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Abstract

In this thesis, we investigate approaches to paraphrasing entire sentences within the

constraints of a given task, which we call monolingual sentence rewriting. We introduce a

unified framework for monolingual sentence rewriting, and apply it to three representative

tasks: sentence compression, text simplification, and grammatical error correction. We also

perform a detailed analysis of the evaluation methodologies for each task, identify bias in

common evaluation techniques, and propose more reliable practices.

Monolingual rewriting can be thought of as translating between two types of English

(such as from complex to simple), and therefore our approach is inspired by statistical

machine translation. In machine translation, a large quantity of parallel data is necessary

to model the transformations from input to output text. Parallel bilingual data naturally

occurs between common language pairs (such as English and French), but for monolingual

sentence rewriting, there is little existing parallel data and annotation is costly. We modify

the statistical machine translation pipeline to harness monolingual resources and insights

into task constraints in order to drastically diminish the amount of annotated data necessary

to train a robust system. Our method generates more meaning-preserving and grammatical
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sentences than earlier approaches and requires less task-specific data.

Once candidate sentences are generated, it is crucial to have reliable evaluation meth-

ods. Sentential paraphrases must fulfill a variety of requirements: preserve the meaning of

the original sentence, be grammatical, and meet any stylistic or task-specific constraints.

We analyze common evaluation practices and propose better methods that more accurately

measure the quality of output. Often overlooked, robust automatic evaluation methodol-

ogy is necessary for improving systems, and this work presents new metrics and outlines

important considerations for reliably measuring the quality of the generated text.
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Chapter 1

Introduction

Paraphrasing—communicating the same meaning with different surface forms—is one

of the core characteristics of natural language and represents one of the greatest chal-

lenges faced by automatic language processing techniques. This work examines a col-

lection of tasks in natural language processing (NLP) that fall under the umbrella of sen-

tential paraphrasing or text-to-text generation (which we will refer to as T2T in this the-

sis). To illustrate what it means to paraphrase a sentence, consider the following sentence

from Wikipedia (2010b):

An umbrella term is a word that provides a superset or grouping of related
concepts, also called a hypernym.

This sentence can be rewritten in several ways while preserving the meaning. It can be

shortened:

An umbrella term, or hypernym, is a word that provides a superset of related
concepts.

1
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or it can be lengthened:

An umbrella term, which is also called a hypernym, is a word with a broad
meaning denoting a superset of related, more specific concepts.

It can also be simplified:

An umbrella term is a word that describes a group of related ideas. It is also
called a hypernym.

Notice that there are several ways to rewrite this sentence so that the overall meaning re-

mains the same. These examples include one or more of the following operations: deletion,

insertion, and substitution. These operations can apply on the token or phrasal level. A

paraphrase is a phrasal substitution, even if there may be a combination of all three oper-

ations on individual tokens within the paraphrase. Figure 1.1 shows paraphrases of hit the

sack and how they can be inserted into a sentence as a phrasal substitution or token-level

operations. Instead of examining individual, token-level operations, we focus on broader

phrase-level rewrites.

In this work, we examine paraphrasing entire sentences given task-specific constraints,

such as length(output) < length(input) or readability(output) > readability(input). We

demonstrate how to perform whole-sentence transformations with robust systems that re-

quire minimal annotated data by leveraging advances in statistical machine translation and

general-purpose corpora. We also establish reliable evaluation methodologies that are ap-

propriate for holistic, sentence-level transformations. The goal of this thesis is to examine

three primary aspects of T2T, specifically

2
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(a) It's time for me to                            .hit the sack

hit the hay
turn in

call it a night

(b) It's time for me to hit the          .sack
hay

(c) It's time for me to                   sack  .the
in

hit
turn

(d) It's time for me to                                .sack
night

the
a

hit
call it̂

Figure 1.1: A sentence with paraphrase candidates for the phrase hit the sack, represented
with a single phrase-level substitution (a) or token-level insertion, deletion, and substitution
operations (b–d).

Data. Models for text-to-text generation rely on parallel corpora, consisting of an

original text aligned to a that has been transformed into a text that meets the task-

specific constraints. The original and transformed texts are parallel since the sen-

tences are aligned to each other. Parallel corpora often do not reflect the requirements

of the task (e.g., text labeled simple is in fact equally or more difficult to read than

complex text). Additionally, there is frequently only one gold-standard version of

each sentence, which is problematic because there is seldom only one correct way to

change a sentence, and creating corpora for these tasks is expensive and time con-

suming.

Evaluation methodology. NLP tasks often rely on automatic evaluation, which as-

3
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signs a score to a model’s output using some automatically calculated statistics. We

rely on these metrics to assess how good a model is, since evaluating output manually

with human raters is time-consuming and expensive. Automatic evaluation is biased

in many ways but, across tasks, metrics favor systems that make minimal changes to

the input even when the objectives of the task are not met. Because human evalua-

tion is expensive and infrequently performed, unbiased evaluation methodologies are

crucial for accurately comparing systems and advancing the field.

Methods. We view each of these problems as a semi-supervised paraphrasing task

and develop a unified framework that removes the dependency on large amounts

of parallel task-specific training data and harnesses advances in statistical machine

translation (SMT) to outperform earlier models.

A clear analogy to monolingual T2T is machine translation (MT), which is a bilingual

task of translating text from a source language into a target language, under the constraints

that the generated text must be fluent (grammatical and well-formed) and adequate (mean-

ing preserving). Our T2T framework is inspired and adapted from MT and therefore use

the vocabulary of MT: the input sentence is the source; gold-standard, human-rewritten

sentences are the references or target; and system output is called the candidate. The uni-

fied T2T framework is shown in Figure 1.2, and Figure 1.3 provides a detailed look into

the T2T component.

Automatic systems for all of these tasks share the following requirements:

4
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Figure 1.2: A unified framework for T2T.

• Objectives. A set of constraints that the output must meet. All tasks share the con-

straints of fluency and adequacy and have additional task-specific constraints.

• Parallel data. Parallel text where one side reflects standard input text and the other

side represents that text transformed in accordance with the objectives of the task.

• Evaluation technique. Methodology for evaluating system output using human

judges and/or automatic metrics.

This thesis will focus on three T2T tasks of increasing complexity: sentence compres-

sion, text simplification, and grammatical error correction. Sentence compression (SC) is

the most straight-forward of these tasks because there is a single objective—output text

must be shorter than the input—which is simple to quantify by comparing the length of

the source and candidate. In its most simple form, SC is a task that only uses a deletion

operation. In this thesis, we will discuss how substitution (paraphrasing) can be used to

improve the quality of sentence compressions.

5
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Figure 1.3: Detailed schematic of an SMT-based T2T system. Constraints are encoded in
the evaluation metric.

Text simplification (TS) and grammatical error correction (GEC) are significantly more

complex, not only because they involve all three operations, but because readability and

grammaticality are underspecified terms that cannot be easily quantified. The objective

of TS is to increase the readability of an input text, however it is difficult to measure this

change automatically. There are cognitively motivated metrics for measuring the com-

plexity of text based on the average word and sentence lengths, but these metrics do not

represent fluency or adequacy and are therefore insufficient for TS evaluation. They also

6
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(a) Colorless green ideas sleep furiously.

(b) *Furiously sleep ideas green colorless.

Table 1.1: Two sentences that are nonsensical, but only (b) is ungrammatical (Chomsky,
1957, p. 15).

fail to evaluate syntactic complexity or long-distance dependencies.

GEC is the only of these tasks in which the input is not well-formed, which may ob-

fuscate the intended meaning and therefore require inference to correct.1 The objective of

GEC may appear obvious at first glance, however the definition of grammaticality is sub-

ject to interpretation, in the following ways. It can mean a sentence that is syntactically

correct but not necessarily semantically correct (Figure 1.1); notions of grammaticality can

vary based on dialect (Zanuttini and Horn, 2014); and acceptability may be sufficient, even

while not all acceptable sentences are grammatical (Otero, 1972). In addition to this lack

of consensus, grammaticality in any form is difficult to quantify automatically.

We will address these issues in subsequent chapters of this thesis.

1.1 Organization

For each task included in this thesis we explore evaluation methodologies, data for validat-

ing and testing, and generation with the unified framework. We will first provide a literature

review of the existing work related to the tasks described in this thesis (Chapter 2). The

rest of the thesis is structured as follows:
1For the work described herein, we assume that the input text for SC and TS is clean and grammatical.

7
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Part I: Sentence Compression

Evaluation: Chapter 3 identifies bias in existing practices in evaluating sentence

compressions and makes recommendations for more balanced, informative assess-

ment.

Data: In Section 3.4 we propose a new source of training data for SC and identify that

systems are unfairly compared when the degree of compression is not considered, and

Section 3.5.1 describes the creation of a new, multiple-reference test set that contains

gold-standard compressions of different lengths.

Generation: Chapter 4 demonstrates how paraphrasing is effective for compression.

In a constrained task that compresses sentences using paraphrasing and not deletion,

we determine that paraphrastic compressions are better than extractive compressions

at the same compression rate. We also motivate the use of character-based compres-

sion rates (instead of token-based). Section 4.5 describes a method for SC inspired

by statistical machine translation (SMT).2

Part II: Text Simplification

Data: In Chapter 5, we consider how to use an existing source of data, Wikipedia, for

the task of automatic sentence simplification. Section 5.2 examines features of sim-

plifications in a parallel corpus of English Wikipedia and Simple English Wikipedia

documents and Section 6.1.4 identifies problems with the using an automatically
2From joint work with Juri Ganitkevitch (Ganitkevitch et al., 2011). My contributions to that work are

discussed in Section 1.3.

8
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aligned Wikipedia corpus for this task. In this corpus, simplified sentences are not

always more simple—and sometimes are more complex—than the original sentence.

Evaluation: Section 6.1.1 investigates potential methods for automatically evalu-

ating simplified text. We examine whether MT metrics can be applied to the task,

and finding them lacking, propose a new metric for evaluating TS that incorporates a

measure of readability with adequacy and fluency.

Generation: In Chapter 6, we identify how to apply a general-purpose paraphrase

database for TS and develop features indicative of lexical and syntactic complexity.

We combine these findings with the metric described in Chapter 5 into a model that

outperforms earlier approaches.

Part III: Grammatical error correction

Data: Chapter 7 critiques the framing of GEC as a task that targets individual, iso-

lated errors and argues that the goal should be jointly correcting whole sentences and

have the goal of correcting for fluency instead of just grammaticality. To support this

new definition, we develop a new, multiple-reference test corpus.

Evaluation: Section 7.4 presents the first meta-evaluation of GEC, collecting human

judgments of GEC system outputs and calculating how reliable existing metrics are.

We propose a new metric that outperforms earlier metrics and strongly correlates

with human judgments.

9
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Generation: Chapter 8 presents a method for GEC that represents an adaptation

of SMT and uses a small number of artificially generated paraphrases to overcome

sparsity in training data.

1.2 Contributions

The primary contributions of this thesis are as follows:

1. Empirical

We describe a unified framework for monolingual T2T tasks inspired by statistical machine

translation and demonstrate how it can be applied to the complex tasks of simplification and

grammatical error correction. One aspect of this framework is to design targeted feature

functions for the paraphrase grammar, which enables the system to automatically choose

paraphrases from a large source of general-purpose paraphrases that satisfy the objective

of each task. We show that paraphrastic sentence compressions have higher fluency and

adequacy than extractive compressions at the same compression rate (Chapter 4). We also

demonstrate that better simplifications are generated using a large resource of general para-

phrases instead of task-specific paraphrases. Finally, we show that artificially generated

data significantly improves the performance of SMT-based GEC.

10
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2. Evaluation

We examine existing methodology for evaluating the output of T2T systems and identify

several instances in which the evaluation can be misleading by not reflecting human judg-

ments or making mismatched comparisons.

3. Datasets and Resources

In support of this work, we have developed and released the following resources:

• A set of language packs for performing sentence compression and text simplification

using the models described in this thesis (Napoles et al., 2016b).3 A language pack

contains pre-trained models and software needed to generate output, which can be

treated as a black box or further customized. The language packs are described in

Appendix B.

• Two annotated corpora for evaluating GEC: a set of four multiple references for the

CoNLL-2014 Shared Task test set (Sakaguchi et al., 2016) and JFLEG (Napoles et

al., 2017c), a new tuning and test set containing four multiple references for a subset

of the GUG corpus (Heilman et al., 2014).4 The motivation and process for collecting

these corpora are described in Sections 7.1 and 7.3.
3https://cwiki.apache.org/confluence/display/JOSHUA
4https://github.com/keisks/jfleg
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4. Software

We have released several software packages used for this research. Specifically:

• An integer linear programming (ILP) framework for sentence compression: A re-

implementation of Clarke and Lapata (2008)’s ILP model for sentence compression

along with an extension that allows for phrase substitution (Chapter 4). This uses an

industrial ILP solver (IBM CPLEX), allowing large problem sizes to be solved in a

relatively short time. https://github.com/cnap/sentence-compression

• Java classes for extracting readability-based features and a readability metric for text

simplification (Napoles, 2012). https://github.com/cnap/joshua

• Three GEC evaluation metrics described in Chapter 7, one of which is a re-

implementation of the grammaticality model of Heilman et al. (2014). https:

//github.com/cnap/grammaticality-metrics

• An online platform for scoring GEC output on CodaLab, with a public leaderboard

and shared metrics and evaluation data. https://competitions.codalab.org/

competitions/15475

• A pipeline for MT-based GEC, including feature extraction and creating artifi-

cial data, and an accompanying program that provides a detailed lexical and syn-

tactic analysis of changes made in parallel text. https://github.com/cnap/

smt-for-gec
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1.3 Related Publications

The work presented in this document are the author’s and have been included in published

articles or works under review. I have been fortunate to collaborate with other student and

post-doctoral researchers, and have specified below my contributions when a chapter draws

from our joint work.

• Chapter 3 extends “Evaluating sentence compression: Pitfalls and suggested reme-

dies” (Napoles, Van Durme, and Callison-Burch, 2011).

• Chapter 4 extends “Paraphrastic Sentence Compression with a Character-based Met-

ric: Tightening without Deletion” (Napoles, Callison-Burch, Ganitkevitch, and Van

Durme, 2011), which is an extension of Clarke and Lapata (2006). My contribu-

tion in this work is the development and evaluation of the compression approach

presented therein (Section 4.1).

• Chapter 4 also describes “Learning Sentential Paraphrases from Bilingual Parallel

Corpora for Text-to-Text Generation” (Ganitkevitch, Callison-Burch, Napoles, and

Van Durme, 2011), for which my contributions are the use of compression rate in

the optimization metric and for evaluation and the evaluation of paraphrastic com-

pressions, and which serves as inspiration for the approaches to text simplification

(Chapter 6) and GEC (Chapter 8).

• Chapter 5 contains analysis presented in “Learning Simple Wikipedia: A Cogitation

13
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in Ascertaining Abecedarian Language” (Napoles and Dredze, 2010).

• Chapter 6 and Chapter 5 present research initially described in “Computational Ap-

proaches to Shortening and Simplifying Text” (Napoles, 2012), and which was later

extended by Wei Xu in “Problems in Current Text Simplification Research: New

Data Can Help” (Xu, Callison-Burch, and Napoles, 2015) and “Optimizing statis-

tical machine translation for text simplification” (Xu, Napoles, Pavlick, Chen, and

Callison-Burch, 2016), the latter overlapping significantly with Napoles (2012). Un-

less specified, the research presented in this thesis draws solely from Napoles (2012).

• Chapter 7 reflects research resulting from a collaboration with Keisuke Sakaguchi,

Joel Tetreault, and Matt Post. I have outlined my contributions in each of our joint

papers below.

– “Ground Truth for Grammatical Error Correction Metrics” (Napoles, Sak-

aguchi, Post, and Tetreault, 2015): My primary contribution is development of

the GLEU metric that penalizes overlap between system output and unchanged

input (Chapter 7).

– “Reassessing the Goals of Grammatical Error Correction: Fluency Instead of

Grammaticality” (Sakaguchi, Napoles, Post, and Tetreault, 2016): For this

work, I performed analysis of grammatical edits and automatic metrics (Chap-

ter 7).

– “There’s No Comparison: Reference-less Evaluation Metrics in Grammatical

14
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Error Correction” (Napoles, Sakaguchi, and Tetreault, 2016): My contribution

is development of the grammaticality-based metrics described in Chapter 7 and

the CodaLab scoring platform.

– “JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction”

(Napoles, Sakaguchi, and Tetreault, 2017): I performed qualitative and quanti-

tative analysis of the annotations we collected, automatic evaluation of system

outputs not including the TrueSkill experiments, and qualitative analysis of sys-

tem output (Chapter 7).

• Chapter 8 describes an MT-based approach to GEC, which is an extension of

“Systematically Adapting Machine Translation for Grammatical Error Correction”

(Napoles and Callison-Burch, 2017).

1.4 Other Publications

While the entirety of my PhD research has focused on increasing the accessibility of writ-

ten language by increasing clarity of transforming the text to reach a specific target audi-

ence, I have also investigated related problems of evaluating student writing (Napoles and

Callison-Burch, 2015), quantifying the effect of ungrammatical text on the performance

of models trained on clean text (Napoles et al., 2016c), and automatically identifying con-

structive conversations in online discourse (Napoles et al., 2017b; Napoles et al., 2017a).

I also compiled and released a large-scale annotated corpus of newswire text, which

15
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is available to the community through the Linguistic Data Consortium5 (Napoles et al.,

2012). Annotated Gigaword has been used in support of a variety of related T2T tasks,

including abstractive sentence summarization (akin to compression) (Rush et al., 2015)

and generating image descriptions (Elliott and Keller, 2013).

Finally, I helped organize the first shared task on the automatic evaluation of scientific

writing (AESW16), which had the goal of identifying grammatical and stylistic errors in

scientific text (Daudaravicius et al., 2016). Drawing from the research presented in this

work, we have also proposed a new shared task for GEC (Sakaguchi et al., 2017a).

5https://www.ldc.upenn.edu
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Chapter 2

Literature Review

This chapter reviews existing work related to this thesis and is organized by task (compres-

sion, simplification, and error correction).

2.1 Sentence Compression

One of the earliest T2T tasks is document summarization, which was originally formulated

as choosing a set of sentences from a document to create a summary, such that their total

length was less than some limit. Knight and Marcu (2000) proposed sentence compres-

sion (SC), the task of selecting an ordered subset of tokens from a sentence to form a new

sentence that is shorter, and thereby more sentences can be included into an extracted sum-

mary. This is called deletion-based or extractive compression, where the only transforma-

tion is deletion. In contrast, abstractive compression involves reordering and replacements

as well as deletions. A good compression is grammatical, retains the most important infor-
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Source Compression

Knight and Marcu (2000) Beyond that basic level, The operations of the three
products vary widely.

McDonald (2006) The first new product, ATF Protype, is a line of digital
postscript typefaces that will be sold in packages of up
to six fonts.

Galley and McKeown (2007) The chemical etching process used for glare protection
is effective and will help if your office has the fluores-
cent-light overkill that’s typical in offices.

Cohn and Lapata (2008) His wife author Margo Kurtz He died last Thursday at
his home from complications following a fall, after a
decline said his wife author Margo Kurtz.

Filippova et al. (2015) State Sen. Stewart Greenleaf discusses his proposed hu-
man trafficking bill at Calvery Baptist Church in Willow
Grove Thursday night.

Table 2.1: Example sentence compressions from other published works. Struck-out text
has been deleted, bolded text has been inserted, and italicized text has been moved.

mation from the original text, and meets some target compression rate. The compression

rate—which is more accurately described as the compression ratio—describes how much

the original text has been shortened. Specifically:

Compression rate =
# words in compression

# words in original
(2.1)

Most of the previous research on sentence compression focuses on deletion using syn-

tactic information (e.g., Galley and McKeown, 2007; Knight and Marcu, 2002; Nomoto,

2009; Galanis and Androutsopoulos, 2010; Filippova and Strube, 2008; McDonald, 2006;

18
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Figure 2.1: Example of a sentence compression generated with tree transduction, from
Cohn and Lapata (2009), Figure 1. Bolded nodes are deleted.

Yamangil and Shieber, 2010; Turner and Charniak, 2005). These models operated on the

sentence level with few exceptions, such as Cohn and Lapata (2007), who used document-

level discourse information to inform compression. Closely related tasks to sentence com-

pression are headline and title generation (e.g., Dorr et al., 2003; Vandeghinste and Pan,

2004; Marsi et al., 2009). These have roughly the same goal but the generated sentence

should be descriptive of an entire document and does not need to be a complete sen-

tence (Dorr et al., 2003). In these tasks, compression rate is targeted at the character level

and not the word level. For instance, Corston-Oliver (2001) deleted characters from words

to shorten the character length of sentences and earlier work in subtitling made one-word

substitutions to decrease the character length (Glickman et al., 2006).

The leading approaches developed at the time of this work include Clarke and Lapata

(2008)’s compression model, which uses a series of constraints in an integer linear pro-

gramming (ILP) solver, and Extractive compression was pursued until Cohn and Lapata

(2008), who introduced a tree-transduction model to incorporate paraphrasing into SC (this
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approach is described in more detail in Cohn and Lapata (2009)). Cohn and Lapata learn a

synchronous tree substitution grammar (STSG) from paired monolingual sentences, which

they argue is a natural fit for sentence compression, since deletions introduce structural

mismatches (Figure 2.1). Little other work has examined abstractive compression, includ-

ing Zhao et al. (2009), who apply an adaptable paraphrasing pipeline to sentence compres-

sion, optimizing for F-measure over a manually annotated set of gold standard paraphrases.

Woodsend et al. (2010) incorporate paraphrase rules into a deletion model. In Chapter 4,

we demonstrate the viability of paraphrasing for compression, and Section 4.5 applies our

unified framework to sentence compression, outperforming other models for abstractive

compression.

Following this work, a large-scale abstractive compression corpus has been released

(Toutanova et al., 2016) and several deep learning approaches to sentence compression

have been reported, both extractive and abstractive, e.g., Filippova et al. (2015) and Rush

et al. (2015), respectively.

2.2 Text Simplification

Text simplification is related to sentence compression because deletions are common in

simplified text. However, it is a much more nuances and complicated task because lexical

and syntactic substitutions are often also necessary. The earliest approaches to automatic

text simplification (TS) rely on handwritten rules, e.g., PEST (Carroll et al., 1999), its SYS-

TAR module (Canning et al., 2000), and the method described by Siddharthan (2006). Later
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work in sentence simplification favors automatic or semi-supervised methods for acquiring

simplifying rules. Woodsend and Lapata (2011) encoded the simplification problem as an

integer linear program (ILP), which maximized the likelihood of sentence transformations

and rewarded sentences that were shorter than a given target. Their best system, RevILP,

used a quasi-synchronous grammar extracted from the revision history of Simple English

Wikipedia. More similar to the model we will present in Chapter 6, early more sophisti-

cated approaches were inspired machine translation and learn a phrase table from parallel

unsimplified–simplified text (from English Wikipedia and Simple English Wikipedia, re-

spectively). Zhu et al. (2010) used a method inspired by MT to generate simplifications

(TSM). Their translation grammar consisted of three operations: (1) splitting syntactic con-

stituents into a new sentence (e.g., SBAR or WHNP), (2) dropping and reordering nodes,

and (3) word and phrase substitution. Coster and Kauchak (2011a) applied existing MT

methods to extract translation rules, not limiting operations and also introducing phrasal

deletions. Wubben et al. (2012) also used phrase-based MT for simplifying text, but fur-

ther reranks the n-best list to favor output that is less similar to the original text.

Chapter 6 describes how we simplify text in our unified framework, using a combina-

tion of paraphrases and deletions from a large database of syntactic and lexical paraphrases.

This approach was later extended in Xu et al. (2016). Table 2.2 contains example simpli-

fications. Notice how the output improves from the rule-based, ILP method (Woodsend

and Lapata, 2011) to the MT-based approach with rules learned from Wikipedia (Coster

and Kauchak, 2011a) to rules from a larger paraphrase corpus (Xu et al., 2016). The para-
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Woodsend and Lapata (2011) Wonder has recorded several critically acclaimed al-
bums and hit singles, and . He writes. and He produces
makes songs for many of his label mates and outside
artists as well.

Coster and Kauchak (2011a) Nicolas Anelka is a French footballer football player
who currently . He plays as a striker for Chelsea in the
English premier league.

Xu et al. (2016) Jeddah is the principal main gateway to Mecca, Islam’s
holiest city, which able-bodied sound Muslims are re-
quired have to visit at least once in their lifetime life.

Table 2.2: Example sentence simplifications from other published works. Struck-out text
has been deleted, bolded text has been inserted, and italicized text has been moved.

phrases used in this work (Ganitkevitch et al., 2011) were a precursor to the Paraphrase

Database (PPDB) (Ganitkevitch and Callison-Burch, 2014). Subsequent to this thesis, the

Simple PPDB was released, which contains a subset of the PPDB identified to contain

simplifying lexical transformations (Pavlick and Callison-Burch, 2016).

2.3 Grammatical Error Correction

One of the oldest NLP tasks is grammatical error correction (GEC). Beginning in the 1980s,

research groups at IBM and Bell Labs focused on spelling and grammar correction (Hei-

dorn et al., 1982; MacDonald et al., 1982; Richardson and Braden-Harder, 1988). Earlier

approaches to grammatical error correction developed rule-based systems or classifiers tar-

geting specific error types such as prepositions or determiners (e.g., Chodorow and Lea-

cock, 2000; Eeg-Olofsson and Knutsson, 2003; De Felice and Pulman, 2008; Gamon et al.,
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2008; Tetreault and Chodorow, 2008; Rozovskaya et al., 2014). In a departure from this

limited approach, Park and Levy (2011) proposed a noisy-channel model to perform whole-

sentence grammatical error correction, but trained models for different error types instead

of using a joint model. The 2012 and 2013 shared tasks in GEC both targeted only certain

error types (Dale et al., 2012; Ng et al., 2013), to which classification was appropriately

suited. However, the 2014 CoNLL Shared Task introduced a new problem of simultane-

ously correcting 28 types of grammatical errors, encouraging several MT-based approaches

to GEC (e.g., Felice et al., 2014; Junczys-Dowmunt and Grundkiewicz, 2014). Two of the

best CoNLL 2014 systems used MT, treating it as a black box and reranking output (Felice

et al., 2014), and customizing the tuning algorithm and using lexical features (Junczys-

Dowmunt and Grundkiewicz, 2014). The other leading system was classification-based and

only targeted certain error types (Rozovskaya et al., 2014). Performing less well, Wang et

al. (2014) used factored statistical MT, representing words as factored units to more adeptly

handle morphological changes. Shortly after the shared task, a system combining classi-

fiers and statistical MT with no further customizations reported better performance than all

competing systems (Susanto et al., 2014).

The current leading GEC systems all use MT in some form, including hybrid ap-

proaches that use the output of error-type classifiers as MT input (Rozovskaya and Roth,

2016) or include a neural model of learner text as a feature in SMT (Chollampatt et al.,

2016); phrase-based MT with sparse features tuned to a GEC metric (Junczys-Dowmunt

and Grundkiewicz, 2016); and neural MT (Yuan and Briscoe, 2016).
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Corpus # sents. Characters/sentence Sentences changed LD

AESW 1.2M 133 39% 3
FCE 34k 74 62% 6
Lang-8 1M 56 35% 4
NUCLE 57k 115 38% 6

Table 2.3: Publicly available parallel corpora available for GEC.

Source Sentence

FCE Also, in {SPELLING: Augost → August} I will be studying a summer
{WORD ORDER: English course→ course in English}.

NUCLE Dubai will be a good example for this as previously the country got almost no
natural water {MECHANICAL: ε → .} {LINK WORD: and→ But} {PRONOUN:
they→ it} {AGREEMENT use→ uses} irrigation to bring natural water to the
country.

Table 2.4: Example sentences from error-coded GEC corpora, with the type of error in
fixed-width font.

Source Sentence

AESW Then each thread is compared with the adjacent elements, ; if equal, the corre-
sponding position of the bit vector is set to 0, otherwise it is set to 1.

Lang-8 However, only I have to be careful about slipping doesn’t take care.

Table 2.5: Example sentences from parallel GEC corpora. Bold text is inserted and struck-
out text is deleted.

2.3.1 GEC Corpora

There are two broad categories of parallel data for GEC. The first is error-coded text, in

which annotators have coded spans of learner text containing an error, and which includes

the NUS Corpus of Learner English (NUCLE; 57k sentence pairs) (Dahlmeier et al., 2013),
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the Cambridge Learner Corpus (CLC; 1.9M pairs per Yuan and Briscoe (2016)) (Nicholls,

2003), and a subset of the CLC, the First Certificate in English (FCE; 34k pairs) (Yan-

nakoudakis et al., 2011).

The second class of GEC corpora is parallel datasets, which contain the original text and

a corrected version of the text, without explicitly coded error corrections. These datasets

are cheaper to collect, significantly larger than the error-coded corpora, and may contain

more extensive rewrites. The related field of MT uses parallel texts for training and evalu-

ation. Two existing parallel corpora for GEC are the Automatic Evaluation of Scientific

Writing (AESW) corpus, with more than 1 million sentences of scientific writing cor-

rected by professional proofreaders (Daudaravicius et al., 2016), and the Lang-8 Corpus

of Learner English, which contains 1 million sentence pairs scraped from an online forum

for language learners, which were corrected by other members of the lang-8.com online

community (Mizumoto et al., 2011). Table 2.3 describes the sizes of these corpora and

examples from error-coded and parallel corpora are in Table 2.4 and 2.5, respectively. In

Chapter 7, we motivate why the GEC community should move away from error-coded

corpora and additionally create a new, multiple reference test set without error coding.

2.4 T2T Evaluation

In the three T2T tasks contained in this thesis, little research has focused on evaluation

methodologies and meta-evaluation. A common metric used for all three is the F-score,

which is a measure of accuracy that combines precision (P) and recall (R). The β value
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specifies how to weigh precision versus recall, and the default parameter, β = 1 is the

harmonic mean of the precision and recall.

Fβ = (1+β
2)

P ·R
β 2 ·P+R

(2.2)

Because sentence compression has primarily been a deletion-based task, evaluation is

relatively simple: calculate the accuracy or F-score of words selected for the output com-

pared to the gold standard. (Riezler et al., 2003) proposed evaluating with the F-score

over dependency relations of the candidate compression compared to the gold standard.

The machine-translation metric, BLEU (Papineni et al., 2002), has also been applied to

compression as well as other monolingual generation tasks, including text simplification.

BLEU has been shown to correlate with human ratings of machine translation output (Dod-

dington, 2002), however is not universally true for T2T output, as this thesis shows.

For text simplification, F-score over words has also been used as a metric. The Flesch-

Kincaid grade level, designed to automatically assess the readability of a text (Kincaid et

al., 1975), has also been applied to evaluate the output of TS systems. Wubben et al. (2012)

perform a meta-evaluation of BLEU and Flesch-Kincaid compared to human judgments,

finding neither captures adequacy. Later, Xu et al. (2016) compares newly proposed TS

metrics to human judgments with multiple references for the first time, but also finds BLEU

insufficient.

A series of shared tasks starting in 2011 prompted the development and scrutiny of new
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Method Accuracy Alignment

wdiff 0/1 {Xinhua→} The xinhua portion of the English Gigaword3

M2 1/2 {ε→ The} {Xinhua portion of→ xinhua portion of} the English
Gigaword3

Reference correction {ε → The} Xinhua portion of the English Gigaword3

Table 2.6: Example candidate text aligned to the reference with two different methods.
Alignment spans are denoted with {}, and Accuracy indicates the accuracy of the candidate
according to that alignment.

metrics for evaluating GEC systems. The Helping Our Own (HOO) shared tasks evalu-

ated systems using precision, recall, and F-score against annotated gold-standard correc-

tions (Dale and Kilgarriff, 2011; Dale et al., 2012). One issue is the difficulty of aligning

candidate text to the error-coded spans in the reference. In HOO, the Unix wdiff utility1

found the alignment, but systems were sometimes penalized because of how the texts were

aligned. Dahlmeier and Ng (2012) proposed the MaxMatch (M2) scorer to address this is-

sue, which calculates the F-score over an edit lattice that captures phrase-level edits, where

the lattice finds the optimal alignment between the candidate and reference. Table 2.6

shows the difference between the two alignments.

M2 was the official metric of the subsequent CoNLL Shared Tasks on GEC (Ng et al.,

2013; Ng et al., 2014). Felice and Briscoe (2015) proposed I-measure be an interpretable

measure, indicating whether a candidate improved or degraded the grammaticality of the

source. I-measure computes the accuracy of a token-level alignment between the original,

1https://www.gnu.org/software/wdiff/
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candidate, and reference sentences. In Section 7.4 we will propose a new metric, General-

ized Language Evaluation Understanding (GLEU) that captures both fluency and adequacy

with n-gram overlap (Napoles et al., 2015).
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Part I

Sentence Compression:

A Sandbox for Exploring T2T

In the next two chapters, we will introduce core concepts that motivate and will be ex-

plored in this thesis. To illustrate these concepts, we will apply them to the most simple T2T

task, sentence compression—which is simple in terms of it having only one, easily mea-

sured objective. This part will establish the pattern that will be replicated for each T2T task

examined in this thesis: Chapter 3 examines the data and evaluation measures available for

sentence compression and makes proposals enabling more reliable evaluation and abstrac-

tive sentence compression. Chapter 4 will prove the viability of applying paraphrases for

shortening text and introduce a framework for generating paraphrastic compressions, the

same framework which will be the bases of our models for generating text simplification

and grammatical error correction. The findings and techniques we discuss here will be ap-

plied to and expanded in two more sophisticated and complicated tasks, text simplification

and grammatical error correction.
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Sentence compression is the task of automatically shortening text, while ensuring that

the generated text is grammatical and faithful to the meaning of the original sentence. Be-

cause the output is shorter than the original, it is natural that some meaning is lost, but

the most important meeting of the original sentence should be maintained. Sentence com-

pression is a step of the extractive summarization pipeline, which involves selecting sen-

tences from a document to extract to form a summary. The summary can be further con-

densed with sentence compression. Table 2.7 shows examples of compressed sentences.

We choose sentence compression as the first task explored in this thesis because the objec-

tive is easily measured—is the candidate text shorter than the original—and therefore we

can focus research on measuring grammaticality and meaning retention of the output while

knowing the primary objective of the task is met.

Before discussing methods for applying MT techniques to monolingual translation

tasks, we first examine evaluation methodology. In the absence of a shared task, which

increases validity by comparing systems under the same conditions, we examine evaluation

practices used in sentence compression research with the goal of developing informative

and unbiased metrics.2 The findings of this study are informative for the best practices for

evaluating other T2T and NLG tasks more broadly, in particular those visited in Chapters 5

and 7. Specifically, our primary conclusion is that compression rate is a strong predic-

tor of compression quality, and that perceived improvement over another model can be a

byproduct of producing longer output. In other words, conservative systems are rewarded

2Even shared tasks can lead to bias if systems over-optimize to the data used for that task, as we will
discuss in the context of GEC in Chapter 7.
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Original Microsoft alone has lost one-third of its market value.

Extractive Microsoft lost one-third of its market value.

Abstractive Microsoft’s market value dropped by 1/3.

Original The first new product, ATF ProType, is a line of digital PostScript type-
faces that will be sold in packages of up to six fonts.

Extractive ATF ProType is a line of digital PostScript typefaces that will be sold in
packages of up to six fonts.

Abstractive The initial product, ATF ProType, is sold in packages of up to six
PostScript typefaces.

Original Actual hardware and maintenance costs have decreased 40 percent over
the years, while the number of users supported has increased by over 300
percent since 1983.

Extractive Actual hardware and maintenance costs have decreased .

Abstractive Since 1983, hardware and maintenance costs decreased while supporting
more users.

Table 2.7: Examples of compressed sentences from the Ziff–Davis corpus (Knight and
Marcu, 2002). Extractive is the gold-standard from that corpus; Abstractive is included to
demonstrate how paraphrasing can impact compression performance. Paraphrased text is
indicated in italics.

for making fewer changes even if the objective of the task is not fulfilled.

Having identified fair evaluation practices for both extractive and paraphrastic sentence

compression, Chapter 4 will discuss methods for generating abstractive compressions using

paraphrasing. Section 4.13 compresses sentences with paraphrasing alone (without dele-

tion), and demonstrates that sentences generated with just paraphrases are more grammat-

ical and retain more meaning than extractive compressions at the same compression rate.

3These findings originally appeared in “Paraphrastic Sentence Compression with a Character-based Met-
ric: Tightening without Deletion” (Napoles, Callison-Burch, Ganitkevitch, and Van Durme, 2011).
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Section 4.54 introduces a hybrid model for sentence compression that uses both deletion

and paraphrasing. At its core, this model is a SMT pipeline that has been fully customized

for sentence compression. We detail how the pipeline can be adapted for any T2T task,

and describe compression-specific modifications that we implement. While earlier works

have incorporated MT as a black box in their T2T pipeline, we systematically adapt the

MT pipeline for monolingual tasks and demonstrate how to use a paraphrase grammar for

MT, with curated feature functions to represent each paraphrase transformation. We show

that the MT-based approach is more expressive than a leading extractive model at that time,

supporting the use of paraphrasing in sentence compression. Later in this thesis, we will

extend this approach for the more complex T2T tasks of simplification (Chapter 6) and

grammatical error correction (Chapter 8).

4This section first appeared in “Learning Sentential Paraphrases from Bilingual Parallel Corpora for Text-
to-Text Generation” (Ganitkevitch, Callison-Burch, Napoles, and Van Durme, 2011), for which my contribu-
tions are the use of compression rate in the optimization metric and for evaluation, as well as the evaluation
of paraphrastic compressions.
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Chapter 3

Unbiased evaluation of sentence

compression

A crucial aspect of any task is determining how to evaluate the outcome effectively and

efficiently. This chapter surveys previous evaluation methodologies for sentence compres-

sion, provides analysis of their shortcomings, and makes concrete recommendations for

more effective evaluation. Like other language generation systems, sentence compression

systems are evaluated using automatic methods, which are quick and cheap but imprecise,

and manual evaluation, which is more reliable but expensive. The majority of compression

models before this work focused on extractive compressions, but we additionally exam-

ine the problems of evaluating paraphrastic compression, for which automatic evaluation is

more complicated because simple string matching to a reference is insufficient. We demon-

strate that compression rate is a strong predictor of compression quality and that perceived
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improvement over other models is often a side effect of producing longer output. Based on

this analysis, we make recommendations for unbiased system comparisons.

Sentence compressions should be judged based on the following three criteria:

1. Length. Compressions should have fewer tokens and/or characters than the input.

In some situations, a very compact input sentence cannot be shortened any more

than it already is. For example, it is difficult to imagine compressing the sentence

He was mad.

2. Adequacy. One important function of a sentence compression system is choosing

which part of a sentence can be deleted, which almost always leads to a loss in

meaning or nuance. Very few compressions have 100% adequacy, and therefore

compressions are evaluated in terms of retention of the most important meaning of

the input.

3. Fluency. Compressed sentences should be grammatical and well-formed. A separate

but related task is headline generation (e.g., Banko et al., 2000), which has a more

lax notion of fluency, since headlines are often incomplete sentences, e.g., Finding

Beauty in Function (Coleman, 2017).

It is simple to measure length, but fluency and adequacy are difficult to measure for any

artificially generated natural language, and therefore many of the problems identified in

this work are relevant for other T2T tasks. (The reader may suggest machine translation

metrics for evaluating T2T, however in later chapters (5 and 7) we will provide evidence
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against their use in a monolingual setting.)

Shared tasks are popular in many areas like machine translation and summarization as

a way to compare system performance in an unbiased manner. Unlike other tasks, such as

machine translation, there is no shared-task evaluation for compression, even though some

compression systems are indirectly evaluated as a part of the Document Understanding

Conference (DUC) summarization shared tasks (e.g., Madnani et al., 2007; Zajic et al.,

2006). The benefits of shared-task evaluation have been discussed before (e.g., Belz and

Kilgarriff, 2006; Reiter and Belz, 2006), and they include comparing systems fairly under

the same conditions. Unbiased evaluation, following the guidelines we establish in this

chapter, is critical in the absence of shared tasks.

Human evaluation is preferable but frequently not performed due to its cost, making

ethical and informative automatic evaluation even more important. We focus primarily

on aspects of automatic evaluation, however we will also discuss subtleties to appropriate

experimental design for human evaluation, which can give misleading results if not handled

properly.

3.1 A Note on Terminology

Sentence compressions are described by their compression rate, which is defined as

CR =
Length of candidate sentence

Length of source sentence
×100 (3.1)
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A compression rate of 90 means that the candidate is 90% the length of the original sen-

tence, or only 10% shorter. Unintuitively, a higher compression rate indicates a longer

sentence. In this thesis we will follow convention and refer to the compression rate as a

rate, even though it would be better described as the compression ratio.1 Length has typ-

ically been measured in the number of tokens, however in the following chapter we argue

for a character-based compression rate.

3.2 Compression Corpora

We refer the reader to the literature review (Chapter 2) for a more comprehensive discussion

of sentence compression, and here provide a brief overview of SC, focusing on evaluation

and corpora. There are two types of sentence compressions: extractive and abstractive. Ex-

tractive compression returns an ordered subset of words from the original sentence that

fulfills the three criteria (length, adequacy, fluency), whereas abstractive compressions

paraphrase the original sentence and may include movement and substitutions in addition

to deletions. Because it was developed in support of extractive summarization (Knight

and Marcu, 2000), compression has mostly been framed as a deletion task, generating ex-

tractive compressions (e.g., McDonald, 2006; Galley and McKeown, 2007; Clarke and

Lapata, 2008; Galanis and Androutsopoulos, 2010). There are limited compression cor-

pora due to the infrequency of naturally occurring parallel compressed text. A potential

1To our knowledge, the term compression rate applied in this way originated in Teufel and Moens (1997),
who used it to describe the constant P(s∈S ), indicating the probability a sentence is included in an extracted
summary (Kupiec et al., 1995, Section 2.2).
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source of parallel compressions is in abstracts of full-length articles, such as the Ziff–Davis

corpus, which contains news articles related to computers, approximately half of which

have human-authored abstracts (Harman and Liberman, 1993). Knight and Marcu (2002)

identified 1,067 sentence pairs where a sentence in the abstract was an ordered subset of

a sentence in the main article.2 However, extractive compressions do not occur with high

frequency in natural text because humans tend to write abstractive compressions, which are

characterized by paraphrases (Marsi et al., 2010). An alternative to this is to create artificial

corpora by manually shortening sentences. The Clarke and Lapata (2008) corpus consists

of extractive compressions for 3000 sentences from news articles (1443 sentences) and

broadcast news transcripts (1370 sentences). These corpora both contain one gold standard

for each sentence. Cohn and Lapata (2009) released a small corpus which is better suited: it

comprises 30 news articles compressed by one or two annotators with paraphrasing, how-

ever it is small with only 575 parallel sentences. Following the completion of the work

described in this chapter, a new abstractive compression corpus was released, containing

more than 6,000 sentences from diverse sources, compressed up to 5 times each (Toutanova

et al., 2016).
2In the context of SC, this extracted corpus is also referred to as the Ziff–Davis corpus, not to be confused

with the original complete corpus.
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3.3 Evaluation Methodologies

While evaluation by human judges is almost always preferable, it is expensive and time

consuming, and therefore automatic metrics are often used as a proxy. When possible, the

results of both automatic and manual evaluation should be reported. Manual evaluation is

more reliable and gives a clearer picture of the system quality, and automatic metric scores

provide a measure against which other systems can compare. We will review current prac-

tices in automatic and manual evaluation and in the next section identify faulty assumptions

of evaluation methodologies, which can skew the result.

Automatic Measures

One of the most widely used automatic metrics for extractive compression is the F1 mea-

sure (Equation 2.2) over grammatical relations of the gold-standard compressions (Riezler

et al., 2003), as illustrated in Figure 3.1. F1 has also been used over token unigrams (Mar-

tins and Smith, 2009) and bigrams (Unno et al., 2006). Unno et al. (2006) compared the

F1 measures to BLEU scores (using the gold standard as a single reference) over varying

compression rates and found that BLEU behaves similarly to both F1 measures, which is an

unsurprising result because BLEU uses a weighted average of n-gram precision (Papineni

et al., 2002). F1 was also found to have higher correlation with human judgments than

Simple String Accuracy, a common metric for evaluating NLG output quality (Bangalore

et al., 2000). A syntactic approach to SC evaluation considers the alignment over parse
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Gold-standard extracted compression:

twelve cartoons are offensive to the prophet mohammad .

nsubj
cop

punct
pobj
det

compoundprep

-ROOT-

root

nmod

Hypothesis extracted compression:

twelve cartoons offensive to the prophet mohammad .

nsubjnmod
det

compoundprep

-ROOT-

root

punct
pobj

Hypothesis paraphrased compression:

12 cartoons insult the prophet mohammad .

nsubj
compound

det
compound

-ROOT-

root dobj
punct

Figure 3.1: A gold-standard (extractive) compression and candidate extractive and ab-
stractive compressions. The dependency relations in each of the candidates that are also
present in the gold dependency parse are bold.

trees (Jing, 2000), and a similar technique has been used with dependency trees to evalu-

ate the quality of sentence fusions (Marsi and Krahmer, 2005). The only metric that has

been shown to correlate with human judgments is F1 over grammatical relations, which are

tuples from the dependency parse in the form ⟨relation, governor, dependent⟩ (Clarke and
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Lapata, 2006). However, even this is not entirely reliable because it is dependent on parser

accuracy and the type of dependency relations used. For instance, the RASP parser uses 16

grammatical dependencies (Briscoe, 2006) while there are over 50 original Stanford De-

pendencies (Marneffe and Manning, 2008) and 37 Universal Dependencies (De Marneffe

et al., 2014, Version 2). Evaluation with fine-grained dependencies would quite possibly

result in lower scores than coarse dependencies. These are common methods for evalu-

ation in the community and should not be dismissed, but these potentially confounding

factors must be considered. Except for BLEU, all of these evaluations have been applied

and tested for evaluating extractive compressions, and as such are unsuitable for abstractive

compression. Later in this thesis, we will identify problems with applying BLEU directly

to evaluate monolingual T2T and suggest alternatives (Chapters 6 and 7).

Manual Judgments

The goal of automatic metrics is to serve as a proxy for human judgments and therefore,

when possible, manual evaluation is preferable to determine semantic and syntactic suit-

ability. The most widely practiced manual evaluation methodology was first used by Knight

and Marcu (2002). Judges grade each compressed sentence against the original and make

two separate decisions: How grammatical is the compression? How much of the mean-

ing from the original sentence is preserved? Decisions are made along a Likert-like 5-level

scale (Likert, 1932). Contextual cues and discourse structure may not be a factor to consider

if the sentences are generated for use out of context and except for a few exceptions (e.g.,
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Daumé III and Marcu, 2002; Martins and Smith, 2009; Lin, 2003) most compression sys-

tems consider sentences out of context. An example of a context-aware approach consid-

ered the summaries formed by shortened sentences and evaluated the compression systems

based on how well people could answer questions about the original document from the

summaries (Clarke and Lapata, 2007). This technique was previously used to evaluate

extractive summarizations (Mani et al., 2002; Morris et al., 1992).

While fluency can be assessed by reviewing the output alone, the original sentence or

a reference compression is necessary to judge the adequacy. As we will discuss in the fol-

lowing section, this can influence humans to prefer extractive compressions over abstrac-

tive when the extractive compression has higher overlap with the original (or reference)

sentence.

3.4 Problematic Assumptions

Having reviewed how compressions are evaluated, we now identify problematic practices.

Automatic evaluation operates under two often incorrect assumptions:

The Gold Standard Is Complete and Correct.

In sentence compression, candidates are evaluated against a single gold-standard compres-

sion. This makes the faulty assumption that the gold standard is the single best compres-

sion, when in fact many equally good compressions may exist. In reality, there may exist

acceptable compressions of different lengths or equally good compressions of the same
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Length Original sentence

31 tok.
198 char.

Kaczynski faces charges contained in a 10-count federal indictment nam-
ing him as the person responsible for transporting bombs and bomb parts
from Montana to California and mailing them to victims .

Length Gold-standard compressions

17 tok.
113 char.

Kaczynski faces charges naming him responsible for transporting bombs
to California and mailing them to victims .

18 tok.
114 char.

Kaczynski faces charges naming him responsible for transporting bombs
and bomb parts and mailing them to victims .

18 tok.
113 char.

Kaczynski faces a 10-count federal indictment for transporting bombs and
bomb parts and mailing them to victims .

Table 3.1: A sentence and three acceptable extractive compressions created by different
annotators.

length expressed in different ways. This holds true for paraphrastic compressions as well

as extractive compressions, where multiple sets of deletions may be acceptable. An exam-

ple of the latter case is found in Table 3.1, which shows three alternate compressions of the

same length. For text simplification and grammatical correction, we will also identify in-

stances in which the gold standards are not correct in that they do not exhibit the respective

task objectives.

Multiple gold standards would provide references at different compression lengths and

reflect different deletion choices (see Section 3.5.1). Since no large corpus with multiple

gold standards exists to our knowledge, systems could instead report the quality of com-

pressions at several different compression rates, as Nomoto (2008) did. Alternatively, to fix
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a length for the purpose of evaluation, systems could evaluate compressions that are of a

similar length as the gold standard compression.3 Output length is controlled for evaluation

in some other areas, notably the DUC tasks.

Text Is Compressed with Deletions and Not Substitution.

Several approaches to compression introduce reordering and paraphrase operations (e.g.,

Cohn and Lapata, 2008; Woodsend et al., 2010; Napoles et al., 2011b; Ganitkevitch et al.,

2011). For paraphrastic compressions, manual evaluation alone reliably determines the

compression quality. Because automatic evaluation metrics compare candidates to extrac-

tive gold standards, they cannot be applied to paraphrastic compression. To apply auto-

matic techniques to substitution-based compression, one would need a gold-standard set of

paraphrastic compressions. These are rare. Cohn and Lapata (2009) created an abstractive

corpus, which contains word reordering and paraphrasing in addition to deletion, however

this corpus is small (575 sentences) and only includes one possible compression for each

sentence.

In manual evaluation, bias can be introduced in the following ways:

Experimental Setup

We identify two sources of bias dependent on how candidates are presented to judges. (De-

tails about these experiments are found in Appendix A.4.) First, when the compression is
3This obviously prevents a system from deciding the extent of compression, but the target rate is normally

hard-coded anyway.
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Figure 3.2: Compression rate strongly correlates with human judgments of meaning and
grammaticality. Gold represents gold-standard compression and Deletion the results of
a leading deletion model. Gold.1 grammar judgments were made alongside the original
sentence and Gold.2 were made in isolation.

presented alongside the original sentence, perceived grammaticality decreases. Figure 3.2

shows that the mean grammar rating for the same compressions is on average about 0.3

points higher when the compression is judged in isolation, without showing the original

sentence. Fluency judgments can be made without comparison to the original or a refer-

ence statement. Adequacy can be measured by comparing the compression to the original

sentence.4 Secondly, when comparing extractive and paraphrastic candidate compressions,

judges prefer sentences with higher overlap with the input sentence, which is almost always

the extractive version.
4Before 2016, the adequacy of MT systems was judged by comparing the candidate translation to a refer-

ence instead of to the original sentence, which would require human raters fluent in both languages. Graham
et al. (2017) identified this framework led to a reference-bias, and subsequent WMT evaluations have used
bilingual raters who can compare the candidate to the original sentence (Bojar et al., 2016).
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Originally reported Consistent Compression Rates
Model CR (%) Meaning Grammar CR (%) Meaning Grammar

C&L′ 78 3.76 3.53 64 3.83 3.66
McD 69 3.50 3.17 64 3.94 3.87

Table 3.2: Mean quality ratings of two competing models when the compression rates are
mismatched versus consistent. The first three columns as originally reported by Clarke and
Lapata (2008), with non-equivalent compression rates.

Different Groups of Judges

Another factor is the group of judges. The McD entries in Table 3.25 represent the same

set of sentences generated from the same model evaluated by two different sets of judges,

one of which was trained and familiar with the task, and the other was an untrained group

of crowdsourced workers (collected using the framework described in Appendix A.4). The

mean grammar and meaning ratings in each evaluation setup differ by 0.5–0.7 points.

3.5 Recommendations

We make the following recommendations for fair and informative evaluation of sentence

compression:

Multiple Reference Corpora

SC candidates should be evaluated on test sets with multiple references in order to capture

allowable variations since there are often many equally valid ways of shortening a sentence.

5Specifics about these models will be explained in Section 3.4.
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Multiple references should also enable comparisons at different compression rates. We

have created a small multi-reference gold-standard collection of 50 sentences at 10 differ-

ent compression rates, which can be used for testing to benchmark systems (Section 3.5.1).

Other alternatives include deriving such corpora from existing corpora of multi-reference

translations. The longest reference translation can be paired with the shortest reference to

represent a long sentence and corresponding paraphrased gold-standard compression. A

similar approach was used in Zhao et al. (2009), who treated the first in a set of multiple-

reference translations as the source and the second as the reference for paraphrase evalua-

tion. Additionally, this corpus could be used as a reference for human evaluation to prevent

biasing judges towards extractive compressions that contain more overlap with the original

sentence than abstractive compressions. In Chapter 4, we address this issue by compress-

ing the longest sentence from each set of reference translations (Huang et al., 2002) and

randomly choosing a sentence from the set of reference translations to use as the standard

for comparison. In the absence of a multiple-reference corpus, models should be tested on

the same sentences, because different corpora will likely have different features that make

them easier or harder to compress.

Character-Based Lengths

Few existing efforts have used character-based constraints. Except for DUC 2004 (Over

and Yen, 2004), which imposed a character length limit, other DUC tasks had only word

limits. Character lengths have been used for application-driven methods, such as subti-

46



CHAPTER 3. UNBIASED EVALUATION OF SENTENCE COMPRESSION

tling (Glickman et al., 2006) and summarizing for mobile devices (Corston-Oliver, 2001).

Although in the past strict word limits have been imposed for various documents, infor-

mation transmitted electronically is often limited by the number of bytes, which directly

relates to the number of characters (1 byte = 1 character). Mobile devices, SMS messages,

and microblogging sites such as Twitter are essential for quickly spreading information,

and mobile devices have become a standard means of consuming text. In this context, it

is important to consider character-based constraints. For extractive techniques, character

length is not as relevant because the length of words in the source cannot be shortened. The

example in Table 3.1 shows three different extractions that have similar character and to-

ken lengths. However, paraphrasing allows original text to be replaced with shorter words

and phrases, in which case the token length may not be compressed even though there

are fewer characters. As models move beyond exclusive reliance on word-deletion, we

suggest switching to characters as the basic unit of measurement. This concept will be

demonstrated in the following section (4.1).

Automatic Metrics

In addition to the multiple references identified above, paraphrastic compressions would

require different automatic metrics. ROUGE or BLEU could be applied to a set of multiple-

reference compressions, although BLEU is not without its own shortcomings (Callison-

Burch et al., 2006). One benefit of both ROUGE and BLEU is that they are based on n-

gram recall and precision (respectively) instead of word-error rate, so reordering and word
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substitutions can be evaluated. Dorr et al. (2003) used BLEU for evaluating candidates in

headline generation which exhibited rewording, and headline generation is closely related

to sentence compression.

Consistency in Manual Setup

How candidate sentences are presented to human judges affects their ratings, and so re-

searchers should be careful to state when whether the original or a reference compression

is included for judging compressions. Annotator instructions should be made available

as well, to reduce variability between groups of judges—or output from existing models

should be (re-)evaluated against those of a proposed model.

Control Compression Rate

In order to make non-vacuous comparisons of different models, a system also needs to be

constrained to produce the same length output as another system, or report results at least

as good for shorter compressions. Other methods for limiting quality disparities introduced

by the compression rate include fixing the target length to that of the gold standard (e.g.,

Unno et al., 2006). Alternately, results for a system at varying compression levels can be

reported as was done in Nomoto (2008), which included results ranging over compression

rates 0.50–0.70. This allows for comparing new systems to the existing at specific lengths

and should be emulated, if possible, for comparison against systems that cannot control

output length. Compression rate is such an important component of SC evaluation that we
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will discuss it in more detail in the following section.

3.5.1 Compression Rate Predicts Performance

The dominant assumption in compression research is that the system makes the determi-

nation about the optimal compression length. For this reason, compression rates can vary

drastically across systems. In order to get unbiased evaluations, systems should be com-

pared only when they are compressing at similar rates.

The only previous work that has seriously considered the effect of the compression rate

is Unno et al. (2006), which provides results over a range of different compression rates. It

seems intuitive that sentence quality diminishes in relation to the compression rate. Each

word deleted increases the probability that errors are introduced. However this relies on the

assumption that every word carries equal importance for the meaning or grammaticality.

Alternately, if some words do not have as much effect on the meaning and/or grammatical-

ity, equally good compressions of the same sentence should exist at different compression

rates. To verify this notion, we generated compressions at decreasing compression rates

of 250 sentences randomly chosen from the written corpus of Clarke and Lapata (2008),

generated by our implementation of a leading extractive compression system (Clarke and

Lapata, 2008). We collected human judgments using the Likert-like scales of meaning and

grammar described above. Both quality judgments decreased linearly with the compression

rate (see Deletion in Figure 3.2).

As this behavior could have been an artifact of the particular model employed, we next
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developed a unique gold-standard corpus for 50 sentences selected at random from the same

corpus described above. The authors manually compressed each sentence at compression

rates ranging from less than 10 to 100. Using the same setup as before, we collected human

judgments of these gold standards to determine an upper bound of perceived quality at

a wide range of compression rates. Figure 3.2 demonstrates that meaning and grammar

ratings decay more drastically at compression rates below 40 (see Gold). Manual analysis

suggests that people are often able to practice “creative deletion” to tighten a sentence up

to a certain point, before hitting a compression barrier, shortening beyond which leads to

significant meaning and grammatically loss.

3.5.2 Mismatched Comparisons

Several results reported in earlier research have not heeded the observations made in Sec-

tion 3.4. We have observed that a difference in compression rates as small as 5 percentage

points can influence the quality ratings by as much as 0.1 points and conclude that systems

must be compared using similar levels of compression. In particular, if system A’s output

is of higher quality but longer than system B’s, then it is not necessarily the case that A is

better than B. Conversely, if B has results at least as good as system A, one can claim that

B is better, since B’s output is shorter.

Here are some examples in the literature of mismatched comparisons:

• Nomoto (2009) concluded that their system significantly outperformed that of Cohn

and Lapata (2008). However, the compression rate of their system ranged from 45
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to 74, while the compression rate of Cohn and Lapata (2008) was 35. This claim is

unverifiable without further comparison.

• Clarke and Lapata (2008) (an extension of the EMNLP 2007 best paper (Clarke and

Lapata, 2007)) reported significantly better results than a competing model (McDon-

ald, 2006) even though the compression rate was 5 points higher. At first glance,

this does not seem like a remarkable difference. However, the study evaluated the

quality of summaries containing automatically shortened sentences. The average

document length in the test set was 20 sentences, and with approximately 24 words

per sentence, a typical 65.4% compressed document would have 80 more words than

a typical 60.1% McDonald compression. The aggregate loss from 80 words can be

considerable (more than 3 uncompressed sentences!), which suggests that this com-

parison is inconclusive. Furthermore, nearly 10% of the generated sentences were

identical to the original sentence—meaning that no compression was done whatso-

ever. This artificially inflates the results of human rating, because unaltered sentences

will have the identical meaning and fluency as the original sentence.

We re-evaluated the leading model of Clarke and Lapata (2008) against the McDon-

ald (2006) model with global constraints but fixed the compression rates to be equal. We

randomly selected 100 sentences from that same corpus and generated compressions with

our implementation of Clarke and Lapata (2008) (C&L′), fixing the compression rate to

be the same as the sentences generated by the McDonald model (MCD). The sentences

were then evaluated by human judgments on 5-level scales of grammaticality and meaning
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retention. At a consistent compression rate, compression rate, humans judged the MCD

output to be more grammatical and meaning preserving (Table 3.2). Although not statisti-

cally significant, this new evaluation reversed the polarity of the results reported by Clarke

and Lapata. This again stresses the importance of using similar compression rates to draw

accurate conclusions about different models.

An example of unbiased evaluation is found in Cohn and Lapata (2009). In this work,

their model achieved results significantly better than the MCD system above. Recognizing

that their compression rate was about 15 percentage points higher than the competing sys-

tem, they fixed the target compression rate to one similar to MCD’s output, and still found

significantly better performance using automatic measures. This work is one of the few that

controls their output length in order to make an objective comparison. Another example is

found in McDonald (2006).

3.6 Best Practices

We have identified the shortcomings of widely practiced evaluation methodologies and

provided justification for the following practices in evaluating compressions:

• Compare systems at similar compression rates.

• Provide results across multiple compression rates when possible.

• Report that system A surpasses B if and only if

– A and B have the same compression rate and A does better than B, or
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– A produces shorter output than B and A does at least as well B.

• New corpora for compression should have multiple gold standards for each sentence.

Many readers may find this discussion to be intuitive, these points have not previously been

delineated and are not consistently considered in earlier research. Therefore it is crucial to

enumerate them in order to improve the scientific validity of the task.
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Paraphrastic Sentence Compression

While sentence compression has been framed as an extractive task, a few works before this

have applied paraphrasing for SC (please refer to the literature review in Section 2.1). Fol-

lowing our discussion of the importance of character lengths in evaluation (Section 3.5),

we further motivate the use of a character-based compression rate for generating compres-

sions. We then demonstrate that compressions generated with paraphrasing alone have bet-

ter adequacy and fluency than extractive compressions at the same compression rate. Later,

Section 4.5 extends that approach by further including deletion rules, and lays out the T2T

framework that will be revisited later for text simplification (Chapter 6) and grammatical

error correction (Chapter 8).
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4.1 Compression Without Deletion

We distinguish two non-identical notions of sentence compression: making a sentence sub-

stantially shorter by removing less crucial meaning versus “tightening” a sentence by re-

moving unnecessary verbiage or substituting shorter words/phrases without sacrificing se-

mantic content. Previous work in sentence compression has taken the former approach,

while related work in subtitling have taken the latter, by making one-word substitutions

to decrease character length (Glickman et al., 2006). We present a substitution-only ap-

proach to sentence compression which tightens a sentence by reducing its character length.

While other work has applied paraphrasing to compression, there is no systematic inves-

tigation into the relationship between compression quality and presence of paraphrases or

deletion operations. Replacing phrases with shorter paraphrases yields compressions as

short as 60% of the original length. At high compression rates, paraphrastic compressions

outperform a state-of-the-art deletion model in an oracle experiment. For further compres-

sion, deleting from oracle paraphrastic compressions preserves more meaning than deletion

alone. In either setting, paraphrastic compression shows promise for surpassing deletion-

only methods.

While not currently the standard, character-based lengths have been considered be-

fore in compression, and we believe that it is relevant for current and future applications

(Section 3.5). When considering paraphrastic compressions, we further support the use of

character compression rate by showing that paraphrastic compressions with a high token
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compression rate can have lower character compression rates.

4.2 Sentence Tightening

The distinction between tightening and compression can be illustrated by considering how

much space needs to be preserved. In the case of microblogging, often a sentence has just

a few too many characters and needs to be “tightened.” On the other hand, if a sentence is

much longer than a desired length, more drastic compression is necessary. Some sentences

may not be compressible beyond a certain limit with deletion alone. For example, we found

that almost 10% of the compressions generated by Clarke and Lapata (2008) were identical

to the original sentence. In situations where the sentence must meet a minimum length,

tightening can be used to meet these requirements.

We examine whether paraphrastic compression allows more information to be conveyed

in the same number of characters as deletion-only compressions. For example, the length

constraint of Twitter posts (tweets) is 140 characters,1 and the lead sentence of many arti-

cles exceed this limit. Table 4.1 contains example ledes shortened for Twitter, contrasting

paraphrastic and extractive compressions of the same length. The first set of examples is

compressed to 75% of the original length (162 to 122 characters; the first is the original)

The compressed tweet is 140 characters, including spaces and a 17-character shortened link

to the original article.2 In contrast, using deletion to compress to the same length is not as

1The limit was doubled to 280 characters in 2018.
2Taken from the main page of wsj.com (Bendavid and Hook, 2011).
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Original
(162 char.)

Congressional leaders reached a last-gasp agreement Friday to avert a
shutdown of the federal government, after days of haggling and tense
hours of brinksmanship.

Paraphrase
(123 char.)

Congress made a final agreement Fri. to avoid government shutdown,
after days of haggling and tense hours of brinkmanship.
on.wsj.com/h8N7n1

Delete
(122 char.)

Congressional leaders reached agreement Friday to avert a shutdown of
federal government, after haggling and tense hours. on.wsj.com/h8N7n1

Original
(147 char.)

With 61 senators on board, the repeal of the military’s ban on gay service
members is looking more likely, although opponents may yet stall action.

Paraphrase
(140 char.)

With 61 senators aboard, the end of the military’s ban on gay service
members seems likely, yet foes may stall action. nyti.ms/eBUBtz #DADT

Delete
(139 char.)

With 61 senators, repeal of the military’s ban on gay service members is
likely, although opponents may stall action. nyti.ms/eBUBtz #DADT

Table 4.1: Two sentences from news articles that were compressed with paraphrasing
alone and with deletion.

expressive. The second set has a higher compression rate of 80% (147 characters to 119),

and the loss of meaning/fluency in the extractive compression are not as pronounced.3

Multi-reference translations provide instances of the natural length variation of human-

generated sentences. These translations represent different ways to express the same for-

eign sentence, so there should be no meaning lost between the different reference trans-

lations. We consider the Multiple-Translation Chinese corpus, which contains Mandarin

Chinese sentences from news articles along with four human-authored English translations

for each (Huang et al., 2002). Comparing the character length of the shortest sentence

in each set to the longest sentence, we find that the average compression rate is 80. When

3From the main page of nytimes.com (Shear, 2010).
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CR Length Reference

100 73 char Britain and France consulted with each other about this crisis in
London.

93 68 char Meanwhile, in London, Britain and France are discussing this crisis.

84 61 char Meanwhile, Britain and France discussed the crisis in London.

68 50 char Britain and France discussed the crisis in London.

100 142 char According to Kyodo News, it is the first occasion that this kind of
defenses were rejected by court in lawsuits for War related
compensations.

84 119 char Kyodo News reported that this is the first time such argument has been
rejected in lawsuits involving war compensation.

76 108 char Kyodo News reported that in war compensation lawsuits, this was the
first appeal of its kind to be rejected.

71 101 char As Kyoto Press Agency reports, this is the first suit that is overruled in
all war compensation case.

Table 4.2: Example reference sets from the Chinese multiple reference translation corpus.
The sentences are in descending order by length, and CR indicates their compression rate
compared to the longest sentence in each set.

comparing the shortest sentence to all three other reference sentences, the average compres-

sion rate is 86.4 Table 4.2 contains example reference sets illustrating this phenomenon.

This provides evidence that sentences can be tightened to some extent without losing any

meaning.

Through the lens of sentence tightening, we consider whether paraphrase substitutions

alone can yield compressions competitive with a deletion at the same length. A character-

based compression rate is crucial in this framework, as two compressions having the same

4This value will vary by collection and with the number of references: for instance, the NIST 2005 Arabic
reference set (NIST, 2010) has a mean compression rate of 0.92 with 4 references per set.
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we hope you get better over the weekend .

achieve greater
have better

improve

in

about
at

beyond

here this weekend
during the weekend

this weekend

heal

START 310 4 5 6 7 END2

Figure 4.1: A paraphrastic compression lattice, with the path indicating the shortest com-
pression in bold. The cost of each edge is the character length (not shown).

character-based compression rate may have different word-based compression rates. The

advantage of a character-based substitution model is in choosing shorter words when pos-

sible, freeing space for more content words. Going by word length alone would exclude

the many paraphrases with fewer characters than the original phrase and the same number

of words (or more).

4.3 Framework for Sentence Tightening

Our sentence tightening approach finds the combination of non-overlapping paraphrases

that minimizes a sentence’s character length. Given a sentence, we construct a lattice of

all potential paraphrases of a sentence, where each edge represents a phrase (which can

be one word), and the cost of each edge is the number of characters within the phrase.

The shortest compression can be found with a shortest-path algorithm through the lattice.

Figure 4.1 contains an example.

The paraphrases used in this work were extracted by Juri Ganitkevich from the French-

59



CHAPTER 4. PARAPHRASTIC SENTENCE COMPRESSION

English Europarl corpus (Koehn, 2005) using the bilingual pivoting method (Bannard

and Callison-Burch, 2005) (see Ganitkevitch et al. (2011) for complete details and anal-

ysis), resulting in more than 42-million paraphrase pairs. Bilingual pivoting has been

shown to capture a greater number of paraphrase transformations than extracting from other

sources (Zhao et al., 2008). Bannard and Callison-Burch (2005) ranked paraphrases by the

paraphrase probability p(e2|e1), which is defined in terms of the translation model proba-

bilities p( f |e) and p(e| f ):

p(e2|e1) = ∑
f

p(e2, f |e1)

= ∑
f

p(e2| f ,e1)p( f |e1)

≈ ∑
f

p(e2, f )p( f |e1). (4.1)

Paraphrases eligible for replacement are thresholded by their paraphrase probability,

p(e2|e1), and the threshold can be increased for higher precision or lowered for greater

recall. Without any threshold, sentences be compressed at a compression rate as low as 60.

Because the lattice approach can generate multiple paraphrased sentences of equal

length, we apply two layers of filtering to generate a single output. First, we calculate

a word-overlap score between the original and candidate sentences to favor compressions

similar to the original sentence. Next, from among the sentences with the highest word

overlap, we select the compression with the best language model score.5

5The language model used in this chapter is a 5-gram model trained on English Gigaword with Kneyser-
Ney smoothing.
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4.3.1 Scoring Paraphrases

Although many appropriate paraphrases are extracted from parallel corpora, many others

are unsuitable and the translation score calculated during pivoting does not always accu-

rately distinguish the two. Therefore, we re-ranked the paraphrase pairs based on their

monolingual distributional similarity, employing the method described by Van Durme and

Lall (2010) to derive approximate cosine similarity scores over feature counts using sin-

gle token, independent left and right contexts from a web-scale n-gram corpus (Lin et al.,

2010). As 5-grams are the highest order n-gram in this corpus, the allowable set of para-

phrases have at most four words (allowing for at least one word of context on either side).

To our knowledge this is the first time such techniques have been used in combination in

order to derive higher quality paraphrase candidates. Table 4.3 contains an example rank-

ing of a paraphrase by the monolingual similarity (MS) contrasted with the paraphrase

probability.

The monolingual-filtering technique we describe is by no means limited to paraphrases

extracted from bilingual corpora. It could be applied to other data-driven paraphrasing

techniques (see Madnani and Dorr (2010) for a survey), but is particularly well suited to the

bilingual extracted corpora, since the information that it adds is orthogonal to that model,

and would presumably add less to paraphrasing techniques that already take advantage of

monolingual similarity (Pereira et al., 1993; Lin and Pantel, 2001; Barzilay and Lee, 2003).

An extension of this work demonstrated the viability of this approach for domain adaptation
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Paraphrase Monolingual Bilingual CR

study in detail 1.00 0.70 100

scrutinise 0.94 0.08 67
consider 0.90 0.20 53
keep 0.83 0.03 27
learn 0.57 0.10 33
study 0.42 0.07 33
studied 0.28 0.01 47
studying it in detail 0.16 0.05 140
undertook 0.06 0.06 60

Table 4.3: Candidate paraphrases for study in detail with corresponding approximate
monolingual cosine similarity (Monolingual), paraphrase probability (Bilingual), and char-
acter compression rate.

of paraphrases (Chan et al., 2011).

In order to evaluate monolingual scoring of paraphrase candidates, we randomly se-

lected 1,000 paraphrase sets where the source phrase was present in the corpus described

in Clarke and Lapata (2008) and extracted all sentences from that corpus in which the

source phrases appeared. A paraphrase set consists of the original source phrase and each

paraphrase candidate of no more than 4 tokens. We extracted all of the contexts from the

corpus in which the source phrase appeared, and human participants ranked each para-

phrase based on the extent to which it preserved the meaning and affected the grammat-

icality of the sentence on two Likert-like scales from 1 to 5, with 5 being perfect (Ap-

pendix A.3).

We averaged the scores of each dimension and inferred rankings of each paraphrase set

from the scores. We compared the rankings from the mean, grammar, bilingual, and mono-

lingual scores and calculated correlation between the human and automatic scores with
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Human Bilingual Monolingual

Grammar 0.15 0.31
Meaning 0.19 0.28

Table 4.4: Correlation between human scores with automatic scores calculated from bilin-
gual and monolingual data. Correlation is computed with Kendall’s τ , which operates on
the absolute ranking of each paraphrase and not the numerical score.

Kendall’s rank correlation coefficient (τ). Both the bilingual paraphrase probability and

monolingual similarity positively correlated with human judgments, but there was stronger

agreement between the ranking imposed by the monolingual score and human ratings than

the original ranking as derived during the bilingual extraction (Table 4.4).

The monolingual scores have stronger correlation with our human ratings of meaning

and grammar is higher: τ = 0.28 and 0.31 for monolingual scores and 0.19 and 0.15 for

bilingual scores. In our substitution framework, we ignore the translation probabilities and

use only the monolingual similarity score in the paraphrase decision task. Higher para-

phrase thresholds guarantee more appropriate paraphrases but yield longer compressions.

Thresholding the MS score at a cosine similarity of 0.95, the average compression rate is

0.968, which is considerably longer than the compressions using no threshold (0.60).

4.4 Results

In the absence of a multiple reference abstractive compression corpus, we compressed

the longest sentence from each set of reference translations (Huang et al., 2002). Para-

phrastic compressions were generated at MS thresholds ranging from 0.60 to 0.95. We
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System CR (%) Cosine threshold Grammar Meaning

Paraphrase only 97 0.95 3.8 3.7
C&L′ 97 − 4.1 4.0

Paraphrase only 89 0.85 3.4 3.2
C&L′ 89 − 4.0 3.8

Paraphrase only 85 0.75 3.1 3.0
C&L′ 85 − 3.9 3.7

Paraphrase only 82 0.65 2.9 2.9
C&L′ 82 − 3.8 3.5

Table 4.5: Mean ratings of compressions using just deletion or substitution at different
monolingual cosine similarity thresholds. Deletion performed better in all settings.

re-implemented the deletion model of (Clarke and Lapata, 2008), referred to here as C&L′,

to generate deletion-only compressions. The compression length was fixed to ±5 char-

acters of the length of each paraphrastic compression in order to isolate quality from the

effect of compression rate (Section 3.4). To avoid potential bias in human judges to favor

compressions that have high word overlap with the original sentence, we randomly chose

a sentence from the set of reference translations to use as the standard for comparison in

human evaluation. We collected meaning and grammar judgments were collected using

two 5-point scales (Appendix A.4).

The initial results of our substitution system show room for improvement in future

work (Table 4.5). We believe this is due to erroneous paraphrase substitutions, even with

the improved scoring technique; phrases with the same syntactic category and distribu-

tional similarity are not necessarily semantically identical. Illustrative examples include

WTO for United Nations and east or west for south or north. Additionally, manual exam-
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Original Sentence

科学家为攸关初期失智症的染色体完成定序

Reference Translations

Scientists Complete Sequencing of the Chromosome Linked to Early Dementia

Scientists Decrypted the Sequence of a Chromosome Crucial to Symptoms of Early Dis-
orders

Scientists Set Sequence For Chromosome Linked To Early-Stage Low IQ

Scientists Completed the Study on the Order of Chromosomes Critical to Early Arzher-
mes Syndrome

Table 4.6: An example Chinese sentence and English translations from Huang et al.
(2002).

ination revealed that the quality of the multi-reference translations is not uniformly high,

which would affect the human ratings of all system outputs. Table 4.6 illustrates one such

low-quality reference set. The original Chinese sentence is about early-onset Alzheimer’s,

and only the first reference translation correctly is appropriate but not perfect. Dementia

is an acceptable replacement for Alzheimer’s, however Early is ambiguous and does not

necessarily mean early onset. The subsequent translations do not appropriately identify

Alzheimer’s or have a spelling error, in the case of the last translation.

To control against these errors and test the viability of a substitution-only approach, we

performed an experiment using oracle paraphrases on a set of 20 sentences. We compared

three models: paraphrase-only with oracle paraphrases, deletion only (C&L′), and a pipeline

of oracle paraphrases then deletion.

In order to identify oracle paraphrases, we generated all possible paraphrase substitu-
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tions above a threshold of MS ≥ 0.80 within a set of 20 randomly chosen sentences from

the written corpus of Clarke and Lapata (2008). This data set is cleaner than the multiple-

reference sentences (although it only contains one gold standard compression per sentence

and would not be suitable for evaluating paraphrastic compressions). We solicited humans

to make a ternary decision of whether a paraphrase was (good, bad, or not sure in the

context (Appendix A.3). We applied our model to generate compressions using only para-

phrase substitutions on which all three annotators agreed that the paraphrase was good. The

oracle generated compressions with an average compression rate of 0.90.

On the same set of original sentences, we used the C&L′ deletion model to generate

compressions constrained to ±5 characters of the length of the oracle compression. Next,

we examined whether passing paraphrastic compressions to C&L′ would improve com-

pression quality. In manual evaluation (Appendix A.4) along the dimensions of grammar

and meaning, both the oracle compressions and oracle-plus-deletion compressions outper-

formed the deletion-only compressions at uniform lengths (Table 4.7). Paraphrastic com-

pressions were rated significantly higher for meaning by the sign test, p < 0.05. These

results suggest that improvements in paraphrase acquisition will make our system compet-

itive with deletion-only models.

This work shows promise for the use of paraphrasing in the task of sentence compres-

sion. The oracle results show that a better paraphrase selection technique coupled with

deletion outperforms the state-of-the-art deletion model. In the next section, we build upon

these findings with a joint model of deletion and paraphrasing that optimizes for more
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Model Grammar Meaning CR

Oracle paraphrase 4.1 4.3 90
C&L′ 4.0 4.1 90

Oracle→ C&L′ 3.4 3.7 80
C&L′ 3.2 3.4 80

Gold 4.3 3.8 75

Table 4.7: Mean ratings of compressions generated by a paraphrase oracle, deletion only
(C&L′), deletion on the oracle paraphrastic compression, and the gold standard.

sophisticated features than length.

4.5 A Joint Model: Compressing with Deletion and Para-

phrasing

Supported by the oracle results in the last section, here we describe a joint paraphrase and

deletion model for compressing sentences, which is inspired by machine translation and

will serve as an inspiration for subsequent models in this thesis.6 We will discuss how

this framework can be adapted to many text generation tasks by augmenting its feature

set, optimizing to a specifically tailored metric, and selectively generating artificial transla-

tion rules. This model outperforms earlier deletion and paraphrasing methods for sentence

compression.

A set of paraphrases can be seen as a (monolingual) translation grammar, with the

original phrase analogous to the source language and the paraphrase the target language.

6Work originally published as “Learning Sentential Paraphrases from Bilingual Parallel Corpora for Text-
to-Text Generation” (Ganitkevitch, Callison-Burch, Napoles, and Van Durme, 2011), which was joint work
with Juri Ganitkevich, who developed this approach for sentential paraphrasing.
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While the paraphrases first used in Section 4.3 are not specific to compression, it is straight-

forward to choose lexical paraphrases satisfying the length constraint, as demonstrated in

Section 4.4. This section describes a model that harnesses SMT advancements, namely

in decoding and parameter optimization, for compressing text using a rich source of para-

phrases and artificially generated deletion rules.

Under this framework, we adapt the following components of a SMT pipeline for mono-

lingual sentential paraphrasing:

1. A monolingual synchronous grammar that contains transformations reflecting the

goals of the task.

2. Task-specific feature functions to score each rule, the weights of which are opti-

mized to a specific objective function.

3. An objective function that scores how well the output of the model meets task con-

straints. In MT, this would be a metric such as BLEU or TER, for example.

4. A development set of sentence pairs exhibiting transformations fulfilling the task for

parameter optimization.

Later chapters will describe how to extend this framework to the more complex of tasks of

simplification (Chapter 6) and grammatical error correction (Chapter 8).

We now explain each of these aspects and provide examples of how they can be adapted

for sentence compression.
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1. Grammar

We will use the paraphrase grammar described in Section 4.3 for our model. Since these

paraphrases were extracted from a large corpus of bilingual text, we expect many types of

transformations to be present, a subset of which will be appropriate for sentence compres-

sion. However, the SCFG formalism does not accommodate deletions of constituents, as

was present in the tree-transduction model of Cohn and Lapata (2007), and therefore we

experiment with augmenting the paraphrase grammar with a small set of artificial rules.

Recall that a synchronous paraphrase rule has the form:

X→ ⟨LHS,RHS⟩ (4.2)

A deletion rule of the following form is asyncrhonous and therefore not present in the

paraphrase grammar, so we artificially generate deletion rules for each adjective, adverb,

and determiner in our paraphrase corpus.

X→ ⟨LHS,ε⟩ (4.3)

2. Task-Specific Feature Functions

Each paraphrase rule has a corresponding series of scores returned by feature functions

ϕ⃗ = {ϕ1, . . . ,ϕn}. As a result of the paraphrase extraction procedure, several MT features

are already assigned, such as translation probability, and the paraphrase probability. These
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features represent the paraphrase quality but not the suitability of the paraphrase for the con-

straints of a given task. Therefore, to guide the decoder to choose compressing paraphrases,

we augment each grammar rule with additional length-aware features. Specifically:

• The count of words in the source (cs) and the target side (ct).

cs = count(word, s)

ct = count(word, t)

• The difference between the word counts.

c∆tok = ct− cs

• The difference between the average word length (in characters) between the source

and target sides.

c∆char =
count(char, t)

ct
− count(char,s)

cs

We do not include approximate monolingual distributional similarity as a feature func-

tion in this model since our grammar contains deletion and synchronous operations such as

movement for which it is not possible to calculate distributional similarity.

The translation and compression-specific features are all calculated specific to each

transformation (stateless features), however the decoder also uses stateful features that

depend on earlier decoding decisions. Our model uses a language model, the weight of

which is also set during parameter optimization.
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3. Objective Function

In SMT, the objective function scores candidate translations from the decoder by compar-

ing them to a reference or set of reference translations. Each feature ϕ⃗ is combined in a log

linear model, the parameters of which are set to optimize the objective function. Because

our framework has its basis in MT, the obvious metric for parameter optimization would be

a metric such as BLEU. BLEU compares the n-grams in common between the candidate

and reference translations and has been shown to capture both fluency and adequacy (Pa-

pineni et al., 2002). For a candidate C and a reference R with lengths c and r, BLEU is

defined as:

BLEU(C,R) = BP · exp

(
N

∑
n=1

wn log pn

)
(4.4)

where pn is the modified n-gram precision of C against R, where typically the highest

order n-gram is N = 4 and weights are uniform, wn =
1
N . BP is the brevity penalty, which is

added to penalize short candidates (in an extreme example, short candidate can have perfect

precision while it is a bad translation for only representing a small portion of the output).

BP =

⎧⎪⎪⎨⎪⎪⎩
1 if c > r

e(1−r/c) otherwise
(4.5)

BLEU is an ideal metric for optimization because it represents two of the criteria of sen-

tence compression (fluency, adequacy) and it can be calculated efficiently. In the case of
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monolingual T2T, optimizing for BLEU will result in a system that only produces minimal

paraphrases because there is significant overlap between the source and reference sentences

(as is especially evident with extractive compression). BLEU is additionally not aware of

the relative length of the candidate and therefore is not guaranteed to produce sentences

shorter than the input. To design a metric for SC, we can merely scale BLEU with a “ver-

bosity penalty” which penalizes candidates with length in excess of a desired compression

rate. The function, PRÉCIS, is defined as follows:

PRÉCISλ ,CR(S,C,R) = VP ·BLEU(C,R) (4.6)

VP =

⎧⎪⎪⎨⎪⎪⎩
eλ (CR−c/s) if c/s≤ CR

1 otherwise
(4.7)

For a source sentence S, output C, and reference compression R (with lengths s, c,

and r), PRÉCIS combines the precision estimate of BLEU with a verbosity penalty that

penalizes compressions that fail to meet a target compression rate CR. Figure 4.2 illustrates

the verbosity penalty of PRÉCIS. The scaling term λ determines how severely to penalize

deviations from CR, which was set to λ = 10 in these experiments.

4. Parallel Data

The final customization we need is a parallel corpus that models compression. As dis-

cussed earlier, existing compression corpora contain deletion operations and therefore are

not suitable for training a paraphrase system. The abstractive corpus of Cohn and Lapata
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Ganitkevitch et al., 2011. Learning Sentential Paraphrases from Bilingual Parallel Corpora for Text-to-Text Generation
Figure 4.2: The length penalty of PRÉCIS, which penalizes any candidate over the target
compression rate.

(2009) is too small for tuning, as it contains only 575 sentence pairs, when parameter opti-

mization in SMT is performed on the order of thousands of sentence pairs. In Section 3.5

we recommend as an existing source of parallel abstractive sentences to use multiple refer-

ence translations used for MT evaluation. From a multiple-reference corpus (Huang et al.,

2002), we select the longest and shortest sentences to form the input and reference in our

tuning set. Of 9,570 sentence pairs, 1,496 have a compression rate within the range of

0.5 < CR≤ 0.8. 936 of these sentence pairs are used as a development set and 560 are head

out for a blind test set. We tokenize and lowercase the text for all steps of the experiments

reported in the next section.

4.5.1 Experimental Results

The following specifications were used to train our model. Parameters were tuned to

PRÉCIS with minimal error rate training implemented in the Z-MERT toolkit (Zaidan,
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2009). We used the Joshua decoder (Li et al., 2010), making no alterations to the decoder,

and a 5-gram English Gigaword language model.

First, we investigate the impact of our customizations to a baseline system using a

Hiero grammar, and without syntactic rules, custom features, or augmented artificial gram-

mar rules. We performed human evaluation alone, following the approach described in

Section 4.1. Crowdsourced participants judged compressions on two Likert-like scales of

grammaticality. Judges are instructed to decide how much the meaning from a reference

translation is retained in the compressed sentence, with a score of 5 indicating that all of

the important information is present, and 1 being that the compression does not retain any

of the original meaning. Similarly, a grammar score of 5 indicates perfect grammatical-

ity, and a grammar score of 1 is assigned to sentences that are entirely ungrammatical

(Appendix A.4). Systems were compared only at the same compression rates; specif-

ically, when comparing systems A and B, a sentence was included in the evaluation if

|CRA− CRB|< 0.05.

Table 4.8 contains the results of human evaluation of a set of pairwise system compar-

isons for CR ≈ 50.7 Going from a Hiero-based (Hiero) to a syntactic paraphrase grammar

(Syntax) yields greater meaning retention and a significant improvement in grammaticality.

Compression-specific features (Syntax+Feat) improves grammaticality even further. Aug-

menting the grammar with deletion rules (Syntax+Feat.+Aug.) significantly improves the

7The compression rates vary for each pairwise comparison due to only including sentences where each
pair of sentences reach approximately the same compression rate, and we chose the compression rate for
which there were the most sentences.
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Model CR Meaning Grammar

Hiero 56 2.57 2.35
Syntax 56 2.76 2.67∗

Syntax 53 2.70 2.49
Syntax+Feat. 53 2.71 2.54∗

Syntax+Feat. 54 2.79 2.71∗

Syntax+Feat.+Aug. 54 2.96∗ 2.52

Syntax+Feat.+Aug. 52 2.87 2.40
ILP 52 2.83 3.09∗

Syntax+Feat.+Aug. 50 2.41 2.20∗

T3 50 2.01 1.93

Table 4.8: Human evaluation for variations of our compression system, compared to earlier
state-of-the-art models. ∗ indicates a statistically significant difference with a sign test
(p < 0.05).

core meaning retention but negatively impacts grammaticality.

Finally, we compare our full model to existing state-of-the-art models, the extractive

ILP model of Clarke and Lapata (2008) (C&L′) and the tree transduction model of Cohn

and Lapata (2007) (T3). We retrain the T3 model on our 936-sentence development set,

which is similar in size to the training corpus used in Cohn and Lapata and is also in the

same domain as our evaluation set. Our approach significantly outperforms the T3 system

but does not match C&L′ in terms of grammaticality (Table 4.8).

Thus far, we have evaluated the model at a substantial compression rate, with the input

compressed about 50%. We hypothesize that different systems may perform better at dif-

ferent compression rates, so we next compare Syntax+Feat and C&L′ at a higher compres-

sion rate, CR = 80 (Table 4.9). We also include upper and lower bounds of performance,

with human evaluation of the reference sentence and a version of the sentence with tokens
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Model CR Meaning Grammar

Reference (upper bound) 0.73 4.26 4.35

Syntax+Feat. 0.80 3.67∗ 3.38
ILP 0.80 3.50 3.49

Random (lower bound) 0.50 1.94 1.57

Table 4.9: Results of the human evaluation on longer compressions: pairwise compres-
sion rates (CR), meaning and grammaticality scores. ∗ indicates a statistically significance
difference at p < 0.05.

randomly deleted. At this compression rate, we significantly outperform ILP in meaning

retention (p < 0.0001 with the sign test) while achieving comparable results in grammati-

cality. These results indicate that this framework for paraphrastic transformations performs

better than other task-specific models for sentence compression with regards to meaning

retention, and the input is similarly grammatical.

Table 4.10 contains example sentences from our test set alongside compressions pro-

duced by each system. The paraphrase and ILP systems both produce good-quality com-

pressions, however the paraphrastic compressions have greater meaning retention.

4.6 Conclusion

In this chapter, we have discussed a straightforward approach for paraphrastic sentence

compression. We have systematically applied this concept in the development of our sys-

tems and comparisons with earlier state-of-the-art approaches. We demonstrate that para-

phrastic compressions preserve more meaning than extractive compressions and propose

adapting SMT for this task. We have laid out a compelling argument for how our para-
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Source he also expected that he would have a role in the future at the level of
the islamic movement across the palestinian territories , even if he was
not lucky enough to win in the elections .

Reference
CR = 70

he expects to have a future role in the islamic movement in the pales-
tinian territories if he is not successful in the elections .

Syntax+Feat.
CR = 88

he also expected that he would have a role in the future of the islamic
movement in the palestinian territories , although he was not lucky
enough to win elections .

ILP
CR = 88

he also expected that he would have a role at the level of the islamic
movement , even if he was not lucky enough to win in the elections .

Source in this war which has carried on for the last 12 days , around 700 pales-
tinians , which include a large number of women and children , have
died .

Reference
CR = 81

about 700 palestinians , mostly women and children , have been killed
in the israeli offensive over the last 12 days .

Syntax+Feat.
CR = 71

in this war has done for the last 12 days , around palestinians , including
women and children , died .

ILP
CR = 71

in this war which has carried for the days palestinians , include a number
of women and children died .

Source hala speaks arabic most of the time with her son , taking consideration
that he can speak english with others .

Reference
CR = 64

hala speaks to her son mostly in arabic , as he can english to others .

Syntax+Feat.
CR = 81

hala speaks arabic most of the time with her son , that he can speak
english with others .

ILP
CR = 80

hala speaks arabic most of the time , taking into that he can speak english
with others .

Table 4.10: Example compressions produced by the two systems in Chapter 4.9.
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phrastic system outperforms a leading deletion-based model at moderate and extreme com-

pression rates (CR = 80 and 50). Later chapters demonstrate how this unified framework

applies to take to more complex T2T tasks, text simplification (Chapter 6) and grammatical

error correction (Chapter 8). As the task increases in complexity, we will particularly be

considering the objective function and how more abstraction necessitates an input-aware

metric.
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Part II

Text Simplification

This part of the thesis examines a T2T task that is more complex than compression. Text

simplification is the process of changing vocabulary and grammatical structure to increase

the readability of a text while maintaining the original information and content. Automated

tools for text simplification are a practical way to make large corpora of text accessible

to a wider audience lacking high levels of fluency in the original language. In Chapter 5,

we examine a novel source of parallel text for simplification, perform a corpus analysis,

and develop a classifier to automatically identify simple English text.8 We also identify

problems with this corpus and create a clean development and test set of 4,000 parallel

sentences.

Chapter 6 extends the unified framework introduced in Chapter 4 to simplification, ex-

amines measures for automatically evaluating simplified output, and proposes a novel met-

ric. The simplification system we develop is significantly better than other approaches for

8Originally presented in “Learning Simple Wikipedia: A Cogitation in Ascertaining Abecedarian Lan-
guage” (Napoles and Dredze, 2010).
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simplicity and meaning retention of the input text, and it does not depend on the availability

of a large parallel corpus.9

The goal of text simplification (TS) is to increase the readability of a given text, with

applications in areas such as education and public health, and safety. TS can also be applied

for generating text in an earlier step of a NLP-pipeline, such as information extraction or

machine translation, but studies have found that text simplified for machine and human

comprehension are categorically different (Chae and Nenkova, 2009). This part considers

TS for human readers, but the findings can be applied for either application.

Historically, simplification has been done by hand, which is time consuming and ex-

pensive, especially when dealing with material that requires expertise, such as legal doc-

uments. Prior to this work, most systems rely on handwritten rules, e.g., PEST (Carroll

et al., 1999), its SYSTAR module (Canning et al., 2000), and the method described by Sid-

dharthan (2006).10 Systems using handwritten rules can be susceptible to changes in do-

mains and need to be modified for each new domain or language. Before this work, there

was some research into automatically learning the rules for simplifying text using aligned

corpora (Daelemans et al., 2004; Yatskar et al., 2010), but these have yet to match the per-

formance hand-crafted rule systems. Chapter 5 represents one of the earliest explorations

of a parallel corpus for simplified English text, Simple English Wikipedia.

Table 4.11 contains an example of a manually simplified text. This example displays

9Based on work presented in “Computational Approaches to Shortening and Simplifying Text” (Napoles,
2012).

10Subsequent to the work presented in this chapter, several new approaches have been applied to text
simplification, including neural machine translation (e.g., Wang et al., 2016).
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the three operations into which the process of TS can be divided (Aluı́sio et al., 2008):

1. Deleting unnecessary or distracting text

2. Substituting complex lexical and syntactic forms

3. Inserting text for further clarification where needed

In this regard, TS is related to several different natural language generate tasks such as

summarization, compression, machine translation, and paraphrasing.
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Chapter 5

Discriminating between Simple and

Complex English

This chapter investigates the potential of Simple English Wikipedia to assist automatic

text simplification by identifying the most discriminative features of simple English across

multiple domains, and develop a classifier that discriminates simple English from ordinary

English.

Text simplification systems built with hand-written rules face limitations scaling and

transferring across domains. The potential for using Simple English (SE) Wikipedia as a

comparable corpus for text simplification is significant: it contains nearly 60,000 articles

across diverse domains.1 Articles contain revision histories, which can be mined for simpli-

fying operations. More significantly, many articles are aligned to the original English (OE)

1There were nearly 60,000 articles in 2010 at the time of this work. By 2018, Simple English Wikipedia
more than doubled in size, containing 133,210 sentences.
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Wikipedia. OE and SE Wikipedia do not have a one–one alignment between sentences or

even articles, and therefore form a comparable corpus. Some articles in SE Wikipedia have

been modified from the OE article, and other work simultaneous to this research extracted

aligned sentence pairs from aligned articles (Zhu et al., 2010). This chapter uses statistical

learning techniques to identify the most discriminative features of SE and “ordinary” En-

glish in Wikpiedia articles and compare these to the simple English authorship guidelines.

The example in Table 4.11 illustrates some differences characteristic of simplifications.

• The sentences in the simplified text have fewer words than the original (5 fewer words

on average).

• Syntactic structures and lexical items are simplified.

• Complex sentences are split into multiple simple sentences.

• Some of the simplified text is longer than the original text because illustrative exam-

ples are included to fully describe complex terms such as theoretical physicist and

the public.

We capture these differences with cognitively motivated features as well as automatic mea-

surements of a document’s lexical, syntactic, and surface features. Our study demonstrates

the validity and potential benefits of using SE Wikipedia as a resource for TS research.

The goal of this thesis is not to develop methods for sentence alignment, so therefore we

first examine Wikipedia as a comparable corpus and then use a sentence-level alignment

developed in separate work (Zhu et al., 2010). We then discuss why an automatically
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aligned parallel Wikipedia corpus is problematic for developing and evaluating automatic

simplification systems, identifying 64% sentence pairs where the target sentence does not

represent a simplification of the original. We refine a 4,000-sentence subset of the aligned

corpus to create a clean development and test set for simplification.

5.1 Wikipedia as a Corpus

Wikipedia is a unique resource for natural language processing tasks due to its sheer size,

accessibility, language diversity, article structure, inter-document links, and inter-language

document alignments. Denoyer and Gallinari (2007) introduced the Wikipedia XML Cor-

pus, with 1.5 million documents in eight languages from Wikipedia, that stored the rich

structural information of Wikipedia with XML. YAWN (Schenkel et al., 2007), a Wikipedia

XML corpus with semantic tags, is another example of exploiting Wikipedia’s structural

information. Wikipedia has been used as a corpus for nearly all areas of NLP, including

word sense disambiguation (Mihalcea, 2007), classification (Gantner and Schmidt-Thieme,

2009), machine translation (Smith et al., 2010), coreference resolution (Versley et al., 2008;

Yang and Su, 2007), sentence extraction for summarization (Biadsy et al., 2008), informa-

tion retrieval (Müller and Gurevych, 2008), semantic role labeling (Ponzetto and Strube,

2006), entity linking (Han et al., 2011), paraphrasing (Yatskar et al., 2010), and grammat-

ical error correction (Grundkiewicz and Junczys-Dowmunt, 2014). Concurrent with the

work of Yatskar et al. (2010), this is the first application of Wikipedia for text simplifica-

tion.

85
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The Simple Wikipedia project2 was founded in 2003. SE Wikipedia uses basic vocab-

ulary and less complex grammar to make the content of Wikipedia accessible to students,

children, adults with learning difficulties, and non-native English speakers. In addition to

being a large corpus, these articles are linked to their English Wikipedia counterparts, so

for each article both a simple and a more complex version are available. Furthermore,

many articles in SE Wikipedia appear to be copied and edited from the corresponding OE

Wikipedia article. This information, together with revision history and flags signifying

unsimplified text, can provide a scale of information on the text-simplification process pre-

viously unavailable. Example sentences from SE Wikipedia and OE Wikipedia are shown

in Table 4.11.

We create a large comparable corpus of aligned SE and OE Wikipedia articles for our

experiments, across nine domains: Everyday Life, Geography, History, Knowledge, Liter-

ature, Media, People, Religion, and Science. A total of 55,433 OE and 42,973 SE articles

were extracted and processed. We limit documents to include a minimum of two sentences

and strip all elements (including wiki markup) except for the main body text. The prepro-

cessing tools used are the Punkt sentence tokenizer (Kiss and Strunk, 2006) in NLTK (Bird

and Loper, 2004) and the PCFG parser of Huang and Harper (2009), a modified version of

the Berkeley parser (Petrov et al., 2006; Petrov and Klein, 2007).

2http://simple.wikipedia.org/
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5.2 Task Setup

Using the two document collections, we constructed a binary classification task of labeling

whether a piece of text was SE or OE. Labels were inherited from the source of the text

(SE or OE Wikipedia). We extracted the following cognitively motivated features based on

a document’s lexical, syntactic, and surface features.

5.2.1 Features

The guidelines for writing Simple Wikipedia pages (Wikipedia, 2009c)3 suggest

• Only use the 1000 most common and basic English words.

• Words should appear on lists of basic English words, such as the Voice of America

Special English words list (America, 2009) or the Ogden Basic English list (Ogden,

1930).

• Use simple grammar and short sentences.

• Write short articles unless they need to explain vocabulary words necessary to un-

derstand the topic.

• Avoid idioms, compounds, and the passive voice.

To capture these properties in the text, we created four classes of features: lexical, part-

of-speech, surface, and syntactic. Several of our features have previously been used for
3The guidelines in 2018 are largely unchanged.
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measuring text fluency (Aluı́sio et al., 2008; Chae and Nenkova, 2009; Feng et al., 2009;

Petersen and Ostendorf, 2007).

1. Lexical

Previous work suggests that the document vocabulary is a good predictor of document

readability (Feng et al., 2009). Simple texts are more likely to use basic words more often

as opposed to more complicated, domain-specific words used in ordinary texts. To capture

these features we used a unigram bag-of-words representation. We note that lexical features

are unlikely to be useful unless we have access to a large training corpus that allowed the

estimation of the relative frequency of words (Chae and Nenkova, 2009). Additionally,

we can expect lexical features to be very fragile for cross-domain experiments as they are

especially susceptible to changes in domain vocabulary. Nevertheless, we include these

features as a baseline in our experiments.

2. Parts of Speech

A clear focus of the simple text guidelines is grammar and word type. One way of repre-

senting this information is by measuring the relative frequency of different types of parts

of speech. We consider simple unigram part-of-speech tag information. We measured the

normalized counts and relative frequency of part-of-speech tags and counts of bigram part-

of-speech tags in each piece of text. Word order (subject verb object (SVO), object verb

subject (OVS), etc.) is correlated with readability (Devlin and Unthank, 2006), we also
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Coarse Tag Penn Treebank Tags

ADJ JJ, JJR, JJS
ADV RB, RBR, RBS
DET DT, PDT
N NN, NNS, NP, NPS, PRP, FW
V VB, VBN, VBG, VBP, VBZ, MD
WH WDT, WP, WP$, WRB

Table 5.1: A mapping of the Penn Treebank tags to a coarse tagset used to generate
features.

Feature SW EW

Tokens 158 4332
Types 100 1446
Sentences 10 172
Average sentence length 16 25
Type-token ratio 0.63 0.33
Percent simple words 0.31 0.08
BE850 type-token ratio 0.59 0.67
Not BE850 type-token ratio 0.65 0.30

Table 5.2: A comparison of the feature values from the Stephen Hawking article in Simple
English Wikipedia (SW) and English Wikipedia (EW).

included a reduced tagset to capture grammatical patterns (Table 5.1). We also included

normalized counts of these reduced tags in the model.

3. Surface Features

While lexical items may be important, more general properties can be extracted from the

lexical forms. We can also include features that correspond to surface information in the

text. These features include document length, sentence length, word length, numbers of

lexical types and tokens, and the ratio of types to tokens. All words are labeled as basic or
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not basic according to Ogden’s Basic English 850 (BE850) list (Ogden, 1930).4 In order

to measure the lexical complexity of a document, we include features for the number of

BE850 words, the ratio of BE850 words to total words, and the type-token ratio of BE850

and non-BE850 words. Investigating the frequency and productivity of words not in the

BE850 list will hopefully improve the flexibility of our model to work across domains and

not learn any particular jargon. We also hope that the relative frequency and productivity

measures of simple and non-simple words will codify the lexical choices of a sentence

while avoiding the aforementioned problems with including specific lexical items.

Table 5.2 shows the difference in some surface statistics in an aligned document from

Simple and ordinary Wikipedia. In this example, nearly one-third of the words in the simple

document are from the BE850 while less than a tenth of the words in the ordinary document

are. Additionally, the productivity of words, particularly non-BE850 words, is much higher

in the ordinary document. There are also clear differences in the length of the documents,

and on average documents from ordinary Wikipedia are more than four times longer than

documents from Simple Wikipedia.

4. Syntactic

As previously mentioned, a number of Wikipedia’s writing guidelines focus on general

grammatical rules of sentence structure. Evidence of these rules may be captured in the

4Ogden proposed a controlled English language with simplified a simplified lexicon and grammar, with
the goal of assisting non-native English speakers and advancing English as an international auxiliary lan-
guage. Ogden also provides extended Basic English vocabulary lists, totaling 2000 Basic English words, but
these words tend to be more specialized or domain specific. For the purposes of this study only words in
BE850 were used.
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Category Documents Sentences

Everyday Life 15,124 7,392
Geography 10,470 5,852
History 5,174 1,644
Literature 992 438
Media 502 429
People 4,326 1,562
Religion 1,863 1,581
Science 25,787 21,054
All 64,238 39,952

Table 5.3: The number of examples available in each category. To compare experiments in
each category we used at most 2000 instances in each experiment.

syntactic parse of the sentences in the text. Chae and Nenkova (2009) studied text flu-

ency in the context of machine translation and found strong correlations between parse tree

structures and sentence fluency.

In order to represent the structural complexity of the text, we collected extracted fea-

tures from the parse trees. Our features included the frequency and length of noun phrases,

verb phrases, prepositional phrases, and relative clauses (including embedded structures).

We also considered relative ratios, such as the ratio of noun to verb phrases, prepositional to

noun phrases, and relative clauses to noun phrases. We used the length of the longest noun

phrase as a signal of complexity, and we also sought features that measured how typical the

sentences were of English text. We included some of the features from the parser reranking

work of Charniak and Johnson (2005): the height of the parse tree and the number of right

branches from the root of the tree to the furthest right leaf that is not punctuation.
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Feature class Features

Lexical 522,153

Part of speech 2,478
tags 45
tag pairs 1,972
tags (reduced) 22
tag pairs (reduced) 484

Parse 11
Surface 9

Table 5.4: The number of features in each feature class.

5.3 Experiments

Using the feature sets described above, we evaluated a simple/ordinary text classifier in

several settings on each category. First, we considered the task of document classification,

where a classifier determines whether a full Wikipedia article was from ordinary English

Wikipedia or Simple Wikipedia. For each category of articles, we measured accuracy on

this binary classification task using 10-fold cross-validation. In the second setting, we con-

sidered the performance of a sentence-level classifier. The classifier labeled each sentence

as either ordinary or simple and we report results using 10-fold cross-validation on a ran-

dom split of the sentences. For both settings we also evaluated a single classifier trained on

all categories.

We next considered cross-category performance: how would a classifier trained to de-

tect differences between simple and ordinary examples from one category do when tested

on another category? Example text from two different categories, History and Relition is

92



CHAPTER 5. DISCRIMINATING BETWEEN SIMPLE AND COMPLEX ENGLISH

Category Text

History The British Empire was a global power that contained territories owned by
the United Kingdom. The empire was the largest empire in history, and at its
peak controlled one quarter of the world’s surface. More than 500 million
people were brought under the control of the British Empire. Today, most
of its members are in the Commonwealth of Nations.

Religion Confucianism is the philosophy based on the teachings of Confucius (511
BC - 479 BC), who was an important Chinese philosopher. Confucianism
has a complex system of moral, social, political, and religious thought, and
has had a large influence on the history of Chinese civilization.

Table 5.5: Example text from two categories of Simple English Wikipedia (Wikipedia,
2009a; Wikipedia, 2009b).

included in Table 5.5. In this experiment, we trained a single classifier on data from a single

category and used the classifier to label examples from each of the other categories. We

report the accuracy on each category in these transfer experiments.

For learning we require a binary classifier training algorithm. We evaluated several

learning algorithms for classification and report results for each one:

MIRA a large margin online learning algorithm (Crammer et al., 2006). Online learning

algorithms observe examples sequentially and update the current hypothesis after

each observation.

Confidence Weighted (CW) learning a probabilistic large margin online learning algo-

rithm (Dredze et al., 2008).

Maximum Entropy a log-linear discriminative classifier (Berger et al., 1996).

Support Vector Machines (SVM) a large margin discriminator (Joachims, 1998b).
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For each experiment, we used default settings of the parameters and 10 online iterations for

the online methods (MIRA, CW). To create a fair comparison for each category, we limited

the number of examples to a maximum of 2000.

5.4 Results

For the first task of document classification, we saw at least 90% mean accuracy with

each of the classifiers. Using all features, SVM and Maximum Entropy performed almost

perfectly. The online classifiers, CW and MIRA, displayed similar preference to the larger

feature sets, lexical and part-of-speech counts. When using just lexical counts, both CW

and MIRA were more accurate than the SVM and Maximum Entropy (reporting 92.95%

and 86.55% versus 75.00% and 78.75%, respectively). For all classifiers, the models using

the counts of part-of-speech tags did better than classifiers trained on the surface features

and on the parse features. This is surprising since we expected the surface features to be

robust predictors of the document class, mainly because the average ordinary Wikipedia

article in our corpus is about four times longer than the average Simple Wikipedia article.

We also expected the syntactic features to be a strong predictor of the document class since

more complicated parse trees correspond to more complex sentences.

For each classifier, we looked at its performance without its less predictive feature cate-

gories, and for CW the inclusion of the surface features decreased performance noticeably.

The best CW classifiers used either part-of-speech and lexical features (95.95%) or just

part-of-speech features (95.80%). The parse features, which by themselves only yielded
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Feature group

Classifier All features Lexical POS Surface Parse

CW 86.4 93.0 95.8 69.8 64.6
MIRA 97.5 86.6 94.6 79.7 66.9
MaxEnt 99.5 78.8 96.3 86.9 80.7
SVM 99.9 75.0 96.6 89.8 82.7

Table 5.6: Mean accuracy of all classifiers on the document classification task (in
percentages).

Feature group

Classifier All features POS Surface Parse

CW 73.2 74.5 57.4 62.3
MIRA 71.2 72.7 56.5 56.5
MaxEnt 80.8 77.7 71.3 69.0
SVM 77.0 76.4 72.6 73.0

Table 5.7: Mean accuracy of all classifiers on the sentence classification task (in
percentages).

64.60% accuracy, when combined with part-of-speech and lexical features showed high

accuracy as well (95.60%). MIRA also showed higher accuracy when surface features

were not included (from 97.50% mean accuracy with all features to 97.75% with all but

surface features).

The best SVM classifier used all four feature classes, but had nearly as good accuracy

with just part-of-speech counts and surface features (99.85% mean accuracy) and with

surface and parse features (also 99.85% accuracy). Maximum Entropy, on the other hand,

improved slightly when the lexical and parse features were not included (from 99.45%

mean accuracy with all feature classes to 99.55%).

We examined the weights learned by the classifiers to determine the features that were
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effective for learning. We selected the features with the highest absolute weight for a MIRA

classifier trained on all categories. The most predictive features for document classification

were the sentence length (shorter favors Simple), the length of the longest NP (longer

favors ordinary), the number of sentences (more favors ordinary), the average number of

prepositional phrases and noun phrases per sentence, the height of the parse tree, and the

number of adjectives. The most predictive features for sentence classification were the ratio

of different tree non-terminals (VP, S, NP, S-Bar) to the number of words in the sentence,

the ratio of the total height of the productions in a tree to the height of the tree, and the

extent to which the tree was right branching. These features are consistent with the rules

described above for simple text.

Next we looked at a pairwise comparison of how the classifiers performed when trained

on one category and tested on another. Surprisingly, the results were robust across cate-

gories, across classifiers. Using the best feature class as determined in the first task, the

average drop in accuracy when trained on each domain was very low across all classifiers

(the mean accuracy rate of each cross-category classification was at least 90%). Table 5.8

shows the mean change in accuracy from CW models trained and tested on the same cate-

gory to the models trained and tested on different categories. When trained on the Every-

day Life category, the model actually showed a mean increase in accuracy when predicting

other categories.

In the final task, we trained binary classifiers to identify simple sentences in isolation.

The mean accuracy was lower for this task than for the document classification task, and
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Category Mean accuracy change

Everyday life +1.4
Geography −4.3
History −1.0
Literature −1.8
Media −0.6
People −0.2
Religion −0.6
Science −2.5

Table 5.8: Mean accuracy drop for a CW model trained on one category and tested on
all other categories. Negative numbers indicate a decrease in performance (in percentage
points).

we anticipated individual sentences to be more difficult to classify because each sentence

only carries a fraction of the information held in an entire document. It is common to

have short, simple sentences as part of ordinary English text, although they will not make

up the whole. However results were still promising, with between 72% and 80% mean

accuracy. With CW and MIRA, the classifiers benefited from training on all categories,

while MaxEnt and SVM in-category and all-category models achieved similar accuracy

levels, but the results on cross-category tests were more variable than in the document

classification. There was also no consistency across features and classifiers with regard to

category-to-category classification. Overall the results of the sentence classification task

are encouraging and show promise for detecting individual simple sentences taken out of

context.
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5.5 Discussion

The classifiers performed robustly for the document-level classification task, although the

corpus itself may have biased the model due to the longer average length of ordinary doc-

uments, which we tried to address by filtering out articles with only one or two sentences.

Cursory inspection suggests that there is overlap between many Simple Wikipedia arti-

cles and their corresponding ordinary English articles, since a large number of Simple

Wikipedia documents appear to be generated directly from the English Wikipedia articles

with more complicated subsections of the documents omitted from the Simple article.

The sentence classification task could be improved by better labeling of sentences. In

these experiments, we assumed that every sentence in an ordinary document would be

“ordinary” (i.e., not simple) and vice versa for simple documents. However it is not the

case that ordinary English text contains only complicated sentences. In future research

we can use human annotated sentences for building the classifiers. The features we used

in this research suggest that simple text is created from categorical lexical and syntactic

replacement, but more complicated, technical, or detailed oriented text may require more

rewriting, and would be of more interest in future research.
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5.6 Conclusion

We have demonstrated the ability to automatically identify texts as either simple or ordinary

at both the document and sentence levels using a variety of features based on the word usage

and grammatical structures in text. Our statistical analysis has identified relevant features

for this task accessible to computational systems. In the following chapter, we will apply

the features to select simplifying paraphrases in our unified T2T framework.
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Chapter 6

Sentence Simplification by Paraphrasing

This chapter1 applies our unified framework to simplification, spelling out the aspects of

simplification that are analogous to machine translation, and highlight where it diverges.

Unlike previous MT-based simplification systems (see Section 2.2) that derive translation

grammars from aligned English and Simple English Wikipedia sentences, we create para-

phrases by pivoting over bilingual data that do not directly model simplifications. Our

paraphrase grammar contains a rich set of paraphrases and syntactic paraphrase rules, from

which simplification rules can be selected. We identify issues with using a machine trans-

lation metric, BLEU, for a monolingual T2T, as the unaltered source sentence is a strong

baseline that has a high overlap with the reference. We propose a new metric for simplifica-

tion, GLiB, that penalizes text that is not more readable than the source while also capturing

fluency and adequacy with n-gram overlap. We design feature functions that appropriately

1Work originally presented in “Computational Approaches to Shortening and Simplifying Text” (Napoles,
2012).
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model simplifications and demonstrate that it is better to optimize their weights with GLiB

than a standard MT metric. We further re-rank decoder output with additional syntactic

grammaticality and readability scores. Our model chooses the best simplification over a

large space of possible phrase and sentence-level paraphrases. It increases he readability of

sentences while preserving meaning and producing grammatical output, and it outperforms

state-of-the-art simplification systems.2

Simplification is related to sentence compression, which automatically shortens sen-

tences by deleting words (Chapter 4), because many simplifying operations involve dele-

tion (Coster and Kauchak, 2011b). Other simplifying operations include lexical and syn-

tactic paraphrases. A lexical paraphrase substitutes a complicated word or phrase for a

simpler phrase. Simplifying lexical paraphrases might rewrite Latin legal terms into plain

English, such as

erratum→ mistake

affidavit→ sworn statement

inter alia→ among other things

Syntactic transformations are more general changes that involve rearranging the syntactic

categories or nodes in a parse tree, like in the English possessive rule the NN1 ’s NNP2 →

the NNP2 ’s NN1. Some learned instances of the possessive rule arguably simplify, like the

NNS1 produced by NNS2→ NNS2 ’s NNS1. The example in Table 4.11 (page 82) illustrates

the diverse requirements of making a text easier to understand.

2This work was later extended and published as “Optimizing statistical machine translation for text sim-
plification” (Xu, Napoles, Pavlick, Chen, and Callison-Burch, 2016).
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This chapter demonstrates how our unified framework generates paraprhastic simpli-

fications. In contrast to previous work in which simplification rules are handwritten or

learned from a parallel simple corpus (Zhu et al., 2010; Bach et al., 2011; Woodsend

and Lapata, 2011), our model learns to choose simplifying transformations from a multi-

purpose paraphrase grammar. We define parameters tailored to improving readability and

use an existing statistical MT decoder to generate our output. Finally, we develop a model

for re-ranking the decoder output to favor more grammatical and more readable sentences.

Our model, Simplification by Paraphrasing to Plainer English (SIMPPLE), produces

grammatical output that is more readable than the source side, while retaining its meaning.

In manual evaluation, participants judge our output to be more grammatical, more readable,

and preserve more meaning than leading systems. This chapter will

• show how to adapt the MT-inspired paraphrasing framework for simplifying sen-

tences,

• develop a new metric for optimizing sentence simplicity and grammaticality,

• demonstrate the expressivity of a paraphrase grammar, and

• rerank candidate simplifications with a machine learning approach.

6.1 Adapting the Unified Framework To Simplification

To simplify sentences with our T2T framework, we define custom, rule-level features that

represent readability characteristics. By acquiring our paraphrases from a large corpus, we
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are able to capture many transformations that other approaches do not given their limited

nature (limited either by hand-written rules or the corpus size). The following sections

describe our customizations to the objective function, grammar, features, and tuning data.

6.1.1 Objective Function

The first step is defining an objective function, to which we optimize the weights of the

grammar feature functions. Given a set of feature functions ϕ⃗ = {ϕ1 . . .ϕn} combined in

the following linear model:

w =−
N

∑
i=1

λiϕi, (6.1)

we optimize the weights with minimum error rate training (MERT) to iteratively adjust the

weight λi of each feature function are ϕi until a local optimum is reached. Features used in

this work are described below.

BLEU (Equation 4.4, page 71) does not capture the readability of a sentence, and there-

fore is insufficient for simplification. One of the most widely used metrics for measuring

readability is the Flesch–Kincaid Grade Level (Kincaid et al., 1975), which is defined for a

document as

FKGL = 0.39
(

# words
# sentences

)
+11.8

(
# syllables

# words

)
−15.19, (6.2)

with a lower value indicating a higher level of simplicity. The constants were empirically

set so that the FKGL roughly equates to the grade at which a student should be able to read
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a text.

Since we are simplifying sentences out of context, we modify FKGL to evaluate each

sentence individually. Additionally, we count tokens instead of words and assign one sylla-

ble to each non-word token, to prevent the system from superficially decreasing the grade

level by deleting punctuation. This adaptation, GL, is defined as follows:

GL(C) = 0.39ctok +11.8
(

csyll

ctok

)
−15.19, (6.3)

with ctok the number of tokens in a candidate C and csyll the number of syllables plus the

number of non-word tokens.

Pilot experiments used GL as an objective function, but the output was not very fluent,

so we also considered n-gram overlap with the target sentence, in the form of BLEU. BLEU

encourages reasonable output with regard to meaning retention and grammaticality, and

we use a penalty dependent on GL, which is sensitive to the readability of a sentence.

When we trained using BLEU with a GL penalty, the output was only minimally changed

from the source, if at all. The MT system tended to make no changes when optimizing to

BLEU since the BLEU score of the source side was already high (0.50, see Table 6.1.4).

Therefore, we use iBLEU (Sun and Zhou, 2012), a paraphrase-specific extension to BLEU

that is input-aware. iBLEU penalizes n-gram overlap with the input source sentence S in

order to reduce self-paraphrases and promote diversity in the paraphrased output. Given a
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candidate C and reference R, iBLEU is defined

iBLEU(S,R,C) = αBLEU(C,R)− (1−α)BLEU(C,S). (6.4)

The weight α adjusts how much penalty source overlap should contribute.

The objective function used for training our SIMPPLE system is a combination of GL

and iBLEU, defined as

GLiB =

⎧⎪⎪⎨⎪⎪⎩
iBLEU if GL(pp)< target

0 otherwise
(6.5)

We use a [0,1] penalty if the target GL is not reached to strictly enforce more readable

output during parameter estimation. The target GL can be set to any value, and for this

study the target was always set to the FKGL of the reference sentences. Future work can

explore whether different target FKGLs affect the readability of the output.

6.1.2 Grammar

Earlier simplification work (Zhu et al., 2010; Woodsend and Lapata, 2011) learned a trans-

lation grammar from the Parallel WiKiPedia corpus(PWKP), which contains 188-thousand

aligned sentence pairs from English Wikipedia and Simple English Wikipedia (Zhu et al.,

2010). However, this corpus is relatively small when compared to corpora used for MT, so

our framework uses the paraphrase grammar extracted with bilingual pivoting (described
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Corpus Sentences Rules

Fr-En Europarl 1,695,060 5,014,336
Wikipedia 187,948 700,428

Table 6.1: The size of the corpora from which each grammar was generated and the number
of rules used from each for our 100-sentence test set.

in Section 4.3). Using this data, we extracted an order-of-magnitude more rules for de-

coding our 100-sentence test set than using the PWKP corpus (see Table 6.1). While our

paraphrase grammar does not represent any asynchronous transformations, we believe that

our paraphrases capture a wide variety of simplifying lexical and syntactic transformations,

supported by our findings reported in Section 6.3.

Since automatically extracted paraphrases may contain erroneous substitutions (as first

discussed in Section 4.1), we augment the grammar with rules to discourage paraphrasing

closed-class words, such as pronouns (PP→⟨he | she⟩), articles (DT →⟨every | any⟩), and

prepositions (IN→ ⟨to | at⟩). We add identity rules with no cost for every word appearing

in these classes to encourage identity paraphrases. We further augment the grammar by

adding deletion rules that allow adjectives to be deleted since deletion is a common op-

eration in simplification (Coster and Kauchak, 2011b) but an asynchronous operation not

present in the paraphrase grammar. The identity rules added to our grammar of the type

DT → ⟨the | the⟩

include all words of the in the categories DT , IN, and PRP. All adjectives (JJ) are added
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to the grammar with a deletion rule, such as

JJ→ ⟨beautiful | ε⟩

Even with these augmentations, the grammar is still noisy, but instead of filtering it, we

rely on the optimization step to choose well-formed, simplifying rules.

6.1.3 Features

By acquiring our paraphrases from a large corpus, we are able to capture many transforma-

tions that other approaches cannot given their limited nature (either by hand-written rules

or the corpus size). To illustrate, Table 6.2 compares the paraphrases for ancient that are

included in the PPDB (an extension of our paraphrase grammar) compared to the single

paraphrasing rule learned from a parallel Wikipedia corpus, ancient → old (Zhu et al.,

2010). Using GLiB as our objective function and a set of features specific to this task, we

let MERT choose appropriate weights to indicate the simplifying properties of paraphrases.

In order to model simplifying operations, we define a set of rule-level feature functions

that calculate readability characteristics over the target-side terminals. Our features are

taken from the features from our discriminative classifier described in Chapter 5 that can be

easily calculated at the phrase level. These features are the number of terminals, the number

of Basic English words,3 and the average number of syllables per terminal. Additionally,

boolean variables indicate when the target side has fewer of each of these counts than the

3As defined in Ogden (1930)
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ancient longtime
old long-standing
former centuries-old
antique archaic
age-old classical
ancestral old-fashioned
immemorial antiquated
past outdated
dated historical
archaeological older
traditional primeval

Table 6.2: Some of the 214 paraphrases in the PPDB for ancient (Ganitkevitch and
Callison-Burch, 2014).

source, as well as whether the rule is an identity paraphrase or if it is lexical (i.e., each side

has no non-terminals). We also use the approximation in Equation 4.1 (page 60) to estimate

lexical and phrasal paraphrase probabilities for each rule.

6.1.4 Data

For our experiments, we use the aligned sentences in the PWKP as our corpus. We ran-

domly selected 4000 sentence pairs from PWKP for development. In pilot experiments

using this development set, we noticed that the system tended to produce output that was

less readable than the input.

Because of the collaborative nature of Wikipedia, it contains noise in the form of sen-

tence fragments, ungrammatical text, and poorly formed markup, all of which affect the

quality of the corpus. We removed two sentences which were clearly table formatting and

another sentence because it was over 100 tokens long. More importantly, there is no guar-
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Data FKGL Length

SimpWiki 10.46 21.17
EnWiki 12.50 17.78
FilteredSimpWiki 9.48 16.18
Filtered EnWiki 13.33 23.92

Table 6.3: FKGL and average sentence length of the tuning data, before and after filtering.

antee that a Simple English sentence is more readable than its aligned English sentence,

because the PWKP corpus was aligned automatically.

In order to quantify the relative readability of an aligned sentence pair, we asked hu-

man judges to compare the remaining 3997 sentence pairs on Amazon’s Mechanical Turk

(Appendix A.5.1), and we found that 64% of the Simple sentences were perceived to be at

least as complicated as the aligned English sentence. Judges made a ternary decision on

each sentence pair: sentence A is more readable than sentence B, A is less readable than B,

or A and B are of the same difficulty. Each sentence pair was evaluated by three different

participants. There were 1434 sentences pairs for which the majority of judges agreed,

including 305 where the Simple side was judged to be less readable than the English side.

We reversed the labels of these pairs.

We used these human-verified 1434 sentences as our tuning corpus and found that the

distance between the FKGL of each side of the corpus increased after verification (Ta-

ble 6.1.4).

We also trained a 5-gram language model on the simple PWKP corpus to model com-

mon n-grams in a simple corpus, and a 5-gram English Gigaword (Parker et al., 2011)
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language model to represent grammaticality.

6.2 Ranking Output

In machine translation, the decoder produces translations based on a score over the param-

eters of the applied transformations. Re-ranking has been investigated as a method for im-

proving MT output, and generally uses orthogonal information, such as edit distance (Ak-

iba et al., 2001), language-model probability (Callison-Burch and Flournoy, 2001; Zhang

et al., 2006), and grammatical features (Avramidis et al., 2011).

Because the decoder does not explicitly encode any simplifying syntactic transforma-

tions, we use syntactic information to re-rank decoder output. We include features from

machine translation, including the unmodified n-gram precision for 1 ≤ n ≤ 4 and BLEU

score, as well as readability features and descriptive surface statistics, borrowed from the

classifier developed in the previous chapter. The features we use for scoring the output fall

into the following categories:

Surface features include the length of the sentence in tokens and syllables, the average

syllables per word, n-gram precision for 1 ≤ n ≤ 4 compared to a source sentence,

BLEU score compared to the source, and GL (16 features in total).

Corpus-based features include the language-model probabilities of the sentence given

Gigaword and Simple Wikipedia 5-gram language models, and the number of OOVs

in the sentence according to each (4 features).
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Syntactic features were used by Charniak and Johnson (2005) for re-ranking parse trees.

Some of these features were used in Chapter 5, and a binary classifier trained over

the C&J features is a good predictor of grammaticality (Post, 2011). We extract all of

the features defined by C&J that appear at least 5 times in our corpus (56k features).

With these features, we trained a discriminative support vector machine with SVM-

Light (Joachims, 1998a). Unlike machine translation, we do not have annotated rankings

of simplifications to use for training a re-ranker. Therefore, sentences were ranked based on

their distance from the decision boundary. This approach is similar to Albrecht and Hwa

(2007), who trained regression and discriminative classifiers to identify good machine-

translation output, and whose model correlated better with human judgments than some

automatic metrics.

Positive examples were the Simple Wikipedia side of our tuning corpus (1434 sen-

tences), and for negative examples we randomly generated 1434 sentences from a trigram

Gigaword language model, following Post (2011). In our model, features representing both

grammaticality and readability were heavily weighted (see Table 6.4 for the most positive

and negative features).

Human judges compared the best translation chosen by the re-ranker to that chosen by

the objective function, and judged the unranked translation to be worse 37.67% of the time

(unranked translations were better 16.10% of the time and tied with the ranked translations

46.23% of the time). In our experiments, we reranked our system output using this syntactic

classifier.
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Positive Negative

1,2,3,4-gram precision Gigaword LM probability
PWKP LM probability PWKP OOVs
Length ⟨VP S⟩
⟨S NP VP⟩ SBAR
⟨NP DT NN⟩ ⟨NP NN NN⟩
Grade level ⟨NP VBG⟩

Table 6.4: Highly weighted positive and negative features for identifying grammatical,
simple sentences.

Tokens/
Model BLEU FKGL Meaning Grammar sentence Sentences

SIMPPLE 0.56 12.50 4.23 3.97 25.13 100
RevILP 0.34 9.60 4.09 3.90 12.90 183
TSM 0.34 8.12 3.54† 2.80† 12.09 180
Moses 0.56 12.89 4.16 2.93† 23.40 100

Reference − 9.60 3.66† 4.54 16.16 131
Source 0.50 14.18 − − 25.49 100

Table 6.5: Automatic and manual measures of system performance. † indicates SIMPPLE
is significantly better with p < 0.001.

6.3 Experiments

In our T2T framework, we treated existing statistical machine translation tools as a black

box for parameter estimation and decoding: Z-MERT (Zaidan, 2009) and Joshua (Weese

et al., 2011), respectively.

A variety of features help the decoder score its output. These features include stan-

dard MT parameters, paraphrase probabilities, and features we defined for this task (Sec-

tion 6.1.3). MERT determines an optimal weight vector for these features, using GLiB as

an objective function (Equation 6.5, α = 0.95). The decoder outputs n candidates with the

112



CHAPTER 6. SENTENCE SIMPLIFICATION BY PARAPHRASING

System Output

Source Many consider the flavor to be very agreeable , but it is generally bitter if
steeped in boiling water , so it is made using hot but not boiling water .

SIMPPLE some people think the flavor to be very nice , but it is often bitter if steeped
in boiling water , so it is made using hot but not boiling water .

RevILP Many say the flavor to be very agreeable . It is made using hot but not
boiling water .

TSM Many consider the flavor to be agreeable , but it is horrible . If steeped in
boiling water .

Moses many consider the flavor to be very agreeable , but it is generally bitter if
steeped in boiling water , so it is made using hot but not boiling water .

Reference Many consider the flavor to be very agreeable , but it is generally bitter if
steeped in boiling water . It is therefore made using hot but not boiling
water .

Source The combination of new weapons and tactics have caused many historians
to consider this battle the beginning of the end of chivalry.

SIMPPLE The mix of weapons and tactics have caused many historians to see this
battle the beginning of the end of chivalry .

TSM The combination of weapons and tactics have caused many historians. To
consider this battle the beginning of the end of knight.

RevILP It was The combination of new weapons and tactics . It have caused many
historians to consider this battle the start of the end of chivalry .

Moses the combination of new weapons and some historians consider this battle
the beginning of the end of chivalry .

Reference Because of this change some historians call this battle the beginning of the
end of chivalry.

Table 6.6: Sample output from different systems.

lowest cost according to the weighted feature functions. We set the target GL to be the

average TKGL of the target side of the tuning corpus (9.48).
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We evaluated SIMPPLE on the PWKP test corpus, which was used to test the earlier

TSM and RevILP models described in Section 2.2. We evaluated the output of SIMP-

PLE against RevILP and TSM. As a baseline, we used the Moses machine translation

system (Koehn et al., 2007), with a translation grammar extracted from the PWKP corpus

and optimizing to BLEU. For automatic evaluation we calculated the BLEU and FKGL

scores.

Following previous work in evaluating sentence compression described in Chapter 3,

we solicited manual judgments of the grammaticality and meaning retention of the sim-

plifications (Appendix A.5.2). Judges were presented with the source sentence and each

simplification, and evaluated them on two Likert-like five-point scales of meaning retention

and grammaticality (5 being the best). All of our experiments were carried out using Me-

chanical Turk, with three-way redundancy and controls to filter out spammers. Table 6.5

contains a summary of the automatic and manual evaluation results, and example output is

found in Table 6.2.

Our next experiment evaluated human perceptions of readability. For each source sen-

tence, the output of all four systems and the reference sentence were presented in random

order. We asked participants to rank the simplifications in order of how readable they were,

allowing ties. In a pairwise comparison of system rankings, SIMPPLE was found to have

more readable output compared to the other systems (see Figure 6.1). SIMPPLE was sig-

nificantly ranked more readable than Moses and TSM (p < 0.001).
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Figure 6.1: Pairwise comparison of how human judges ranked the readability of different
systems; across the board SIMPPLE was preferred more often.

6.4 Analysis

In manual evaluation, SIMPPLE was perceived to be more grammatical and preserve more

meaning than competing systems. These results are statistically significant for TSM (mean-

ing and grammar), and Moses (grammar). Compared to RevILP, our results were only

significant at p < 0.1 for meaning. SIMPPLE also had significantly higher average mean-

ing retention than the reference sentences, but we imagine this was because the reference

sentences were on average shorter than the SIMPPLE output (Napoles et al., 2011a). For

automatic metrics, Moses and SIMPPLE had higher BLEU scores than the other systems,

most likely because they optimize to BLEU, directly or indirectly. The FKGL of SIMP-

PLE and Moses was lower than that of the source sentence, but not nearly as low as that of
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RevILP and TSM. The latter two methods both used quasi-synchronous grammars, which

allowed sentence splitting, and for a given number of words, FKGL is lower when there

are more sentences (see Equation (6.2)). However, humans still ranked SIMPPLE output

more readable than all other systems the majority of the time, even without asynchronous,

sentence-splitting transformations. These results provide strong evidence in favor of taking

a machine translation approach to monolingual text-to-text generation.

6.5 Conclusion

This chapter demonstrates how our universal T2T framework can be extended to a com-

plex text-to-text generation task. This framework outperformed existing automatic text

simplification systems by using a rich set of transformation rules to improve sentence sim-

plification and defined a small set of features and a metric by which text can be simplified.

Our manual evaluation does not consider how well SIMPPLE aids people with specific

readability needs. However, the parameter of the objective function can be adjusted to fa-

vor more drastic increases in readability. Our T2T framework is a rich, data-driven model

that can be further improved and customized. We have shown how the framework creates

better transformations that are grammatical, meaning-preserving, and further meet fulfill

the goal of each task. In the next part, we turn to ill-formed text and apply the framework

to grammatical error correction.
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Part III

Grammatical Error Correction
We turn to the final monolingual rewriting task, grammatical error correction (GEC).

Unlike simplification and compression, the input to GEC is ungrammatical, and a general-

purpose paraphrase resource will not contain corrections to most of the errors. In Chapter 7,

we will introduce the task, discuss existing evaluation practices and resources for the task,

and argue for a different approach, presenting new metrics and parallel corpora to support

the new approach. Chapter 8 applies methods from machine translation to GEC, highlight-

ing the impact that artificially generated data can make when training data is limited.

The field of grammatical error correction (GEC) has grown substantially in the 2010s,

with several shared tasks (Dale and Kilgarriff, 2011; Dale et al., 2012; Ng et al., 2013;

Ng et al., 2014) and GEC models that perform whole-sentence correction (e.g., Junczys-

Dowmunt and Grundkiewicz, 2016) instead of targeting specific errors such as prepositions

(e.g., Chodorow and Leacock, 2000; Dale and Kilgarriff, 2011; Leacock et al., 2014)).

Approaches to grammatical error correction have been developed and evaluated with error-

coded corpora, which contain corrections to discretely labeled spans of text, and research

has focused on developing better evaluation metrics. However, the field has not questioned
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the reliance of GEC evaluation on error-coded corpora, which contain labeled corrections.

We examine current practices and show that GEC’s reliance on such corpora unnaturally

constrains annotation and automatic evaluation, resulting in (a) sentences that do not sound

acceptable to native speakers and (b) system rankings that do not correlate with human

judgments. In light of this, we propose an alternate approach using fluency edits, which

more closely reflect human perceptions of grammaticality and are substantially cheaper to

collect.

Fluency edits can be viewed as a type of paraphrase, and we adapt our unified T2T

framework to grammatical error correction, focusing on holistic fluency correction instead

of local error-coded operations. Our framework rivals the current state-of-the-art system

but requires half the training data, demonstrating the expressivity and robustness of this

framework for diverse T2T tasks with different requirements.
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Chapter 7

Reframing Grammatical Error

Correction

This chapter motivates the need for fluency corrections. We describe the creation of fluency

corpora for evaluating GEC (Section 7.1) and new metrics that work with either error-

coded or fluency edits (Section 7.4). We demonstrate that automatic evaluation with fluency

corrections and a new fluency-centered metric have very strong correlation with human

expert judgments (ρ = 0.82).1

GEC is often viewed as a matter of correcting isolated grammatical errors but is much

more complicated, nuanced, and subjective than that. As discussed in Chodorow et al.

1This chapter is based on work done in collaboration with Keisuke Sakaguchi, originally published in
Napoles et al. (2015), Napoles et al. (2016d), Sakaguchi et al. (2016), and Napoles et al. (2017c). My
contributions to this work are creation of automatic metrics for GEC (Sections 7.4 and 7.7.3), evaluation
and analysis of metrics and annotations, and creating annotations. Keisuke Sakaguchi’s contributions were
collecting annotations and human judgments, probabilistic inference of system rankings with TrueSkill, cal-
culating agreement levels, and development of a hybrid metric.
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Original Sentence

During that period, if one of the family member reflects genetic disorder symptoms, he
will fell in an ethical dilenma for sure.

Correction 1

During that period, if one of the family member reflects the genetic disorder symptoms,
he will fall in an ethical dilenma for sure.

Correction 2

During that period, if one of the family members reflects a genetic disorder symptoms,
he will feel in an ethical dilenma for sure.

Table 7.1: Two proposed corrections of a sentence rewritten by an English language learner
from the CoNLL 2014 Shared Task evaluation set (Ng et al., 2014).

(2012), there is often no single correction for an error (e.g., whether to correct a subject-

verb agreement error by changing the number of the subject or the verb), and errors cover a

range of factors including style, register, venue, audience, and usage questions, about which

there can be much disagreement. For example, the two candidate corrections in Table 7.1

contain edits addressing different errors, and attempt to correct the sentence in different

ways. Neither correction fixes the misspelling of dilemma, and neither is representative of

fluent standard English.

At this point, we should consider the goal of GEC. In NLP, GEC was originally tasked

with correcting targeted error types in order to provide feedback to non-native writers (e.g.,

Chodorow and Leacock, 2000; Dale and Kilgarriff, 2011; Leacock et al., 2014). With

publicly available annotated datasets and more advanced methods applied to the task, sys-

tems have improved and now aim to correct all errors of every error type (Ng et al., 2014).
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Original

From this scope , social media has shorten our distance .

Technically Grammatical

From this scope , social media has shortened our distance .

Fluent

From this perspective , social media has shortened the distance between us .

Table 7.2: An Original sentence and candidate Corrected version from the NUCLE cor-
pus, followed by a Fluent correction from our new annotations.

With whole-sentence correction the standard GEC task, we encourage the community to

reevaluate the definition of GEC.

Learner text often exhibits problems that are not easily categorized into a single, span-

delimited error. Consider the example in Table 7.2. The second version of the sentence

was corrected by a human annotator using error coding and corrects the verb error. This

sentence is “technically” grammatical, but still unacceptable to a native or fluent speaker.

However, when we aim to correct the sentence as a whole, the most conspicuous error

has to do with how unnaturally this sentence reads. The meanings of words and phrases

like scope and the corrected shortened our distance are clear, but this is not how a native

English speaker would use them. A more fluent version of this sentence is the third version

in Table 7.2.

This issue motivates a broader definition of grammaticality that we will term native-

language fluency, or simply fluency. One can argue that traditional understanding of gram-

mar and grammar correction encompasses the idea of native-language fluency. However,
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the metrics commonly used in evaluating GEC undermine these arguments. The per-

formance of GEC systems is typically evaluated using metrics that compute corrections

against error-coded corpora, which impose a taxonomy of types of grammatical errors.

Assigning these codes can be difficult, as evidenced by the low agreement found between

annotators of grammatical errors (Rozovskaya and Roth, 2010; Bryant and Ng, 2015). It is

also quite expensive. But most importantly, as we show in the following section, annotating

for explicit error codes places a downward pressure on annotators to find and fix concrete,

easily-identifiable grammatical errors (such as wrong verb tense) in lieu of addressing the

native fluency of the text.

7.1 Correcting for Fluency

We hypothesize that human judges, when presented with two versions of a sentence, will

favor fluent versions over ones that exhibit only technical grammaticality.

By technical grammaticality, we mean adherence to an accepted set of grammatical

conventions. In contrast, we consider a text to be fluent when it looks and sounds natural to

a native-speaking population. Both of these terms are hard to define precisely, and fluency

especially is a nuanced concept for which there is no checklist of criteria to be met.2 To

demonstrate these intuitions, Table 7.3 contains examples of sentences that are one, both,

2It is important to note that both grammaticality and fluency are determined with respect to a particular
speaker population and setting. In this thesis, we focus on Standard Written (American) English, which is
the standard used in education, business, and journalism. While judgments of individual sentences would
differ for other populations and settings (for example, spoken African-American Vernacular English), the
distinction between grammaticality and fluency would remain.
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Technically Grammatical Not Technically Grammatical

Fluent In addition, it is impractical to make
such a law.

I don’t like this book, it’s really bor-
ing.

Not Fluent Firstly, someone having any kind of
disease belongs to his or her pri-
vacy.

It is unfair to release a law only
point to the genetic disorder.

Table 7.3: Examples of sentences that are different combinations of fluent and technically
grammatical.

or neither. A text does not have to be technically grammatical to be considered fluent,

although in almost all cases, fluent texts are also technically grammatical. This chapter

will demonstrate how they are quantifiably different with respect to GEC.3

Annotated corpora for GEC are almost exclusively error coded. The Cambridge Learner

Corpus, a proprietary collection of essays written by English language learners, is coded for

80 error types (Nicholls, 2003). A subset of that corpus, consisting of essays by students

sitting for the First Certificate Exam (FCE), is freely available to the community (Yan-

nakoudakis et al., 2011). The NUS Corpus of Learner English (NUCLE) consists of es-

says written by advanced English language learners at the National University of Singa-

pore (Dahlmeier et al., 2013). NUCLE is annotated with a smaller set of errors than CLC

(28), and was used in the 2013 and 2014 shared tasks. No substantial parallel corpora ex-

ist for GEC without error coding. The two that we are aware of are the Lang-8 corpus,

containing automatically aligned sentences written and corrected by ELLs (Mizumoto et

al., 2011), and the AESW corpus, which has proofreading corrections on scientific writ-

3The work in this section was originally published in Sakaguchi et al. (2016).
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ing (Daudaravicius et al., 2016). The former is noisy and has been used for additional

training data for MT-based approaches (like the one described in Chapter 8), and the latter

contains very minimal errors, the majority of which address punctuation.

Annotating coded errors encourages a minimal set of edits because more substantial

edits often address overlapping and interacting errors. For example, the annotators of the

NUCLE corpus, which was used for the CoNLL shared tasks, were explicitly instructed

to select the minimal text span of possible alternatives (Dahlmeier et al., 2013). There

are situations where error-coded annotations are useful to help students correct specific

grammatical errors. The ability to do this with the non-error-coded, fluent annotations

we advocate here is no longer direct but it is not lost entirely. For this purpose, some

studies have proposed post hoc automated error-type classification methods (Swanson and

Yamangil, 2012; Xue and Hwa, 2014; Bryant et al., 2017), which compare the original

sentence to its correction and deduce the error types. A similar method could be applied to

non-coded fluency edits.

We speculate that by removing the error-coding restraint, we can obtain edits that sound

more fluent to native speakers while also reducing the expense of annotation, with dimin-

ished time and training requirements. Chodorow et al. (2012) and Tetreault et al. (2014)

suggested that it is better to have a large number of annotators to reduce bias in automatic

evaluation. Following this recommendation, we collected additional annotations without

error codes, written by both experts and non-experts.
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Edit type
Annotator Minimal Fluency

Expert 1,312 × 2 1,312 × 2
Non-expert 1,312 × 2 1,312 × 2

Total 5,248 5,248 10,496

Table 7.4: New corrections collected in this work.

7.2 A Corpus of Fluency Corrections

In collecting a new fluency corpus, we have two goals: to determine which type of cor-

rections humans prefer whether reliable corrections can be collected from untrained an-

notators using crowdsourcing. We collected 8 additional corrections for each sentence in

the CoNLL-2014 shared task test set, using both expert and crowdsourced annotators, and

fluency and minimal edit corrections. The expert annotators were three native speaking au-

thors of this work and the crowdsourced annotations were collected from Mechanical Turk

workers in the United States.4 Work in machine translation shows that more references

are better for evaluation (Finch et al., 2004) and, concurrent to this work and also recog-

nizing the importance of multiple references, Bryant and Ng (2015) collected 8 additional

minimal-edit corrections for each of the CoNLL-14 sentences.

We compared the quality of the correction by different groups of annotators on Me-

chanical Turk, and found that when people (both experts and non-experts) are asked to

make minimal edits, they make few changes to the sentences and also change fewer of the

4Annotation instructions are included in Appendices A.6.1 and A.6.2, and further detail about annotation
collection can be found in Sakaguchi et al. (2016)
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Original Genetic disorder may or may not be hirataged hereditary disease
and it is sometimes hard to find out one has these kinds of diseases
.

Expert fluency A genetic disorder may or may not be
e

a hereditary disease ,
and it is sometimes hard to find out whether one has these kinds
of diseases .

Non-expert fluency Genetic
e

factors can manifest overtly as disease
e

, or simply
be carried , making it

e
hard , sometimes , to find out if one hase

a genetic predisposition to disease .

Table 7.5: An example sentence with expert and non-expert fluency edits. Moved and
changed or inserted spans are underlined and

e
indicates deletions.

sentences. Fluency edits show the opposite effect, with non-experts taking more liberties

than experts with both the number of sentences changed and the degree of change within

each sentence (see Table 7.5 for an extreme example of this phenomenon). In order to

quantify the extent of changes made in the different annotations, we look at the percent of

sentences that were left unchanged as well as the number of changes needed to transform

the original sentence into the corrected annotation. To calculate the number of changes, we

used a modified Translation Edit Rate (TER), which measures the number of edits needed

to transform one sentence into another (Snover et al., 2006). An edit can be an insertion,

deletion, substitution, or shift. We chose this metric because it counts the movement of

a phrase (a shift) as one change, which the Levenshtein distance would heavily penalize.

TER is calculated as the number of changes per token, but instead we report the number of

changes per sentence for ease of interpretation, which we call sTER.5

5TER is better than edit distance for this analysis because it considers moving a phrase a single edit.
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We compare the original set of sentences to the new annotations and the existing

NUCLE and BN15 reference sets to determine the relative extent of changes made by the

fluency and minimal edits (Figure 7.1). Compared to the original, non-experts had a higher

average sTER than experts, meaning that they made more changes per sentence. For flu-

ency edits, experts and non-experts changed approximately the same number of sentences,

but the non-experts made about seven edits per sentence compared to the experts’ four.

Minimal edits by both experts and non-experts exhibit a similar degree of change from the

original sentences, so further qualitative assessment is necessary to understand whether the

annotators differ. Table 7.6 contains an example of how the same ungrammatical sentence

was corrected using both minimal and fluency edits, as well as one of the original NUCLE

corrections.

The error-coded annotations of NUCLE and BN15 fall somewhere in between the flu-

ency and minimal edits in terms of sTER. The most conservative set of sentences is the sys-

tem output of the CoNLL 2014 shared task, with sTER = 1.4, or approximately one change

made per sentence. In contrast, the most conservative human annotations, the minimal ed-

its, edited a similar percent of the sentences but made about two changes per sentence.

When there are multiple annotators working on the same data, one natural question is

the inter-annotator agreement (IAA). For GEC, IAA is often low and arguably not an appro-

priate measure of agreement (Bryant and Ng, 2015). Additionally, it would be difficult, if

possible, to reliably calculate IAA without coded alignments between the new and original

sentences. Therefore, we look at two alternate measures: the percent of sentences to which
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Original

Some family may feel hurt , with regards to their family pride or reputation , on having
the knowledge of such genetic disorder running in their family .

NUCLE

Some family members may feel hurt
e

with regards to their family pride or reputatione
on having the knowledge of a genetic disorder running in their family .

Expert fluency

On
e

learning of such a genetic disorder running in their family , some family mem-
bers may feel hurt

e
regarding their family pride or reputation .

Non-expert fluency

Some relatives may
e

be concerned about the family ’s
e

reputation – not to mention
their own pride – in relation to this news of

e
familial genetic defectiveness

e
.

Expert minimal

Some families may feel hurt
e

with regards to their family pride or reputation , on havinge
knowledge of such a genetic disorder running in their family .

Non-expert minimal

Some family may feel hurt
e

with regards to their family pride or reputation
e

on having
the knowledge of such genetic disorder running in their family .

Table 7.6: An example sentence with the original NUCLE correction and fluency and
minimal edits written by experts and non-experts. Moved and changed or inserted spans
are underlined and

e
indicates deletions.

different annotators made the same correction(s) and the sTER between two annotators’

corrections, reported in Table 7.7.

As we expect, there is notably lower agreement between the annotators for fluency edits

than for minimal edits, due to the presumably smaller set of required versus optional stylis-

tic changes. Expert annotators produced the same correction on 15% of the fluency edits,
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NUCLE BN15 E-minimal N-minimal E-fluency N-fluency Output
0%

20%

40%

60%

80%

100% Percent of sentences changed

NUCLE BN15 E-minimal N-minimal E-fluency N-fluency Output
0

1

2

3

4

5

6

7

8 Mean sTER
Insertions
Deletions
Substitutions
Phrases shifted

Figure 7.1: Amount of changes made by different annotation sets compared to the original
sentences.

but more than 38% of their minimal edits were identical. Half of these identical sentences

were unchanged from the original. There was lower agreement between non-expert anno-

tators than experts on both types of edits. We performed the same calculations between the

two NUCLE annotators and found that they had agreement rates similar to the non-expert

minimal edits. However, the experts’ minimal edits have much higher consensus than both

the non-experts’ and NUCLE, with twice as many identical corrected sentences and half
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Edit type Annotators Identical sTER

Fluency E1 v. E2 15.3% 5.1
N1 v. N2 5.9% 10.0

E v. N 8.5% 7.9

Minimal E1 v. E2 38.7% 1.7
N1 v. N2 21.8% 2.9

E v. N 25.9% 2.4

NUCLE A v. B 18.8% 3.3

Table 7.7: A comparison of annotations across different annotators (E for expert, N for
non-expert). Where there were more than two annotators, statistics are over the full pair-
wise set. Identical refers to the percentage of sentences where both annotators made the
same correction and sTER is the mean sTER between the annotators’ corrections.

the sTER.

From this analysis, one could infer that the expert annotations are more reliable than

the non-expert because there are fewer differences between annotators and fewer changes

per sentence. Finally, we performed a manual evaluation of the corrections from different

annotation groups. For 300 randomly selected sentences, two judges on Mechanical Turk

ranked the new annotations, one of the NUCLE references, and the original sentence (de-

tails on the interface are found in Appendix A.7.1). We inferred the relative rank of the

annotation groups using a method called TrueSkill, which will be discussed in more detail

in Section 7.5. The inferred ranking of annotation groups is found in Table 7.8. There

is no significant difference in the perceived quality of the fluency annotations from either

group, but the minimal-edit corrections by experts are significantly better than those by the

non-experts.

In Section 7.4, we will re-evaluate the results of the CoNLL-2014 shared task on the

130



CHAPTER 7. REFRAMING GRAMMATICAL ERROR CORRECTION

# Score Range Annotation type

1 1.164 1–2 Expert fluency
0.976 1–2 Non-expert fluency

3 0.540 3 NUCLE

4 0.265 4 Expert minimal

5 -0.020 5 Non-expert minimal

6 -2.925 6 Original sentence

Table 7.8: Human ranking of the new annotations by grammaticality. Lines between
systems indicate clusters according to bootstrap resampling at p ≤ 0.05. Each system is
represented as a Gaussian and Score is the mean of the distribution. Systems in the same
cluster are considered to be tied.

newly collected fluency corpora.

7.3 JFLEG: A New Fluency Evaluation Set

The NUCLE corpus represents the types of grammatical errors made by English language

learners with similar proficiency levels and (predominantly) the same native language. To

accurately assess the current state of GEC, an evaluation corpus should contain text written

by speakers of different native languages with different proficiencies. We present a new

parallel corpus to fill this need, JHU FLuency-Extended GUG corpus (JFLEG), for more

completely evaluating and developing GEC systems. JFLEG adds four fluency annota-

tions to 1,511 sentences from the Grammatical-UnGrammatical corpus (GUG) (Heilman

et al., 2014). GUG contains sentences from English-language proficiency exams and an-

notations for how grammatical each sentence is. The GUG score ranges from 0–4, with 0

being unintelligible or an unfinished sentence, 1 being very ungrammatical, and 4 perfectly
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Please correct the following sentence to make it sound natural and fluent to a native
speaker of (American) English. The sentence is written by a second language learner
of English. You should fix grammatical mistakes, awkward phrases, spelling errors,
etc., following standard written usage conventions, but your edits must be conservative.
Please keep the original sentence (words, phrases, and structure) as much as possible.
The ultimate goal of this task is to make the given sentence sound natural to native
speakers of English without making unnecessary changes. Please do not split the orig-
inal sentence into two or more. Edits are not required when the sentence is already
grammatical and sounds natural.

Table 7.9: JFLEG annotation instructions.

grammatical. With added fluency annotations, JFLEG represents a broad range of language

proficiency levels and uses holistic fluency edits to not only correct grammatical errors but

also make the original text more native sounding. We describe the types of corrections

made and benchmark four leading GEC systems on this corpus, identifying specific areas

in which they do well and how they can improve.6

In Section 7.2, we found that there was no significant difference in the perceived qual-

ity of fluency corrections made by experts and non-experts (Figure 7.8), and so we used

crowdsourcing to collect four corrections of each of 1,511 sentences in the GUG develop-

ment and test sets. We additionally used quality control measures, specifically requiring

workers to take a qualifying task and manually reviewing their corrections. The instruc-

tions are found in Table 7.9, and we refer the reader to Napoles et al. (2017c) for additional

information about the annotation process.

6This work was originally published in Napoles et al. (2017c).
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Error type in original

Awkward Orthographic Grammatical

E
di

t
ty

pe Fluency 38% 35% 32%
Minimal 82% 89% 85%

Table 7.10: Percent of sentences by error type that were changed with fluency or minimal
edits. Each row indicates that annotators made a fluency edit or minimal edit, and each
column indicates the type of error the edit was addressing.

7.3.1 Types of Annotations in JFLEG

As previously discussed, it is not possible to directly measure inter-annotator agreement

for fluency corrections, and so we perform a series of statistical and manual analyses of the

JFLEG corrections. The mean LD between the original and corrected sentences is more

than twice that of existing corpora (Table 2.3). LD negatively correlates with the GUG

grammaticality score (r = −0.41) and the annotation difficulty score (−0.37), support-

ing the intuition that less grammatical sentences require more extensive changes, and it is

harder to make corrections involving more substantive edits. Because there is no clear way

to quantify agreement between annotators, we compare the annotations of each sentence to

each other. The mean LD between all pairs of annotations is greater than the mean LD be-

tween the original and corrected sentences (15 characters), however 36% of the sentences

were corrected identically by at least two participants.

Next, we examined 100 randomly selected original and human-corrected sentence pairs

and labeled them with the type of error present in the sentence and the type of edit(s)

applied in the correction. The three error types are sounds awkward or has an orthographic
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or grammatical error.7 The majority of the original sentences have at least one error (81%),

and 68% of these sentences are completely corrected in the annotations/ Few annotated

sentences have orthographic (4%) or grammatical (10%) errors, but awkward errors are

more frequent (23% of annotations were labeled awkward)—which is not very surprising

given how garbled some original sentences are and the dialectal variation of what sounds

awkward.

The corrected sentences were also labeled with the type of changes made (minimal

and/or fluency edits). Minimal edits reflect a minor change to a small span (1–2 tokens)

addressing an immediate grammatical error, such as number agreement, tense, or spelling.

Fluency edits are more holistic and include reordering or rewriting a clause, and other

changes that involve more than two contiguous tokens. 69% of annotations contain at least

one minimal edit, 25% a fluency edit, and 17% both fluency and minimal edits. The distri-

bution of edit types is fairly uniform across the error type present in the original sentence

(Table 7.10). Notably, fewer than half of awkward sentences were corrected with fluency

edits, which may explain why so many of the corrections were still awkward.

In the following section, we will examine metrics for evaluating GEC and propose a

new fluency metric. We will demonstrate that the fluency metric is more reliable than

previous metrics, and we will evaluate leading GEC systems on the fluency annotations we

have collected for the NUCLE and GUG corpora.

7Due to their frequency, we separate orthographic errors (spelling and capitalization) from other gram-
matical errors.
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7.4 Fluency Evaluation of GEC

As of 2018, M2 is the standard automatic metric for GEC, having been used to rank error

correction systems in the 2013 and 2014 CoNLL shared tasks (Ng et al., 2013; Ng et

al., 2014). M2 was evaluated by comparing its output against that of the official Helping

Our Own (HOO) scorer (Dale and Kilgarriff, 2011), itself based on the wdiff tool. In

other words, it was evaluated under the assumption that evaluating GEC can be reduced

to checking whether a set of predefined errors have been changed into a set of associated

corrections.

Beyond having never been validated against human scores, M2 is not without its own

issues. First, phrase-level edits can be gamed because the lattice treats a long phrase dele-

tion as one edit.8 capture the difference between “no change” and “wrong edits” made by

systems. Chodorow et al. (2012) also list other complications arising from using F-score or

M2, depending on the application of GEC. Citing issues with M2, Felice and Briscoe (2015)

proposed I-measure. Comparing the metric scores on the CoNLL 2014 test set has striking

results: there is a negative correlation between the M2 and I-measure scores (Pearson’s

r =−0.694).

These metrics were developed without consulting human judgments. Additionally, they

require detailed annotations of the offsets and error type of each correction in response to an

explicit error annotation scheme. Due to the inherent subjectivity and poor definition of the

8For example, when we put a single character ‘X’ as system output for each sentence, we obtain P =
0.27,R = 0.29,M2 = 0.28, which would be ranked 6/13 systems in the 2014 CoNLL shared task.
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task (Section 7.1), it is difficult for annotators to reliably produce these annotations (Bryant

and Ng, 2015). However, this requirement can be relinquished by treating GEC as a text-

to-text rewriting task and borrowing metrics from machine translation, as Park and Levy

(2011) did with BLEU (Papineni et al., 2002) and METEOR (Lavie and Agarwal, 2007).9

Applied off-the-shelf, these metrics yield unintuitive results. For example, BLEU ranks the

source sentence as second place in the CoNLL-2014 shared task.10

The problem is partially due to the subtle but important difference between machine

translation and monolingual text-rewriting tasks. In MT, an untranslated word or phrase

is almost always an error, but in grammatical error correction and other T2T tasks, this is

not the case. Some, but not all, regions of the source sentence should be changed. This

observation motivates a small change to BLEU that computes n-gram precisions over the

reference but assigns more weight to n-grams that have been correctly changed from the

source. This revised metric, Generalized Language Evaluation Understanding (GLEU),

rewards corrections while also correctly crediting unchanged source text.

BLEU(C,R) is computed as the geometric mean of the modified precision scores of the

test sentences C relative to the references R, multiplied by a brevity penalty to control for

recall (Papineni et al., 2002). The precisions are computed over bags of n-grams derived

from the candidate translation and the references. Each n-gram in the candidate sentence is

“clipped” to the maximum count of that n-gram in any of the references, ensuring that no

9The work described in this section originally appeared in Napoles et al. (2015).
10Of course, it could be the case that the source sentence is actually the second best, but our human

evaluation (Section 7.5) confirms that this is not the case.
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p′n =
∑

n−gram∈C
CountR\S(n−gram)−λ

(
CountS\R(n−gram)

)
+CountR(n−gram)

∑
n−gram′∈C′

CountS(n−gram′)+ ∑
n−gram∈R\S

CountR\S(n−gram)

(7.1)

precision is greater than 1.

Similar to I-measure, which calculates a weighted accuracy of edits, we calculate a

weighted precision of n-grams. In our adaptation, we modify the precision calculation to

assign extra weight to n-grams present in the candidate that overlap with the reference but

not the source (the set of n-grams R\S). The precision is also penalized by a weighted count

of n-grams in the candidate that are in the source but not the reference (false negatives, S\

R). Unlike iBLEU, which penalizes overlap between the candidate and the source agnostic

to the overlap between the source and the reference (Equation 6.4), GLEU penalizes false

negatives explicitly.

Originally, GLEU was formulated with a weight λ which determined how much in-

correctly changed n-grams should be penalized (GLEU0; Equation 7.5). For a correction

candidate C with a corresponding source S and reference R, the modified n-gram precision

for GLEU0(C,R,S) is shown in Equation 7.1. The weight λ determines by how much in-

correctly changed n-grams are penalized. Equations 7.2–7.3 describe how the counts are

collected given a bag of n-grams B.
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CountB(n−gram) = ∑
n−gram′∈B

d(n−gram,n−gram′) (7.2)

d(n−gram,n−gram′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if n−gram = n−gram′

0 otherwise

(7.3)

BP =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if c > r

e(1−c/r) if c≤ r

(7.4)

GLEU0 (C,R,S) = BP · exp

(
N

∑
n=1

wn log p′n

)
(7.5)

GLEU0 double-counts n-grams in the reference that do not appear in the source, and it

subtracts a weighted count of n-grams that appear in the source (S) and not the reference

(R). Following the publication of Napoles et al. (2015), we observed that the weight needed

to be re-tuned as the number of references changed. With more references, more variations

of the sentence are seen which results in a larger set of reference n-grams. Larger sets of

reference n-grams tend to have higher overlap with the source n-grams, which decreases

the number of n-grams that were seen in the source but not the reference. Because of

this, the penalty term decreases and a large weight is needed for the penalty term to have

the same magnitude as the penalty when there are fewer references. Because the number

of possible reference n-grams increases as more reference sets are used, we calculate an

intermediate GLEU by randomly sample from one of the references for each sentence,
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p∗n =

(
∑

ngram∈{C∩R}
countC,R(ngram)− ∑

ngram∈{C∩S}
max [0,countC,S(ngram)− countC,R(ngram)]

)
∑

ngram∈{C}
count(ngram)

countA,B(ngram) = min(# occurrences of ngram in A,# occurrences of ngram in B)

Equation 1: Modified precision calculation of GLEU.

and report the mean score over 500 iterations. It takes less than 30 seconds to evaluate

1,000 sentences using 500 iterations. Precision is simply the number of reference n-gram

matches, minus the counts of n-grams found more often in the source than the reference

(Equation 7.6) (Napoles et al., 2016a). GLEU follows the same intuition as the original

GLEU0: overlap between S and R should be rewarded and n-grams that should have been

changed in S but were not should be penalized. We report the results of both versions of

the metric in this section for completeness, however we discourage use of GLEU0 and will

not use it in subsequent parts of this work.

7.5 Ground Truth Evaluation with TrueSkill

When scoring the twelve publicly released system outputs from the CoNLL-2014 Shared

Task11 we find a negative correlation between two automatic metrics, Max-Match (M2)

(Dahlmeier and Ng, 2012) and BLEU scores (r = −0.772) and positive correlation be-

tween I-measure and BLEU scores (r = 0.949). With the earlier-reported negative corre-

lation between I-measure and M2, we have a troubling picture: which of these metrics is

11www.comp.nus.edu.sg/~nlp/conll14st.html
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best? Which one actually captures and rewards the behaviors we would like our systems to

report? Despite these many proposed metrics, no prior work has attempted to answer these

questions by comparing them to human judgments. We propose to answer these questions

by producing a definitive human ranking, against which the rankings of different metrics

can be compared. Four judges familiar with the task ranked system outputs of each in-

put sentence. The instructions given to participants are included in Appendix A.7.1. An

absolute system ranking was found using the TrueSkill approach (Herbrich et al., 2006;

Sakaguchi et al., 2014), following the setup of the Workshop on Machine Translation (Bo-

jar et al., 2014; Bojar et al., 2015). For each competing system, TrueSkill infers the absolute

system quality from the pairwise comparisons, representing each as the mean of a Gaus-

sian. These means can then be sorted to rank systems. By running TrueSkill 1,000 times

using bootstrap resampling and producing a system ranking each time, we collect a range

of ranks for each system. We can then cluster systems according to non-overlapping rank

ranges (Koehn, 2012) to produce the final ranking, allowing ties. Details about collecting

human judgments and inferring an absolute system ranking can be found in Napoles et al.

(2015).12

12Human judgments collected and system ranking calculated by Keisuke Sakaguchi.
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Metric r ρ

GLEU0 0.542 0.555
GLEU 0.549 0.401
M2 0.358 0.429
I-measure −0.051 −0.005
BLEU −0.125 −0.225

Table 7.11: Correlation of metrics with the human ranking (excluding the reference), as
calculated with Pearson’s r and Spearman’s ρ .

Rank Human BLEU I-measure M2 GLEU0 GLEU

1 CAMB UFC UFC CUUI CUUI CAMB
2 AMU source source CAMB AMU CUUI
3 RAC IITB IITB AMU UFC AMU
4 CUUI SJTU SJTU POST CAMB UMC
5 source UMC CUUI UMC source PKU
6 POST CUUI PKU NTHU IITB POST
7 UFC PKU AMU PKU SJTU SJTU
8 SJTU AMU UMC RAC PKU NTHU
9 IITB IPN IPN SJTU UMC UFC
10 PKU NTHU POST UFC NTHU UUTB
11 UMC CAMB RAC IPN POST source
12 NTHU RAC CAMB IITB RAC RAC
13 IPN POST NTHU source IPN IPN

Table 7.12: System outputs scored by different metrics, ranked best (1) to worst (13).

7.6 Meta-Evaluation of Metrics

We compute the goodness of each metric by calculating the correlation of the system rank-

ing by metric score with the human ranking (Table 7.11).13 The ranked systems of each

metric are found in Table 7.12.

The human ranking is considerably different from those of most of the metrics, a fact

13The parameters of GLEU0 are N = 4, wn =
1
N , and λ = 0.
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System Sentence Scores

Original We may in actual fact communicating with a hoax Face-
book acccount of a cyber friend , which we assume to
be real but in reality , it is a fake account .

–

Ref. 1 We may in actual fact be communicating with a hoax
Facebook acccount of a cyber friend , which we assume
to be real but in reality , it is a fake account .

–

Ref. 2 We may in actual fact be communicating with a fake
Facebook account of an online friend , which we as-
sume to be real but , in reality , it is a fake account .

–

UMC We may be in actual fact communicating with a hoax
Facebook acccount of a cyber friend , we assume to be
real but in reality , it is a fake account .

GLEU = 0.62
M2 = 0.00

TS rank = 1

AMU We may in actual fact communicating with a hoax Face-
book account of a cyber friend , which we assume to be
real but in reality , it is a fake accounts .

GLEU = 0.64
M2 = 0.39

TS rank = 2

NTHU We may of actual fact communicating with a hoax Face-
book acccount of a cyber friend , which we assumed to
be real but in reality , it is a fake account .

GLEU = 0.60
M2 = 0.00

TS rank = 4

Table 7.13: Examples of system output (changes are in bold), the sentence-level scores
assigned by different metrics, and the TrueSkill rank.

that is also captured in correlation coefficients (Table 7.11).14 From the human evaluation,

we learn that the source falls near the middle of the rankings, even though the BLEU,

I-measure and M2 rank it among the best or worst systems.

M2, the metric that has been used for the CoNLL shared tasks, only correlates moder-

ately with human rankings, suggesting that it is not an ideal metric for judging the results

14Pearson’s measure assumes the scores are normally distributed, which may not be true here.
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of a competition. Even though I-measure perceptively aims to predict whether an output

is better or worse than the input, it actually has a slight negative correlation with human

rankings. GLEU0 is the only metric that strongly correlates with the human ranks, and

performs closest to the range of human-to- human correlation (0.73 ≤ r ≤ 0.81) GLEU0

correctly ranks four out of five of the top human-ranked systems at the top of its list, while

the other metrics rank at most three of these systems in the top five.

All metrics deviate from the human rankings, which may in part be because automatic

metrics equally weight all error types, when some errors may be more tolerable to human

judges than others. For example, inserting a missing token is rewarded the same by auto-

matic metrics, whether it is a comma or a verb, while a human would much more strongly

prefer the insertion of the latter. An example of system outputs with their automatic scores

and human rankings is included in Table 7.13.

This example illustrates some challenges faced when using automatic metrics to evalu-

ate GEC. The automatic metrics weight all corrections equally and are limited to the gold-

standard references provided. Both automatic metrics, M2 and GLEU, prefer the AMU

output in this example, even though it corrects one error and introduces another. The hu-

man judges rank the UMC output as the best for correcting the main verb even though it

ignored the spelling error. The UMC and NTHU sentences both receive M2 = 0 because

they make none of the gold-standard edits, even though UMC correctly inserts be into the

sentence. M2 does not recognize this since it is in a different location from where the

annotators placed it. However, GLEU awards UMC partial credit for adding the correct
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unigram, and further assigns all sentences a real score.

We have described a new metric for GEC and shown that it correlates more strongly

with human judgments than M2 on the CoNLL-14 shared task results, using 2 minimal edit

references. Next we show that GLEU used with fluency judgments is the most reliable

approach to evaluating GEC output.

7.7 Fluency References and GLEU Are the Best Evalua-

tion

We have demonstrated that humans prefer fluency edits to error-coded and minimal-edit

corrections, but it is unclear whether these annotations are an effective reference for au-

tomatic evaluation. The broad range of changes that can be made with non-minimal edits

may make it especially challenging for current automatic evaluation metrics to use. In this

section, we investigate the impact that different reference sets have on the system ranking

found by different evaluation metrics. With reference sets having such different character-

istics, the natural question is: which reference and evaluation metric pairing best reflects

human judgments of grammaticality?

To answer this question, we performed a comprehensive investigation of existing met-

rics and annotation sets to evaluate the 12 system outputs made public from the 2014

CoNLL Shared Task. To our knowledge, this is the first time that the interplay of an-

notation scheme and evaluation metric, as well as the rater expertise, has been evaluated
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p∗n =

(
∑

ngram∈{C∩R}
countC,R(ngram)− ∑

ngram∈{C∩S}
max [0,countC,S(ngram)− countC,R(ngram)]

)
∑

ngram∈{C}
count(ngram)

countA,B(ngram) = min(# occurrences of ngram in A,# occurrences of ngram in B)
(7.6)

jointly for GEC.

7.7.1 Experimental Setup

The four automatic metrics that we investigate are M2, I-measure,15 GLEU, and BLEU.

We include the machine-translation metric BLEU because evaluating against our new non-

coded annotations is similar to machine-translation evaluation, which considers overlap

instead of absolute alignment between the output and reference sentences.

For the M2 and I-measure evaluations, we aligned the fluency and minimal edits to the

original sentences using a Levenshtein edit distance algorithm.16 Neither metric makes use

of the annotation labels, so we simply assigned dummy error codes.

We compare the system outputs to each of the six annotation sets and a seventh set

containing all of the annotations, using each metric. We ranked the systems based on their

scores using each metric–annotation-set pair, and thus generated a total of 28 different

rankings (4 metrics × 7 annotation sets).

15We ran I-measure with the -nomix flag, preventing the algorithm from finding the optimal alignment
across all possible edits. Alignment was very memory-intensive and time consuming, even when skipping
long sentences.

16Costs for insertion, deletion, and substitution are set to 1, allowing partial match (e.g., same lemma).
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M2 GLEU I-measure BLEU
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8 NUCLE (2)

BN15 (10)
E-fluency (2)
N-fluency (2)
E-minimal (2)
N-minimal (2)
All (20)

Figure 7.2: Correlation of the human ranking with metric scores over different reference
sets (Spearman’s ρ). The number of annotations per sentence in each set is in parentheses.
See Table 7.14 for the numeric values.

Metric M2 GLEU I-measure BLEU

NUCLE 0.725 0.626 −0.423 −0.456
0.677∗ 0.646 −0.313 −0.310

BN15 0.692 0.720 −0.066 −0.319∗
0.641 0.697 −0.007 −0.255

E-fluency 0.758 0.819∗ −0.297 −0.385
0.665 0.731∗ −0.256 −0.230∗

N-fluency 0.703 0.676 −0.451 −0.451
0.655 0.668 −0.319 −0.388

E-min. 0.775∗ 0.786 −0.467 −0.456
0.655 0.676 −0.385 −0.396

N-min. 0.769 −0.187 −0.467 −0.495
0.641 −0.110 −0.402 −0.473

All 0.692 0.725 −0.055∗ −0.462
0.617 0.724 0.061∗ −0.314

Table 7.14: Correlation between the human ranking and metric scores over different ref-
erence sets. The first line of each cell is Spearman’s ρ and the second line is Pearson’s r.
The strongest correlations for each metric are starred, and the overall strongest correlations
are in bold.

To determine the best metric, we compared the system-level ranking obtained from

each evaluation technique against the expert human ranking reported in Grundkiewicz et

al. (2015, Table 3c).
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7.7.2 Results

Figure 7.2 and Table 7.14 show the correlation of the expert rankings with all of the eval-

uation configurations. For the leading metrics, M2 and GLEU, the expert annotations had

stronger positive correlations than the non-expert annotations. Using just two expert flu-

ency annotations with GLEU has the strongest correlation with the human ranking out of all

other metric–reference pairings (ρ = 0.819, r = 0.731), and it is additionally cheaper and

faster to collect. E-fluency is the third-best reference set with M2, which does better with

minimal changes: the reference sets with the strongest correlations for M2 are E-minimal

(ρ = 0.775) and NUCLE (r = 0.677). Even though the non-expert fluency edits had more

changes than the expert fluency edits, they still did reasonably well using both M2 and

GLEU.

The GLEU metric has strongest correlation when comparing against the E-fluency,

BN15, E-minimal, and “All” reference sets. One could argue that, except for E-minimal,

these references all have greater diversity of edits than NUCLE and minimal edits. Al-

though BN15 has fewer changes made per sentence than the fluency edits, because of the

number of annotators, the total pool of n-grams seen per sentence increases. We experi-

mented with increasing the number of references used for calculating GLEU in Sakaguchi

et al. (2016) and found that the GLEU score increases as the number of references increases

from 1 to 10, with the increase leveling off once there are 4 references. E-minimal edits also

have strong correlation, suggesting there may be a trade-off between quantity and quality
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of references.

The reference sets against which M2 has the strongest correlation are NUCLE, expert

fluency, and expert minimal edits. Even non-expert fluency annotations result in a stronger

correlation with the human metric than BN15. These findings support the use of fluency

edits even with a metric designed for error-coded corpora.

One notable difference between M2 and GLEU is their relative performance using non-

expert minimal edits as a metric. M2 is robust to the non-expert minimal edits and, as

a reference set, this achieves the second strongest Spearman’s correlation for this metric.

However, pairing the non-expert minimal edits with GLEU results in slightly negative cor-

relation. This is an unexpected result, as there is sizable overlap between the non-expert

and expert minimal edits (Table 7.7). We speculate that this difference may be due to the

quality of the non-expert minimal edits. Recall that humans perceived these sentences to

be worse than the other annotations, and better only than the original sentence (Table 7.8).

I-measure and BLEU are shown to be unfavorable for this task, having negative cor-

relation with the human ranking, which supports the findings of Napoles et al. (2015) and

Grundkiewicz et al. (2015). Even though BLEU and GLEU are both based on the n-gram

overlap between the hypothesis and original sentences, GLEU has strong positive correla-

tions with human rankings while BLEU has a moderate negative correlation. The advantage

of GLEU is that it penalizes n-grams in the system output that were present in the input

sentence and absent from the reference. In other words, a system loses credit for miss-

ing n-grams that should have been changed. BLEU has no such penalty and instead only
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CAMB
POST
CUUI
AMU
PKU
RAC
UMC
SJTU
NTHU
UFC
IITB
IPN
input 

AMU
CAMB
RAC
CUUI
POST
PKU
UMC
UFC
IITB
input
SJTU
NTHU

IPN

Expert
GLEU
E-fluency

Figure 7.3: System rankings produced by GLEU with expert fluency (E-fluency) as the
reference compared to the expert human ranking.

rewards n-grams that occur in the references and the output, which is a problem in same-

language text rewriting tasks where there is significant overlap between the reference and

the original sentences, as we found for the task of sentence simplification in Section 6.1.1.

For this GEC data, BLEU assigns a higher score to the original sentences than to any of the

systems.17

7.7.3 Handling Unseen Corrections

The metrics we have discussed depend on gold-standard corrections and therefore have

a notable weakness: systems are penalized for making corrections that do not appear in

17Of course, it could be that the input sentences are the best, but the human ranking in Figure 7.3 suggests
otherwise.
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Original:
However , people now can contact with anyone all over the world who can use computer
at any time , and there is no time delay of messages .

Candidate:
However , people now can contact communicate with anyone people all over the world
who can use computers at any time , and there is no time delay of messages .

Table 7.15: Sample corrected output with low reference-based metric scores (GLEU =
0.43, IM = 18.83, M2 = 0.0).

the references.18 For example, the output shown in Table 7.15 has low metric scores even

though three appropriate corrections were made to the input.19 These changes (in red)

were not seen in the references and therefore the metrics GLEU and M2 (described in

Section 2.4) score this output worse than 75% of 15,000 other generated sentences.

While grammaticality-based, reference-less metrics have been effective in estimating

the quality of machine translation (MT) output, the utility of such metrics has not been

investigated previously for GEC. We hypothesize that such methods can overcome this

weakness in reference-based GEC metrics.

GLEU, I-measure, and M2 are calculated based on comparison to reference corrections.

These Reference-Based Metrics (RBMs) credit corrections seen in the references and pe-

nalize systems for ignoring errors and making bad changes (changing a span of text in

an ungrammatical way or introducing errors to grammatical text). However, RBMs make

two strong assumptions: that the annotations in the references are correct and that they

are complete. An exhaustive list of all possible corrections would be time-consuming, if

18We refer to the gold-standard corrections as references because gold standard suggests just one accurate
correction.

19This work was originally published in Napoles et al. (2016d).
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not impossible. As a result, RBMs penalize output that has a valid correction that is not

present in the references or that addresses an error not corrected in the references. The

example in Table 7.15 has low GLEU and M2 scores, even though the output addresses

two errors (GLEU=0.43 and M2 = 0.00, in the bottom half and quartile of 15k system

outputs, respectively). To address these concerns, we propose three metrics to evaluate

the grammaticality of output without comparing to the input or a gold-standard sentence

(Grammaticality-Based Metrics, or GBMs). We expect GBMs to score sentences, such as

the aforementioned example, more highly. The first two metrics are scored by counting the

errors found by existing grammatical error detection tools. The error count score is simply

calculated: 1− # errors
# tokens . Two different tools are used to count errors: e-rater R⃝’s grammatical

error detection modules (ER) and Language Tool (Miłkowski, 2010) (LT). We choose these

because, while e-rater R⃝ is a large-scale, robust tool that detects more errors than Language

Tool,20 it is proprietary whereas Language Tool is publicly available and open-sourced.

For our third method, we estimate a grammaticality score with a linguistic feature-

based model (LFM), which is our implementation of Heilman et al. (2014).21 The LFM

score is a ridge regression over a variety of linguistic features related to grammaticality,

including the number of misspellings, language model scores, OOV counts, and PCFG and

link grammar features. It has been shown to effectively assess the grammaticality of learner

writing. LFM predicts a score for each sentence while ER and LT, like the RBMs, can be

calculated with either sentence- or document-level statistics. To be consistent with LFM,
20In the data used for this work, e-rater R⃝ detects approximately 15 times more errors than Language Tool.
21Our implementation is slightly modified in that it does not use features from the PET HPSG parser.
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Metric Spearman’s ρ Pearson’s r

GLEU 0.852 0.838
ER 0.852 0.829
LT 0.808 0.811
I-measure 0.769 0.753
LFM 0.780 0.742
M2 0.648 0.641

Table 7.16: Correlation between the human and metric rankings.

for all metrics in this work we score each sentence individually and report the system score

as the mean of the sentence scores. Consistent with our hypothesis, ER and LT score the

Table 7.15 example in the top quartile of outputs and LFM ranks it in the top half.

To assess the proposed metrics, we apply the RBMs, GBMs, and interpolated metrics to

score the output of 12 systems participating in the CoNLL-2014 Shared Task on GEC (Ng

et al., 2014). The interpolated metrics, developed by Keisuke Sakaguchi, combine GBM

and RBMs to capture meaning retention (described in Napoles et al. (2016d)). We use

the same 20 references for scoring with RBMs as in Section 7.7.1. Unlike previous GEC

evaluations, all metrics reported here use the mean of the sentence-level scores for each

system because interpolated scores are calculate on the sentence level.

Results are presented in Table 7.16. The error-count metrics, ER and LT, have stronger

correlation than all RBMs except for GLEU, which is the current state of the art. GLEU

has the strongest correlation with the human ranking (ρ = 0.852, r = 0.838), followed

closely by ER, which has slightly lower Pearson correlation (r = 0.829) but equally as

strong rank correlation, which is arguably more important when comparing different sys-
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ER LFM LT

not interpolated 0.852 (0) 0.780 (0) 0.808 (0)

GLEU 0.852 (1) 0.885 (0.03) 0.874 (0.27) 0.857 (0.04)
I-measure 0.769 (1) 0.874 (0.19) 0.863 (0.37) 0.852 (0.01)
M2 0.648 (1) 0.868 (0.01) 0.852 (0.05) 0.808 (0)

(a) Spearman’s ρ values

ER LFM LT

not interpolated 0.829 (0) 0.742 (0) 0.811 (0)

GLEU 0.838 (1) 0.867 (0.27) 0.845 (0.84) 0.867 (0.09)
I-measure 0.753 (1) 0.837 (0.02) 0.791 (0.22) 0.828 (0.01)
M2 0.641 (1) 0.829 (0.00) 0.754 (0.04) 0.811 (0)

(b) Pearson’s r values

Table 7.17: Oracle correlations between interpolated metrics and the human rankings. The
λ value for each metric is in parentheses.

tems. I-measure and LFM have similar strength correlations, and M2 is the lowest per-

forming metric, even though its correlation is still strong (ρ = 0.648, r = 0.641). Hybrid

metrics interpolating RBMs and GBMs does even better (see Napoles et al. (2016d) for

more details).

7.8 Conclusion

Attending to how humans perceive the quality of the grammatical error corrections, we pro-

pose fluency corrections, created two new fluency evaluation sets for GEC, and developed

a new fluency metric, GLEU. GLEU more closely models human judgments than previous

metrics because it rewards correct edits while penalizing ungrammatical edits, while cap-

turing fluency and grammatical constraints by virtue of using n-grams. We have shown that
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Rank

GLEU Interpolated Candidate sentence

1 2 Genectic testing is a personal decision , with the knowledge
that there is a possiblity that one could be a carrier or not .

2 3 Genectic testing is a personal decision , the kowledge that there
is a possiblity that one could be a carrier or not .

3 1 Genetic testing is a personal decision , with the knowledge that
there is a possibility that one could be a carrier or not .

Table 7.18: An example of system outputs ranked by GLEU and GLEU interpolated with
ER. Words in italics are misspelled.

fluency references together with GLEU are the most robust evaluation for GEC. As GEC

systems get more paraphrastic, we also perform an initial investigation into reference-less

evaluation for GEC, which will not penalize systems with correct but unseen suggestions.
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Machine Translation and Artificial Data

for GEC

This chapter extends our T2T framework to GEC.1 At the time of this work, the best GEC

systems all use machine translation in some form, whether statistical MT as a component

of a larger pipeline (Rozovskaya and Roth, 2016) or neural MT (Yuan and Briscoe, 2016).

These approaches require a great deal of resources, and in this chapter we propose a lighter-

weight approach to GEC by extending our universal framework to the task. We determine

that

• Artificially generated rules improve performance by nearly 10%.

• Introducing custom features describing morphological and lexical changes provide a

1This work originally appeared as “Systematically Adapting Machine Translation for Grammatical Error
Correction” (Napoles and Callison-Burch, 2017).
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small performance gain.

• Tuning to a specialized GEC metric is slightly better than tuning to a traditional MT

metric (separately found in Sakaguchi et al. (2017b)).

• Larger training data leads to better performance and there is no conclusive difference

between training on a clean corpus with minimal corrections and a noisy corpus with

potential sentence rewrites.

We have developed and released a tool to automatically characterize the types of trans-

formations made in a corrected text, which are used as features in our model. The features

identify general changes such as insertions, substitutions, and deletions, and the number of

each of these operations by part of speech. Substitutions are further classified by whether

the substitution contains a different inflected form of the original word, such as change in

verb tense or noun number; if substitution has the same part of speech as the original; and

if it is a spelling correction. These features can be automatically extracted from any aligned

English text at the token, sentence or document level. We additionally use them to analyze

the outputs generated by different systems and characterize their performance not just with

an automatic metric score, but also by the types of transformations it makes, and how they

compare to manually written corrections.

Our approach, Specialized Machine translation for Error Correction (SMEC), repre-

sents a single model that handles morphological changes, spelling corrections, and phrasal

substitutions, and it rivals the performance of the leading neural MT system in 2016 (Yuan
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and Briscoe, 2016), which uses twice the amount of training data, most of which is not

publicly available. For GEC, the analysis provided in this work will help improve future

efforts and can be used to inform approaches rooted in both neural and statistical MT. More

broadly, we demonstrate that our unified framework can be applied to novel T2T tasks, and

with some thoughtful customizations, perform at least as well as data-hungry approaches.

8.1 Customizing the T2T Framework

This section describes how we customized each of the components of our unified frame-

work for GEC.

8.1.1 Grammar

For sentence compression and text simplification, we exploit the expressiveness of a large-

scale paraphrase resource and guide the SMT decoder to choose paraphrases appropriate

for the respective task (Chapters 4 and 6). However, while some transformations in GEC

are paraphrastic, the majority have a corrupted source text that contains a mistake, such

as to the spelling or word form. These changes will not be found in a paraphrase corpus,

which has well-formed text on both sides of each paraphrase. Therefore we take a hybrid

approach and extract a grammar from a parallel GEC corpus and augment that grammar

with automatically generated rules to address spelling and morphological mistakes.

A limiting factor on MT-based GEC is the available training data, which is small when
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compared to the data available for bilingual MT, which commonly uses 100s of thousands

or millions of aligned sentence pairs. We hypothesize that artificially generating transfor-

mation rules may overcome the limitations imposed by lack of sufficiently large training

data and improve performance. Particularly, the prevalence of spelling errors is amplified in

sparse data due to the potentially infinite possible misspellings and large number of OOVs.

Previous work has approached this issue by including spelling correction as a step in a

pipeline (e.g., Rozovskaya and Roth, 2016).

Our solution is to artificially generate grammar rules for spelling corrections and mor-

phological changes. For each word in the input, we query the Aspell dictionary with PyEn-

chant2 for spelling suggestions and create new rules for each correction, such as

publically→ public ally

publically→ publicly

Additionally, sparsity in morphological variations may arise in data sets. Wang et al. (2014)

approached this issue with factored MT, which translates at the sub-word level. Instead, we

also generate artificial translation rules representing morphological transformations using

RASP’s morphological generator, morphg (Minnen et al., 2001). We perform POS tagging

with the Stanford POS tagger (Toutanova et al., 2003) and create rules to switch the plu-

rality of nouns (e.g., singular↔ plural). For verbs, we generate rules that change that verb

to every other inflected form, specifically the base form, third-person singular, past tense,

2https://pythonhosted.org/pyenchant/
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past participle, and progressive tense (e.g., wake, wakes, woke, woken, waking). Generated

words that did not appear in the PyEnchant dictionary were excluded.

8.1.2 Features

Junczys-Dowmunt and Grundkiewicz (2016) used a large number of sparse features for a

phrase-based MT system that achieved state of the art performance on the CoNLL-2014 test

set. Unlike that work, which uses a potentially infinite amount of sparse features, we choose

to use a discrete set of feature functions that are informed by this task. Our feature extrac-

tion relies on a variety of pre-existing tools, including fast-align for word alignment (Dyer

et al., 2013), trained over the parallel FCE, Lang-8, and NUCLE corpora; PyEnchant for

detecting spelling changes; the Stanford POS tagger; the RASP morphological analyzer,

morpha (Minnen et al., 2001); and the NLTK WordNet lemmatizer (Bird et al., 2009). Our

toolkit is available from https://github.com/cnap/smt-for-gec.

Given a grammatical rule and an alignment between tokens on the LHS and RHS,

we tag the tokens with their part of speech and label the lemma and inflection of nouns

and verbs with morpha and the lemma of each adjective and adverb with the WordNet

lemmatizer. We then collect features for individual operations and rule-level qualities. An

operation is defined as a deletion, insertion, or substitution of a pair of aligned tokens (or a

token aligned with ε). An aligned token pair is represented as (li,r j), where li is a token on

the LHS at index i, and similarly r j for the RHS. The exact features are

• Deletions
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– deleted(li tag)

– deleted(li class)

The tag is the specific PTB part-of-speech tag (e.g., NN, NNS, NNP, etc.) and class

is the broader word class (e.g., noun).

• Insertions

– inserted(r j tag)

– inserted(r j class)

• Substitutions

– substituted(r j tag)

– substituted(r j class)

– substituted(li tag, r j tag)

Morphological features:

– inflection change(li, r j)

– same tag, different word(li, r j)

– different tag, different word(li, r j)

Spelling features:

– is in dictionary(li)
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– is a suggested correction(li, r j)

Counts of spelling corrections are weighted by the probability of r j in an English

Gigaword language model.

• Rule-level features

– character Levenshtein distance(LHS, RHS)

– token Levenshtein distance(LHS, RHS)

–
# tokens(RHS)
# tokens(LHS)

–
# characters(RHS)
# characters(LHS)

In previous MT approaches to GEC, Levenshtein distance has been a feature for tun-

ing (Felice et al., 2014; Junczys-Dowmunt and Grundkiewicz, 2014; Junczys-Dowmunt

and Grundkiewicz, 2016), and Junczys-Dowmunt and Grundkiewicz (2016) also used

counts of deletions, insertions, and substitutions by word class. They additionally had

sparse features, with counts of each lexicalized operation, e.g., substitute(run, ran), which

we avoid by abstracting away from the lemmas and instead counting the operations by part

of speech and indicating if the lemmas matched or differed for substitutions.

8.1.3 Metric

The decoder identifies the most probable derivation of an input sentence from the trans-

lation grammar. Derivations are scored by a combination of a language model score and
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weighted feature functions, and the weights are optimized to a specific metric during the

tuning phase. In Section 7.7.2, we showed that MT metrics like BLEU are not sufficient

for evaluating GEC, nor are they appropriate for tuning MT systems for GEC (Junczys-

Dowmunt and Grundkiewicz, 2016). Fundamentally, MT metrics do not work for GEC

because the output is usually very similar to the input, and therefore the input already has a

high metric score. To address this issue, we tune to GLEU, which was specifically designed

for evaluating GEC output. We chose GLEU instead of M2 because the latter requires a

token alignment between the input, output, and gold-standard references, and assumes only

minimal, non-overlapping changes have been made. GLEU, on the other hand, measures

n-gram overlap and therefore is better equipped to handle movement and changes to larger

spans of text.

8.2 Experiments

For our experiments, we use the Joshua 6 toolkit (Post et al., 2015). Tokenization is done

with Joshua and token-level alignment with fast-align (Dyer et al., 2013). All text is low-

ercased, and we use a simple algorithm to recase the output (Table 8.1). We extract a

hierarchical phrase-based translation model with Thrax (Weese et al., 2011) and perform

parameter tuning with pairwise ranked optimization in Joshua.

Our training data is from the Lang-8 corpus (Mizumoto et al., 2011), which contains 1

million parallel sentences (563k of which contain corrections),3 and we tune to the JFLEG

3Going forward, we will refer to the size of training data by the number of corrected sentence pairs.
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1. Generate POS tags of the cased input sentence

2. Label proper nouns in the input

3. Align the cased input tokens with the output

4. Capitalize the first alphanumeric character of the output sentence (if a letter).

5. For each pair of aligned tokens (li, r j), capitalize r j if li is labeled a proper noun or
r j is the token “i”.

Table 8.1: A simple recasing algorithm, which relies on token alignments between the
input and output.

tuning set (751 sentences) and evaluate on the JFLEG test set (747 sentences). We use an

English Gigaword 5-gram language model.

We evaluate performance with two metrics, GLEU and M2, which have similar rankings

and match human judgments on the JFLEG corpus (Napoles et al., 2017c). The baseline

is an unmodified MT pipeline trained on the Lang-8 corpus, optimized to BLEU with no

specialized features, and we compare our performance to the leading neural machine trans-

lation system at the time, Yuan and Briscoe (2016), YB16. We additionally report metric

scores for the human corrections, which we determine by evaluating each reference set

against the other three and reporting the mean score. Our fully customized model with all

modifications, Specialized Machine translation for Error Correction (SMEC+morph), scores

lower than YB16 according to GLEU but has the same M2 score. Qualitative examina-

tion of the output reveals many incorrect or unnecessary number of tense changes, and

automatic analysis reveals that it makes significantly more inflection changes than the hu-
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System GLEU M2 Sentences changed LD

Baseline 54.9 36.0 39% 0.7
SMEC+morph 57.9 52.3 88% 2.8
SMEC 58.3 52.2 85% 2.5
YB16 58.4 52.3 73% 1.9

Human 62.1 63.6 77% 3.1

Table 8.2: Results on the JFLEG test set. In addition to the GLEU and M2 scores, we also
report the percent of sentences changed from the input and the mean Levensthein distance
(tokens).

mans or YB16 (detected with the same method described in Section 8.1.2), from which we

can conclude that the morphological rules errors are applied too liberally. If we remove

the generated morphological rules but keep the spelling rules (SMEC), performance im-

proves by 0.4 GLEU points and decreases by 0.1 M2 points—but, more importantly, the

system makes more conservative morphological changes. Therefore, we consider SMEC,

the model without artificial morphological rules, to be our best system.

There is a disparity in the GLEU and M2 scores for the baseline: the baseline GLEU

is about 5% lower than the other systems but the M2 is 30% lower. This can be attributed

to the lesser extent of changes made by the baseline system which results in low recall for

M2 but which is not penalized by GLEU. The human corrections have the highest metric

scores, and make changes to 77% of the sentences, which is in between the number of

sentences changed by YB16 and SMEC, however the human corrections have a higher

mean edit distance, because the annotators made more extensive changes when a sentence

needed to be corrected than any of the models.

The metrics only give us a high-level overview of the changes made in the output. With
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error-coded text, the performance by feature type can be examined with M2, but this is not

possible with GLEU or the JFLEG corpus, which is not coded. To investigate the types

of changes made by a system on a more granular level, we apply the feature extraction

method described in Section 8.1.2 to quantify the morphological and lexical transforma-

tions. While we developed this method for scoring translation rules, it can work on any

aligned text. We calculate the number of each of these transformations made by to the

input by each system and the human references, determining significant differences with

a paired t-test (p < 0.05). Figure 8.1 contains the mean number of these transformations

per sentence made by SMEC, YB16, and the human-corrected references, and Figure 8.2

shows the number of operations by part of speech. Even though the GLEU and M2 scores

of the two systems are nearly identical, they are significantly different in all of the trans-

formations in Figure 8.1, with SMEC having a higher edit distance from the original, but

YB16 making more insertions and substitutions. Overall, the human corrections have a

significantly more inserted tokens than either system, while YB16 makes the most substi-

tutions and fewer deletions than SMEC or the human corrections. The bottom plot displays

the mean number of operations by part of speech (operations include deletion, insertion,

and substitution). Both systems and the human corrections display similar rates of substi-

tutions across different parts of speech, however the human references have significantly

more preposition and verb operations and there are significant differences between the de-

terminer and noun operations made by YB16 compared to SMEC and the references. This

information can be further analyzed by part of speech and edit operation, and the same
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Figure 8.1: Mean tokens per sentence displaying certain changes from the input sentence.

information is available for other word classes.

8.3 Model Analysis

We wish to understand how each component of our model contributes to its performance,

and therefore train a series of variations of the model, each time removing a single cus-

tomization, specifically: the optimization metric (tuning to BLEU instead of GLEU; SMEC

−GLEU), the features (only using the standard MT features; SMEC−feats), and eliminating

artificial rules (SMEC −sp). The impact of training data size will be investigated separately

in Section 8.3.1. We computed the automatic metric scores of each model variation and

performed the automatic edit analysis described in Section 8.1.2. In Table 8.3, we report

166



CHAPTER 8. MACHINE TRANSLATION AND ARTIFICIAL DATA FOR GEC

Punctu
atio

n

Determ
iner

Prepositi
on

Noun
Verb

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Human SMEC YB2016

Figure 8.2: Mean number of operations (deletions, insertions, and substitutions) per sen-
tence by part of speech.

the net metric increase or decrease compared to the full model, and the percent increase or

decrease for each of the features. Changing the metric from GLEU to BLEU significantly

decreases the amount of change made by the model, SMEC−GLEU, with a 60% lower edit

distance than SMEC, and at least 50% fewer of almost all transformations. The GLEU

score of this system is nearly 1 point lower, however there is almost no change in the M2

score, indicating that the changes made were appropriate, even though they were fewer in

number. Tuning to BLEU causes fewer changes because the input sentence already has a

high BLEU score due to the high overlap between the input and reference sentences. GLEU

encourages more changes by penalizing text that should have been changed in the output.
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Removing the custom features (SMEC−feats) makes less of a difference in the GLEU

score, however there are significantly more determiners added and more tokens are substi-

tuted with words that have different lemmas and parts of speech. This suggests that the spe-

cialized features encouraged morphologically-aware substitutions, reducing changes that

did not have semantic or functional overlap with the original content. Removing the arti-

ficially generated spelling rules (SMEC−sp) had the greatest impact on performance, with

a nearly 10% decrease in GLEU score and 20% decrease in M2. Without spelling rules,

significantly fewer tokens were inserted in the corrections across all word classes. We also

see a significantly greater number of substitutions made with words that had neither the

same part of speech or lemma as the original word, which could be attributed to sparsity in

the presence of spelling errors which is addressed with the artificial grammar.

Table 8.4 contains examples of sentences from the test set that illustrate some of these

observations. These ungrammatical sentences range from one that can easily be corrected

by an English speaker using minimal edits; to a sentence that requires more significant

changes and inference but has an obvious meaning; to a sentence that is garbled and does

not have an immediately obvious correction, even to a native English speaker. We show

each of the original sentences next to one of the human-corrected references, and the correc-

tions generated by SMEC and SMEC variations without GLEU and without spelling rules.

The reference correction contains more extensive changes than the automatic systems and

makes spelling corrections not found by the decoder (engy→ energy) or inferences in the

instance of the garbled third sentence, changing lrenikg→ Ranking. SMEC makes many
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spelling corrections and makes more insertions, substitutions, and deletions than the two

SMEC variations. However, the artificial rules also cause some bad corrections, found in

the third example changing studens→ stud-ens, while the intended word, students, is ob-

vious to a human reader.4 When optimizing to BLEU instead of the custom metric (SMEC

−GLEU), there are fewer changes and therefore the output is less fluent. In the first exam-

ple, SMEC−GLEU applies only one spelling change even though the rest of the sentence has

many small errors that were all corrected in SMEC, such as missing determiner and extra

auxiliary. The same pattern is visible in the other two examples. Finally, without the artifi-

cial rules, SMEC −sp fixes only a fraction of the spelling mistakes—however it is the only

system that correctly changes studens→ students. Independent from these modifications,

the capitalization issues present in the input were all remedied by our recasing algorithm,

which improves the metric score.

8.3.1 Impact of Training Data

Lang-8 is the largest publicly available parallel corpus for GEC, with 1 million tokens and

approximately 563k corrected sentence pairs, however this corpus may contain noise due to

automatic alignment and the annotators, who were users of the online Lang-8 service and

may not necessarily have provided accurate or complete corrections. Two other corpora,

FCE and NUCLE, contain annotations by trained English instructors and absolute align-

ments between sentences, however each is approximately 20-times smaller than Lang-8.

4To filter out bad spelling candidates, we could further extend the generated rules by applying vector-space
models as we have done for sentence compression (Section 4.3). This is an area of future work.
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SMEC
Quality −GLEU −feats −sp

GLEU −0.7 −0.2 −3.9
M2 −0.1 −0.5 −9.5

Edit dist −60% −11%
Deleted −51% −7% −4%
Inserted −46% −24%
Substituted −37% +9%
Diff inflection −53%
Diff token −18% +9%
Diff token+POS −29% +24% +31%
Spelling −35% +8%

Determiner −51% −7%
del −47% −5%
ins −70% +39% −30%

sub −56%

Preposition −52%
del −51%
ins −45% −10% −22%
sub −42%

Noun −40% −6% −10%
del −45% −9% −12%
ins −38% −7% −13%
sub −30%

Verb −57% −5% −11%
del −61% −6% −7%
ins −53% −13% −40%
sub −50%

Punctuation −52%
del −47% −5%
ins −84% −30%
sub

Table 8.3: Modifications of SMEC, reporting the mean occurrence of each transformation
per sentence, when there is a significant difference (p < 0.05 by a paired t-test).
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Orig Unforturntly , almost older people can not use internet , in spite of benefit
of internet .

Human Unfortunately , most older people can not use the internet , in spite of
benefits of the internet .

SMEC Unfortunately , most older people can not use the internet , in spite of
the benefits of the internet .

SMEC−GLEU Unfortunately , almost older people can not use internet , in spite of
benefit of internet .

SMEC−sp Unforturntly , □ older people can not use the internet , in spite of the
benefits of the internet .

Orig becuse if i see some one did somthing to may safe me time and engy and
it wok ’s i will do it .

Human Because if I see that someone did something that may save me time
and energy and it works I will also do it .

SMEC Because if I see □ one did something □ may save me time and edgy
and □ work □ , I will do it .

SMEC−GLEU Because if I see some one did something to may save me time and edgy
and it wok ’s I will do it .

SMEC−sp Because if I see □ one somthings □ may save me time and engy □
work □ I will do it .

Orig lrenikg the studens the ideas have many advantegis :

Human Ranking the students ’ □ ideas has many advantages .

SMEC Linking the stud-ens □ ideas have many advantages :

SMEC−GLEU Linking the stud-ens the ideas have many advantages :

SMEC−sp Lrenikg □ students □ ideas have □ advantegis :

Table 8.4: Example corrections made by a human annotator, SMEC, and two variations:
trained on BLEU instead of GLEU (SMEC−GLEU) and without artificial spelling rules
(SMEC−sp). Inserted or changed text is in bold and deleted text is indicated with □.
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We wish to isolate the effect of size and source of training data has on system performance,

and therefore randomly sample the Lang-8 corpus to create smaller training sets that are

the same size as FCE or NUCLE (21.5k corrected sentences) and FCE and NUCLE (43k

corrected sentences). From Lang-8 and FCE/NUCLE, we extract grammars learned over

21.5k or 43k corrected sentences and train models following the same procedure described

above. We hypothesized that including artificial rules may help address problems of spar-

sity in the training data, and therefore we also train additional models with and without

spelling rules to determine how artificial data affects performance as the amount of train-

ing data increases. Figure 8.3 shows the relative GLEU scores of systems with different

training data sizes and sources, before and after adding artificial spelling rules.

For Lang-8, more data increases performance, however there is no clear relationship

between size and performance on the FCE+NUCLE data. Training on a small set of 21.5k

Lang-8 sentence pairs results in much worse performance than training on the same size

FCE or NUCLE data, however when using twice the training data, Lang-8 is better than

FCE/NUCLE, suggesting that more data negates the presence of noise and the sentential

rewrites present in Lang-8 are better for training a GEC system. These results suggest that,

with even more data, performance would continue to improve, and SMEC may outperform

YB16 if trained over the larger CLC.

For all models except for that trained on 21.5k Lang-8 corrected sentences, adding

artificial spelling rules improves performance by about 4 GLEU points (adding spelling

rules to FCE training data only causes a 2-point GLEU improvement). The amount of

172



CHAPTER 8. MACHINE TRANSLATION AND ARTIFICIAL DATA FOR GEC

44 46 48 50 52 54 56 57 60
GLEU

FCE (21.2k)
Lang-8 (21.5k)
NUCLE (21.8k)

FCE+NUCLE (42.8k)
Lang-8 (43k)

Lang-8 (563k)

no spelling rules with spelling rules

Figure 8.3: GLEU scores of SMEC with different training sizes, with and without artificial
rules.

performance does not change related to the size of the training data, however the consistent

improvement supports our hypothesis that artificial rules are useful to address problems of

data sparsity.

8.4 Conclusion

This chapter extended our unified framework to GEC, a task fundamentally different from

sentence compression and simplification because the source text is ill formed by definition.

We presented a systematic investigation into how to customize the components of the T2T

framework for GEC. We have found that extending the translation grammar with artificially
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generated rules for spelling correction can increase the M2 score by as much as 20%. The

amount of training data also has a substantial impact on performance, increasing GLEU and

M2 scores by approximately 10%. Tuning to a specialized GEC metric and using custom

features both help performance but yield less considerable gains. The performance of our

model, SMEC, is on par with the current state-of-the-art GEC system, which is neural MT

trained on twice the available training data—and our analysis suggests that the performance

of SMEC would continue to improve if trained on that amount of data. This research has

demonstrated the flexibility and power of our T2T framework to a broad range of tasks.
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Part IV

Conclusion
This thesis has examined different T2T tasks and provided a basis for applying para-

phrasing to transforming text subject to the constraints of each task. We have identified

shortcomings of previous evaluation methodologies and the corpora used for evaluating the

tasks, and created new datasets and new metrics for evaluating them. We have also pre-

sented a unified framework for T2T that harnesses advances in statistical machine transla-

tion to monolingual translation tasks. With this framework, we have achieved state-of-the-

art performance without relying on large-scale parallel corpora annotated for each specific

task, which frequently do not exist and are costly to create. The T2T tasks in this thesis

range in complexity, starting with a simple objective (shortening text) to a more compli-

cated one (increasing readability), and we end with a task that takes ill-formed text as input

with multiple objectives (correcting for spelling, grammar, and fluency). Our approaches

are summarized in Table 8.5.

For each of these tasks, we had to make task-specific modifications, for which a small-

scale, qualitative analysis of the data was necessitated. For sentence compression, we in-

troduced deletion rules for certain classes of words: adjectives, adverbs, and determiners.
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The rules we introduced for sentence simplification were fewer: just deletion of adjectives.

For grammatical error correction, we could not use the general paraphrase corpus since it

did not include examples of ill-formed text, and therefore we created a set of rules that

harnessed existing technology in spell-checking and morphological analysis. For each of

these tasks, we have demonstrated how to achieve state of the art performance by combin-

ing a small set of hand-crafted rules with the limited resources existing for that task. This

approach can be extended for other T2T tasks such as style transfer.

Contributions

In Part I we examined the task of automatic sentence compression. While earlier ap-

proaches to the task treated it as primarily a deletion task, we describe how paraphrasing can

be applied to the task and examined the ramifications of paraphrasing to existing evaluation

methodologies, both automatic and manual. We quantified the impact of compression rate

on perceived quality and made specific recommendations to accurately evaluate the candi-

date compressions (Chapter 3). We additionally explored the capability of paraphrasing to

sentence compression, first by greedily selecting paraphrases to shorten a text, and next by

modifying the statistical machine translation pipeline (Chapter 4).

Part II considered the task of sentence simplification. We analyzed a large-scale, natu-

rally occurring parallel corpus of simplified text, quantified the difference between simpli-

fied and unsimplified text, and identified shortcomings of using a corpus of automatically

aligned sentences for the task (Chapter 5).

176



We developed a novel metric for the task that accounted for fluency, meaning preserva-

tion, and simplification. We applied this metric with a large-scale paraphrase database in a

modified machine-translation approach to generate simplifications that surpass those gen-

erated in earlier approaches in terms of meaning-preservation and readability, and required

only a small amount of task-specific annotated data (Chapter 6).

Finally, Part III visited the task of grammatical error correction and began with a thor-

ough examination of the approaches for evaluating GEC output and identified a mismatch

between the stated aim of the task and the evaluation methodologies (Chapter 7). We pro-

posed a new definition of the task supported by empirical evidence, defined new metrics,

and created new corpora for GEC as fluency correction. Chapter 8 described how to ap-

ply methods from statistical machine translation to GEC and identified how to overcome a

limited amount of annotated parallel corpora using artificial rules.

Future Directions

Advances in T2T have used neural sequence-to-sequence models for these tasks with great

promise, subject to some problems with adequacy. There are examples of these advances

in each of the tasks: sentence compression (Rush et al., 2015), text simplification (Nisioi

et al., 2017), and grammatical error correction (Schmaltz et al., 2017), for example. One

issue that we have identified with deep-learning approaches is the introduction of meaning-

changing operations (Sakaguchi et al., 2017a). Koehn and Knowles (2017) described six

issues for neural machine translation (NMT), many of which are relevant for monolingual
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T2T: particularly that NMT systems may sacrifice adequacy for fluency and does not func-

tion well in low-resource settings or for longer sentences. As of this writing, a similar

analysis yet needs to be done for monolingual T2T to fully understand the relative benefits

of NMT-based approaches for a lower-resource tasks.

That being said, many of the findings in this thesis can be applied to future work:

Koehn and Knowles showed that data-hungry neural approaches are less effective than

SMT-based models when there is not sufficient training data, and our unified framework

is demonstrably better in these settings than other approaches that require more annotated

data—including NMT-based approach for GEC (Yuan and Briscoe, 2016). More generally,

our findings into evaluation methodologies are universally applicable: automatic metrics

(and, by extension, loss functions) should be validated against human judgments; the output

of a model needs to be manually examined to ensure that the evaluation is not picking up

on a related side effect, like unchanged text in the output; and the scientific validity of any

result depends on careful scrutiny of the above.

The work in this thesis has advanced a deeper understanding of unbiased approaches for

evaluating monolingual sentence rewriting and proposed automatic metrics as well as tex-

tual resources to advance the respective tasks. These findings can be applied to a multitude

of generation tasks, not limited to the three explored herein. Unbiased evaluation is crucial

for system development as current models approach human levels of quality. This thesis

provides a framework for achieving state-of-the-art quality using existing resources for new

tasks, minimizing the amount of annotated data necessary for training, tuning, and testing;
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and we have additionally demonstrated how to ensure reliable, interpretable evaluation of

system outputs with automatic and manual methodologies.
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Appendices
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Appendix A

Description of Manual Evaluations

This appendix describes the experimental setup for collecting judgments and human-

annotated data, including the guidelines, participant profile, and quality control mecha-

nisms.

A.1 Crowdsourcing

A bottleneck to developing robust models is the evaluation of output. Ideally, a trained

human familiar with the task would manually inspect output and consult with other trained

experts to eliminate bias to make the final assessment. Evaluation of this time is costly,

both in terms of the expense of hiring and training judges and in terms of the time it takes

for a small number of judges to evaluate a large set of sentences. One alternative seen in

the literature is to manually evaluate a small number of instances, often 100, however such

a small sample cannot reliably represent the overall quality of the entire output. Another
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option is to use automatic techniques in place of expert manual annotation, however this

thesis expounds on many of the fallacies and improper applications of automatic evaluation.

For all of the experiments conducted as a part of this thesis, we crowdsource evaluation of

system outputs.

We recruit annotators from Amazon Mechanical Turk https://mturk.com for data

collection. The use of crowdsourcing as a technique for data collection, annotation, and

evaluation has become accepted in the NLP community. However concerns about the qual-

ity of crowdsourced annotations persist. We have paid special attention to quality in the

design of our experiments, specifically:

1. Eliminating Bias

1. Redundancy: Collect multiple judgments for each item.

2. Randomization: Randomize the order in which items are displayed.

2. Quality Control

3. Speed: Check the amount of time taken for each task.

4. Embedded test questions: In each task, include questions for which there is a known

answer and check performance against this.

5. Manual examination: Spot check the output.

6. Credentials:
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Strength Absolute value

Very Strong 0.80−1.0
Strong 0.60−0.79
Moderate 0.40−0.59
Weak 0.20−0.39
Negligible/Very Weak 0.00−0.19

Table A.1: Correlation strengths (Evans, 1996).

(a) Location: Limit participants of a task to IP addresses in specific countries (the

U.S. and Canada, for our experiments).

(b) Previous Behavior: Only allow workers with a high previous acceptance rate

and that have completed a certain number of previous tasks.

(c) Qualifying Task: Workers must demonstrate satisfactory completion of a pre-

liminary task.

A.2 Data Evaluation

One of the most commonly used methods for calculating “goodness” of data is correlation,

which ranges from −1 to 1. The correlation coefficient can be described by the strength of

association. Table A.1 describes the vocabulary for describing correlation strengths.

A.3 Evaluating Paraphrase Scores

The paraphrase candidates were ranked by human judges in an experiment conducted on

Amazon’s Mechanical Turk. Each judge was shown the original sentence and that same
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sentence with each paraphrase candidate substituted in. They were asked to score each

paraphrase on two Likert-like scales based on the extent to which it preserved the meaning

and affected the grammaticality of the sentence (1 to 5, with 5 being perfect). We collected

5 judgments per paraphrase context, and the participants were restricted to those in the

United States with a HIT approval rate of at least 95%. Controls were additionally em-

bedded into the judgments and participants were disqualified if they answered the controls

incorrectly at a rate of 20% more than other participants. A positive control was a para-

phrase identical to the original phrase, and the correct answer was to rate this version of a

sentence with a 5 for meaning and grammar. The negative control was a randomly selected

phrase and the correct answer was to rate this version with a 1 for meaning.

A.3.1 Judge Paraphrase Quality

Please read the groups of sentences below. Each group contains an original sentence along

with ten different versions of it, which are created by replacing a phrase with automatically

generated paraphrases. Your job is to say whether the automatically generated paraphrases

are GOOD or BAD for the sentence. You should ignore punctuation in this HIT. If the new

paraphrase does not change the meaning of the sentence and the sentence is still grammat-

ical, then the paraphrase is good. If the paraphrase is the same as the original phrase, it

is also good. A new paraphrase that makes the sentence mean something different or not

sound right is bad.

Here is an example of how we graded a set of paraphrases:
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While the first four paraphrases are all grammatical, only examined and reviewed are

similar in meaning to the original phrase, and therefore they are the only “good” para-

phrases in this example.

A.4 Evaluating Sentence Compressions

Manual evaluation used Amazon’s Mechanical Turk with three-way redundancy and pos-

itive and negative controls to filter bad workers. Positive controls were the gold-standard

human-written compressions, and negative controls were the original sentences with 50%

of the words randomly deleted.

A.4.1 Judge the Quality of Similar Sentences

Please read the groups of sentences below. Each group contains an original sentence along

with five different versions of it, which are created automatically by a computer. Your job

is to grade the quality of the automatically generated sentences with two 5-point scales:

meaning and grammar.
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Meaning

• Perfect (5): All of the meaning of the original sentence is retained, and nothing is

added.

• Minor differences (4): The meaning of the original sentence is retained, although

some minor information may be deleted or added without too great a difference in

meaning.

• Moderate differences (3): Some of the meaning of the original sentence is retained,

although a non-trivial amount of information was deleted or added.

• Substantially different (2): Substantial amount of the meaning is different.

• Completely different (1): The new sentence doesn’t mean anything close to the orig-

inal sentence.

Grammar

• Perfect (5): The new sentence is perfectly grammatical.

• OK but awkward (4): The sentence is grammatical, but might sound slightly awk-

ward.

• One error (3): The sentence has an error (such as an agreement error between subject

and verb, a plural noun with a singular determiner, or the wrong verb form).
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• Many errors (2): The sentence has multiple errors or omits words that would be

required to make it grammatical.

• Ungrammatical (1): The sentence is totally ungrammatical.

In this HIT, you should ignore capitalization. Some of the original sentences may not be

100% grammatical, but you should not let this affect your judgment of the new sentences.

If sentences are repeated just give them the same scores.

Here is an example of how we graded a set of sentences:

We gave sentence #1 a score of 4 for grammar because it sounds like there is something

missing from the end of the sentence (a close associate of whom?). Sentence #4 received

a score of 2 for meaning because it doesn’t mention the coup. Sentences #4 and #5 are

incomplete sentences and so both got a grammar score of 2.

A.5 Compare the Simplicity of Sentences

We ran two HITs that asked judges to compare the simplicity (or readability) of different

sentences. In the first HIT, judges were asked to read two versions of a sentence and choose

the more simple version.
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The second HIT collected rankings of five sentences by simplicity. We presented judges

with five versions of an input sentence, including the original sentence, the manually sim-

plified “gold-standard” sentence, and three automatic simplifications. Each ranking was

completed by 3 separate judges, and for controls we made sure that the input sentence had

a lower ranking than the gold-standard simplification

A.5.1 Which Sentence Is More Simple?

In this HIT, you will read pairs of sentences. Your task is to decide which of the two

sentences is more simple or easier to read and understand. The options are:

• Sentence 1 is more simple (easier to read) than Sentence 2.

• Both sentences are the same difficulty.

• Sentence 1 is more difficult than Sentence 2.

In this HIT, the two sentences should be describing the same thing and one is a simpli-

fied version of the other. However, some sentence pairs may describe different things. If

you think that this is the case, check the box next to Neither sentence is a simplification of

the other. For example, #2 below is a simplified version of #1 but #3 is not a simplified

version of either sentence.

1. The War of 1812 was a military conflict fought between the forces of the United

States of America and those of the British Empire, stemming from impressment of
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American merchant sailors into the Royal Navy and British support of American

Indian tribes against American expansion.

2. The United States and the British Empire fought each other in the War of 1812 for a

variety of reasons.

3. During the War of 1812, the British blockaded the Atlantic coast of the U.S. and

mounted large-scale raids in the later stages of the war.

4. The United States and the British Empire fought each other in the War of 1812.

One cause of the war was when the British began kidnapping American sailors and

forcing them to serve in the British navy. Another cause was British support of

American Indian tribes against American expansion.

It is possible that one of the sentences in the pair is actually more than one sentence (or

a paragraph). In this case, you should consider whether that paragraph is easier or more

difficult to read than the other sentence in the pair. For example, #4 is a simplification of

#1, even though #4 is longer. Length is not a reliable way to decide which sentence is more

simple.

A.5.2 Rate Simple Sentences

Please read the sentences and vote on the one that you think is the easiest to read and un-

derstand in each. Each sentence is an automatically generated simplification of the original

sentence.
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You should consider the following factors when evaluating the sentences:

• Does this sentence make more sense than the others?

• Is the grammar good?

• Is it easy to understand what the sentence means?

You should rank every sentence in a group, and ties are OK.

A.6 Collecting Grammatical Corrections

We ran three different experiments collecting corrections of sentences written by English

language learners. The first experiment asked participants to make only minimal edits to

correct the sentences. In the second and third experiments, participants were instructed

to edit the sentences so that they were fluent to a native speaker of English. For all ex-

periments, we collected multiple annotations and had participants complete a preliminary

qualifying test to become eligible.

A.6.1 Correct Sentences with Minimal Edits

Please read the following instructions carefully. Please correct grammatical mistakes in

the following sentences. In many cases, there are lots of ways to correct a sentence; please

prefer corrections that require the smallest number of changes to the original sentence, even

if the resulting sentence is slightly awkward or non-native sounding. Not all sentences

require corrections.
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The sentences are taken from student essays. For context, the previous sentence in the

essay is also presented, greyed out. Examples are found in Table A.2.

Instructions: Please correct only the BOLD, UNDERLINED sentence. The gray sen-

tence is given as a context. NOTE: Too much rewriting might be rejected. Please keep your

edits as minimal as possible.

A.6.2 Correct Sentences with Fluency Edits

Please correct the following sentences to make them sound more natural to a native speaker

of English. You should also fix grammatical mistakes, but focus on changing the sentences

to remove awkward phrases and to follow standard written usage conventions. Not all

sentences require corrections.

The sentences are taken from student essays. For context, the previous sentence in the

essay is also presented, greyed out. Examples are found in Table A.3.

Instructions: Please correct only the BOLD, UNDERLINED sentence. The gray sen-

tence is given as a context.

A.6.3 Correct Sentences with Unspecified Edits

Instructions

Please correct the following sentence to make it sound natural and fluent to a native speaker

of English. The sentence is written by a second language learner of English. You should

fix grammatical mistakes, awkward phrases, etc. following standard written usage con-
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ventions, but your edits must be conservative. Please keep the original sentence (words,

phrases, and structure) as much as possible. The ultimate goal of this task is to make the

given sentence sound natural to native speakers of English without making unnecessary

changes. Please do not split the original sentence into two or more. Edits are not required

when the sentence is already grammatical and sounds natural. When the sentence is too er-

roneous to correct (e.g. “The memory is very.”, “For example, in children.”), please check

the box below the sentence.

Examples are found in Table A.4.

Please keep in mind the instructions.

• Correct the following sentence to make it sound natural and fluent to a native speaker

of English.

• Your edits must be conservative. Please keep the original sentence (words, phrases,

and structure) as much as possible.

• Please do not split the sentence into two or more.

• Edits are not required when the sentence is already grammatical and sounds natural.

A.7 Ranking Sentences by Grammaticality

In this HIT, we had participants rank the grammaticality of five versions of the same sen-

tence. The versions were randomly selected from the input sentence, a human-corrected

reference, and the 13 system outputs from the CoNLL-2014 shared task participants.
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A.7.1 Grammaticality Ranking Challenge

You will be first presented with two sentences from a passage: context and original. The

second one, original, may contain grammatical errors. The next group of sentences are

possible grammatical corrections to that original sentence.

Please rank that group of sentences by their grammaticality. The rank is between 1 (the

best) and 5 (the worst), and ties are allowed. Specifically, you should assign the best sen-

tence(s) as Rank 1, the next best sentence(s) as Rank 2, and so on. For reference, a previous

sentence is given as context. Also, the buttons (show/hide mark-up) will show/hide all the

edits from the original sentence via highlighting or strike-throughs.

Instructions:

Please select the rank between 1 (the best) and 5 (the worst). Ties are allowed. Sometimes

you are asked to compare less than 5 sentences with a filler “###”, and you don’t have to

rank the fillers. For reference, a previous sentence is given as context. Also, the buttons

(show/hide mark-up) will show/hide all the edits from the original sentence by highlighting

or crossing through.

Best← Rank 1 — Rank 2 — Rank 3 — Rank 4 — Rank 5→Worst
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Appendix B

Language packs for T2T

We present a simple, prepackaged solution for generating paraphrases of English sentences.

We use the Paraphrase Database (PPDB) for monolingual sentence rewriting and provide

machine translation language packs: prepackaged, tuned models that can be downloaded

and used to generate paraphrases on a standard Unix environment. The language packs

can be treated as a black box or customized to specific tasks. In this demonstration, we

will explain how to use the included interactive web-based tool to generate sentential para-

phrases.1

1Originally appeared as a 2017 NAACL System Demonstrated, “Sentential Paraphrasing as Black-Box
Machine Translation” (Napoles, Callison-Burch, and Post, 2016).
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B.1 Introduction

Monolingual sentence rewriting encompasses a variety of tasks for which the goal is to gen-

erate an output sentence with similar meaning to an input sentence, in the same language.

The generated sentences can be called sentential paraphrases. Some tasks that gener-

ate sentential paraphrases include sentence simplification, compression, grammatical error

correction, or expanding multiple reference sets for machine translation. For researchers

not focused on these tasks, it can be difficult to develop a one-off system due to resource

requirements.

To address this need, we are releasing a black box for generating sentential paraphrases:

machine translation language packs. The language packs consist of prepackaged models

for the Joshua 6 decoder (Post et al., 2015) and a monolingual “translation” grammar de-

rived from the Paraphrase Database (PPDB) 2.0 (Pavlick et al., 2015). The PPDB provides

tremendous coverage over English text, containing more than 200 million paraphrases ex-

tracted from 100 million sentences (Ganitkevitch and Callison-Burch, 2014). For the first

time, any researcher with Java 7 and Unix (there are no other dependencies) can generate

sentential paraphrases without developing their own system. Additionally, the language

packs include a web tool for interactively paraphrasing sentences and adjusting the param-

eters.

The language packs contain everything needed to generate sentential paraphrases in

English:
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• a monolingual synchronous grammar,

• a language model,

• a ready-to-use configuration file,

• the Joshua 6 runtime, so that no compilation is necessary,

• a shell script to invoke the Joshua decoder, and

• a web tool for interactive decoding and parameter configuration.

The system is invoked by a single command, either on a batch of sentences or as an inter-

active server.

Users can choose which size grammar to include in the language pack, corresponding

to the PPDB pack sizes (S through XXXL).

In the following sections, we will describe the translation model and grammar, provide

examples of output, and explain how the configuration can be adjusted for specific needs.

B.2 Language Pack Description

Several different size language packs are available for download.2 The components of the

language packs are described below.

2http://joshua-decoder.com/language-packs/paraphrase/
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1. Grammar

Our approach to sentential paraphrasing is analogous to machine translation. As a transla-

tion grammar, we use PPDB 2.0, which contains 170-million lexical, phrasal, and syntactic

paraphrases (Pavlick et al., 2015). Each language pack contains a PPDB grammar that

has been packed into a binary form for faster computation (Ganitkevitch et al., 2012), and

users can select which size grammar to use. The rules present in each grammar are de-

termined by the PPDB 2.0 score, which indicates the paraphrase quality (as given by a

supervised regression model) and correlates strongly with human judgments of paraphrase

appropriateness (Pavlick et al., 2015). Grammars of different sizes are created by chang-

ing the paraphrase score thresholds; larger grammars therefore contain a wider diversity of

paraphrases, but with lower confidences.

2. Features

Each paraphrase in PPDB 2.0 contains 44 features, described in Ganitkevitch and Callison-

Burch (2014) and Pavlick et al. (2015). For each paraphrase pair, we call the input the

original and the new phrase the candidate. Features can reflect just the candidate phrase

or a relationship between the original and candidate phrases. Each of these features is

assigned a weight, which guides the decoder’s choice of paraphrases to apply to generate

the final candidate sentence. All feature values are pre-calculated in PPDB 2.0.
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3. Decoding

The language packs include a compiled Joshua runtime for decoding, a script to invoke

it, and configuration files for different tuned models. There is also a web-based tool for

interactively querying a server version of the decoder for paraphrases. We include a 5-

gram Gigaword v.5 language model for decoding. One or more language-model scores

are used to rank translation candidates during decoding. The decoder outputs the n-best

candidate paraphrases, ranked by model score.

B.3 Models

Each language pack has three pre-configured models to use either out of the box or as a

starting point for further customization. There are tuned models for (1) sentence compres-

sion, (2) text simplification, and (3) a general-purpose model with hand-tuned weights.

These models are distinguished only by the different weight vectors, and are selected by

point the Joshua invocation script to the corresponding configuration file.

B.3.1 Tuned Models

We include two models that were tuned for (1) sentence compression and (2) simplification.

The compression model is based on the work of Ganitkevitch et al. (2011), and uses the

same features, tuning data, and objective function, PRÉCIS. The simplification model is

described in Xu et al. (2016), and is optimized to the SARI metric. The system was tuned
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using the parallel data described therein as well as the Newsela corpus (Xu et al., 2015).

There is no specialized grammar for these models; instead, the parameters were tuned to

choose appropriate paraphrases from the PPDB.

Sample output generated with these models is shown in Table B.1.

B.3.2 Hand-Derived Weights

To configure the general-purpose model, which generates paraphrases for no specific task,

we examined the output of 100 sentences randomly selected from each of three different

domains: newswire (WSJ 0–1 (Marcus et al., 1993)), “simple” English (the Britannica El-

ementary corpus (Barzilay and Elhadad, 2003)), and general text (the WaCky corpus (Ba-

roni et al., 2009)). We systematically varied the weights of the Gigaword LM and the

PPDB 2.0 score features and selected values that yielded the best output as judged by the

authors. The parameters selected for the generic language packs are weightlm = 10 and

weightppdb2 = 15, with all other weights are set to zero. Example output is shown in

Table B.1.

B.4 User Customization

The language packs include configuration files with pre-determined weights that can be

used on their own or as a jumping-off point for custom configurations. There are weights

for each of the 44 PPDB 2.0 features as well as for the language model(s) used by the
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Compression

Orig: rice admits mistakes have been made by american administration in rebuilding
iraq

Gen: rice admits mistakes were made by american administration in rebuilding iraq

Orig: partisanship is regarded as a crime , and pluralism is rejected , and no one in the
shura council would seek to compete with the ruler or distort his image .

Gen: partisanship is regarded as a crime
e

and pluralism is rejected
e

and none in
the shura council would seek to compete with the ruler or distort his image .

Simplification

Orig: fives is a british sport believed to derive from the same origins as many racquet
sports .

Gen: fives is a british sport thought to come from the same source as many racquet
sports .

Orig: in the soviet years , the bolsheviks demolished two of rostov ’s principal land-
marks — st alexander nevsky cathedral ( 1908 ) and st george cathedral in
nakhichevan ( 1783-1807 ) .

Gen: in the soviet years , the bolsheviks destroyed two of rostov ’s key landmarks —
st alexander nevsky church ( 1908 ) and st george church in naxçivan ( 1783-
1807 ) .

Generic

Orig: because the spaniards had better weapons , cortes and his army took over
tenochtitlan by 1521 .

Gen: as the spaniards had better weapons , cortes and his men took over tenochtitlan
by 1521 .

Orig: it was eventually abandoned due to resistance from the population .

Gen: it was later abandoned due to opposition from the population .

Table B.1: Sample output from the three models. Underlines designate changed spans,
and

e
indicates deletions.
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decoder. We encourage researchers to explore modifications to the model to suit their

specific tasks, and we have clearly identified five aspects of the language packs that can be

modified:

1. Alternate language models. The decoder can accept multiple LMs, and the packs

include LMs estimated over newswire text and “simple” English. Other user-provided LMs

can be used for tasks targeting different domains of text.

2. Rank output with a custom metric. The n-best candidate sentences are chosen by

their score according to a given metric (LM score for the generic model, and PRÉCIS and

SARI for the tuned models), however other metrics can be used instead.

3. Manually adjust parameters. The weights of the features discussed in Section B.3

can be adjusted, as well as other PPDB feature weights. The web tool (Figure B.1) allows

users to select the weights for all of the features and see the top-5 candidates generated with

those weights. Some of the more interpretable features to target include the following:

• Language model perplexity of the candidate

• Length difference between the phrase pair

• Paraphrase score

• Formality of the candidate

• Complexity of the candidate

• Entailment relations between the original phrase and the candidate paraphrase
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4. Optimize parameters with parallel data. For tailoring machine translation to a

specific task, the weights given to each feature can be optimized to a given metric over a

tuning set of parallel data. This metric is commonly BLEU in machine translation, but it

can be a custom metric for a specific task, such as PRÉCIS for compression (Ganitkevitch et

al., 2011) or SARI for simplification (Xu et al., 2016). The user needs to provide a parallel

dataset for tuning, ideally with about 2,000 thousand sentences. The pipeline scripts in the

Joshua decoder have options for optimization, with the user specifying the language pack

grammar and parallel tuning data. The configuration file included in the language pack can

be used as a template for tuning.

B.5 Interactive Tool

Finally, we include a web tool that lets users interact with the decoder and choose custom

weights (Figure B.1). Once users have downloaded the toolkit, an included script lets them

run the decoder as a server, and through the web interface they can type individual sentences

and adjust model parameters. The interface includes an input text box (one sentence at a

time), and slider bars to change the weights of any of the features used for decoding. Since

this model has not been manually evaluated, we favor precision over recall and maintain

a relatively conservative level of paraphrasing. The user is shown the top 10 outputs, as

ranked by the sentence score. For each output sentence, we report the Translation Edit

Rate (TER), which is the number of changes needed to transform the output sentence into

the input (Snover et al., 2006).
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Figure B.1: A screen shot of the web tool. The number to the right of each output sentence
is the TER.

This tool can be used to demonstrate and test a model or to hand-tune the model in

order to determine the parameters for a configuration file to paraphrase a large batch of

sentences. Detailed instructions for using the tool and shell scripts, as well as a detailed

description of the configuration file, are available at the language pack homepage: http:

//joshua-decoder.com/language-packs/paraphrase/.
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B.6 Related Work

Previous work has applied machine translation techniques to monolingual sentence rewrit-

ing tasks. The most closely related works used a monolingual paraphrase grammar for sen-

tence compression (Ganitkevitch et al., 2011) and sentence simplification (Xu et al., 2016),

both of which developed custom metrics and task-specific features. Various other MT ap-

proaches have been used for generating sentence simplifications, however none of these

used a general-purpose paraphrase grammar (e.g., Narayan and Gardent, 2014; Wubben

et al., 2012). Another application of sentential paraphrases is to expand multiple reference

sets for machine translation (Madnani and Dorr, 2010).

PPDB has been used for many tasks, including recognizing textual entailment, question

generation, and measuring semantic similarity.

These language packs were inspired by the foreign language packs released with

Joshua 6 (Post et al., 2015)

.

B.7 Conclusion

We have presented a black box for generating sentential paraphrases: PPDB language

packs. The language packs include everything necessary for generation so that they can

be downloaded and invoked with a single command. This toolkit can be used for a variety
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of tasks: as a helpful tool for writing (what is another way to express a sentence?); gener-

ating additional training or tuning data, such as multiple-references for machine translation

or other text-to-text rewriting tasks; or for changing the style or tone of a text. We hope

their ease-of-use will facilitate future work on text-to-text rewriting tasks.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow,

Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof

Monz, Matteo Negri, Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael

Rubino, Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, and Marcos

213



REFERENCES

Zampieri (2016). “Findings of the 2016 Conference on Machine Translation”. In Pro-

ceedings of the First Conference on Machine Translation. Berlin, Germany: Association

for Computational Linguistics, pp. 131–198.

Ted Briscoe (2006). An introduction to tag sequence grammars and the RASP system

parser. Tech. rep. University of Cambridge Computer Library.

Christopher Bryant and Hwee Tou Ng (2015). “How Far are We from Fully Automatic High

Quality Grammatical Error Correction?” In Proceedings of the 53rd Annual Meeting of

the Association for Computational Linguistics and the 7th International Joint Confer-

ence on Natural Language Processing (Volume 1: Long Papers). Beijing, China: Asso-

ciation for Computational Linguistics, pp. 697–707.

Christopher Bryant, Mariano Felice, and Ted Briscoe (2017). “Automatic Annotation and

Evaluation of Error Types for Grammatical Error Correction”. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Vancouver, Canada: Association for Computational Linguistics, pp. 793–805.

Chris Callison-Burch and Raymond S. Flournoy (2001). “A Program for Automatically

Selecting the Best Output from Multiple Machine Translation Engines”. In Proceedings

of the Machine Translation Summit VIII. Vol. 318.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn (2006). “Re-evaluating the role

of BLEU in machine translation research”. In 11th Conference of the European Chapter

of the Association for Computational Linguistics. Trento, Italy: Association for Com-

putational Linguistics, pp. 249–256.

214



REFERENCES

Yvonne Canning, John Tait, Jackie Archibald, and Ros Crawley (2000). “Cohesive gener-

ation of syntactically simplified newspaper text”. In Proceedings of the Third Interna-

tional Workshop on Text, Speech and Dialogue (TSD), pp. 145–150.

John Carroll, Guido Minnen, Darren Pearce, Yvonne Canning, Siobhan Devlin, and John

Tait (1999). “Simplifying text for language-impaired readers”. In Proceedings of the

14th Conference of the 9th European Conference for Computational Linguistics (EACL).

Bergen, Norway: Association for Computational Linguistics.

Jieun Chae and Ani Nenkova (2009). “Predicting the fluency of text with shallow structural

features”. In Proceedings of the 12th Conference of the European Chapter of the ACL

(EACL 2009). Athens, Greece: Association for Computational Linguistics, pp. 139–

147.

Tsz Ping Chan, Chris Callison-Burch, and Benjamin Van Durme (2011). “Reranking Bilin-

gually Extracted Paraphrases Using Monolingual Distributional Similarity”. In Pro-

ceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language

Semantics. Edinburgh, UK: Association for Computational Linguistics, pp. 33–42.

Eugene Charniak and Mark Johnson (2005). “Coarse-to-fine n-best parsing and MaxEnt

discriminative reranking”. In Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics. Ann Arbor, Michigan: Association for Computational

Linguistics, pp. 173–180.

215



REFERENCES

Martin Chodorow and Claudia Leacock (2000). “An Unsupervised Method for Detecting

Grammatical Errors”. In 1st Meeting of the North American Chapter of the Association

for Computational Linguistics, pp. 140–147.

Martin Chodorow, Markus Dickinson, Ross Israel, and Joel Tetreault (2012). “Problems in

Evaluating Grammatical Error Detection Systems”. In Proceedings of COLING 2012.

Mumbai, India, pp. 611–628.

Shamil Chollampatt, Duc Tam Hoang, and Hwee Tou Ng (2016). “Adapting Grammati-

cal Error Correction Based on the Native Language of Writers with Neural Network

Joint Models”. In Proceedings of the 2016 Conference on Empirical Methods in Nat-

ural Language Processing. Austin, Texas: Association for Computational Linguistics,

pp. 1901–1911.

Noam Chomsky (1957). Syntactic Structures. The Hague: Mouton Publishers.

James Clarke and Mirella Lapata (2006). “Models for sentence compression: A comparison

across domains, training requirements and evaluation measures”. In Proceedings of the

21st International Conference on Computational Linguistics and the 44th annual meet-

ing of the Association for Computational Linguistics. Association for Computational

Linguistics, pp. 377–384.

James Clarke and Mirella Lapata (2007). “Modelling compression with discourse con-

straints”. In Proceedings of the 2007 Joint Conference on Empirical Methods in Nat-

ural Language Processing and Computational Natural Language Learning (EMNLP-

CoNLL), pp. 1–11.

216



REFERENCES

James Clarke and Mirella Lapata (2008). “Global Inference for Sentence Compression: An

Integer Linear Programming Approach”. In Journal of Artificial Intelligence Research

31, pp. 399–429.

Trevor Cohn and Mirella Lapata (2007). “Large Margin Synchronous Generation and its

Application to Sentence Compression”. In Proceedings of the 2007 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL). Prague, Czech Republic, pp. 73–82.

Trevor Cohn and Mirella Lapata (2008). “Sentence Compression Beyond Word Deletion”.

In Proceedings of the 22nd International Conference on Computational Linguistics

(Coling 2008). Manchester, UK: Coling 2008 Organizing Committee, pp. 137–144.

Trevor Cohn and Mirella Lapata (2009). “Sentence Compression as Tree Transduction”. In

Journal of Artificial Intelligence Research (JAIR) 34, pp. 637–674.

Chloe Coleman (2017). “Finding beauty in function”. In The Washington Post. Accessed:

June 14, 2017. URL: https://www.washingtonpost.com/news/in-sight/wp/

2017/06/14/finding-beauty-in-function-the-work-of-charles-sheeler/.

Simon Corston-Oliver (2001). “Text compaction for display on very small screens”. In

Proceedings of the NAACL Workshop on Automatic Summarization.

Will Coster and David Kauchak (2011a). “Learning to Simplify Sentences Using Wikipedia”.

In Proceedings of the Workshop on Monolingual Text-To-Text Generation. Portland,

Oregon: Association for Computational Linguistics, pp. 1–9.

217

https://www.washingtonpost.com/news/in-sight/wp/2017/06/14/finding-beauty-in-function-the-work-of-charles-sheeler/
https://www.washingtonpost.com/news/in-sight/wp/2017/06/14/finding-beauty-in-function-the-work-of-charles-sheeler/


REFERENCES

William Coster and David Kauchak (2011b). “Simple English Wikipedia: A new text sim-

plification task”. In Proceedings of the 49th Annual Meeting of the Association for Com-

putational Linguistics: Human Language Technologies. Portland, Oregon, pp. 665–669.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer (2006).

“Online Passive-Aggressive Algorithms”. In Journal of Machine Learning Research

(JMLR).
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