,

the semantic parsing approaches (next section) to question answering also started

from very small domains, such as geo location and football. Later on researchers

realized that these toy domains were a good start to craft a semantic parser but

hardly useful in everyday life. Thus the community very quickly switched to

open-domain question answering, utilizing general purpose knowledge bases such

as Freebase and DBpedia.

A later system called Lunar (Woods, 1977) aimed to enable a lunar geologist

to query the chemical analysis data on lunar rock and soil composition as a result

of Apollo moon missions. Questions such as What is the average concentration of

aluminum in high-alkali rocks? were first parsed with a general purpose grammar

(Augmented Transition Network, not previously published), then the parse was

mapped with rules to a Meaning Representation Language (Woods, 1978), finally

62

2. 50 Years of Question Answering

database queries were fired to retrieve the answer. Lunar had a database with

13, 000 entries. Evaluation showed that 78% of test questions were answered cor-

rectly. The meaning representation language of Lunar dealt with quantification

(e.g., it had operators for the words every and average in counting) and semantic

scope, which looked a lot like the first-order logic commonly used nowadays.

Overall, the Lunar technology from 1977 bears a resemblance to today’s seman-

tic parsing approaches to question answering, except for that: 1. the former used

mostly in-house solutions such as parsing with ATN and semantic interpretation

with MRL, while the latter used more “popular” and “standard” technologies, such

as parsing with CCG/dependence and meaning representation in lambda calculus;

2. the former used majorly rules to learn the mapping between parse and mean-

ing, while the latter used machine learning (i.e., rule-based vs. statistical). The

journal article (Woods, 1978) about Lunar’s internal semantic representation was

very well-thought and well-written. It discussed some long-standing issues in com-

putational linguistics, including: quantification scope; negation, modification and

relative clauses in question interpretation; anaphora resolution; syntactic parsing

vs. semantic interpretation; top-down vs. bottom-up parsing; role of pragmat-

ics. It also briefly described another application about flight schedules, answering

questions such as What flights go from Boston to Washington?, exactly the task

later Zettlemoyer and Collins (2009) tried to solve.

Other database-powered QA systems include Ladder (Language Access to Dis-

tributed Data with Error Recovery) (Hendrix et al., 1978), Planes (Programmed

LANguage-based Enquiry System) (Waltz, 1978), the Berkeley Unix Consultant

(Wilensky et al., 1988), Janus (Weischedel, 1989, Bobrow et al., 1990). For more

information about QA systems in the 1960s, Simmons (1965) served as an excel-

lent source by surveying 15 early QA systems. These systems were classified as

“list-structured data-based, graphic data-based, text-based and inferential”. The

challenges remained throughout 50 years of question answering: “measuring mean-

63

2. 50 Years of Question Answering

ing, dealing with ambiguities, translating into formal languages and searching large

tree structures”.

2.3.4.2. Statistical Semantic Parsing

Semantic parsing can be naively understood as “parsing into a semantic form”.

Usually a grammar is adopted in parsing a natural language query and the result-

ing parse trees are mapped into logic forms. Finally the logic form is converted

into database queries to retrieve the answer. Modern statistical semantic parsing

approaches are mostly represented by works of Raymond Mooney (various meth-

ods), Luke Zettlemoyer (CCG parsing), and Percy Liang (dependency parsing).

One of the earliest approaches is that of Zelle and Mooney (1996). The task

was to map natural language queries about US geography into a logic form, for

instance:

What is the capital of the state with the largest population?

answer(C, (capital(S,C), largest(P, (state(S), population(S,P)))))
Both the question and the logic forms were input to a semantic parser for su-

pervised training. Evaluation was on whether the correct answer was retrieved

from the geography relational database. Zelle and Mooney (1996) applied a gen-

eral purpose shift-reduce parser and used the input logic form to guide the parser

in outputting the correct logic form. Results showed that when given enough

training examples (more than 150), the statistically trained parser was able to

achieve better accuracy than a hand-crafted rule-based system. The accompany-

ing dataset, Geoquery (or Geo880), has also become standard in later works.

Thompson and Mooney (2003) applied active learning to semantic lexicons and

also tested on 3 other languages (Spanish, Japanese, Turkish) translated from

250 sentences of Geo880. Wong and Mooney (2007) adopted a machine transla-

tion approach by learning a synchronous grammar that generates logical forms in

lambda calculus. Their Wasp system had improved results on the four languages.

64

2. 50 Years of Question Answering

Tang and Mooney (2001) applied multi-strategy learning in their Cocktail sys-

tem with multiple clause constructors and tested on both the Geoquery domain,

and another database called Jobs640, which contains 640 sentences from a job

postings domain. Ge and Mooney (2005)’s system, Scissor (Semantic Com-

position that Integrates Syntax and Semantics to get Optimal Representations),

parsed sentences into semantically augmented trees that compositionally gener-

ated formal meaning representations in the domains of Geoquery and Clang

(or Robocup), which contains 300 pieces of coaching advice from the log files

of the 2003 RoboCup Coach Competition. Kate and Mooney (2006) used string

kernels with SVMs to classify the correct meaning representation from queries in

the same domains of Geoquery and Robocup. They found the kernel-based

approach, Krisp (Kernel-based Robust Interpretation for Semantic Parsing), was

particularly robust to noise. Lu et al. (2008) proposed a generative model that

did not use any explicit grammars, but constructed domain-specific grammars

(on Geoquery and Robocup) based on training examples (questions and logic

forms). The model was defined over hybrid trees with both syntactic structures

and meaning representations on lexicons. Learning was done via the EM algorithm

and the produced parse trees were reranked discriminatively with perceptrons to

upweight long range dependencies.

The domains of Geoquery, Jobs and Robocup are small but also highly-

compositional. The Combinatory Categorial Grammar (Steedman, 2000) is a

natural fit for this nature of compositionality. For instance, with the functional

application rule, the sentence Utah borders Idaho can be parsed as:

Utah := NP : utah

Idaho := NP : idaho

borders := (S\NP)/NP : λx.λy.borders(y,x)

Utah borders Idaho := borders(utah, idaho)

Zettlemoyer and Collins (2005) was the first to learn a joint model of probabilis-

65

2. 50 Years of Question Answering

tic CCG with logic forms using conditional log-linear models, yielding an accurate

model with precisions on both Geoquery and Jobs exceeding 96% (recall was

79.29%). Later, Zettlemoyer and Collins (2007) relaxed the constraints of compo-

sitionality on the ATIS (Air Travel Information System) travel-planning domain

(Dahl et al., 1994), as it contains spontaneous, unedited spoken language input,

such as show me the flights to Boston. They relaxed the functional application

rules in CCG and added additional rules for type raising to allow flexible word

order, or insertion and deletion of lexical items. The online learning algorithm

based on perceptron allowed example-by-example training (as compared to the

batch learning in the previous paper). This made large-scale training more effi-

cient: Atis contains 5418 sentences as compared to Geo880 or Jobs640. Results

showed the recall was also improved, possibly due to the relaxed rules in CCG.

Kwiatkowski et al. (2010), with their Ubl (Unification Base Learning) system,

also applied CCG but with higher-order unification to learn a more general gram-

mar that was able to map different natural languages to a wide variety of logical

representations. This was a step towards language and logic form independence.

Note that all of these approaches were fairly accurate (with precisions above 90%

on Geo880 and above 85% on atis). However, it came with the price of a fairly

verbose lexicon. For instance, the unambiguous word flight had three different

meaning representations depending on the context:

flight := N : λx.flight(x) flight

flight := N/(S\NP) : λfλx.flight(x)∧f(x) flight departing Boston

flight := N\N : λfλx.flight(x)∧f(x) from Boston flight to New York

Kwiatkowski et al. (2011) attacked this problem with lexical generalization.

They used templates for words to fit in systematic variation in word usage and

learned a factored compact lexicon. Experiments results showed lower precision

but higher recall, due to the more general lexicon.

All the previous work so far had focused on small domains, until Cai and

66

2. 50 Years of Question Answering

Yates (2013a) addressed this problem by creating a database based on Freebase

with 917 questions (thus the Free917 dataset) from 81 domains. This was a

big step towards domain independence. The major challenge is textual schema

matching: identify natural language words that correspond to Freebase relations.

For instance, the words directed, by and produced are good cues for the relation

film_director . Their approach was to find common words for a certain relation by

searching the relation’s arguments from hundreds of search engine queries, then

select by computing the point-wise mutual information between the words and the

relation. In this way, the semantic parser’s performance on one domain did not

degrade much even when it was trained on another domain. Kwiatkowski et al.

(2013) approached cross-domain semantic parsing differently. They first defined a

general purpose grammar with a wide word class coverage due to the pos informa-

tion of the word in Wiktionary. Then questions were parsed into underspecified

logic forms based on the general grammar. Finally in the logic forms the com-

positional structures were collapsed and literals were collapsed or split according

to some pre-defined conditions and operations. That was the step for fitting a

specific domain ontology based on Freebase.

All of the approaches reviewed so far have used the annotated logic forms as

supervision, which are usually expensive, slow, and prone to errors. Clarke et al.

(2010) instead just replied on the question and answer pairs for the semantic

parsing task. The answer served as a form of distant supervision in guiding the

production of semantic forms. They used Integer Linear Programming to con-

strain how text spans mapped to predicates and how they composed with each

other. Unlike previous approaches, where logic forms followed the syntactic struc-

tures of the questions strictly, in this work syntax was only used to bias semantic

composition. Experiment results on Geoquery showed that the approach was

competitive to fully supervised methods. Liang et al. (2011) also took the same

idea of omitting logic forms as supervision and learned directly from the end-to-

67

2. 50 Years of Question Answering

end QA pairs. Instead of using CCG parses, they applied the more commonly

used dependency parsing, yielding logic forms in DCS (dependency-based compo-

sitional semantics). Here the parse trees were latent variables. Despite the lack

of training with logic forms, they had the best results then on Geoquery and

Jobs.

The releases of Geo880, Jobs640, Robocup300 andAtis5418 greatly aroused

research interest. But these are all focused closed domains. Cai and Yates (2013a)

with their Free917 dataset was the first step towards large-scale open-domain

semantic parsing, but with two limitations: the questions were synthesized via

looking at Freebase data; their approach still relied on logic forms. Berant et al.

(2013) took a bigger step by releasing a more realistic corpus, WebQuestions,

with 5810 questions crawled from Google Suggest. The answers to the questions

were then extracted from Freebase using Amazon Mechanic Turk. The align-

ment between texts and relations, which was approached with the PMI method

by Cai and Yates (2013a), was now approximated by textual tuples extracted

from the ReVerb OpenIE system (Fader et al., 2011). Later, Berant and Liang

(2014) improved their results by incorporating two paraphrase models: one based

on learning word alignment from a large monolingual parallel corpus of 18 mil-

lion wikianswers questions (Fader et al., 2013); the other based on monolingual

distributional similarity measured by the continuous bag-of-word tool word2vec

(Mikolov et al., 2013).

The WebQuestions dataset is more realistic since it was mined off the Google

Suggest service, which prompts the most asked queries on the web. The dataset

itself is difficult, since the best F1 so far is less than 50% (Yao and Van Durme,

2014). However, the questions are not “difficult” in the sense that the lack of

compositionality in the questions does not show the power of semantic parsing

approaches. Yao and Van Durme (2014) showed that a simple information extrac-

tion approach, that learned the coupling of question features and Freebase topic

68

2. 50 Years of Question Answering

properties, easily had equivalent performance with the semantic parsing meth-

ods. They presented a detailed back to back comparison on the results of the two

methods in Yao et al. (2014). The analysis called for a dataset with more complex

questions.

2.3.5. Hybrid QA (IR+NLP+KB)

High performance QA systems make use of as many types of resources as possible,

especially with the prevailing popularity of modern search engines and enriching

community-contributed knowledge on the web.

One early form of structured data on the web is fact tables, such as Wikipedia

infoboxes. Lin (2002) collected 10 knowledge sources on the web, including bio-

graph.com, CIA World Factbook, dictionary.com, 50states.com, etc, and manually

verified that they were capable of answering 27% of TREC-9 (500 in total) and

47% of TREC-2001 questions (500 in total). Chu-Carroll et al. (2003) used the

Cyc knowledge base as an answer sanity checker. Cucerzan and Agichtein (2005)

employed a hybrid QA systems consisting of two components, one based on pat-

tern matching unstructured text, the other one table extraction. They mined

200 million tables from 100 million web documents, Wikipedia and FactMonster.

Unfortunately the table-based QA component performed poorly, with only 5.8%

accuracy in TREC 05, in contrast with the 24.6% accuracy from the text-based

component. Note that in their system the two components worked independently,

which left an answer ranking problem about selecting which component to trust

more.

Echihabi and Marcu (2003) had a different way, which was modeling all question

and snippet pairs in a noisy channel. Structured data coming from World Fact

Book and Biography.com etc was turned into natural language statement with a

few manual generation templates. The MIT START system (Katz et al., 2006)

69

2. 50 Years of Question Answering

Figure 2.3.: Watson’s incremental performance on 12, 000 questions from 200
games’ worth of blind data, with written permission for reuse from the
IBM Journal of Research and Development article (Ferrucci, 2012).

went exactly the opposite direction: all semi-structured and structured informa-

tion were stored in their Omnibase system (Katz et al., 2002), which provided a

universal interface to the QA front end. For semi-structured information on the

web, they made use of the language regularity of expressing certain things, for

instance:

[number] people live in the metropolitan area of [city]

The hypothesis is that there are multiple different [number]-[city] pairs expressed

in the same way on the web. In the way of natural language annotation, they

harvested facts from the web and stored them in Omnibase. It was not clear how

many annotation templates they used.

70

2. 50 Years of Question Answering

2.3.5.1. IBM Watson

IBM Watson marks the highest achievement so far in question answering. It

is a masterpiece of teamwork, QA research, software engineering, and program

management. The way how Watson approached the Jeopardy! challenge was

thought-evoking. In my mind, the most significant achievement of Watson is that

it has proven possible to do better than humans in such a high-intelligence task.

A short introduction of Watson is an AI Magazine article on “Building Watson”

(Ferrucci et al., 2010). Later, the IBM Journal of Research and Development

published a dedicated issue (Issue 3.4, May-June 2012) with about 20 articles

themed “This is Watson” (Ferrucci, 2012). This section overviews Watson, with a

focus of what Watson has done differently.

The Watson project started in 2006 with adapting IBM’s own in-house QA sys-

tem, Piquant (Practical Intelligent Question Answering Technology). Piquant

(Chu-Carroll et al., 2003) participated in TREC and was among the top 3 or 5 for

several years. It had been under development by a four-person team for 6 years

prior to the Jeopardy challenge. After 4 weeks of adaptation to Jeopardy, the re-

sult was discouraging: Piquant had a performance of 16% precision at 70% (16%

Precision@70 in short) answered questions (see the baseline curve in Figure 2.3),

while on average winning human players attempted between 40% and 50% of the

questions in a game and scored between 85% and 95% correctly. This result led

to a complete overhaul of their technical approach and architecture. The outcome

was the extensible DeepQA architecture and the AdaptWatson methodol-

ogy for rapid advancement and integration of core algorithms. By the end of 2007,

the DeepQA framework was implemented and reconstructed as the v0.1 version

of Watson (second curve from the bottom in Figure 2.3). In the next 5 years, the

AdaptWatson method was employed over thousands of iterations of development,

gradually pushing the confidence curve to more than 85% Precision@70: good

enough to compete against humans.

71

2. 50 Years of Question Answering

The DeepQA framework consists of more than 100 core algorithmic classifiers

(experts), each of which was effective on some certain types of questions. Given

the huge size of test data, it was hard to draw insight based on statistical signif-

icance when, say, a new classifier was added on top of 99 other classifiers. Thus

there existed an internal baseline system, called Watson answer-scoring baseline

(WASB). WASB includes most components in the DeepQA framework, such

as question analysis, passage retrieval, and candidate generation, but only one

evidence-scoring component based on answer typing. Answer typing was the most

used and intuitive technology employed in most TREC QA systems. That is why

it was included in WASB. Usually one expert was able to improve the accuracy

of 2% to 5% over WASB. Then with a couple hundred of different exports, the

full-fledged system was human-level competitive.

In the following I briefly describe how Watson approached common QA sub-

problems.

Question Classification and Answer Types (Lally et al., 2012). Wat-

son used both manual rules and logistic regression for question analysis. The

whole tool suite included a parser using the English Slot Grammar (ESG) with

an associated predicate-argument structure builder, a named entity recognizer,

a co-reference resolution component, and a relation extraction component. The

main problems were to detect the question focus (often pronouns in Jeopardy

clues) and the lexical answer type (LAT). The baseline algorithm contained rules

in more than 6, 000 Prolog clauses. These rules fail in complicated cases such as

that multiple pronouns appear in one clue and wrong head word detection due to

inaccurate parse. Thus additionally a logistic regression classifier was trained to

detect LATs. Experiments in LAT detection showed an almost 10% (70.0% vs.

79.6%) improvement on F1 over the baseline and this also improved the final end

accuracy on 3, 500 questions from 67.5% to 71.0%.

One interesting question is whether Watson used a pre-defined LAT ontology.

72

2. 50 Years of Question Answering

The answer is mixed. On one hand, Watson used lots of pre-existing components.

But a single common type system did not exist: they just mapped the LAT to

each component’s internal type. On the other hand, Jeopardy questions are very

broad: 2500 distinct and explicit LATs were found in a 20,000 question sample.

The most frequent 200 explicit LATs cover less than 50 percent of the data. Thus

Watson directly used the lexical word as the type, an idea very similar to that of

Pinchak and Lin (2006). All LATs detected from different components were in the

end fed into a suite of type coercion algorithms (introduced later).

Deep Parsing (McCord et al., 2012). Watson used an augmented version of

the English Slot Grammar (McCord, 1980). The Watson-specific parser produces

a parse tree that is essentially a dependency structure with roughly the follow-

ing augmented information: morphological analysis, constituent parses, pos tags,

ner labels, chunking, predict-argument structure with argument frames (similar

to SRL, but nouns and verbs can share frames (such as “celebration” and “cel-

ebrate”)), word senses, etc. Parsing was used in every component of Watson,

notably among question analysis, structured ranking in passage retrieval, answer

typing and knowledge extraction. Watson used only the highest-ranked parse

mostly for the sake of speed: ESG (implemented in C) parses about 5, 000 words

per second on standard laptops. As a comparison, the Charniak parser is about

100 time slower when running in a single thread. To project this comparison onto

other commonly used parsers (Stanford, Berkeley, MSTParser, etc), see Kong and

Smith (2014). In my own experience, the Stanford CoreNLP pipeline processes

about 25 tokens per second with pos and ner tagging and parsing.

Their evaluation of ESG vs. the Charniak parser on the Jeopardy andWikipedia

data reinforced my concern of modern statistical parser: overfitting on the Penn

Treebank annotation. Parser correctness on 100 “segments” of two different data

source is:

73

2. 50 Years of Question Answering

parser Jeopardy Wikipedia

ESG 92.0% 88.7%

Charniak 83.6% 81.1%

In terms of memory footprint, ESG occupies about 52MB memory during pars-

ing. Its binary code and data take 5.7MB. They report that it “easily compiles

and runs on a smartphone”.

Knowledge Extraction (Fan et al., 2012). The output of ESG contains frames

and slot fillers, which can be aggregated as strong evidence for certain tasks, such

as answer typing (e.g., <Obama, isa, man>). One notable decision for knowledge

extraction was that the frames were not restricted on only verbs, binary semantic

relations, or a specific type hierarchy. Even the modifiers from ERG parses can

be relations in frames. Watson’s knowledge extraction component, PRISMATIC,

was able to extract 995 million frames from 30GB of text, averaging 1.4 frames per

sentence. When serving as a check for LATs, PRISMATIC consistently ranked in

the top 3 among 17 different type coercion components in Watson and improved

the overall accuracy by 2.4%. PRISMATIC was also used for candidate generation.

For instance, it listed the answer Arabic in its top 20 Semitic languages to a

question on this Semitic language. On a test set of 3, 508 questions, it generated

answers for 42.6% of them.

Search and Candidate Generation (Chu-Carroll et al., 2012). Watson

searches both unstructured source, i.e., text, and structured source, e.g., PRIS-

MATIC and Freebase. In text search, it employed both Indri and Lucene for

document and passage retrieval. One distinction between the Jeopardy questions

and TREC QA questions is that some Jeopardy questions are very complicated

with many constraints. Then it turned out the evidence had to be gathered from

all over the documents, and thus document title serves as the answer. For instance,

consider the question this country singer was imprisoned for robbery and in 1972 was

74

2. 50 Years of Question Answering

pardoned by Ronald Reagan, the Wikipedia article for Merle Haggard mentions him

as a country singer, his imprisonment for robbery, and his pardon by Reagan. This

favors document retrieval over passage retrieval.

On a randomly selected set of 3,500 questions, all but 4.53% of the answers

were Wikipedia titles. Thus the way Watson generated answer candidates is very

different from traditional TREC approaches. TREC QA systems usually used

named entities detected from retrieved passages. However, Watson used document

metadata such as titles and anchor texts. This method turned out to be extremely

effective: it generated answer candidates for 99.07% of all questions from a test set

of 3, 344 questions and the final system had an accuracy of 62.65%. In contrast,

when employing the TREC QA strategy, the system only achieved an accuracy of

54.9%.

Structured search mostly used SPARQL queries. A sample of 20, 000 Jeopardy

questions showed that 11% of them were about 20 relations from Freebase, for

instance, track, album, artist, containedBy, author. Thus special attention was

paid to focus on the most frequent relations. Watson has a relation detector

that has 80% precision and 60% recall, based on English expression that maps

to the relation. This relation lookup component contributed 3.53% recall and

2.18% accuracy on the same test set of 3, 344 questions. PRISMATIC search (over

curated KB) on the same test set provided answers for 43.75% of all questions,

contributed 8.31% recall and 5.65% accuracy.

Overall, search and candidate generation in Watson stabilized at about 85 per-

cent binary recall for the top 250 candidates.

Type Coercion (Murdock et al., 2012b). Jeopardy questions have a very broad

and flexible range of answer types. In 20, 000 questions sampled: roughly 5, 000

different type words were used; more than half occurred less than three times;

12% occurred only once; 15% of questions did not explicitly have an LAT. Wat-

son uses a technique called type coercion, a process that determines whether the

75

2. 50 Years of Question Answering

answer candidate satisfies the answer type from the question, to tackle this chal-

lenge. Type coercion contains multiple components based on the ontology source

or algorithms. Each component provides some evidence from its own area of ex-

pertise and all the evidences are gathered and ranked statistically. For instance,

the WordNet hypernym and isInstanceOf relations are of high precision and low

recall; Wikipedia and YAGO ontologies have a broader coverage on nominal enti-

ties; IBM’s internal named entity recognizer (Prager et al., 2006) has more than

100 LATs; PRISMATIC contributes lexical evidence about answer typing through

its is_a relation. In some sense, type coercion in Watson is a miniature model of

Watson’s many experts as classifiers strategy.

On a test set of 3, 508 questions with the full Watson system, type coercion im-

proved precision@70 from 81.5% to 87.5% and the total accuracy (precision@100)

by 4.9%. Among the 4.9% improvement, each of 12 most interesting answer typing

components contributed from 0.5% to almost 3%. The three most contributing

sources were: YAGO (close to 3%), NER with about 100 types and PRISMATIC

(both close to 2.5%). With the Watson Answer-Scoring Baseline (WASB) that

only had the ner component enabled for answer typing, type coercion of more

than 10 experts increased the accuracy by about 8%.

Evidence Scoring (Murdock et al., 2012a). The primary search in Watson

generates a list of answer candidates. But they are not ranked at this point.

Each of the answer candidates spawns a separate parallel process that includes

this candidate in the search to retrieve further evidence. When evidence-bearing

passages are returned, a passage-scoring component with four algorithms ranks

them. The four algorithms are:

• Passage Term Match measures how often a candidate answer appears in the

same passages as the question terms using roughly tf-idf weighting.

• Skip-Bigram computes how many terms are shared in the syntactic-semantic

76

2. 50 Years of Question Answering

graphs from the question and the retrieved passages. It captures structural

closeness as compared to bag-of-word co-occurring closeness.

• Textual Alignment aligns the question with passage according to theWaterman-

Smith algorithm (Smith and Waterman, 1981) for DNA sequence matching.

• Logical Form scores two logic graphs with term weight and degree of match.

The latter is a product of a term match score and a structural match score.

After all four algorithms are applied to each passage, the scores from each passage

are merged with respect to each individual algorithm. Common ways of merg-

ing includes using maximum, sum, or decaying sum of scores from the passages.

The best fit found by the Watson team was: summing for Skip-Bigram, decaying

summing for Textual Alignment and Passage Term Match, and maximization for

Logical Form.

Evaluation on 3, 508 questions showed the the four evidence scoring methods

improved the full Watson system from 67.1% accuracy to 70.4% and WASB from

54.9% to 61.7%. Also these methods are more effective when used in evidence

scoring than used in solely the primary search (2% improvement over full and 3%

over WASB).

Knowledge Base and Inference (Kalyanpur et al., 2012a). Watson uses

DBpedia, YAGO, a small portion of Freebase targeting spatial information, and

some special handcrafted collection for U.S. presidents, works of Shakespeare,

U.S. states, and countries. The major usage of KB in Watson is answer typing,

which has been introduced above. Some manual efforts on differentiating mutually

exclusive relations were also made for more precise answer typing. Another usage

is on temporal and geospatial reasoning. They each separately had an 1% to 2%

improvement over the full and base version of Watson system.

Question Decomposition (Kalyanpur et al., 2012b). Some Jeopardy ques-

tions are complicated. Thus Watson decomposes questions into parallel or nested

77

2. 50 Years of Question Answering

sub-questions. Parallel sub-questions can be solved independently while nested

sub-questions have to be solved in sequence. For parallel questions, rules are de-

fined for independent subtrees, composable units and segments with qualifiers.

These rules applied on 598 questions out of a test set of 1, 269. The end-to-end

accuracy of Watson was also improved from 50.05% to 50.66% and accuracy on

the decomposable subset increased from 56.68% to 58.02%. Heuristics are also

defined for nested questions and they also improved the end performance from

50.05% to 50.82%. The overall impact of both parallel and nested decomposition

was 1.4% gain.

Answer Ranking (Gondek et al., 2012). Watson was trained with 25, 000

questions comprising 5.7 million question-answer pairs and 550 features. Two

biggest problems are the diverse types of questions and broad range of features.

The following is a short summary of key ideas that could shed lights on current

research:

• Answer Merging contains multiple components based on morphological and

pattern analysis. It inspects every pair of answer candidates after Watson

ranks them and make a binary judgement. If merge, then the candidate with

higher initial ranking is kept.

• Ranking: logistic regression was found with consistently better performance

among other classifiers, including SVM, boosting, neural nets, decision trees

and locally weighted learning.

• Feature Normalization: existing features vary in their relative values, thus

they are augmented with standardized features. Standardization is per

query : each feature is normalized by subtracting the mean of all features

of that type and scaling to unit variance.

• Missing Feature Indicator: a feature value of 0 could either mean a zero

feature value, or missing feature. Thus an extra indicator was added to each

78

2. 50 Years of Question Answering

feature. It was shown that a sizable gain can be obtained with indicator

features.

• One Model Per Question Class: each question class could favor different

features thus an individual model is trained for each class. Another classifier

automatically determines the question class with information from LAT etc.

• Feature Selection: for models with a lot of training data (and accordingly

a lot of sparse features), Watson removes features per a pre-defined firing

threshold besides using feature regularization. For models with a little train-

ing data and too many features, Watson uses the consistency subset attribute

evaluator in Weka (Hall et al., 2009) for feature selection.

• Successive Refinement: Watson first refines the answer candidate list to its

top 100 members, then near the end of learning considers only the top 5

candidates.

• Instance Weighting: the ratio of positive vs. negative instances in answer

candidates produced by Watson is 1 to 94. Various methods including cost-

sensitive learning and resampling were experimented with to level this im-

balance. The final solution is to use an instance weighting of 0.5 for the

negative instances in logistic regression.

• Evidence Diffusion: evidence can be shared between candidate answers. One

example is that when asking the Sunan airport is in which country, there was

overwhelming evidence about Pyongyang (a city), rather than North Korea

(the country). Some criteria (such as located-in relation between answer

candidates) was made to trigger evidence diffusion, where the feature values

of North Korea were linearly combined with those of Pyongyang.

The above components fire at different stages of the pipeline. Figure 1 of Gondek

et al. (2012) illustrates this. Overall, three (normalization, missing feature indica-

79

2. 50 Years of Question Answering

tion, successive refinement) of the above techniques improved the baseline system

with 67% accuracy by 4.5%.

In Summary, the dominant principles in DeepQA are massive parallelism, many

experts, pervasive confidence estimation, and integration of shallow and deep knowl-

edge (Ferrucci, 2012). With the AdaptWatson methodology for rapid development

and testing individual components, Watson matured into a super competitive ques-

tion answering system within 5 years of time. I hope that their experience shared

after the final game will become valuable lessons for future researchers.

2.4. A Different View: Linguistic Features vs.

Machine Learning

In this section I look at the QA approaches from a different perspective: how

deeper linguistic analysis was utilized and how larger the scale of learning became

over the years. Research is a dynamic process. Especially in the field of computer

science, technology rapidly evolves itself. Question answering started on machines

with less than 1MB of memory and hand-crafted database. Nowadays the IBM

Watson system has 2, 880 3.5GHz POWER7 processor cores and 16 terabytes of

RAM. As writing of this dissertation, researchers are already using terabytes of

web data in large-scale machine learning the question answering problem.

I divide the analysis in a few dimensions, as shown in Table 2.6. In each cate-

gory I select one or two most representative paper, illustrate the idea, and try to

summarize the pros and cons of this category. I do realize that the categorization

in Table 2.6 can be very crude. Some papers might fit into multiple categories.

I also might have misread some papers and put them in a wrong place. But I

believe the table captures the general trend in QA research in the past decades.

80

2. 50 Years of Question Answering

Learning
Linguistics ad-hoc / pattern small scale

(generative /
discriminative)

large scale
(discriminative)

su
rf

ac
e IR

QA
word 16 (1995-2010) A1 6 (2003-2006) A2 A3

word/pos 4 (2001-2005) B1 4 (2001-2003) B2 B3

NLP
QA

st
ru

ct
u
re

chunking /ner 14 (2000-2008) C1 10 (2001-2010) C2 2 (2006-2013) C3

syntax 16 (1993-2010) D1 8 (2001-2010) D2 15 (2003-2013) D3

discourse 3 (2003-2009) E1

m
ea

n
in

g

syntax, semantic
roles /frames

5 (1976-2008) F1 4 (2004-2010) F2 3 (2007-2014) F3

KB
QA

logic forms 13 (1961-2005) G1 9 (1996-2011) G2 8 (2007-2014) G3

reasoning
/inference

8 (1965-2003) H1 1 (2006) H2

Table 2.6.: Categorization with respect to linguistic features and machine learn-
ing scales used in about 150 publications surveyed so far, shown with
counts, year ranges and grid numbers. Detailed list is in § 2.4.3 on
page 84. Techniques originated from this dissertation are marked with
bold grid numbers (A3, B3, C3, D3, F3).

2.4.1. Linguistics: Word, POS, NER, Syntax, Semantics

and Logic

From the linguistics point of view, the analysis goes from flat surface (lexicon and

pos tags) to syntactic structures (shallow: chunking, ner; deeper: constituent

or dependency parsing) to meaning representations (semantic frames, logic forms

and reasoning). In my opinion, linguistic analysis is all about language specifica-

tion and generalization: it provides tools to investigate various specific aspects of

the language but also tries to generalize them well enough so that patterns are

observed. QA research focuses on almost all kinds of linguistic analysis to draw

meaningful patterns, either hand-crafted or machine learned.

81

2. 50 Years of Question Answering

Word-based patterns are often called templates. Lexicalized answer templates

are often used to match against retrieved snippets (A1: Ravichandran and Hovy,

2002) for answer extraction. Automatic learning of these templates are possible

(A2: Ravichandran et al., 2003). But languages can be expressed in so many

ways that some regular expression based templates will always have trouble with

matching against new data, especially those from a new domain. A lot of QA

research falling into the A category is also due to that they are IR-based approaches

(A1: Tellex et al., 2003): the first few years of TREC QA evaluated on the retrieved

snippets instead of exact answer phrase.

Going from word to pos tags was partially motivated by the use of WordNet:

it is more precise to fetch the synsets, and especially hypernym/synonym/etc

relations if the word pos is known. Both Hammond et al. (B1: 1995) and Prager

et al. (B1: 2001) explored in this direction. pos tags also help with morphological

analysis. Ittycheriah et al. (B2: 2001a) used pos tags to help identify word lemmas

during relevance scoring on retrieved passages.

Named entity labels are arguably the most widely used linguistic annotation in

modern question answering systems. This is mostly motivated by answer typing

(C1: Abney et al., 2000, Harabagiu et al., 2000, Prager et al., 2000) and they are

used jointly with question classification (C2: Li and Roth, 2002). The linguistic

patterns are so intuitive that any one can quickly write a few manual patterns.

The number of entity labels also ranges from dozens to hundreds (c.f. Table 2.5

on page 53).

ner labels are good cues for answer types but they are too weak a signal for

precisely pinpointing answer fragments with confidence. Syntax came to help. It

was first applied on the question side to help question analysis (D1: Hovy et al.,

2000), then gradually to the retrieved snippets, or even the whole corpus. Syntactic

analysis gained its popularity in QA systems perhaps with the open availability

of the Minipar dependency parser (Lin, 1993). QA based on syntax was first

82

2. 50 Years of Question Answering

treated as a slot-filling like task (D1: Lin and Pantel, 2001): given a predicate-

argument relation missing one argument, what is a correct answer to fill in the

empty argument slot? Realizing the data sparsity problem for syntactic parses,

various fuzzy matching methods were introduced based on either generative models

such as EM used by Cui et al. (D2: 2004) or discriminative models such as SVM

used by Moschitti et al. (D3: 2007).

Syntactic parses introduced two problems: sparsity of structures and lack of

meaning representation. The first was mostly tackled by fuzzy matching. The

second is essentially a problem of structured paraphrasing: different syntactic

paths can mean the same thing. It was approached in two different ways: clus-

tering with distributional similarity (D1: Lin and Pantel, 2001) or clustering with

frames in semantic role labeling (SRL). SRL was majorly used in two types of

work: IR-based learning to rank (F2: Bilotti et al., 2010b) and SRL-based graph

matching (F2: Shen and Lapata, 2007). Although with reported success, coverage

has been an issue for SRLs. For instance, Shen and Lapata (F2: 2007) observed

that the Shalmaneser semantic parser (Erk and Pado, 2006) based on FrameNet

(Fillmore et al., 2003) only applied to about 35% of the TREC data . Simi-

larly, Bilotti et al. (F2: 2010b) used Assert (Pradhan et al., 2004), a PropBank

(Palmer et al., 2005) parser, on 109 questions but only 48 were annotated with

predicate-argument structures.

It is also interesting to see how research papers define “semantics” over the time.

In early years ner was treated as semantic information. Also, it was common to

use the term “lexical semantics” once WordNet was involved. In my categorization

I treat semantic role labeling as a form of shallow semantics while logic form based

semantic parsing as “deeper” semantics.

Going deeper from semantic roles to semantic parsing, logic forms start to

emerge. Early years’ logic forms were parser-dependent (G1: Woods, 1978), or

database-dependent (G1: Zelle and Mooney, 1996). Later on research converged

83

2. 50 Years of Question Answering

to a uniform representation: lambda calculus, either from general parses based on

CCG (G3: Zettlemoyer and Collins, 2007) or dependency trees (G2: Liang et al.,

2011). Logic forms are good at capturing constrained operators, such as “max”

and “sum”. Focus is put mostly on query understanding : usually the question side

is parsed into a logic form and that transforms into database queries. On text-

based semantic parsing, Harabagiu et al. (G1: 2000) parsed both the question and

answer snippets into logic forms.

Based on logic forms, some degree of reasoning or inference can be made. Slagle

(H1: 1965) used deductive logic with 68 given facts in their QA system. The

system was able to compute how many fingers a man has given the number of

hands on a man and the number of fingers on a hand. Moldovan and Rus (G1:

2001) transformed WordNet glosses into logic forms then to axioms to provide

ground truth for question answering. Harabagiu and Hickl (G2: 2006) incorporated

a textual entailment component in answer ranking and selection to improve the

overall accuracy by 20%. The textual entailment component utilized features

based on syntactic analysis and lexical semantics from paraphrasing. Another

form of pure reasoning and inference exists in Expert Systems (Jackson, 1990),

which is not in the scope of this literature review.

2.4.2. Learning: Ad-hoc, Small Scale and Large Scale

The way I categorize the use of machine learning is by:

• If there is no learning in the problem solving, then put it into the ad-hoc

category;

• If there is, and if the model used is generative, or it is discriminative but the

number of training instances is within hundreds, put it under small scale;

otherwise large scale.

84

2. 50 Years of Question Answering

Almost all work exploring various linguistic features started with ad-hoc or pattern-

based methods. In IR-based QA, systems rely on the IR front end for answer

retrieval. Ranking of snippets largely came from search engine scores. In NLP-

based QA, there were also manual mappings between question categories and

answer types. Ranking on answer candidates correlated with answer typing con-

formability. Patterns were defined over surface forms, pos tags, ner labels, or

syntactic paths. Also, Lin (2002) observed that the TREC questions followed the

Zipf’s law. Thus hand-written templates easily captured large proportion of ques-

tions. In KB-based QA, early systems had rule-based reasoning components for

their internal logic forms. Systems could not generalize well beyond the scope of

existing rules.

Machine learning was introduced to QA after the year 2000. I suspect it was

mainly due to that TREC QA had run for 2 years by 2000, thus manual pattern

based methods were exploited and shortcomings exposed accordingly. Also by that

time, a few years of evaluation only left with a few hundred questions for training.

Thus learning was kept small-scale. Still, various machine learning techniques

were explored, including for instance:

• In IR QA: learning to rank passages with perceptron or SVM (Bilotti et al.,

2010b).

• In NLP QA: generative models (with EM optimization) for matching syn-

tactic patterns (Cui et al., 2004), or discriminative models (mostly Maxim

Entropy based) for optimizing feature weights (Ittycheriah et al., 2001a,

Ravichandran et al., 2003).

• In KB QA: various methods represented by Raymond Mooney (Zelle and

Mooney, 1996, Ge and Mooney, 2005, Tang and Mooney, 2001, Kate and

Mooney, 2006, Wong and Mooney, 2007) for semantic parsing on closed-

domain small-scale datasets, such as Geoquery, Jobs, and Robocup.

85

2. 50 Years of Question Answering

All of these examples were applied on a few hundred training instances. It was

a first attempt to show success and results were proven promising. Still, the

features used were mostly manually authored. All features defined were intuitive,

but how many types of feature can a pair of hands write? I experimented with

the idea of automatically generating all kinds of features based on lexicon, pos

tags, ner labels, and dependency parses. The feature space was exploded. As a

consequence, lots of training data was needed. In § 4.6 on page 180 I will show the

experiments conducted on almost 100 thousand Jeopardy questions with about 35

million features: this idea is able to provide a competitive statistical backbone for

modern QA systems.

Another direction in large-scale machine learning question answering patterns

is syntactic structure matching with latent alignment variables (Wang et al., 2007,

Wang and Manning, 2010) or tree similarity models (Shen and Klakow, 2006, Heil-

man and Smith, 2010, Severyn and Moschitti, 2013). Discriminative models help

with incorporating multiple external resources in feature engineering, especially

given that there are a handful of lexical resources for English QA. They also help

learning from features in a high dimensional space based on convolutional tree

kernels (Moschitti et al., 2007).

Finally, in the work of semantic parsing, there have been releases of more open-

domain and much larger datasets (Cai and Yates, 2013a, Berant et al., 2013, Fader

et al., 2013). Semantic parsing researchers focus on more challenging and realistic

problems, in contrast to rule-based systems in the 1960s.

To summarize, as Liang and Potts (2014) stated about the progress in bridging

machine learning and compositional semantics together, with more and more ac-

cessible data for both supervised learning and unsupervised mining, I believe QA

systems in the future would bear more statistical backbone, be more generalized in

open domain questions, and behave as a more natural human computer interface

than keyword based search engines.

86

2. 50 Years of Question Answering

2.4.3. Appendix: Publications Per Grid

• A1: Burke et al. (1997), Kwok et al. (2001), Brill et al. (2001), Clarke et al.

(2001a,b), Hermjakob et al. (2002), Magnini et al. (2002), Soubbotin and

Soubbotin (2002), Ravichandran and Hovy (2002), Sneiders (2002b,a), Zheng

(2002), Tellex et al. (2003), Xu et al. (2003), Katz et al. (2006), Bunescu

and Huang (2010)

• A2: Ravichandran et al. (2003), Zhang and Lee (2003), Soricut and Brill

(2004), Wu et al. (2005), Buscaldi and Rosso (2006), Wei et al. (2006)

• B1: Hammond et al. (1995), Prager et al. (2001), Peng et al. (2005), Prager

et al. (2006)

• B2: Ittycheriah et al. (2001a), Chu-Carroll et al. (2003), Girju (2003), Ra-

makrishnan et al. (2003)

• C1: Abney et al. (2000), Harabagiu et al. (2000), Hovy et al. (2000), Srihari

and Li (2000), Prager et al. (2000), Hermjakob (2001), Magnini et al. (2002),

Xu et al. (2002), Leidner et al. (2003), Yang et al. (2003), Cucerzan and

Agichtein (2005), Schlaefer et al. (2006), Prager et al. (2006), Kosseim and

Yousefi (2008)

• C2: Ittycheriah et al. (2001b), Mann (2001), Pasca and Harabagiu (2001), Li

and Roth (2002), Chu-Carroll et al. (2003), Fleischman et al. (2003), Nyberg

et al. (2003), Radev et al. (2005), Schlobach et al. (2007), Tellez-Valero et al.

(2010)

• C3: Pinchak and Lin (2006), Yao et al. (2013d)

• D1: Kupiec (1993), Harabagiu et al. (2000), Hovy et al. (2000), Lin and

Pantel (2001), Hermjakob (2001), Hermjakob et al. (2002), Li (2003), Leidner

et al. (2003), Katz and Lin (2003), Yang et al. (2003), Jijkoun et al. (2004),

87

2. 50 Years of Question Answering

Punyakanok et al. (2004), Peng et al. (2005), Bouma et al. (2005), Bunescu

and Huang (2010), Kaisser (2012)

• D2: Hermjakob (2001), Echihabi and Marcu (2003), Mollá et al. (2003), Cui

et al. (2005), Wu et al. (2005), Sun et al. (2005), Harabagiu and Hickl (2006),

Bunescu and Huang (2010)

• D3: Zhang and Lee (2003), Blunsom et al. (2006), Pinchak and Lin (2006),

Shen and Klakow (2006), Moschitti et al. (2007), Wang et al. (2007), Huang

et al. (2008), Li et al. (2008), Pan et al. (2008), Pinchak et al. (2009b),

Heilman and Smith (2010), Wang and Manning (2010), Fader et al. (2013),

Severyn and Moschitti (2013), Yao et al. (2013c)

• E1: Yang et al. (2003), Sun and Chai (2007), Quarteroni and Manandhar

(2009)

• F1: Plath (1976), Lopez et al. (2005), Bilotti et al. (2007), Frank et al.

(2007), Hartrumpf (2008)

• F2: Narayanan and Harabagiu (2004), Sun et al. (2005), Shen and Lapata

(2007), Bilotti et al. (2010a)

• F3: Moschitti et al. (2007), Fader et al. (2013), Yao and Van Durme (2014)

• G1: Green et al. (1961), Green (1969), Winograd (1972), Lehnert (1977),

Woods (1977, 1978), Winiwarter (1999), Harabagiu et al. (2000), Zajac

(2001), Moldovan and Rus (2001), Moldovan et al. (2002), Mollá et al. (2003),

Mollá and Van Zaanen (2005)

• G2: Zelle and Mooney (1996), Tang and Mooney (2001), Thompson and

Mooney (2003), Ge and Mooney (2005), Kate and Mooney (2006), Wong

and Mooney (2007), Lu et al. (2008), Clarke et al. (2010), Liang et al. (2011)

88

2. 50 Years of Question Answering

• G3: Zettlemoyer and Collins (2007), Kwiatkowski et al. (2010, 2011, 2013),

Cai and Yates (2013a,b), Berant et al. (2013), Berant and Liang (2014)

• H1: Slagle (1965), Green et al. (1961), Bruce (1972), Pollack (1986), Lin and

Pantel (2001), Moldovan and Rus (2001), Moldovan et al. (2002, 2003b)

• H2: Harabagiu and Hickl (2006)

89

3. Feature-driven QA from

Unstructured Data: Text

This chapter illustrates the idea of automatically generating and learning features

from basic linguistic annotations on unstructured text (§ 3.1). We first show

an alignment model based on Tree Edit Distance that achieved state-of-the-art

result on an answer sentence ranking task (§ 3.2). Then we cast the task of

answer extraction as a sequence tagging task and report QA performance with

automatically generated features, including ablation test results (§ 3.3). Finally

we backtrace from the answer extraction back end to the information retrieval

front end and demonstrate how the automatically learned features can help IR

performance (§ 3.4). The accompanying implementation is jacana-qa.

Each of the sections § 3.2 to § 3.4 defines their own task for evaluation. I reuse

the example in § 3.4 to illustrate the tasks here:

90

3. Feature-driven QA from Unstructured Data: Text

Q: When was Alaska purchased?

Retrieved Sentences:

S1: Eventually Alaska Airlines will allow all travelers who have purchased electronic

tickets through any means.

S2: Alaska’s online check-in program works like this: A passenger who already has

purchased an electronic ticket online, through a ticket agent or over the phone logs

on to Alaska ’s Web site from a home or office computer .

S3: Russia and the United States signed a treaty selling Alaska to the U.S. for $7.2

million on March 30, 1867.

...

Answer: March 30, 1867 (or simply 1867).
The three tasks in this chapter are:

1. § 3.2: answer-bearing sentence ranking. Given the question Q and a list of

already retrieved sentences (S1, S2, S3, . . .), judge and rank whether each

sentence contains an answer or not. It is essentially a re-ranking task: given

a list of retrieved sentences, re-order them so that sentences with higher

chances of bearing an answer are ranked higher. Ideal output for the above

example would be: ((S3, true), (S1, false), (S2, false)) or ((S3, true), (S2,

false), (S1, false)). Evaluation measures are Mean Average Precision (MAP)

and Mean Reciprocal Rank (MRR), defined in § 2.2.3.2 on page 40. They

take a ranked list as input, and output a score between 0 and 1.

2. § 3.3: answer extraction. Given the question Q and a list of already retrieved

sentences (S1, S2, S3, . . .), extract the answer fragment that answers the

question. Ideal output for the above example would be: March 30, 1867.

Evaluation measure is precision, recall and F1, defined in § 2.2.3.1 on page 38.

3. § 3.4: (shallow structured) information retrieval. Given the question Q and

a corpus, retrieve all relevant sentences and rank them by relevance. Ideal

91

3. Feature-driven QA from Unstructured Data: Text

output for the above example would be (S3, S1, S2, . . .) or (S3, S2, S1, . . .).

Evaluation measures are MAP and MRR defined in § 2.2.3.2 on page 40.

This often requires an exhaustive relevance judgment of all sentences in a

corpus given a question. Lin and Katz (2006) contributed such a judgement

for 109 TREC QA questions.

A minimal QA system normally contains either 1 and 2, or 2 and 3, depending on

whether the QA system employs its own information retrieval engine. Normally,

when using the web as a corpus, QA systems often resort to (commercial) web

search engines. They do not have much power in deciding how the sentences are

retrieved beyond framing the queries properly. Thus such systems would usually

consist of component 1 to perform answer-bearing sentence reranking if the order

of original retrieved sentences is not good enough. This has the limitation that

if the relevant sentences are not retrieved, then no matter how good component

1 is, there is no way for the answer extraction component to pinpoint the exact

answer fragment.

On the other hand, if the corpus is relatively small, such as the one used in

TREC QA, then open-source text indexing tools can be directly employed. QA

systems would have much better control over how the answer-bearing sentences

are retrieved. Thus component 3 is desirable in such setting. Further more, the

answer extraction component is the most essential one in either setting. This

chapter visits all three components and covers both settings.

3.1. Introduction

The success of IBM’s Watson system (Ferrucci et al., 2010) has illustrated a con-

tinued public interest in Question Answering. Watson is a sophisticated piece of

software engineering consisting of many components tied together in a large paral-

lel architecture. It took many researchers working full time for years to construct.

92

3. Feature-driven QA from Unstructured Data: Text

Such resources are not available to individual academic researchers. If they are in-

terested in evaluating new ideas on some aspect of QA, they must either construct

a full system, or create a focused subtask paired with a representative dataset.

We follow the latter approach and focus on the task of answer extraction, i.e.,

producing the exact answer strings for a question.

We propose the use of a linear-chain Conditional Random Field (CRF) (Lafferty

et al., 2001) in order to cast the problem as one of sequence tagging by labeling

each token in a candidate sentence as either Beginning, Inside or Outside (BIO)

of an answer. This is to our knowledge the first time a CRF has been used to

extract answers.1 We utilize not only traditional contextual features based on

POS tagging, dependency parsing and Named Entity Recognition (NER), but

most importantly, features extracted from a Tree Edit Distance (TED) model for

aligning an answer sentence tree with the question tree. The linear-chain CRF,

when trained to learn the associations between question and answer types, is a

robust approach against error propagation introduced in the NLP pipeline. For

instance, given an NER tool that always (i.e., in both training and test data)

recognizes the pesticide DDT as an org, our model realizes, when a question

is asked about the type of chemicals, the correct answer might be incorrectly

but consistently recognized as org by NER. This helps reduce errors introduced

by wrong answer types, which were estimated as the most significant contributor

(36.4%) of errors in the then state-of-the-art QA system of Moldovan et al. (2003a).

The features based on TED allow us to draw the connection between the ques-

tion and answer sentences before answer extraction, whereas traditionally the ex-

ercise of answer validation (Magnini et al., 2002, Penas et al., 2008, Rodrigo et al.,

2009) has been performed after as a remedy to ensure the answer is really “about”

the question.

QA systems often are required for a fast run time. For instance, Watson was

1 CRFs have been used in judging answer-bearing sentences (Shima et al., 2008, Ding et al.,
2008, Wang and Manning, 2010), but not extracting exact answers from these sentences.

93

3. Feature-driven QA from Unstructured Data: Text

designed under the constraint of a 3 second response time, arising from its intended

live use in the television game show, Jeopardy!. Motivated by this desire, we

base our TED implementation on the dynamic-programming approach of Zhang

and Shasha (1989), which helps our final system process (including alignment,

feature extraction, and classification) 200 QA pairs per second on standard desktop

hardware, when both the question and sentence are syntactically pre-parsed.

In the following we first provide background on the TED model, going on to

evaluate our implementation against prior work in the context of question answer

sentence ranking (QASR), achieving state of the art in that task. We then describe

how we couple TED features to a linear-chain CRF for answer extraction, pro-

viding the set of features used, and finally experimental results on an extraction

dataset we make public (together with the software) to the community. Related

prior work is interspersed throughout each section.

3.2. Tree Edit Distance Model

Tree Edit Distance (§3.2.1) models have been shown effective in a variety of ap-

plications, including textual entailment, paraphrase identification, answer ranking

and information retrieval (Reis et al., 2004, Kouylekov and Magnini, 2005, Heil-

man and Smith, 2010, Augsten et al., 2010). We chose the variant proposed by

Heilman and Smith (2010), inspired by its simplicity, generality, and effectiveness.

Our approach differs from those authors in their reliance on a greedy search rou-

tine to make use of a complex tree kernel. With speed a consideration, we opted

for the dynamic-programming solution of Zhang and Shasha (1989) (§3.2.1). We

added new lexical-semantic features §(3.2.2) to the model and then evaluated our

implementation on the QASR task, showing strong results §(3.2.3). The QASR

task aims to judge whether a sentence contains the answer to the question or not.

94

3. Feature-driven QA from Unstructured Data: Text

prd

player
nn

jennifer
nn

capriati
nnp

23
cd

be
vbz

subj

nmod
nmod

tennis
nn

nmod

Tennis player Jennifer Capriati is 23

TreeEdit
Distance

capriati
nnp

jennifer
nnp

what
wp

sport
nn

play
vbz

do
vbz

vmod vmod

nmod

What sport does
Jennifer Capriati play

insSubTree:

ins(play/vbz/vmod)
ins(do/vbz/root)

WordNet

Figure 3.1.: Edits transforming a source sentence (left) to a question (right). Each
node consists of: lemma, POS tag and dependency relation, with root
nodes and punctuation not shown. Shown includes deletion (× and
strikethrough on the left), alignment (arrows) and insertion (shaded
area). Order of operations is not displayed. The standard TED model
does not capture the alignment between tennis and sport (see Section
3.2.2). But it can be enabled by WordNet relations shown in dashed
arrows. Step-by-step edit sequence can be found in Figure 3.2.

It has implications for providing better ranking from a retrieved passage list in

information retrieval. Here we use it to test whether we have implemented the

TED model correctly. Later in the next section (§ 3.3) we apply the same TED

model in answer extraction and show much improved result.

3.2.1. Cost Design and Edit Search

Following Bille (2005), we define an edit script between trees T1, T2 as the edit

sequence transforming T1 to T2 according to a cost function, with the total summed

cost known as the tree edit distance. Basic edit operations include: insert, delete

95

3. Feature-driven QA from Unstructured Data: Text

Feature Description
distance tree edit distance from answer sentence to

question
ren{Noun,Verb,Other} # edits changing pos from or to noun, verb, or

other types
ins{N,V,Punc,Det}

insOtherPos
edits inserting a noun, verb, punctuation

mark, determiner or other pos types
delN, delV, ... deletion mirror of above
ins{N,V,P}Mod
ins{Sub, Obj}
insOtherRel

edits inserting a modifier for {noun, verb,
preposition}, subject, object or other relations

delNMod, ... deletion mirror of above
renNMod, ... rename mirror of above

XEdits # basic edits plus sum of ins/del/ren edits
alignNodes

align{Num, N, V, Proper}
aligned nodes, and those that are numbers,

nouns, verbs, or proper nouns

Table 3.1.: Features for ranking QA pairs.

and rename.

With T a dependency tree, we represent each node by three fields: lemma, pos

and the type of dependency relation to the node’s parent (dep). For instance,

Mary/nnp/sub is the proper noun Mary in subject position.

Basic edits are refined into 9 types, where the first six (ins_leaf, ins_subtree,

ins, del_leaf, del_subtree, del) insert or delete a leaf node, a whole sub-

tree, or a node that is neither a leaf nor part of a whole inserted subtree. The

last three (ren_pos, ren_dep, ren_pos_dep) serve to rename a pos tag,

dependency relation, or both.

We begin by uniformly assigning basic edits a cost of 1.0,2 which brings the cost

of a full node insertion or deletion to 3 (all the three fields inserted or deleted). We

allow renaming of pos and/or relation type iff the lemmas of source and target

nodes are identical. This is aimed at minimizing node variations introduced by

morphology differences, tagging or parsing errors. When two nodes are identical

and thus do not appear in the edit script, or when two nodes are renamed due to

2This applies separately to each element of the tripartite structure; e.g., deleting a pos entry,
inserting a lemma, etc.

96

3. Feature-driven QA from Unstructured Data: Text

the same lemma, we say they are aligned by the tree edit model (see Figure 3.1).

These cost decisions conform with the triangle inequality.

We used Zhang and Shasha (1989)’s dynamic programming algorithm (imple-

mented by Augsten et al. (2010)) to produce an optimal edit script with the lowest

tree edit distance. The approach explores both trees in a bottom-up, post-order

manner, running in time:

O(|T1| |T2|min(D1, L1)min(D2, L2))

where |Ti| is the number of nodes, Di is the depth, and Li is the number of leaves,

with respect to tree Ti.

Figure 3.2 shows an example of transforming the dependency tree of Tennis player

Jennifer Capriati is 23 (source) to the tree of What sport does Jennifer Capriati play

(target) in 9 steps. In post order, it performs the following edits:

1. On the left branch:

a) insert the left branch (what sport) of the target tree into the source tree

(steps 1 and 2);

b) remove the non-overlapping node of the left branch of the source tree

(tennis player, steps 3 and 4);

c) rename the pos tag of the jennifer node in the left branch of the source

tree since it appears in both trees (step 5);

2. On the right branch:

a) insert the play node of the target tree into the source tree (step 6);

b) delete the right branch of the source tree (23 and be, steps 7 and 8);

3. On the root node: insert the root node of the target tree to the source tree

(do, step 9).

The total 9 steps form the final edit script for transforming from the source tree

to the target tree.

97

3. Feature-driven QA from Unstructured Data: Text

Additionally, we fix the cost of stopword renaming to 2.5, even in the case of

identity, regardless of whether two stopwords have the same pos tags or relations.

Stopwords tend to have fixed pos tags and dependency relations, which often

leads to less expensive alignments as compared to renaming content terms. In

practice this gave stopwords “too much say” in guiding the overall edit sequence.

The reason behind this was: when the algorithm walks up both trees and decides

to rename a pair of stopwords, the next expected search direction is fixed by the

current edit. In some situations, it might fail to rename a pair of content words,

and end up with first deleting it from T1, then inserting the content word with the

same lemma from T2 to T1 (instead of just renaming). This is an undesirable effect

because less meaningful stopwords are aligned but content words are not. A cost

of 2.5 for stopword is less than 3 so that stopwords do not get deleted/inserted, but

larger than 2 so content words (with a renaming cost of at most 2) get renamed

first.

The resultant system is fast in practice, processing 10, 000 pre-parsed tree pairs

per second on a contemporary machine.3 In later tasks, feature extraction and

decoding will slow down the system, but the final system was still able to process

200 pairs per second.

3.2.2. TED for Sentence Ranking

The task of Question Answer Sentence Ranking (QASR) takes a question and a

set of source sentences, returning a list sorted by the probability likelihood that

each sentence contains an appropriate answer. Prior work in this includes that of:

Punyakanok et al. (2004), based on mapping syntactic dependency trees; Wang

et al. (2007) utilizing Quasi-Synchronous Grammar (Smith and Eisner, 2006);

3As a relevant note, later we tried to optimize these costs over a development set with grid
searching cost parameters. The search was done in conjunction with using WordNet relations
(described in the next section). Experiments showed that no significant improvement over the
original uniform cost setting. Soon later we decided to move on with discriminative aligners
that optimize these costs in a more principled way. The work is described in Chapter 4.

98

3. Feature-driven QA from Unstructured Data: Text

prd

player
nn

jennifer
nn

capriati
nnp

23
cd

be
vbz

subj

nmod
nmod

tennis
nn

nmod

Tennis player Jennifer
 Capriati is 23

capriati
nnp

jennifer
nnp

what
wp

sport
nn

play
vbz

do
vbz

vmod vmod

nmod

What sport does
Jennifer Capriati play

prd

player
nn

jennifer
nn

capriati
nnp

23
cd

be
vbz

subj

nmod
nmod

tennis
nn

nmod

sport
nn

nmod

1. INS_LEAF(sport/nn/nmod)
2. INS(what/wp/vmod)

what
wp

vmod

prd

jennifer
nn

capriati
nnp

23
cd

be
vbz

subj

nmod

sport
nn

nmod

what
wp

vmod

3. DEL_LEAF(tennis/nn/nmod)
4. DEL_LEAF(player/nn/nmod)
5. REN_POS (jennifer/nn,
 jennifer/nnp).

prd

jennifer
nn

capriati
nnp

23
cd

be
vbz

subj

nmod

sport
nn

nmod

what
wp

vmod

play
vbz

vmod

6. INS(play/vbz/vmod)

jennifer
nn

capriati
nnp

subj

nmod

sport
nn

nmod

what
wp

vmod

play
vbz

vmod

7. DEL_LEAF(23/cd/prd)
8. DEL(be/vbz/root)

9. INS(do/vbz/root)

Figure 3.2.: Tree edit sequence according to the Zhang and Shasha (1989) al-
gorithm. This illustration transforms the tree of “Tennis player
Jennifer Capriati is 23” to the tree of “What sport does Jennifer
Capriati play” in 9 steps. The parse trees and pos tags are real
thus contain errors. Note that steps 1 and 2 can be merged to
ins_subtree(what/wp/vmod).

99

3. Feature-driven QA from Unstructured Data: Text

Heilman and Smith (2010) using TED; and Shima et al. (2008), Ding et al. (2008)

and Wang and Manning (2010), who each employed a CRF in various ways. Wang

et al. (2007) made their dataset public, which we use here for system validation.

To date, models based on TED have shown the best performance for this task.

Our implementation follows Heilman and Smith (2010), with the addition of 15

new features beyond their original 33 (see Table 3.1). Based on results in dev, we

extract edits in the direction from the source sentence to the question.

In addition to syntactic features, we incorporated the following lexical-semantic

relations from WordNet: hypernym and synonym (nouns and verbs); entailment

and causing (verbs); andmembersOf, substancesOf, partsOf, haveMember, haveSub-

stance, havePart (nouns). Such relations have been used in prior approaches to

this task (Wang et al., 2007, Wang and Manning, 2010), but not in conjunction

with the model of Heilman and Smith (2010).

These were made into features in two ways: WNsearch loosens renaming and

alignment within the TED model from requiring strict lemma equality to allowing

lemmas that shared any of the above relations, leading to renaming operations such

as ren_...(country, china) and ren_...(sport, tennis); WNfeature counts

how many words between the sentence and answer sentence have each of the

above relations, separately as 10 independent features, plus an aggregate count

for a total of 11 new features beyond the earlier 48.

These features were then used to train a logistic regression model using Weka

(Hall et al., 2009). We kept the default parameter setting but tried various features

on the dev set. The input is (question, sentence, does_sentence_answer_question)

tuples and the prediction is on whether a new sentence contains the answer to the

question.

100

3. Feature-driven QA from Unstructured Data: Text

set source #question #pairs %positive length
train-all trec8-12 1229 53417 12.0 any
train trec8-12 94 4718 7.4 ≤ 40
dev trec13 82 1148 19.3 ≤ 40
test trec13 89 1517 18.7 ≤ 40

Table 3.2.: Distribution of data, with imbalance towards negative examples (sen-
tences without an answer).

3.2.3. QA Sentence Ranking Experiment

We trained and tested on the dataset from Wang et al. (2007), which spans QA

pairs from TREC QA 8-13 (see Table 3.2). Per question, sentences with non-

stopword overlap were first retrieved from the task collection, which were then

compared against the TREC answer pattern (in the form of Perl regular expres-

sions). If a sentence matched, then it was deemed a (noisy) positive example.

Finally, train, dev and test were manually corrected for errors. Those authors

decided to limit candidate source sentences to be no longer than 40 words.4 Keep-

ing with prior work, those questions with only positive or negative examples were

removed, leaving 94 of the original 100 questions for evaluation.

The data was processed by Wang et al. (2007) with the following tool chain: pos

tags via MXPOST (Ratnaparkhi, 1996); parse trees via MSTParser (McDonald

et al., 2005) with 12 coarse-grained dependency relation labels; and named entities

via Identifinder (Bikel et al., 1999). Mean Average Precision (MAP) and Mean

Reciprocal Rank (MRR) (defined in detail in § 2.2.3.2 on page 40) are reported in

Table 3.3. Our implementation gives state of the art performance, and is furthered

improved by our inclusion of semantic features drawn from WordNet.5

4train-all is not used in QASR, but later for answer extraction; train comes from the first
100 questions of train-all.

5As the test set is of limited size (94 questions), then while our MAP/MRR scores are 2.8% ∼
5.6% higher than prior work, this is not statistically significant according to the Paired
Randomization Test (Smucker et al., 2007), and thus should be considered on par with the
current state of the art.

101

3. Feature-driven QA from Unstructured Data: Text

System MAP MRR
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
this dissertation (48 features) 0.6319 0.7270
+WNsearch 0.6371 0.7301
+WNfeature (11 more feat.) 0.6307 0.7477

Table 3.3.: Results on the QA Sentence Ranking task.

3.3. Answer Extraction as Sequence Tagging

In this section we move from ranking source sentences, to the next QA stage:

answer extraction. Given our competitive TED-based alignment model, the most

obvious solution to extraction would be to report those spans aligned from a source

sentence to a question’s wh-terms. However, we show that this approach is better

formulated as a (strongly indicative) feature of a larger set of answer extraction

signals. The result is a compact system combining a state of the art model for

measuring syntactic correspondences, with a well-understood method for sequence

tagging. Together these form a question answering solution that is competitive

with more complicated QA pipelines that have been used in the past.

3.3.1. Sequence Model

Edit scripts resulting from the TED model is rich in useful information for answer

extraction. Intuitively, when transforming from answer tree to question tree, an-

swers should appear mostly in the deleted edits, sometimes also in aligned words

(unedited or renamed).6 Since the edit script is also a sequence of different edits,

which appears in an order of deterministic post-order tree traversal, it also has a

Markov property that the next possible edit only depends on the current edit node.

A direct way is to build a Markov model over the edit script and tag all possible

6For instance, What is the largest city in the US? – New York City. Here City appears in the
aligned edit.

102

3. Feature-driven QA from Unstructured Data: Text

answers. However, this is not desirable in practice: the tree edit sequence does

not guarantee that answers span a continuous region in the original word order (a

string edit distance algorithm guarantees this but loses the nice properties of tree

edits). For instance, suppose the fragment in 90 days with a dependency parse 90

nmod−−−→ days pmod−−−→ in is the answer to a when question, then the edit script would

contain a sequence roughly like del(90), del(days), del(in). Here the beginning of

answer (in) comes after the inside of answer (90 days), which is counter-intuitive to

model (imagine learning the transition probability from i-answer to b-answer).

Thus instead of building a Markov model over the edit script, we build one over

the original sentence and heavily utilize features extracted from the edit script.

This way nicely preserves transition directions without losing the power from tree

edit movement. Further, to utilize a good quantity of features, and to also connect

the answer sentence with the question sentence through tree edits, we need to

inspect an entire input at each token. Thus a linear-chain CRF model (Lafferty

et al., 2001) is a better fit to HMMs. We only used a first-order CRF, as there

is not too much clean training data for higher-order CRFs. The task is defined

as tagging each token in a sentence with one of the following labels: b-answer

(beginning of answer), i-answer (inside of answer), o (outside of answer). Figure

3.3 shows an example.

Some TREC questions (starting from 2004) were also designed in a way that for

each document, several related questions were asked in a row. Thus subsequent

answers should still be on the same topic and it is more likely to find the answer

from the same document, i.e., there are inter-sentence dependencies in consec-

utive questions and answers. Ideally, a skip-chain CRF (Sutton and Mccallum,

2004, Galley, 2006) would model this property better. However, the way that

this QA dataset was processed drops this property, i.e., each question is assumed

independent. Thus we think a linear-chain CRF would be sufficient for this task.

103

3. Feature-driven QA from Unstructured Data: Text

Tennis player Jennifer Capriati is 23

B-ANS O O O O O

Figure 3.3.: An example of linear-chain CRF for answer sequence tagging.

3.3.2. Feature Design

In this subsection we describe the local and global features used by the CRF.

Chunking We use the pos/ner/dep tags directly just as one would in a chunk-

ing task. Specifically, suppose t represents the current token position and pos[t] its

POS tag, we extract unigram, bigram and trigram features over the local context,

e.g., pos[t − 2], pos[t − 2] : pos[t − 1], and pos[t − 2] : pos[t − 1] : pos[t]. Similar

features are extracted for named entity types (ner[t]), and dependency relation

labels (dep[t]).

Unlike chunking, where memorizing lexicons for phrase types is helpful to the

task (e.g., the word John often is of type b-np), we did not include any lexicalized

features in answer extraction as it is harmful to memorize answers for a general

question.

Our intuition is these chunking features should allow for learning which types

of words tend to be answers. For instance, we expect adverbs to be assigned lower

feature weights as they are rarely a part of answer, while prepositions may have

different feature weights depending on their context. For instance, of in kind

of silly has an adjective on the right, and is unlikely to be the Beginning of an

answer to a TREC-style question, as compared to in when paired with a question

on time, such as seen in an answer in 90 days, where the preposition is followed

by a number then a noun. Later on in Table 3.8 on page 111 we should that this

104

3. Feature-driven QA from Unstructured Data: Text

Feature Description
edit=X type of edit feature. X: del, del_subtree,

del_leaf, ren_pos, ren_dep,
ren_pos_dep or align.

X_pos=?
X_ner=?
X_dep=?

Delete features. X is either del, del_subtree
or del_leaf. ? represents the corresponding

pos/ner/dep of the current token.
Xpos_from=?f
Xpos_to=?t

Xpos_f_t=?f_?t
Xner_from=?f
Xner_to=?t

Xner_f_t=?f_?t
Xdep_from=?f
Xdep_to=?t

Xdep_f_t=?f_?t

Rename features. X is either ren_pos,
ren_dep or ren_pos_dep. Suppose word f
in answer is renamed to word t in question, then
?f and ?t represent corresponding pos/ner/dep of

f and t.

align_pos=?
align_ner=?
align_dep=?

Align features. ? represents the corresponding
pos/ner/dep of the current token.

Table 3.4.: Features based on edit script for answer sequence tagging.

intuition holds.

Question-type Chunking features do not capture the connection between ques-

tion word and answer types. Thus they have to be combined with question

types. For instance, how many questions are usually associated with numeric

answer types. Following a limited version of prior work in question-type clas-

sification, we intended to avoid sophisticated engineering of question classifica-

tion but chose to do a simple question analysis and encode the question word

lexicon into features. We skimmed through train and dev and found the fol-

lowing question types that clearly indicate the types of answers: who, whom,

when, where, how many, how much, how long, and then for each token, we com-

bine the question term with its chunking features described in (most tokens have

different features because they have different pos/ner/dep types). One fea-

105

3. Feature-driven QA from Unstructured Data: Text

ture example of the QA pair how_much/100_dollars for the word 100 would be:

qword=how_much|pos[t]=CD|pos[t+1]=NNS. We expect high weight for this fea-

ture since it is a good pattern for matching question type and answer type. Similar

features also apply to what, which, why and how questions, even though they do

not indicate an answer type as clearly as how much does.

Some extra features are designed for what/which questions per required answer

types. The question dependency tree is analyzed and the Lexical Answer Type

(LAT) is extracted. The following are some examples of LAT for what questions:

• color: what is Crips’ gang color?

• animal: what kind of animal is an agouti?

The extra what-LAT feature is also used with chunking features for what/which

questions. For instance, Table 3.8 on page 111 shows a feature when the LAT of

a what question is lake.

There is significant prior work in building specialized templates or classifiers

for labeling question types (Hermjakob, 2001, Li and Roth, 2002, Zhang and Lee,

2003, Hacioglu and Ward, 2003, Metzler and Croft, 2005, Blunsom et al., 2006,

Moschitti et al., 2007). We designed our shallow question type features based on

the intuitions of these prior work, with the goal of having a relatively compact

approach that still extracts useful predictive signal. One possible drawback, how-

ever, is that if an LAT is not observed during training but shows up in testing, the

sequence tagger would not know which answer type to associate with the ques-

tion. In this case it falls back to the more general qword=? feature and will most

likely pick the type of answers that are mostly associated with what questions in

training.

Edit script Our TED module produces an edit trace for each word in a candidate

sentence: the word is either deleted, renamed (if there is a word of the same lemma

106

3. Feature-driven QA from Unstructured Data: Text

in the question tree) or strictly aligned (if there is an identical node in the question

tree). A word in the deleted edit sequence is a cue that it could be the answer. A

word being aligned suggests it is less likely to be an answer. Thus for each word

we extract features based on its edit type, shown in Table 3.4.

These features are also appended with the token’s pos/ner/dep information.

For instance, a deleted noun usually carries higher edit feature weights than an

aligned adjective. We do not intersect edit features with question type features any

more as we believe the conjunction between question type features and chunking

features is already discriminative against answer type selection.

Alignment distance We observed that a candidate answer often appears close

to an aligned word (i.e., answer tokens tend to be located “nearby” portions of text

that align across the pair), especially in compound noun constructions, restrictive

clauses, preposition phrases, etc. For instance, in the following pair, the answer

Limp Bizkit comes from the leading compound noun:

• What is the name of Durst ’s group?

• Limp Bizkit lead singer Fred Durst did a lot ...

Past work has designed large numbers of specific templates aimed at these con-

structions (Soubbotin, 2001, Ravichandran et al., 2003, Clark et al., 2003, Sneiders,

2002b). Here we use a single general feature that we expect to pick up much of

this signal, without the significant feature engineering.

Thus we incorporated a simple feature to roughly model this phenomenon. It is

defined as the distance to the nearest aligned non stopword in the original word

order. In the above example, the only aligned non stopword is Durst. Then this

nearest alignment distance feature for the word Limp is:

nearest_dist_to_align(Limp):5

This is the only integer-valued feature. All other features are binary-valued.

Note this feature does not specify answer types: an adverb close to an aligned

107

3. Feature-driven QA from Unstructured Data: Text

word can also be wrongly taken as a strong candidate. Thus we also include a

version of the pos/ner/dep based feature for each token:

• nearest_dist_pos(Limp)=NNP

• nearest_dist_dep(Limp)=NMOD

• nearest_dist_ner(Limp)=B-PERSON

In practice we also tried to use the nearest distance to aligned word in dependency

trees instead of in word order. However, this did not work better.

3.3.3. Overproduce-and-vote

In dev, each question comes with on average 13 candidate answer sentences, only

2.5 of which contain an answer. We make an assumption that each sentence

produces a candidate answer and then vote among all answer candidates to select

the most-voted as the answer to the original question. An example is shown in

Figure 3.4. Specifically, this overproduce-and-vote strategy applies voting in two

places:

1. If there are overlaps between two answer candidates, a partial vote is per-

formed. For instance, for a when question, if one answer candidate is April ,

1994 and the other is 1994, then besides the base vote of 1, both candidates

have an extra partial vote of #overlap/#total words = 1/4. We call this adjusted

vote.

2. If the CRF fails to find an answer, we still try to “force” an answer out of the

tagged sequence, (which contains all o’s). thus forced vote. Due to its lower

credibility (the sequence tagger does not think it is an answer), we manually

down-weight the prediction score by a factor of 0.1 (divide by 10).

The modified score for an answer candidate is thus: total vote = adjusted vote+

0.1 × forced vote. To compute forced vote, we make the following observation.

108

3. Feature-driven QA from Unstructured Data: Text

when did amtrak begin operations ?
S1: Amtrak has not turned a profit since it was founded in 1971 [0.95].
S2: In 1971 [0.98], Amtrak – which combined and streamlined the operations of 18
intercity passenger railroads – went into service .
S3: Amtrak has not made a profit since Congress created it in 1971 [0.58] to take
over passenger operations of private railroads .
S4: In 1997 [0.98], Congress said Amtrak must become self-sufficient by 2002 [0.98].
S5: Congress gave Amtrak in 1997 [0.69] an infusion of aid along with a 2003 [0.74]
deadline to become self-sufficient .

Figure 3.4.: A real example of CRF answer tagging. Probabilities for proposed
answers are marked in [], with bold being correct and italics being
wrong.

Sometimes the sequence tagger does not tag an answer in a candidate sentence

at all, if there is not enough probability mass accumulated for b-ans. However,

a possible answer can still be caught if it has an “outlier” marginal probability.

Table 3.5 shows an example. The answer candidate World War II has a much lower

marginal probability as an “o” but still not low enough to be part of b-ans/i-ans.

To catch such an outlier, we use (MAD), which is the median of the absolute

deviation from the median of a data sequence. Given a data sequence x, MAD is

defined as:

MAD(x) = median(| x−median(x) |)

Compared to mean value and standard deviation, MAD is more robust against

the influence of outliers since it does not directly depend on them. We select those

words whose marginal probability is 50 times of MAD away from the median of

the whole sequence as answer candidates. They contribute to the forced vote.

Down-weight ratio (0.1) and MAD ratio (50) were hand-tuned on dev.7

7One might further improve this by leveraging the probability of a sentence containing an
answer from the QA pair ranker described in Section 3.2 or via the conditional probability
of the sequence labels, p(y | x), under the CRF.

109

3. Feature-driven QA from Unstructured Data: Text

Gold Prediction Reference Tokens
O O:0.921060 Conant
O O:0.991168 had
O O:0.997307 been
O O:0.998570 a
O O:0.998608 photographer
O O:0.999005 for
O O:0.877619 Adm
O O:0.988293 .
O O:0.874101 Chester
O O:0.924568 Nimitz
O O:0.970045 during

B-ANS O:0.464799 World
I-ANS O:0.493715 War
I-ANS O:0.449017 II
O O:0.915448 .

Table 3.5.: A sample sequence tagging output that fails to predict an answer. The
first column is the gold output and the second column is the model
output with the marginal probability for predicated labels. Note that
World War II has much lower probabilities as an o than others.

3.3.4. Experiments

3.3.4.1. QA Results

The dataset listed in Table 3.2 was not designed to include an answer for each

positive answer sentence, but only a binary indicator on whether a sentence con-

tains an answer. We used the answer pattern files (in Perl regular expressions)

released along with TREC8-13 to pinpoint the exact answer fragments. Then we

manually checked train, dev, and test for errors. train-all already came as

a noisy dataset so we did not manually clean it, also due to its large size.

We trained on only the positive examples of train and train-all separately

with CRFsuite (Okazaki, 2007). The reason for training solely with positive ex-

amples is that they only constitute 10% of all training data and if trained on all,

the CRF tagger was very biased on negative examples and reluctant to give an

answer for most of the questions. The CRF tagger attempted an answer for about

110

3. Feature-driven QA from Unstructured Data: Text

2/3 of all questions when training on just positive examples.

dev was used to help design features. A practical benefit of our compact ap-

proach is that an entire round of feature extraction, training on train and testing

on dev took less than one minute. Table 3.6 reports F1 scores on both the positive

and negative examples of test.

Our baseline model, which aligns the question word with some content word

in the answer sentence,8 achieves 31.4% in F1. This model does not require any

training. “CRF” only takes votes from those sentences with an identified answer.

It has the best precision among all models. “CRF forced” also detects outliers

from sentences not tagged with an answer. Large amount of training data, even

noisy, is helpful. In general train-all is able to boost the F1 value by 7 ∼ 8%.

Also, the overgenerate-and-vote strategy, used by the “forced” approach, greatly

increased recall and achieved the best F1 value.

We also experimented with the two methods utilizing WordNet in Section 3.2.2,

i.e., WNsearch and WNfeature. In general, WNsearch helps F1 and yields the

best score (63.3%) for this task. For WNfeature9 we observed that the CRF

model converged to a larger objective likelihood with these features. However, it

did not make a difference in F1 after overgenerate-and-vote.

Finally, we found it difficult to do a head-to-head comparison with other QA

systems on this task.10 Thus we contribute this enhanced dataset with manual

answer labels to the community, hoping to solicit direct comparisons in the future.

Also, we believe our chunking and question-type features capture many intuitions

most current QA systems rely on, while our novel features are based on TED. We

further conduct an ablation test to compare traditional and new QA features.

8 This only requires minimal modification to the original TED algorithm: the question word
is aligned with a certain word in the answer tree instead of being inserted. Then the whole
subtree headed by the aligned word counts as the answer.

9These are binary features indicating whether an answer candidate has a WordNet relation (
c.f. §3.2.2) with the LAT. For instance, tennis is a hyponym of the LAT word sport in the
what sport question in Figure 3.1.

10Reasons include: most available QA systems either retrieve sentences from the web, have
different preprocessing steps, or even include templates learned from our test set.

111

3. Feature-driven QA from Unstructured Data: Text

System Train Precision% Recall% F1%

CRF train 55.7 43.8 49.1
train-all 67.2 50.6 57.7

CRF + WNsearch train 58.6 46.1 51.6
train-all 66.7 49.4 56.8

CRF forced train 54.5 53.9 54.2
train-all 60.9 59.6 60.2

CRF forced + WNsearch train 55.2 53.9 54.5
train-all 63.6 62.9 63.3

Table 3.6.: Performance on test. “CRF” only takes votes from candidates tagged
by the sequence tagger. “CRF forced” (described in §3.3.3) further
collects answer candidates from sentences that CRF does not tag an
answer by detecting outliers.

All -pos -ner -dep -left 3 -edit -align -left 2
CRF 49.1 44.7 44.0 49.4 19.4 44.3 47.4 40.5
Forced 54.2 48.9 50.8 54.5 25.3 47.5 51.1 42.0

Table 3.7.: QA F1 based on feature ablation tests.

3.3.4.2. Ablation Test

We did an ablation test for each of the four types of features. Note that the ques-

tion type features are used in combination with chunking features (e.g., qword=

how_much|pos[t]=CD|pos[t+1]=NN), while the chunking feature is defined over

pos/ner/dep separately. We tested the crf model with deletion of one of the

following features each time:

• pos, ner or dep. These features are all combined with question types.

• The three of the above. Deletion of these features also deletes question type

feature implicitly.

112

3. Feature-driven QA from Unstructured Data: Text

NONE CHUNKING CHUNKING+TED
Features Used

0

10

20

30

40

50

60

F1
(%

) 31.4

40.5

49.1

42.0

54.2

F1 with Different Features

Baseline

CRF

CRF forced

Figure 3.5.: Impact of adding features based on chunking and question-type
(chunking) and tree edits (ted), e.g., edit and align.

• edit. Features extracted from edit script.

• align. Alignment distance features.

• The two of the above, based on the TED model.

Table 3.7 shows the F1 scores of ablation test when trained on train. ner

and edit are the two single most significant features. ner is important be-

cause it closely relates question types with answer entity types (e.g., qword=who

|ner[t]=PERSON). edit is also important because it captures the syntactic associ-

ation between question tree and answer tree. Taking out all three pos/ner/dep

features means the chunking and question type features do not fire anymore. This

has the biggest impact on F1. Note the feature redundancy here: the question

type features are combined with all three pos/ner/dep features thus taking out a

single one does not decrease performance much. However, since TED related fea-

tures do not combine question type features, taking out all three pos/ner/dep

features decreases F1 by 30%. Without TED related features (both edit and

align) F1 also drops more than 10%.

Figure 3.5 is a bar chart showing how much improvement each feature brings.

While having a baseline model with 31.4% in F1, traditional features based on

113

3. Feature-driven QA from Unstructured Data: Text

pos/dep/ner and question types brings a 10% increase with a simple sequence

tagging model (second bar labeled “CHUNKING” in the figure). Furthermore,

adding TED based features to the model boosted F1 by another 10%.

3.3.5. Summary

Answer extraction is an essential task for any text-based question-answering system to

perform. We have cast answer extraction as a sequence tagging problem by deploying

a fast and compact CRF model with simple features that capture many of the intu-

itions in prior “deep pipeline” approaches, such as Harabagiu et al. (2001), Pasca and

Harabagiu (2001), Nyberg et al. (2003). We introduced novel features based on TED

that boosted F1 score by 10% compared with the use of more standard features. Besides

answer extraction, our modified design of the TED model is the state of the art in the

task of ranking QA pairs. Finally, to improve the community’s ability to evaluate QA

components without requiring increasingly impractical end-to-end implementations, we

have proposed answer extraction as a subtask worth evaluating in its own right, and con-

tributed a dataset that could become a potential standard for this purpose. We believe

all these developments will contribute to the continuing improvement of QA systems in

the future.

Next we move on to introduce how the IR front end can be easily improved with

features learned from the answer extraction back end.

3.4. Structured Information Retrieval for QA

3.4.1. Motivation

A general architecture for a Question Answering system starts with an Information

Retrieval module that feeds potentially relevant passages to an answer extraction mod-

ule that identifies potential answers. The overall performance of such a system is thus

114

3. Feature-driven QA from Unstructured Data: Text

feature label weight
1 qword=when|pos0=cd B-ANS 0.86
2 qword=when|ner0=date B-ANS 0.79
3 qword=when|pos0=cd O -0.74
4 what-lake|ner0=loc B-ANS 0.12
5 what-lake|pos0=nnp|pos1=nnp B-ANS 0.16
6 what-lake|pos−1=in|pos0=nnp B-ANS 0.15
7 what-lake|pos0=vbn O 0.001
8 qword=what|pos0=nn B-ANS 0.85
9 qword=what|ner0=i-money B-ANS 0.56
10 qword=what|ner0=b-product B-ANS 0.56
11 qword=what|ner0=i-loc B-ANS 0.53
12 qword=what|pos0=cc I-ANS 0.31

Table 3.8.: Learned weights for sampled features with respect to the label of cur-
rent token (indexed by [0]) in a CRF. The larger the weight, the more
“important” is this feature to help tag the current token with the cor-
responding label.

bounded by the IR component, resulting in research specifically on Information Retrieval

for Question Answering (IR4QA) in either a monolingual or crosslingual setting (Green-

wood, 2008, Sakai et al., 2010). Common approaches to improving IR4QA include query

expansion, structured retrieval, and translation models. However, despite their individ-

ual success, these approaches either show patterns of complicated engineering on the IR

side, or isolate the upstream passage retrieval from downstream answer extraction. We

argue that:

1. an IR front end should deliver exactly what a QA11 back end needs;

2. many intuitions employed by QA should be and can be re-used in IR, rather than

re-invented.

Through this section, we demonstrate the idea that, given a QA system, the IR com-

ponent does not need to do any extra analysis on questions, but instead gains all the

analytical power for free from its downstream QA system. We propose a structured

retrieval method with prior knowledge of its downstream QA component, that feeds QA

with exactly the information needed for answer extraction.
11After this point in § 3.4 we use the term QA in a narrow sense: QA without the IR component,

i.e., answer extraction.

115

3. Feature-driven QA from Unstructured Data: Text

As a motivating example, using the question When was Alaska purchased from the

TREC 2002 QA track as the query to the Indri (Strohman et al., 2005) search engine,

the top sentence retrieved from the accompanying AQUAINT corpus is:

Eventually Alaska Airlines will allow all travelers who have purchased

electronic tickets through any means.

While this relates Alaska and purchased, it is not a useful passage for the given

question. Based on a non-optimized IR configuration, none of the top 1000 returned

passages contained the correct answer: 1867. It is apparent that the question asks for a

date; intuitively this motivates an IR component that:

1. Recognizes that the answer type is a date;

2. Copes with variations of date seeking questions, such as when, what year, how

long ago, etc.;

3. Ensures that the named entity (NE) tagger really tags dates in the corpus as date

entities.

Prior work followed this intuition via predictive annotation (Prager et al., 2000, 2006):

there text is first annotated in a predictive manner (of what types of questions it might

answer) with approximately 20 answer types and then indexed. A question analysis

component (consisting of roughly 400 question templates) maps the desired answer type

to one of the 20 existing answer types. Retrieval is then performed with both the

question and predicated answer types in the query. This was the first work combining

both structured retrieval and answer typing for question answering.

However, predictive annotation has its limitations: it is labor intensive (new answer

types need be manually defined for each new question type observed), and it makes cer-

tain strong assumptions on the abilities of the underlying NLP pipeline (e.g., it assumes

that preprocessing text with named entity tags will result in accurate named entity tags).

Our proposed retrieval method instead directly asks the downstream QA system for

the information about which entities answer which questions, via two steps:

1. reusing the question analysis components from downstream QA;

116

3. Feature-driven QA from Unstructured Data: Text

2. forming a query based on the most relevant answer features given a question from

the learned QA model.

There is no query-time overhead and no manual template creation for answer typing.

Moreover, this approach is more robust against, e.g., entity recognition errors, because

answer typing knowledge is learned from how the data was actually labeled, not from

how the data was assumed to be labeled (e.g., manual templates usually assume perfect

labeling of named entities, but often it is not the case in practice).

We use a statistically-trained QA system described in § 3.3 that recognizes the asso-

ciation between question type and expected answer types through various features. The

QA system employs a linear chain Conditional Random Field (CRF) (Lafferty et al.,

2001) and casts the task of answer extraction as a sequence tagging problem: given a

question, it tags each token as to whether it is the Beginning/Inside/Outside (BIO) of an

answer. This will be our off-the-shelf QA system, which automatically learns a compact

model that captures many template-based intuitions from traditional QA approaches,

directly interpreted by its features extracted from, e.g., part-of-speech tagging (POS)

and named entity recognition (NER), and learned weights, as shown in Table 3.8. For

instance, line 1 says when answering a when question, and the pos of current token is cd

(cardinal number), it is likely (large weight) that the token is tagged as b-ans (beginning

of the answer). Lines 4-7 list features learned for the question what is the deepest

lake in the US? in the training set. Line 4: current token with ner=loc is likely to

be b-ans; Line 5: current token with pos=nnp and followed by a token with pos=nnp

is likely to be b-ans; Line 6: current token with pos=nnp and previous token with

pos=in is likely to be b-ans; Line 7: current token with pos=vbn is possibly not an

answer (positive weight for the label type o).

With weights optimized by CRF training, we can learn how answer features are cor-

related with question features. These features, whose weights are optimized by the CRF

training, directly reflect what the most important answer types associated with each

question type are. For instance, line 2 in Table 3.8 says that if there is a when question,

and the current token’s ner label is date, then it is likely that this token is tagged as

b-ans. IR can easily make use of this knowledge: whenever there is a when question, IR

117

3. Feature-driven QA from Unstructured Data: Text

retrieves sentences containing tokens labeled as date by ner, or pos tagged as cd. The

only extra processing is to pre-tag and index the text with pos and ner labels. The an-

alyzing power of discriminative answer features for IR comes for free from a trained QA

system. Unlike predictive annotation, statistical evidence determines the best answer

features given the question, with no manual pattern or templates needed.

To compare again predictive annotation with our approach: predictive annotation

works in a forward mode, downstream QA is tailored for upstream IR, i.e., QA works

on whatever IR retrieves. Our method works in reverse (backward): downstream QA

dictates upstream IR, i.e., IR retrieves what QA wants. Moreover, our approach extends

easily beyond fixed answer types such as named entities: we are already using pos tags

as a demonstration. We can potentially use any helpful answer features in retrieval.

For instance, if the QA system learns that in order to is highly correlated with why

question through lexicalized features, or some certain dependency relations are helpful

in answering questions with specific structures, then it is natural and easy for the IR

component to incorporate them. Any properties helpful to answer a question can be

abstracted as answer features and learned through the QA system.

There is also a distinction between our method and the technique of learning to rank

applied in QA (Bilotti et al., 2010b, Agarwal et al., 2012). Our method is a QA-driven

approach that provides supervision for IR from a learned QA model, while learning to

rank is essentially an IR-driven approach: the supervision for IR comes from a labeled

ranking list of retrieval results.

Overall, we make the following contributions:

• Our proposed method tightly integrates QA with IR and the reuse of analysis

from QA does not put extra overhead on the IR queries. This QA-driven approach

provides a holistic solution to the task of IR4QA.

• We learn statistical evidence about what the form of answers to different questions

look like, rather than using manually authored templates. This provides great

flexibility in using answer features in IR queries.

118

3. Feature-driven QA from Unstructured Data: Text

retrieval document passage methods employed
unstructured plain text plain text word overlap, TFIDF, Okapi BM25, etc

structured
plain text structured dependency path or SRL graph match, etc
structured structured SRL structure match, this work

Table 3.9.: The format of document retrieval and passage retrieval for both un-
structured and structured retrieval.

Our systematic experiments give a full spectrum evaluation of all three stages of IR+QA:

document retrieval, passage retrieval and answer extraction, to examine thoroughly the

effectiveness of the method.12

3.4.2. Background

We describe the most relevant research about IR4QA in this section, and divide them

into two categories: unstructured retrieval and structured retrieval (see Table 3.9 for

better navigation).

We start unstructured retrieval with Tellex et al. (2003), who summarized and quan-

titatively compared 8 passage retrieval algorithms, from the description of the IR com-

ponents of the top-performing TREC10 systems, including simpler algorithms based on

word overlap (Light et al., 2001), density estimation from number of terms with high idf

values in a fixed-length window (Clarke et al., 2000), and more sophisticated estimations

from summing various matches and mismatches between the query and the passage (It-

tycheriah et al., 2001a). More recently, Veeravalli and Varma (2009) built a translation

model for each answer type and ranked each retrieved passage with the probability of

the given question generated by this passage, outperforming the then state-of-the-art

algorithms such as Okapi BM25 (Robertson and Walker, 1999). A side finding from the

experiments is that the mature open-source retrieval engine Indri (Strohman et al., 2005)

is competitive against other common retrieval weighting algorithms such as TFIDF and

KL-divergence. Other work on translation models includes that of Berger and Lafferty

12Rarely are all three aspects presented in concert (see §3.4.2).

119

3. Feature-driven QA from Unstructured Data: Text

(1999) and Murdock and Croft (2004).

Structured retrieval can be applied at two stages: document retrieval and/or passage

retrieval. In structured document retrieval, text is first annotated (by tagging, parsing,

etc), then indexed and retrieved. In structured passage retrieval, conventional document

retrieval is first performed on plain text, then passages or sentences in the returned

document are annotated and retrieved.

For structured passage retrieval, there are techniques of (fuzzy) dependency path

mapping (Cui et al., 2005, Kaisser, 2012), graph matching with Semantic Role Labeling

(SRL) (Shen and Lapata, 2007) and answer type checking with pos tagging and chunking

(Pinchak et al., 2009b). Document retrieval is still the bottleneck for these approaches

since structured analysis is only applied after relevant documents are returned, leading

to a larger initial search space.

For both structured document and passage retrieval, it is often easier to simplify the

task to structured sentence retrieval: retrieving single sentences or structures directly

from the built indices. Bilotti et al. (2007) proposed indexing text with their semantic

roles and named entities. Queries also include constraints of semantic roles and named

entities for the predicate and its arguments in the question. Improvements in recall of

answer-bearing sentences were shown over the bag-of-words baseline. Zhao and Callan

(2008) extended this work with approximate matching and smoothing. Lin and Pantel

(2001) matched dependency paths (with paraphrase or inference rules) to extract answers

from missing arguments of predicates.

Most research uses parsing to assign deep structures. Compared to shallow (pos, ner)

structured retrieval, deep structures need more processing power and more smoothing,

but might also be more precise. 13

Most of the above research (except for Shen and Klakow (2006), Kaisser (2012)) only

reported IR or QA results, but not both, assuming that improvement in one naturally

leads to improvement in the other. Bilotti and Nyberg (2008) challenged this assumption

13Ogilvie (2010) showed in chapter 4.3 that keyword and named entities based retrieval actu-
ally outperformed SRL-based structured retrieval in MAP for the answer-bearing sentence
retrieval task in their setting. In this paper we do not intend to re-invent another parse-based
structure matching algorithm, but only use shallow structures to show the idea of coupling
QA with IR; in the future this might be extended to incorporate “deeper” structure.

120

3. Feature-driven QA from Unstructured Data: Text

Tennis player Jennifer Capriati is 23

B-ANS O O O O O

Figure 3.6.: The CRF-based sequence tagging task of answer extraction to the
question: what sport does Capriati play?. The single-token an-
swer is tagged as b-ans while other tokens are tagged as o (outside
of answer).

and called for tighter coupling between IR and QA. This paper is aimed at that challenge.

We further take a step further to make the coupling process fully automatic, as compared

to the manual effort from Prager et al. (2006).

3.4.3. Method

We start by recapping the downstream QA system described in § 3.3, which treats

answer extraction as a sequence tagging task (re-drawn in Figure 3.6 for convenience):

each token in a candidate sentence is tagged as either the beginning (b-ans), inside

(i-ans), or outside (o) of the answer.14 The CRF-based sequence tagger employs four

kinds of features: chunking (common features used in an NLP chunking task, such as

pos tags and ner labels), question-type, edit script (based on tree edit distance) and

alignment distance. 15

Among them, chunking and question-type features are combined to capture the associ-

ation between answer types and question types. Table 3.8 already shows some examples

based on unigram and bigram chunking features. We store the features and their learned

weights from the trained model for IR usage.

14For QA i-ans helps characterize words that only appear in multi-word answers, thus BIO
labels. For IR the binary labels of ans and o suffice. In principle we should train QA with
two labels for IR usage, but in practice we treated b-ans and i-ans as just ans to keep it
simple as we found there was no difference in the learned top answer types when QA was
trained with 3 vs. 2 labels.

15Edit script and alignment distance features are based on parsed dependency trees. In this
paper we do not incorporate these “deeper” features but only focus on shallow structured
retrieval. Although in theory they can be incorporated in our framework.

121

3. Feature-driven QA from Unstructured Data: Text

We let the trained QA system guide the query formulation when performing structured

retrieval with Indri (Strohman et al., 2005), given a corpus already annotated with

linguistic structures such as pos tags and ner labels. Then the retrieval process runs in

four steps (Figure 3.7):

1. Question Analysis. The question analysis component from QA is reused here. In

this implementation, the only information we have chosen to use from the question

is the question word (e.g., how, who) and the lexical answer types (LAT) in case

of what/which questions (e.g., sport is the LAT of the what sport question in

Figure 3.6).

2. Answer Feature Selection. Given the question word analyzed from above, we

select the 5 most weighted answer features (e.g., pos[0]=cd and ner[0]=date

for a when question). If the LAT word for a what question is new and does not

appear in the trained model, we fall back to a plain what question (features and

weights listed in Table 3.8 on page 111).

3. Query Formulation. The original question is combined with the selected answer

features as the query.

4. Structured Retrieval. Indri retrieves a ranked list of documents or passages for

later evaluation and answer extraction.

As motivated in the introduction, this framework is aimed at providing the following

benefits:

1. Reuse of QA components on the IR side. The IR component reuses code for

question analysis from QA. The top weighted features are also obtained from the

pre-trained QA model. Query formulation is made easier.

2. Various answer features with respect to the question types are statistically deter-

mined. For instance, the ner tagger we used divides location into two categories:

gpe (countries, cities, states, etc.) and loc (non-gpe locations, mountain ranges,

bodies of water). Both of them are learned to be important to answer where

questions.

122

3. Feature-driven QA from Unstructured Data: Text

3. Error tolerance along the NLP pipeline. IR and QA share the same processing

pipeline. Systematic errors made by the processing tools are tolerated, in the sense

that if the same error is made on both the question and sentence, an answer may

still be found. Take the where question mentioned previously, besides ner[0]=gpe

and ner[0]=loc, we also found oddly ner[0]=person an important feature for

it due to that the ner tool sometimes mistakes person names for location names.

For instance, the volcano name Mauna Loa is labeled as a person instead of a

loc. But since the importance of this feature is recognized by downstream QA to

answer where questions, the upstream IR is still motivated to retrieve it, per the

need of QA.

Queries were lightly optimized using the following strategies:

Query Weighting The original query with the Indri #combine operator implicitly

assumes a uniform weight for each term:

#combine(What year was Alaska purchased #max(#any:CD #any:DATE))16

In practice we instead use the weighted query:

#weight(1.0 When 1.0 was 1.0 Alaska 1.0 purchased α #max(#any:CD #any:DATE))

with a weight α for the answer types tuned via cross-validation. In general α < 1.0,

giving the expected answer types “enough say” but not “too much say”: as ner and pos

tags are not lexicalized they accumulate many more counts (i.e. term frequency) than

individual words, thus we down-weight by α < 1.0.

NER Types First We found ner labels better indicators of expected answer types

than pos tags. The reasons are two-fold: 1. In general pos tags are too coarse-grained

in answer types than ner labels. E.g., nnp can answer who and where questions, but is

not as precise as person and gpe. 2. pos tags accumulate even more counts than ner

labels, thus they need separate downweighting. Learning the interplay of these weights

in a joint IR/QA model, is an interesting path for future work.

16Question words and common be/do verbs are already in the stopword list of indexing and
query so the retrieved sentences do not usually contain the original question words (such as
when in this case). The #max(.) operator returns the maximum belief of its argument.

123

3. Feature-driven QA from Unstructured Data: Text

If the top-weighted features are based on ner labels, then we do not include pos

tags for that question. Otherwise pos tags are useful, for instance, in answering how

questions.

Unigram QA Model The QA system uses up to trigram features (Table 3.8 shows

examples of unigram and bigram features). Thus it is able to learn, for instance, that

a pos sequence of in cd nns is likely an answer to a when question (such as: in 5

years). This requires that the IR queries look for a consecutive in cd nns sequence.

We drop this strict constraint (which may need further smoothing) and only use unigram

features, not by simply extracting “good” unigram features from the trained model, but

by re-training the model with only unigram features. In answer extraction, we still use

up to trigram features. 17

3.4.4. Experiments

We want to measure and compare the performance of the following retrieval techniques:

1. off-the-shelf retrieval with an existing IR engine by using the question as query.

This is our baseline.

2. QA-driven shallow structured retrieval (proposed method).

3. answer-bearing retrieval by using both the question and known answer as query

(only evaluated for answer extraction). This provides an approximate upper

bound.

at the three stages of question answering:

1. Document retrieval (finding relevant documents from the corpus), measured by

Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR).
17This is because the weights of unigram to trigram features in a loglinear CRF model is a

balanced consequence for maximization. A unigram feature might end up with lower weight
because another trigram containing this unigram gets a higher weight. Then we would have
missed this feature if we only used top unigram features. Thus we re-train the model with
only unigram features to make sure weights are “assigned properly” among only unigram
features.

124

3. Feature-driven QA from Unstructured Data: Text

When was Alaska purchased?

qword=when

qword=when|POS[0]=CD → ANS: 0.86
qword=when|NER[0]=DATE → ANS: 0.79

...

#combine(Alaska purchased
#max(#any:CD #any:DATE))

1. Simple question analysis
(reuse from QA)

2. Get top weighted
features w.r.t qword

(from trained QA model)

3. Query formulation

4. Structured retrieval

On <DATE>March 30, <CD> 1867 </CD> </DATE>,
U.S. ... reached agreement ... to purchase ... Alaska ...
The islands were sold to the United States in
<CD>1867</CD> with the purchase of Alaska.

…
...

Eventually Alaska Airlines will allow all travelers who
have purchased electronic tickets ...

1

2

...

50

Figure 3.7.: Structured retrieval with queries directly constructed from learned
most weighted features of downstream QA. The retrieved and ranked
list of sentences is pos and ner tagged, but only query-relevant tags
are shown due to space limit. A bag-of-words retrieval approach would
have the sentence shown above at rank 50 at its top position instead.

125

3. Feature-driven QA from Unstructured Data: Text

set questions sentences
#all #positive #all #positive

train 2205 1756 (80%) 22043 7637 (35%)
testgold 99 88 (89%) 990 368 (37%)

Table 3.10.: Statistics for AMT-collected data (total cost was around $800 for
paying three Turkers per sentence). Positive questions are those with
an answer found. Positive sentences are those bearing an answer.

2. Passage retrieval (finding relevant sentences from the document), also by MAP

and MRR.

3. Answer extraction, measured by F1.

All structured and unstructured queries are performed with Indri v5.3 (Strohman et al.,

2005). Indexing and retrieval parameters were left at the default settings for all experi-

ments. We chose to use Indri as our off-the-shelf retrieval baseline based on the following

reasons:

1. Turtle et al. (2012) found Indri to be significantly better than the other popular IR

engine, Apache Lucene, for short queries, and quantitatively better in long queries.

2. Indri performed better than the use of standard weighting schemes such as TFIDF,

Okapi BM25 and KL-divergence (Veeravalli and Varma, 2009).

3. It is commonly used to provide a bag-of-words baseline in other research papers

(Bilotti et al., 2007, Zhao and Callan, 2008, Ogilvie, 2010).

Section 2.3.1 on page 46 also provides a more broad comparison of information retrieval

tools.

3.4.4.1. Data

Test Set for IR and QA The MIT109 test collection by Lin and Katz (2006)

contains 109 questions from TREC 2002 and provides a near-exhaustive judgment of

126

3. Feature-driven QA from Unstructured Data: Text

<DOC>
<DOCNO> JMM19990101.0001 </DOCNO>
<TEXT>
<S> <NER−PERSON><POS−NNP>John</POS−NNP></NER−PERSON> <POS−VBZ>loves</POS−

VBZ> <NER−PERSON><POS−NNP>Mary</POS−NNP></NER−PERSON> . </S>
<S> <POS−PRP>They</POS−PRP> <POS−VBD>married</POS−VBD> <POS−IN>in</POS−IN>

<NER−DATE><POS−CD>1998</POS−CD></NER−DATE> . </S>
</TEXT>
</DOC>

Figure 3.8.: A short artificial example of annotated AQUAINT. Punctuation sym-
bols are not annotated since Indri does not index them.

relevant documents for each question (17 docs on average with a median of 6). Thus

it is used as a gold-standard test set for IR. Following Ogilvie (2010), we removed 10

questions that do not have an answer by matching the TREC answer patterns on the

relevant documents indicated by MIT109. Then we call this test set MIT99.

Training Set for QA We used Amazon Mechanical Turk to collect training data

for the statistical QA system. The objective was to gather as many positive (answer-

bearing) sentences as possible. Thus we issued answer-bearing queries for TREC1999-

2003 questions.18 We selected the top 10 retrieved sentences for each question, and asked

three Turkers to judge whether each sentence contained the answer (also aiding them

by showing a potential answer along with the question) and used the majority vote for

each sentence. The inter-coder agreement rate was 0.81 (Krippendorff, 2004, Artstein

and Poesio, 2008). For each positive sentence, we matched it with the TREC answer

patterns to pinpoint the span of the answer and manually resolved multiple matching

cases.

The 99 questions of MIT99 were extracted from the Turk collection as our testgold

with the remaining as train. QA performance on testgold would indicate an upper

bound since the retrieval was answer-aware. The statistics are shown in Table 3.10.

Note that only 88 questions out of MIT99 have an answer from the top 10 answer-

bearing query results.

Finally both the training and test data were sentence-segmented and word-tokenized

18Starting from 2004, TREC questions were grouped by topics. Most questions asked on a topic
use anaphora. Thus we did not use these questions as anaphora resolution is not a focus of
this work.

127

3. Feature-driven QA from Unstructured Data: Text

Q-type number structured unstructured
MAP MRR MAP MRR

how 9 0.1755 0.4377 0.1668 0.3920
what 54 0.2716 0.4596 0.2107 0.3937
when 13 0.2584 0.4596 0.2144 0.3838
where 6 0.3429 0.4610 0.2977 0.5584
which 3 0.2162 0.3636 0.2178 0.3750
who 14 0.1908 0.5835 0.1987 0.5930
ALL 99 0.2524 0.4835 0.2110 0.4298

Table 3.11.: Structured vs. unstructured document retrieval in MAP and MRR
on MIT99. Significance level (Smucker et al., 2007) in the last row:
p < 0.001 for MAP and p < 0.01 for MRR.

Q-type number structured unstructured
MAP MRR MAP MRR

how 9 0.0580 0.1273 0.0577 0.1267
what 54 0.1279 0.3026 0.1051 0.2591
when 13 0.0895 0.2134 0.0687 0.1289
where 6 0.2174 0.3123 0.1817 0.1695
which 3 0.0706 0.0411 0.0706 0.0382
who 14 0.2411 0.5151 0.2410 0.5151
ALL 99 0.1375 0.2987 0.1200 0.2544

Table 3.12.: Structured vs. unstructured sentence retrieval in MAP and MRR
on MIT99. Significance level (Smucker et al., 2007) in the last row:
p < 0.001 for MAP and p < 0.05 for MRR.

by NLTK (Bird and Loper, 2004), dependency-parsed by the Stanford Parser (Klein and

Manning, 2003), and NER-tagged by Illinois Named Entity Tagger (Ratinov and Roth,

2009) with an 18-label type set. We report F1 on testgold in §3.4.4.4.

Corpus Preprocessing for IR We processed the AQUAINT (LDC2002T31) corpus,

on which the MIT99 questions are based, in exactly the same manner as we processed

the QA training set. But only sentence boundaries, pos tags and ner labels were kept

as the annotation of the corpus. An artificial sample is shown in Figure 3.8.

128

3. Feature-driven QA from Unstructured Data: Text

top 1 5 10 50 100 200 500 1000

#question S 26 44 50 76 82 87 92 94
U 23 40 45 68 78 83 90 91

#sentence S 26 67 101 308 460 642 984 1176
U 23 59 92 288 425 620 941 1075

Table 3.13.: Recall numbers of structured (S) and unstructured (U) retrieval for
up to top K = 1000 retrieved sentences for each question. #question
is the number of questions with an answer found while #sentence
is the total number of positive sentences for all questions (thus the
number of all retrieved sentences should be 99× 1000) in MIT99.

3.4.4.2. Document Retrieval

We issued off-the-shelf unstructured queries consisting of only words from the question,

and QA-driven structured queries consisting of both the question and expected answer

types, then retrieved the top 1000 documents, and finally computed MAP and MRR

against the gold-standard MIT99 per-document judgment.

To find the best weighting α for structured retrieval, we tried different values using 5-

fold cross-validation on MIT99 and finalized at α = 0.1. Table 3.11 shows the overall and

per-question-type evaluation. Overall, structured retrieval outperforms (20% by MAP

with p < 0.001 and 12% by MRR with p < 0.01) unstructured retrieval significantly

according to paired randomization test (Smucker et al., 2007). The largest gain comes

from what questions, which consist more than half of the whole test set and are considered

hard to answer due to its various lexical answer types (such as what lake, what sport,

etc.).

3.4.4.3. Passage Retrieval

Passage retrieval is the process of extracting relevant sentences from documents. We

only focus on a ranked list of single sentences since the downstream QA system does

not take passages as input. Recall that MIT99 only contains document-level judgment.

To generate a test set for sentence retrieval, we matched each sentence from relevant

documents provided by MIT99 for each question against the TREC answer patterns.

129

3. Feature-driven QA from Unstructured Data: Text

Bilotti (2009) and Ogilvie (2010) in their PhD thesis also used MIT109 to evaluate

sentence retrieval but manually checked the relevance of each sentence. Unfortunately

the manual judgment was lost so we could not do a direct comparison with their work.

We sampled 100 of the automatically matched sentences, manually checked them and

found the error rate was about 20%.

There is only one difference in query formulation for document retrieval and sentence

retrieval. In sentence retrieval the query evaluates for each extent associated with the

sentence field: #weight[s](...) while in document retrieval the query does not specify the

sentence field: #weight(...). Thus sentence retrieval can be performed as either the stage

following document retrieval, or as a single retrieval stage.

We experimented with these two settings: 1. sentences were retrieved from the doc-

uments returned by document retrieval; 2. sentences were directly retrieved from the

corpus (no document retrieval). No significant difference was found in the performance

between these two settings. We only report the numbers of setting 2, shown in Table

3.12, since in practice it is much easier to perform.

Sentence retrieval is essentially a harder task as it requires precise sentence-level judg-

ment rather than more coarse-grained document-level judgment, thus lower MAP and

MRR values in general. Still, structured retrieval outperforms unstructured retrieval

significantly by about 10% in MAP and 17% in MRR. We were curious to see how

these measures reflect quantitatively in the number of questions with an answer found

(#question) and the total number of answer-bearing sentences (#sentence) for the 99

test questions. Table 3.13 shows the difference. In general, structured retrieval returns

more answer-bearing sentences in the top K returned results, thus better MAP and

MRR.

130

3. Feature-driven QA from Unstructured Data: Text

1 2 3 5 10 15 20 50 10
0

20
0

50
0

10
00

Top K Sentences Retrieved

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1

Structured (0.231)

Unstructured (0.192)

Gold Oracle (0.755)

Gold (0.596)

Structured Oracle (0.609)

Unstructured Oracle (0.569)

Figure 3.9.: F1 values for answer extraction on MIT99. Best F1’s for each method
are parenthesized in the legend. “Oracle” methods assumed perfect
voting of answer candidates (a question is answered correctly if the
system ever produced one correct answer for it). “Gold” was tested
on testgold, which was collected by issuing answer-bearing queries
and used Turkers to judge the relevance of only the top 10 retrieved
sentences. The figure was generated with matplotlib (Hunter, 2007).

131

3. Feature-driven QA from Unstructured Data: Text

3.4.4.4. Answer Extraction

Lastly we sent the retrieved sentences to the downstream QA engine (trained on train)

and computed F1 per K for the top K retrieved sentences for MIT99,19 shown in Figure

3.9. The best F1 with structured sentence retrieval is 0.231, 20% better than F1 of 0.192

with unstructured retrieval, both at K = 1.

The two descending lines (blue and green) at the bottom reflect the fact that the

majority-voting mechanism employed by the QA system was too simple to select the

best candidate: F1 drops as K increases. Thus we also computed F1’s assuming perfect

voting: a voting oracle that always selects the correct answer as long as the QA system

produces one, thus the two ascending lines in the center of Figure 3.9. Still, F1 with

structured retrieval is always better than F1 with unstructured retrieval: reiterating the

fact that structured sentence retrieval covers more answer-bearing sentences.

Finally, to find the upper bound for QA, we drew the two upper lines, testing on

testgold described in Table 3.10. The test sentences were obtained with answer-bearing

queries. This is assuming almost perfect IR. The gap between the top two and other

lines signals more room for improvements for IR in terms of better coverage and better

rank for answer-bearing sentences.

3.4.5. Summary

We described a method to perform structured information retrieval with a prior knowl-

edge of the downstream QA system. Specifically, we coupled structured IR queries with

automatically learned answer features from a statistically trained QA system and ob-

served significant improvements in document retrieval, passage retrieval, and boosted

F1 in answer extraction. This method has the merits of not requiring hand-built ques-

tion and answer templates. Also, it is flexible in incorporating various answer features

automatically learned and optimized from the downstream QA system.

19Lin (2007), Zhang et al. (2007), and Kaisser (2012) also evaluated on MIT109. However
their QA engines used web-based search engines, thus leading to results that are neither
reproducible nor directly comparable with ours.

132

3. Feature-driven QA from Unstructured Data: Text

3.5. Conclusion

This chapter is based on the following two published papers:

Xuchen Yao, Benjamin Van Durme, Peter Clark and Chris Callison-Burch.

Answer Extraction as Sequence Tagging with Tree Edit Distance. NAACL.

2013.

Xuchen Yao, Benjamin Van Durme and Peter Clark. Automatic Coupling

of Answer Extraction and Information Retrieval. ACL Short. 2013.

The main ideas and scientific contributions are:

The first to cast answer extraction as a sequence tagging problem. A linear-

chain Conditional Random Field (Lafferty et al., 2001) was employed to tag answer

candidate with traditional BIO labels (B for b-ans, beginning of answer; I for i-ans,

inside of answer; O for outside of answer, i.e., not an answer). An example is shown in

Figure 3.10:

Tennis player Jennifer Capriati is 23

B-ANS O O O O O

Figure 3.10.: An example of linear-chain CRF for answer sequence tagging in re-
sponse to the question “Who was President Cleveland’s wife?”.
The answer tokens “Frances Folsom” are labeled as b-ans/i-ans
(beginning/inside of answer) and other tokens are labeled as o (out-
side of answer).

The CRF has the following merits when applied in answer extraction:

133

3. Feature-driven QA from Unstructured Data: Text

1. Its Markovian nature models implicit answer phrase patterns, such as the pos

transition in the answer phrase Frances/NNP Folsom/NNP, or in/IN 1886/CD if

the question asks for a time.

2. Its global decoding nature goes beyond local context and decides the best answer

candidate from the sentence, fitting the assumption that usually the answer phrase

only appears at most once in the sentence.

3. With the help of efficient toolkit, large-scale discriminative training has become

possible when given tens of thousands of QA pairs (further illustrated in § 4.6 on

page 180).

The CRF is able to use features extracted from both the sentence and the question and

learn those highly associated answer patterns for each question type. This highlights the

second idea:

Automatically mining rich features from QA pairs. The objective is to replace

traditional manually-written question templates and answer templates with linguistic

features, which are learned from the CRF. These linguistic features are based on pos tags,

named entity types (ner) and dependency relations (dep). They are then intersected

with question types to learn various answer patterns. For instance, compare the following

three features and their learned weights for predicting “yes” on the answer candidate from

a maximized objective function in Table 3.14:

feature weight
1 q=who|ner0=per|ner1=per 0.5
2 q=when|pos-1=in|pos0=cd 0.6
3 q=when|ner0=per|ner1=per -0.4

Table 3.14.: Learned feature weights from CRF.

A literal translation of the feature in line 1 reads: if the question is a who question,

and the current token’s entity type is a person (ner0=per), followed by another person

134

3. Feature-driven QA from Unstructured Data: Text

name (ner1=per), then there is a positive feature weight (0.5) learned for this token.

This feature actually fires on the token “Frances” in the example of Figure 3.10, since

“Frances” as a first name would be tagged as a person name and the token “Folsom”

following it is also a person name.

Similarly, in line 2, the CRF learned a good positive weight (0.6) for a feature extracted

on the current token, describing the case that there is a when question (q=when), and

the current token’s pos tag is a cardinal number (pos0=cd), preceded by a preposition

(pos-1=in). This feature would fire on the token “1886” from the string “in 1886” if

the question was a when question.

On the contrary in line 3, when the question asks for a time (q=when) but the to-

ken and its context is about a person (ner0=per|ner1=per), then a negative feature

weight is learned. For instance, in Figure 3.10, if the question was when did President

Cleveland marry?, then the feature would fire on the token Frances, discouraging it to

be an answer.

The features learned from Table 3.14 are inspiring: it tells us exactly what linguistic

annotations are representative for what kind of questions. Thus the third contribution:

The first to automatically couple the answer extraction back end with the

IR front end using shallow structured information retrieval. QA performance

is bounded by its IR front end. However, the IR technique has almost always focused

on optimizing quality over keyword search, and ignored the specific needs from the

downstream answer extraction component. As a motivating example, when using the

question What year was Alaska purchased? from TREC2002 QA as the query to the

Indri search engine, the top sentence retrieved from the accompanying TREC QA corpus

AQUAINT is:

Eventually Alaska Airlines will allow all travelers who have purchased

electronic tickets through any means.

As a matter of fact, none of the top 1000 returned passages contains the correct answer:

1867. It is apparent that the question asks for a date. But the IR engine did not take

that into account. Luckily, we have already known from row 2 of Table 3.14 that the

135

3. Feature-driven QA from Unstructured Data: Text

pos pattern pos-1=in|pos0=cd has a very high weight with when questions. Thus we

can naturally index each token in the whole corpus with their corresponding pos tags

and named entity labels, then perform structured retrieval to explicitly fetch a number

in the results. The general work flow is shown in Figure on page 121.

The whole structured IR for QA setup has the following merits:

• No extra tuning on the IR side. IR maximally reuses techniques from QA. All

answer patterns are automatically learned from answer extraction and passed up

to IR to retrieve exactly the same pattern from the annotated corpus. So there is

also no manual template or tuning.

• No extra query-time overhead on the IR side. There is no more query time overhead

than plain text search given that all annotations are preprocessed and indexed.

• IR serves exactly what QA needs. This is the key idea in the work: IR should

really search for the missing information (represented by structured linguistic an-

notations) to serve the answer extraction component, rather than searching solely

for existing information presented in the query.

Conclusion and future work We kick-started a framework for automatic answer

extraction and information retrieval. The central idea is that signals that are highly

associated with question types and answer patterns can be automatically and effectively

learned from data. This overcomes the traditional shortcomings of manually writing

templates to match answers and improves both the QA front end (i.e., IR) and back end

(i.e., answer extraction).

Several ideas explored in this chapter are worth further investigation. They have also

informed subsequent thesis research, specifically:

• monolingual alignment : the Tree Edit Distance aligner has brought extra linguistic

signals to answer extraction. Ablation test (Table 3.7 and Figure 3.5 on page 108)

also shows its effectiveness. But the TED aligner is only rule-based and has very

limited potential to be expanded to incorporate more lexical resources for the pur-

poses of recognizing paraphrases/entailment in the QA pairs. Can we do better?

136

3. Feature-driven QA from Unstructured Data: Text

The next chapter proposes a statistical aligner that does better both in terms of

alignment accuracy and end QA performance.

• large-scale discriminative training : the sequence tagging CRF model is a power-

ful tool. But how does it scale up, especially when we have tens of thousands

questions for training? Section 4.6 on page 180 demonstrates the scale, the speed,

and the accuracy when training the CRF learner with about ten thousand Jeop-

ardy! questions. It also compares systematically several off-the-shelf bilingual and

monolingual aligners in the task of question answering.

• feature-driven question answering over structured data: so far we have shown that

the feature-driven idea works on unstructured text. How about structured predic-

tion over structured data? Chapter 5 on page 198 illustrates the same idea and

shows that it even performs better than those logic form based statistical parsing

approaches. Stay tuned!

137

4. Discriminative Models for

Monolingual Alignment

In the previous chapter I have demonstrated the idea of feature-driven question answering

and the usage of a TED (Tree Edit Distance) based aligner to capture the association

between the question and the text. To reiterate why alignment is important in question

answering (and that it deserves a separate chapter), I use the following example as a

motivation:

• Question: Who was President Cleveland’s wife?

• Sentence 1: Cleveland married Frances [person] Folsom [person] in 1886.

• Sentence 2: President Obama married Michelle [person] Obama [person] in 1992.

A naive keyword-based information retrieval engine would rank both sentences equally

since each one has exactly one word overlap with the question. Then the answer extrac-

tion component has to rule out the second sentence. Table 3.14 on page 130 lists learned

features based on the named entity type:

feature weight

1 q=who|ner0=per|ner1=per 0.5

This feature would equally fire on both Frances [person] Folsom [person] in sentence

1 and Michelle [person] Obama [person] in sentence 2. It is not discriminative enough

and alignment comes to help. As shown in Figure 4.1 on page 136, a good aligner should

138

4. Discriminative Models for Monolingual Alignment

be able to draw the connection between Cleveland↔Cleveland and married↔wife in the

question and sentence 1. Since in the question both the subject (wife) and its modifier

(Cleveland) are aligned to sentence 1, this should serve as a strong cue that sentence 1

contains the answer. However, sentence 2 is much less relevant in this regard.

Previously I have demonstrated the usage of the TED aligner to fulfill this purpose.

There are a few disadvantages of this aligner:

• The principle of this aligner is minimum tree edit distance, which is not necessarily

how sentences should be aligned. To put it in other words, there is no ground to

support the theory that minimum tree edit distance yields the best alignment

between two sentences.

• The aligner is rule-based; it is not statistically trained and cannot easily incor-

porate more lexical resources to align paraphrases or semantically related words,

which are both challenges in the task of monolingual alignment.

Thus we devise a new tool for better alignment between QA pairs. This chapter presents

two statistically trained monolingual aligners for the English language: one based on

a Markov model for token alignment (§ 4.3.1) and the other based on a semi-Markov

model for phrase alignment (§ 4.3.2). The aligners are able to make use of various lex-

ical resources and have the ability to recognize paraphrase and entailment presented in

sentence pairs. We show intrinsic evaluation in terms of alignment quality in § 4.4 and

summaries the challenges and future directions in § 4.5. The accompanying implementa-

tion is jacana-align, released for general purpose monolingual alignment for the English

language. Finally, systematic evaluation of several bilingual and monolingual aligners in

the task of question answering is conducted (§ 4.6), with the conclusion that statistical

monolingual aligners show consistent superior (up to 25% relative F1) performance in

end QA performance. Thus the task of monolingual alignment in question answering is

justified.

139

4. Discriminative Models for Monolingual Alignment

Who was President Cleveland 's wife

Cleveland married Frances Folsom in 1886

President Obama married Michelle Obama in 1992

Figure 4.1.: Alignment between the question (middle) and two candidate sen-
tences. The fact that all key concepts in the question are aligned to
some words in the top sentence is a good cue to rank the top sentence
higher. An intelligent aligner should also decide the two President’s
should not align (dashed line).

4.1. Introduction

Various NLP tasks can be treated as an alignment problem: machine translation (aligning

words in one language with words in another language), question answering (aligning

question words with the answer phrase), textual entailment recognition (aligning premise

with hypothesis), paraphrase detection (aligning semantically equivalent words), etc.

Even though most of these tasks involve only a single language, alignment research

has primarily focused on the bilingual setting (i.e., machine translation) rather than

monolingual.

Alignment happens at different stages in these two settings. In machine translation,

bilingual alignment is majorly used during training to learn the phrase translation table

for a language pair: both the source and the target sides are seen; during test only the

source language side is given, thus the phrase table generates translation candidates for

the target language. In monolingual tasks, alignment often also happens at test time:

both the source sentence and the target sentence are presented and need to be aligned.

The generation nature of machine translation requires that alignment memorizes lots of

translation pairs from a large amount of parallel data. It is an unsupervised task and

often the EM algorithm is used for learning the model parameters.

140

4. Discriminative Models for Monolingual Alignment

Monolingual alignment on the other hand does not have as much unlabeled parallel

data: but a small amount (for the English language) has been annotated for supervised

learning. Analysis on these annotated datasets also shows one important characteristic

in monolingual alignment: identical word alignment is most prominent type of alignment

(contributing 75% to 78% of alignment). In this case, a single feature based on word

identity would construct a reasonable baseline. This simple feature is also effective in

aligning unseen identical words during test time, a phenomenon that bilingual alignment

methods based on the IBM models (Brown et al., 1993) are hard to tackle since they are

not designed to align unseen data during test. On nonidentical alignments, monolingual

alignment can directly benefit from various types of lexical resources, such as WordNet

(Fellbaum, 1998) and PPDB (Ganitkevitch et al., 2013), and output from several runs of

the Semantic Textual Similarity task (Agirre et al., 2012). Thus discriminative models

utilizing features utilizing both word similarity and external resources can be the most

helpful.

In this chapter we present two models for the task of monolingual alignment. The first

one is a token aligner that focuses on one-to-one alignment. The second one is a phrase

aligner that is capable of many-to-many phrase-based alignment.1 Our work is heavily

influenced by the bilingual alignment literature, especially the discriminative model pro-

posed by Blunsom and Cohn (2006). Specifically, we used a Conditional Random Field

(Lafferty et al., 2001) model to align from the source sentence to the target sentence.

At each source token the CRF inspects the whole target sentence and extracts features

for each pair of target word and the current source word. The states of the CRF are

target word indices. Unlike CRFs with a fixed state vocabulary, such as the ones for pos

tagging (states are for instance 45 Penn Treebank tags) or Named Entity Recognition

(states are for instance Beginning/Inside/Outside representation of person, org and

loc), the alignment CRF has a dynamic state set depending solely on the length of tar-

get sentence. Thus observation features and state transition features must be designed

not to be associated with a particular state, but in general any possible state to avoid

1In this chapter we use the term token-based alignment for one-to-one alignment and phrase-
based for one-to-many or many-to-many alignment, and word alignment in general for both.

141

4. Discriminative Models for Monolingual Alignment

data sparsity problems.

Most token-based alignment models can extrinsically handle phrase-based alignment to

some extent. For instance, in the case of NYC aligning to New York City, the single source

word NYC may align three times separately to the target words: NYC↔New, NYC↔York,

NYC↔City. Or in the case of identical alignment, New York City aligning to New York

City is simply New↔New, York↔York, City↔City. However, it is not as clear how to

token-align New York (as a city) with New York City. The problem is more prominent

when aligning phrasal paraphrases or multiword expressions, such as pass away and

kick the bucket. This suggests an intrinsically phrase-based alignment model.

Our CRF-based token aligner aligns tokens from the source sentence to tokens in the

target sentence by treating source tokens as “observation” and target tokens as “hidden

states”. However, it is not designed to handle phrase-based alignment, largely due to

the Markov nature of the underlying model: a state can only span one token each time,

making it unable to align multiple consecutive tokens (i.e. a phrase). We extend this

model by introducing semi-Markov states for phrase-based alignment: a state can instead

span multiple consecutive time steps, thus aligning phrases on the source side. Also, we

merge phrases on the target side to phrasal states, allowing the model to align phrases on

the target side as well. To spell out the distinction between Markov and semi-Markov:

• the Markov model has the memory less property: the current state only depends

on the previous state one time step ago.

• the semi-Markov property introduces states that do not have the Markov property:

some “long lasting” state can span multiple time steps (say, l). Thus the transition

probability of these states depends on the previous state l time steps ago instead

of one time step ago. These states do not have the Markov property while other

“normal” states do. Thus the whole mixed model is a semi-Markov model.

The token and phrase aligners give state-of-the-art performance on the MSR06 (Brockett,

2007) and Edinburgh++ (Cohn et al., 2008, Thadani et al., 2012) alignment datasets.

We also introduce a third dataset, MTReference, with more phrase alignment and report

results divided by alignment types.

142

4. Discriminative Models for Monolingual Alignment

4.2. Related Work

4.2.1. Bilingual Alignment

Word alignment was first explored in machine translation. The IBM models (Brown

et al., 1993) for machine translation can also be used in word alignment. Specifically, it

includes 5 models refined by different complexities:

1. IBM Model 1 estimates solely lexical translation probability distributions;

2. IBM Model 2 adds absolute alignment probability based on the word positions of

source and target words;

3. IBM Model 3 adds fertility to model how many target words are generated for each

source word and distortion to predict the target word positions based on source

word positions;

4. IBM Model 4 improves the absolute distortion in Model 3 with relative distortion;

5. IBM Model 5 generates words only into vacant positions and thus eliminates defi-

ciency, a situation where generated words could be put in the same target position

according to previous models.

Parameters are estimated using the EM algorithm in an unsupervised fashion. The

IBM models allow many-to-one alignment but they are asymmetric, meaning that they

only allow one-to-many alignments from French-to-English but not from English-to-

French. Phrase-based MT introduced heuristics (Koehn, 2010) to merge two sets of word

alignment created in opposite directions for the purposes overcoming this asymmetry.

Common heuristics include intersection, union, and grow-diag-final. Liang et al.

(2006) proposed alignment by agreement to encourage agreement from both directions

during training.

Later, researchers explored non-heuristic phrase-based methods. Among them, Marcu

and Wong (2002) described a joint probability model that generates both the source

and target sentences simultaneously. All possible pairs of phrases in both sentences are

143

4. Discriminative Models for Monolingual Alignment

enumerated and then pruned with statistical evidence. Their proposed method was com-

putationally expensive and worked better for short sentences. Deng and Byrne (2008)

explored token-to-phrase alignment based on Hidden Markov Models (Vogel et al., 1996)

by explicitly modeling the token-to-phrase probability and phrase lengths. However, the

token-to-phrase alignment is only in one direction: each target state still only spans one

source word, and thus alignment on the source side is limited to tokens. Andrés-Ferrer

and Juan (2009) extended the HMM-based method to Hidden Semi-Markov Models

(HSMM) (Ostendorf et al., 1996), allowing phrasal alignments on the source side. Fi-

nally, Bansal et al. (2011) unified the HSMM models with the alignment by agreement

framework (Liang et al., 2006), achieving phrasal alignment that agreed in both direc-

tions.

Even though semi-Markov models have been successfully applied in bilingual align-

ment, they have not been used in discriminative monolingual alignment. Essentially

monolingual alignment would benefit more from discriminative models with various fea-

ture extractions than generative models without any predefined features. To combine

the strengths of both semi-Markov models and discriminative training, we propose to

use the semi-Markov Conditional Random Field (Sarawagi and Cohen, 2004), which was

first used in information extraction to tag continuous segments of input sequences and

outperformed conventional CRFs in the task of named entity recognition. We describe

this model in Section 4.3.

4.2.1.1. Evaluation

MT research assumes that annotators make two kinds of alignment: S (sure) alignment

and P (possible) alignment (or ambiguous alignment). P alignments are created when

multiple annotators label the data and choose different points. P is the label assigned to

alignment points created by one of the annotators but not all of them. Sometimes anno-

tation guidelines allow individual annotators to mark alignment points as P when they

are approximate alignments. In most literature P alignment is only about ambiguous

alignment, or the alignment not agreed by annotators. But in evaluation, it is assumed

that P is a superset of S (S ⊆ P). Suppose A is the prediction, then alignment quality

144

4. Discriminative Models for Monolingual Alignment

is defined as precision, recall and Alignment Error Rate (AER) (Och and Ney, 2003):

precision =
| A ∩ P |
| A |

recall =
| A ∩ S |
| S |

AER = 1− | A ∩ S | + | A ∩ P |
| A | + | S |

The definition is based on the assumption that a recall error happens when an S

alignment is not found and a precision error happens when a found alignment even is

not in P .

4.2.1.2. Phrase Extraction

To have better coverage, machine translation models try to extract as many phrase pairs

from word alignment as possible. The phrase extraction algorithm (§5.2 in Koehn (2010))

extracts and combines all consistent phrase pairs with permission to include unaligned

words in the phrase. A consistent phrase alignment can be roughly described as: given

a phrase pair, for every word on one side, if it is aligned, then all its aligned words on

the other side have also to be in the phrase pair; and vice versa. The following are three

examples of consistent alignment for New York↔New York (City):

1.

New York

New •

York •

2.

New York

New • •

York • •

3.

New York City

New •

York •

Number 2 is defined as a block alignment : every word on one side is aligned with every

word on the other side, and vice versa. Figure 4.1 gives an illustrative example of ex-

tracted phrases (b) given an alignment matrix between an English-German sentence pair

(a). Note that the extracted phrases are mostly not natural phrases, for instance, michael

assumes, assumes that he, in the. This serves phrase-based machine translation well, but

it is not exactly how humans would annotate phrase alignment. In the next section

145

4. Discriminative Models for Monolingual Alignment

we describe the simple way of using block alignment to extract phrases in monolingual

alignment.

4.2.2. Monolingual Alignment

Most work in monolingual alignment employs dependency tree/graph matching algo-

rithms, including:

• Tree Edit Distance (Punyakanok et al., 2004, Kouylekov and Magnini, 2005, Heil-

man and Smith, 2010, Yao et al., 2013d);

• Particle Swarm Optimization (Mehdad, 2009);

• linear regression/classification models (Chambers et al., 2007, Wang and Manning,

2010);

• min-cut (Roth and Frank, 2012).

These works inherently only support token-based alignment, with phrase-like alignment

achieved by first merging tokens to phrases as a preprocessing step. Also, most of these

approaches used no supervision or indirect supervision. For instance, both Punyakanok

et al. (2004) and Kouylekov and Magnini (2005) applied the tree edit distance model

with the Zhang and Shasha (1989) algorithm in their separate tasks (QA and RTE).

The alignment objective is guided by minimum edit distance and no supervision from

data was used. For indirect supervision, Wang and Manning (2010) extended the work

of McCallum et al. (2005) and modeled alignment as latent variables. In their case

supervision comes from the end application, for instance, whether the premise entails

the hypothesis in the task of RTE, or whether the snippet contains an answer to the

question in the task of QA. Heilman and Smith (2010) used tree kernels to search for

the alignment that yields the lowest tree edit distance.

In a fully supervised fashion, a phrase-base alignment model was proposed by Mac-

Cartney et al. (2008), who also evaluated alignment quality intrinsically in terms of

precision, recall and F1. Their MANLI aligner aligns premise and hypothesis sentences

for the task of natural language inference. It applies perceptron learning and handles

146

4. Discriminative Models for Monolingual Alignment

michael geht davon aus , dass er im hausb bleibt
michael •
assumes • • •
that •
he •
will •
stay •
in •
the •

house •
(a) word alignment matrix

michael – michael
michael assumes – michael geht davon aus ; michael geht davon aus ,
michael assumes that – michael geht davon aus , dass
michael assumes that he – michael geht davon aus , dass er
michael assumes that he will stay in the house – michael geht davon aus , dass er
im haus bleibt
assumes – geht davon aus ; geht davon aus ,
assumes that – geht davon aus , dass
assumes that he – geht davon aus , dass er
assumes that he will stay in the house – geht davon aus , dass er im haus bleibt
that – dass ; , dass
that he – dass er ; , dass er
that he will stay in the house – dass er im haus bleibt ; , dass er im haus bleibt
he – er
he will stay in the house – er im haus bleibt
will stay – bleibt
will stay in the house – im haus bleibt
in the – im
in the house – im haus
house – haus

(b) MT phrase extraction results

three 1x1 alignment blocks:
michael - micheal; that - dass; he - er; house - hausb
one 1x3 alignment block:
assumes - geht davon aus
two 2x1 alignment blocks:
will stay - bleibt; in the - im

(c) Block alignment in monolingual alignment (1x1 blocks take 50% of all alignment)

Table 4.1.: Illustrative examples of how phrases are extracted in MT (b) and how
block alignments are extracted in monolingual alignment (c).

147

4. Discriminative Models for Monolingual Alignment

phrase-based alignment of arbitrary phrase lengths. Thadani and McKeown (2011) op-

timized this model by decoding via Integer Linear Programming (ILP). Benefiting from

modern ILP solvers, this led to an order-of-magnitude speedup. With extra syntactic

constraints added, the exact alignment match rate for whole sentence pairs was also sig-

nificantly improved. These work used two annotated word alignment datasets, MSR06

(Brockett, 2007) and Edinburgh++ (Cohn et al., 2008, Thadani et al., 2012).

Table 4.2 summarizes some of these approaches and their applied application. Finally,

feature and model design in monolingual alignment is often inspired by bilingual work,

including distortion modeling, phrasal alignment, syntactic constraints, etc (Och and

Ney, 2003, DeNero and Klein, 2007, Bansal et al., 2011).

4.2.2.1. Evaluation

Monolingual alignment has previously discarded the usage of possible alignment since

MacCartney et al. (2008), who needed a precise aligner trained on only sure alignments

for the entailment end task. Alignment is evaluated in terms of precision, recall, F1

and exact match rate. If we divide the types of alignment by gold standard vs. real

prediction:

gold standard

positive negative

prediction
pos. true positive (TP, “hit”) false positive (FP, “false alarm”)

neg. false negative (FN, “miss”) true negative (TN, “correct rejection”)
then:

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 =
2 · precision · recall
precision + recall

148

4. Discriminative Models for Monolingual Alignment

p
ap

er
st

ru
ct

u
re

al
ig

n
m

et
h
od

la
b
el

ed
al

ig
n

fe
at

u
re

ta
sk

P
un

ya
ka
no

k
et

al
.(

20
04
)

de
p
tr
ee

to
ke
n

T
E
D

N
no

Q
A

K
ou

yl
ek
ov

an
d
M
ag
ni
ni

(2
00
5)

de
p
tr
ee

to
ke
n

T
E
D

N
no

R
T
E

C
ha

m
be

rs
et

al
.(
20
07
)

de
p
gr
ap

h
to
ke
n

st
oc
ha

st
ic

lo
ca
ls

ea
rc
h,

pe
rc
ep
tr
on

Y
ri
ch

R
T
E

M
ac
C
ar
tn
ey

et
al
.(
20
08
)

fla
t

ph
ra
se

pe
rc
ep
tr
on

Y
ri
ch

R
T
E

M
eh
da

d
(2
00
9)

de
p
tr
ee

to
ke
n

P
ar
ti
cl
e
Sw

ar
m

O
pt
im

iz
at
io
n

N
no

R
T
E

H
ei
lm

an
an

d
Sm

it
h
(2
01
0)

de
p
tr
ee

to
ke
n

T
E
D

N
no

R
T
E
/P

P
/Q

A
W
an

g
an

d
M
an

ni
ng

(2
01
0)

de
p
tr
ee

to
ke
n

C
R
F

N
ri
ch

R
T
E
/Q

A
T
ha

da
ni

an
d
M
cK

eo
w
n
(2
01
1)
,

T
ha

da
ni

et
al
.(
20
12
)

de
p
tr
ee

ph
ra
se

pe
rc
ep
tr
on

,I
LP

Y
ri
ch

al
ig
nm

en
t

R
ot
h
an

d
Fr
an

k
(2
01
2)

gr
ap

h
to
ke
n

m
in

cu
t

N
si
m
ila

ri
ty

pr
ed

ic
at
e
al
ig
n

Y
ao

et
al
.(
20
13
b,
a)

fla
t

to
ke
n/

ph
ra
se

C
R
F

Y
ri
ch

R
T
E
/P

P
/Q

A

Ta
bl
e
4.
2.
:S

el
ec
te
d
pu

bl
ic
at
io
ns

on
m
on

ol
in
gu

al
al
ig
nm

en
t.

T
he

m
ea
ni
ng

of
ea
ch

co
lu
m
n
is

as
fo
llo

w
s.

st
ru
ct
ur
e:

th
e
re
qu

ir
ed

in
pu

t
se
nt
en
ce

st
ru
ct
ur
e
(fl
at
,t
re
e,

or
gr
ap

h)
;a

lig
n:

th
e
al
ig
nm

en
t
ty
pe

(t
ok

en
or

ph
ra
se
);
m
et
ho

d:
m
ai
n
m
et
ho

d
us
ed
;

la
be

le
d
al
ig
n:

w
he

th
er

th
e
tr
ai
ni
ng

w
as

su
pe

rv
is
ed
;
fe
at
ur
e:

th
e
ty
pe

of
fe
at
ur
es

us
ed
;
ta
sk
:
in

w
ha

t
en
d
ta
sk
s
w
er
e

al
ig
nm

en
t
us
ed
.

149

4. Discriminative Models for Monolingual Alignment

Precision, recall and F1 only care about true positives, i.e., those positive examples by

the gold standard. In monolingual alignment, positive examples are those tokens that

get aligned and negative examples are those that do not. We usually only care about

whether we have correctly aligned those that should have been aligned, thus the measure

of F1 is a good fit.

If correct rejection (true negative) is important, then we compute accuracy instead:

Accuracy =
TP + TN

TP + TN + FP + FN

Accuracy weighs equally true positives and true negatives. We want to make sure

that the classifier recognizes both the positive and negative examples. Specifically in

alignment, where most tokens are not aligned, the accuracy value will be very high in

general and the difference is hard to tell. In this case we only report F1 on positive

(aligned) examples.

There is also a distinction between micro F1 and macro F1 here. Machine translation

alignment computes micro F1: the judgment of predicted alignment is accumulated over

the whole dataset; thus micro F1 is a measure of alignment performance per aligned

token. Monolingual alignment computes macro F1: for each sentence pair, precision and

recall are computed; then they are averaged over all sentence pairs and their harmonic

mean is computed as the final macro F1. Thus macro F1 is a measure of alignment

performance per sentence pair. § 2.2.3.4 on page 42 gives a real example of computing

these values. Micro F1weighs equally among all tokens, since in MT the purpose is

to induce phrase translation tables. Macro F1weighs equally all sentence pairs, since

monolingual alignment serves the end task of RTE or QA, where per-sentence accuracy

is important.

4.2.2.2. Phrase/Block Alignment

As previously demonstrated in § 4.2.1.2, the phrase extraction algorithm in machine

translation does not respect natural phrase boundaries. The extracted phrases are also

not mutually exclusive. To give an estimation of alignment size distribution in a dataset,

150

4. Discriminative Models for Monolingual Alignment

we simply count the number of MxN alignment blocks. For instance, in Table 4.1 (c),

we count three 1x1 alignment blocks, one 1x3 alignment block, and two 2x1 alignment

blocks. An MxN alignment block is a continuously fully filled M-by-N block. It does

not necessarily represent natural phrases (NP, VP, PP, etc), but in many cases is good

enough approximation. For instance, the following is a sample of alignment blocks from

one of the monolingual alignment datasets described later:

united states . ↔ u.s.

crashed into each other ↔ collision

king norodom sihanouk ↔ sihanouk

this ↔ the matter

a telephone conversation ↔ phone

information on this assassination attempt ↔ information

In later sections we use alignment blocks to estimate the alignment distribution of

several datasets.

4.2.3. Open-source Aligners

In this section we describe three open-source aligners. The first one is GIZA++, origi-

nally designed for MT but adapted for the monolingual alignment task. The other two

are specifically designed for the monolingual case.

4.2.3.1. GIZA++ (Adapted)

GIZA++ (Och and Ney, 2003) is most commonly used in the task of bilingual alignment

for machine translation. It implements the IBM models (Brown et al., 1993) and the

HMM model (Vogel et al., 1996) for word alignment. Due to its nature of a generative

model and language independence, it does not use any features based on lexical similarity.

To adapt GIZA++ to monolingual alignment, specifically, to monolingual alignment

evaluation, one should organize the training data in a way that not only parallel sentences

construct alignment pairs, but also each word’s stem forms an identical and parallel pair.

This is to enforce GIZA++’s belief to align lexically similar pairs. To be more specific,

151

4. Discriminative Models for Monolingual Alignment

for a monolingual alignment task, suppose data is divided in two portions: train and

test, and train contains minimally the following one pair of sentences:

Casey loves Robin ↔ Robin adores Casey too

then the training data for GIZA++ consists of (all words are lowercased and stemmed):

• sentence pairs from both train and test, e.g., casey love robin ↔ robin

adore casey too. Since GIZA++ uses unsupervised training and favors more

data, one should specifically include also test.

• identical word stem pairs formed from both train and test, such as casey ↔

casey.

• (only in the alignment task with manually aligned data) labeled alignment pairs

from only train, such as love ↔ adore (if they are annotated as aligned).

The test data for GIZA++ consists of only the sentence pairs from test. However, since

the training data for GIZA++ has already included test, one only needs to extract the

already aligned test part after training is done. Usually alignment is run in both

directions and heuristics are applied on the results to obtain the best result.

4.2.3.2. Meteor

The Meteor (Denkowski and Lavie, 2011) system is designed for evaluating machine

translation performance by aligning the output with reference sentences. Meteor sup-

ports English, Czech, German, French, Spanish, and Arabic. In this chapter we only

use it to align English sentences. It makes pairwise comparison between two strings of

words and finds the alignment of highest cardinality with minimal number of crossing

branches. Meteor inherently supports phrase-based alignment. String similarity is mea-

sured by mostly lexical/stem identity and a predefined paraphrase tables (5.27 million

pairs) extracted using the foreign language pivoting technique (Bannard and Callison-

Burch, 2005).

152

4. Discriminative Models for Monolingual Alignment

4.2.3.3. TED

The TED aligner is based on Tree Edit Distance, which computes the minimal cost of

transforming from tree T1 to tree T2 under a set of predefined edit operations (such as

insertion, deletion and substitution) and their associated cost (usually uniform cost).

The TED aligner accepts tree-structured input. So the sentence pairs have to be parsed

first.

The most popular algorithm to search for the aligning sequence with the minimal cost

is the dynamic programming method of Zhang and Shasha (1989). Augsten et al. (2010)

implemented for aligning database entries and I adapted it with dependence parse trees

(§ 3.2 on page 90 gives a detailed description). The algorithm pairwisely compares each

node pair from the two trees in a bottom-up and post-order manner. Word similarity is

measured by stemming and WordNet synset relations.

4.2.3.4. Example

Table 4.3 on page 151 shows a real alignment example selected from the manually an-

notated MSR06 entailment corpus (described later in 4.4.1) for aligning the following

sentence pair:

• source sentence: Three days after PeopleSoft bought JD Edwards in June 2003 ,

Oracle began its offer for PeopleSoft .

• target sentence: JD Edwards belongs to PeopleSoft .

Human annotators agreed on the following alignment pairs:

JD↔JD, Edwards↔Edwards, belongs to↔bought, PeopleSoft↔PeopleSoft, .↔.

Note that there is one 2x1 phrasal alignment, and there are two words of PeopleSoft

in the source sentence. All three aligners failed to align belongs to↔bought, which is a

difficult case and needs the context for inferring the alignment. The interesting case lies

in the alignment between PeopleSoft↔PeopleSoft:

• GIZA++ made the correct alignment. It was very likely that the distortion model

encouraged the first PeopleSoft in the source sentence to be aligned since it was

relatively closer to other alignment.

153

4. Discriminative Models for Monolingual Alignment

• Meteor made the wrong alignment by aligning the second PeopleSoft in the source

sentence. This can be explained by the minimal cross alignment principle employed

by Meteor: the final alignment in Table Table 4.3 on page 151(b) looks monotonic

without any cross alignment when aligning the second PeopleSoft in the source

sentence.

• TED also made made the wrong alignment by aligning the second PeopleSoft in

the source sentence. This can be explained by the order of how the minimum tree

edit distance principle works: bottom-up and post-order of tree traversal. Thus

the second PeopleSoft in the source sentence, a low-hanging leaf node in the parse

tree, was aligned first.

The deficiencies of the three aligners above encourage us to design better aligner models

that are able to make phrasal alignment with the ability to allow reasonable distortion

and access more lexical resources.

4.3. Our Alignment Model

4.3.1. Markov Token Alignment

Our work is heavily influenced by the bilingual alignment literature, especially the dis-

criminative model proposed by Blunsom and Cohn (2006). Given a source sentence s of

length M , and a target sentence t of length N , the alignment from s to t is a sequence

of target word indices a, where ai∈[1,M] ∈ [0, N]. We specify that when ai = 0, source

word si is aligned to a null state, i.e., deleted. This models a many-to-one alignment

from source to target. Multiple source words can be aligned to the same target word,

but not vice versa. One-to-many alignment can be obtained by running the aligner in

the other direction. The probability of alignment sequence a conditioned on both s and

t is then:

p(a | s, t) =
exp(

∑
i,k λkfk(ai−1, ai, s, t))

Z(s, t)

154

4. Discriminative Models for Monolingual Alignment

T
hr
ee

da
ys

af
te
r

P
eo
pl
eS

of
t

bo
ug

ht

JD E
dw

ar
ds

in Ju
ne

20
03

, O
ra
cl
e

be
ga
n

it
s

off
er

fo
r

P
eo
pl
eS

of
t

.

JD •
Edwards •
belongs •

to •
PeopleSoft •

. •
(a) Gold standard: JD↔JD, Edwards↔Edwards, belongs to↔bought (red dots), People-

Soft↔PeopleSoft, .↔..

T
hr
ee

da
ys

af
te
r

P
eo
pl
eS

of
t

bo
ug

ht

JD E
dw

ar
ds

in Ju
ne

20
03

, O
ra
cl
e

be
ga
n

it
s

off
er

fo
r

P
eo
pl
eS

of
t

.

JD •
Edwards •
belongs

to

PeopleSoft •
. •

(b) GIZA++, which failed to align belongs to↔bought.

T
hr
ee

da
ys

af
te
r

P
eo
pl
eS

of
t

bo
ug

ht

JD E
dw

ar
ds

in Ju
ne

20
03

, O
ra
cl
e

be
ga
n

it
s

off
er

fo
r

P
eo
pl
eS

of
t

.
JD •

Edwards •
belongs

to

PeopleSoft •
. •

(c) Meteor/TED, which failed to align belongs to↔bought and made wrong alignment in People-
Soft↔PeopleSoft (green dot).

Table 4.3.: GIZA++, Meteor and TED alignment for the sentence pair Three days
after PeopleSoft bought JD Edwards in June 2003 , Oracle began its offer
for PeopleSoft . ↔JD Edwards belongs to PeopleSoft . . Example comes
from real alignment on one sentence pair from the MSR06 corpus,
described later in § 4.4.1.

155

4. Discriminative Models for Monolingual Alignment

This assumes a first-order Conditional Random Field (Lafferty et al., 2001). The

word alignment task is evaluated over F1. Instead of directly optimizing F1, we em-

ploy softmax-margin training (Gimpel and Smith, 2010) and add a cost function to the

normalizing function Z(s, t) in the denominator, which becomes:

Z(s, t) =
∑
â

exp(
∑
i,k

λkfk(âi−1, âi, s, t)

+cost(ay, â))

where ay is the true alignments. cost(ay, â) can be viewed as special “features” that

encourage decoding to be consistent with true labels. It is only computed during training

in the denominator because in the numerator cost(ay,ay) = 0. Hamming cost is used

in practice without learning the weights (i.e., uniform weights). The more inconsistence

there is between ay and â, the more penalized is the decoding sequence â through the

cost function.

One distinction of this alignment model compared to other commonly defined CRFs is

that the input is two dimensional: at each position i, the model inspects both the entire

sequence of source words (as the observation) and target words (whose offset indices

are states). The other distinction is that the size of its state space is not fixed (e.g.,

unlike pos tagging, where states are for instance 45 Penn Treebank tags), but depends

on N , the length of target sentence. Thus we cannot “memorize” what features are

mostly associated with what states. For instance, in the task of tagging mail addresses,

a feature of “5 consecutive digits” is highly indicative of a postcode. However, in the

alignment model, it does not make sense to design features based on a hard-coded state,

say, a feature of “source word lemma matching target word lemma” fires for state index

6.

To avoid this data sparsity problem, all features are defined implicitly with respect to

the state. For instance:

156

4. Discriminative Models for Monolingual Alignment

fk(ai−1, ai, s, t) =

1 lemmas match: si, tai

0 otherwise

Thus this feature fires for, e.g.: (s3 = sport, t5 = sports, a3 = 5), and: (s2 = like, t10 =

liked, a2 = 10).

4.3.1.1. Symmetrization

To expand from many-to-one alignment to many-to-many, we ran the model in both

directions and applied the following symmetrization heuristics (Koehn, 2010): inter-

section, union, grow-diag-final. However, this is not an ideal solution. Thus in

the following section we describe how to expand the token-based model to phrase-based

model.

4.3.2. Semi-Markov Phrase Alignment

The token-based model supports 1 : 1 alignment. We first extend it in the direction

of ls : 1, where a target state spans ls words on the source side (ls source words align

to 1 target word). Then we extend it in the direction of 1 : lt, where lt is the target

phrase length a source word aligns to (1 source word aligns to lt target words). The

final combined model supports ls : lt alignment. Throughout this section we use Fig-

ure 4.2 as an illustrative example, which shows phrasal alignment between the source

sentence: Shops are closed up for now until March and the target sentence: Shops

are temporarily closed down.

1 : 1 alignment is a special case of ls : 1 alignment where the target side state spans

ls = 1 source word, i.e., at each time step i, the source side word si aligns to one state

ai and the next aligned state ai+1 only depends on the current state ai. This is the

Markovian property of the CRF. When ls > 1, during the time frame [i, i+ ls), all source

words [ai, ai+ls) share the same state ai. Or in other words, the state ai “spans” the

following ls time steps. The Markovian property still holds “outside” the time frame ls,

157

4. Discriminative Models for Monolingual Alignment

shops areShops closed up for now until March

NULL

closed

temp.

are

Shops

down

shops
-are

...-...
7..14

0

1

2

3

4

5

6

closed-
down

15

Figure 4.2.: A semi-Markov phrase-based model example and the desired Viterbi
decoding path. Shaded horizontal circles represent the source sentence
(Shops are closed up for now until March) and hollow vertical
circles represent the hidden states with state IDs for the target
sentence (Shops are temporarily closed down). State 0, a null
state, is designated for deletion. One state (e.g. state 3 and 15) can
span multiple consecutive source words (a semi-Markov property) for
aligning phrases on the source side. States with an ID larger than the
target sentence length indicate “phrasal states” (states 6-15 in this
example), where consecutive target tokens are merged for aligning
phrases on the target side. Combining the semi-Markov property and
phrasal states yields for instance, a 2 × 2 alignment between closed
up in the source and closed down in the target.

158

4. Discriminative Models for Monolingual Alignment

i.e., ai+ls still only depends on ai, the previous state ls time steps ago. But “within”

the time frame ls, the Markovian property does not hold any more: [ai, ..., ai+ls−1]

are essentially the same state ai. This is the semi-Markov property . States can be

distinguished by this property into two types: semi-Markovian states and Markovian

states.

We have generalized the regular CRF to a semi-Markov CRF. Now we define it by

generalizing the feature function:

p(a | s, t) =
exp(

∑
i,k,ls

λkfk(ai−ls , ai, s, t))

Z(s, t)

At time i, the k-th feature function fk mainly extracts features from the pair of source

words (si−ls , ..., si] and target word tai (still with a special case that ai = 0 marks for

deletion). Inference is still Viterbi-like: except for the fact during maximization, the

Viterbi algorithm not only checks the previous one time step, but all ls time steps.

Suppose the allowed maximal source phrase length is Ls, define Vi(a | s, t) as the highest

score along the decoding path until time i ending with state a:

Vi(a | s, t) = max
a1,a2,...ai−1

p(a1, a2, . . . , ai = a | s, t)

then the recursive maximization is:

Vi(a | s, t) = max
a′

max
ls=1...Ls

[Vi−ls(a
′ | s, t)

+Ψi(a
′
, a, ls, s, t)]

with factor:

Ψi(a
′
, a, ls, s, t) =

∑
k

λkfk(a
′
i−ls , ai, s, t)

and the best alignment a can be obtained by backtracking the last state aM from

VM (aM | s, t).

Training a semi-Markov CRF is very similar to the inference, except for replacing

159

4. Discriminative Models for Monolingual Alignment

maximization with summation. The forward-backward algorithm should also be used to

dynamically compute the normalization function Z(s, t). Compared to regular CRFs, a

semi-Markov CRF has a decoding time complexity of O(LsMN2), a constant factor Ls

(usually 3 or 4) slower.

To extend from 1 : 1 alignment to 1 : lt alignment with one source word aligning to

lt target words, we simply explode the state space by Lt times with Lt the maximal

allowed target phrase length. Thus the states can be represented as an N × Lt matrix.

The state at (j, lt) represents the target phrase [tj , ..., tj+lt). In this paper we distinguish

states by three types: null state (j = 0, lt = 0), token state (lt = 1) and phrasal state

(lt > 1).

To efficiently store and compute these states, we linearize the two dimensional matrix

with a linear function mapping uniquely between the state id and the target phrase

offset/span. Suppose the target phrase tj of length ltj ∈ [1, Lt] holds a position ptj ∈

[1, N], and the source word si is aligned to this state (ptj , ltj), a tuple for (position,

span). Then state id asi is computed as:

asi(ptj , ltj) =

ptj ltj = 1

N + (ptj − 1)× Lt + ltj 1 < ltj ≤ Lt

Assume in Figure 4.2, Lt = 2, then the state id for the phrasal state (5, 2) closed-down

with ptj = 5 for the position of word down and ltj = 2 for the span of 2 words (looking

“backward” from the word down) is: 5 + (5− 1)× 2 + 2 = 15.

Similarly, given a state id asi , the original target phrase position and length can

be recovered through integer division and modulation. Thus during decoding, if one

output state is 15, we would know that it uniquely comes from the phrasal state (5,2),

representing the target phrase closed down.

This two dimensional definition of state space expands the number of states from 1+N

to 1 +LtN . Thus the decoding complexity becomes O(M(LtN)2) = O(L2
tMN2) with a

usual value of 3 or 4 for Lt.

Now we have defined separately the ls : 1 model and the 1 : lt model. We can

160

4. Discriminative Models for Monolingual Alignment

simply merge them to have an ls : lt alignment model. The semi-Markov property

makes it possible for any target states to align phrases on the source side, while the two

dimensional state mapping makes it possible for any source words to align phrases on

the target side. For instance, in Figure 4.2, the phrasal state a15 represents the two-

word phrase closed down on the target side, while still spanning for two words on the

source side, allowing a 2×2 alignment. State a15 is phrasal, and at source word position

3 and 4 (spanning closed up) it is semi-Markovian. The final decoding complexity is

O(LsL
2
tMN2), a factor of 30 ∼ 60 times slower than the token-based model (with a

typical value of 3 or 4 for Ls and Lt).

In the following we describe features.

4.3.3. Feature Design

The token version of jacana-align was originally (Yao et al., 2013b) equipped with a

compact set of features and minimal lexical resources (only WordNet was used) for fast

run time. The phrase version (Yao et al., 2013a) introduced more lexical resources based

on the Paraphrase Database (PPDB) and semantic relatedness (Han et al., 2013). In

November 2013 jacana-align went through a series of “upgrades”, for the purpose of real

world usage. The aim also includes platform-independence: it runs on any system with

a Java virtual machine (from version 6) and it does not have any external dependencies.

The following lists the current feature set:

String Similarity Features include the following similarity measures: Jaro Winkler,

Dice Sorensen, Hamming, Jaccard, Levenshtein, NGram overlapping and common prefix

matching.2 Also, two binary features are added for identical match and identical match

ignoring case.

POS Tags Features are binary indicators of whether the pos tags of two words

match. Also, a “possrc2postgt” feature fires for each word pair, with respect to their pos

tags. This would capture, e.g., “vbz2nn”, when a verb such as arrests aligns with a noun

such as custody.

Positional Feature is a real-valued feature for the positional difference of the source

2Of these features the trained aligner preferred Dice Sorensen and NGram overlapping.

161

4. Discriminative Models for Monolingual Alignment

and target word (abs(mM −
am
N)). This allows to learn a preference over alignment near

the diagonal.

WordNet Features indicate whether two words are of the following relations of each

other: hypernym, hyponym, synonym, derived form, entailing, causing, members of, have

member, substances of, have substances, parts of, have part; or whether their lemmas

match. We also found that each word has to be pos tagged to get an accurate relation,

otherwise this feature will not help. Specifically, the “Snow version”3 of WordNet with 400

thousand automatically expanded synsets from Snow et al. (2006) replaced the original

WordNet (Fellbaum, 1998). In my quick internal evaluation it improved the final F1 by

0.2%.

Distortion Features measure how far apart the aligned target words of two consec-

utive source words are: abs(am + 1 − am−1). This learns a general pattern of whether

these two target words aligned with two consecutive source words are usually far away

from each other, or very close. We also added special features for corner cases where the

current word starts or ends the source sentence, or both the previous and current words

are deleted (a transition from null to null).

Contextual Features indicate whether the left or the right neighbor of the source

word and aligned target word are identical or similar. This helps especially when aligning

functional words, which usually have multiple candidate target functional words to align

to and string similarity features cannot help. We also added features for neighboring

pos tags matching.

Chunking Features are binary indicators of whether the phrase types of two phrases

match. Also, we added indicators for mappings between source phrase types and target

phrase types, such as “vp2np”, meaning that a verb phrase in the source is mapped to a

noun phrase in the target.

Moreover, we introduced the following lexical features:

PPDB Features (Ganitkevitch et al., 2013) utilize PPDB (roughly size L),4 with

270 thousand paraphrase pairs. Originally various paraphrase conditional probability

3http://ai.stanford.edu/~rion/swn/
4http://paraphrase.org

162

http://ai.stanford.edu/~rion/swn/
http://paraphrase.org

4. Discriminative Models for Monolingual Alignment

was employed. For instance, for the adjp/vp phrase pair capable of and able to,

there are the following minus-log probabilities:

p(lhs|e1) = 0.1, p(lhs|e2) = 0.3, p(e1|lhs) = 5.0

p(e1|e2) = 1.3, p(e2|lhs) = 6.7, p(e2|e1) = 2.8

p(e1|e2, lhs) = 0.6, p(e2|e1, lhs) = 2.3

where e1/e2 are the phrase pair, and lhs is the left hand side syntactic non-terminal

symbol. Later I discovered that a simple indicator feature of whether a pair of words

exist in PPDB worked better than the original features based on p(· | ·) probabilities.

Thus the final features based on PPDB were all binary indicator features.

Nicknames: a list of common nicknames mined from the web.5 A few examples:

Aaron–Erin, Ron, Ronnie and Abigail–Abby, Nabby, Gail.

Wiktionary: 90 thousand English words fromWiktionary. It contained WordNet-like

relations, such as that the adjective form of minute has synonyms infinitesimal, insignifi-

cant, tiny, etc, and antonyms big, enormous, colossal, etc.

word2vec: a similarity measure based on continuous bag of words (Mikolov et al.,

2013), trained on the first 100MB of English Wikipedia.

The following two types of features were removed :

Semantic Relatedness feature outputs a single scaled number in [0, 1] from the best

performing system (Han et al., 2013) of the *Sem 2013 Semantic Textual Similarity (STS)

task from UMBC. This feature mainly deals with cases where “related” words cannot be

well measured by either paraphrases or distributional similarities. For instance, in one

alignment dataset annotators aligned married with wife. Adding a few other words as

comparison, the Han et al. (2013) system gives the following similarity scores:

married/wife: 0.85

married/husband: 0.84

married/child: 0.10

married/stone: 0.01

However, this feature depends on the web service of UMBC. I removed it for two

5http://usgenweb.org/research/nicknames.shtml

163

http://usgenweb.org/research/nicknames.shtml

4. Discriminative Models for Monolingual Alignment

reasons: 1. web API calling severely reduced the system speed; 2. there is no guarantee

that this service will outlive jacana-align.

Name Phylogeny feature (Andrews et al., 2012) uses a string transducer to model

how one name evolves to another. Examples below show how similar is the name Bill

associated with other names in log probability:

Bill/Bill: -0.8

Bill/Billy: -5.2

Bill/William: -13.6

Bill/Mary: -18.6

However, the model file from Andrews et al. (2012) was only compatible on Mac and

Linux systems, but not on Windows. Thus the name phylogeny model was replaced by

a fixed set of common nick names (described above).

Finally, one decision we made during feature design was not using any parsing-based

features, with a permissive assumption that the input might not be well-formed English,

or even not complete sentences (such as fragmented snippets from web search). The

“deepest” linguistic processing stays at the level of tagging and chunking, making the

model more easily extendible to other languages.

4.3.3.1. Feature Value for Phrase Alignment

In the phrase-based model, the width of a state span over the source words depends on

the competition between features fired on the phrases as a whole vs. the consecutive but

individual tokens. We found it critical to assign feature values “fairly” among tokens and

phrases to make sure that semi-Markov states and phrasal states fire up often enough

for phrasal alignments.

To illustrate this in a simplified way, take closed up↔closed down in Figure 4.2, and

assume the only feature is the normalized number of matching tokens in the pair. Then

this feature firing on the following pairs would have values (the normalization factor is

the maximal phrase length):

164

4. Discriminative Models for Monolingual Alignment

closed↔closed 1.0

closed up↔closed 0.5

closed up↔up 0.5

closed up↔closed down 0.5

...↔... ...

The desired alignment closed up↔closed down would not have survived the state

competition due to its weak feature value. In this case the model would simply prefer a

token alignment closed↔closed and up↔... (probably null).

Thus we upweighted feature values by the maximum source or target phrase length

to encourage phrasal alignments, in this case closed up ↔closed down:1.0. Then this

alignment would have a better chance to be picked out with additional features, such as

with the PPDB and chunking features, which are also upweighted by maximum phrase

lengths.

4.3.4. Implementation and Training

Since no generic off-the-shelf CRF software is designed to handle the special case of

dynamic state indices and feature functions, we implemented this aligner model in the

Scala programming language, which is fully interoperable with Java. For the Semi-

Markov CRF, we referenced the implementation of Sarawagi and Cohen (2004)6 and

also implemented it in Scala. We used the L2 regularizer and LBFGS for optimization.

OpenNLP7 provided the pos tagger and JWNL8 interfaced with WordNet (Fellbaum,

1998).

6http://crf.sf.net
7http://opennlp.apache.org/
8http://jwordnet.sf.net

165

http://crf.sf.net
http://opennlp.apache.org/
http://jwordnet.sf.net

4. Discriminative Models for Monolingual Alignment

4.4. Experiments

4.4.1. Datasets

4.4.1.1. MSR06 and Edinburgh++

Two annotated datasets have been previously published in alignment research. MSR069

(Brockett, 2007) has annotated alignments on the 2006 PASCAL RTE2 development and

test corpora, with 1600 pairs in total. Semantically equivalent words and phrases in the

premise and hypothesis sentences are aligned in a manner analogous to alignments in

statistical machine translation. This dataset is asymmetric: on average the premises

contain 29 words and the hypotheses 11 words. Edinburgh++10 is a version of the

Edinburgh paraphrase corpus (Cohn et al., 2008) that was revised by Thadani et al.

(2012) such that some annotation errors were further cleaned. The Edinburgh corpus

contains English-English sentence pairs from the following resources:

1. the Multiple-Translation Chinese (MTC) corpus;

2. Jules Verne’s novel Twenty Thousand Leagues Under the Sea.

3. the Microsoft Research paraphrase corpus (Dolan et al., 2004).

The corpus is more balanced and symmetric: the source and target sentences are both 22

words long on average. Before it was manually aligned, it was pre-aligned with GIZA++

trained on 54, 615 translation sentence pairs from the MTC corpus. Table 4.4 shows

some statistics.

Both corpora contain mostly token-based alignment. For MSR06, MacCartney et al.

(2008) showed that setting the allowable phrase size to be greater than one only increased

F1 by 0.2%. For Edinburgh++, the annotation guideline11 explicitly instructs to “prefer

smaller alignments whenever possible”. Statistics shows that single token alignment

counts 98% and 95% of total alignments in these two corpora separately. With such

9http://www.cs.biu.ac.il/nlp/files/RTE2006Aligned.zip
10http://www.ling.ohio-state.edu/scott/#edinburgh-plusplus
11http://staffwww.dcs.shef.ac.uk/people/T.Cohn/paraphraseguidelines.pdf

166

http://www.cs.biu.ac.il/nlp/files/RTE2006Aligned.zip
http://www.ling.ohio-state.edu/scott/#edinburgh-plusplus
http://staffwww.dcs.shef.ac.uk/people/T.Cohn/paraphraseguidelines.pdf

4. Discriminative Models for Monolingual Alignment

train test length %aligned %1x1 align GIZA++
MSR06 800 800 29/11 36% 96% No

Edinburgh++ 714 306 22/22 78% 95% Yes
MTReference 2000 1998 22/17 79% 88% Yes

Table 4.4.: Statistics of the three manually aligned datasets, divided into training
and test in sentence pairs. The length column shows average lengths
of source and target sentences in a pair. %aligned is the percentage of
aligned words over all words. %1x1 align is the percentage of one-to-
one alignment. GIZA++ indicates whether the corpus was pre-aligned
by GIZA++ before presenting to annotators.

a heavy imbalance towards only token-based alignment, a phrase-based aligner would

learn feature weights that award token alignments more than phrasal alignments.

To compensate for the fact of overwhelming 1x1 alignment, we first enabled possible

alignment in the two datasets. Both MSR06 and Edinburgh++ were aligned with multi-

ple annotators. The unanimously agreed alignment was taken as sure alignment, and the

rest possible. Research in monolingual alignment has diverged from bilingual alignment

research, in that monolingual alignment research sometimes discards possible alignments

and uses only sure alignment. This has the unintended side effect of reducing the num-

ber of non-identical alignments and the number of many-one/many-many alignments.

As we will show later, these are among the most challenging parts of the monolingual

alignment task. When we include the possible alignment in the two datasets, percentage

of 1x1 alignment drops to 97% (MSR06) and 92% (Edinburgh++) respectively. Table

4.5 summarizes the percentage of various alignment sizes.

4.4.1.2. New Dataset: MTReference

Even with possible alignment, the two aforementioned datasets still contain more than

90% 1x1 alignment. Thus we created a third dataset, MTReference. The sentences

came from multiple references in a machine translation task. The dataset was initially

created for a sentence compression task: the length ratio between target and source

sentences is between 0.7 and 0.8. The whole dataset contains 3998 sentence pairs. To

167

4. Discriminative Models for Monolingual Alignment

1x1 1x2 1x3 2x2 2x3 3x3 more
MSR06 97.9 1.7 0.4 0.0 0.0 0.0 0.0

MSR06(possible) 96.9 2.6 0.4 0.0 0.0 0.0 0.1
Edinburgh++ 94.6 3.1 1.2 0.4 0.5 0.2 0.0

Edinburgh++(possible) 91.8 4.2 1.8 0.8 0.8 0.6 0.0
MTReference 87.8 8.4 3.4 0.0 0.0 0.0 0.4

MTReference(possible) 73.3 13.9 8.4 1.0 2.0 1.4 0.0

Table 4.5.: Percentage of various alignment sizes (undirectional, e.g., 1x2 and 2x1
are merged) in the training portion of various datasets. A size of MxN
is defined as M continuous tokens in one sentence all align with N
continuous tokens in the other sentence. M and N are only measures
for the size of continuous alignment. They are not necessarily defined
by natural phrase boundaries.

ease the burden of annotation, all sentences were pre-aligned by GIZA++. Then align-

ment was corrected by Amazon Mechanical Turk (two Turkers per HIT). After enabling

possible alignment, the percentage of 1x1 alignment dropped from 88% to 73%.

4.4.2. Notes on Evaluation and Datasets

4.4.2.1. Datasets

There are two threads of work on alignment evaluation due to the order of published

papers and datasets. Careful attention should be paid for future researchers in spirit of

fair comparison among scientific works.

The first thread includes that of (MacCartney et al., 2008, Thadani and McKeown,

2011, Yao et al., 2013b), which solely used the MSR06 dataset. This is mainly due

to that the other corpus, Edinburgh (Cohn et al., 2008), published at the same time

of MacCartney et al. (2008) and the latter was not able to use this dataset. Thadani

and McKeown (2011) improved over MacCartney et al. (2008) by applying ILP during

decoding. Thus the themes of evaluation in these work include both alignment F1 and

speed comparison. On the token-alignment work, we (Yao et al., 2013b) followed the

previous papers and evaluated also on F1 and run time, with results reported in section

168

4. Discriminative Models for Monolingual Alignment

§ 4.4.3 on page 166.

The second thread includes that of (Thadani et al., 2012, Yao et al., 2013a). Thadani

et al. (2012) revised the Edinburgh dataset by correcting wrong annotations. However,

the final released dataset, Edinburgh++, was further improved and was not exactly the

same one reported in Thadani et al. (2012). We (Yao et al., 2013a) reported numbers

from both token-alignment and phrase-alignment on both the MSR06 and Edinburgh++

datasets. The results on MSR06 are directly comparable with previous results, but the

results on Edinburgh++ are only roughly comparable with Thadani et al. (2012).

4.4.2.2. Evaluation Metrics: Token vs. Phrase

Even though the most of the work in comparison does phrase alignment, evaluation

has been consistently performed on token alignment macro F1 since MacCartney et al.

(2008). In some cases, this measure rates down phrase alignment. For instance, if the

gold annotation token-aligns New York with New York (New↔New, York↔York), a token

aligner’s perfect output (New↔New, York↔York) will get a full score:

New York

New •

York •

However, a phrase aligner’s phrase-based output (New↔New, New↔York, York↔York,

York↔New):

New York

New • •

York • •

will only have two-thirds of the full score (precision=0.5, recall=1, F1 = 2/3) according

to the gold-standard token alignment.

Concrete evaluation metrics definition can be found in § 4.2.2.1 on page 144.

4.4.2.3. “Natural Phrase” Alignment

One other reason for evaluating with token alignment F1 instead of phrase alignment F1

is that there is no gold standard data with naturally annotated phrase boundaries. When

169

4. Discriminative Models for Monolingual Alignment

annotators were asked to align words, they did not intentionally create “block” alignment

(e.g., New↔New, New↔York, York↔York, York↔New), but mostly “stripe” alignment

(e.g., New↔New, York↔York), just like the examples shown above. The question boils

down to: given a token-aligned dataset, how can we properly extract phrase alignment?

Originally I had used a phrase chunker to create phrase alignment. The OpenNLP

chunker was first run through the sentences. Then for each phrase pair, if each token in

the source phrase is aligned to a token in the target phrase in a monotonic way, and vice

versa, these alignments are merged to form one single phrasal alignment. One example

is:

New York

New •

York •

−→

New York

New • •

York • •

Some other examples that came from synthesized phrases include: two Atlanta-based

companies↔two Atlanta companies, the UK↔the UK, the 17-year-old↔the teenager,

was held↔was held. The phrase boundaries in these alignments are licensed by the

OpenNLP chunker.

Table 4.6 lists the percentage of various alignment block sizes after the merge and

compares phrase sizes extracted from possible alignment. Three observations can be

made:

1. the portion of non 1x1 alignments increases to 10% ∼ 20% after merging, showing

that this is an effective way for reducing 1x1 alignment;

2. allowing a maximal phrase length of 3 covers 98% ∼ 99% of total alignments, thus

a phrase length larger than 3 would be a bad trade-off for coverage vs. speed;

3. the phrase synthesizing method creates more block alignment (mainly 2x2 and

3x3) than including the possible alignment.

However, one argument against the phrase synthesizing method is that the phrases cre-

ated come from a chunker – they are not natural phrases. Thus in the following evalua-

tion, we did not evaluate on the phrase synthesized datasets, but only evaluated on sure

170

4. Discriminative Models for Monolingual Alignment

1x1 1x2 1x3 2x2 2x3 3x3 more
MSR06 97.9 1.7 0.4 0.0 0.0 0.0 0.0

MSR06(possible) 96.9 2.6 0.4 0.0 0.0 0.0 0.1
MSR06(chunker) 89.2 1.9 0.3 5.7 0.0 1.9 0.8
Edinburgh++ 94.6 3.1 1.2 0.4 0.5 0.2 0.0

Edinburgh++(possible) 91.8 4.2 1.8 0.8 0.8 0.6 0.0
Edinburgh++(chunker) 81.9 3.5 0.8 8.3 0.4 3.0 2.1

Table 4.6.: Comparison of different methods aiming to create more phrase align-
ment from the original datasets. (possible) enables extra alignments
not unanimously agreed by annotators. (chunker) synthesized blocked
phrase alignments from monotonic token-alignment by running the
OpenNLP chunker to get phrase boundaries from only the sure align-
ment. The (chunker) method creates more 2x2/3x3 block alignment.

alignment and sure+possible alignment. Readers can still refer to Yao et al. (2013a) for

results on the phrase synthesized datasets.

4.4.3. Evaluation: the General Picture

To make results directly comparable, we closely followed the setup of MacCartney et al.

(2008), Thadani and McKeown (2011) and Thadani et al. (2012). For the sentence pairs

in the three datasets, we took the longer sentence as the source sentence and the shorter

one as the target, then ran the aligners in both directions, s2t and t2s. Experiments

showed that the t2s direction consistently outperformed the s2t direction. For post-

processing heuristics, intersection had better precision, union gave better recall, but

neither of them yielded better F1’s than t2s. Thus in the following we only report scores

from running in the t2s direction.

4.4.3.1. Baselines

The baseline systems were GIZA++, Meteor, and TED, all of which were described in

§ 4.2.3 on page 147. Among them, GIZA++ was trained on each dataset separately

(with specific procedures described in § 4.2.3.1 on page 147) while Meter and TED were

used out of the box without training.

171

4. Discriminative Models for Monolingual Alignment

Additionally, we cited the numbers from the Stanford RTE system (Chambers et al.,

2007) and the MANLI family of aligners. MANLI was first developed by MacCartney

et al. (2008), and then improved by Thadani and McKeown (2011), Thadani et al. (2012)

with faster and exact decoding via ILP. There are five versions to be compared here:

• MANLI: the original version.

• MANLI-approx.: re-implemented version by Thadani and McKeown (2011).

• MANLI-exact: decoding via ILP solvers.

• MANLI-constraint: MANLI-exact with hard syntactic constraints, mainly on

common “light” words (determiners, prepositions, etc.) attachment to boost exact

match rate.

• MANLI-joint (Thadani et al., 2012): an improved version of MANLI-constraint

that not only models phrasal alignments, but also alignments between dependency

arcs, with reported numbers on the original Edinburgh paraphrase corpus.

4.4.3.2. Results

Performance was evaluated by macro-averaged precision, recall, F1 of aligned token pairs,

and exact (perfect) match rate for a whole pair, shown in Table 4.7. The following

observation can be made across different datasets:

Pre-alignment affects end performance, both human’s and machine’s Out

of all three datasets, only MSR06 was not pre-aligned when presenting to the annotators:

MSR06 Edinburgh++ MTReference

pre-aligned by GIZA++? N Y Y

GIZA++ score 78.3% 85.5% 77.4%

best score 88.3% 86.7% 77.4%

GIZA++ had an F1 of 78.3% on this dataset, 10 points below (78.3% vs. 88.3%)

the best performing system, our token aligner. However, the other two datasets, Edin-

burgh++ and MTReference, were all pre-aligned by GIZA++. On these two datasets,

172

4. Discriminative Models for Monolingual Alignment

GIZA++ was only either slightly suboptimal (85.5% vs. 86.7% on Edinburgh++) or on

par with the best system (77.4% on MTReference).

This shows that the final annotation can be heavily influenced by pre-alignment. Or

in other words, human annotators might have made different alignment when being pre-

sented with an not-aligned sentence pair. We show some of these examples in Appendix A

on page 247.

Best alignment scores reflect dataset quality The best scores on the three

datasets and their annotators are:

MSR06 88.3% 3 professional annotators from the Butler Hill Group

Edinburgh++ 86.7% 2 linguistics graduate students

MTReference 77.4% Amazon Mechanical Turk

We hypothesize that the better scores a statistically-trained aligner obtains, the more

consistently the dataset was annotated. This hypothesis also might correspond to the

types of annotators: MSR06 was obtained with intersecting results from 3 annotators,

thus the highest quality; Edinburgh++ followed: a fixed set of two annotators can still

make consistent alignment; MTReference outsourced the task to MTurk, whose quality

cannot be constantly guaranteed even after vetting.

Discriminative aligners outperform other aligners There are three types of

aligners in the evaluation: rule-based (TED: minimal edit distance; Meteor: minimal

cross alignment), generative (GIZA++), discriminative (jacana-align and the MANLI*

family). The discriminative aligners outperformed other aligners on MSR06. jacana-align

also outperformed other aligners on Edinburgh++ and MTReference, where MANLI’s

performance was either not directly comparable or missing (MANLI* is not open-source).

jacana-align also did better than the MANLI family on the MSR06 dataset. There

are two possible explanations here: jacana-align uses more lexical resources, or the CRF

model of jacana-align works better than the perceptron model of MANLI on this dataset.

We think it is the latter, for the following reasons:

173

4. Discriminative Models for Monolingual Alignment

• we have shown in Yao et al. (2013b) that even with only access to WordNet, jacana-

align also outperformed MANLI, which accessed about 5GB of lexical resources;

• we later show in ablation test that the alignment performance on these datasets

are not sensitive to lexical resources;

• the CRF model we have employed has one merit over MANLI: it performs global

decoding over the whole sentence to find the optimal alignment; this rules out

ambiguous alignments especially in the case of multiple stop words; the perceptron

model employed by MANLI does not carry this merit.

jacana-align is a high precision aligner Both the token and phrase version of

jacana-align had the best precision scores in all datasets, with moderate recall scores.

This shows that jacana-align is conservative about making new alignments. We later in

§ 4.6 on page 180 show this property suits well in downstream applications which require

high precision, such as question answering.

The more non 1x1 alignment, the better the phrase aligner works There

are two reasons that the phrase aligner might not work better in a dataset with majorly

1x1 alignment (such as MSR06: 97.9% 1x1 alignment):

• extra phrase-based features might degrade the aligner performance when most

alignment types are 1x1 blocks;

• the token-based evaluation metrics might rate down phrase alignment, as shown

in § 4.4.2.2 on page 164.

The following table shows a trend that, when there are more non 1x1 alignment blocks,

the phrase aligner’s performance goes up and eventually beats the token aligner. We

continue to show in the next section that this trend holds when we evaluate on the

possible alignment of each dataset, where 1x1 alignment is even less.

174

4. Discriminative Models for Monolingual Alignment

Corpus System P % R % F1 % E %

MSR06
(1x1: 97.9%)

GIZA++ 82.5 74.4 78.3 14.0
TED 80.6 79.0 79.8 13.5

Stanford RTE∗ 82.7 75.8 79.1 -
Meteor 82.5 81.2 81.9 15.0
MANLI∗ 85.4 85.3 85.3 21.3

MANLI-approx./ 87.2 86.3 86.7 24.5
MANLI-exact/ 87.2 86.1 86.8 24.8

MANLI-constraint/ 89.5 86.2 87.8 33.0
our token aligner 93.3 83.8 88.3 34.8
our phrase aligner 91.5 83.5 87.3 32.0

Edinburgh++
(1x1: 94.7%,
pre-aligned by
GIZA++)

GIZA++ 89.7 81.7 85.5 13.1
TED 79.0 60.7 68.7 4.2
Meteor 88.3 80.5 84.2 12.7

MANLI-joint. 76.6 83.8 79.2 12.2
our token aligner 90.8 82.9 86.7 15.7
our phrase aligner 90.4 81.9 85.9 13.7

MTReference
(1x1: 87.8%,
pre-aligned by
GIZA++)

GIZA++ 70.1 86.3 77.4 1.6
TED 80.5 50.9 62.4 0.4
Meteor 85.1 66.7 74.8 0.8

our token aligner 86.8 68.4 77.1 1.2
our phrase aligner 85.7 70.6 77.4 1.9

Table 4.7.: Results on the three datasets. E% stands for exact (perfect) match
rate. Systems marked with ∗ are reported by MacCartney et al. (2008),
with / by Thadani and McKeown (2011), with . by Thadani et al.
(2012) (but not directly comparable since they used the original Edin-
burgh dataset, not Edinburgh++). Results of GIZA++ were obtained
after applying the intersection heuristic on the GIZA++ alignments
run in both directions. Results of the token and phrase aligners are
from the direction of t2s.

175

4. Discriminative Models for Monolingual Alignment

corpus %1x1 token aligner F1 phrase aligner F1

MSR06 97.9% 88.3% 87.3%

Edinburgh++ 94.7% 86.7% 85.9%

MTReference 87.8% 77.1% 77.4%

4.4.4. Evaluation: Identical vs. Nonidentical

One way to investigate what aligners have learned from the data is to divide the scores by

(easy) identical and (hard) nonidentical alignment. We selected the two best performing

open-source aligners, GIZA++ and Meteor, and compared them with the token aligner

and the phrase aligner. Identical alignment was simply judged by word matching while

nonidentical alignment was the rest. Result is shown in Table 4.8, with subscript i

showing identical alignment scores and n showing nonidentical. Due to the complexity

of the table with various results on 6 datasets, we describe the observations verbosely in

the following.

Identical alignment performance reflects the quality of alignment models.

Aligners do not need any external resources for making most identical alignment. But

the structured prediction can still make a difference, especially in the case of multiple

possible alignment for the same word, such as stop words. The following table shows

the best F1i values for identical alignment in the 3 datasets (with sure or sure+possible

alignment).

MSR06 Edinburgh++ MTReference

sure s+p sure s+p sure s+p

% identical 69.7 68.0 70.8 62.2 55.3 34.8

GIZA++ F1i% 91.5 91.9 96.6 96.9 94.3 96.6

Meteor F1i% 93.5 93.9 95.9 96.3 92.7 94.4

token/phrase F1i% 95.8 96.0 96.7 97.2 93.5 94.8

176

4. Discriminative Models for Monolingual Alignment

On the relatively higher-quality datasets of MSR06 and Edinburgh++, both the to-

ken and phrase version of jacana-align had a stable F1i around 96% ∼ 97%. Meteor

followed and GIZA++ was the third. MTReference is noisier and GIZA++ had the

best performance. We think this is because GIZA++ aligned multiple stop words in

the sentence pair and Turkers were not able to correct all of them. Overall, the global

decoding nature of CRF-based jacana-align showed its power in an alignment task that

needs smart decisions on ambiguous alignment.

Nonidentical alignment performance is moderate and needs improvement.

Making correct nonidentical alignment mostly needs the help of external knowledge. The

following table summarizes the best F1n:

MSR06 Edinburgh++ MTReference

sure s+p sure s+p sure s+p

% nonidentical 30.3 32.0 29.2 37.8 44.7 65.2

GIZA++ F1n% 27.6 28.1 41.6 37.8 53.9 48.3

Meteor F1n% 30.5 31.8 34.7 29.5 33.8 20.6

token/phrase F1n% 71.2 70.5 64.8 59.7 46.1 42.6

The same pattern as the identical alignment can be observed. On MSR06 and Edin-

burgh++, jacana-align had F1n’s around 60% ∼ 70% for nonidentical alignment, which

consists of 30% ∼ 40% total alignment in these datasets. We think this performance is

reasonable given the amount of external lexical resources jacana-align employs. GIZA++

and Meteor on the other hand could barely get to 40%. However, again, on MTRefer-

ence, GIZA++ had F1n’s around 50%, with jacana-align closely followed while Meteor

still had a hard problem of coping with nonidentical alignment.

4.4.5. Evaluation: Token vs. Phrasal

Another way to investigate what aligners have learned from the data is to divide the

scores by (easy) 1x1 and (hard) non-1x1 alignment. Table 4.9 shows the divided scores,

177

4. Discriminative Models for Monolingual Alignment

S
ys

te
m

C
or

p
u
s

P
%

R
%

F
1%

E
%

C
or

p
u
s

P
%

R
%

F
1%

E
%

P
i
/P

n
R

i
/R

n
F
1
i
/F

1
n

P
i
/P

n
R

i
/R

n
F
1
i
/F

1
n

G
IZ
A
+
+

M
SR

06
su
re

(i
de
nt
ic
al
:
69

.7
%
)

82
.5

74
.4

78
.3

14
.0

M
SR

06
su
re
+
po

ss
ib
le

(i
de

nt
ic
al
:
68

.0
%
)

84
.0

72
.6

77
.9

13
.6

93
.4
/3
6.
1

89
.7
/2
2.
4

91
.5
/2
7.
6

94
.5
/3
9.
7

89
.4
/2
1.
7

91
.9
/2
8.
1

82
.5

81
.2

81
.9

84
.5

79
.5

81
.9

M
et
eo
r

89
.9
/3
9.
9

97
.3
/2
4.
6

93
.5
/3
0.
5

15
.0

91
.0
/4
5.
1

97
.0
/2
4.
6

93
.9
/3
1.
8

14
.5

ou
r
to
ke
n
al
ig
ne
r

93
.3

83
.8

88
.3

34
.8

94
.8

81
.9

87
.9

31
.5

96
.0
/8
8.
0

95
.7
/5
9.
7

95
.9
/7
1.
2

96
.7
/9
1.
6

95
.2
/5
7.
3

96
.0
/7
0.
5

91
.5

83
.5

87
.3

93
.4

82
.1

87
.4

ou
r
ph

ra
se

al
ig
ne
r

95
.9
/7
8.
7

95
.8
/5
8.
4

95
.8
/6
7.
1

32
.0

96
.7
/8
4.
4

95
.2
/5
7.
2

96
.0
/6
8.
2

29
.1

G
IZ
A
+
+

E
di
nb

ur
gh

+
+

su
re

(i
de
nt
ic
al
:
70

.8
%
)

89
.7

81
.7

85
.5

13
.1

E
di
nb

ur
gh

+
+

su
re
+
po

ss
ib
le

(i
de

nt
ic
al
:
62

.2
%
)

93
.0

74
.5

82
.8

10
.5

97
.0
/5
6.
3

96
.1
/3
3.
0

96
.6
/4
1.
6

97
.9
/7
2.
4

95
.9
/2
5.
6

96
.9
/3
7.
8

88
.3

80
.5

84
.2

91
.0

72
.9

80
.9

M
et
eo
r

94
.0
/6
1.
4

97
.8
/2
4.
1

95
.9
/3
4.
7

12
.7

94
.9
/7
7.
2

97
.6
/1
8.
3

96
.3
/2
9.
5

9.
8

ou
r
to
ke
n
al
ig
ne
r

90
.8

82
.9

86
.7

15
.7

90
.3

79
.7

84
.7

11
.4

96
.0
/7
7.
8

97
.8
/5
5.
6

96
.9
/6
4.
8

97
.0
/7
4.
9

97
.8
/5
1.
1

97
.4
/6
0.
7

90
.4

81
.9

85
.9

89
.4

79
.4

84
.1

ou
r
ph

ra
se

al
ig
ne
r

95
.8
/7
2.
5

97
.6
/5
5.
2

96
.7
/6
2.
7

13
.7

96
.7
/7
1.
5

97
.8
/5
1.
3

97
.2
/5
9.
7

12
.1

G
IZ
A
+
+

M
T
R
ef
er
en

ce
su
re

(i
de
nt
ic
al
:
55

.3
%
)

70
.1

86
.3

77
.4

1.
6

M
T
R
ef
er
en

ce
su
re
+
po

ss
ib
le

(i
de

nt
ic
al
:
34

.8
%
)

82
.6

64
.7

72
.6

0.
9

89
.6
/4
5.
3

99
.5
/6
6.
4

94
.3
/5
3.
9

94
.8
/6
4.
8

98
.6
/3
8.
6

96
.6
/4
8.
3

85
.1

66
.7

74
.8

92
.2

46
.2

61
.5

M
et
eo
r

88
.7
/6
3.
7

97
.0
/2
3.
0

92
.7
/3
3.
8

0.
8

93
.3
/8
0.
8

95
.6
/1
1.
8

94
.4
/2
0.
6

0.
2

ou
r
to
ke
n
al
ig
ne
r

86
.8

69
.4

77
.1

1.
2

86
.2

52
.7

65
.4

0.
2

91
.4
/7
3.
1

96
.0
/3
1.
2

93
.7
/4
3.
8

94
.1
/6
9.
8

94
.0
/2
2.
9

94
.1
/3
4.
5

85
.7

70
.6

77
.4

81
.8

59
.2

68
.7

ou
r
ph

ra
se

al
ig
ne
r

90
.9
/7
0.
5

96
.4
/3
4.
2

93
.5
/4
6.
1

1.
9

93
.8
/6
4.
3

95
.9
/3
1.
9

94
.8
/4
2.
6

0.
7

Ta
bl
e
4.
8.
:R

es
ul
ts

on
th
e
3
da

ta
se
ts

w
it
h
su
re

an
d
su
re
+
po

ss
ib
le

al
ig
nm

en
t,
w
he
re

(x
%
)
in
di
ca
te
s
ho

w
m
uc
h
al
ig
nm

en
t
is
id
en
ti
ca
l

al
ig
nm

en
t,
su
ch

as
Ne

w↔
Ne

w.
E
%

st
an

ds
fo
r
ex
ac
t
(p
er
fe
ct
)
m
at
ch

ra
te
.
Su

bs
cr
ip
t
i
st
an

ds
fo
r
co
rr
es
po

nd
in
g
sc
or
es

fo
r

“id
en
ti
ca
l”

al
ig
nm

en
t
an

d
n
fo
r
“n
on

-id
en
ti
ca
l”.

178

4. Discriminative Models for Monolingual Alignment

with subscript t showing 1x1 “token” alignment scores and p showing non-1x1 “phrasal”

scores. The following observation can be made:

jacana-align excelled in 1x1 alignment The following table summaries each aligner’s

performance on 1x1 alignment:

MSR06 Edinburgh++ MTReference

sure s+p sure s+p sure s+p

% 1x1 97.9 96.9 94.7 91.8 87.8 73.3

GIZA++ F1t% 83.2 82.9 90.9 90.4 76.4 73.2

Meteor F1t% 85.9 85.7 91.2 90.1 78.5 74.1

token aligner F1t% 91.4 90.9 92.7 90.6 80.9 71.6

phrase aligner F1t% 90.8 90.6 92.2 91.1 81.7 75.2

jacana-align took the first place in all datasets. Also, the gap between the token aligner

and the phrase aligner closed in as the percentage of 1x1 alignment became smaller in

the datasets. We think the reason is that when the dataset is mostly (> 95%) about 1x1

alignment, the phrase aligner was “confused” to learn phrasal alignment. But as non-1x1

alignment increased, the phrasal aligner captured the regularities in the data and thus

performed better than the token aligner.

Non-1x1 alignment: a big challenge The following table summaries each aligner’s

performance on non-1x1 “phrasal” alignment:

MSR06 Edinburgh++ MTReference

sure s+p sure s+p sure s+p

% non-1x1 2.1 3.1 5.3 8.2 12.2 26.7

GIZA++ F1p% 0.0 0.0 0.0 0.0 35.0 22.9

Meteor F1p% 49.4 42.3 11.0 6.3 7.2 3.8

token aligner F1p% 0.0 0.0 16.3 21.6 4.5 4.7

phrase aligner F1p% 13.8 1.7 40.8 30.4 19.0 17.4

179

4. Discriminative Models for Monolingual Alignment

It was surprising to see that Meteor performed the best on the MSR06 dataset. But

given that non-1x1 alignment only take 2.1% − 3.1% on MSR06, it is very likely that

the paraphrase list of Meteor happened to have included some phrases in MSR06. On

the Edinburgh++ dataset, the phrase aligner outperformed all other aligners by a large

margin. However, on the MTReference dataset, GIZA++ still had the best scores, with

the phrase aligner taking the second place. Overall, alignment quality on non-1x1 blocks

was not satisfying: none of the systems went close to 50% in F1.

4.4.6. Error Analysis

Concrete examples of alignment from GIZA++, Meteor, and the token/phrase version

of jacana-align are shown in Appendices A on page 247 and C on page 272. There were

three primary categories of error:12

1. Paraphrases that are not covered by current lexical resources, such as dubbed↔called,

program↔software and signed a contract↔struck a deal.

2. Words that are semantically related judging by the context but not exactly para-

phrases, such asmarried↔wife, beat↔victory, shared↔sentiment among and Cuba↔the

island. This is a difficult challenge because the decision to make an alignment de-

pends on a case-by-case basis given the context.

3. Annotation errors or inconsistencies in the datasets.

The last point needs further elaboration. The point of machine learning a statistically

trained aligner is to capture the annotation consistences in datasets. In theory using

a few annotators consistently across the whole dataset would lead to higher alignment

evaluation numbers than using a lot of annotators on a lot of small pieces of the dataset.

This is a bias vs. variance trade-off in annotating the datasets. But it also indirectly

determines the performance upper bound of a statistically trained aligner.

12The jacana-align source code contains a browser in JavaScript (AlignmentBrowser.html) that
compares the gold alignment and test output; readers are encouraged to try it out.

180

4. Discriminative Models for Monolingual Alignment

S
ys

te
m

C
or

p
u
s

P
%

R
%

F
1%

E
%

C
or

p
u
s

P
%

R
%

F
1%

E
%

P
t
/P

p
R

t
/R

p
F
1
t
/F

1
p

P
t
/P

p
R

t
/R

p
F
1
t
/F

1
p

G
IZ
A
+
+

M
SR

06
su
re

(1
x1

:
97

.9
%
)

82
.5

74
.4

78
.3

14
.0

M
SR

06
su
re
+
po

ss
ib
le

(1
x1

:
96

.9
%
)

84
.0

72
.6

77
.9

13
.6

85
.7
/0
.0

80
.9
/0
.0

83
.2
/0
.0

87
.1
/0
.0

79
.2
/0
.0

82
.9
/0
.0

82
.5

81
.2

81
.9

84
.5

79
.5

81
.9

M
et
eo
r

85
.1
/7
3.
8

86
.7
/3
7.
1

85
.9
/4
9.
4

15
.0

86
.5
/6
4.
9

84
.9
/3
1.
4

85
.7
/4
2.
3

14
.5

to
ke
n
al
ig
ne
r

93
.3

83
.8

88
.3

34
.8

94
.8

81
.9

87
.9

31
.5

93
.8
/0
.0

89
.2
/0
.0

91
.4
/0
.0

94
.9
/0
.0

87
.2
/0
.0

90
.9
/0
.0

91
.5

83
.5

87
.3

93
.4

82
.1

87
.4

ph
ra
se

al
ig
ne
r

94
.2
/1
9.
9

87
.6
/1
0.
6

90
.8
/1
3.
8

32
.0

95
.1
/3
.1

86
.6
/1
.2

90
.6
/1
.7

29
.1

G
IZ
A
+
+

E
di
nb

ur
gh

+
+

su
re

(1
x1

:
94

.7
%
)

89
.7

81
.7

85
.5

13
.1

E
di
nb

ur
gh

+
+

su
re
+
po

ss
ib
le

(1
x1

:
91

.8
%
)

93
.0

74
.5

82
.8

10
.5

89
.4
/0
.0

92
.5
/0
.0

90
.9
/0
.0

90
.3
/0
.0

90
.5
/0
.0

90
.4
/0
.0

88
.3

80
.5

84
.2

91
.0

72
.9

80
.9

M
et
eo
r

90
.5
/2
6.
2

91
.9
/7
.0

91
.2
/1
1.
0

12
.7

90
.8
/2
2.
7

89
.3
/3
.6

90
.1
/6
.3

9.
8

to
ke
n
al
ig
ne
r

90
.8

82
.9

86
.7

15
.7

90
.3

79
.7

84
.7

11
.4

91
.7
/4
9.
0

93
.7
/9
.8

92
.7
/1
6.
3

89
.3
/4
5.
1

92
.0
/1
4.
2

90
.6
/2
1.
6

90
.4

81
.9

85
.9

89
.4

79
.4

84
.1

ph
ra
se

al
ig
ne
r

91
.8
/5
5.
0

92
.6
/3
2.
4

92
.2
/4
0.
8

13
.7

91
.6
/4
3.
5

90
.6
/2
3.
3

91
.1
/3
0.
4

12
.1

G
IZ
A
+
+

M
T
R
ef
er
en

ce
su
re

(1
x1

:
87

.8
%
)

70
.1

86
.3

77
.4

1.
6

M
T
R
ef
er
en

ce
su
re
+
po

ss
ib
le

(1
x1

:
73

.3
%
)

82
.6

64
.7

72
.6

0.
9

65
.8
/3
5.
1

91
.2
/3
5.
0

76
.4
/3
5.
0

60
.4
/3
4.
0

93
.1
/1
7.
3

73
.2
/2
2.
9

85
.1

66
.7

74
.8

92
.2

46
.2

61
.5

M
et
eo
r

76
.0
/2
6.
0

81
.2
/4
.2

78
.5
/7
.2

0.
8

68
.2
/2
5.
1

81
.1
/2
.1

74
.1
/3
.8

0.
2

to
ke
n
al
ig
ne
r

86
.8

69
.4

77
.1

1.
2

86
.2

52
.7

65
.4

0.
2

77
.3
/3
9.
9

84
.9
/2
.4

80
.9
/4
.5

61
.0
/3
5.
4

86
.7
/2
.5

71
.6
/4
.7

85
.7

70
.6

77
.4

81
.8

59
.2

68
.7

ph
ra
se

al
ig
ne
r

80
.6
/4
4.
9

82
.8
/1
2.
0

81
.7
/1
9.
0

1.
9

69
.0
/2
7.
8

82
.6
/1
2.
6

75
.2
/1
7.
4

0.
7

Ta
bl
e
4.
9.
:R

es
ul
ts

on
th
e
3
da

ta
se
ts

w
it
h
1x

1
an

d
no

n-
1x

1
al
ig
nm

en
t.

Su
bs
cr
ip
t
t
st
an

ds
fo
r
co
rr
es
po

nd
in
g
sc
or
es

fo
r
“t
ok

en
”
1x

1
al
ig
nm

en
t
an

d
p
fo
r
“p
hr
as
al
”
no

n-
1x

1
al
ig
nm

en
t.

181

4. Discriminative Models for Monolingual Alignment

4.4.7. Ablation Test and Feature Weights

We have demonstrated that the CRF nature of jacana-align helps with globally optimized

alignment over the sentence pairs. The discriminative nature of jacana-align also helps

with automatically optimizing over multiple lexical resources. Thus an ablation test of

various lexical resources was also conducted: specifically, Wiktionary, WordNet Snow,

word2vec, and PPDB, all described in § 4.3.3 on page 156.

Recall that jacana-align’s performance in F1 on MSR06 and Edinburgh++ is around

86% ∼ 88%, while on MTReference around 77%, with MTReference a noisier dataset.

For real-world usage, we trained the aligner on the full set of MSR06 and Edinburgh++

for it’s open-source release. The ablation test was also performed on this mixed dataset,

which all together has 2620 manually aligned sentence pairs. We divided them by 80/20

into 2100 training pairs and 520 test pairs. Table 4.10 on the next page shows the

ablation test result of the token aligner. Overall, WordNet Snow contributed the most

to precision, and PPDB to recall and F1. However, with all the features enabled, jacana-

align’s performance was only 1.2% better (85.3% vs. 86.5%). This shows that coverage

is still an issue for lexical resources.

Table 4.11 shows a selection of 80 features and their optimized weights. Among all

lexical resources, PPDB had the largest weight (2.8348). WordNet and Wiktionary had

features spread across the table depending on specific relations. For instance, Wik-

tionaryRelation.SYNONYM had a positive feature weight of 1.3061 while WordnetPart-

sOf had a negative feature weight of -0.8883. Finally, word2vec had a mediocre weight of

1.0565. This is due to that the notion of “semantic relatedness” in alignment is different

than in distributional similarity. For instance, Beijing and Tokyo would be ranked highly

similar as they are both capital cities of Asian countries. But they should be mutually

exclusive in alignment.

182

4. Discriminative Models for Monolingual Alignment

Features Precision Recall F1

basic 90.3 80.8 85.3
+Wiktionary 89.7 (-0.6) 80.0 (-0.8) 85.0 (-0.3)
+word2vec 89.8 (-0.5) 81.0 (+0.2) 85.2 (-0.1)

+WordNet Snow 90.7 (+0.4) 81.3 (+0.5) 85.7 (+0.4)
+PPDB 90.5 (+0.2) 82.1 (+1.3) 86.1 (+0.8)

full 90.7 82.6 86.5
-Wiktionary 90.5 (-0.2) 82.4 (-0.2) 86.3 (-0.2)
-word2vec 90.7 (0.0) 82.3 (-0.3) 86.3 (-0.2)

-WordNet Snow 90.2 (-0.5) 82.2 (-0.4) 86.0 (-0.5)
-PPDB 90.3 (-0.4) 81.4 (-1.2) 85.6 (-0.9)

Table 4.10.: Ablation test of the token aligner with various lexical features on 520
test sentences from a mixture of MSR06 and Edinburgh++. Basic
features were described in § 4.3.3 on page 156.

4.5. Summary on Alignment

We presented two discriminative models for the task of monolingual alignment, one based

on Conditional Random Field for token alignment, the other based on semi-Markov CRF

for phrase alignment. The token aligner is based on the model proposed by Blunsom and

Cohn (2006). It is only able to make 1-to-1 alignment in a sentence pair. To extend it

for phrase alignment, we introduced semi-Markov states and phrasal states to the CRF

to make possible phrasal alignment on both the source and target sides. Both aligners

access an extensive list of lexical resources and have state-of-the-art performance on

several monolingual datasets.

Through a broad-range evaluation of alignment types, we also have found that human

annotators can be affected by whether the sentences were pre-aligned by GIZA++. The

influence of this pre-alignment directly affects the end performance of several monolingual

aligners. Given that GIZA++ was commonly used for word alignment before the age

of monolingual alignment, and the high precision characteristics of our monolingual

aligners, we recommend in the future the replacement of GIZA++ with jacana-align

if pre-alignment is needed for aligning more sentence pairs.

In terms of alignment types, the current state-of-the-art monolingual aligners have

excellent performance on identical alignment (96% F1), moderate performance on non-

183

4. Discriminative Models for Monolingual Alignment

align_position.pos2null 5.6821 WordnetDerived 0.6484

identicalMatchIgnoreCase 2.8447 WordnetEntailing 0.6307

pos.map..-. 2.8348 DiceSorensen 0.5789

PPDBsimple 2.8053 pos.map.EX-EX 0.5441

pos.map.VBD-VBD 2.4356 pos.map..-OtherPOS 0.5248

pos.map.DT-null 2.1037 pos.map.CC-OtherPOS 0.5102

pos.match 1.7985 WiktionaryRelation.RELATED_TERM 0.5082

pos.map.PRP-null 1.7352 WiktionaryRelation.ANTONYM 0.5048

pos.map.IN-null 1.6961 similar.left 0.4621

Ngram4 1.4464 pos.map.JJR-JJR 0.4401

WiktionaryRelation.SYNONYM 1.3061 pos.map.TO-TO 0.4258

pos.map.$-$ 1.2433 WordnetHyponym 0.3923

WordnetHaveSubstance 1.2189 pos.map.IN-IN 0.3904

pos.map.JJ-null 1.1923 WordnetHypernym 0.3401

word2vec 1.0565 Ngram3 0.2823

pos.map.-LRB—LRB- 1.0486 JaroWinkler 0.2738

WordnetSubstancesOf 1.0204 pos.map.”-null 0.2704

WiktionaryRelation.MERONYM 1.0089 match.right 0.2591

start.2null 0.9967 numCommonSuffix 0.2395

end.2null 0.9967 pos.no_match 0.1805

edge.null2null 0.9967 pos.map.WDT-OtherPOS 0.1736

edge.null2align 0.9967 pos.map.PRP-OtherPOS 0.1499

edge.monotonic.zero 0.9967 Jaccard 0.1498

edge.monotonic.positive 0.9967 similar.functional.right 0.111

edge.monotonic.negative 0.9967 pos.map..-null 0.1071

edge.align2null 0.9967 Levenshtein 0.0148

WiktionaryRelation.COORDINATE_TERM 0.9148 Hamming 0.0127

WordnetCausing 0.9095 align_position.pos2pos -0.0846

pos.map.MD-MD 0.9017 WordnetLemmaMatch -0.0923

pos.map.JJS-OtherPOS 0.9013 WiktionaryRelation.HYPONYM -0.2125

WordnetHavePart 0.8923 pos.map.DT-DT -0.2317

pos.map.WDT-WDT 0.8815 identicalMatch -0.2793

similar.functional.left 0.8714 WordnetHaveMember -0.4198

WiktionaryRelation.SEE_ALSO 0.8699 nicknames -0.4224

pos.map.-null 0.7855 pos.map.VBD-OtherPOS -0.5229

match.functional.right 0.7468 match.functional.left -0.6493

pos.map.JJR-OtherPOS 0.7439 WordnetMembersOf -0.6698

match.left 0.7302 WordnetPartsOf -0.8883

WordnetSynonym 0.7086 WiktionaryRelation.DERIVED_TERM -1.1102

similar.right 0.7028 align_position.pos2pos.relative -4.9388

Table 4.11.: Selected alignment features and their optimized weights. There were
190 features in total. This table presents 80 of them, with the other
110 features mostly based on “pos.map.*”.

184

4. Discriminative Models for Monolingual Alignment

identical alignment (60% ∼ 70% F1), good performance on token alignment (90% F1)

and very poor performance on phrasal alignment (40% F1 or less). All three datasets we

have used do not contain information about natural phrase boundaries. Thus if in the

future should more annotated alignment dataset be created, it is suggested to make a

focus on annotating more phrase alignment.

So far we have only evaluated the aligners’ performance intrinsically. Next we apply

them in an NLP application: Question Answering.

4.6. QA with Alignment

4.6.1. Motivation

One fundamental problem in the task of Question Answering (QA) is first knowing

whether a retrieved sentence contains the answer to the question, then extracting it. A

good hint to approaching this is to judge whether the retrieved sentence is relevant (via

lexical overlap, paraphrasing, entailing, etc) to the question, through some mechanism of

mapping the QA pairs, such as synchronous parsing, parse tree matching or alignment.

We focus on how natural language alignment can help the task of QA. Intuitively

(factoid) QA can be treated as a natural language alignment task, with the objective of

aligning the question word with the answer fragment, provided that the factoid answer is

usually a short phrase in the sentence. For more open-ended QA, such as those seeking

a paragraph describing an opinion, a process, etc, alignment should still help answering

the question by drawing the connection between the missing information in the question

and the existing information in the text. In this section, instead of directly aligning the

question word with answer candidates (i.e., QA as alignment), we take a more general

approach to incorporate alignment-based features into existing QA engines (i.e., QA with

alignment), making use of both the power of existing QA engines and natural language

aligners.

Due to recent development of monolingual alignment (MacCartney et al., 2008, Thadani

and McKeown, 2011, Denkowski and Lavie, 2011, Yao et al., 2013b), many off-the-shelf

185

4. Discriminative Models for Monolingual Alignment

aligners have been made available for NLP usage. We selected one open-source bilingual

aligner and three monolingual ones for this task:

1. GIZA++ (Och and Ney, 2003), adapted from Machine Translation (MT) word

alignment.

2. TED, based on Tree Edit Distance (Zhang and Shasha, 1989), described in detail

in § 3.2 on page 90.

3. Meteor (Denkowski and Lavie, 2011), used for MT evaluation.

4. jacana-align (Yao et al., 2013b), a discriminative aligner trained on labeled word

alignment data (§ 4.3 on page 150).

Note that the first aligner, GIZA++, was originally designed for bilingual word alignment

but here adapted to the monolingual case, a common approach (Quirk et al., 2004, Fader

et al., 2013, Xu et al., 2013) prior to the introduction of monolingual aligners.

We have already shown in Table 4.7 on page 170 the comparison of alignment per-

formance among these four aligners. In general jacana-align achieved the best results on

two different datasets among the four aligners, mainly due to the fact that it was trained

on these datasets and was able to optimize over other lexical resources.

Next we conduct extensive experiments on multiple QA datasets, collected from pre-

vious QA challenges, i.e., TREC QA and the Jeopardy! game show. The Jeopardy data

is of slightly different nature than the TREC data: the questions (called “clues” in the

game show) are formed in declarative sentences rather than interrogative; the questions

are also usually longer, harder and more realistic since they are designed to test humans

as opposed to machines in the TREC QA. Nonetheless, we report consistent findings

from our experiments on both datasets.

4.6.2. Using Alignment

All experiments were run with jacana-qa (see Chapter 3 for a detailed introduction) with

the full feature set. The way the other three aligners (GIZA++, Meteor, jacana-align)

were applied was to replace the original TED aligner that comes with jacana-qa with each

186

4. Discriminative Models for Monolingual Alignment

of them, then draw alignment features (§ 3.3.2 on page 99) from these new alignments.

Final QA performance will be affected if there is a significant difference in alignment

quality.

Figure 4.3 shows an example. The sentence pair:

• Question (target): Who was President Cleveland’s wife?

• Sentence (source): Cleveland married Frances Folsom in 1886.

can be aligned by any aligners that accept string input. Then the dependency trees of

the source and target sentences can be obtained via parsing. Previously the TED aligner

gives an edit script that transforms the source tree to the target tree. Now with the two

strings first aligned and then parsed, we can still retrieve such an edit script by walking

from the source tree in a bottom-up post-order manner, just like how the TED works, or

even more simply retrieve the edit script that transforms the source string to the target

string, with its tree structure encoded:

1. ins_leaf (Who/WP/dep)

2. ins (was/VBD/root)

3. ins_leaf (President/NNP/nn)

4. ren_dep (Cleveland/NNP/nsubj, Cleveland/NNP/poss)

5. ins_leaf (’s/POS/possessive)

6. ren_pos_dep (married/VBD/root, wife/NN/nsubj)

7. del_leaf (Frances/NNP/nn)

8. del (Folsom/NNP/dobj)

9. del (in/IN/prep)

10. del_leaf (1886/CD/pobj)

187

4. Discriminative Models for Monolingual Alignment

Who
WP

was
VBD

President

Cleveland
NNP

's
POS

wife
NN

Cleveland
NNP

married
VBD

Frances
NNP

Folsom
NNP

in
IN

married Frances Folsom in 1886
CD

was President
NNP

Cleveland wife

nsubj

dobj

nn prep

pobj

possessivenn

poss

nsubj

attr

Figure 4.3.: An alignment example of a QA pair and the pair’s dependency parse
trees. The aligner can accept flat string input. By parsing the sen-
tences post alignment, we can derive features based on each node’s
dependency labels and alignment status.

188

4. Discriminative Models for Monolingual Alignment

Here the operations are insertion, deletion, or substitution (rename). When two tokens

with different pos tags or dependency relations are aligned, it is treated as a substi-

tution edit to rename the different pos tag or dependency relation, as in ren_dep

(Cleveland/NNP/nsubj, Cleveland/NNP/poss).

In this way we can extract edit scripts from any aligner’s output and post-alignment

parsing trees. With some edit type defined for each token, we extract alignment based

features defined in Table 3.4 on page 101. jacana-qa further optimizes these features and

performs answer extraction. Experiments in the next two sections focus on how these

alignment features from various aligners affect the final QA performance.

4.6.3. QA on TREC

We re-used the TREC dataset described in Table 3.2 on page 96 by merging the dev

and test part into a bigger test, with new statistics shown in Table 4.12.

The final evaluation metrics are traditional Precision, Recall, and F1 values, shown in

Table 4.13. The baseline system only enabled the chunking-like and question type fea-

tures. Then alignment based features were added to the baseline with different aligners.

Table 4.13 shows that alignment added by GIZA++ did not help QA performance. A

hand check on the alignment output showed too many misalignments. We think this is

mostly due to that the whole data for GIZA++ was too small to draw statistical pat-

terns of co-occurrence. In the later section we report numbers on a much bigger training

set. The three monolingual aligners, TED, Meteor and jacana-align, all helped with F1

significantly.

Overall, adding alignment features help F1 by about 10% relatively (47.0% vs. 51.5%).

However, there is no major difference in terms of final F1 among different monolingual

aligners. Note that this comparison is completely fair: the QA engine used exactly

the same set of features, just from different aligners. The result comparison seems to

suggest that in general alignment does help QA performance but it does not matter

which monolingual aligner is used. Since the test set is not large enough to show a

significant performance difference, we move to experiment on a test set 100 times bigger.

189

4. Discriminative Models for Monolingual Alignment

set source #question #sents %positive
train trec8-12 1229 53417 12.0
test trec13 171 2665 19.0

Table 4.12.: TREC dataset distribution. %positive marks the percentage of sen-
tences containing an answer.

features P% R% F1%
baseline 57.9 39.5 47.0

with GIZA++, intersection 54.6 38.9 45.5
with GIZA++, grow-diag-final 54.2 38.3 44.9

with GIZA++, union 55.2 38.3 45.2
with TED aligner 60.5 44.9 51.5

with Meteor 58.9 43.7 50.2
with jacana-align 59.1 44.9 51.0

Table 4.13.: Performance of jacana-qa with alignment features from different align-
ers. The baseline system did not use any alignment features.

4.6.4. QA on Jeopardy!

4.6.4.1. Data Preparation

Although IBM has not released the Jeopardy data that was used with Watson, we have

created a novel dataset that replicates the data as closely as possible. We crawled the J!

Archive13 website and downloaded 237, 367 Jeopardy questions with standard answers

(each answer is a word or short phrase). The Jeopardy questions (called “clues” in the

game) are all formed in declarative sentences where the question focus word is not as

obvious as those in the TREC questions. For instance, one question is Peaches are

more than 80% this compound and the standard answer is water (or What is water?

in the actual game). We wrote some simple rules based on pos tags and keywords, most

of which just detect the pronouns in the sentence, to extract the focus word in each

13http://j-archive.com/

190

http://j-archive.com/

4. Discriminative Models for Monolingual Alignment

question. For instance, compound is the focus word from Peaches are more than 80%

this compound. In this way we collected 92, 354 questions with a focus word found.

This counts as roughly 1/3 of total questions. We did not further collect the other 2/3

since it is more time-consuming and specific question analysis is needed to have a full

coverage. During feature extraction we used these Jeopardy-style focus words as the

question types.

For each of the 92, 354 questions, we queried a popular search engine and collected the

top 10 snippets (each snippet is roughly 150 words long) and ruled out those coming from

Jeopardy-related websites, which usually disclose the answers. This constructs the final

training and evaluation dataset. A simple word matching from the standard Jeopardy

answer against the snippet was performed to identify positive snippet. Overall, 72, 197

(79%) of the questions had a match. This was only to check how well the search engine

returned with results. We still used all questions for training and testing and randomly

split them into train (80%, 73, 629) and test (20%, 18, 725). All questions and snippets

were processed with Stanford CoreNLP for pos tagging, named entity recognition and

dependency parsing. For alignment, we applied TED, Meteor and jacana-align directly.

GIZA++ was trained on the whole set.

4.6.4.2. Training and Decoding

On average, for each token in the snippet, there were 250 different features extracted (or

fired). The total number of feature types extracted from train was about 35 million.

This posted a relatively large-scale machine learning problem. To effectively reduce the

dimensionality of the feature space, we applied L1-regularization during CRF training,

which encourages drawing feature weight towards zero. It took about 2 days to run CRF-

suite (written in C++) on a single core for 300 iterations. We did not find a significant

difference in final evaluation when training for a longer time (say, 1000 iterations). Af-

ter training, the total number of features with learned non-zero weight reduced to about

600 thousand (300 iterations) to 500 thousand (1, 000 iterations), roughly a 50-to-70-fold

reduction.

Decoding was fast even with 600 thousands of non-zero-weight features (recall that

191

4. Discriminative Models for Monolingual Alignment

only 250 features fired per token): to tag answers from all 10 snippets (or 1, 500 to-

kens) for one question, CRFsuite took 0.4 second (note that this process can be easily

parallelized to reduce the decoding time by 10 times). Overall, the speed bottleneck

during test was the Stanford CoreNLP pipeline (pos tagging + ner + parsing) running

at about 25 tokens per second.

4.6.4.3. Evaluation

Given the great amount of test set, a single report of P/R/F1 scores does not de-

pict the whole picture of QA performance. Thus we resort to a 2-dimensional preci-

sion@proportion curve, which shows the precision of a QA engine on any proportions of

the whole test set. The curve basically answers one question: at a fixed precision, what

is the proportion of questions that can be answered? A better system should be able to

answer more questions correctly with the same precision.

The curve is drawn in the following way. For each question, we select the best answer

candidate with the highest confidence score. Then for the whole test set, we have a list

of (question, highest ranked answer, confidence score) tuples. Say the largest confidence

score of all tuples is max and the smallest min. Running a threshold from max down to

min, we select those questions with an answer confidence score above this threshold and

compute the precision at this point. The X axis indicates the percentage of questions

above this threshold and the Y axis the precision, shown in Figure 4.4(a). We also

computed the area under the curve (or average precision) to show a precise number for

each system.

The baseline system, with no alignment features enabled, had an average precision of

roughly 40%. GIZA++ (with the intersection heuristics) only helped marginally (but

still significant, explained later) over the baseline. However, there is a clear jump with

the three monolingual aligners. The top performing aligner, jacana-align, almost helped

boost the precision to 50%, a 25% relative gain from the baseline.

Due to the large number of test instances, even a difference of 0.5% could be significant.

Thus we used the paired permutation test (Smucker et al., 2007) on the close competitors,

192

4. Discriminative Models for Monolingual Alignment

0 10 20 30 40 50 60 70 80 90 100
% Answered

0

10

20

30

40

50

60

70

80

90

100

P
re

ci
si

o
n
 (

%
)

Precision w.r.t. % of questions answered

gold, 0.8760
jacana-align, 0.4909
Meteor, 0.4855
TED, 0.4792
GIZA++, 0.4064
baseline, 0.3965
combined, 0.4927

(a) precision at % answered

null hypothesis p
jacana-align vs. Meteor 0.039
jacana-align vs. TED 0.006

jacana-align vs. baseline 0.000
Meteor vs. TED 0.230

GIZA++ vs. baseline 0.000
combined vs. jacana-align 0.007

(b) paired permutation significance test

Figure 4.4.: Performance of jacana-qa in terms of precision at various proportion of
attempted questions. The baseline system had no alignment features
enabled. The gold system assumed oracle answer extraction with
respect to the proportion of questions answered by the best system
(blue curve). The float numbers in the legend are average precision
(or area under the curve). The “combined” curve uses features from
the baseline system and all aligners.

193

4. Discriminative Models for Monolingual Alignment

with p-values shown in Figure 4.4(b). The curve of GIZA++ constantly lies above the

baseline curve and the area under the curve is about 1% better: permutation test shows

that this difference is significant (p = 0.000). In the top tier, the differences between

jacana-align and Meteor (0.4909 vs. 0.4855) and between Meteor and TED (0.4855 vs.

0.4792) are 0.54% and 0.63% separately. Interestingly, the former difference is significant

(p = 0.039, close to 0.05 though) but the latter is not (p = 0.23).

A close examination shows that in terms of precision at each proportion, the difference

between jacana-align and Meteor is actually larger than that between Meteor and TED.

The graph however shows the precision up to each proportion. It just happened that the

system with Meteor answered more instances correctly between 0% and 10% of answers

than with TED, then due to this early advantage, the average precision up to other

proportion of questions is also better than TED. To put it in other words: the system

with jacana-align is better than that with Meteor at almost all proportions of questions,

while the system with Meteor is only mostly better than that with TED at the first

10% of all questions. That explains why the former difference was significant while the

latter was not. We show the difference between jacana-align and Meteor with concrete

examples in Appendix B on page 260.

We were also interested to see whether the aligners made orthogonal decisions in

the types of alignment that could lead to better QA performance. Thus we combined

all alignment features from different aligners, plus the baseline features, and trained a

“combined” model with the union of all features. This combined model outperformed

the single best result from jacana-align by only 0.18% (0.4927 vs. 0.4909). However,

significance test showed that the difference was significant (p = 0.007): the combined

model covered not only the correct cases jacana-align was right about, but also some

additional questions.

Note that since there are only answers for 79% of all questions in the retrieved top

10 snippets, for the other 21% of questions, no matter how hard the QA system tries,

the answer is never correct. Thus we also drew the “ceiling” for this curve in green with

respect to the confidence score from the best performing curve in blue (jacana-align).

For instance, the blue point at (30%, 60%) shows that the system is able to answer 30%

194

4. Discriminative Models for Monolingual Alignment

of all questions with 60% precision at some confidence threshold. However, among all

the 30% of questions answered by the system, 7% of them do not have a correct answer

retrieved in the snippets. Thus assuming perfect answer extraction, the best a system

can do is 93% precision. Thus the green line lies at (30%, 93%) at the same proportion

value. Clearly, there is still large room for improvement.

4.6.5. Discussion

Figure 4.4 shows a major difference between QA systems without alignment, and with

alignment from bilingual aligners and monolingual aligners. We were surprised to see that

GIZA++ did not help much. The reason could be two-fold: firstly, not enough training

data. However, the total number of words in the parallel training corpus exceeded 100

million: we think this is unlikely the reason. Secondly, not good-enough accuracy. QA is

a task that requires highly precise linguistic analysis. Any miss-or-over-alignment could

affect the final end performance easily. Our manual check also showed that the output

from GIZA++ was too noisy. The monolingual aligners, on the other hand, provided

mostly accurate alignment, with some cases of lower coverage. Still, they significantly

helped QA. Overall, we reached the conclusion that monolingual aligners are much better

fit for the task of question answering.

Among the monolingual aligners, the difference in average precision was only between

0.5% ∼ 1.5%. However, when used in real-world applications, they had their distinctions.

The TED aligner is the fastest (roughly 10, 000 alignment per second) if we do not count

parsing time. It does not only require parsing, but also tree-structured input due to

constraints of the Zhang and Shasha (1989) algorithm. This has implications that the

collapsed graph form of Stanford dependency (De Marneffe and Manning, 2008) could

not be used (note that both Meteor and jacana-align do not require parsing). Finally,

it only uses WordNet for aligning synonyms, hypernyms, etc. Since the system is not

statistically trained, it needs very high quality lexical resources if going beyond WordNet.

The Meteor system shows both the merits of performance and speed. It includes a

larger lexical resource for paraphrases (than TED) and runs in the speed of roughly 100

alignments per second. Finally, jacana-align is the most accurate but also slowest (10

195

4. Discriminative Models for Monolingual Alignment

alignments per second). Training on manually aligned data of high quality helped a pre-

cision task like QA the most. For instance, manual check showed that Meteor sometimes

aligned just the stopwords in QA pairs, which might give some false information in the

form of alignment features in the final answer extraction decision. jacana-align on the

other hand tended not to do so when there was no contextual evidence to support this

kind of stopwords alignment during CRF decoding. Finally, despite the minor difference

in terms of precision for QA among the three aligners, when applied in large scale (such

as in the Jeopardy dataset), a better precision of only 0.5% more can lead to answering

100 more questions correctly.

A hand check over all learned features show some useful patterns of alignment-based

features. For instance, one feature fired at a deleted direct object carried a large positive

weight with respect to the b-ans class, indicating that the token could be an answer.

Some other features fired at deleted adverbs or punctuations carried a large positive

weight with respect to the o class, indicating that these tokens are not likely to be

answers. Interestingly, of all 600 thousand non-zero features learned from training, only

about 1, 500 (0.25%) of them were alignment features. These less popular but effective

features, however, boosted the final QA performance by 25% relatively.

4.6.6. Summary

In this section we have systematically examined the relationship between question an-

swering and natural language alignment, with evidence from experimenting on two pop-

ular QA challenges: TREC and the Jeopardy! game show. We found that high-precision

aligners help QA the most, since QA is also a task that requires highly precise linguistic

analysis. When applied in QA, monolingual aligners are much more helpful than the

bilingual aligner (specifically, GIZA++) we used: they have all shown good performance

and helped boosting the average precision by up to 25% relatively, even though the total

number of alignment features consisted only 0.25% of all features. This means the auto-

matically generated and optimized alignment features took an important role in helping

identify the correct answers. Overall, with the development of monolingual aligners in

recent years, natural language (esp. monolingual) alignment has matured, in theory,

196

4. Discriminative Models for Monolingual Alignment

precision, and speed, into a worthy component in the task of question answering.

4.7. Discussion: Various Aligners

We have employed and evaluated four open-source aligners in this chapter: GIZA++,

TED, Meteor, jacana-align. Table 4.14 gives a brief summary and comparison of each of

them. Specifically, my experience from using each of them is:

• GIZA++: even though commonly used as a tool for bilingual word alignment,

GIZA++ is actually a tool set for employing the EM algorithm to performing

unsupervised learning of the IBM and HMM models for any input pairs. It is

not sensitive to input and can be simply used as a handy tool for computing

conditional probabilities. The input can be any form as long as there are co-

occurring regularities. However, on the other hand, GIZA++ is not equipped

with any linguistic knowledge. Thus when used for monolingual alignment, one

has to prepare the training corpus with great care. One simple example is that

identical words have to appear in parallel in the training corpus for GIZA++ to

memorize them. Still, GIZA++ lacks the ability to recognizing unknown words

(even if they are identical) and making use of more lexical resources. Our analysis

in § 4.4.3.2 on page 167 shows that on human annotated datasets without being

pre-aligned by GIZA++, the performance difference in terms of F1 values is about

10% between GIZA++ and the best monolingual aligner.

• TED: the Tree Edit Distance algorithm is a dynamic algorithm for aligning a pair

of tree input. It runs very fast when the input is pre-parsed: in my experiments it

aligns 10 thousand tree pairs a second. It has limited ability to incorporate lexical

resources and requires parsing. Thus it is only suggested to be used when input is

parsed and alignment speed is a top priority.

• Meteor: Meteor is specifically designed for aligning multiple references in machine

translation, with a built-in paraphrase list. It is somehow rule-based: the objective

is to minimize cross alignment. But this objective is not the best policy for aligning

197

4. Discriminative Models for Monolingual Alignment

aligner model input
structure

lexical
resources

application

GIZA++ IBM/HMM
models

flat none build co-occurrence

TED minimal edit
distance

tree WordNet tree alignment

Meteor minimal cross
align

flat paraphrases fast mono align

jacana-align Conditional
Random Field

flat various precise mono align

Table 4.14.: Summary and comparison of the four open-source aligners used in
this Chapter.

English sentence pairs. I show in Appendix B on page 260 a few examples of

Meteor failing to align to the correct stop words. Often Meteor tends to over

align: given a pair of irrelevant sentences, Meteor usually makes some alignment

between punctuations and stop words. This is OK in the machine translation

setting: it is assumed that the output of an MT system is relevant to the reference

to some degree. But it is not applicable when using Meteor in other monolingual

alignment tasks where this assumption does not hold. Meteor is fast, aligning up

to a hundred sentence pairs a second.

• jacana-align: it is specifically designed for monolingual alignment, with access to

various lexical resources. It easily recognizes identical word alignment and its

global decoding nature tries to assign the best alignment sequence in case of mul-

tiple ambiguous alignment. jacana-align is a high-precision aligner, suitable in

tasks that require high precision, such as question answering. Currently jacana-

align is designed for aligning the English language. It can be adapted to aligning

closely-related languages. jacana-align aligns a few to a dozen sentences per second.

4.8. Conclusion

This chapter is based on the following two published papers:

198

4. Discriminative Models for Monolingual Alignment

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch and Peter Clark.

A Lightweight and High Performance Monolingual Word Aligner. ACL

Short. 2013.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch and Peter Clark.

Semi-Markov Phrase-based Monolingual Alignment. EMNLP. 2013.

The main ideas and scientific contributions are:

The first open-source and state-of-the-art monolingual word aligner. The

traditional way to aligning monolingual parallel sentences (e.g., Casey loves Kim↔ Casey

is fond of Kim) is using GIZA++ (Och and Ney, 2003), the most used bilingual aligner.

However, bilingual aligners do not suit the task of monolingual alignment for two major

reasons:

1. Bilingual aligners need a lot of parallel sentences to train on. Bilingual parallel

sentences commonly exist in translations of multilingual documents (especially

those from government documents and bilingual news papers). But there are not

as many for the monolingual case.

2. There are a lot of monolingual lexical resources that can help alignment, such as

thesaurus, WordNet, distributional similarity measures. Bilingual aligners are not

designed to incorporate these extra resources.

All these call for a discriminatively trained monolingual aligner. We adopted the idea of

Blunsom and Cohn (2006), and trained a CRF-based aligner for English sentences. We

defined features based on string similarities, contextual matching, relative positions of

tokens, pos tag matching, and WordNet relations etc. Training and testing on a word-

aligned corpus (Brockett, 2007) of 1600 sentences shows superior performance over other

strong baselines from GIZA++, tree edit distance, and the perceptron-based MANLI

aligners (MacCartney et al., 2008, Thadani and McKeown, 2011).

The token aligner only handles one-to-one alignment. It does not work for phrases,

idioms, or multi-word expressions. For instance, it is very hard for the token aligner

199

4. Discriminative Models for Monolingual Alignment

to align pass away ↔ kick the bucket. Thus on top of the token aligner, we continue to

develop the phrase-based aligner.

The first to use semi-Markov CRF models for phrase-based alignment. To

improve the one-to-one token aligner to phrase-based many-to-many aligner, we need to

be able to align to phrases both on the source and target side. On the target side, we

merge consecutive states together to get phrasal states. For instance, the words pass

away represent two separate token states in the token aligner, but in the phrase aligner,

we merge them to get a phrasal state. Any words align to this merged state indicates a

phrase alignment on the target side.

On the source side, we break the Markovian property of a CRF and make one state

last more than one time step (thus the current state does not necessarily depend on the

previous state). In this case, during the multiple time steps where one state aligns to

multiple tokens on the source side, we have achieved phrasal alignment on the source

side. The regular CRF has also been generalized to a semi-Markov CRF. To be more

clear, the difference between CRF and the semi-Markov CRF is that in the CRF the

current state depends on the previous state one time step ago, while in the semi-Markov

CRF the current state depends on the state ls time steps ago, where ls is the phrase

length on the source side. Semi-CRF models are able to do phrase-based alignment with

a sacrifice of speed.

The first to systematically justify monolingual alignment in question an-

swering. There are two aspects in the above statement. First, monolingual alignment

as a separate NLP task has been justified in natural language inference (MacCartney,

2009) but not formally in question answering. Second, researchers have more or less

used alignment (with either monolingual or bilingual tool) in QA but never stated how

monolingual alignment alone helps QA. In this chapter we have developed our own the-

ory for monolingual alignment, and conducted systematic experiments on two alignment

datasets and two QA datasets to show that: it is desirable to develop a separate aligner

for monolingual data and monolingual aligners show consistent superior performance

in both alignment accuracies and end QA performance. Thus the task of monolingual

200

4. Discriminative Models for Monolingual Alignment

alignment in question answering has been justified.

Conclusion and Future Work We have introduced two state-the-art monolingual

aligners (jacana-align) in this chapter. Experiments show that these aligners have bet-

ter performance than traditional bilingual aligners and other monolingual aligners on

two annotated word-aligned corpora. With both theory and dataset matured, mono-

lingual alignment has gradually developed into its own NLP task. It has been so far

shown effective in the task of recognizing textual entailment (MacCartney, 2009). We

further showed that our aligner also helps the most among all other aligners in final

QA performance on two datasets (TREC and Jeopardy!). Due to its ease of usage and

effectiveness, we strongly encourage a QA system to have linguistic features based on

alignment between the question and snippet, beyond other traditional features such as

named entity labels.

Looking forward from the current stage of monolingual alignment, I can imagine future

work in the following directions:

• Recognizing contradictions in sentences. Currently we have only focused on rec-

ognizing word pairs that are of similar meaning, such as synonyms, paraphrases,

hypernyms. But we also want to recognize mutually exclusive things in a sentence

pair. To use one example given by Dekang Lin, when searching emperor of China,

a search engine might return snippets about emperor of Japan. A naive aligner

would align the emperor part together, but a better aligner would tell that they

should really not align since they are about different things.

• Going further beyond lexical similarities. For identical word alignment, we are

able to get around 97% in F1 but for non-identical alignment, we have trouble

getting over 50% (c.f. Table 4.8 on page 173). Non-identical alignment is the most

difficult problem. But they are essential in NLP applications: we have shown that

the jacana-qa system, when equipped with the jacana-align aligner, has the best

performance than with other aligners (TED and Meteor) that have very limited

ability to incorporate lexical resources. How can we then get past the 50% F1

for non-identical alignments after exploiting as many lexical resources as possible?

201

4. Discriminative Models for Monolingual Alignment

This is still an open question.

• Recreating the natural language logic (NatLog) system with jacana-align as the

backbone. The MANLI system was created for the work of recognizing textual

entailment in the more general framework of natural language logic (MacCartney,

2009). Very detailed linguistic rules are defined over types of alignments and

these rules are shown very precise in recognizing inference. Unfortunately neither

MANLI nor NatLog is open-source. Now that we have created an aligner that

is even more accurate than MANLI, it is promising to develop a natural language

inference engine on top of the aligner. I imagine it with great implication in a lot

of AI tasks that require some level of reasoning.

• Using monolingual alignment in other NLP tasks. Alignment has been used in

question answering and recognizing textual entailment. What about other areas?

Here is a list of tasks I think applicable:

– Tweet normalization. With some tweets-dependent features defined, it can

be used to align deliberately shortened or scrambled tweets to normal text,

for instance outa biz ↔ out of business.

– Information retrieval. Alignment tells how closely related two sentences are.

Potentially it can be used by a search engine to rank the retrieved snippets

with respect to the query.

– Entity linking. We want to find out the same events described in multi-

ple sources, very commonly used in news aggregation, summarization; or

we want to find out all lifetime events about the same person over various

sources. A lot of these work falls into the category of entity linking with

predicate-argument alignment. I have also co-authored a short paper with

other researchers in this area, see Wolfe et al. (2013).

– Interface to database, or textual schema matching. When using natural

language to query a database, such as the Internet Movie Database (IMDb),

there is a mismatch between spoken words and database relations, such as

202

4. Discriminative Models for Monolingual Alignment

played in ↔ /film/casting. We can view it as a monolingual alignment task:

aligning natural language words with database schemas in the same language.

I will introduce a solution in the next chapter using web-scale data mining.

203

5. Feature-driven QA from

Structured Data: Freebase

In this chapter we apply the same feature-driven idea on a different source: structured

knowledge base. Factoid question answering relies on answer extraction, but the source

that provides answer candidates could either be structured (knowledge base) or unstruc-

tured (text). I have shown in previous chapters that the feature-driven technology was

successfully used in answer extraction from free text. Now I show that it also achieves

state-of-the-art performance in answer extraction from Freebase. With the heated in-

terest in question answering from knowledge bases in the NLP community, we provide

a novel technique based on information extraction and quite surprisingly, this technique

outperforms (in terms of macro F1) semantic parsing approaches while using less heavy

machinery. I give an overview of the approach in § 5.2 with background explained (§

5.3) and automatic feature coupling in § 5.4. The alignment problem between natural

language words and knowledge base relations is tackled in § 5.5. Finally the experiments

(§ 5.6) and discussion (§ 5.7) compare the performance between our approach and se-

mantic parsing. The successful application of QA from Freebase completes the idea of

feature-driven technologies I have been trying to communicate in this dissertation. The

accompanying implementation is jacana-freebase.

5.1. Introduction

Question Answering (QA) from a knowledge base (KB) has a long history within nat-

ural language processing, going back to the 1960s and 1970s, with systems such as

204

5. Feature-driven QA from Structured Data: Freebase

Baseball (Green et al., 1961) and Lunar (Woods, 1977). These systems were limited

to closed-domains due to a lack of knowledge resources, computing power, and ability to

robustly understand natural language. With the recent growth in KBs such as DBPedia

(Auer et al., 2007), Freebase (Bollacker et al., 2008) and Yago2 (Hoffart et al., 2011), it

has become more practical to consider answering questions across wider domains, with

commercial systems including Google Now, based on Google’s Knowledge Graph, and

Facebook Graph Search, based on social network connections.

The AI community has tended to approach this problem with a focus on first un-

derstanding the intent of the question, via shallow or deep forms of semantic parsing

(c.f. § 5.3 for a discussion). Semantic parsing is the process of converting natural lan-

guage sentences into meaning representations. Assuming appropriate question analysis,

such systems are then faced with forward searching from the question representation to

a match within potentially large KBs (for example, Freebase contains more than two-

billion facts). Typically questions are converted into some meaning representation (e.g.,

the lambda calculus), then mapped to database queries. Performance is thus bounded

by the accuracy of the original semantic parsing, and the well-formedness of resultant

database queries.1

The Information Extraction (IE) community approaches QA differently: first perform-

ing relatively coarse information retrieval as a way to triage the set of possible answer

candidates, and only then attempting to perform deeper analysis. To some degree it

is also how humans find answers: first find relevant information from a search engine,

Wikipedia, or textbook, then isolate the precise answer.

Researchers in semantic parsing have recently explored QA over Freebase as a way of

moving beyond closed domains such as GeoQuery (Tang and Mooney, 2001). While

making semantic parsing more robust is a laudable goal, here we provide a more rigorous

IE baseline against which those efforts should be compared: we show that “traditional” IE

methodology achieved similar performance in terms of average F1 and better performance

in terms of macro F1 as compared to Berant et al. (2013), while using a much simpler

1As an example, 50% of errors of the CCG-backed (Kwiatkowski et al., 2013) system were
contributed by parsing or structural matching failure.

205

5. Feature-driven QA from Structured Data: Freebase

model.

5.2. Approach

We will view a KB as an interlinked collection of “topics”. When given a question about

one or several topics, we can select a “view” of the KB concerning only involved topics,

then inspect every related node within a few hops of relations to the topic node in order

to extract the answer. We call such a view a topic graph and assume answers can be

found within the graph. We aim to maximally automate the answer extraction process,

by massively combining discriminative features for both the question and the topic graph.

With a high performance learner we have found that a system with millions of features

can be trained within hours, leading to intuitive, human interpretable features. For

example, we learn that given a question concerning money, such as: what money is used

in ukraine, the expected answer type is likely currency. We formalize this approach in

§5.4.

One challenge for natural language querying against a KB is the relative informality of

queries as compared to the grammar of a KB. For example, for the question: who cheated

on celebrity A, answers can be retrieved via the Freebase relation celebrity.infidelity.participant,

but the connection between the phrase cheated on and the formal KB relation is not ex-

plicit. To alleviate this problem, the best attempt so far is to map from ReVerb (Fader

et al., 2011) predicate-argument triples to Freebase relation triples (Cai and Yates, 2013a,

Berant et al., 2013). Note that to boost precision, ReVerb has already pruned down less

frequent or credible triples, yielding not as much coverage as its text source, ClueWeb.

Here we instead directly mine relation mappings from ClueWeb and show that both direct

relation mapping precision and indirect QA F1 improve by a large margin. Details in

§5.5.

Finally, we tested our system, jacana-freebase, on a realistic dataset generously con-

tributed by Berant et al. (2013), who collected thousands of commonly asked questions

by crawling the Google Suggest service. Our method achieves state-of-the-art perfor-

mance in terms of macro and average F1 over answered questions.

206

5. Feature-driven QA from Structured Data: Freebase

5.3. Background

QA from a KB faces two prominent challenges: model and data. The model challenge

involves finding the best meaning representation for the question, converting it into a

query and executing the query on the KB. Most work approaches this via the bridge of

various intermediate representations, including combinatory categorial grammar (Zettle-

moyer and Collins, 2005, 2007, 2009, Kwiatkowski et al., 2010, 2011, 2013), synchronous

context-free grammars (Wong and Mooney, 2007), dependency trees (Liang et al., 2011,

Berant et al., 2013), string kernels (Kate and Mooney, 2006, Chen and Mooney, 2011),

and tree transducers (Jones et al., 2012). These works successfully showed their effective-

ness in QA, despite the fact that most of them require hand-labeled logic annotations.

More recent research started to minimize this direct supervision by using latent mean-

ing representations (Berant et al., 2013, Kwiatkowski et al., 2013) or distant supervision

(Krishnamurthy and Mitchell, 2012). § 2.3.4 on page 60 gives a very detailed description.

We instead attack the problem of QA from a KB from an IE perspective: we learn

directly the pattern of QA pairs, represented by the dependency parse of questions and

the Freebase structure of answer candidates, without the use of intermediate, general

purpose meaning representations.

The data challenge is more formally framed as ontology or (textual) schema matching

(Hobbs, 1985, Rahm and Bernstein, 2001, Euzenat and Shvaiko, 2007): matching struc-

ture of two ontologies/databases or (in extension) mapping between KB relations and

NL text. In terms of the latter, Cai and Yates (2013a) and Berant et al. (2013) applied

pattern matching and relation intersection between Freebase relations and predicate-

argument triples from the ReVerb OpenIE system (Fader et al., 2011). Kwiatkowski

et al. (2013) expanded their CCG lexicon with Wiktionary word tags towards more

domain independence. Fader et al. (2013) learned question paraphrases from aligning

multiple questions with the same answers generated by WikiAnswers. The key factor to

their success is to have a huge text source. Our work pushes the data challenge to the

limit by mining directly from ClueWeb, a 5TB collection of web data.

Finally, the KB community has developed other means for QA without semantic

207

5. Feature-driven QA from Structured Data: Freebase

parsing (Lopez et al., 2005, Frank et al., 2007, Unger et al., 2012, Yahya et al., 2012,

Shekarpour et al., 2013). Most of these work executed SPARQL queries on interlinked

data represented by RDF (Resource Description Framework) triples, or simply performed

triple matching. Heuristics and manual templates were also commonly used (Chu-Carroll

et al., 2012). We propose instead to learn discriminative features from the data with

shallow question analysis. The final system captures intuitive patterns of QA pairs

automatically.

5.3.1. SEMPRE

The major system of comparison in this chapter is Sempre (Semantic Parsing with

Execution) by Berant et al. (2013). In this section we give a detailed description.

Given a natural language sentence, Sempre directly parses into lambda DCS (Dependency-

based Compositional Semantics). Using the example given by Liang (2013):

utterance: people who have lived in Seattle

lambda calculus: λx.∃e.PlacesLived(x, e) ∧ Location(e, Seattle)

lambda DCS: PlacesLived.Location.Seattle

Lambda DCS attempts to remove variables explicitly while encoding implicit relation

with relations and entities defined by the knowledge base. For instance, one can find out

from Freebase that Seattle is a single entity while both Location and PlacesLived are binary

relations. The three terms here are joined by the “ .” joint operator. Other common

operators in lambda DCS include intersection, union, negation, count and argmax. For

instance:

208

5. Feature-driven QA from Structured Data: Freebase

Intersection

utterance: scientists born in Seattle

lambda DCS: Profession.Scientist u PlaceOfBirth.Seattle

Union

utterance: Oregon, Washington and Canadian provinces

lambda DCS: Oregon t Washington t Type.CanadianProvince

Negation

utterance: states not bordering California

lambda DCS: Type.USState u¬ Border.California

count

utterance: the number of states in the US

lambda DCS: count(Type.USState)

argmax

utterance: largest state by area

lambda DCS: argmax(Type.USState, Area)

The resulting logic form based on lambda DCS is converted into database queries, such

as SPARQL, and executed. How this conversion has been done was neither described in

detail in Berant et al. (2013) nor in Liang (2013).

The input to Sempre contains only the utterance and the answer to the utterance, no

logic forms (also called derivations) are used. The discriminative log-linear model over

derivations d ∈ D(x) given utterances x is defined as:

pθ(d | x) =
exp{φ(x, d)ᵀθ}∑

d′∈D(x) exp{φ(x, d′)ᵀθ}

where φ(x, d) is a feature vector and θ is the vector of its parameters to be optimized.

Given a set of n QA pairs (xi, yi) the objective is to maximize the total log likelihood of

the correct answer (Jd.zK = yi) over all training instances:

O(θ) =

n∑
i=1

log
∑

d∈D(x):Jd.zK=yi

pθ(d | x)

209

5. Feature-driven QA from Structured Data: Freebase

In order to map from words in utterances to knowledge base entities and relations,

alignment was used with features drawn from text similarity, co-occurrence, ReVerb

(Fader et al., 2011), etc. In order to connect aligned predicates together to form de-

notations, bridging was used to generate binary predicates based on neighboring logical

predicates. On the annotated WebQuestions dataset, Sempre achieved a 31.4% av-

erage F1, which was later revised to 35.7% by Berant and Liang (2014) via bug fixing.

5.4. Graph Features

Our model is inspired by an intuition on how everyday people search for answers. If

you asked someone: what is the name of justin bieber brother,2 and gave them access to

Freebase, that person might first determine that the question is about Justin Bieber (or

his brother), go to Justin Bieber’s Freebase page, and search for his brother’s name.

Unfortunately Freebase does not contain an exact relation called brother, but instead

sibling. Thus further inference (i.e., brother ↔ male sibling) has to be made. In the

following we describe how we represent this process based on features extracted from

both the question and the Freebase graph.

5.4.1. Question Graph

In answering our example query a person might take into consideration multiple con-

straints. With regards to the question, we know we are looking for the name of a person

based on the following:

• the dependency relation nsubj(what, name) and prep_of(name, brother) indicates

that the question seeks the information of a name;3

• the dependency relation prep_of(name, brother) indicates that the name is about

a brother (but we do not know whether it is a person name yet);

2All examples used come from the training data crawled from Google Suggest. They are
lowercased and some contain typos.

3We use the Stanford collapsed dependency form.

210

5. Feature-driven QA from Structured Data: Freebase

• the dependency relation nn(brother, bieber) and the facts that, (i) Bieber is a person

and (ii) a person’s brother should also be a person, indicate that the name is about

a person.

This motivates the design of dependency-based features. We show one example in Figure

5.1(a), left side. The following linguistic information is of interest:

• question word (qword), such as what/who/how many. We use a list of 9 common

qwords: who, when, what, where, how, which, why, whom, whose.

• question focus (qfocus), a cue of expected answer types, such as name/money/time.

We keep our analysis simple and do not use a question classifier, but simply extract

the noun dependent of qword as qfocus.

• question verb (qverb), such as is/play/take, extracted from the main verb of the

question. Question verbs are also good hints of answer types. For instance, the

verb play is likely to be followed by an instrument, a movie or a sports team.

• question topic (qtopic). The topic of the question helps us find relevant Freebase

pages. We simply apply a named entity recognizer to find the question topic. Note

that there can be more than one topic in the question.

Then we convert the dependency parse into a more generic question graph, in the fol-

lowing steps:

1. if a node was tagged with a question feature, then replace this node with its

question feature, e.g., what → qword=what;

2. (special case) if a qtopic node was tagged as a named entity, then replace this node

with its its named entity form, e.g., bieber → qtopic=person;

3. drop any leaf node that is a determiner, preposition or punctuation.

The converted graph is shown in Figure 5.1(a), right side. We call this a question

feature graph, with every node and relation a potential feature for this question. Then

211

5. Feature-driven QA from Structured Data: Freebase

what

is name

the brother

justin bieber

nsubj cop

nn

prep_of

det

nn

qword

qtopic

qfocus

qtopic

qword=
what

qfocus=
name

brother

qtopic=
person

qtopic=
person

nsubj

nn

prep_of

nn

qverb=
be

 cop
qverb

(a) Dependence parse with annotated question features in dashed boxes (left) and con-
verted feature graph (right) with only relevant and general information about the
original question kept. Note that the left is a real but incorrect parse.

Justin Bieber

dummy node

Jazmyn Bieber

person.sibling_s

Jaxon Bieber

sibling sibling

person

type

person

type

female

gender

male

gender

London

awards_won

place_of_birth

…...
type

person

male

gender

(b) A view of Freebase graph on the Justin Bieber topic with nodes in solid
boxes and properties in dashed boxes. The hatching node, Jaxon Bieber, is
the answer. Freebase uses a dummy parent node for a list of nodes with the
same relation.

Figure 5.1.: Dependency parse and excerpted Freebase topic graph on the question
what is the name of justin bieber brother.

212

5. Feature-driven QA from Structured Data: Freebase

features are extracted in the following form: with s the source and t the target node, for

every edge e(s, t) in the graph, extract s, t, s | t and s | e | t as features. For the edge,

prep_of(qfocus=name, brother), this would mean the following features: qfocus=name,

brother, qfocus=name|brother, and qfocus=name|prep_of|brother.

We show with examples why these features make sense later in §5.6 Table 5.9. Fur-

thermore, the reason that we have kept some lexical features, such as brother, is that we

hope to learn from training a high correlation between brother and some Freebase rela-

tions and properties (such as sibling and male) if we do not possess an external resource

to help us identify such a correlation.

5.4.2. Freebase Topic Graph

Given a topic, we selectively roll out the Freebase graph by choosing those nodes within

a few hops of relationship to the topic node, and form a topic graph. Besides incom-

ing and/or outgoing relationships, nodes also have properties: a string that describes

the attribute of a node, for instance, node type, gender or height (for a person). One

major difference between relations and properties is that both arguments of a relation

are nodes, while only one argument of a property is a node, the other a string. Ar-

guments of relations are usually interconnected, e.g., London can be the place_of_birth

for Justin Bieber, or capital_of the UK. Arguments of properties are attributes that are

only “attached” to certain nodes and have no outgoing edges. Figure 5.1(b) shows an

example.

Both relationship and property of a node are important to identifying the answer.

They connect the nodes with the question and describe some unique characteristics. For

instance, without the properties type:person and gender:male, we would not have known

the node Jaxon Bieber represents a male person. These properties, along with the sibling

relationship to the topic node, are important cues for answering the question. Thus for

the Freebase graph, we use relations (with directions) and properties as features for each

node. Suppose a node has n relations and properties in total, then the total feature

number is n (single features) plus
(
n
2

)
(combination of any two single features). More

feature combinations can be used if the computation is affordable.

213

5. Feature-driven QA from Structured Data: Freebase

Additionally, we have analyzed how Freebase relations map back to the question.

Some of the mapping can be simply detected as paraphrasing or lexical overlap. For

example, the person.parents relationship helps answering questions about parenthood.

However, most Freebase relations are framed in a way that is not commonly addressed

in natural language questions. For instance, for common celebrity gossip questions

like who cheated on celebrity A, it is hard for a system to find the Freebase relation

celebrity.infidelity.participant as the target relation if it had not observed this pattern in

training.

Thus assuming there is an alignment model that is able to tell how likely one relation

maps to the original question, we add extra alignment-based features for the incom-

ing and outgoing relation of each node. Specifically, for each relation rel in a topic

graph, we compute P (rel | question) to rank the relations. Finally the ranking (e.g.,

top 1/2/5/10/100 and beyond) of each relation is used as a feature instead of a pure

probability. We describe such an alignment model in § 5.5.

5.4.3. Feature Production

We combine question features and Freebase features (per node) by doing a pairwise

concatenation. In this way we hope to capture the association between question patterns

and answer nodes. For instance, in a loglinear model setting, we expect to learn a high

feature weight for features like:

qfocus=money|node_type=currency

and a very low weight for:

qfocus=money|node_type=person.

This combination greatly enlarges the total number of features, but owing to progress

in large-scale machine learning such feature spaces are less of a concern than they once

were (concrete numbers in § 5.6 Model Tuning).

214

5. Feature-driven QA from Structured Data: Freebase

5.5. Relation Mapping

In this section we describe a “translation” table between Freebase relations and NL words

was built.

5.5.1. Formula

The objective is to find the most likely relation a question prompts. For instance, for

the question who is the father of King George VI, the most likely relation we look for is

people.person.parents. To put it more formally, given a question Q of a word vector w,

we want to find out the relation R that maximizes the probability P (R | Q).

More interestingly, for the question who is the father of the Periodic Table, the ac-

tual relation that encodes its original meaning is law.invention.inventor, rather than peo-

ple.person.parents. This simple example points out that every part of the question could

change what the question inquires eventually. Thus we need to count for each word w

in Q. Due to the bias and incompleteness of any data source, we approximate the true

probability of P with P̃ under our specific model. For the simplicity of computation, we

assume conditional independence between words and apply Naive Bayes:

P̃ (R | Q) ∝ P̃ (Q | R)P̃ (R)

≈ P̃ (w | R)P̃ (R)

≈
∏
w

P̃ (w | R)P̃ (R)

where P̃ (R) is the prior probability of a relation R and P̃ (w | R) is the conditional

probability of word w given R.

It is possible that we do not observe a certain relation R when computing the above

equation. In this case we back off to the “sub-relations”: a relation R is a concatena-

tion of a series of sub-relations R = r = r1.r2.r3. For instance, the sub-relations

of people.person.parents are people, person, and parents. Again, we assume conditional

independence between sub-relations and apply Naive Bayes:

215

5. Feature-driven QA from Structured Data: Freebase

P̃backoff(R | Q) ≈ P̃ (r | Q)

≈
∏
r

P̃ (r | Q)

∝
∏
r

P̃ (Q | r)P̃ (r)

≈
∏
r

∏
w

P̃ (w | r)P̃ (r)

One other reason that we estimated P̃ (w | r) and P̃ (r) for sub-relations is that Free-

base relations share some common structures in between them. For instance, both

people.person.parents and fictional_universe.fictional_character.parents indicate the par-

ent relationship but the latter is much less commonly annotated. We hope that the

shared sub-relation, parents, can help better estimate for the less annotated. Note that

the backoff model would have a much smaller value than the original, due to double

multiplication
∏
r

∏
w. In practice we normalize it by the sub-relations size to keep it at

the same scale with P̃ (R | Q).

Finally, to estimate the prior and conditional probability, we need a massive data

collection.

5.5.2. Implementation

The ClueWeb094 dataset is a collection of 1 billion webpages (5TB compressed in raw

html) in 10 languages by Carnegie Mellon University in 2009. FACC1, the Freebase

Annotation of the ClueWeb Corpus version 1 (Gabrilovich et al., 2013), contains index

and offset of Freebase entities within the English portion of ClueWeb. Out of all 500

million English documents, 340 million were automatically annotated with at least one

entity, with an average of 15 entity mentions per document. The precision and recall of

annotation were estimated at 80− 85% and 70− 85% (Orr et al., 2013).5 Figure 5.2 on

the next page shows a snippet.

4http://lemurproject.org/clueweb09/
5http://googleresearch.blogspot.com/2013/07/11-billion-clues-in-800-million.
html

216

http://lemurproject.org/clueweb09/
http://googleresearch.blogspot.com/2013/07/11-billion-clues-in-800-million.html
http://googleresearch.blogspot.com/2013/07/11-billion-clues-in-800-million.html

5. Feature-driven QA from Structured Data: Freebase

• Like [freebase mid=/m/0gnbw]Michael Caine[/freebase] at the end of
the [freebase mid=/m/0j9hg]Italian Job[/freebase] , where all looks
lost, I said “hold on lads”.

• Method Acting and [freebase mid=/m/0bj9k]Pacino[/freebase]’s
[freebase mid=/m/05ss0g]Looking for Richard[/freebase]

• [freebase mid=/m/030vnj]Luke Wilson[/freebase] needs some heat:
He’s in a new movie with [freebase mid=/m/0c7xjb]Jessica Simp-
son[/freebase] called "[freebase mid=/m/025sjcr]Blonde Ambi-
tion[/freebase]

• February 27 2006: [freebasemid=/m/0c7xjb]Jessica Simpson[/freebase]
pitching on the movie set of [freebase mid=/m/0gf18g]Employee of the
month[/freebase] in [freebase mid=/m/05fjy]New Mexico[/freebase].

• February 25 2006: [freebasemid=/m/0c7xjb]Jessica Simpson[/freebase]
and [freebase mid=/m/03lzxk]Greg Coolidge[/freebase] on set of the new
movie “[freebase mid=/m/0gf18g Employee Of The Month]Employee Of
The Month[/freebase]” - thanks to Criss for these!

• February 18 2006: [freebasemid=/m/0c7xjb]Jessica Simpson[/freebase]
just returned to [freebase mid=/m/030qb3t]Los Angeles[/freebase] last
night from [freebasemid=/m/0f25y]Santa Fe[/freebase] where she is film-
ing “ [freebase mid=/m/0gf18g]Employee of the Month[/freebase]”.

Figure 5.2.: Snippets from Annotated Clueweb. Blue bold words and
red italic words are the first and second arguments of the
film.film.starring..film.performance.actor relation. The relation was de-
termined by querying whether any two of the annotated entities had
a direct relation according to Freebase. All entities were annotated
with unique machine id (mid) in Freebase. These snippets were later
aligned with the relation to find out the mostly likely natural language
words that express the relation.

217

5. Feature-driven QA from Structured Data: Freebase

Given these two resources, for each binary Freebase relation, we can find a collection

of sentences each of which contains both of its arguments, then simply learn how words

in these sentences are associated with this relation, i.e., P̃ (w | R) and P̃ (w | r). By

counting how many times each relation R was annotated, we can estimate P̃ (R) and

P̃ (r). The learning task can be framed in the following short steps:

1. We split each html document by sentences (Kiss and Strunk, 2006) using NLTK

(Bird and Loper, 2004) and extracted those with at least two Freebase entities

which has at least one direct established relation according to Freebase.

2. The extraction formed two parallel corpora, one with “relation - sentence” pairs

(for estimating P̃ (w | R) and P̃ (R)) and the other with “subrelations - sentence”

pairs (for P̃ (w | r) and P̃ (r)). Each corpus has 1.2 billion pairs. All words were

stemmed with the Snowball stemmer (Porter, 1980).

3. The tricky part was to align these 1.2 billion pairs. Since the relations on one side

of these pairs are not natural sentences, we ran the most simple IBM alignment

Model 1 (Brown et al., 1993) to estimate the translation probability with GIZA++

(Och and Ney, 2003). To speed up, the 1.2 billion pairs were split into 100 even

chunks. We ran 5 iterations of EM on each one and finally aligned the 1.2 billion

pairs from both directions. To symmetrize the alignment, common MT heuristics

intersection, union, grow-diag-final, and grow-diag-final-and (Koehn,

2010) were separately applied and evaluated later.

4. Treating the aligned pairs as observation, the co-occurrence matrix between align-

ing relations and words was computed. There were 10,484 relations and sub-

relations in all, and we kept the top 20,000 words.

5. From the co-occurrence matrix we computed P̃ (w | R), P̃ (R), P̃ (w | r) and P̃ (r).

Hand-checking the learned probabilities shows both success, failure and some bias. For

instance, for the film.actor.film relation (mapping from film names to actor names), the

top words given by P̃ (w | R) are won, star, among, show. For the film.film.directed_by

relation, some important stop words that could indicate this relation, such as by and

218

5. Feature-driven QA from Structured Data: Freebase

sentence number: 0 ≤ 10 ≤ 102 ≤ 103 ≤ 104 > 104

relation percentage: 7.0% 0.7% 1.2% 0.4% 1.3% 89.5%

Table 5.1.: Percentage of answer relations (the incoming relation connected to the
answer node) with respect to how many sentences we learned this rela-
tion from CluewebMapping. For instance, the first column says there
are 7% of answer relations for which we cannot find a mapping (so
we had to use the backoff probability estimation); the last column says
there are 89.5% of answer relations that we were able to learn the map-
ping between this relation and text based on more than 10 thousand
relation-sentence pairs. The total number of answer relations is 7886.

with, rank directly after director and direct. However, due to significant popular interest

in certain news categories, and the resultant catering by websites to those information

desires, then for example we also learned a heavily correlated connection between Jennifer

Aniston and celebrity.infidelity.victim, and between some other you-know-who names and

celebrity.infidelity.participant.

We next formally evaluate how the learned mapping help predict relations from words.

5.5.3. Evaluation

Both ClueWeb and its Freebase annotation has a bias. Thus we were firstly interested

in the coverage of mined relation mappings. As a comparison, we used a dataset of

relation mapping contributed by Berant et al. (2013) and Lin et al. (2012). The idea

is very similar: they intersected Freebase relations with predicates in (arg1, predicate,

arg2) triples extracted from ReVerb to learn the mapping between Freebase relations

and triple predicates. Note the scale difference: although ReVerb was also extracted

from ClueWeb09, there were only 15 million triples to intersect with the relations, while

we had 1.2 billion alignment pairs. We call this dataset ReverbMapping and ours

CluewebMapping.

The evaluation dataset, WebQuestions, was also contributed by Berant et al. (2013).

It contains 3778 training and 2032 test questions collected from the Google Suggest

219

5. Feature-driven QA from Structured Data: Freebase

service. All questions were annotated with answers from Freebase. Some questions have

more than one answer, such as what to see near sedona arizona?.

We evaluated on the training set in two aspects: coverage and prediction performance.

We define answer node as the node that is the answer and answer relation as the relation

from the answer node to its direct parent. Then we computed how much and how well

the answer relation was triggered by ReverbMapping and CluewebMapping. Thus for

the question, who is the father of King George VI, we ask two questions: does the mapping,

1. (coverage) contain the answer relation people.person.parents? 2. (precision) predict

the answer relation from the question?

Table 5.1 shows the coverage of CluewebMapping, which covers 93.0% of all answer

relations. Among them, we were able to learn the rule mapping using more than 10

thousand relation-sentence pairs for each of the 89.5% of all answer relations. In contrast,

ReverbMapping covers 89.7% of the answer relations.

Next we evaluated the prediction performance, using the evaluation metrics of infor-

mation retrieval. For each question, we extracted all relations in its corresponding topic

graph, and ranked each relation with whether it is the answer relation. For instance,

for the previous example question, we want to rank the relation people.person.parents as

number 1. We computed standard MAP (Mean Average Precision) and MRR (Mean

Reciprocal Rank), shown in Table 5.2(a) (defined in detail in § 2.2.3.2 on page 40). As

a simple baseline, “word overlap” counts the overlap between relations and the question.

CluewebMapping ranks each relation by P̃ (R | Q). ReverbMapping does the same, ex-

cept that we took a uniform distribution on P̃ (w | R) and P̃ (R) since the contributed

dataset did not include co-occurrence counts to estimate these probabilities.6 Note that

the median rank from CluewebMapping is only 12, indicating that half of all answer

relations are ranked in the top 12.

Table 5.2(b) further shows the percentage of answer relations with respect to their

ranking. CluewebMapping successfully ranked 19% of answer relations as top 1. A sam-

6The way we used ReverbMapping was not how Berant et al. (2013) originally used it: they
employed a discriminative log-linear model to judge relations and that might yield better
performance. As a fair comparison, ranking of CluewebMapping under uniform distribution
is also included in Table 5.2(a).

220

5. Feature-driven QA from Structured Data: Freebase

Median Rank MAP MRR
word overlap 471 0.0380 0.0590

ReverbMapping 60 0.0691 0.0829
CluewebMapping 12 0.2074 0.2900

with uniform distribution 61 0.0544 0.0561
(a) Ranking on answer relations. Best result on CluewebMapping was under

the grow-diag-final-and heuristics (row 3) when symmetrizing align-
ment from both directions. The last row shows ranking of CluewebMap-
ping under uniform distribution (assuming counting on words and relations
is not known).

1 ≤ 5 ≤ 10 ≤ 50 ≤ 100 > 100
word overlap 3.5 4.7 2.5 3.9 4.1 81.3

ReverbMapping 2.6 9.1 8.6 26.0 13.0 40.7
CluewebMapping 19.0 19.9 8.9 22.3 7.5 22.4

(b) Percentage of answer relations w.r.t. ranking number (header).

Table 5.2.: Evaluation on answer relation ranking prediction on 3778 training ques-
tions.

ple of these includes person.place_of_birth, location.containedby, country.currency_used,

regular_tv_appearance.actor, etc. These percentage numbers are good clue for feature

design: for instance, we may be confident in a relation if it is ranked top 5 or 10 by

CluewebMapping.

To conclude, we found that CluewebMapping provides satisfying coverage on the 3778

training questions: only 7% were missing, despite the biased nature of web data. Also,

CluewebMapping gives reasonably good precision on its prediction, despite the noisy

nature of web data. A sample of the top relations with their most aligned words (in

stemmed form) is shown in Table 5.3. We move on to fully evaluate the final QA F1.

221

5. Feature-driven QA from Structured Data: Freebase

re
la
ti
on

to
p
w
or
d
s
in

st
em

m
ed

fo
rm

lo
ca
ti
on

.lo
ca
ti
on

.c
on

ta
in
s

in
,a

t,
ci
ti
,l
oc
at
,a

re
a,

to
w
n,

ne
ar
,h

ot
el
,o

f,
ce
nt
er

lo
ca
ti
on

.a
dj
oi
ni
ng

_
re
la
ti
on

sh
ip
.a
dj
oi
ns

an
d,

st
at
e,

fo
llo

w
,a

re
,i
nc
lu
d,

fr
om

,o
r,

w
e,

al
l,
bo

rd
er

m
ili
ta
ry
.m

ili
ta
ry
_
co
m
ba

ta
nt
_
gr
ou

p.
co
m
ba

ta
nt
s

an
d,

co
un

tr
i,
ar
e,

fr
om

,i
nc
lu
d,

ha
ve
,o

r,
ot
he
r,

w
or
ld
,w

er
e

lo
ca
ti
on

.im
po

rt
s_

an
d_

ex
po

rt
s.
im

po
rt
ed
_
fr
om

an
d,

ar
e,

or
,c

ou
nt
ri
,h

av
e,

th
an

,w
or
ld
,w

e,
ov
er
,f
ro
m

lo
ca
ti
on

.c
ou

nt
ry
.a
dm

in
is
tr
at
iv
e_

di
vi
si
on

s
in
,i
s,

fr
om

,a
,y

ea
r,

ol
d,

in
c,

de
liv

er
i,
flo

ri
st
,g

uy
pe

op
le
.p
er
so
n.
na

ti
on

al
it
y

pr
es
id
,h

is
,s

,w
as
,w

ho
,m

in
is
t,
th
at
,s

ai
d,

by
,p

ri
m
e

go
ve
rn
m
en
t.
go
ve
rn
m
en
t_

po
si
ti
on

_
he
ld
.ju

ri
sd
ic
ti
on

_
of
_
offi

ce
pr
es
id
,t
ha

t,
s,

m
in
is
t,
sa
id
,i
nc
,p

ri
m
e,

de
liv

er
i,
flo

ri
st
,t
ra
ns
w
or
ld

aw
ar
d.
aw

ar
d_

no
m
in
at
io
n.
aw

ar
d_

no
m
in
ee

st
ar
,a

s,
w
it
h,

by
,s

,f
re
eb
as
,p

ro
du

c,
ca
st
,f
ea
tu
r,

fil
m

lo
ca
ti
on

.m
ai
lin

g_
ad

dr
es
s.
ci
ty
to
w
n

at
,i
n,

fr
ee
ba

s,
ba

se
,c

am
pu

s,
de
pa

rt
,h

ea
dq

ua
rt
,u

ni
ve
rs
,a

tt
en
d,

m
us
eu
m

go
ve
rn
m
en
t.
go
ve
rn
m
en
t_

po
si
ti
on

_
he
ld
.o
ffi
ce
_
ho

ld
er

pr
es
id
,t
o,

s,
th
at
,s

en
at
,m

in
is
t,
pr
im

e,
sa
id
,g

ov
er
no

r,
hi
s

aw
ar
d.
aw

ar
d_

ho
no

r.
aw

ar
d_

w
in
ne

r
s,

as
,w

it
h,

by
,s

ta
r,

fr
ee
ba

s,
on

,p
ro
du

c,
je
nn

if,
an

is
to
nj
en
ni
f

lo
ca
ti
on

.m
ai
lin

g_
ad

dr
es
s.
co
un

tr
y

re
gi
st
,i
so
,a

t,
by
,c

om
pa

ni
,i
t,

ha
s,

is
,r

es
ea
rc
h,

la
rg
es
t

lo
ca
ti
on

.c
ou

nt
ry
.c
ap

it
al

in
,c

ap
it
,o

n,
ho

te
l,
ci
ti
,s

ai
d,

ba
se
,i
nt
er
n,

offi
ci
,h

el
d

go
ve
rn
m
en
t.
go
ve
rn
m
en
t_

po
si
ti
on

_
he
ld
.d
is
tr
ic
t_

re
pr
es
en
te
d

is
,a

,i
nc
,d

el
iv
er
i,
flo

ri
st
,t

ra
ns
w
or
ld
,f
ro
m
,s

ta
te
,o

f,
se
na

t
aw

ar
d.
aw

ar
d_

no
m
in
at
io
n.
no

m
in
at
ed
_
fo
r

s,
fo
r,

by
,w

it
h,

fil
m
,s

ta
r,

on
,m

ov
i,
as
,h

is
fil
m
.p
er
fo
rm

an
ce
.a
ct
or

st
ar
,a

s,
m
ov
i,
fil
m
,r

ol
e,

w
it
h,

s,
pl
ay
,h

is
,w

ho
pe

op
le
.p
la
ce
_
liv

ed
.lo

ca
ti
on

w
as
,h

is
,b

or
n,

s,
m
ay
or
,h

e,
go
ve
rn
or
,w

ho
,s

ai
d,

fo
rm

er
sp
or
ts
.s
po

rt
s_

te
am

_
ro
st
er
.p
la
ye
r

fo
r,

w
it
h,

sc
or
e,

s,
pl
ay
er
,h

is
,g

oa
l,
si
gn

,p
oi
nt
,s

ea
so
n

Ta
bl
e
5.
3.
:T

op
Fr
ee
ba

se
re
la
ti
on

s
de
te
rm

in
ed

by
th
ei
r
ar
gu

m
en
t
ap

pe
ar
an

ce
co
un

ts
in

th
e
an

no
ta
te
d
C
lu
ew

eb
an

d
th
ei
r
to
p
al
ig
ne
d

w
or
ds

(s
te
m
m
ed

fo
rm

).

222

5. Feature-driven QA from Structured Data: Freebase

5.6. Experiments

We evaluate the final F1 in this section. The system of comparison is that of Berant

et al. (2013) and Berant and Liang (2014).7

5.6.1. Notes on Evaluation Metrics

There have been debate and inconsistencies about how the final QA system should be

evaluated. The Sempre homepage 8 finally released an evaluation script. The evaluation

metrics are:

• macro P : averaged precision on each answered question;

• macro R: averaged recall on each answered question;

• macro F1: harmonic mean of macro P and macro R;

• average F1: for each question, compute F1 (F1 = 0 for not answered questions),

then average all F1’s over either only answered questions, or all questions.

The steps to compute these values are:

1. compute P/R/F1 for each question;

2. average all answered questions to obtain macro P/R;

3. compute the harmonic mean of macro P/R to get macro F1;

4. average all questions or all answered questions to obtain average F1 over all ques-

tions, or all answered questions;

Note that both Berant et al. (2013) and Berant and Liang (2014) used the term accuracy

but what they actually computed was average F1 over all questions. The reason is that

the semantic parsing community has a long tradition of using accuracy to evaluate their

systems. In previous datasets systems answered all questions and each answer is either

7Berant and Liang (2014) was published simultaneously with our work (Yao and Van Durme,
2014) at the same conference. At the time of writing, we had no knowledge about Berant
and Liang (2014).

8www-nlp.stanford.edu/software/sempre/

223

www-nlp.stanford.edu/software/sempre/

5. Feature-driven QA from Structured Data: Freebase

totally correct or totally wrong. Thus accuracy was a good measure. However, on the

WebQuestions dataset, partial credits were allowed: in order to compute partial credit,

F1 for each question was computed, then averaged – or so called “accuracy”.

§ 2.2.3.4 on page 42 gives concrete examples on how to compute these values. In the

follow sections the scores on the test set are based on this new evaluation script. The

scores on the dev set are still based on my own evaluation script, which is quite similar

to macro F1. But unfortunately I have lost the dev set result and cannot produce the

new scores. Even though, the comparisons within the dev set are still valid.

5.6.2. Data

We re-used WebQuestions, a dataset collected by Berant et al. (2013). It contains

5810 questions crawled from the Google Suggest service, with answers annotated on

Amazon Mechanical Turk. All questions contain at least one answer from Freebase. A

sample is shown in Table 5.4. This dataset has been split by 65%/35% into train-all

and test. We further randomly divided train-all by 80%/20% to a smaller train

and development set dev. Note that our dev set is different from that of Berant et al.

(2013), but the final result on test is directly comparable. Results are reported in

terms of macro F1 with partial credit (following Berant et al. (2013)) if a predicted

answer list does not have a perfect match with all gold answers, as a lot of questions in

WebQuestions contain more than one answer.

5.6.3. Search

With an Information Retrieval (IR) front end, we need to locate the exact Freebase

topic node a question is about. For this purpose we used the Freebase Search API.9 All

named entities 10 in a question were sent to this API, which returned a ranked list of

relevant topics. Table 5.5 shows an example. We also evaluated how well the search

9https://developers.google.com/freebase/v1/search-overview
10When no named entities are detected, we fall back to noun phrases.

224

https://developers.google.com/freebase/v1/search-overview

5. Feature-driven QA from Structured Data: Freebase

qu
es
ti
on

an
sw

er
w
ha

t
ar
e
ki
ng

ch
ar
le
s
sp
an

ie
ls
?

D
og

w
ha

t
cl
ub

te
am

is
di
eg
o
fo
rl
an

on
?

U
ru
gu

ay
na

ti
on

al
fo
ot
ba

ll
te
am

w
ha

t
ye
ar
s
di
d
th
e
re
d
so
x
w
in

th
e
w
or
ld

se
ri
es
?

19
03

W
or
ld

Se
ri
es
,.
..,

20
07

W
or
ld

Se
ri
es

w
ha

t
ch
ar
ac
te
r
di
d
jo
hn

no
bl
e
pl
ay

in
lo
rd

of
th
e
ri
ng

s?
D
en
et
ho

r
II

w
ha

t
is

th
e
m
os
t
pr
ac
ti
ce
d
re
lig

io
n
in

th
e
un

it
ed

st
at
es
?

C
hr
is
ti
an

ity
w
he
re

do
th
e
or
io
le
s
pl
ay

sp
ri
ng

tr
ai
ni
ng

?
B
al
ti
m
or
e

w
ha

t
cu
rr
en
cy

do
th
e
uk

ra
in
e
us
e?

U
kr
ai
ni
an

hr
yv

ni
a

w
ha

t
co
un

tr
ie
s
do

pe
op

le
sp
ea
k
po

rt
ug

ue
se
?

B
ra
zi
l,
C
an

ad
a,

A
ng

ol
a,

...
w
he
re

di
d
th
e
as
sy
ri
an

em
pi
re

st
ar
t?

M
id
dl
e
E
as
t

w
ha

t
is

th
e
cu
rr
en
cy

of
ge
rm

an
y
in

20
10

?
E
ur
o

w
ha

t
ye
ar

di
d
al
le
n
iv
er
so
n
ge
t
m
ar
ri
ed
?

8/
3/

20
01

w
ha

t
is

th
e
po

lit
ic
al

sy
st
em

in
en
gl
an

d?
C
on

st
it
ut
io
na

lm
on

ar
ch
y

w
he
re

ar
e
th
e
m
in
es

in
vi
ct
or
ia
?

V
ic
to
ri
a

w
ha

t
to

se
e
ou

ts
id
e
of

pa
ri
s?

St
ad

e
de

Fr
an

ce
,2

0t
h
ar
ro
nd

is
se
m
en
t,
...

w
ha

t
ty
pe

of
go
ve
rn
m
en
t
do

es
is
ra
el
?

P
ar
lia

m
en
ta
ry

sy
st
em

w
ha

t
w
er
e
so
m
e
in
ve
nt
io
ns

of
le
on

ar
do

da
vi
nc
i?

D
ou

bl
e
hu

ll,
V
io
la

or
ga

ni
st
a

w
ho

ki
lle
d
vi
nc
en
t
ch
in

dv
d?

R
on

al
d
E
be

ns
,M

ic
ha

el
N
it
z

w
ha

t
ar
e
th
e
go

ds
of

is
la
m
?

A
lla

h
w
ho

ha
s
w
on

th
e
m
os
t
fa

cu
p?

Li
ve
rp
oo

lF
.C
.

ho
w

m
an

y
m
aj
or

di
al
ec
ts

ar
e
th
er
e
in

ch
in
a?

N
ep
al
iL

an
gu

ag
e,

St
an

da
rd

T
ib
et
an

,.
..

ho
w

m
an

y
au

st
ra
lia

n
st
at
es

an
d
te
rr
it
or
ie
s?

C
ity

of
M
or
el
an

d,
N
or
th
er
n
Te

rr
it
or
y,

...
w
he
re

di
d
en
gl
is
h
nu

m
be

rs
or
ig
in
at
e
fr
om

?
La

ti
n
al
ph

ab
et

w
ho

di
d
ja
so
n
se
ge
ld

at
e?

Li
nd

a
C
ar
de
lli
ni

Ta
bl
e
5.
4.
:A

sa
m
pl
e
of

th
e
W

eb
Q
u
es
t
io
n
s
da

ta
se
t
(t
ra
in
in
g
on

ly
).

225

5. Feature-driven QA from Structured Data: Freebase

Freebase Topic Score
natalie_portman 722.30

star_wars 233.01
saturday_night_live_season_31 56.36

clone_wars 51.47
lego_star_wars 38.73
star_wars_music 37.78

star_wars_episode_iv_a_new_hope 36.67
star_wars_episode_i_the_phantom_menace 35.12

star_wars_clone_wars 33.58
star_wars_galaxies 29.21

Table 5.5.: Returned Freebase topics with scores from query the Freebase Search
API with natalie portman and star wars. The two queries were fired
separately and the returned snippets were merged and ordered accord-
ing to their scores. The two entities came from the question who did
natalie portman play in star wars?. They were tagged as either person
name or noun phrase by the Stanford CoreNLP suite.

API served the IR purpose. WebQuestions not only has answers annotated, but also

which Freebase topic nodes the answers come from.11 Thus we evaluated the ranking

of retrieval with the gold standard annotation on train-all, shown in Table 5.6. The

top 2 results of the Search API contain gold standard topics for more than 90% of the

questions and the top 10 results contain more than 95%. We took this as a “good enough”

IR front end and used it on test.

Once a topic is obtained we query the Freebase Topic API 12 to retrieve all relevant

information, resulting in a topic graph. The API returns almost identical information as

displayed via a web browser to a user viewing this topic. Given that Turkers annotated

answers based on the topic page via a browser, this supports the assumption that the

same answer would be located in the topic graph, which is then passed to the QA engine

for feature extraction and classification.

11an example: for the question what is the name of justin bieber brother, WebQuestions has
www.freebase.com/view/en/justin_bieber as the topic node.

12https://developers.google.com/freebase/v1/topic-overview

226

www.freebase.com/view/en/justin_bieber
https://developers.google.com/freebase/v1/topic-overview

5. Feature-driven QA from Structured Data: Freebase

top 1 2 3 5 10
3263 3456 3532 3574 3604
% 86.4 91.5 93.5 94.6 95.4

Table 5.6.: Evaluation on the Freebase Search API: how many questions’ top n
retrieved results contain the gold standard topic. Total number of
questions is 3778 (size of train-all). There were only 5 questions
with no retrieved results.

5.6.4. Model Tuning

We treat QA on Freebase as a binary classification task: for each node in the topic

graph, we extract features and judge whether it is the answer node. Every question was

processed by the Stanford CoreNLP suite with the caseless model. Then the question

features (§5.4.1) and node features (§5.4.2) were combined (§5.4.3) for each node. The

learning problem is challenging: for about 3000 questions in train, there are 3 million

nodes (1000 nodes per topic graph), and 7 million feature types. We employed a high-

performance machine learning tool, Classias (Okazaki, 2009). Training usually took

around 4 hours in total. We experimented with various discriminative learners on dev,

including logistic regression, perceptron and SVM, and found L1 regularized logistic

regression to give the best result. The L1 regularization encourages sparse features by

driving feature weights towards zero, which was ideal for the over-generated feature

space. After training, we had around 30 thousand features with non-zero weights, a 200

fold reduction from the original features.

Also, we did an ablation test on dev about how additional features on the mapping

between Freebase relations and the original questions help, with three feature settings:

1) “basic” features include feature productions read off from the feature graph (Figure

5.1); 2) “+ word overlap” adds additional features on whether sub-relations have overlap

with the question; and 3) “+ CluewebMapping” adds the ranking of relation prediction

given the question according to CluewebMapping. Table 5.7 shows that the additional

CluewebMapping features improved overall F1 by 5%, a 13% relative improvement: a re-

markable gain given that the model already learned a strong correlation between question

types and answer types (explained more in discussion and Table 5.9 later).

227

5. Feature-driven QA from Structured Data: Freebase

Finally, the ratio of positive vs. negative examples affect final F1: the more positive

examples, the lower the precision and the higher the recall. Under the original setting,

this ratio was about 1 : 275. This produced (under old evaluation script) precision around

60% and recall around 35% (c.f. Table 5.7). To optimize for F1, we down-sampled the

negative examples to 20%, i.e., a new ratio of 1 : 55. This boosted the final F1 on dev

to 48%. We report the final test result under this down-sampled training. In practice

the precision/recall balance can be adjusted by the positive/negative ratio.

5.6.5. Test Results

Table 5.8 gives the final F1’s on test using the shared evaluation script. “Gold Retrieval”

always ranked the correct topic node top 1, a perfect IR front end assumption. In a more

realistic scenario, we had already evaluated that the Freebase Search API returned the

correct topic node 95% of the time in its top 10 results (c.f. Table 5.6), thus we also

tested on the top 10 results returned by the Search API. To keep things simple, we did

not perform answer voting, but simply extracted answers from the first (ranked by the

Search API) topic node with predicted answer(s) found.

There are two ways to view Table 5.8:

• performance on the questions the system was confident about: this is the macro F1.

The logistic regression ranker has a default threshold of 0.5 for positive prediction.

This threshold enabled answering 1605 of 2032 questions. The macro F1 of 46.5%

was system performance on these 1605 questions the system was confident about.13

Since this only counts as roughly 80% of all questions, the average F1 over all

questions was significantly lower.

• performance on all questions: this is the average F1 over all. Sempre chose to

answer every question in the dataset, thus its average F1 was higher. To compare

our system fairly on this level, we lowered the threshold to force an answer out

of all questions, obtaining the average F1 of 35.4%, which was comparable (35.4%

13In retrospect: the best way to optimize F1 is to draw the precision/recall curve (c.f. § 2.2.3.3
on page 41) on the dev set; select the threshold that gives the best macro F1; then use this
threshold to compute macro F1 on test.

228

5. Feature-driven QA from Structured Data: Freebase

P R F1

basic 57.3 30.1 39.5
+ word overlap 56.0 31.4 40.2

+ CluewebMapping 59.9 35.4 44.5
+both 59.0 35.4 44.3

Table 5.7.: F1 (using old evaluation script) on dev with different feature settings.

#Q macro P macro R macro F1
average F1

all/answered
our method 1605 38.8 58.0 46.5 33.0/41.8

force to answer all questions 2032 33.5 48.0 39.5 35.4
with Gold Retrieval 1957 45.4 52.2 48.6 36.2/37.6

Berant et al. (2013) (bug fix) 2032 48.0 41.3 44.4 35.7
Berant and Liang (2014) 2032 40.5 46.6 43.3 39.9

Table 5.8.: F1 on test (2032 questions in total). Gold Retrieval always returns
the correct topic node as the first retrieved result. #Q is the number
of answered questions. Macro F1 is the harmonic mean of macro P/R.
Average F1 averages each individual F1 computed for each question
over either all 2032 questions or only those answered questions.

vs. 35.7%) to the bug corrected version of Berant et al. (2013).

The other question of interest is that whether our system has acquired some level of

“machine intelligence”: how much does it know what the question inquires? We discuss

it below through feature and error analysis.

5.6.6. Error Analysis

The combination between questions and Freebase nodes captures some real gist of QA

pattern typing, shown in Table 5.9 with sampled features and weights. A full list of the

top 40 positive and negative features are shown in Table 5.10 and 5.11 separately. Our

system learned, for instance, when the question asks for geographic adjacency informa-

tion (qverb=border), the correct answer relation to look for is location.adjoins.

229

5. Feature-driven QA from Structured Data: Freebase

weight feature
5.56 qfocus=money|type=Currency
5.11 qword=when|type=datetime
4.56 qverb=border|rel=location.adjoins
3.90 qword=why|incoming_relation_rank=top_3
2.94 qverb=go|qtopic=location|type=Tourist_attraction
-3.94 qtopic=location|rel=location.imports_exports.date
-2.93 qtopic=person|rel=education.end_date

Table 5.9.: A sample of the top 50 most positive/negative features. Features are
production between question and node features (c.f. Figure 5.1).

Even with perfect retrieval, the final macro F1 was still less than 50%. We found that

list questions were harder to answer perfectly. Our system is also weak in two types

of questions: 1. questions with constraints on topics, such as what is the new orleans

hornets new name and what was reagan before president. Our features did not cover these

temporal constraints such as new and before. 2. counting questions (how many) which

require a special count() operator on the answer candidates. These types of questions

appear more prominently in the other Free917 dataset (Cai and Yates, 2013a) and

might be better handled by the semantic parsing approaches. We provide a detailed

comparison with the output from Berant et al. (2013) in the next section.

5.7. Comparison: Information Extraction vs.

Semantic Parsing

We have shown in Table 5.8 that jacana-freebase, a system based on information extrac-

tion, outperforms Sempre (Berant et al., 2013), a system based on semantic parsing,

on the test set of WebQuestions. We characterize semantic parsing as the task of

deriving a representation of meaning from language, sufficient for a given task. Tradi-

tional information extraction from text may be coarsely characterized as representing a

certain level of semantic parsing, where the goal is to derive enough meaning in order to

230

5. Feature-driven QA from Structured Data: Freebase

weight feature
8.60426 qfocus=religions|/type/object/type=Religion

6.22916 qfocus=sports|/type/object/type=Sports_Team

6.04425 qfocus=religions|/type/object/type=Religious_Organization

5.88405 qfocus=currency|/type/object/type=Currency

5.56413 qfocus=money|/type/object/type=Currency

5.43707 qfocus=sport|/type/object/type=Sports_Team

5.40111 qtopic_ner=ORGANIZATION|out_rel=/sports/sports_league_participation/team

5.34641 qverb=die|qword=what|/type/object/type=Cause_Of_Death

5.34273 music|/type/object/type=Musical_genre

5.11456 qtopic_ner=DURATION|nodetype=datetime

5.05355 qtopic_ner=LOCATION|out_rel=/location/administrative_division.../capital

4.92154 qfocus=timezone|/type/object/type=Time_Zone

4.8497 qfocus=party|/type/object/type=Political_party

4.74702 qtopic_ner=LOC|out_rel=/location/administrative_division_.../administrative_division

4.59445 qverb=live|out_rel=/people/place_lived/location

4.5645 qverb=border|out_rel=/location/adjoining_relationship/adjoins

4.54962 qfocus=music|/type/object/type=Musical_genre

4.5315 qfocus=airport|/type/object/type=Airport

4.45438 qverb=have|/type/object/type=Form_of_Government

4.4374 qverb_tag=VB|dobj|qword=what|out_rel=/location/imports_exports.../industry

4.27125 qverb=happen|dobj|qtopic_ner=PERSON|/type/object/type=Profession

4.23816 in|/type/object/type=Soundtrack

4.20004 cruis|/type/object/type=Transport_terminus

4.19823 govern|/type/object/type=Form_of_Government

4.10507 qtopic_ner=MISC|out_rel=/business/company_brand_relationship/company

4.0946 qfocus=education|incoming_relation_text_overlap=some_overlap

4.015 qfocus=continent|/type/object/type=Continents

3.97087 qverb_tag=VB|prep_on|qtopic_ner=DATE|nodetype=compound

3.89806 qword=why|incoming_relation_rank=top_3

3.88312 qfocus=music|/type/object/type=Composition_type

3.8393 citi|node_text_overlap=total_subsume

3.82019 qtopic_ner=LOCATION|out_rel=/location/imports_and_exports/exported_to

3.79286 qword=when|/type/object/type=Top_Level_Domain

3.77478 qverb=influence|/type/object/type=Influence_Node

3.6726 qfocus=albums|/type/object/type=Musical_Album

3.64795 qfocus=teams|/type/object/type=Sports_Team

3.58191 qfocus=city|/type/object/type=City/Town/Village

3.43911 qfocus=religion|/type/object/type=Religion

3.43494 scienc|/type/object/type=Namesake

3.42661 qtopic_ner=MISC|/type/object/type=Recurring_Period

3.36592 qword=when|nodetype=datetime

3.32011 qverb_tag=VBP|/type/object/type=Color

Table 5.10.: Full list of top 40 positive features.

231

5. Feature-driven QA from Structured Data: Freebase

weight feature
-6.8883 qword=what|/type/object/type=Reporting_Unit

-4.1717 qverb=influence|incoming_relation_text_overlap=no_overlap

-3.94465 qtopic_ner=LOCATION|out_rel=/location/imports_and_exports/date

-3.9102 qfocus=money|is_island=true

-3.53065 qtopic_ner=PERSON|out_rel=/film/performance/character

-3.41437 parent|incoming_relation_text_overlap=no_overlap

-3.26789 qtopic_ner=DATE|/type/object/type=Tournament_Competitor

-2.95402 qword=what|/type/object/type=Olympic_games

-2.93283 qtopic_ner=PERSON|out_rel=/education/education/end_date

-2.82172 high|node_text_overlap=no_overlap

-2.80396 qtopic_ner=PERSON|out_rel=/people/place_lived/start_date

-2.7888 qverb=play|qtopic_ner=PERSON|/type/object/type=Fictional_Character_Creator

-2.59511 qfocus=currency|parent_node_text_overlap=some_overlap

-2.51765 qtopic_ner=LOCATION|prep_in|qtopic_ner=DATE|is_island=true

-2.47958 qverb=inspire|qtopic_ner=PERSON|incoming_relation_text_overlap=no_overlap

-2.39718 qfocus=religion|incoming_relation_text_overlap=no_overlap

-2.39195 qverb=use|prep_in|qtopic_ner=LOCATION|incoming_relation_rank=top_1

-2.33476 qverb=be|out_rel=/common/topic/notable_types

-2.31186 qtopic_ner=PERSON|/type/object/type=Extended_institution

-2.27512 qtopic_ner=PERSON|out_rel=/tv/regular_tv_appearance/character

-2.19146 in|incoming_relation_text_overlap=some_overlap

-2.13185 qword=where|out_rel=/common/topic/notable_types

-2.1318 children|qtopic_ner=PERSON|incoming_relation_text_overlap=no_overlap

-2.12925 qtopic_ner=PERSON|/type/object/type=User

-2.12267 qword=who|out_relation_rank=beyond_top_100

-2.11863 qword=who|out_rel=/tv/regular_tv_appearance/series

-2.11708 qverb_tag=VBZ|qtopic_ner=ORG|parent_node_text_overlap=some_overlap

-2.07752 qword=what|/type/object/type=abh-city

-2.07493 qword=who|nsubj|qtopic_ner=PERSON|/type/object/type=Person

-2.07106 qtopic_ner=LOCATION|/type/object/type=Government_Office_or_Title

-2.04276 currenc|prep_of|qtopic_ner=LOCATION|incoming_relation_rank=top_1

-2.03287 qtopic_ner=ORG|nn|qtopic_ner=ORG|/type/object/type=Sports_team_extra

-2.00522 qword=what|nsubj|qtopic_ner=LOCATION|/type/object/type=Topic

-1.99172 qtopic_ner=PERSON|out_rel=/base/popstra/sww_base/source

-1.98979 origin|/type/object/type=sww_base

-1.97703 qverb_tag=VB|qword=what|/type/object/type=BV=_Medical_Condition

-1.94967 qtopic_ner=LOCATION|/type/object/type=Intézmények

-1.93891 qtopic_ner=MISC|/type/object/type=Film_director

-1.90722 new|/type/object/type=Film_actor

-1.90116 qtopic_ner=LOCATION|/type/object/type=Reporting_Unit

-1.89828 qverb=go|/type/object/type=Bibs_Location

-1.88412 most|/type/object/type=Topic

Table 5.11.: Full list of top 40 negative features.

232

5. Feature-driven QA from Structured Data: Freebase

populate a database with factoids of a form matching a given schema.14 Given the ease

with which reasonably accurate, deep syntactic structure can be automatically derived

over (English) text, it is not surprising that IE researchers would start including such

“features” in their models.

In this section we compare the output from the two systems in a detailed manner

and try to answer a central question: what is the difference between an information

extraction system with access to syntax, as compared to a semantic parser, when both

are targeting a factoid-extraction style task?

We find that these two systems are on par with each other, with no significant dif-

ferences in terms of accuracy between them. A major distinction between the work of

Berant et al. (2013) and ours (Yao and Van Durme, 2014) is the ability of the former

to represent, and compose, aggregation operators (such as argmax, or count), as well as

integrate disparate pieces of information. This representational capability was important

in previous, closed-domain tasks such as GeoQuery. The move to Freebase by the SP

community was meant to provide richer, open-domain challenges. While the vocabulary

increased, our analysis suggests that compositionality and complexity decreased. We

therefore conclude that the semantic parsing community should target more challenging

open-domain datasets, ones that “standard IE” methods are less capable of attacking.

5.7.1. Evaluation Metrics

Both Berant et al. (2013) and we tested their systems on the WebQuestions dataset.

Berant et al. (2013) reported a score of 31.4% in terms of accuracy (with partial credit if

inexact match) on the test set and later in Berant and Liang (2014) revised it to 35.7%.

Berant et al. focused on “accuracy” (or more precisely, average F1 over all questions) –

how many questions were correctly answered by the system. Our system on the other

hand only answered 80% of all test questions. For the purpose of comparing among all

test questions, we lowered the logistic regression prediction threshold (usually 0.5) on

jacana-freebase for the other 20% of questions where jacana-freebase had not proposed
14So-called Open Information Extraction (OIE) is simply a further blurring of the distinction

between IE and SP, where the schema is allowed to grow with the number of verbs, and other
predicative elements of the language.

233

5. Feature-driven QA from Structured Data: Freebase

jacana (F1 = 1) jacana (F1 ≥ 0.5)

Sempre

√
×

√
×√

153 (0.08) 383 (0.19) 429 (0.21) 321 (0.16)
× 136 (0.07) 1360 (0.67) 366 (0.18) 916 (0.45)

Table 5.12.: The absolute and proportion of questions Sempre and jacana-freebase
answered correctly (

√
) and incorrectly (×) jointly and separately,

running a threshold F1 of 1 and 0.5.

an answer to, and selected the best-possible prediction with the highest prediction score

as the answer. In this way jacana-freebase was able to answer all questions with a lower

accuracy of 35.4%. In the following we present analysis results based on the test questions

where the two systems had very similar performance (35.7% vs. 35.4%). The difference

is not significant according to the paired permutation test (Smucker et al., 2007).

5.7.2. Accuracy vs. Coverage

First, we were interested to see the proportions of questions Sempre and jacana-freebase

jointly and separately answered correctly. The answer to many questions in the dataset

is a set of answers, for example what to see near sedona arizona?. Since turkers did not

exhaustively pick out all possible answers, evaluation is performed by computing the F1

between the set of answers given by the system and the answers provided by turkers.

With a strict threshold of F1 = 1 and a permissive threshold of F1 ≥ 0.5 to judge the

correctness, we list the pair-wise correctness matrix in Table 5.12. Not surprisingly,

both systems had most questions wrong given that the averaged F1’s were only around

35%. With the threshold F1 = 1, Sempre answered more questions exactly correctly

compared to jacana-freebase, while when F1 ≥ 0.5, it was the other way around. This

shows that Sempre is more accurate in certain questions. The reason behind this is that

Sempre always fires queries that return exactly one set of answers from Freebase, while

jacana-freebase could potentially tag multiple nodes as the answer, which may lower the

accuracy.

234

5. Feature-driven QA from Structured Data: Freebase

0 10 20 30 40 50 60 70 80 90 100
Percent Answered

20

30

40

50

60

70

A
cc

u
ra

cy

Accuracy vs. Coverage

jacana-freebase
SEMPRE

Figure 5.3.: Accuracy with respect to proportion of questions answered

We have shown that both systems can be more accurate in certain questions, but

when? Is there a correlation between the system confidence and accuracy? Thus we took

the logistic decoding score (between 0 and 1) from jacana-freebase and the probability

from the log-linear model used by Sempre as confidence, and plotted an “accuracy vs.

coverage” curve, which shows the accuracy of a QA engine with respect to its coverage

of all questions. The curve basically answers one question: at a fixed accuracy, what is

the proportion of questions that can be answered? A better system should be able to

answer more questions correctly with the same accuracy.

The curve was drawn in the following way. For each question, we select the best answer

candidate with the highest confidence score. Then for the whole test set, we have a list

of (question, highest ranked answer, confidence score) tuples. Running a threshold from

1 to 0, we select those questions with an answer confidence score above the threshold

and compute accuracy at this point. The X-axis indicates the percentage of questions

above the threshold and the Y-axis the accuracy, shown in Figure 5.3.

The two curves generally follow a similar trend, but while jacana-freebase has higher

accuracy when coverage is low, Sempre obtains slightly better accuracy when more

questions are answered.

235

5. Feature-driven QA from Structured Data: Freebase

0	
0.05	
0.1	

0.15	
0.2	

0.25	
0.3	

0.35	
0.4	

0.45	
0.5	

3	 (
9)	

4	 (
78
)	

5	 (
29
9)	

6	 (
43
2)	

7	 (
39
5)	

8	 (
27
3)	

9	 (
12
2)	

10
	 (4
8)	

11
	 (1
9)	

12
	 (1
0)	

13
	 (4
)	

15
	 (1
)	

<=
	 5(
	 38
6)	

<=
	 10
	 (1
27
0)	

<=
15
	 (3
4)	

Jacana-‐freebase	

SEMPRE	

Figure 5.4.: Accuracy (Y-axis) by question length. The X-axis specifies the ques-
tion length in words and the total number of questions in parenthesis.

5.7.3. Accuracy by Question Length and Type

Do accuracies of the two systems differ with respect to the complexity of questions?

Since there is no clear way to measure question complexity, we use question length as a

surrogate and report accuracies by question length in Figure 5.4. Most of the questions

were 5 to 8 words long and there was no substantial difference in terms of accuracies.

The major difference lies in questions of length 3, 12 and 13. However, the number of

such questions was not high enough to show any statistical significance.

Figure 5.5 further shows the accuracies with respect to the question types (as reflected

by the WH-word). Again, there is no significant difference between the two systems.

5.7.4. Learned Features

What did the systems learn during training? We compare them by presenting the top

features by weight, as listed in Table 5.13. Clearly, the type of knowledge learned by the

systems in these features is similar: both systems learn to associate certain phrases with

predicates from the KB.

236

5. Feature-driven QA from Structured Data: Freebase

0	
0.05	
0.1	

0.15	
0.2	

0.25	
0.3	

0.35	
0.4	

0.45	

what	
(929)	

where	
(357)	

who	
(261)	

which	
(35)	

when	
(100)	

how	 	
(8)	

Jacana-‐freebase	

SEMPRE	

Figure 5.5.: Accuracy by question type (and the number of questions).

We note, however, that Sempre also obtains information from the fully constructed

logical form. For instance, Sempre learns that logical forms that return an empty set

when executed against the KB are usually incorrect (the weight for this feature is -8.88).

In this respect the SP approach “understands” more than the IE approach.

We did not further compare on other datasets such as GeoQuery (Tang and Mooney,

2001) and Free917 (Cai and Yates, 2013a). The first one involves geographic inference

and multiple constraints in queries, directly fitting the compositional nature of semantic

parsing. The second one was manually generated by looking at Freebase topics. Both

datasets were less realistic than the WebQuestions dataset. Both datasets were also

less challenging (accuracy/F1 were between 80% and 90%) compared to WebQuestions

(around 40%).

5.7.5. Summary

Our analysis of two QA approaches, semantic parsing and information extraction, has

shown no significant difference between them. Note the similarity between features used

in both systems shown in Table 5.13: the systems learned the same “knowledge” from

data, with the distinction that the IE approach acquired this through a direct association

237

5. Feature-driven QA from Structured Data: Freebase

feature weight
qfocus=religion|type=Religion 8.60
qfocus=money|type=Currency 5.56
qverb=die|type=CauseOfDeath 5.35
qword=when|type=datetime 5.11

qverb=border|rel=location.adjoins 4.56
(a) jacana-freebase

feature weight
die from=CauseOfDeath 10.23
die of=CauseOfDeath 7.55
accept=Currency 7.30
bear=PlaceOfBirth 7.11

in switzerland=Switzerland 6.86
(b) Sempre

Table 5.13.: Learned top features and their weights for jacana-freebase and
Sempre.

between dependency parses and answer properties, while the SP approach acquired this

through optimizing on intermediate logic forms.

With a direct information extraction technology easily getting on par with the more

sophisticated semantic parsing method, it suggests that SP-based approaches for QA with

Freebase has not yet shown its power from a “deeper” understanding of the questions,

among questions of various lengths. We suggest that more compositional open-domain

datasets should be created, and that SP researchers should focus on utterances in existing

datasets that are beyond the reach of direct IE methods.

5.8. Conclusion

This chapter is based on the following two published papers:

Xuchen Yao and Benjamin Van Durme. Information Extraction over Struc-

tured Data: Question Answering with Freebase. ACL. Baltimore, MD, USA.

2014.

Xuchen Yao, Benjamin Van Durme and Jonathan Berant. Freebase QA:

238

5. Feature-driven QA from Structured Data: Freebase

Information Extraction or Semantic Parsing?. ACL Workshop on Semantic

Parsing. Baltimore, MD, USA. 2014.

The main ideas and scientific contributions are:

A novel method to use information extraction over structured data for

question answering. Modern open-domain knowledge base presents an enormous

search space for any question answering systems. Semantic parsing methods focus on

generating a precise database query from an appropriate logic form, usually converted

from the syntactic parses of the question. This process can be succinctly represented as:

question → syntactic parse → logic form → database query → answer

We instead showed that a simpler but novel method achieved the same or better result.

We followed the intuition of how a human would search the answer over a knowledge

base: first go to the page of relevant topic (coarse search), then extract the exact answer

node (fine-grained pinpointing). This process can be represented as:

question → information retrieval → information extraction → answer

Note that it is exactly the traditional pipeline of question answering over text. In this

process useful linguistic signals for answer patterns are represented by graph relations

and properties of candidate nodes, rather than traditionally linguistic annotations of text

fragments. We applied exactly the same feature-driven idea to automatically generate

features and learn from training data. Results are promising: we outperformed the

semantic parsing approach in terms of F1 with less complex linguistic processing. A

fair comparison between jacana-freebase and Sempre also shows that semantic parsing

on the web-style factoid structured data roughly equals information extraction: both

approaches learned very similar features and achieved comparable results. I hope that

this result evokes thoughts in two directions: first, semantic parsing researchers should

target on more compositional questions to show its power; second, methods for question

answering over structured data do not limit to semantic parsing – information extraction

is less complicated but even more effective.

239

5. Feature-driven QA from Structured Data: Freebase

Web-scale data mining for textual schema matching. Textual schema match-

ing is the task of mapping natural language words with database relations. It is a key

component in any KB-backed question answering systems. Previous approaches have

used templates (Unger et al., 2012), Wikipedia (Cai and Yates, 2013b), Wiktionary

(Kwiatkowski et al., 2013), and curated ReVerb knowledge base (Berant et al., 2013).

We pushed this data challenge to its limit by mining the ClueWeb corpus, a 5TB crawl

of the web. The final mapping between about 2 thousand Freebase relations and 10

thousand natural language words is represented as a log-probability table and a table of

raw co-occurrences. By sharing this data with the community, we lifted the barrier of

very demanding computational resources to process almost the entire ClueWeb. Both

intrinsic evaluation of mapping quality and coverage and extrinsic evaluation of end QA

performance proved this resource’s usefulness.

Conclusion and Future Work We proposed an automatic method for Question

Answering from structured data source (Freebase). Our approach associates question

features with answer patterns described by Freebase and has achieved state-of-the-art

result on a balanced and realistic QA corpus. To compensate for the problem of domain

mismatch or overfitting, we exploited ClueWeb, mined mappings between KB relations

and natural language text, and showed that it helped both relation prediction and an-

swer extraction. Our method employs relatively lightweight machinery but has good

performance. We hope that this result establishes a new baseline against which semantic

parsing researchers can measure their progress towards deeper language understanding

and answering of human questions.

Future work can be explored in a few directions:

• More complicated questions. The median length of the WebQuestions dataset

is 7 words (c.f. Figure 5.4 on page 230). A lot of the questions can be reduced

to binary slot filing tasks, such as: who does joakim noah play for?. A very simple

question analysis on the question type, focus and topic would capture the gist of the

query. In the future I would like to explore whether our information extraction

based method solves more complicated questions, such as those require n-nary

240

5. Feature-driven QA from Structured Data: Freebase

relations. One direction distinct from semantic parsing could be directly converting

dependency trees to logic forms (Rudinger and Van Durme, 2014).

• Mapping of words for more implicit or higher-order relations. Natural language

words can express more relations that a KB encompasses. For instance, grandparent

is a concatenation of two /people/person/parent relations, and brother-in-law is a

concatenation of /people/person/spouse and /people/person/sibling_s relations. So

far we have only mined words for direct relation. Can we go further to learning

the mapping for high-order relations?

• Exploit the graph nature of Freebase. All research except ours so far has only

treated the graph-based Freebase as triple stores based on the RDF (Resource

Description Framework) standard. Triple stores are not the natural way to explore

a graph database. For instance, if we want to find out what is in common between

two nodes in a graph, a Dijkstra’s algorithm would be a good fit for finding their

nearest path. However, it is computationally very expensive to find the path with

triple stores (think of triple stores as tables).

• Generating questions from Freebase. To look at things in an inverse way, the

WebQuestions dataset is a good example of how questions are generated from

Freebase. Fader et al. (2013) also collected 18 million natural language questions

from WikiAnswers. Can we learn a question grammar from these 18 million ques-

tions and generate fact-based questions using Freebase? Suppose for every fact in

Freebase, we could generate one or several questions for this fact: i.e., enumerating

all possible questions that can be asked on Freebase, then can we use the aligner

described in Chapter 4 on page 134 to align a new question with the automatically

generated questions with known answers? This is certainly another way to per-

form question answering on Freebase. The automatically generated questions from

Freebase facts can also be used as “trivia” questions, in, for instance, intelligent

educational tutoring systems.

• Integrating answers from both structured and unstructured sources. KB-powered

systems are usually of high precision; text-powered systems have better recalls. A

241

5. Feature-driven QA from Structured Data: Freebase

natural next step is a hybrid system that utilizes the power of both sources.

242

6. Conclusion and Future

Directions

6.1. Summary

This dissertation is about two topics: feature-driven question answering and dis-

criminative methods for monolingual alignment.

6.1.1. Feature-driven Question Answering

The first topic is extremely difficult to be novel about: there has already been decades of

research extensively studying the QA problem. Yet it is still a well-defined, fundamental,

and unsolved NLP application. Some of the early and most useful QA techniques (c.f.

§ 2.3 on page 46) include template matching, answer typing, tree/graph matching and

web redundancy, with various degrees of machine learning. The last one, web redun-

dancy, is a “gift” from the booming Internet. But it has double edges: it helps increasing

scores but blindfolds us from realizing how much we believe the improvement is due to

true technology advancement vs. more abundant data.1 Thus I have only focused on the

first three techniques: template matching, answer typing, tree/graph matching. Note

that each one of them could be and has been individually studied. But any modern

high-performance QA systems would inevitably need all three components (and others

as well). Is there a general framework to incorporate them? Can we kick-start a com-

1That is one reason why later QA@CLEF switched the focus to machine reading a single doc-
ument: the information retrieval front end was deliberately removed and answer redundancy
did not help any more, see § 2.2.2 on page 35 for more information.

243

6. Conclusion and Future Directions

petitive system as a platform for future QA research? Can we do everything in a very

timely manner so extensive feature engineering does not exhaust the passion of QA re-

searchers? I proposed the feature-driven idea with discriminative Conditional Random

Field (Lafferty et al., 2001) training in Chapter 3 to tackle exactly these problems.

The central idea of feature-driven is large-scale machine learning answer patterns from

basic linguistic annotations. Learning from data does not only have the merit of freeing

researchers from writing labor-intensive rules, but also capturing useful answer patterns

that would have otherwise not been captured. For instance, we found out from the opti-

mized features that, when answering where questions, there is a very high feature weight

for words with the named entity label person. We further discovered that our named

entity recognizer often made the “mistake” of recognizing person names from location

names, especially when the text was not wellformed (such as all lowercased, in which

case the ner tool would lose an important cue for this: capitalization of first character).

If it had been a system with manual answer type mapping, these kind of errors would

have given the linguist a hard time and lower the performance. But the feature-driven

idea is immune to this: errors in the NLP pipeline are captured and taken advantage of.

In other words, the feature-driven idea cancels out the notorious phenomenon of error

propagation in pipelined systems.2 If we think very openly about this problem: ner

labels such as person and location are both meaningful but misleading symbols for a

person. A person would naturally assume that location answers where questions and

person answers who questions but the truth is that it is not always the case.3 Perhaps

it is better if we replaced the output labels of ner tools with some meaningless symbols,

then a person would have to resort to other means to draw the mapping for answer

typing – very likely this other means would be the feature-driven approach.

The feature-driven approach also sheds light on how the information retrieval front end

should work for the answer extraction back end. Previously keyword based information

2For instance, Peñas et al. (2013) observed that the upper bound for a QA system is about 60%
F1 due to error propagation in pipelined system through running several years of QA@CLEF.

3Maybe this explanation could rationalize what Fred Jelinek meant by his famous quote: “every
time I fire a phonetician/linguist, the performance of the speech recognizer goes up ” in the
revolutionary work of modern statistical speech recognition he led at IBM in the 1980s:
phoneticians are misled by the rules they assumed the data followed but not the rules the
data actually followed.

244

6. Conclusion and Future Directions

retrieval was not coupled tightly with answer retrieval: information retrieval maximizes

the hit rate between what is known in the query and the snippet (e.g., if you search

cat, a search engine returns pages on cats), but answer retrieval instead asks for what is

unknown in the query (e.g., if you search how many toes a cat has,4 a search engine does

not know to return a number for you). We proposed to use the learned features from the

answer extraction back end to guide the search in the information retrieval front end.

For instance, we have already learned from answer extraction that both the ner label

of number and the pos tag of cd (for cardinal digit) help answer how many questions,

then we could use this insight directly in information retrieval to search specifically for

a number. What about the notorious error propagation in NLP pipeline affecting on

the IR front end? Again, feature-driven information retrieval cancels it out. The section

§ 3.4 on page 110 (Structured Information Retrieval for Question Answering) illustrates

this idea. Modern search engines are not the most direct and effective way for human-

computer interaction: they just present possible web snippets for the answer seeker but

do not solve the query directly. The feature-driven question answering technology points

out one promising direction.

In recent years researchers diverted their interest from QA from text to QA from

databases, partly due to the availability of more open-domain and practical knowledge

bases such as Freebase and DBpedia. Even though the current volume of knowledge

bases can only help solving about 5% of the problem,5 they provide a reliable knowledge

source for certain types of question in a structured and organized way. For instance,

both Google and Microsoft use their own knowledge bases to answer some frequent

queries on movies and famous people. Researchers combined the traditional semantic

parsing approach with modern machine learning and developed the task into solving

more open-domain problems on a much larger scale. The most notable dataset so far

has been WebQuestions (Berant et al., 2013), which includes more than five thousand

418: 5 on each front paw and 4 on each hind paw for most cats.
5This is based on estimation from two sources: 1. only 5% of the 1 million questions crawled
from Google Suggest by Berant et al. (2013) have been identified answerable from Freebase
by workers in Amazon Mechanical Turk. 2. Structured data sources (both automatically
extracted from parses/rules and manually crafted such as Yago and DBpedia) contributed
2% ∼ 5% accuracy overall to the IBM Watson system (Fan et al., 2012, Kalyanpur et al.,
2012a).

245

6. Conclusion and Future Directions

frequently asked questions crawled off the Google Suggest service that are answerable

by Freebase. Most of these questions are fairly simple: they usually contain no or just

one time or location constraint (e.g., who did x play for in 2011?). When answer source

is changed from unstructured data (text) to structured (knowledge base), the feature-

driven idea still applies well (Chapter 5). We turned the task of QA from knowledge base

into a binary classification task on each relevant graph node. Each node carries features

combining simple question analysis result and that node’s graph relations and properties.

In this way we automatically learn the most useful feature combinations from data. For

instance, we learned a high feature weight for qfocus=money|type=Currency, meaning

when the question is about money (e.g., what money to bring to Cuba?), nodes carrying

the Currency property are likely to be the answer. We have shown that this approach is

essentially learning the same thing as the much more complex semantic parsing method

and the final results are comparable. The feature-drive idea again has shown its power

on a different answer source.

To conclude, the feature-driven approach is both an overarching principle and a general

framework. Under this framework I have demonstrated that:

• NLP QA (specifically, answer extraction from text) easily compares to the v0.1

version of IBM Watson based on the DeepQA technologies (Figure 1.1 on page 6

and § 4.6 on page 180).

• KB QA (specifically, answer extraction from Freebase) learns the same knowl-

edge from data as the semantic parsing approaches, but is much less complicated

(Chapter 5 on page 198).

• IR4QA (specifically, structured information retrieval guided by answer extraction)

bridges the gap between information retrieval and question answering and serves

information retrieval precisely for the purpose of question answering (§ 3.4 on

page 110).

• Large-scale learning from the million-type feature space is possible: 35 million

features were applied in NLP QA (§ 4.6.4.2 on page 186) and 7 million features

in KB QA (§ 5.6.4 on page 221). The pure decoding time (excluding feature

246

6. Conclusion and Future Directions

annotation and extraction) for a Jeopardy question, for instance, can be reduced

to less than 0.1 second when executed in parallel.

Adding more features to improve the end system is an engineering problem, but proposing

the feature-driven framework to easily incorporate these features and demonstrating that

it has worked effectively on all three important types of question answering is the research

problem this dissertation has aimed to tackle.

6.1.2. Discriminative Methods for Monolingual Alignment

The second topic is aimed at providing a useful tool for monolingual alignment, with the

potential for outreaching to other NLP tasks besides question answering.

I started with using a rule-based tree matching aligner based on Tree Edit Distance

(§ 3.2 on page 90), inspired by the work of Heilman and Smith (2010) andWang and Man-

ning (2010). The aligner provided a mechanism to effectively incorporate tree matching

information in the general framework of feature-driven methods. It also went beyond the

sole tree matching methods for QA pioneered by Lin and Pantel (2001) and Cui et al.

(2005). Ablation test (Figure 3.5 on page 108) showed that alignment-based features

increased QA performance in F1 by 10% on top of a strong answer typing model. But

the TED aligner, similar to other rule-based aligners, has the limitation of extensibility.

Meanwhile, there are many lexical resources for at least the English language that can

be used for better alignment. A discriminative model would be a natural fit for this task.

We adapted the CRF-based model by Blunsom and Cohn (2006) to monolingual align-

ment for 1x1 token alignment (§ 4.3.1) and improved it with the semi-Markov CRF model

(Sarawagi and Cohen, 2004) for many-to-many phrase alignment (§ 4.3.2 on page 154).

We did extensive experiments on three datasets: MSR06 (Brockett, 2007), Edinburgh++

(Cohn et al., 2008, Thadani et al., 2012) and MTReference (newly created) while com-

paring against various aligners: GIZA++ (Och and Ney, 2003), TED (Yao et al., 2013d),

Meteor (Denkowski and Lavie, 2011) and the MANLI family of aligners (MacCartney

et al., 2008, Thadani and McKeown, 2011, Thadani et al., 2012). Our system outper-

formed these aligners on these three datasets. Moreover, detailed evaluation divided

247

6. Conclusion and Future Directions

down by alignment types (identical vs. nonidentical, token vs. phrase) depicted a more

clear picture of the current status for this task. The current state-of-the-art monolingual

aligners have excellent performance on identical alignment (96% F1), moderate perfor-

mance on non-identical alignment (60% ∼ 70% F1), good performance on token align-

ment (90% F1) and very poor performance on phrasal alignment (40% F1 or less). This

will shed light on future research directions. The implementation system is jacana-align.

It is open-source, platform independent, and ships with a bundle of lexical resources in-

cluding PPDB (Ganitkevitch et al., 2013), Wiktionary, WordNet (Fellbaum, 1998, Snow

et al., 2006) and word2vec models (Mikolov et al., 2013).

We then applied the aligner back to question answering, with the aim to justify the task

of monolingual alignment in an NLP application. We did a set of large-scale experiments

on the Jeopardy data in § 4.6 on page 180. First of all, with alignment features, the

QA performance was improved 25% relatively in terms of average precision (39.45% vs.

49.09% in Figure 4.4 on page 187). Also the 9% difference in alignment F1 between

discriminatively trained jacana-align and rule-based TED (88.6% vs. 79.8% in Table 4.7

on page 170) translated into 1% difference in average end QA precision on the Jeopardy

data (49.09% vs. 47.92% in Figure 4.4 on page 187), but the difference is statistically

significant (p = 0.006).

The implications brought by jacana-align are more than just a 1% difference though:

it is an aligner that automatically optimizes various features, has the potential to be

extended with more lexical resources and re-trained on more data, and has the ability to

recognize more paraphrases and entailment relations that otherwise rule-based systems

are very limited of. I hope that this line of work could affect how researchers outside

the QA community might tackle their problem differently than what they would have

otherwise without the aligner.

6.2. Take-home Messages

Question answering is a very complicated task. Here are a few messages I have been

trying to deliver in this dissertation, ranging from high-level to more specific:

248

6. Conclusion and Future Directions

• Machine learning works its magic. Log-linear models are in general good fit for a lot

of subtasks in question answering, such as answer ranking and answer extraction.

– Log-linear models support various feature regularization and have a nice

adjustable prediction threshold in [0, 1]. Learned feature weights usually can

be easily interpreted by its value.

– Throughout my work, I have used CRFs for answer extraction from text,

logistic regression for answer sentence ranking and answer extraction from

Freebase. I have tried other algorithms and models such as perceptron and

SVM but they did not work better.

– Answer ranking in Watson also used logistic regression, after trying with

other techniques such as SVMs, boosting, neural nets and decision trees.

• The Kiss principle works its magic. Always start with a small and simple system

that is very fast to be tested. In my early QA work (§ 3.3.4.1 on page 105) an

entire round of feature extraction, training on train and testing on dev took less

than one minute. One hour later I would have tried 30 different things to find

the “sweet spot” of the system on the data I was testing on.6 Tuning features is

somehow even more important than tuning the model.

• Acknowledge the imperfections of NLP pipeline and do not waste time to correct

them. Error propagation in pipelined systems is a nasty thing to deal with. We

can never make each component in the pipeline perfect. But we can use the fact

that NLP tools always make consistent errors. The feature-driven idea makes use

of this fact: imperfect feature annotations are encoded in learning and decoded

during test so the errors in these features would cancel out.

• The feature-driven framework can be the statistical backbone for QA systems.

It is a very simple idea but has been shown successful in three very important

components in the QA system: information retrieval, answer extraction from text,

and answer extraction from knowledge base.

6In retrospect, this is quite similar to the AdaptWatson methodology used by the Watson team.

249

6. Conclusion and Future Directions

• Current information retrieval techniques do not satisfy the need for question an-

swering. Structured retrieval as early as the document retrieval stage tackles this

problem.

• Semantic parsing is not necessarily the best solution for simple web queries on

Freebase. Feature-driven information extraction technique so far has worked well.

• The major answer source for question answering is still text, see footnote 5 on

page 238.

• Monolingual alignment for the English language has matured in both theory and

practice, with off-the-shelf open-source tools. It works the best in applications

that require precise alignment. I highly recommend jacana-align for this task.

• Human annotations on monolingual alignment tasks can be heavily influenced by

automatic pre-alignment. The current datasets also lack proper annotation of

phrase boundaries. In the future should more annotated alignment dataset be

created, it is suggested to make a focus on annotating more phrase alignment.

• Linguistic features drawn from alignment between QA pairs help boost QA end

performance significantly.

6.3. Future Directions

I have listed future directions at the end of each chapter: § 3.5 on page 132, § 4.8

on page 195 and § 5.8 on page 234. In terms of big ideas and important research

problems I think the following directions are worth exploring. Some of the goals are

quite ambitious (but not as ambitious as, for instance, “solve AI”). But I imagine seeing

them accomplished in one’s lifetime.

• Web-scale structured information retrieval over text. Current computing infras-

tructure already has the ability to parse the whole web and add various layers of

linguistic annotations on top of the raw text. It would be helpful for QA systems

to be able to search, for instance, a country class instead of specific instances of

250

6. Conclusion and Future Directions

country. I imagine queries such as “Toronto [country]” retrieve the names of all

countries that might have a place called Toronto. I also imagine density based

IR techniques can be improved from density closeness with word orders to density

closeness with syntactic paths, so that “long range” dependencies are not treated

as long-range any more in density estimation.

• Information retrieval over structured data. On the WebQuestions dataset sim-

pler information extraction methods performed as well as semantic parsing meth-

ods. Thus we called for more complicated questions to show the power of semantic

parsing. However, note that the best performing system achieved less than 50%

F1. Obviously introducing more complicated questions would not improve this

number. On the other hand, semantic parsing methods really nailed more compo-

sitional questions on other much smaller domains: the current state of the art in

domains like Geo880 and Jobs640 have more than 90% accuracy. Thus I suspect

that the problem of low accuracy in WebQuestions is due to very big search

space from Freebase: it contains more than 40 million topics and 2.5 billion facts.

In my experiment each Freebase topic contains 1000 nodes as potential answer can-

didates. While text-based QA can use the help from search engines, in KB-based

QA there has not been a satisfying solution for effectively and efficiently narrowing

down this search space.7 This calls for information retrieval over structured data

sources.

• Deeper understanding of text. So far we have put a lot of focus on question under-

standing: the structure of questions is analyzed; topic/focus words are extracted;

deeper semantics and logic forms are obtained. How about the other half of the

QA equation, the answer source? Our understanding of text snippets is not to the

level of what we have understood about the question.

• Going contextual and conversational. A QA system should have at least short

term memory: it should remember what questions were asked one or several turns

7The Freebase Search API only returns relevant topic nodes (similar to “document” retrieval)
but does not rank nodes within the topic (analogous to no “passage” retrieval).

251

6. Conclusion and Future Directions

ago and it should be able to track topic changes. This is a key factor in creating

conversational QA systems.

• Answering questions in ill-formed text. Automatically transcribed speech can be

difficult to parse and understand, so is typed input from a smaller keyboard only

a few inches in size. I imagine a QA system answer questions based on the n-best

output from a speech recognition lattice, or several possible typing corrections

based on the n-best proposals of a language correction model.

• Recognize how questions can be asked differently. Humans contribute answers

(community-based QA) to a lot of questions on the web (such as WikiAnswers,

Yahoo Answers, Quora.com). For questions already coupled with an answer, we

need to recognize (maybe through monolingual alignment) how a new question is

essentially asking the same thing.

• Finally: replace search. Search engines are not the best solution for human-

computer interaction. They are even worse solutions for interaction on mobile

devices. QA should replace search in the future. It is as simple and as hard as

that.

252

7. Curriculum Vita

Xuchen Yao was born in Feixian County of Linyi City, Shandong Province of China on

April 7th, 1984. He attended Nanjing University and graduated with Bachelor of Science

in Acoustics in 2006. He studied and worked on Speech Recognition for a year at Institute

of Acoustics, Chinese Academy of Sciences and then Speech Synthesis at Nokia Research

Center Beijing for another year. From 2008 to 2010, he joined the European Masters

Program in Language and Communication Technologies and graduated with Master

of Arts in Linguistics from University of Groningen, the Netherlands (advisor: Gosse

Bouma), and with Master of Science in Language Science and Technology from Saarland

University, Germany (advisors: Hans Uszkoreit and Yi Zhang). His Master thesis was

on Question Generation with Minimal Recursion Semantics. In 2010 he started pursuing

a Computer Science PhD degree at the Johns Hopkins University under the supervision

of Benjamin Van Durme and Chris Callison-Burch.

Xuchen Yao was a visiting student/intern at the following academic institutions:

• Institute for Creative Technologies, University of Southern California, with Anton

Leuski, Kenji Sagae, Kallirroi Georgila and David Traum

• City University of Hong Kong, with Chunyu KIT

• Information Science Institute , University of Southern California, with David Chi-

ang

He also interned at EnReach, Motorola, Nokia, Vulcan (now the Allen Institute for

Artificial Intelligence, with Peter Clark) and Google Research (with Dekang Lin).

253

A. Examples of GIZA++ vs.

jacana-align on 3 Alignment

Datasets

This appendix chapter shows some concrete examples of the following three aligners

described in Chapter 4:

1. GIZA++

2. the token version of jacana-align

3. the phrase version of jacana-align

on the following three datasets of different characteristics:

length %1x1 align GIZA++

pre-aligned

GIZA++

F1

jacana-align

F1

MSR06 29/11 96% No 78.3 88.3/87.3

Edinburgh++ 22/22 95% Yes 85.5 86.7/85.9

MTReference 22/17 88% Yes 77.4 77.1/77.4

• MSR06: not pre-aligned by GIZA++, with a majority of 1x1 alignment.

• Edinburgh++: pre-aligned by GIZA++, with a majority of 1x1 alignment.

254

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

• MTReference: pre-aligned by GIZA++, with more one-to-many and many-to-

many alignment.

The purpose of this comparison is to show by examples the alignment difference between a

bilingual aligner (GIZA++) and a monolingual aligner (jacana-align). Among the family

of open-source monolingual aligners, there is a close competitor: Meteor. We show the

alignment difference between Meteor and jacana-align in the next appendix chapter.

In the following we select two to three examples from each dataset and show two

pictures per example:

1. The first picture compares alignment between the gold standard and GIZA++,

with color codes:

• black marks alignment from both aligners;

• red marks alignment from only the gold standard;

• green marks alignment from only GIZA++.

2. The second picture compares alignment between the token and phrase version of

jacana-align, with color codes:

• black marks alignment from both aligners;

• red marks alignment from only the token aligner;

• green marks alignment from only the phrase version.

A.1. MSR06

Example 1 Alignment between the following two sentences:

• The Dragons have terminated Thompson ’s contract .

• Thompson ’s contract with the Dragons has been terminated after he reached an

agreement with the club last night .

Gold standard vs. GIZA++ (black: both; red: gold standard only; green: GIZA++

only):

255

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

In the above example GIZA++ misaligned the stop word the.

jacana-token vs. jacana-phrase (black: both; red: jacana-token only; green: jacana-
phrase only):

In the above example jacana-phrase misaligned the phrase have terminated↔has been

terminated. On the other hand jacana-token did a fairly good job.

Example 2 Alignment between the following two sentences:

• Dave McCool is the inventor of “ The Calm & the Storm “ .

• “ The Calm & the Storm “ is the brainchild of Dave McCool , who got rich when

Northern Telecom bought his communications start-up Aptis Communications .

Gold standard vs. GIZA++ (black: both; red: gold standard only; green: GIZA++

only):

256

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

In the above example for the red and green colored alignment, human annotators

only aligned inventor↔brainchild, which is strictly not paraphrase of each other but still

somehow related to the context. GIZA++ aligned the surrounding contextual stop words

but unfortunately did not align inventor↔brainchild.

jacana-token vs. jacana-phrase (black: both; red: jacana-token only; green: jacana-
phrase only):

In the above example jacana-token aligned the whole token sequence: is the inventor

of↔is the brainchild of. The words inventor and brainchild did not appear in its para-

phrase table. However, the contextual and Markovian features gave jacana-token enough

confidence to align them anyways since all their surrounding words were aligned. jacana-

phrase further aligned the phrase block the inventor↔the brainchild.

257

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

Example 3 Alignment between the following two sentences:

• Sony BMG has released a list of protected CDs .

• So far Sony BMG has not released a list of how many CDs are protected or how many

have been sold .

Gold standard vs. GIZA++ (black: both; red: gold standard only; green: GIZA++

only):

It was not clear to me why GIZA++ did not align Sony↔Sony and has↔has. It could

likely be that the GIZA++ result shown here was after applying the intersection

heuristics in both directions and these words were not aligned in both directions.

jacana-token vs. jacana-phrase (black: both; red: jacana-token only; green: jacana-
phrase only):

jacana-phrase here made a bad alignment: has released↔has not released. The reason
was that both of them were verb phrases recognized by the chunker and they were long
enough to have a high string similarity score.

258

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

A.2. Edinburgh++

Example 1 Alignment between the following two sentences:

• Medicaid , which receives federal and state funding , is the government health-insurance

program for the poor .

• Medicaid is the federal and state government health insurance program for the poor .

Gold standard vs. GIZA++ (black: both; red: gold standard only; green: GIZA++

only):

jacana-token vs. jacana-phrase (black: both; red: jacana-token only; green: jacana-
phrase only):

259

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

jacana-phrase made a perfect alignment in this example. It successfully recognized the

hyphened compound alignment health-insurance↔health insurance.

Example 2 Alignment between the following two sentences:

• the health department spokesperson added the department is following Centers for

Disease Control protocol .

• Knox County Health Department is following National Centers for Disease Control and

Prevention protocol to contain infection .

Gold standard vs. GIZA++ (black: both; red: gold standard only; green: GIZA++

only):

260

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

GIZA++ placed a wrong alignment in department↔Department. It might have been

confused by the distortion feature since both tokens of department have their neighbors

aligned.

jacana-token vs. jacana-phrase (black: both; red: jacana-token only; green: jacana-
phrase only):

jacana-token made two alignments between department↔Department. This is allowed
since the model supports one-to-many alignment. The alignment made by jacana-phrase
was reasonable.

Example 3 Alignment between the following two sentences:

• years later , Cuba refused permission for her to attend her father ’s funeral .

261

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

• even her request , decades later , to attend her father ’s funeral on the island was

denied .

Gold standard vs. GIZA++ (black: both; red: gold standard only; green: GIZA++

only):

jacana-token vs. jacana-phrase (black: both; red: jacana-token only; green: jacana-phrase
only):

jacana-token made two alignments between her↔her, since it is inherently a one-to-
many aligner. All three aligners did not recognize Cuba↔the island, which was a difficult
case.

262

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

A.3. MTReference

Example 1 Alignment between the following two sentences:

• a citizen named daciat wore a moslem hat and sarong .

• a local resident called daxiyat wore a muslim hat and dressed in muslim sarong .

Gold standard vs. GIZA++ (black: both; red: gold standard only; green: GIZA++

only):

This example showed how human annotators were influenced by the prealignment from

GIZA++. Originally GIZA++ aligned sarong↔dressed in muslim sarong but left out the

stop word in. Human annotators had two choices: either only align sarong↔sarong, or

align the whole sequence sarong↔dressed in muslim sarong. They chose the latter option.

jacana-token vs. jacana-phrase (black: both; red: jacana-token only; green: jacana-
phrase only):

263

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

Both jacana-token vs. jacana-phrase did not recognize sarong↔dressed in muslim sarong

but only aligned sarong↔sarong. jacana-phrase additionally aligned the 1x2 phrase: citi-

zen↔local resident. But why did it not align the whole phrase a citizen↔a local resident?

I think it could be that both of the determiners a appeared at the very beginning of the

sentences. There was a strong feature that encourages 1x1 alignment at the beginning

of the sentence.

Example 2 Alignment between the following two sentences:

• indonesia has population of almost 210 million , 87 % of whom are muslim .

• it is noted that the population of indonesia is close to 210 million , 87 per cent of

whom are muslims .

Gold standard vs. GIZA++ (black: both; red: gold standard only; green: GIZA++

only):

Turkers corrected quite some errors made by GIZA++: has↔is, 210↔noted, 210↔close,

and also improved from almost 210↔210 to almost 210↔close to 210. Some either “better

disguised” errors were not recovered, such as that 87 %↔87 per cent was annotated as

87↔87 per and %↔cent.

jacana-token vs. jacana-phrase (black: both; red: jacana-token only; green: jacana-
phrase only):

264

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

jacana-phrase successfully recognized almost↔close to and corrected the alignment be-

tween %↔per cent, even though it would be judged wrong according to the erroneous

gold standard.

Example 3 Alignment between the following two sentences:

• following is the report by voa correspondent ning xin :

• please listen to the report prepared by voice of america correspondent ning xin .

Gold standard vs. GIZA++ (black: both; red: gold standard only; green: GIZA++

only):

It was not clear why Turkers would align following↔please and is↔listen to. But they

did improve the alignment between voa↔voice of america.

265

A. Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets

jacana-token vs. jacana-phrase (black: both; red: jacana-token only; green: jacana-
phrase only):

jacana-token only aligned voa↔voice because they looked similar in the first two char-

acters. jacana-phrase on the other hand successfully recognized this acronym.

A.4. Summary

This appendix chapter shows some concrete examples of GIZA++ and jacana-align (to-
ken/phrase version) on three datasets. I have shown that:

• how human annotators were influenced by the pre-alignment of GIZA++;

• GIZA++ sometimes made alignment that cannot be clearly explained why, but

probably due to the way it computed lexical co-occurrence matrices and distortion

probabilities;

• the token version of jacana-align was precise most of the time;

• the phrase version of jacana-align made reasonable phrasal alignment sometimes,

due to that the datasets were still mostly filled with token alignment and thus the

phrase aligner was conservative in making phrase alignment.

266

B. Examples of jacana-align vs.

Meteor on Jeopardy!

In Figure 4.4 on page 187 I presented the performance of jacana-qa with alignment

features drawn from different aligners and the significance test. For ease of reading, the

figure is redrawn here:

The significance test is:

267

B. Examples of jacana-align vs. Meteor on Jeopardy!

null hypothesis p

jacana-align vs. Meteor 0.039

jacana-align vs. TED 0.006

jacana-align vs. baseline 0.000

Meteor vs. TED 0.230

GIZA++ vs. baseline 0.000

Note that the difference between jacana-align and Meteor is very close, and the p-value

(0.039) is barely significant. Thus it is interesting to compare jacana-align and Meteor

in detail.

One cue of statistical significance is that the curve of jacana-align always lies above

the curve of Meteor: even though the difference is close, but it is constant. The above

curve zoomed into the top 20% answered questions is:

The curve of jacana-align still constantly lies above or overlaps with the curve of

Meteor. However, this is a “cumulative” precision-recall curve: for instance, precision

calculated at 20% recall also includes correctly answered questions at 10% recall. Thus

268

B. Examples of jacana-align vs. Meteor on Jeopardy!

it depicts the precision values up to a recall value. The following is a picture of precision

values at each recall value, where each point stands for precision values for 1% of all test

questions (18, 725 in all):

Again, zoomed-in to the top 20% of questions:

The curve is bumpy because precision at each percent of questions is not smoothed.

269

B. Examples of jacana-align vs. Meteor on Jeopardy!

For smoothing, I fit the curve with a 2-degree polynomial function and zoomed in to the

top 20% again:

The fitted curve of jacana-align still constantly lies above with the fitted curve of

Meteor. Next I give some concrete examples.

B.1. jacana-align Helped Answering

Given the following clue and answer:

• Clue: Many of Geoffrey Chaucer ’s works were first printed around 1477 by this man

, England ’s first printer .

• Answer: William Caxton

jacana-qa paired with jacana-align was able to propose the correct answer, but not with

Meteor. In the following I show some alignment matrices with overlapping output from

jacana-align and Meteor. The color codes are:

• black marks alignment from both aligners;

• red marks alignment from only jacana-align;

270

B. Examples of jacana-align vs. Meteor on Jeopardy!

• green marks alignment from only Meteor.

The following is an alignment pair between the clue and a candidate sentence:

Both aligners successfully aligned the “important” content words in the pair, such as

England, first printer. More importantly, the preposition by in the clue (by this man)

was also aligned to the preposition by in the sentence (by William Caxton). This is an

important cue for extracting the correct answer William Caxton.

In the above matrix, Meteor also aligned two extra light words: of and a comma ,.

The following examples confirmed Meteor’s tendency to over-align light words:

271

B. Examples of jacana-align vs. Meteor on Jeopardy!

Again, Meteor aligned of and a comma. jacana-align additionally recognized Eng-

land↔English. The following two pictures show an extreme case of over-alignment from

Meteor:

272

B. Examples of jacana-align vs. Meteor on Jeopardy!

In these two examples, the search sentences are barely relevant to the clue. By aligning

some of the common light words, Meteor gave jacana-qa a false signal that those sentences

are relevant to a degree. jacana-align, on the other hand, simply chose not to align

anything, due to its global decoding inference.

Meteor optimizes alignment by trying to minimize cross-alignment between words.

Sometimes it can be problematic. For instance, given the following clue:

• Clue: 32 inmates & 11 guards were killed in ’71 uprising at this NY prison .

• Answer: Attica

in the following picture, Meteor failed to align the crucial keyword prison, due to that

prison in the clue is in the end position while prison in the sentence is in the front position,

and aligning them would introduce cross-alignment.

273

B. Examples of jacana-align vs. Meteor on Jeopardy!

Again, in the following irrelevant sentences, Meteor still made unnecessary alignments:

274

B. Examples of jacana-align vs. Meteor on Jeopardy!

B.2. Meteor Helped Answering

In the previous section I showed the high-precision nature of jacana-align, which helped

answer extraction, a task that requires the same level of high precision. However, the

recall might suffer for precision gain. Here I show one example:

• Clue: In 1995 Sam ’s Zeus Carver had a rough day with Bruce Willis in this sequel .

• Answer: Die Hard 3

jacana-qa with Meteor answered this question correctly. But when paired with jacana-

align, it proposed the following answers with low confidence scores:

terminator (t-800 series model) 0.44

simon 0.40

die hard 2 0.38

mora 0.37

lethal weapon 3 0.34

die hard 3 0.24

the die hard series 0.20

First of all, both jacana-align and Meteor reasonably aligned the answer-bearing sen-

tence with the clue:

275

B. Examples of jacana-align vs. Meteor on Jeopardy!

However, this seems to not have made jacana-qa give enough confidence to Die Hard

3. jacana-qa with jacana-align ranked terminator (t-800 series model) as the best from

the following sentence:

276

B. Examples of jacana-align vs. Meteor on Jeopardy!

Interestingly, jacana-align even did not align anything in the pair. My guess is that

when not enough alignment-based features were triggered, other types of features in-

stead took more important roles in deciding the best answer during the loglinear model

decoding.

Finally, the following picture exemplifies a few distinctions between jacana-align and

Meteor:

There are a few interesting alignments in the figure:

• There are two in’s in both sentences, Meteor tried to align both of them without

introducing cross-alignment. But both alignments were wrong. jacana-align suc-

cessfully aligned the words pairs in 1995↔In 1995 due to its contextual feature and

CRF-based global decoding nature.

• Beyond Zeus Carver↔Zeus Carver, jacana-align additionally aligned the possessive

nouns: Jacksons ’ Zeus Carver↔Sam ’s Zeus Carver. This is a good alignment be-

cause Jacksons and Sam are the same person: Samuel Jackson played as McClane’s

reluctant partner Zeus Carver in Die Hard 3. This can be treated as a form of

“shallow inference” jacana-align learned from its training data.

277

B. Examples of jacana-align vs. Meteor on Jeopardy!

B.3. Summary

Analysis shows that jacana-align is a highly precise aligner for the task of answer extrac-

tion. Usually for a pair of English sentences, there are some light word overlap between

the two, regardless of whether the pair is semantically relevant or not. A few examples

shown previously have made it clear that in this situation jacana-align is able to decide

whether to align these light words. Or in the case of multiple choices of light word align-

ment, jacana-align is able to figure out the best alignment based on context. Meteor,

on the other hand, has failed to perform well in these examples. However, despite the

high-precision nature of jacana-align, it sometimes can be over conservative in terms of

making new alignment, a typical precision-recall tradeoff.

278

C. Examples of jacana-freebase

vs. SEMPRE on

WebQuestions

This section is a continuation of § 5.7 on page 224: “Comparison: Information Extraction

vs. Semantic Parsing”. I sample a few examples of the actual output form both jacana-

freebase and Sempre. Note that on the WebQuestions dataset, there is not a mutually

agreed dev set but only a test set. Thus I only show a few examples without disclosing

too much of the test set.

Also note that the WebQuestions dataset was crawled from Google Suggest. All

questions are lowercased and are not necessarily well-formed English questions.

C.1. Both Correct

'

&

$

%

Question: where is jamarcus russell from?

Answer: Mobile

Entry from Freebase:

279

C. Examples of jacana-freebase vs. SEMPRE on WebQuestions

'

&

$

%

Question: who did annie oakley married?

Answer: Frank E. Butler

Entry from Freebase:

C.2. Only jacana-freebase Was Correct

'

&

$

%

Question: what does jamaican people speak?

Answer: [Jamaican Creole English Language, Jamaican English]

Entry from Freebase:

Sempre’s answer:

[Chinese Jamaicans, Jamaicans of African ancestry, Jamaican American, Indo-Caribbean,

British Jamaican, Jamaican Australian, Jamaican Canadian, Lebanese immigration to Ja-

maica, Igbo people in Jamaica, Chinese Caribbean]

280

C. Examples of jacana-freebase vs. SEMPRE on WebQuestions

'

&

$

%

Question: where did richard nixon die?

Answer: New York City

Entry from Freebase:

Sempre’s answer:

[Stroke, Cerebral edema]

C.3. Only SEMPRE Was Correct

'

&

$

%

Question: who was vice president after kennedy died?

Answer: Lyndon B. Johnson

Entry from Freebase:

jacana-freebase proposed three answers (with unnormalized confidence): Dick Cheney

(0.90), Aaron Burr (0.83), Al Gore (0.54). The reason is that it extracted answers from

the Freebase vice_president page, instead of the page of John_F_Kennedy. This was an

error partially due to the ranking of Freebase Search API.

281

C. Examples of jacana-freebase vs. SEMPRE on WebQuestions

'

&

$

%

Question: what is the australian dollar called?

Answer: Australian dollar

Entry from Freebase:

jacana-freebase classified both Australian dollar and Australian pound as the answer. Sem-

pre did not make this mistake because that it only fired one (correct) query to Freebase

and thus the only entry Australian dollar was retrieved.

282

C. Examples of jacana-freebase vs. SEMPRE on WebQuestions

C.4. Both Wrong

'

&

$

%

Question: where did andy murray started playing tennis?

Answer: United Kingdom

Entry from Freebase:

There are two “Andy Murray” ’s on Freebase:

1. Andrew Barron "Andy" Murray, a Scottish tennis player, with Freebase page

/en/andrew_murray;

2. Andy Murray, a US ice hockey coach, with Freebase page /en/andy_murray.

The Freebase Search API returned with the wrong /en/andy_murray, thus jacana-freebase

extracted:

This error is due to that the word tennis in the question was not part of the query. Thus

the Freebase Search API could not disambiguate the two “Andy Murray” ’s.

Sempre’s answer:

[London, Dunblane]

283

C. Examples of jacana-freebase vs. SEMPRE on WebQuestions

'

&

$

%

Question: what was lebron james first team?

Answer: Cleveland Cavaliers

Entry from Freebase:

jacana-freebase used all teams as the answers.

Sempre’s answer:

[Miami Heat]

C.5. Errors Due to MTurk Annotation Error

'

&

$

%

Question: who plays ken barlow in coronation street?

MTurk wrongly annotated the writer of Coronation Street:

jacana-freebase proposed the correct answer William Roache:

Sempre’s answer:

[Power forward, Small forward]

284

C. Examples of jacana-freebase vs. SEMPRE on WebQuestions

'

&

$

%

Question: what happened after mr. sugihara died?

MTurk wrongly annotated place of birth:

jacana-freebase proposed another wrong answer:

The correct answer should be: a monument was dedicated to him in Japan (internet

search). But this answer does not exist in Freebase.

Sempre’s answer:

[Fujisawa]

C.6. Summary

Berant et al. (2013) described that all questions in the WebQuestions dataset were

marked with identical answers by two Turkers. Even though, when performing error

analysis on the dataset, it was surprising to see how frequent that Turkers gave wrong

answers. Thus I did a random check on about 50 questions in the training set, and found

that the annotation error rate was between 20% and 25%, depending on how strictly

the answers had to be correct. A few of the questions with wrongly annotated answers

include:

285

C. Examples of jacana-freebase vs. SEMPRE on WebQuestions

what state does selena gomez? New York City

how old is sacha baron cohen? a URL

what two countries invaded poland in the beginning of ww2? Germany

which countries border the us? Canada

where is rome italy located on a map? Rome

how much did adriana lima gain during pregnancy? Spike Guys’ Choice Awards

what does thai mean? Language

which wife did king henry behead? Anne of the Thousand Days

what are the major cities in france? Paris

what season did tony soprano get shot? The Sopranos

Also, about 15% ∼ 20% errors came from more “complicated” questions: questions

that have constraints based on time, location, comparison, etc. For instance:

1. what did james k polk do before he was president?

2. what is the oregon ducks 2012 football schedule?

3. what country did germany invade first in ww1?

4. who is governor of ohio 2011?

5. when did charles goodyear invented rubber?

6. who did france surrender to in ww2?

7. who did george w. bush run against for the second term?

8. who was the leader of soviet union during wwii?

Another 5% ∼ 10% of errors came from answer type matching failure:

1. what things did martin luther king do?

2. what town was martin luther king assassinated in?

3. what electorate does anna bligh represent?

286

C. Examples of jacana-freebase vs. SEMPRE on WebQuestions

4. what channel is the usa pageant on?

5. what are some of the traditions of islam?

6. what is the state flower of arizona?

7. what did the islamic people believe in?

8. what did the scientist chadwick discovered?

Other error types include Freebase search error (10%), ill-formed web text (2% ∼ 3%),

etc. Overall, in order for jacana-freebase to perform better, improvement is desired in

the following directions:

1. better question analysis against the constrains in questions;

2. tighter answer typing for what X questions;

3. better text indexing and retrieval ranking.

287

Bibliography

Steven Abney, Michael Collins, and Amit Singhal. Answer extraction. In Proceedings of

the sixth conference on Applied natural language processing, pages 296–301, 2000.

Arvind Agarwal, Hema Raghavan, Karthik Subbian, Prem Melville, Richard D.

Lawrence, David C. Gondek, and James Fan. Learning to rank for robust question

answering. In Proceedings of the 21st ACM international conference on Information

and knowledge management, CIKM ’12, pages 833–842, New York, NY, USA, 2012.

ACM.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. Semeval-2012 task 6:

A pilot on semantic textual similarity. In *SEM 2012: The First Joint Conference on

Lexical and Computational Semantics – Volume 1: Proceedings of the main conference

and the shared task, and Volume 2: Proceedings of the Sixth International Workshop

on Semantic Evaluation (SemEval 2012), pages 385–393, Montréal, Canada, 7-8 June

2012.

Ali Mohamed Nabil Allam and Mohamed Hassan Haggag. The question answering sys-

tems: A survey. International Journal of Research and Reviews in Information Sci-

ences (IJRRIS), 2(3), 2012.

A. Andrenucci and E. Sneiders. Automated question answering: Review of the main

approaches. In Third International Conference on Information Technology and Appli-

cations, 2005., volume 1, pages 514–519. IEEE, 2005.

Jesús Andrés-Ferrer and Alfons Juan. A phrase-based hidden semi-Markov approach to

288

Bibliography

machine translation. In Procedings of European Association for Machine Translation

(EAMT), Barcelona, Spain, May 2009.

Nicholas Andrews, Jason Eisner, and Mark Dredze. Name phylogeny: a generative model

of string variation. In Proceedings of EMNLP 2012, 2012.

Ioannis Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural Language

Interfaces to Databases - An Introduction. Natural Language Engineering, 1995.

Ron Artstein and Massimo Poesio. Inter-Coder Agreement for Computational Linguis-

tics. Computational Linguistics, 34(4):555–596, 2008.

S.J. Athenikos and H. Han. Biomedical Question Answering: A Survey. Computer

methods and programs in biomedicine, 99(1):1–24, 2010.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and

Zachary Ives. DBPedia: A nucleus for a web of open data. In The semantic web,

pages 722–735. Springer, 2007.

Nikolaus Augsten, Denilson Barbosa, Michael Böhlen, and Themis Palpanas. TASM:

Top-k Approximate Subtree Matching. In Proceedings of the International Conference

on Data Engineering (ICDE-10), pages 353–364, Long Beach, California, USA, March

2010. IEEE Computer Society.

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval, volume

463. ACM press New York, 1999.

Colin Bannard and Chris Callison-Burch. Paraphrasing with bilingual parallel corpora.

In ACL ’05: Proceedings of the 43rd Annual Meeting on Association for Computational

Linguistics, pages 597–604, Morristown, NJ, USA, 2005.

Mohit Bansal, Chris Quirk, and Robert Moore. Gappy phrasal alignment by agreement.

In Proceedings of ACL, Portland, Oregon, June 2011.

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Proceedings

of ACL, 2014.

289

Bibliography

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic Parsing on

Freebase from Question-Answer Pairs. In Proceedings of EMNLP, 2013.

A. Berger and J. Lafferty. Information retrieval as statistical translation. In Proceedings

of the 22nd annual international ACM SIGIR conference on Research and development

in information retrieval, pages 222–229. ACM, 1999.

D.M. Bikel, R. Schwartz, and R.M. Weischedel. An algorithm that learns what’s in a

name. Machine learning, 34(1):211–231, 1999.

P. Bille. A survey on tree edit distance and related problems. Theoretical computer

science, 337(1):217–239, 2005.

Matthew W. Bilotti, Jonathan L. Elsas, Jaime Carbonell, and Eric Nyberg. Rank Learn-

ing for Factoid Question Answering with Linguistic and Semantic Constraints. In

Proceedings of the 19th ACM International Conference on Information and Knowl-

edge Management (CIKM 2010), 2010a.

M.W. Bilotti. Linguistic and semantic passage retrieval strategies for question answering.

PhD thesis, Carnegie Mellon University, 2009.

M.W. Bilotti and E. Nyberg. Improving text retrieval precision and answer accuracy

in question answering systems. In Coling 2008: Proceedings of the 2nd workshop on

Information Retrieval for Question Answering, pages 1–8, 2008.

M.W. Bilotti, P. Ogilvie, J. Callan, and E. Nyberg. Structured retrieval for question

answering. In Proceedings of the 30th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 351–358. ACM, 2007.

M.W. Bilotti, J. Elsas, J. Carbonell, and E. Nyberg. Rank learning for factoid question

answering with linguistic and semantic constraints. In Proceedings of the 19th ACM

international conference on Information and knowledge management, pages 459–468.

ACM, 2010b.

290

Bibliography

Steven Bird and Edward Loper. NLTK: The Natural Language Toolkit. In Proceed-

ings of the ACL Workshop on Effective Tools and Methodologies for Teaching Natural

Language Processing and Computational Linguistics, 2004.

P. Blunsom, K. Kocik, and J.R. Curran. Question classification with log-linear models.

In Proceedings of the 29th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 615–616. ACM, 2006.

Phil Blunsom and Trevor Cohn. Discriminative word alignment with conditional random

fields. In Proceedings of ACL2006, pages 65–72, 2006.

Robert J Bobrow, Philip Resnik, and Ralph M Weischedel. Multiple underlying systems:

Translating user requests into programs to produce answers. In Proceedings of ACL,

pages 227–234. Association for Computational Linguistics, 1990.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-

base: a collaboratively created graph database for structuring human knowledge. In

Proceedings of the 2008 ACM SIGMOD international conference on Management of

data, pages 1247–1250. ACM, 2008.

Gosse Bouma, Jori Mur, and Gertjan van Noord. Question Answering for Dutch using

Dependency Relations. In Proceedings CLEF 2005, 2005.

Eric Brill, Jimmy J Lin, Michele Banko, Susan T Dumais, and Andrew Y Ng. Data-

intensive question answering. In TREC, 2001.

Chris Brockett. Aligning the RTE 2006 corpus. Technical report, Microsoft Research,

2007.

Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer.

The mathematics of statistical machine translation: Parameter estimation. Computa-

tional linguistics, 19(2):263–311, 1993.

Bertram Bruce. A model for temporal references and its application in a question an-

swering program. Artificial intelligence, 3:1–25, 1972.

291

Bibliography

Chris Buckley. Implementation of the SMART information retrieval system. Technical

report, Cornell University, 1985.

Razvan Bunescu and Yunfeng Huang. Towards a general model of answer typing: Ques-

tion focus identification. In Proceedings of The 11th International Conference on Intel-

ligent Text Processing and Computational Linguistics (CICLing 2010), RCS Volume,

pages 231–242, 2010.

Robin D Burke, Kristian J Hammond, Vladimir Kulyukin, Steven L Lytinen, Noriko

Tomuro, and Scott Schoenberg. Question answering from frequently asked question

files: Experiences with the faq finder system. AI magazine, 18(2):57, 1997.

Davide Buscaldi and Paolo Rosso. Mining knowledge from wikipedia for the question

answering task. In Proceedings of the International Conference on Language Resources

and Evaluation, pages 727–730, 2006.

Qingqing Cai and Alexander Yates. Large-scale semantic parsing via schema matching

and lexicon extension. In Proceedings of ACL, 2013a.

Qingqing Cai and Alexander Yates. Semantic parsing freebase: Towards open-domain

semantic parsing. Atlanta, Georgia, USA, 30:328, 2013b.

James Callan, W. Bruce Croft, and Stephen M. Harding. The INQUERY Retrieval

System. In In Proceedings of the Third International Conference on Database and

Expert Systems Applications, pages 78–83. Springer-Verlag, 1992.

Nathanael Chambers, Daniel Cer, Trond Grenager, David Hall, Chloe Kiddon, Bill Mac-

Cartney, Marie-Catherine de Marneffe, Daniel Ramage, Eric Yeh, and Christopher D

Manning. Learning alignments and leveraging natural logic. In Proceedings of the

ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pages 165–170,

2007.

David L Chen and Raymond J Mooney. Learning to Interpret Natural Language Navi-

gation Instructions from Observations. In AAAI, volume 2, pages 1–2, 2011.

292

Bibliography

J. Chu-Carroll, J. Fan, B. K. Boguraev, D. Carmel, D. Sheinwald, and C. Welty. Finding

needles in the haystack: Search and candidate generation. IBM Journal of Research

and Development, 2012.

Jennifer Chu-Carroll, John Prager, Christopher Welty, Krzysztof Czuba, and David

Ferrucci. A multi-strategy and multi-source approach to question answering. In In

Proceedings of TREC, 2003.

Kenneth Ward Church. On memory limitations in natural language processing. Master’s

thesis, Massachusetts Institute of Technology, 1980.

Peter Clark, Vinay Chaudhri, Sunil Mishra, Jérôme Thoméré, Ken Barker, and Bruce

Porter. Enabling domain experts to convey questions to a machine: a modified,

template-based approach. In Proceedings of the 2nd international conference on

Knowledge capture, K-CAP ’03, pages 13–19, New York, NY, USA, 2003. ACM.

Charles LA Clarke, Gordon V Cormack, and Thomas R Lynam. Exploiting redundancy

in question answering. In Proceedings of SIGIR, pages 358–365. ACM, 2001a.

Charles LA Clarke, Gordon V Cormack, Thomas R Lynam, CM Li, and GL McLearn.

Web reinforced question answering (multitest experiments for trec 2001). In TREC,

2001b.

C.L.A. Clarke and E.L. Terra. Passage retrieval vs. document retrieval for factoid ques-

tion answering. In Proceedings of the 26th annual international ACM SIGIR conference

on Research and development in informaion retrieval, pages 427–428. ACM, 2003.

C.L.A. Clarke, G.V. Cormack, and E.A. Tudhope. Relevance ranking for one to three

term queries. Information processing & management, 36(2):291–311, 2000.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving semantic

parsing from the world’s response. In Proceedings of CoNLL, 2010.

Trevor Cohn, Chris Callison-Burch, and Mirella Lapata. Constructing corpora for the

development and evaluation of paraphrase systems. Computational Linguistics, 34(4):

597–614, December 2008.

293

Bibliography

W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: Information

retrieval in practice. Addison-Wesley Reading, 2010.

Silviu Cucerzan and Eugene Agichtein. Factoid question answering over unstructured

and structured web content. In TREC, 2005.

Hang Cui, Keya Li, Renxu Sun, Tat-Seng Chua, and Min-Yen Kan. National University

of Singapore at the TREC 13 Question Answering Main Task. In TREC 2004 QA

Track, 2004.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question answer-

ing passage retrieval using dependency relations. In Proceedings of the 28th annual

international ACM SIGIR conference on Research and development in information

retrieval, SIGIR ’05, pages 400–407, New York, NY, USA, 2005. ACM.

Deborah A Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-Smith,

David Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth Shriberg. Expanding

the scope of the ATIS task: The ATIS-3 corpus. In Proceedings of the workshop on

Human Language Technology, pages 43–48, 1994.

Marie-Catherine De Marneffe and Christopher D Manning. The stanford typed de-

pendencies representation. In Coling 2008: Proceedings of the workshop on Cross-

Framework and Cross-Domain Parser Evaluation, pages 1–8, 2008.

John DeNero and Dan Klein. Tailoring word alignments to syntactic machine translation.

In Proceedings of ACL2007, 2007.

Y. Deng and W. Byrne. Hmm word and phrase alignment for statistical machine transla-

tion. Audio, Speech, and Language Processing, IEEE Transactions on, 16(3):494–507,

2008.

Michael Denkowski and Alon Lavie. Meteor 1.3: Automatic Metric for Reliable Op-

timization and Evaluation of Machine Translation Systems. In Proceedings of the

EMNLP 2011 Workshop on Statistical Machine Translation, 2011.

294

Bibliography

Shilin Ding, Gao Cong, Chin yew Lin, and Xiaoyan Zhu. Using conditional random fields

to extract contexts and answers of questions from online forums. In In Proceedings of

ACL-08: HLT, 2008.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large para-

phrase corpora: exploiting massively parallel news sources. In Proceedings of COLING,

Stroudsburg, PA, USA, 2004.

Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin, and Andrew Ng. Web question

answering: Is more always better? In Proceedings of the 25th annual international

ACM SIGIR conference on Research and development in information retrieval, pages

291–298. ACM, 2002.

Abdessamad Echihabi and Daniel Marcu. A noisy-channel approach to question answer-

ing. In Proceedings of ACL, pages 16–23, 2003.

Katrin Erk and Sebastian Pado. Shalmaneser–a toolchain for shallow semantic parsing.

In Proceedings of LREC, volume 6. Citeseer, 2006.

Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer, 2007.

Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open

information extraction. In Proceedings of EMNLP, 2011.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Paraphrase-Driven Learning for

Open Question Answering. In Proceedings of ACL, 2013.

J. Fan, A. Kalyanpur, D. C. Gondek, and D. A. Ferrucci. Automatic knowledge extrac-

tion from documents. IBM Journal of Research and Development, 2012.

Christiane Fellbaum. WordNet: An Electronic Lexical Database. 1998.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A.A. Kalyanpur, A. Lally,

J.W. Murdock, E. Nyberg, J. Prager, et al. Building Watson: An overview of the

DeepQA project. AI Magazine, 31(3):59–79, 2010.

295

Bibliography

D. A. Ferrucci. Introduction to this is watson. IBM Journal of Research and Develop-

ment, 2012.

Charles J Fillmore, Christopher R Johnson, and Miriam RL Petruck. Background to

FrameNet. International journal of lexicography, 16(3):235–250, 2003.

Michael Fleischman, Eduard Hovy, and Abdessamad Echihabi. Offline strategies for

online question answering: Answering questions before they are asked. In Proceedings

of ACL, pages 1–7, 2003.

Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans Uszkoreit, Berthold Crysmann,

Brigitte Jörg, and Ulrich Schäfer. Question answering from structured knowledge

sources. Journal of Applied Logic, 5(1):20–48, 2007.

Evgeniy Gabrilovich, Michael Ringgaard, , and Amarnag Subramanya. FACC1: Freebase

annotation of ClueWeb corpora, Version 1 (Release date 2013-06-26, Format version

1, Correction level 0). http://lemurproject.org/clueweb09/FACC1/, June 2013.

Robert Gaizauskas, Mark Hepple, and Mark Greenwood. Information retrieval for ques-

tion answering a SIGIR 2004 workshop. In ACM SIGIR Forum, volume 38, pages

41–44. ACM, 2004.

M. Galley. A skip-chain conditional random field for ranking meeting utterances by

importance. In Proceedings of EMNLP 2006, pages 364–372. Association for Compu-

tational Linguistics, 2006.

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. PPDB: The Para-

phrase Database. In Proceedings of NAACL-HLT, 2013.

Ruifang Ge and Raymond J Mooney. A statistical semantic parser that integrates syntax

and semantics. In Proceedings of the Ninth Conference on Computational Natural

Language Learning, pages 9–16, 2005.

Kevin Gimpel and Noah A. Smith. Softmax-margin CRFs: training log-linear models

with cost functions. In NAACL 2010, pages 733–736, 2010.

296

Bibliography

Roxana Girju. Automatic detection of causal relations for question answering. In Pro-

ceedings of the ACL 2003 workshop on Multilingual summarization and question an-

swering, pages 76–83, 2003.

D. C. Gondek, A. Lally, A. Kalyanpur, J. W. Murdock, P. A. Duboue, L. Zhang, Y. Pan,

Z. M. Qiu, and C. Welty. A framework for merging and ranking of answers in deepqa.

IBM Journal of Research and Development, 2012.

Bert F Green, Alice K Wolf, Carol Chomsky, and Kenneth Laughery. Baseball: an

automatic question-answerer. In Papers presented at the May 9-11, 1961, western

joint IRE-AIEE-ACM computer conference, pages 219–224. ACM, 1961.

Cordell Green. Theorem-proving by resolution as a basis for question-answering systems,

in. Machine Intelligence, B. Meltzer and D. Michie, eds, pages 183–205, 1969.

Mark A. Greenwood, editor. Coling 2008: Proceedings of the 2nd workshop on Informa-

tion Retrieval for Question Answering. Coling 2008 Organizing Committee, Manch-

ester, UK, August 2008.

Poonam Gupta and Vishal Gupta. A Survey of Text Question Answering Techniques. In-

ternational Journal of Computer Applications, 53(4):1–8, September 2012. Published

by Foundation of Computer Science, New York, USA.

K. Hacioglu andW.Ward. Question classification with support vector machines and error

correcting codes. In Proceedings of the 2003 Conference of the North American Chapter

of the Association for Computational Linguistics on Human Language Technology:

companion volume of the Proceedings of HLT-NAACL 2003–short papers-Volume 2,

pages 28–30. Association for Computational Linguistics, 2003.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The

weka data mining software: an update. ACM SIGKDD Explorations Newsletter, 11

(1):10–18, 2009.

K. Hammond, R. Burke, C. Martin, and S. Lytinen. FAQ finder: a case-based approach

to knowledge navigation. In Conference on Artificial Intelligence Applications, 1995.

297

Bibliography

Lushan Han, Abhay Kashyap, Tim Finin, James Mayfield, and Jonathan Weese. UMBC-

EBIQUITY-CORE: Semantic Textual Similarity Systems. In Proceedings of the Second

Joint Conference on Lexical and Computational Semantics, 2013.

S. Harabagiu, D. Moldovan, M. Pasca, M. Surdeanu, R. Mihalcea, R. Girju, V. Rus,

F. Lactusu, P. Morarescu, and R. Bunescu. Answering complex, list and context

questions with lcc’s question-answering server. In Proceedings of TREC 2001, 2001.

Sanda Harabagiu and Andrew Hickl. Methods for using textual entailment in open-

domain question answering. In Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the Association for Com-

putational Linguistics, pages 905–912, 2006.

Sanda M Harabagiu, Dan I Moldovan, Marius Pasca, Rada Mihalcea, Mihai Surdeanu,

Razvan C Bunescu, Roxana Girju, Vasile Rus, and Paul Morarescu. FALCON: Boost-

ing Knowledge for Answer Engines. In TREC, volume 9, pages 479–488, 2000.

Donna Harman and Gerald Candela. Retrieving records from a gigabyte of text on a

mini-computer using statistical ranking. JASIS, 41(8):581–589, 1990.

Donna K Harman and Ellen M Voorhees. Trec: An overview. Annual review of infor-

mation science and technology, 40(1):113–155, 2006.

Sven Hartrumpf. Semantic Decomposition for Question Answering. In ECAI, pages

313–317, 2008.

Michael Heilman and Noah A. Smith. Tree edit models for recognizing textual entail-

ments, paraphrases, and answers to questions. In Proceedings of NAACL 2010, pages

1011–1019, Los Angeles, California, June 2010.

Gary G Hendrix, Earl D Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum. Developing

a natural language interface to complex data. ACM Transactions on Database Systems

(TODS), 3(2):105–147, 1978.

U. Hermjakob. Parsing and question classification for question answering. In Proceedings

of the workshop on Open-domain question answering-Volume 12, pages 1–6, 2001.

298

Bibliography

Ulf Hermjakob, Abdessamad Echihabi, and Daniel Marcu. Natural language based re-

formulation resource and wide exploitation for question answering. In TREC, 2002.

Lynette Hirschman and Robert Gaizauskas. Natural language question answering: The

view from here. Natural Language Engineering, 7(4):275–300, 2001.

Jerry R Hobbs. Ontological promiscuity. In Proceedings of ACL, 1985.

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard

De Melo, and Gerhard Weikum. Yago2: exploring and querying world knowledge in

time, space, context, and many languages. In Proceedings of the 20th international

conference companion on World Wide Web, pages 229–232. ACM, 2011.

Eduard Hovy, Ulf Hermjakob, and Deepak Ravichandran. A question/answer typology

with surface text patterns. In Proceedings of the second international conference on

Human Language Technology Research, pages 247–251. Morgan Kaufmann Publishers

Inc., 2002.

Eduard H Hovy, Laurie Gerber, Ulf Hermjakob, Michael Junk, and Chin-Yew Lin. Ques-

tion answering in webclopedia. In TREC, 2000.

Zhiheng Huang, Marcus Thint, and Zengchang Qin. Question classification using head

words and their hypernyms. In Proceedings of EMNLP, pages 927–936, 2008.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engi-

neering, 9(3):90–95, 2007.

A. Ittycheriah, M. Franz, and S. Roukos. Ibm’s statistical question answering

system—trec-10. In Proceedings of the Tenth Text REtrieval Conference (TREC 2001),

2001a.

Abraham Ittycheriah, Martin Franz, Wei-Jing Zhu, Adwait Ratnaparkhi, and Richard J

Mammone. Question answering using maximum entropy components. In Proceedings

of NAACL, 2001b.

299

Bibliography

Peter Jackson. Introduction To Expert Systems. Addison-Wesley Longman Publishing

Co., Inc., 1990.

Valentin Jijkoun, Maarten De Rijke, and Jori Mur. Information extraction for question

answering: Improving recall through syntactic patterns. In Proceedings of the 20th

international conference on Computational Linguistics, page 1284, 2004.

Bevan Keeley Jones, Mark Johnson, and Sharon Goldwater. Semantic parsing with

bayesian tree transducers. In Proceedings of ACL, 2012.

John Judge, Aoife Cahill, and Josef Van Genabith. QuestionBank: Creating a Corpus

of Parse-Annotated Questions. In In Proceedings of the 21st International Conference

on Computational Linguistics and 44th Annual Meeting of the ACL, pages 497–504,

2006.

Michael Kaisser. Answer Sentence Retrieval by Matching Dependency Paths acquired

from Question/Answer Sentence Pairs. In EACL, pages 88–98, 2012.

A. Kalyanpur, B. K. Boguraev, S. Patwardhan, J. W. Murdock, A. Lally, C. Welty,

J. M. Prager, B. Coppola, A. Fokoue-Nkoutche, L. Zhang, Y. Pan, and Z. M. Qiu.

Structured data and inference in deepqa. IBM Journal of Research and Development,

2012a.

A. Kalyanpur, S. Patwardhan, B. K. Boguraev, A. Lally, and J. Chu-Carroll. Fact-based

question decomposition in deepqa. IBM Journal of Research and Development, 2012b.

Rohit J Kate and Raymond J Mooney. Using string-kernels for learning semantic parsers.

In Proceedings of ACL, 2006.

Boris Katz and Jimmy Lin. Selectively using relations to improve precision in ques-

tion answering. In Proceedings of the workshop on Natural Language Processing for

Question Answering (EACL 2003), pages 43–50, 2003.

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy Lin, Gregory Marton, Al-

ton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform access to hetero-

300

Bibliography

geneous data for question answering. In Natural Language Processing and Information

Systems, pages 230–234. Springer, 2002.

Boris Katz, Gary C Borchardt, and Sue Felshin. Natural language annotations for

question answering. In FLAIRS Conference, pages 303–306, 2006.

Tibor Kiss and Jan Strunk. Unsupervised multilingual sentence boundary detection.

Computational Linguistics, 32(4):485–525, 2006.

Dan Klein and Christopher D. Manning. Accurate Unlexicalized Parsing. In In Proc.

the 41st Annual Meeting of the Association for Computational Linguistics, 2003.

Philipp Koehn. Statistical Machine Translation. Cambridge University Press, New York,

NY, USA, 2010.

Oleksandr Kolomiyets and Marie-Francine Moens. A survey on question answering tech-

nology from an information retrieval perspective. Information Sciences, 181(24):5412

– 5434, 2011.

Lingpeng Kong and Noah A Smith. An empirical comparison of parsing methods for

stanford dependencies. arXiv preprint arXiv:1404.4314, 2014.

Leila Kosseim and Jamileh Yousefi. Improving the performance of question answering

with semantically equivalent answer patterns. Data & Knowledge Engineering, 66(1):

53–67, 2008.

Milen Kouylekov and Bernardo Magnini. Recognizing textual entailment with tree edit

distance algorithms. In PASCAL Challenges on RTE, pages 17–20, 2005.

Klaus H. Krippendorff. Content Analysis: An Introduction to Its Methodology. Sage

Publications, Inc, 2nd edition, 2004.

Jayant Krishnamurthy and Tom M Mitchell. Weakly supervised training of semantic

parsers. In Proceedings of EMNLP-CoNLL, 2012.

301

Bibliography

Julian Kupiec. Murax: A robust linguistic approach for question answering using an on-

line encyclopedia. In Proceedings of the 16th annual international ACM SIGIR con-

ference on Research and development in information retrieval, pages 181–190. ACM,

1993.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. Induc-

ing probabilistic CCG grammars from logical form with higher-order unification. In

Proceedings of EMNLP, pages 1223–1233, 2010.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. Lexical

generalization in CCG grammar induction for semantic parsing. In Proceedings of

EMNLP, 2011.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. Scaling Semantic

Parsers with On-the-fly Ontology Matching. In Proceedings of EMNLP, 2013.

Cody Kwok, Oren Etzioni, and Daniel S Weld. Scaling question answering to the web.

ACM Transactions on Information Systems (TOIS), 19(3):242–262, 2001.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings

of the Eighteenth International Conference on Machine Learning, ICML ’01, pages

282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

A. Lally, J. M. Prager, M. C. McCord, B. K. Boguraev, S. Patwardhan, J. Fan, P. Fodor,

and J. Chu-Carroll. Question analysis: How watson reads a clue. IBM Journal of

Research and Development, 2012.

Wendy G Lehnert. A conceptual theory of question answering. In Proceedings of the

5th international joint conference on Artificial intelligence-Volume 1, pages 158–164.

Morgan Kaufmann Publishers Inc., 1977.

Jochen L Leidner, Gail Sinclair, and Bonnie Webber. Grounding spatial named entities

for information extraction and question answering. In Proceedings of the HLT-NAACL

2003 workshop on Analysis of geographic references-Volume 1, pages 31–38, 2003.

302

Bibliography

Fangtao Li, Xian Zhang, Jinhui Yuan, and Xiaoyan Zhu. Classifying what-type ques-

tions by head noun tagging. In Proceedings of the 22nd International Conference on

Computational Linguistics, pages 481–488, 2008.

X. Li and D. Roth. Learning question classifiers. In Proceedings of the 19th international

conference on Computational linguistics, 2002.

Xiaoyan Li. Syntactic features in question answering. In Proceedings of the 26th annual

international ACM SIGIR conference on Research and development in informaion

retrieval, pages 383–384. ACM, 2003.

Xin Li and Dan Roth. Learning question classifiers: the role of semantic information.

Natural Language Engineering, 12(3):229–249, 2006.

Percy Liang. Lambda dependency-based compositional semantics. arXiv preprint

arXiv:1309.4408, 2013.

Percy Liang and Christopher Potts. Bringing machine learning and compositional se-

mantics together. the Annual Review of Linguistics, 2014.

Percy Liang, Ben Taskar, and Dan Klein. Alignment by agreement. In Proceedings of

NAACL, pages 104–111, 2006.

Percy Liang, Michael I. Jordan, and Dan Klein. Learning Dependency-Based Composi-

tional Semantics. In Proceedings of ACL, 2011.

M. Light, G.S. Mann, E. Riloff, and E. Breck. Analyses for elucidating current question

answering technology. Natural Language Engineering, 7(04):325–342, 2001.

Dekang Lin. Principle-based parsing without overgeneration. In Proceedings of the 31st

annual meeting on Association for Computational Linguistics, pages 112–120. Associ-

ation for Computational Linguistics, 1993.

Dekang Lin and Patrick Pantel. Discovery of inference rules for question-answering.

Natural Language Engineering, (4), 2001.

303

Bibliography

J. Lin and B. Katz. Building a reusable test collection for question answering. Journal of

the American Society for Information Science and Technology, 57(7):851–861, 2006.

Jimmy Lin. The web as a resource for question answering: Perspectives and challenges.

In Proceedings of TREC, 2002.

Jimmy Lin. An exploration of the principles underlying redundancy-based factoid ques-

tion answering. ACM Transactions on Information Systems, 25(2), April 2007. ISSN

1046-8188.

Thomas Lin, Oren Etzioni, et al. Entity Linking at Web Scale. In Proceedings of

Knowledge Extraction Workshop (AKBC-WEKEX), pages 84–88, 2012.

Babak Loni. A survey of state-of-the-art methods on question classification. Literature

Survey, Published on TU Delft Repository, 2011.

Vanessa Lopez, Michele Pasin, and Enrico Motta. Aqualog: An ontology-portable ques-

tion answering system for the semantic web. In The Semantic Web: Research and

Applications, pages 546–562. Springer, 2005.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S Zettlemoyer. A generative model for

parsing natural language to meaning representations. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing, pages 783–792, 2008.

Bill MacCartney. Natural language inference. PhD thesis, Stanford University, 2009.

Bill MacCartney, Michel Galley, and Christopher D Manning. A phrase-based alignment

model for natural language inference. In Proceedings of EMNLP, pages 802–811, 2008.

B. Magnini, M. Negri, R. Prevete, and H. Tanev. Is it the right answer?: exploiting

web redundancy for answer validation. In Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics, pages 425–432, 2002.

Bernardo Magnini, Simone Romagnoli, Alessandro Vallin, Jesus Herrera, Anselmo Pe-

nas, Victor Peinado, Felisa Verdejo, Maarten de Rijke, and Ro Vallin. The multiple

language question answering track at clef 2003. In CLEF 2003. Springer-Verlag, 2003.

304

Bibliography

Bernardo Magnini, Alessandro Vallin, Christelle Ayache, Gregor Erbach, Anselmo Peñas,

Maarten De Rijke, Paulo Rocha, Kiril Simov, and Richard Sutcliffe. Overview of the

CLEF 2004 multilingual question answering track. In Multilingual Information Access

for Text, Speech and Images, pages 371–391. Springer, 2005.

Gideon S Mann. A statistical method for short answer extraction. In Proceedings of the

workshop on Open-domain question answering, pages 1–8, 2001.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

information retrieval, volume 1. Cambridge university press Cambridge, 2008.

Daniel Marcu and William Wong. A phrase-based, joint probability model for statistical

machine translation. In Proceedings of EMNLP-2002, pages 133–139, 2002.

Andrew McCallum, Kedar Bellare, and Fernando Pereira. A Conditional Random Field

for Discriminatively-trained Finite-state String Edit Distance. In Proceedings of the

21st Conference on Uncertainty in Artificial Intelligence (UAI 2005), July 2005.

M. C. McCord, J. W. Murdock, and B. K. Boguraev. Deep parsing in watson. IBM

Journal of Research and Development, 2012.

Michael C McCord. Slot grammars. Computational Linguistics, 6(1):31–43, 1980.

R. McDonald, K. Crammer, and F. Pereira. Online large-margin training of dependency

parsers. In Proceedings of ACL 2005, pages 91–98, 2005.

Yashar Mehdad. Automatic cost estimation for tree edit distance using particle swarm

optimization. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages

289–292, 2009.

D. Metzler and W.B. Croft. Analysis of statistical question classification for fact-based

questions. Information Retrieval, 8(3):481–504, 2005.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous

space word representations. In Proceedings of NAACL-HLT, pages 746–751, 2013.

305

Bibliography

D. Moldovan, M. Paşca, S. Harabagiu, and M. Surdeanu. Performance issues and er-

ror analysis in an open-domain question answering system. ACM Transactions on

Information Systems (TOIS), 21(2):133–154, 2003a.

Dan Moldovan, Christine Clark, Sanda Harabagiu, and Steve Maiorano. Cogex: A logic

prover for question answering. In Proceedings of NAACL, pages 87–93, 2003b.

Dan I Moldovan and Vasile Rus. Logic form transformation of wordnet and its applica-

bility to question answering. In Proceedings of the 39th Annual Meeting on Association

for Computational Linguistics, pages 402–409, 2001.

Dan I Moldovan, Sanda M Harabagiu, Roxana Girju, Paul Morarescu, V Finley Laca-

tusu, Adrian Novischi, Adriana Badulescu, and Orest Bolohan. Lcc tools for question

answering. In TREC, 2002.

Diego Mollá and Menno Van Zaanen. Learning of graph rules for question answering. In

Proceedings of the Australasian Language Technology Workshop, 2005.

Diego Mollá and José Luis Vicedo. Question answering in restricted domains: An

overview. Computational Linguistics, 33(1):41–61, 2007.

Diego Mollá, Rolf Schwitter, Fabio Rinaldi, James Dowdall, and Michael Hess. Nlp for

answer extraction in technical domains. Proceedings of EACL, 2003.

A. Moschitti, S. Quarteroni, R. Basili, and S. Manandhar. Exploiting syntactic and

shallow semantic kernels for question answer classification. In ACL, volume 45, page

776, 2007.

J. W. Murdock, J. Fan, A. Lally, H. Shima, and B. K. Boguraev. Textual evidence

gathering and analysis. IBM Journal of Research and Development, 2012a.

J. W. Murdock, A. Kalyanpur, C. Welty, J. Fan, D. A. Ferrucci, D. C. Gondek, L. Zhang,

and H. Kanayama. Typing candidate answers using type coercion. IBM Journal of

Research and Development, 2012b.

306

Bibliography

V. Murdock and W.B. Croft. Simple translation models for sentence retrieval in fac-

toid question answering. In Proceedings of the SIGIR-2004 Workshop on Information

Retrieval For Question Answering (IR4QA), pages 31–35, 2004.

S. Narayanan and S. Harabagiu. Question answering based on semantic structures. In

Proceedings of the 20th international conference on Computational Linguistics, page

693. Association for Computational Linguistics, 2004.

E. Nyberg, T. Mitamura, J. Callan, J. Carbonell, R. Frederking, K. Collins-thompson,

L. Hiyakumoto, Y. Huang, C. Huttenhower, S. Judy, J. Ko, L. V. Lita, V. Pedro,

D. Svoboda, and B. Van Durme. The javelin question-answering system at trec 2002.

In Proceedings of TREC 12, 2003.

Franz Josef Och and Hermann Ney. A systematic comparison of various statistical

alignment models. Computational linguistics, 29(1):19–51, 2003.

P. Ogilvie. Retrieval using Document Structure and Annotations. PhD thesis, Carnegie

Mellon University, 2010.

Naoaki Okazaki. CRFsuite: a fast implementation of Conditional Random Fields (CRFs),

2007.

Naoaki Okazaki. Classias: a collection of machine-learning algorithms for classification,

2009. URL http://www.chokkan.org/software/classias/.

Dave Orr, Amar Subramanya, Evgeniy Gabrilovich, and Michael Ringgaard. 11 bil-

lion clues in 800 million documents: A web research corpus annotated with free-

base concepts. http://googleresearch.blogspot.com/2013/07/11-billion-clues-in-800-

million.html, July 2013.

Mari Ostendorf, Vassilios V Digalakis, and Owen A Kimball. From HMM’s to segment

models: a unified view of stochastic modeling for speech recognition. IEEE Transac-

tions on Speech and Audio Processing, 4(5):360–378, 1996.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank: An anno-

tated corpus of semantic roles. Computational Linguistics, 31(1):71–106, 2005.

307

http://www.chokkan.org/software/classias/

Bibliography

Yan Pan, Yong Tang, Luxin Lin, and Yemin Luo. Question classification with semantic

tree kernel. In Proceedings of the 31st annual international ACM SIGIR conference

on Research and development in information retrieval, pages 837–838. ACM, 2008.

Marius A Pasca and Sandra M Harabagiu. High performance question/answering. In

Proceedings of the 24th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 366–374. ACM, 2001.

A. Penas, A. Rodrigo, V. Sama, and F. Verdejo. Testing the reasoning for question

answering validation. Journal of Logic and Computation, 18(3):459–474, 2008.

Anselmo Peñas, Pamela Forner, Richard Sutcliffe, Álvaro Rodrigo, Corina Forăscu, Iñaki

Alegria, Danilo Giampiccolo, Nicolas Moreau, and Petya Osenova. Overview of Re-

sPubliQA 2009: question answering evaluation over European legislation. In Multi-

lingual Information Access Evaluation I. Text Retrieval Experiments, pages 174–196.

Springer, 2010.

Anselmo Peñas, Eduard H Hovy, Pamela Forner, Álvaro Rodrigo, Richard FE Sutcliffe,

Corina Forascu, and Caroline Sporleder. Overview of QA4MRE at CLEF 2011: Ques-

tion Answering for Machine Reading Evaluation. In CLEF 2011 Labs and Workshop

Notebook Papers. Citeseer, 2011.

Anselmo Peñas, Eduard Hovy, Pamela Forner, Álvaro Rodrigo, Richard Sutcliffe, and

Roser Morante. Qa4mre 2011-2013: Overview of question answering for machine

reading evaluation. In Information Access Evaluation. Multilinguality, Multimodality,

and Visualization, pages 303–320. Springer, 2013.

Fuchun Peng, Ralph Weischedel, Ana Licuanan, and Jinxi Xu. Combining deep linguis-

tics analysis and surface pattern learning: A hybrid approach to chinese definitional

question answering. In Proceedings of EMNLP, pages 307–314, 2005.

Christopher Pinchak and Dekang Lin. A probabilistic answer type model. In Proceedings

of EACL, 2006.

308

Bibliography

Christopher Pinchak, Dekang Lin, and Davood Rafiei. Flexible answer typing with dis-

criminative preference ranking. In Proceedings of the 12th Conference of the European

Chapter of the ACL (EACL 2009), pages 666–674, Athens, Greece, March 2009a.

Christopher Pinchak, Davood Rafiei, and Dekang Lin. Answer typing for information

retrieval. In Proceedings of the 18th ACM conference on Information and knowledge

management, CIKM ’09, pages 1955–1958, New York, NY, USA, 2009b. ACM.

Warren J. Plath. Request: a natural language question-answering system. IBM Journal

of Research and Development, 20(4):326–335, 1976.

Martha Elizabeth Pollack. Inferring domain plans in question-answering. Technical

report, SRI International, Philadelphia, PA, USA, 1986. UMI order no. GAX86-

14850.

Jay M Ponte and W Bruce Croft. A language modeling approach to information retrieval.

In Proceedings of the 21st annual international ACM SIGIR conference on Research

and development in information retrieval, pages 275–281. ACM, 1998.

Martin F Porter. An algorithm for suffix stripping. Program: electronic library and

information systems, 14(3):130–137, 1980.

Sameer S Pradhan, Wayne Ward, Kadri Hacioglu, James H Martin, and Daniel Jurafsky.

Shallow Semantic Parsing using Support Vector Machines. In HLT-NAACL, pages

233–240, 2004.

J. Prager, J. Chu-Carroll, E. Brown, and K. Czuba. Question answering by predictive

annotation. Advances in Open Domain Question Answering, pages 307–347, 2006.

John Prager, Eric Brown, Anni Coden, and Dragomir Radev. Question-answering by

predictive annotation. In Proceedings of the 23rd annual international ACM SIGIR

conference on Research and development in information retrieval, SIGIR ’00, pages

184–191, New York, NY, USA, 2000. ACM.

John Prager, Jennifer Chu-Carroll, and Krzysztof Czuba. Use of wordnet hypernyms for

answering what-is questions. In Proceedings of TREC 2001, 2001.

309

Bibliography

John M Prager. Open-domain question-answering. Foundations and Trends in Informa-

tion Retrieval, 1(2):91–231, 2006.

Vasin Punyakanok, Dan Roth, and Wen T. Yih. Mapping Dependencies Trees: An

Application to Question Answering. In Proceedings of the 8th International Symposium

on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, 2004.

Silvia Quarteroni and Suresh Manandhar. Designing an interactive open-domain question

answering system. Natural Language Engineering, 15(1):73–95, 2009.

Chris Quirk, Chris Brockett, and William B Dolan. Monolingual Machine Translation

for Paraphrase Generation. In EMNLP, pages 142–149, 2004.

L Rabiner, AE Rosenberg, and SE Levinson. Considerations in dynamic time warping

algorithms for discrete word recognition. Acoustics, Speech and Signal Processing,

IEEE Transactions on, 26(6):575–582, 1978.

Dragomir Radev, Weiguo Fan, Hong Qi, Harris Wu, and Amardeep Grewal. Probabilistic

question answering on the web. Journal of the American Society for Information

Science and Technology, 56(6):571–583, 2005.

Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic schema

matching. the VLDB Journal, 10(4):334–350, 2001.

Ganesh Ramakrishnan, Apurva Jadhav, Ashutosh Joshi, Soumen Chakrabarti, and

Pushpak Bhattacharyya. Question answering via bayesian inference on lexical re-

lations. In Proceedings of the ACL 2003 workshop on Multilingual summarization and

question answering-Volume 12, pages 1–10, 2003.

L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recog-

nition. In CoNLL, 6 2009.

A. Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In Proceedings

of EMNLP, volume 1, pages 133–142, 1996.

310

Bibliography

Deepak Ravichandran and Eduard Hovy. Learning surface text patterns for a question

answering system. In Proceedings of ACL, ACL ’02, pages 41–47, Stroudsburg, PA,

USA, 2002.

Deepak Ravichandran, Abraham Ittycheriah, and Salim Roukos. Automatic derivation

of surface text patterns for a maximum entropy based question answering system. In

Proceedings of NAACL, short papers, pages 85–87, 2003.

D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. Laender. Automatic web news extraction

using tree edit distance. In Proceedings of the 13th international conference on World

Wide Web, WWW ’04, pages 502–511, New York, NY, USA, 2004. ACM.

S.E. Robertson and S. Walker. Okapi/keenbow at trec-8. In Proc. of TREC, volume 8,

1999.

Á. Rodrigo, A. Peñas, and F. Verdejo. Overview of the answer validation exercise 2008.

Evaluating Systems for Multilingual and Multimodal Information Access, pages 296–

313, 2009.

Michael Roth and Anette Frank. Aligning predicates across monolingual comparable

texts using graph-based clustering. In Proceedings of EMNLP-CoNLL, pages 171–182,

Jeju Island, Korea, July 2012.

Rachel Rudinger and Benjamin Van Durme. Is the Stanford Dependency Representa-

tion Semantic? In Association for Computational Linguistics (ACL), Workshop on

EVENTS, 2014.

Tetsuya Sakai, Hideki Shima, Noriko Kando, Ruihua Song, Chuan-Jie Lin, Teruko Mi-

tamura, Miho Sugimito, and Cheng-Wei Lee. Overview of the ntcir-7 aclia ir4qa task.

In Proceedings of NTCIR-8 Workshop Meeting, Tokyo, Japan, 2010.

Gerard Salton. The SMART retrieval system - experiments in automatic document pro-

cessing. Prentice-Hall, 1971.

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text

retrieval. Information processing & management, 24(5):513–523, 1988.

311

Bibliography

Sarawagi Sarawagi and William Cohen. Semi-markov conditional random fields for infor-

mation extraction. Advances in Neural Information Processing Systems, 17:1185–1192,

2004.

Nico Schlaefer, Petra Gieselman, and Guido Sautter. The ephyra qa system at trec 2006.

In In Proceedings TREC, 2006.

Stefan Schlobach, David Ahn, Maarten De Rijke, and Valentin Jijkoun. Data-driven type

checking in open domain question answering. Journal of Applied Logic, 5(1):121–143,

2007.

Aliaksei Severyn and Alessandro Moschitti. Automatic feature engineering for answer

selection and extraction. In Proceedings of the 2013 Conference on Empirical Methods

in Natural Language Processing, pages 458–467, Seattle, Washington, USA, October

2013.

Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Sören Auer. Question answering

on interlinked data. In Proceedings of WWW, 2013.

D. Shen and M. Lapata. Using semantic roles to improve question answering. In Pro-

ceedings of EMNLP-CoNLL, pages 12–21, 2007.

Dan Shen and Dietrich Klakow. Exploring correlation of dependency relation paths for

answer extraction. In Proceedings of the 21st International Conference on Computa-

tional Linguistics and the 44th annual meeting of the Association for Computational

Linguistics, pages 889–896, 2006.

H. Shima, N. Lao, E. Nyberg, and T. Mitamura. Complex cross-lingual question answer-

ing as sequential classification and multi-document summarization task. In Proceedings

of NTICIR-7 Workshop, Japan, 2008.

Joao Silva, Luísa Coheur, Ana Cristina Mendes, and Andreas Wichert. From symbolic

to sub-symbolic information in question classification. Artificial Intelligence Review,

35(2):137–154, 2011.

312

Bibliography

R. F. Simmons. Answering english questions by computer: A survey. Communications

of the ACM, 8(1):53–70, January 1965.

Robert F Simmons. Natural language question-answering systems: 1969. Communica-

tions of the ACM, 13(1):15–30, 1970.

Amit Singhal. Modern Information Retrieval: A Brief Overview. Bulletin of the IEEE

Computer Society Technical Committee on Data Engineering, 24(4):35–43, 2001.

James R Slagle. Experiments with a deductive question-answering program. Communi-

cations of the ACM, 8(12):792–798, 1965.

David A. Smith and Jason Eisner. Quasi-synchronous grammars: Alignment by soft

projection of syntactic dependencies. In Proceedings of the HLT-NAACL Workshop

on Statistical Machine Translation, pages 23–30, New York, June 2006.

Temple F Smith and Michael S Waterman. Identification of common molecular subse-

quences. Journal of molecular biology, 147(1):195–197, 1981.

Mark D. Smucker, James Allan, and Ben Carterette. A comparison of statistical sig-

nificance tests for information retrieval evaluation. In Proceedings of the sixteenth

ACM conference on Conference on information and knowledge management, CIKM

’07, pages 623–632, New York, NY, USA, 2007. ACM.

E. Sneiders. Automated question answering: template-based approach. PhD thesis, KTH,

2002a.

Eriks Sneiders. Automated question answering using question templates that cover the

conceptual model of the database. In Natural Language Processing and Information

Systems, pages 235–239. Springer, 2002b.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. Semantic taxonomy induction from het-

erogenous evidence. In Proceedings of the 21st International Conference on Computa-

tional Linguistics and the 44th annual meeting of the Association for Computational

Linguistics, pages 801–808, 2006.

313

Bibliography

Radu Soricut and Eric Brill. Automatic question answering: Beyond the factoid. In

HLT-NAACL, pages 57–64, 2004.

Martin M. Soubbotin. Patterns of potential answer expressions as clues to the right

answers. In Proceedings of TREC 2001, 2001.

Martin M Soubbotin and Sergei M Soubbotin. Use of patterns for detection of likely

answer strings: A systematic approach. In TREC, 2002.

Rohini Srihari and Wei Li. A question answering system supported by information ex-

traction. In Proceedings of the sixth conference on Applied natural language processing,

pages 166–172, 2000.

Mark Steedman. The syntactic process. MIT Press, Cambridge, MA, USA, 2000.

T. Strohman, D. Metzler, H. Turtle, and W.B. Croft. Indri: A language model-based

search engine for complex queries. In Proceedings of the International Conference on

Intelligent Analysis, volume 2, pages 2–6. Citeseer, 2005.

Mingyu Sun and Joyce Y Chai. Discourse processing for context question answering

based on linguistic knowledge. Knowledge-Based Systems, 20(6):511–526, 2007.

Renxu Sun, Jing Jiang, Yee Fan, Tan Hang, Cui Tat-seng, and Chua Min yen Kan.

Using syntactic and semantic relation analysis in question answering. In Proceedings

of TREC, 2005.

Charles Sutton and Andrew Mccallum. Collective segmentation and labeling of dis-

tant entities in information extraction. Technical Report TR # 04-49, University of

Massachusetts, July 2004.

Lappoon R Tang and Raymond J Mooney. Using multiple clause constructors in in-

ductive logic programming for semantic parsing. In Machine Learning: ECML 2001.

Springer, 2001.

S. Tellex, B. Katz, J. Lin, A. Fernandes, and G. Marton. Quantitative evaluation of

passage retrieval algorithms for question answering. In Proceedings of the 26th annual

314

Bibliography

international ACM SIGIR conference on Research and development in informaion

retrieval, pages 41–47. ACM, 2003.

Alberto Tellez-Valero, Manuel Montes-y Gómez, Luis Villasenor Pineda, and Anselmo

Penas. Towards multi-stream question answering using answer validation. Informatica

(Slovenia), 2010.

Kapil Thadani and Kathleen McKeown. Optimal and syntactically-informed decoding

for monolingual phrase-based alignment. In Proceedings of ACL short, 2011.

Kapil Thadani, Scott Martin, and Michael White. A joint phrasal and dependency model

for paraphrase alignment. In Proceedings of COLING 2012: Posters, pages 1229–1238,

Mumbai, India, December 2012. The COLING 2012 Organizing Committee.

Cynthia A Thompson and Raymond J Mooney. Acquiring word-meaning mappings for

natural language interfaces. Journal of Artificial Intelligence Research, 18(1):1–44,

2003.

H. Turtle and W.B. Croft. Inference networks for document retrieval. In Proceedings of

the 13th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 1–24. ACM, 1989.

H. Turtle, Y. Hegde, and S.A. Rowe. Yet another comparison of lucene and indri per-

formance. Open Source Information Retrieval, page 64, 2012.

Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Daniel

Gerber, and Philipp Cimiano. Template-based question answering over RDF data. In

Proceedings of the 21st international conference on World Wide Web, 2012.

Surya Ganesh Veeravalli and Vasudeva Varma. Passage retrieval using answer type

profiles in question answering. In Proceedings of the 23rd Pacific Asia Conference on

Language, Information and Computation, pages 559–568, Hong Kong, December 2009.

City University of Hong Kong.

315

Bibliography

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment

in statistical translation. In Proceedings of the 16th conference on Computational

linguistics - Volume 2, COLING ’96, pages 836–841, 1996.

Ellen M Voorhees. The trec-8 question answering track report. In TREC, volume 99,

pages 77–82, 1999.

Ellen M. Voorhees. Overview of the TREC 2001 Question Answering Track. In TREC,

2001.

Ellen M Voorhees and Donna Harman. Overview of the Sixth Text REtrieval Conference

(TREC-6). Information Processing & Management, 36(1):3–35, 2000.

David L Waltz. An english language question answering system for a large relational

database. Communications of the ACM, 21(7):526–539, 1978.

Mengqiu Wang. A Survey of Answer Extraction Techniques in Factoid Question An-

swering. CMU 11-762 Language and Statistics II literature review project, 2006.

Mengqiu Wang and Christopher D. Manning. Probabilistic tree-edit models with struc-

tured latent variables for textual entailment and question answering. In Proceedings of

the 23rd International Conference on Computational Linguistics, COLING ’10, pages

1164–1172, Stroudsburg, PA, USA, 2010.

Mengqiu Wang, Noah A. Smith, and Teruko Mitamura. What is the Jeopardy model?

a quasi-synchronous grammar for QA. In Proceedings of the 2007 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL), pages 22–32, Prague, Czech Republic, June

2007.

Xing Wei, W. Bruce Croft, and Andrew Mccallum. Table extraction for answer retrieval.

Information Retrieval, 9:589–611, 2006.

Ralph M Weischedel. Research and development in natural language understanding

as part of the strategic computing program. Technical report, BBN Systems and

Technologies Corporation, 1989.

316

Bibliography

Robert Wilensky, David N Chin, Marc Luria, James Martin, James Mayfield, and Dekai

Wu. The berkeley unix consultant project. Computational Linguistics, 14(4):35–84,

1988.

Werner Winiwarter. An adaptive natural language interface architecture to access faq

knowledge bases. In Proc. of the 4th Int. Conf. on Applications of NL to Information

Systems, 1999.

Terry Winograd. Understanding natural language. Cognitive psychology, 3(1):1–191,

1972.

Travis Wolfe, Benjamin Van Durme, Mark Dredze, Nicholas Andrews, Charley Beller,

Chris Callison-Burch, Jay DeYoung, Justin Snyder, Jonathan Weese, Tan Xu, and

Xuchen Yao. PARMA: A Predicate Argument Aligner. In Proceedings of ACL short,

2013.

Yuk Wah Wong and Raymond J Mooney. Learning synchronous grammars for semantic

parsing with lambda calculus. In Proceedings of ACL, 2007.

William A Woods. Lunar rocks in natural english: Explorations in natural language

question answering. Linguistic structures processing, 5:521–569, 1977.

William A. Woods. Semantics and quantification in natural language question answering.

Advances in computers, 17(3), 1978.

Min Wu, Mingyuan Duan, Samira Shaikh, Sharon Small, and Tomek Strzalkowski.

ILQUA–An IE-Driven Question Answering System. In Ellen M. Voorhees and Lori P.

Buckland, editors, TREC, volume Special Publication 500-266. National Institute of

Standards and Technology (NIST), 2005.

Jinxi Xu, Ana Licuanan, Jonathan May, Scott Miller, and Ralph M Weischedel. Trec

2002 qa at bbn: Answer selection and confidence estimation. In TREC, 2002.

Jinxi Xu, Ana Licuanan, and Ralph M Weischedel. TREC 2003 QA at BBN: Answering

Definitional Questions. In TREC, pages 98–106, 2003.

317

Bibliography

Wei Xu, Alan Ritter, and Ralph Grishman. Gathering and Generating Paraphrases from

Twitter with Application to Normalization. In Proceedings of the 6th Workshop on

Building and Using Comparable Corpora (BUCC), Sofia, Bulgaria, August 2013.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, Maya Ramanath, Volker Tresp,

and Gerhard Weikum. Natural language questions for the web of data. In Proceedings

of EMNLP, 2012.

Hui Yang, Hang Cui, Mstislav Maslennikov, Long Qiu, Min-Yen Kan, and Tat-Seng

Chua. Qualifier in trec-12 qa main task. In TREC, pages 480–488, 2003.

Xuchen Yao and Benjamin Van Durme. Information Extraction over Structured Data:

Question Answering with Freebase. In Proceedings of ACL, Baltimore, MD, USA,

2014.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. Semi-Markov

Phrase-based Monolingual Alignment. In Proceedings of EMNLP, 2013a.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. A

Lightweight and High Performance Monolingual Word Aligner. In Proceedings of ACL

short, Sofia, Bulgaria, 2013b.

Xuchen Yao, Benjamin Van Durme, and Peter Clark. Automatic Coupling of Answer

Extraction and Information Retrieval. In Proceedings of ACL short, Sofia, Bulgaria,

2013c.

Xuchen Yao, Benjamin Van Durme, Peter Clark, and Chris Callison-Burch. Answer

Extraction as Sequence Tagging with Tree Edit Distance. In Proceedings of NAACL,

2013d.

Xuchen Yao, Jonathan Berant, and Benjamin Van Durme. Freebase QA: Information

Extraction or Semantic Parsing? In Proceedings of ACL Workshop on Semantic

Parsing, 2014.

Rémi Zajac. Towards ontological question answering. In Proceedings of the workshop on

Open-domain question answering-Volume 12, pages 1–7, 2001.

318

Bibliography

John M Zelle and Raymond J Mooney. Learning to parse database queries using in-

ductive logic programming. In Proceedings of the National Conference on Artificial

Intelligence, pages 1050–1055, 1996.

Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical form:

Structured classification with probabilistic categorial grammars. Uncertainty in Arti-

ficial Intelligence (UAI), 2005.

Luke S. Zettlemoyer and Michael Collins. Online learning of relaxed CCG grammars for

parsing to logical form. In Proceedings of EMNLP-CoNLL, 2007.

Luke S Zettlemoyer and Michael Collins. Learning context-dependent mappings from

sentences to logical form. In Proceedings of ACL-CoNLL, 2009.

D. Zhang and W.S. Lee. Question classification using support vector machines. In

Proceedings of the 26th annual international ACM SIGIR conference on Research and

development in informaion retrieval, pages 26–32. ACM, 2003.

K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees

and related problems. SIAM J. Comput., 18(6):1245–1262, December 1989.

Xian Zhang, Yu Hao, Xiaoyan Zhu, Ming Li, and David R. Cheriton. Information

distance from a question to an answer. In Proceedings of the 13th ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD ’07, pages

874–883, New York, NY, USA, 2007. ACM.

L. Zhao and J. Callan. A generative retrieval model for structured documents. In

Proceedings of the 17th ACM conference on Information and knowledge management,

pages 1163–1172. ACM, 2008.

Zhiping Zheng. AnswerBus question answering system. In Proceedings of the second

international conference on Human Language Technology Research, pages 399–404.

Morgan Kaufmann Publishers Inc., 2002.

George Kingsley Zipf. The psycho-biology of language: an introduction to dynamic philol-

ogy. Boston: Houghton Mifflin company, 1935.

319

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Main Idea: Feature-driven Question Answering
	QA on Text
	QA on KB
	With Hard Alignment on Text
	With Soft Alignment on KB

	Contributions
	How to Read this Dissertation
	Related Publications

	50 Years of Question Answering
	Overview
	Conferences and Evaluation
	TREC (Text REtrieval Conference) QA Track
	QA@CLEF (Cross Language Evaluation Forum)
	Evaluation Methods
	Precision, Recall, Accuracy, F for IR/QA
	MAP, MRR for IR
	Precision-Recall Curve for IR/QA: Drawn Very Differently
	Micro F1 vs. Macro F1 vs. Averaged F1 for QA
	Permutation Test

	Significant Approaches
	IR QA: Document and Passage Retrieval
	NLP QA: Answer Extraction
	Terminology for Question Analysis
	Template Matching
	Answer Typing and Question Classification
	Web Redundancy
	Tree/Graph Matching

	IR4QA: Structured Retrieval
	KB QA: Database Queries
	Early Years: Baseball, Lunar and 15+ More
	Statistical Semantic Parsing

	Hybrid QA (IR+NLP+KB)
	IBM Watson

	A Different View: Linguistic Features vs. Machine Learning
	Linguistics: Word, POS, NER, Syntax, Semantics and Logic
	Learning: Ad-hoc, Small Scale and Large Scale
	Appendix: Publications Per Grid

	Feature-driven QA from Unstructured Data: Text
	Introduction
	Tree Edit Distance Model
	Cost Design and Edit Search
	TED for Sentence Ranking
	QA Sentence Ranking Experiment

	Answer Extraction as Sequence Tagging
	Sequence Model
	Feature Design
	Overproduce-and-vote
	Experiments
	QA Results
	Ablation Test

	Summary

	Structured Information Retrieval for QA
	Motivation
	Background
	Method
	Experiments
	Data
	Document Retrieval
	Passage Retrieval
	Answer Extraction

	Summary

	Conclusion

	Discriminative Models for Monolingual Alignment
	Introduction
	Related Work
	Bilingual Alignment
	Evaluation
	Phrase Extraction

	Monolingual Alignment
	Evaluation
	Phrase/Block Alignment

	Open-source Aligners
	GIZA++ (Adapted)
	Meteor
	TED
	Example

	Our Alignment Model
	Markov Token Alignment
	Symmetrization

	Semi-Markov Phrase Alignment
	Feature Design
	Feature Value for Phrase Alignment

	Implementation and Training

	Experiments
	Datasets
	MSR06 and Edinburgh++
	New Dataset: MTReference

	Notes on Evaluation and Datasets
	Datasets
	Evaluation Metrics: Token vs. Phrase
	``Natural Phrase'' Alignment

	Evaluation: the General Picture
	Baselines
	Results

	Evaluation: Identical vs. Nonidentical
	Evaluation: Token vs. Phrasal
	Error Analysis
	Ablation Test and Feature Weights

	Summary on Alignment
	QA with Alignment
	Motivation
	Using Alignment
	QA on TREC
	QA on Jeopardy!
	Data Preparation
	Training and Decoding
	Evaluation

	Discussion
	Summary

	Discussion: Various Aligners
	Conclusion

	Feature-driven QA from Structured Data: Freebase
	Introduction
	Approach
	Background
	SEMPRE

	Graph Features
	Question Graph
	Freebase Topic Graph
	Feature Production

	Relation Mapping
	Formula
	Implementation
	Evaluation

	Experiments
	Notes on Evaluation Metrics
	Data
	Search
	Model Tuning
	Test Results
	Error Analysis

	Comparison: Information Extraction vs. Semantic Parsing
	Evaluation Metrics
	Accuracy vs. Coverage
	Accuracy by Question Length and Type
	Learned Features
	Summary

	Conclusion

	Conclusion and Future Directions
	Summary
	Feature-driven Question Answering
	Discriminative Methods for Monolingual Alignment

	Take-home Messages
	Future Directions

	Curriculum Vita
	Examples of GIZA++ vs. jacana-align on 3 Alignment Datasets
	MSR06
	Edinburgh++
	MTReference
	Summary

	Examples of jacana-align vs. Meteor on Jeopardy!
	jacana-align Helped Answering
	Meteor Helped Answering
	Summary

	Examples of jacana-freebase vs. SEMPRE on WebQuestions
	Both Correct
	Only jacana-freebase Was Correct
	Only SEMPRE Was Correct
	Both Wrong
	Errors Due to MTurk Annotation Error
	Summary

	Bibliography

