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ABSTRACT

PARAPHRASE-BASED MODELS OF LEXICAL SEMANTICS

Anne O’Donnell Cocos

Chris Callison-Burch

Models of lexical semantics are a key component of natural language understanding. The

bulk of work in this area has focused on learning the meanings of words and phrases and

their inter-relationships from signals present in large monolingual corpora – including the

distributional properties of words and phrases, and the lexico-syntactic patterns within

which they appear. Each of these signals, while useful, has drawbacks related to challenges

in modeling polysemy or limited coverage. The goal of this thesis is to examine bilingually-

induced paraphrases as a different and complementary source of information for building

computational models of semantics.

First, focusing on the two tasks of discriminating word sense and predicting scalar adjective

intensity, we build models that rely on paraphrases as a source of signal. In each case, the

performance of the paraphrase-based models is compared to that of models incorporating

more traditional feature types, such as monolingual distributional similarity and lexico-

syntactic patterns. We find that combining these traditional signals with paraphrase-based

features leads to the highest performing models overall, indicating that the different types

of information are complementary. Next, we shift focus to the use of paraphrases to model

the fine-grained meanings of a word. This idea is leveraged to automatically generate a

large resource of meaning-specific word instances called Paraphrase-Sense-Tagged Sentences

(PSTS). Distributional models for sense embedding, word sense induction, and contextual

hypernym prediction are trained successfully by using PSTS as a sense-tagged corpus. In

this way we reaffirm the notion that signals from paraphrases and monolingual distributional

properties can be combined to construct robust models of lexical semantics.
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CHAPTER 1 : Introduction

1.1. Overview

When we hear this question as humans:

What is a Chinese dish that’s not so hot?

we understand the question in the context of the real world – many types of Chinese food are

spicy, and the questioner is looking for a meal that is mild in flavor. An automated question

answering (QA) system, however, cannot frame the question in this particular context

without an underlying model of semantics. In particular, in order to give a satisfactory

answer, the QA system must have some way to deal with polysemy (hot dish refers to spicy

food, not a stolen satellite dish), hypernymy (sweet & sour pork is a kind of Chinese dish),

and scalar adjective intensity (zesty and peppery dishes are fine answers; fiery ones are not).

Word sense, hypernymy, and scalar adjective intensity are all aspects of lexical semantics,

which deals with the meanings of and relationships between terms. Lexical semantics are

building blocks of natural language understanding. In order for a computer to interpret,

reason about, and generate text, it must have a mechanism to model the semantics of

individual terms – both their meanings, and inter-relationships.

Attempts to model lexical semantics have involved both manual and automatic methods.

With respect to the former, there exist several well known and widely-used hand-compiled

ontologies. These include general-purpose resources such as WordNet (Miller, 1995) and

EuroWordNet (Vossen, 2004), and domain-specific ontologies like the Unified Medical Lan-

guage System (UMLS) (Bodenreider, 2004). These ontologies are collections of entities,

organized via pairwise relations. One benefit of using hand-crafted ontologies to model

lexical semantics is that they have a clean structure with precisely defined relations (e.g.

hypernymy, meronymy, etc). Another benefit is that entities are encoded at the word sense

level; the noun dish maps to six distinct WordNet entities, which capture its satellite receiver
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and dinnerware senses, among others. The primary drawback to using manually-compiled

ontologies to model semantics is that they are expensive to create, making them difficult

to update or adapt to new domains. Another disadvantage is their limited coverage. For

example, WordNet includes 155k unique terms. Although this may seem high, it represents

only a fraction of the English vocabulary; the Google N-grams corpus (Thorsten and Franz,

2006) contains over ten times as many English unigrams and bigrams that occur at least

50k times on the web.

In order to overcome the shortfalls of manually-generated resources, researchers have devised

automated methods to learn the meanings of and relationships between terms. Common

automatic methods incorporate monolingual signals such as contextual similarity and lexico-

syntactic patterns (Figure 1). Models based on contextual similarity are grounded in the

intuition that semantically related words tend to appear within similar contexts (Harris,

1954). This single idea has formed the basis for much of the progress in computational

lexical semantics to date. But contextual similarity provides only a fuzzy signal of semantic

relatedness; pairs of terms with similar contextual representations might be more precisely

classified as synonyms, hypernyms, meronyms, or even antonyms, but further analysis is

required to determine which specific relation holds. Additionally, word representations that

are built upon monolingual context tend to be dominated by the most frequent sense of

a word, and may fail to capture more infrequent meanings. Lexico-syntactic patterns, on

the other hand, are textual templates that are indicative of a particular semantic relation-

ship, like the pattern “Y, such as X” which suggests that X is a hyponym of Y (Hearst,

1992). They can be used to precisely identify term pairs that are hypernyms, meronyms,

or adjectives of varying intensity describing a shared attribute. But some relation types,

such as synonymy, are not indicated through patterns in text. Additionally, pattern-based

methods obfuscate word sense; it is unclear on the surface whether the great in “[good], but

not [great]” refers to quality or size.

This thesis explores the use of a third type of signal – paraphrases – for learning lexical
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(a) Word vectors encoding context similarity. Each row represents one word,
and each column corresponds to a possible context. Darker cells indicate
higher affinity. Semantically similar words can be expected to occur in
similar contexts, and therefore have similar vector representations.

Some [ships], such as [frigates], were built for speed.

The film was [funny], although not [hilarious].

X, such as Y

Pattern Instance Extracted Relation

frigate IS-A ship (hypernymy)

Y, although not X funny < hilarious (adjective intensity)

(b) Lexical syntactic patterns mined from text to discover hypernyms (top) and relative adjective
intensity (bottom)

Figure 1: Contextual similarity and lexico-syntactic patterns are common signals derived
from monolingual corpora that can be used to encode word meaning and discover semantic
relationships.

semantics. Paraphrases are differing textual expressions, or surface forms, in the same lan-

guage with approximately the same meaning (Madnani and Dorr, 2010; Bhagat and Hovy,

2013). They are useful in a number of tasks such as question answering and information

retrieval (Navigli and Velardi, 2003; Riezler et al., 2007), evaluating machine translation

(Denkowski and Lavie, 2010), and recognizing textual entailment (Pavlick et al., 2015a). In

general, paraphrases can be generated at large scale using either monolingual or bilingual

methods (Madnani and Dorr, 2010). In this thesis, we focus solely on paraphrases that have

been extracted from bilingual parallel corpora using a method called “bilingual pivoting”

(Bannard and Callison-Burch, 2005; Callison-Burch, 2008), which is motivated by the idea

that two English terms that share multiple foreign translations are likely to have similar

meaning.
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Definition 1.1.1: Paraphrase

Paraphrases are differing surface forms with approximately the same meaning. In

this work we refer specifically to paraphrases derived from bilingual pivoting, based

upon the premise that two English terms sharing multiple foreign translations are

likely to have similar meaning (Bannard and Callison-Burch, 2005).

1.1.1. Thesis Statement

In this thesis, we claim that bilingually-induced paraphrases provide useful signals for com-

putational modeling of lexical semantics. Further, these signals are complementary to infor-

mation derived from monolingual distributional and pattern-based methods due to several

key characteristics. First, the set of paraphrases for a polysemous word contains terms

pertaining to its various senses, which enables us to use paraphrases to model word sense.

Second, because the pivot method used to derive these paraphrases is rooted in phrase-based

machine translation, paraphrases include both single-word terms and multi-word phrases,

and thus can be used to analyze relationships between compositional phrases and their

single-word paraphrases. Third, paraphrases can be extracted automatically at large scale,

meaning that they have wide coverage of terms in the general domain.

In the chapters that follow, we demonstrate how information derived from bilingually-

induced paraphrases can be used for three specific tasks in lexical semantics: discovering

the different senses of a word, predicting the relative intensity between scalar adjectives,

and generating sense-specific examples of word use. In each case, we show that the informa-

tion derived from bilingually-induced paraphrase signals is complementary to monolingual

signals of lexical semantics such as contextual similarity and lexico-syntactic patterns.

1.1.2. Outline of this Document

The rest of this document is organized as follows.
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Chapter 2

We begin with a review of related work in the areas of paraphrasing and lexical semantics.

First, we introduce the Paraphrase Database (PPDB) (Ganitkevitch et al., 2013; Pavlick

et al., 2015b), which is a resource of bilingually-induced paraphrases that is central to

the rest of the thesis. Next, we review commonly exploited sources of signal for lexical

semantic models, including monolingual and bilingual distributional properties of words,

lexico-syntactic patterns, and sentiment. After that, we briefly review tasks in the study of

lexical semantics that are related to the work presented here, including word sense induction,

predicting scalar adjective intensity, and semantic relation prediction. The section concludes

with a short description of two neural text representation models that are used throughout

the following chapters.

Chapter 3

The terms hot and dish in our original question about Chinese food can each take on a

variety of meanings, depending on the context in which they appear. For such polysemous

words, the potential variation in meaning can be drastic, as in case of a homonym like

lie with its deception and reclining senses, or the variations can be more subtle, as with

the noun dance and its movement or social gathering senses. The different meanings of

a word are reflected in the set of its paraphrases (Apidianaki et al., 2014). For example,

paraphrases for the noun coach include bus, manager, trainer, mentor, and carriage, which

pertain to its automobile and person senses. Applications that rely on choosing appropriate

paraphrases for a given word in context, like query expansion (Maron and Kuhns, 1960)

or lexical substitution (McCarthy and Navigli, 2009), must therefore incorporate a way to

filter out inappropriate paraphrases for a given target word in context.

In Chapter 3, we address the task of clustering the paraphrases of a target word by the sense

of the target that they convey. This task is very similar to word sense induction (WSI),

which aims to discriminate the possible meanings of a target word present within a corpus
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Figure 2: In Chapter 3, we cluster the paraphrases of a target word like the noun bug to
uncover its different senses.

(Navigli, 2009). Our modeling approach in this chapter implicitly assumes that the senses of

a target word can be discretely partitioned, and that these partitions can be represented by a

human-generated ‘ground truth’ sense inventory (which we aim to replicate automatically).

Our work aims to both validate the earlier finding of Apidianaki et al. (2014) that a target

word’s paraphrases can be clustered to uncover its senses, and to examine whether signals

derived from (bilingually-induced) paraphrases are as effective at discriminating word sense

as signals from monolingual contextual similarity or translation overlap. In the process of

generating sense clusters, these signals are used to (a) measure semantic similarity between

terms being clustered, and (b) to assess cluster quality in order to choose an ‘optimal’

number of clusters or senses. Via a series of experiments, we vary the metrics used for (a)

and (b), and evaluate the predicted clusters intrinsically by comparing their overlap with

sets of human-generated sense clusters. The results indicate that on average, paraphrase

strength out-performs the other metrics when used for measuring term similarity. However,

the best clustering results are achieved by combining paraphrase strength with monolingual
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contextual similarity, showing that the two types of information are complementary. This

work has been previously published in (Cocos and Callison-Burch, 2016).

Our clustering experiments are followed with an extrinsic evaluation and demonstration

of how the resulting sense clusters can be applied to the task of lexical substitution, i.e.

choosing appropriate substitutes for a word in context that retain the original meaning.

Most recent lexical substitution systems ignore any explicit word sense representation when

proposing substitutes, instead relying on word embedding similarity alone (Melamud et al.,

2015b; Roller and Erk, 2016a; Melamud et al., 2016). In Section 3.8, we propose the method

of ‘sense promotion’ which can be applied as a post-processing step to embedding-based

(sense agnostic) systems that rank substitution candidates. Given a target word instance in

context, the method simply estimates the relevance of each of the target word’s paraphrase

sense clusters given the context, and promotes the rank of terms belonging to the most

relevant cluster. This step improves the lexical substitution performance of an existing

embedding-based system by 6% using a simple baseline disambiguation method to choose

the most relevant cluster, and has the potential to improve performance by up to 25% given

a better performing disambiguation system. Portions of this work were reported previously

in (Cocos et al., 2017).

Chapter 4

Asking for a Chinese food that is not so hot implies that among adjectives describing spici-

ness, like peppery, zesty, spicy, and fiery, there is a range of intensities. Understanding

these differences is necessary to provide a good answer to the question; a Chinese dish

described as zesty would be an appropriate answer, but one described as like lava would

not. Chapter 4 addresses the task of predicting the relative intensity relationship between

pairs of scalar adjectives that describe a shared attribute like spiciness. We propose a new

paraphrase-based method to predict the relative intensity relation that holds between an

adjective pair based on the idea that, for example, paraphrase pair (really hot ↔ fiery)
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Paraphrase pair… …suggests that

particularly pleased ecstatic pleased  <  ecstatic

quite limited restricted limited  <  restricted

rather odd crazy odd  <  crazy

so silly dumb silly  <  dumb

completely mad crazy mad  <  crazy

RB JJ1  JJ2 JJ1  <  JJ2

Figure 3: Our paraphrase-based method for predicting relative adjective intensity relies on
paraphrase pairs in which an intensifying adverb (RB) and an adjective (JJ1) are paired
with a second adjective (JJ2), indicating that the first adjective is less intense than the
second.

suggests that hot is less intense than fiery. Due to the broad coverage and noise inherent

in the paraphrase data, our method provides predictions for more adjective pairs at lower

accuracy than methods that rely on lexico-syntactic patterns or a hand-compiled adjective

intensity lexicon. We show that combining paraphrase evidence with the existing, com-

plementary approaches improves the quality of systems for automatically ordering sets of

scalar adjectives and inferring the polarity of indirect answers to yes/no questions. The

content of this chapter was published in (Cocos et al., 2018b).

Chapter 5

Chapters 3 and 4 describe ways to derive signals from paraphrases that are useful for learning

about aspects of computational lexical semantics, and show that these bilingually-induced

signals can be combined directly with monolingual signals in a complementary way. In

Chapter 5 we explore a different type of complementary relationship between paraphrases

and monolingual contextual similarity. Namely, we describe a way in which paraphrases

can be leveraged to automatically generate a large resource of word usages with a particular

fine-grained meaning. The resulting micro-sense tagged corpus can then be used for training
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sense-aware models using traditional methods based on distributional properties or patterns.

Figure 4: In Chapter 5, we apply bilingual pivoting (Bannard and Callison-Burch, 2005) to
generate sentence-level contexts for paraphrases. Here we show context snippets for several
different paraphrases, or fine-grained senses, of the noun bug.

We propose a new method for automatically enumerating example usages of a query word

having a particular meaning. The method is grounded in the idea that a word’s paraphrases

represent its fine-grained senses, i.e. bug has different meanings corresponding to its para-

phrases error, fly, and microbe. To find sentences where bug is used in its error sense, we

extract sentences from bitext corpora where bug is aligned to a translation it shares with

error (Figure 4).

This idea is used to automatically generate a large resource of example word usages with

a particular fine-grained sense. This resource, which we call Paraphrase-Sense-Tagged Sen-

tences (PSTS), contains up to 10k sentence-level examples for the 3 million highest-quality

paraphrase pairs in PPDB. The quality of sentences in PSTS are evaluated by humans, and

a re-ranking model is trained to enable selection of the highest-quality sentences for each

paraphrase pair.
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Chapter 6

Chapter 6 continues the work of the previous chapter by providing three examples of how

PSTS can be used to train models for lexical semantic tasks where knowledge of word sense

is important. We begin by using PSTS as a corpus for training fine-grained sense embed-

dings, where senses are instantiated by paraphrases, based on existing word representation

models. The paraphrase embeddings are directly compared with their word-type embed-

ding counterparts through an intrinsic evaluation on a battery of semantic similarity and

relatedness benchmarks. The experiments show that the paraphrase embeddings trained

on PSTS capture a more precise notion of semantic similarity than word-type embeddings.

Next, the paraphrase embeddings are used in conjunction with sense clusters derived in

Chapter 3 for word sense induction: given a target word instance, we assume that the sense

clusters represent the target’s available sense inventory, and map the instance back to the

most appropriate sense cluster using the paraphrase embeddings. This method produces

competitive results on two existing WSI datasets. Finally, we use PSTS to automatically

create a large training dataset for the task of predicting hypernymy in context. To assess

the quality of the training set, we fine-tune the BERT transformer encoder model (Devlin

et al., 2019) for the task of contextual hypernym prediction, and evaluate the performance

of this model when trained on PSTS versus an existing hand-crafted training set.

As in Chapter 3, Chapters 5-6 explore the use of paraphrases for modeling word sense.

However, the approach taken is quite different and is based on a different set of underlying

assumptions. In Chapter 3, we assume that the meanings of a word can be discretely

partitioned and represented by means of a human-generated sense inventory. The goal of

paraphrase sense clustering, then, is to automatically replicate the set of human-generated

sense clusters for a target word. We then show that this model of word sense can be

combined with a sense-agnostic lexical substitution model to improve performance in that

task. In Chapter 5, rather than assuming that some closed set of senses exists for each word,

we use paraphrases to instantiate the various possible meanings of a word. This approach
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is more flexible, as it is not tied to a sense inventory (although it is straightforward to

map paraphrases onto a sense inventory if desired, as is done in the WSI experiment). The

experiments in Chapters 3 and 6 show that both abstractions of word sense – as paraphrase

clusters, versus individual paraphrases – can be useful insofar as they model variable word

meaning in a way that improves performance in downstream tasks.

Chapter 7

To conclude, Chapter 7 summarizes the contributions made in this thesis, its limitations,

and suggests potential areas for continued work.
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CHAPTER 2 : Background and Related Work

2.1. The Paraphrase Database

The resource most central to the work in this thesis is the Paraphrase Database (PPDB)1

(Ganitkevitch et al., 2013; Pavlick et al., 2015b), a collection containing over 220M English

paraphrase pairs. Of the pairs, roughly 8M are lexical, or single-word, pairs (e.g. marine

↔ maritime), 73M are phrasal, or multi-word, pairs (e.g. marine ↔ oceans and seas), and

140M are pairs of syntactic patterns (e.g. in collaboration [IN] ↔ [IN] the cooperation of ).

PPDB is distributed in a variety of sizes from S to XXXL, ranging from smallest and most

precise, to largest and noisiest. Throughout this work, we use lexical and phrasal pairs from

the XXL version.

interrupt
bother

spite

annoy

trouble

disturb
mind burden

upset
bug

(a) bug (v)

bug

insect beetle

cockroach

glitch

error

malfunction

virusmicrobe
squealer

mosquito

(b) bug (n)

Figure 5: PPDB graphs for the verb (a) and noun (b) forms of bug and up to 10 of
their highest-strength paraphrases, ordered by ppdbscore. Line width corresponds to
ppdbscore.

PPDB contains words and phrases that are predicted to have similar meaning on the basis

of their bilingual distributional similarity. Specifically, PPDB was produced automatically

via the bilingual pivoting method (Bannard and Callison-Burch, 2005), which posits that

if two English words e1 and e2 share a common foreign translation f , then this is evidence

that e1 and e2 share similar meaning. For example, the English verb sleep and verb phrase

1http://paraphrase.org/
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go to bed share the French translations mettre au lit and bonne nuit, indicating that they

have similar semantics.

The resource was generated by applying bilingual pivoting over a corpus of more than 106M

aligned English-foreign sentence pairs covering 26 pivot languages. The word alignment

between parallel sentences was done automatically, which introduced noise into the pivoting

process. As a result, PPDB paraphrases have varying quality. In order to rank paraphrase

pairs, Pavlick et al. (2015b) introduced the PPDB 2.0 Score (hereafter ppdbscore), a

supervised metric designed to correlate with human judgments of paraphrase quality. Since

the human annotations used for training the ppdbscore model were based on a 1-5 Likert

scale (where higher scores indicate better-quality paraphrases), the ppdbscore values are

predicted to match this range (although a small fraction of the predictions fall slightly

outside the range). For example, the paraphrase pair marine ↔ maritime has a ppdbscore

of 3.4, while the pair marine ↔ fleet has a ppdbscore of 1.5.

Paraphrases in PPDB are partitioned by syntactic type following the work of Callison-Burch

(2008). He showed that applying syntactic constraints during paraphrase extraction via the

pivot method improves paraphrase quality. This means that a query for paraphrases of the

noun marine will return other nouns like crewmen and sea, while a query for paraphrases

of the adjective marine will return other adjectives like naval, marine-based, offshore, and

others. Throughout this work, we use the term paraphrase set to refer to the set of PPDB

paraphrases for a given query consisting of a target phrase and its part of speech (Definition

2.1.1).

Definition 2.1.1: Paraphrase Set

A paraphrase set (PPSet) is the unordered set of PPDB XXL paraphrases for a

given query, which consists of a target phrase and its part of speech.

ex) PPSet(bug, n) = {insect, beetle, error,microbe, virus,mike, squealer, . . . }

While paraphrases are partitioned by part of speech, not all paraphrases for a given target
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word are appropriate in a given context (Apidianaki, 2016). This is for two primary reasons.

First, there is no explicit sense distinction within the paraphrases of a target word; although

the noun bug has paraphrases including insect, glitch, microbe, virus, pest, and microphone,

only some of these are useful in a given context because they pertain to different meanings

of bug. Second, the paraphrase relationship is general and under-defined, which means that

some paraphrase pairs are entailing and others are not; bug can be replaced with its para-

phrase organism but not necessarily with its paraphrase mosquito in the sentence The sci-

entist examined the bug under the microscope. Pavlick et al. (2015a) took a first step toward

addressing this entailment problem by locally classifying each pairwise paraphrase relation

into one of six more specific entailment relations (Equivalence, Exclusion, Forwar-

dEntailment, Independent, OtherRelated, and ReverseEntailment). But these

locally-predicted entailment relations can produce logical inconsistencies when chained to-

gether; mosquito entails bug and bug entails listening device, but mosquito does not entail

listening device.

2.1.1. Comparison with Other Lexical Semantic Resources

PPDB is chosen as the primary dataset for this work because its size dwarfs other paraphrase

resources. However there are a number of other useful and widely-used lexical-semantic

datasets, and this section gives a brief overview of several as a basis for comparison with

PPDB.

One of the best known lexical semantic resources in use is the manually-compiled WordNet

(Miller, 1995; Fellbaum, 1998). WordNet can be viewed as a graph, where its 117,000 nodes

are “synsets” – unordered sets of synonymous lemmas – and edges represent semantic

relations such as hypernymy or antonymy that exist between synsets. A given word like

bug (n) with multiple meanings appears in one synset for each of its senses. Like PPDB,

WordNet’s lemmas and synsets are considered to be specific to a particular part of speech

(so synsets containing the noun bug are distinct from synsets containing the verb bug). But

unlike PPDB, WordNet’s synset structure implicitly encodes the various possible meanings
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Figure 6: A screenshot of WordNet’s online interface, showing the synsets for the
noun and verb forms of bug and the hypernyms of the first synset for bug.n
(http://wordnetweb.princeton.edu).

for each word type it contains. Another major difference between PPDB and WordNet

is that WordNet’s relation edges are specifically typed – for example, synsets containing

bug and flaw are connected by a directed hypernym relation, and synsets containing fast

and slow are connected by an antonym relation. As noted above, PPDB’s undirected

‘paraphrase’ relation is overly general; each paraphrase edge in the PPDB graph could

potentially be classified as a more specific type of semantic relation (Pavlick et al., 2015a).

Table 1 outlines the primary differences between PPDB and WordNet, and Ganitkevitch

(2018) provides a more in-depth comparison. To mitigate the issues posed by the limited

size of WordNet, there is also a body of research focused on automated ways to expand its

coverage (Snow et al., 2005; Yang and Callan, 2009; Navigli and Ponzetto, 2010, 2012).

While WordNet is a heavily curated and precisely defined resource, there are also other

automatically-generated paraphrase resources that are closer in structure to PPDB. These

include DIRT (Lin and Pantel, 2001a,b) and the Microsoft Research paraphrase tables
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PPDB XXL WordNet Implications

Nodes
Word types
(part-of-speech tagged)

Synsets (part-of-speech
tagged)

WordNet encodes
polysemy; PPDB does
not

Edges

Encode general
‘paraphrase’ relation
Undirected edges

Encode specific
semantic relation types
(e.g. hypernymy,
antonymy) Undirected

for symmetric relations;
directed for asymmetric
relations

WordNet encodes
fine-grained relations
WordNet’s directed

relations between senses
preserve transitivity ;
PPDB’s undirected
relations between word
types do not

Coverage
255K unique
word/phrase types

155K unique
word/phrase types

PPDB has wider
coverage of word types
and general phrase
relatedness

Metadata

Paraphrase
probabilities;
translation
probabilities;
ppdbscore; predicted
entailment relations
and style classification

Word frequency, synset
glosses and example
usage

WordNet includes
curated lexicographic
content, while PPDB
contains mostly
artefacts of the
bilingual pivoting
process

Table 1: Comparison between PPDB and WordNet based on structure, size, and additional
information included (Metadata).

(Dolan et al., 2004; Quirk et al., 2004). Both are structured as pairs of words or phrases

with similar meaning. But unlike PPDB, where paraphrases are extracted via bilingual

pivoting, the paraphrases in DIRT and the MSR dataset are collected using monolingual

methods. In the case of DIRT, paraphrases are extracted by finding parsed dependency

paths with high distributional similarity (e.g. “X solves Y“ ↔ “X finds a solution to

Y“ ). Paraphrases in the MSR dataset are extracted by finding highly similar sentences

from different news stories about a particular event, and applying an automated alignment

algorithm from machine translation to find meaning-equivalent phrases in the two sentences.

The sizes of DIRT and the MSR datasets are both smaller than PPDB, with roughly 12M
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and 24M paraphrase pairs respectively.

As seen here, lexical semantic resources can be generated either automatically or manually.

The choice presents a trade-off between scalability and precision or accuracy; manually-

compiled resources are the most accurate (subject to the limits of human agreement)

and well-defined, but are costly to update or expand to new languages and domains.

Automatically-generated resources generally have wider coverage than manual resources,

and can be adapted to new languages or domains with a fraction of the effort required for

manual compilation. However, most automatic generation processes have some inherent

noise, and thus the resulting resources may have errors or lack specificity (e.g. the rela-

tions they encode, like ‘relatedness’, may be under-defined). One typical paradigm is for

researchers to develop automatic methods of producing lexical-semantic resources, while

using existing manually-compiled resources as a basis for evaluation and tuning of the auto-

matic generation process. Indeed that is what happens throughout this thesis. In Chapter

3, we use sense clusters constructed from WordNet synsets and as produced by crowd work-

ers as ‘ground truth’ sense inventories to evaluate our automatic clustering methods. In

Chapter 4, we use human-constructed adjective intensity scales to evaluate the pairwise in-

tensity predictions produced by our model. And in Chapter 5, we rely on semantic relation

datasets derived from manually-compiled resources in order to evaluate our methods for

automatic relation prediction between word types.

2.2. Signals for Computational Lexical Semantics

Lexical semantics, broadly defined, concerns the meanings of and relationships between

individual words. Automatic methods for learning and representing these concepts are

building blocks for the long-standing goal of natural language understanding.

Computational approaches to lexical semantics focus on learning both the possible meanings

of a given word (i.e. its senses), and learning to predict semantic relations that hold between

a given pair of words. With respect to word senses, there is a long-running debate in the
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NLP research community about how best to model a word’s possible meanings. While

true homonyms may have fully discrete senses (e.g. the organization and weapon senses of

the noun club), in other cases, such as for the computer and biological senses of virus, the

boundaries between one meaning and another are fuzzier and depend on context (Tuggy,

1993; Copestake and Briscoe, 1995; Kilgarriff, 1997; Cruse, 2000; Passonneau et al., 2010;

McCarthy et al., 2016). Kilgarriff (2007) described this issue by saying, “There are no

decisive ways of identifying where one sense of a word ends and the next begins.” There

have been various attempts to model word senses, from fully discrete (Miller, 1995; Navigli

and Ponzetto, 2010) to fully continuous and context-dependent (Peters et al., 2018; Devlin

et al., 2019). Early in the thesis, in Chapter 3, we adopt an approach to modeling word sense

by clustering paraphrases which assumes a discrete underlying sense inventory; later, in

Chapters 5 and 6, we take a different view of word sense that uses paraphrases to instantiate

fine-grained (yet still discrete) meanings of a target word. This shift toward a finer-grained

sense model reflects our view that the senses of most words are, in reality, continuous

and context-dependent, although some downstream tasks such as lexical substitution and

semantic similarity prediction can still benefit from discrete word sense modeling.

Relation types that are frequently studied from a computational standpoint include:

• Hyponymy/Hypernymy: x is a hyponym of y (and y is a hypernym of x) if x is a

type of y (e.g. mosquito is a hyponym of insect).

• Co-hyponymy: Terms x and y are co-hyponyms if they share a common hypernym

(e.g. mosquito and ant are co-hyponyms, with the shared hypernym insect).

• Synonymy: Synonymous terms x and y have the same meaning (e.g. snake and

serpent).

• Meronymy/Holonymy: x is a meronym of y (and y is a holonym of x) if x is a

part of y (e.g. wing is a meronym of mosquito).
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• Antonymy: x and y are antonyms if they are opposite or contradictory (e.g. hot

and cold are antonyms).

Computational approaches to lexical semantics aim to automatically extract some informa-

tion that provides useful clues about word meaning and relationships from their observable

natural environment – written text. This section gives an overview of some of the most

common types of text-based signals that are used.

2.2.1. Monolingual distributional signals

The distributional hypothesis (Harris, 1954; Weaver, 1955; Firth, 1957; Schütze, 1992) is

the foundation for much of the work in computational semantics over the past 65 years. Its

premise is that words which have similar meaning tend to occur within similar contexts.

Viewed another way, it suggests that we can predict how similar the meanings of two words

are by comparing their contexts. This suggestion has largely borne out to be true, as

evidenced by methods that vary with respect to (a) the way they define context, (b) the

way they encode or represent that context, and (c) the way they measure similarity between

context representations.

For measuring monolingual distributional similarity, the context of a term is usually defined

as either words appearing within some pre-defined lexical neighborhood of the term (a “bag

of words” model), or the term’s parsed syntactic dependencies. The choice of definition

is task-dependent. Dependency-based contexts lead to representations where functionally

alike words are seen as most similar (e.g. carpenter and mason), whereas bag-of-words

contexts lead to representations where words from the same domain are seen as most similar

(e.g. carpenter and wood) (Turney, 2012; Levy and Goldberg, 2014).

Most models encode context within a vector. Where they differ is in the meaning ascribed

to each of the vector’s dimensions (Turney and Pantel, 2010). Some models represent a

word using a sparse, high-dimensional vector space where each dimension corresponds to a

specific lexical/syntactic contextual feature, or to a cluster of similar features (Brown et al.,
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1992). Other models reduce the dimensionality of such vectors using methods like singular

value decomposition (Golub and Reinsch, 1970), principal components analysis, or latent

Dirichlet allocation (Blei et al., 2003). More recently, neural “word embedding” methods

have come into vogue (Bengio et al., 2003; Mikolov et al., 2013b,a; Pennington et al., 2014;

Peters et al., 2018; Devlin et al., 2019). These models represent a word using a dense vector

of weights from a neural model trained for some task related to language modeling, and have

out-performed sparse representations on both intrinsic and extrinsic downstream tasks. In

Chapter 3 we use the skip-gram embedding model (Mikolov et al., 2013b,a) to represent

words for sense clustering, and in Chapter 5 we compare the skip-gram and contextualized

BERT models (Devlin et al., 2019) for word representation. Both of these representation

methods are described in more detail in Section 2.4.

Once a term’s contexts are encoded in vector form, the most common way to measure

similarity (and the method that we adopt throughout this work) is via cosine similarity,

which can be calculated between vectors u and v as:

cos(u, v) =
u · v

‖u‖2 ‖v‖2
(2.1)

2.2.2. Bilingual distributional signals

If the monolingual patterns of a term provides clues about its meaning, can the same be

said about its bilingual patterns? By bilingual distributional signals, we refer to information

about words in a source language (i.e. English) that can be inferred from the translations

of those words in target languages. The statistics that describe this type of information

come from automatic word alignments between source and target sentences from bilingual

parallel corpora.

The basic premise behind bilingual distributional signals for lexical semantics is that if two

words or phrases e and e′ in a source language share a foreign translation f , then one of
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two things can be assumed: either e and e′ share meaning (the ‘synonymy’ assumption),

or f is a polysemous word and the words e and e′ reflect two of its senses (the ‘polysemy’

assumption). Yao et al. (2012) ran an empirical analysis of the frequency with which each

assumption holds for English-Chinese and English-French parallel corpora. They found that

both cases are common, with the synonymy case (when English is considered the source

language) being only slightly more prevalent.

(a) Polysemy assumption (b) Synonymy Assumption

Figure 7: Viewed from an English-centric perspective, the polysemy assumption implies
that if English word e aligns to different foreign words f and f ′, then e has two senses
instantiated by its different alignments. Conversely, the synonymy assumption implies that
if English words e and e′ share a common foreign translation f , then e and e′ have similar
meaning.

Researchers have used the polysemy assumption as the basis for word sense induction and

disambiguation (Brown et al., 1991; Dagan, 1991). Borrowing an example from Gale et al.

(1992), if the English word sentence is translated to the French peine (judicial sentence) in

one context and the French phrase (syntactic sentence) in another, then the two instances

in English can be tagged with their appropriate senses. Most work has adopted a one-

translation-per-sense modeling approach (Gale et al., 1992; Resnik and Yarowsky, 2000;

Carpuat and Wu, 2007), with Carpuat and Wu (2007) going further to re-frame the task of

word sense tagging as the equivalent of lexical selection in machine translation. In a related

vein, Resnik and Yarowsky (2000) argued that sense inventories used for evaluation in word

sense induction and disambiguation should make sense distinctions that respect translation

boundaries. Apidianaki (2009a), on the other hand, argued that multiple semantically-

similar translations should be clustered to represent a single sense of a target word. More

generally, the polysemy assumption has been applied to automatically generating sense-
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tagged corpora, in order to overcome the challenges of manual sense annotation (Gale et al.,

1992; Dagan and Itai, 1994; Diab and Resnik, 2002; Ng et al., 2003; Lefever et al., 2011).

Recently, some work has used the polysemy assumption to generate multi-sense embeddings

using cross-lingual data (Bansal et al., 2012; Guo et al., 2014; Kawakami and Dyer, 2015;

Šuster et al., 2016; Upadhyay et al., 2017).

The synonymy assumption, on the other hand, has been used to find semantically related

words within the same language (Dyvik, 1998; Van der Plas and Tiedemann, 2006). As

we have seen, this idea can be applied to identify meaning-equivalent paraphrases using

the pivot method (Bannard and Callison-Burch, 2005). Our primary dataset, PPDB, was

produced this way, and this thesis aims to use paraphrases generated via bilingual pivoting

as a new source of lexical semantic signal. Importantly, the pivot method can be used to

identify both meaning-equivalent lexicalized words/phrases, and meaning-equivalent syn-

tactic patterns. The latter idea has been extended to the task of sentence compression, by

using bilingual pivoting to generate a synchronous tree substitution grammar, and using it

to identify shorter forms of equivalent phrases (Cohn and Lapata, 2008).

2.2.3. Lexico-syntactic patterns

Pattern-based approaches identify semantic relations between pairs of terms by mining ex-

plicit patterns indicative of specific relationships from text. For example, the patterns ‘X

such as Y ’ and ‘Y, including X ’ suggest the hypernym relationship Y is-a X is likely to

hold. The use of such lexico-syntactic patterns for hyponym-hypernym discovery was first

suggested by Hearst (1992) and thus they are often referred to as Hearst patterns. Hearst

patterns have also been extended to discovering part-of (meronymy) relations (Girju et al.,

2003; Cederberg and Widdows, 2003), and relative adjective intensity (Sheinman and Toku-

naga, 2009; de Melo and Bansal, 2013; Sheinman et al., 2013; Shivade et al., 2015) (e.g. the

patterns “X, but not Y” and “not just X but Y” provide evidence that X is an adjective

less intense than Y).
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Pattern "X is a Y"

Path X/NOUN/nsubj/<, be/VERB/ROOT/- , Y/NOUN/attr/>

Table 2: The relation parrot is-a bird can be represented as a Hearst pattern “X is a Y ”
or as a list of edges in the path from parrot to bird in the dependency parse.

Finding that there are cases where Hearst patterns can lead to erroneous pairs, as in the

example given by Ritter et al. (2009) that breaks the pattern X such as Y :

“... urban birds in cities such as pigeons ...”

subsequent work focused on improving the precision of pattern-based approaches using

ranking and filtering criteria (Roark and Charniak, 1998; Cederberg and Widdows, 2003;

Pantel and Ravichandran, 2004). Later work improved upon Hearst’s verbatim textual

pattern approach by representing patterns instead as paths from a syntactic dependency

parse (Snow et al., 2005), which are less prone to errors induced by discontinuous syntactic

constructions (see Table 2). In order to improve recall, these methods prioritized learned,

rather than hand-crafted, syntactic dependency paths and extended the pattern mining to

web scale (Paşca, 2004, 2007; Shivade et al., 2015).

Pattern-based approaches can be used either to discover semantic relations between a given

set of terms, or to discover terms and relations jointly. In the latter case, pattern-based

approaches can extract both entities and relations jointly via bootstrapping. Bootstrapping

approaches typically take a set of hand-crafted patterns as input, and automatically dis-

cover pairs of terms matching the pattern. The discovered terms are then used to identify

additional patterns indicative of the is-a relation in an iterative manner. The pairs and

patterns can be filtered at each iteration using statistical criteria to maintain quality (Riloff

and Shepherd, 1997; Pantel and Pennacchiotti, 2006; Kozareva et al., 2008). Hovy et al.

23



(2009) report up to a seven-fold increase in the number of terms and relations discovered

using bootstrapping over the number discovered using the initial hand-crafted patterns,

with little drop in precision.

Patterns can also serve as features for supervised relation prediction models. In this case,

a term pair (tx, ty) might be represented as a feature vector, where features correspond to

specific patterns linking tx and ty in a corpus (Snow et al., 2005; de Melo and Bansal, 2013).

Due to the vast lexical variability of relevant patterns, this results in a large, sparse feature

space, where semantically similar patterns, such as X be type of Y and X be kind of Y, are

represented independently. Nakashole et al. (2012) suggested a way of generalizing lexically

similar patterns to improve recall in their PATTY system by replacing words within the

pattern with part-of-speech tags or wildcards, yielding generalized patterns like X be NOUN

of Y. But these generalized patterns can over-generalize; X be teacher of Y matches the

generalized pattern X be NOUN of Y, but is not indicative of an is-a relationship. Shwartz

and Dagan (2016b) addressed this issue by embedding dependency paths using a recurrent

neural network. They showed that a hypernym classification model that incorporated these

embedded paths was able to learn semantically similar patterns (e.g. X becomes Y from)

to the more generic Hearst patterns used in earlier work (e.g. X is Y from).

2.2.4. Sentiment

Another potential source of information about lexical semantics is the level of positive or

negative sentiment ascribed to a span of text (Pang and Lee, 2008). For example, the

statement “I’d rather gargle battery acid than have to watch Birthday Girl again.” from

Sukhdev Sandhu’s review of the movie in The Daily Telegraph conveys the writer’s highly

negative sentiment about the movie. Conversely, a review of Yuval Harari’s Sapiens written

on Amazon by reader “Stanley,” which says, “Parts of it were downright fascinating such

as ‘imagination’ being a keystone to human activity,” indicates a positive view of (at least

one aspect of) the book. Some sentiment is conveyed explicitly (as in the latter case) and

other sentiment is implicit (as in the former).
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This type of information can be particularly useful for learning about adjective polarity and

intensity, based on the premise that adjectives can provide information about the sentiment

of a text (Hatzivassiloglou and McKeown, 1993). When text spans are annotated either

manually or automatically (e.g. via star-valued online reviews), the numeric ratings can be

used as a source of information about the polarity and intensity of the adjectives contained

therein (de Marneffe et al., 2010; Rill et al., 2012; Sharma et al., 2015; Ruppenhofer et al.,

2014). This general idea has been used to compile lexicons that map adjectives to positive

or negative values, such that the polarity conveys the positive or negative sentiment and

the magnitude conveys the intensity. For example, a highly positive adjective like amazing

might have a value of 5, and a slightly negative adjective like pedestrian might have a value

of -2. In Chapter 4, we use one such lexicon, called SO-CAL (Taboada et al., 2011), as the

basis for lexicon-based signals of adjective intensity.

2.2.5. Combining signals

Some of the lexical semantic signal types described above are complementary to one an-

other for certain tasks. One prime example is the case of (monolingual) distributional and

pattern-based methods for hypernym prediction. Because they rely on the joint appearance

of two entities in text in order to make a hypernym relation prediction, pattern-based meth-

ods for entity extraction and relation prediction typically suffer from relatively low recall as

compared to distributional methods (Shwartz and Dagan, 2016b). Distributional methods,

on the other hand, are less precise than pattern-based methods in distinguishing hyper-

nymy from other relation types such as equivalence, meronymy, and coordinating terms

(Shwartz et al., 2017). Shwartz and Dagan (2016b) showed that combining these two types

of complementary signals leads to more accurate hypernym prediction than either signal in

isolation, and used this idea to produce a state-of-the-art relation prediction model called

HypeNET. When trained using fully integrated path- and distributional representations of

word pairs, the HypeNET model outperformed all path-based and distributional baselines

by 14 F-score points.
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In this thesis, we also examine ways to combine different types of lexical semantic signals for

the tasks of word sense induction (Chapters 3 and 6), relative adjective intensity prediction

(Chapter 4), and semantic relation prediction (Chapter 6). The following section provides

a high-level overview of each of these tasks.

2.3. Lexical semantic tasks related to this work

Broadly speaking, lexical semantic tasks can be characterized as contextual or non-contextual.

The distinction depends on the input to the task. In contextual tasks, the goal is to make

a determination about the meaning of or relationships between words grounded within a

particular context. In this case, the task input includes both word(s) about which to make

a prediction, along with their surrounding context. One example of a contextual task is

predicting asymmetric semantic relations in context (Shwartz and Dagan, 2016a; Vyas and

Carpuat, 2017). In this setting, the system is provided with target words in two sentences,

such as The boy hopped toward the podium and The actress moved onstage, and asked to

determine the semantic relationship that holds between the target words (hopped entails

moved in this case). In non-contextual tasks, systems are asked to make these predictions

devoid of any context.

It is clear that the particular meaning of a word instance depends on the context in which

it appears; for this reason, there is a preference to conduct lexical-semantic tasks with the

benefit of added context, which provides critical information for discerning meaning. Never-

theless, there remain some cases where it may be necessary to reason about word meanings

and relationships without having the benefit of context. One example is the automatic con-

struction of taxonomies or ontologies. Another could be an information retrieval setting,

where queries are frequently presented to a system devoid of context. This thesis addresses

both non-contextual (Chapters 3-4) and contextual tasks (Chapter 6).
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2.3.1. Word Sense Induction

Our sense clustering work in Chapter 3 is closely related to the task of word sense induction

(WSI), which aims to discover all senses of a target word used within a corpus (Manandhar

et al., 2010). WSI is related to, but different from, the task of word sense disambiguation

(WSD), which assumes that a target word’s possible senses are known a priori and aims to

identify the sense used in a particular context (Navigli, 2009). This section describes four

families of approaches to WSI which serve as inspiration for this work. The SEMCLUST

graph clustering method, which is used as a baseline in Chapter 3, is described in more

detail.

One of the most common approaches to WSI assumes that the senses of a word can be dif-

ferentiated by the monolingual contexts in which it appears (Navigli, 2009). Namely, most

instances of a particular sense of a target word will have similar neighboring words; these

neighbors will be different from the neighbors of other senses of the target (e.g. the error

sense of the target bug will have neighbors like code and fix, while the organism sense of

bug will have neighbors like crawl or winged). Models that take this approach either frame

WSI as a clustering problem, or assume a generative model. Clustering approaches aim to

partition the neighbors appearing within the context of the target such that each cluster

represents a distinct sense of the target word. The input to the clustering algorithm may

either be a set of vector representations for each neighbor (see Figure 8), or a graph where

the neighbors are nodes and edges connect similar neighbors (Schütze, 1998; Purandare and

Pedersen, 2004; Bordag, 2006; Niu et al., 2007; Pedersen, 2007; Klapaftis and Manandhar,

2008). While some clustering algorithms generate a ‘hard clustering’ where each neighbor

is partitioned into a distinct sense cluster, other approaches allow for a soft, probabilistic

assignment of neighbors to clusters (Jurgens and Klapaftis, 2013), or a hierarchical cluster-

ing that reflects the categorical nature of some words’ meanings (Klapaftis and Manandhar,

2008). Alternatively, the generative approach assumes that each ambiguous target word in-

stance is drawn from a latent sense distribution, and that its neighboring context words are
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Figure 8: A toy example of context clustering for word sense induction. Contexts of the
word bug (e.g. fix, crawl, etc) are plotted as vectors in a hypothetical two-dimensional space
and partitioned into two clusters. The cluster centroids represent the organism and error
senses of bug.

generated conditioned on the latent sense. Bayesian models are used to estimate the latent

sense distribution, using the observed neighbors as evidence (Brody and Lapata, 2009; Li

et al., 2010; Yao and Van Durme, 2011; Choe and Charniak, 2013).

Our proposed sense clustering method in Chapter 3 is more closely related to a second

family of clustering-based WSI approaches: rather than clustering the contexts in which an

ambiguous target word appears, these approaches cluster words deemed semantically similar

to the target (Lin, 1998; Pantel and Lin, 2002; Dorow and Widdows, 2003; Véronis, 2004;

Klapaftis and Manandhar, 2010; Hope and Keller, 2013; Pelevina et al., 2016; Panchenko

et al., 2017; Ustalov et al., 2017). The intuition is that each cluster should capture a subset

of the input words that pertain to a single sense of the ambiguous target. This approach

has been referred to as ego network clustering (Pelevina et al., 2016; Panchenko et al., 2017;

Ustalov et al., 2017), based on a graph encoding of the input that contains the ambiguous

target word itself as the focus (ego), the set of semantically similar words to which it has

some relationship (the alters), and connections between the alters (Everett and Borgatti,

2005). Our sense clustering work in Chapter 3 could be viewed as an instance of ego network

clustering, where the alters consist of the target word’s paraphrase set and the ego itself is

removed from the graph prior to clustering.
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As discussed in Section 2.2.2, bilingual distributional signals from aligned parallel corpora

can provide another source of information about word sense under the polysemy assumption:

if an English word like sentence has foreign translations peine (French for judicial sentence)

and phrase (French for syntactic sentence) that are semantically different in the foreign

language, this information is a clue that the English word has different meanings. This

polysemy assumption has been applied to the WSI task directly by Ide et al. (2002), who

clustered instances of English nouns in George Orwell’s 1984 based on vectors encoding their

aligned translations in six foreign language editions. They found that the groupings of word

instances produced by their translation clustering method were similar to those produced

by human annotators who tagged each instance with a WordNet sense. Apidianaki (2009b)

take the idea of sense-tagging via foreign translations one step further; they produce clusters

of the translations of English words based on their semantic similarity, such that each cluster

represents a distinct sense of the English word. In Chapter 3, we take a related approach

by clustering an ambiguous word’s paraphrase set based on vectors of the paraphrases’

translations in multiple languages.

All of the aforementioned clustering and generative approaches to WSI share the challenge

that there is an unknown number of underlying senses for each ambiguous target word

in a given corpus, while most clustering and Bayesian approaches require the number of

clusters (k) or size of the latent space to be specified as an input parameter. Some methods

proposed to circumvent this issue include adopting a non-parametric Bayesian model (Yao

and Van Durme, 2011) or clustering for a range of k and choosing the optimal clustering

based on some cluster quality metric (Niu et al., 2007). In Chapter 3 we take the latter

approach.

The WSI work most closely related to ours is that of Apidianaki et al. (2014), who,

like us, sought to determine the possible senses of a word by clustering its paraphrases.

Their method (hereafter SEMCLUST) used a simple graph-based approach to cluster para-

phrases on the basis of contextual similarity and shared foreign alignments. Specifically,
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beetle

insect

snitch

informer

mosquito

microphone

virus

failure
mistake

fault

malfunctionglitch

error

bacterium

cockroach

pest

parasite microbe

tracker
wire

bug (n)

Figure 9: SEMCLUST connects all paraphrases that share foreign alignments, and cuts
edges below a dynamically-tuned cutoff weight (dotted lines). The resulting connected
components are its clusters.

SEMCLUST represents paraphrases as nodes in a graph and connects each pair of words

sharing one or more foreign alignments with an edge weighted by contextual similarity.

Concretely, for paraphrase set PPSet, it constructs a graph G = (V,E) where vertices

V = {pi ∈ PPSet} are words in the paraphrase set and edges connect words that share

foreign word alignments in a bilingual parallel corpus. The edges of the graph are weighted

based on their contextual similarity (computed over a monolingual corpus). In order to

partition the graph into clusters, edges in the initial graph G with contextual similarity

below a threshold T ′ are deleted. The connected components in the resulting graph G′ are

taken as the sense clusters. The threshold is dynamically tuned using an iterative procedure

(Apidianaki and He, 2010).

The sense clusters induced by SEMCLUST are evaluated by comparing them to a set of

reference sense clusters. These are derived from a lexical substitution dataset that groups

together words which humans judge to be good substitutes for the target word in a spe-

cific context (McCarthy and Navigli, 2007). For example, a sense cluster for figure derived

from the sentence “The Vieth-Muller circle assumes there is angular symmetry of the cor-

responding points (Figure 8 ).” might include the paraphrases diagram, illustration, and

picture. Based on this evaluation, SEMCLUST outperformed simple most-frequent-sense,
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one-sense-per-paraphrase, and random baselines. Apidianaki et al. (2014)’s work corrobo-

rated the existence of sense distinctions in the paraphrase sets, and highlighted the need

for further work to organize them by sense. In Chapter 3, we improve on their method

using more advanced clustering algorithms, and by systematically exploring a wider range

of similarity measures.

2.3.2. Resolving Scalar Adjective Intensity

The adjectives warm, hot, and scalding can all be used to describe liquid temperature, but

they vary in their intensity: a coffee described as scalding has more extreme temperature

than one described as warm. These types of adjectives which can be arranged along a

qualitative scale are referred to as scalar or gradable adjectives. Understanding the relative

intensity of adjectives that describe a common attribute has implications for sentiment

analysis (Pang and Lee, 2008), question answering (de Marneffe et al., 2010), and inference

(Dagan et al., 2006). Work on adjective intensity in the field of computational linguistics

generally focuses on two related tasks: identifying groups of adjectives that modify a shared

attribute, and ranking same-attribute adjectives by intensity. With respect to the former,

common approaches involve clustering adjectives by their contexts (Hatzivassiloglou and

McKeown, 1993; Shivade et al., 2015). Our work in Chapter 4 focuses on using signals from

paraphrases to address the latter ranking task.

Figure 10: Example of a WordNet ‘dumbbell’ around the antonyms hot and cold.
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Noting that adding adjective intensity relations to WordNet (Miller, 1995; Fellbaum, 1998)

would be useful, Sheinman et al. (2013) propose a system for automatically extracting sets of

same-attribute adjectives from WordNet ‘dumbbells’ – consisting of two direct antonyms at

the poles and satellites of synonymous/related adjectives incident to each antonym (Figure

10) (Gross and Miller, 1990) – and ordering them by intensity. The annotations, however,

are not in WordNet as of its latest version (3.1).

Existing approaches to the task of ranking scalar adjectives by their intensity mostly fall un-

der the paradigms of pattern-based or lexicon-based approaches. Pattern-based approaches

work by extracting lexical (Sheinman and Tokunaga, 2009; de Melo and Bansal, 2013;

Sheinman et al., 2013) or syntactic (Shivade et al., 2015) patterns indicative of an intensity

relationship from large corpora (see Section 2.2.3). For example, the patterns “X, but not

Y” and “not just X but Y” provide evidence that X is an adjective less intense than Y.

MORE
INTENSE

LESS
INTENSE

spicy
zesty
tangy

peppery hot like lavafiery

Figure 11: Scalar adjectives describing the attribute spiciness arranged along a hypothetical
intensity scale.

Lexicon-based approaches are derived from the premise that adjectives can provide infor-

mation about the sentiment of a text (Hatzivassiloglou and McKeown, 1993) (see Section

2.2.4). These methods draw upon a lexicon that maps adjectives to real-valued scores encod-

ing both sentiment polarity and intensity. The lexicon might be compiled automatically –

for example, from analyzing adjectives’ appearance in star-valued product or movie reviews

(de Marneffe et al., 2010; Rill et al., 2012; Sharma et al., 2015; Ruppenhofer et al., 2014)

– or manually. In Chapter 4 we utilize the manually-compiled SO-CAL lexicon (Taboada

et al., 2011).
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Our paraphrase-based approach to inferring relative adjective intensity is based on para-

phrases that combine adjectives with adverbial modifiers. A tangentially related approach

is Collex (Ruppenhofer et al., 2014), which is motivated by the intuition that adjectives with

extreme intensities are modified by different adverbs from adjectives with more moderate

intensities: extreme adverbs like absolutely are more likely to modify extreme adjectives like

brilliant than are moderate adverbs like very. Unlike Collex, which requires pre-determined

sets of ‘end-of-scale’ and ‘normal’ adverbial modifiers, our approach learns the identity and

relative importance of intensifying adverbs.

2.3.3. Semantic Relation Prediction

A major task in computational lexical semantics is determining the type of semantic rela-

tionship that holds between different words or phrases, such as hypernymy between chair

and furniture, or antonymy between hot and cold. Semantic relation prediction is frequently

carried out in a contextual setting as part of some larger downstream task. For example, the

macro-level task of recognizing textual entailment between premise and hypothesis sentences

can be decomposed into multiple (contextualized) lexical relation predictions between pairs

of words or phrases aligned from the premise to the hypothesis. But because relation predic-

tion is such a universally applicable task, it has been studied in its own right at length, and

most existing benchmark datasets pose the task of predicting semantic relations between

words taken out-of-context (e.g. Baroni et al. (2012); Necsulescu et al. (2015); Santus et al.

(2015), and others). In Chapter 6 we work with models for both contextual (Section 6.4.4)

and non-contextual (Section 6.2.3) relation prediction.

There are various types of semantic relations that are important to model as part of down-

stream natural language tasks. In addition to the specific named semantic relation types

listed in Section 2.2 (synonymy, hypernymy, etc), fine-grained lexical entailment relations

have been studied in depth (MacCartney and Manning, 2007; Pavlick et al., 2015a; Shwartz

and Dagan, 2016a). A third set of commonly-studied relations concerns semantic similarity

and relatedness (Rubenstein and Goodenough, 1965; Finkelstein et al., 2002; Agirre et al.,
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2009; Radinsky et al., 2011; Luong et al., 2013; Bruni et al., 2014; Hill et al., 2015). Predict-

ing semantic similarity/relatedness has become increasingly common in the past few years as

an intrinsic evaluation method for vector-based word representations (Baroni et al., 2014).

The task setup is as follows: a system is presented with multiple pairs of words or phrases

for which it must predict the degree of semantic similarity or relatedness (e.g. snake and

serpent are highly similar, while chalk and chalkboard are highly related). Highly similar

or related pairs get a high score, and non-similar pairs get a low score. The output of the

system – typically derived from the cosine similarity of word embeddings – is compared to

human judgments of semantic similarity for each pair, and systems are scored based on the

correlation of their output with the human judgments.

All of the lexical semantic signals discussed in Section 2.2 can be used for relation prediction,

though some signal types are better suited to particular types of relations than others (see

Table 3). Here we give a brief overview of the strengths and weaknesses of each.

Relation Type Most Predictive Signals Least Predictive Signals

synonymy bi-/mono-lingual distributional patterns

antonymy patterns bi-/mono-lingual distributional

hypernymy patterns, monolingual distributional bilingual distributional

Table 3: Summary of computational signals that are best and least suited to predicting the
existence of each semantic relation type versus others.

As discussed in Section 2.2.3, lexico-syntactic patterns can be used to predict relation types

that are commonly expressed directly in text. These include hypernyms (pattern “Y such as

X ” suggests X is a hyponym of Y ) (Hearst, 1992) and antonyms (“either X or Y ” suggests

X and Y are opposites) (Lin et al., 2003; Nguyen et al., 2017). Pattern based methods are

not well suited to detecting synonyms, however, because synonyms are rarely co-located

within the same short span of text.
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Bilingual distributional information can also be used as a signal for relation prediction based

on the synonymy assumption (Section 2.2.2). Bilingual methods are capable of finding

semantically similar or related phrases, as evidenced by their use in generating PPDB

(Bannard and Callison-Burch, 2005). In Pavlick et al. (2015a), the authors incorporated

two types of features based on bilingual pivoting in a model for predicting fine-grained

entailment relations between a pair of words or phrases. Their paraphrase features consisted

of features distributed with PPDB, including bilingual alignment probabilities, ppdbscore,

and lexical similarity. Their translation features extended inclusion measures to the overlap

of foreign translations for the words in each input pair. An ablation study of their relation

prediction model indicated that both the translation and paraphrase features were critical

for predicting synonymy and related/unrelatedness, but were not as important for predicting

hypernymy and had zero or negative impact on predicting antonymy. This finding mirrored

an earlier study by Van der Plas and Tiedemann (2006), who showed that multilingual

alignments from parallel corpora were more effective features for detecting synonymy than

monolingual contextual features.

Monolingual distributional signals are probably the most heavily studied source of features

for semantic relation prediction. It is well documented that while sharing similar mono-

lingual contexts provides solid evidence that two terms are semantically related, it is less

clear which particular semantic relationship – more specific than ‘relatedness’ – might hold.

Word representations based on monolingual distributional signals can be tuned with specific

semantic relationships like synonymy in mind (Baroni et al., 2014; Hill et al., 2015; Banjade

et al., 2015). One relationship type that is notoriously difficult to distinguish using mono-

lingual context alone is antonymy because antonymys like fast and slow tend to occur in

very similar contexts (Rajana et al., 2017). For hypernymy, a thorough overview and com-

parison of useful distributional feature types for relation prediction is provided in Shwartz

et al. (2017). They classify the types of features that can be generated from monolingual

distributional signals to predict the semantic relation between a word pair as follows:
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• Similarity measures are symmetric metrics that quantify the extent to which the

monolingual contexts of each word in the pair overlap (Lin and others, 1998; Santus

et al., 2016).

• Inclusion measures are asymmetric metrics based on the distributional inclusion

hypothesis, which posits that for a relation tx is-a ty, the contexts of the hyponym

(tx) are a subset of the contexts of the hypernym (ty) (Weeds and Weir, 2003; Clarke,

2009; Kotlerman et al., 2010; Lenci and Benotto, 2012).

• Informativeness measures measure the relative informativeness of words in the

pair, assuming that hypernyms tend to be less informative (i.e. more general) than

hyponyms. The informativeness of a word can be estimated using the entropy (Santus

et al., 2014) or topic coherence (Rimell, 2014) of its observed contexts.

Shwartz et al. (2017) showed that when used in an unsupervised setting, no one of these

feature types was consistently better than another at hypernym prediction. Feature effec-

tiveness varied based on the dataset, feature weighting scheme, and context type used (e.g.

word-window or syntactic dependencies). In particular, certain feature types tended to be

better suited for distinguishing hypernyms from other relation types, e.g. inclusion features

were good at distinguishing hypernymy from meronymy, and informativeness measures re-

liably most distinguished hypernyms from synonyms.

Currently the best-performing distributional hypernym relation prediction models rely on

fixed-dimensional, real-valued word embeddings that encode distributional semantics, such

as word2vec (Mikolov et al., 2013b) or Glove (Pennington et al., 2014) (see Section 2.4).

One approach is to represent an input term pair (tx, ty) as the concatenation (Baroni et al.,

2012) or difference (Roller and Erk, 2016b; Weeds et al., 2014) of their individual word

vectors, and run a supervised classification algorithm using the resulting vector as input.

This approach can be viewed as discovering latent hypernymy signals encoded in the vector

space. A related approach is to explicitly train word embeddings to reflect hierarchical re-
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lationships (Kruszewski et al., 2015; Vendrov et al., 2016; Li et al., 2017). Kruszewski et al.

(2015) describe such a method for explicitly training word embeddings to reflect distribu-

tional inclusion in the feature space (i.e. the positive features of a hyponym are a subset of

the positive features of its hypernym) and demonstrated that this out-performed the vec-

tor concatenation approach for distinguishing hypernymy from coordinate and meronym

relations. A similar approach was taken by Chang et al. (2018).

One well-known property of supervised distributional hypernym prediction models is that

they can succumb to lexical memorization, meaning that they tend to memorize prototypical

hypernyms (such as animal and seafood) (Levy et al., 2015). To minimize the impact

of lexical memorization, some current studies ensure that the training and test splits for

hypernym prediction observe a full lexical split, meaning that no lemmas from the training

set appear in the test set (Shwartz et al., 2017; Roller and Erk, 2016b).

While the previous paragraphs have addressed the use of distributional signals for predicting

hypernymy out of context, distributional signals have also been extended to the task of

predicting hypernymy in context. In this setting, a model is presented with two sentences

cl and cr, each containing a target word (wl and wr respectively), and the task is to predict

whether the target word wl in the first sentence is a hyponym of the target wr in the second,

based on their specific meanings in the given context. Vyas and Carpuat (2017) proposed

a method based on word embeddings and ‘context-aware masked representations.’ The

general idea is to form a masked representation w∗,mask representing each w∗ within the

context c∗, and then to use the masked representations wl,mask and wr,mask as input to some

classification model. The masked representations w∗,mask are formed by first generating a

fixed-dimensional representation for c∗, and then taking the element-wise product (w∗� c∗)

to form w∗,mask. In their paper, Vyas and Carpuat (2017) experimented with context

representations created using the hidden state of a bi-directional long short-term memory

recurrent neural network (Melamud et al., 2016), and via convolutional filters applied to

the embeddings of the tokens in each context c∗. The performance was similar for the two
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methods.

2.4. Dense Word Representations

Most computational models of semantics rely on the ability to represent words or phrases

in a numeric form that a computer can process. In vector space models of semantics, lexical

items are represented as fixed-dimensional, real-valued numeric vectors, or embeddings,

that encode their distribution in text. Assuming the distributional hypothesis is true, the

vector for a particular term encodes its meaning such that semantically similar words have

corresponding vectors that are ‘close’ in vector space.

While early vector space models were high-dimensional with sparse, interpretable features

(corresponding to, for example, some word in a large vocabulary with which the embedded

term co-occurs), most contemporary work makes use of dense, low-rank embeddings, due

to their reduced size, resulting in computational efficiency and superior generalizability.

There are several ways to generate dense word representations. One common approach is

to apply matrix factorization methods, such as singular value decomposition (Golub and

Reinsch, 1970) or principal components analysis (Pearson, 1901), to a high-dimensional

matrix containing sparse word co-occurrence statistics. In the past several years, however,

there has been a shift toward producing dense word representations that are an artefact

of training neural models for language modeling tasks (Baroni et al., 2014). In this thesis

there are two such neural representations that are used repeatedly: the skip-gram word

embedding model (Mikolov et al., 2013b,a) and the Bidirectional Encoder Representations

from Transformers (BERT) model (Devlin et al., 2019). A brief description of each follows

here.

2.4.1. Skip-gram with Negative Sampling

Skip-gram word embeddings are produced as the by-product of a shallow neural model that

is trained to predict the words appearing within a fixed-width context window to either

side of an input target word. Stated another way, skip-gram embeddings are produced by
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training a model that takes a target word wt as input, and predicts the likelihood that

each other word in the model’s vocabulary appears within close proximity. The training

objective for a training corpus consisting of word sequence w1, w2, . . . , wT is to maximize

the average log likelihood of the observed neighbors of each wt:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (2.2)

where c is the size of the context window (an input parameter). The likelihood of seeing

neighboring word wt+j given target word wt is estimated using the softmax function as:

p(wt+j |wt) =
exp

(
v′wt+j

ᵀvwt

)
∑|V |

w=1 exp
(
v′w

ᵀvwt

) (2.3)

Here, vw is the input vector representation, or word embedding, for word w, and v′w is the

output vector representation, or context embedding, for word w. The quantity |V | is the

size of the model’s vocabulary.

Training the model using Eq. 2.3 to calculate likelihood is impractical because of the cost

of computing gradients for and updating all words in the vocabulary on each iteration, with

typical vocabulary sizes in the range 105 and up. Therefore, Mikolov et al. (2013a) proposed

an alternative formulation called negative sampling that simplifies the model while still

producing high-quality word embeddings. The skip-gram with negative sampling (SGNS)

objective uses the likelihood estimate:

log p(wt+j |wt) ≈ log σ(v′wt+j

ᵀ
vwt) +

∑
wk∈N

log σ(−v′wk

ᵀ
vwt) (2.4)

Here N is a set of words that are ‘negatively sampled’, i.e. randomly chosen from some

underlying distribution as examples of words that do not appear within the context of wt.

39



The size of N is an input parameter. This estimated likelihood is used instead of Eq. 2.3

in the training objective.

The SGNS model’s learned parameters, therefore, are a word embedding matrix of size

|V | × d containing input embeddings vw (where d is an input parameter corresponding to

the dimensionality of the resulting word embeddings), and an output projection matrix

of the same size containing context embeddings. While the input embeddings are most

frequently used to represent words in downstream tasks, the context embeddings can be

useful as well (as in the AddCos lexical substitution model in Chapter 3 (Melamud et al.,

2015b)).

One drawback of the skip-gram model is that it learns a single embedding for each word

type in the vocabulary. This can be suboptimal, as many words have multiple meanings.

Because skip-gram is trained using the observed contexts of each input word, the embedding

for a given word tends to most closely represent its most frequent sense. As an example,

consider the ten nearest skip-gram word embeddings, trained on the 4B-token Annotated

Gigaword corpus, for the word crane:

cranes, backhoe, barge, forklift, ferris, winch, bulldozer, scaffold, pulley, scaf-

folding

All of the nearest words based on the embedding model pertain to the construction equip-

ment sense of crane, and none reflect its sense as a type of bird.

2.4.2. Bidirectional Encoder Representations from Transformers (BERT)

In order to address the issues that stem from having a single word embedding per word

type, several recent papers have proposed contextualized word embedding models, in which

the representation of a token differs depending on the context in which it appears (Peters

et al., 2017, 2018; Devlin et al., 2019). One of these, called the Bidirectional Encoder

Representations from Transformers (BERT) model, is featured extensively in Chapter 5.
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BERT uses a multi-layer bidirectional Transformer encoder (Vaswani et al., 2017) architec-

ture that is pre-trained on two language modeling tasks. The first, the ‘masked language

model’ task, trains the model to predict masked or missing words in an input sequence. The

second pre-training task is next-sentence prediction, which requires the model to determine

whether the second sentence in a two-sentence sequence actually follows the first in the

training corpus, or whether it has been randomly selected. The combination of the two

tasks results in a model which is attuned to relationships between words within the same

sentence, as well as relationships between sentences.

The BERT model takes a sequence of tokens as input, and it produces an output embedding

for each token as well as an additional embedding that represents the input as a whole. The

pre-trained BERT models provided by the paper’s authors2 can be fine-tuned for down-

stream tasks like question answering or sequence tagging. In Chapter 6 we fine-tune BERT

for the task of contextualized hypernym prediction. However, it is also possible to use

BERT’s output token representations directly as contextualized word embeddings. We also

experiment with this technique in Chapter 6.

2https://github.com/google-research/bert
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CHAPTER 3 : Using Paraphrases to Induce Word Senses

3.1. Introduction

This chapter represents our first investigation into the use of paraphrases for a lexical

semantic task: in this case, discovering word senses. Many natural language processing

tasks rely on the ability to identify words and phrases with equivalent meaning but different

wording. Automatically-generated paraphrase resources, such as PPDB, DIRT (Lin and

Pantel, 2001c), and the Microsoft Research Paraphrase Phrase Tables (Dolan et al., 2004),

provide instances of meaning-equivalent terms with higher coverage than manually-compiled

resources like WordNet (Miller, 1995). But one drawback of these automatically generated

paraphrase resources is that they group all senses of polysemous words together, and do

not partition paraphrases into groups like WordNet does with its synsets. Thus a search

for paraphrases of the noun bug would yield a single list of paraphrases that includes insect,

glitch, beetle, error, microbe, wire, cockroach, malfunction, microphone, mosquito, virus,

tracker, pest, informer, snitch, parasite, bacterium, fault, mistake, failure and many others,

even though only some of these may be relevant in a particular context. The goals of this

chapter are to group these paraphrases into clusters that denote the distinct senses of the

target word or phrase, as shown in Figure 12, and to examine whether we can use signals

from bilingually-induced paraphrases themselves to do so.

bug 
(n)

 insect   beetle   
cockroach   mosquito   

pest 
c1

 glitch   error   
malfunction   fault   
mistake   failure 

c2

microbe  virus    
parasite   bacterium 

c3

tracker  
microphone   wire 
 informer   snitch 

c4

Figure 12: Our goal is to partition paraphrases of an target word like bug into clusters
representing its distinct senses.
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In the first half of this chapter, we develop a method for discriminating word sense by clus-

tering the paraphrases from the Paraphrase Database (PPDB). Recall that PPDB contains

over 100 million paraphrases generated using the bilingual pivoting method (Bannard and

Callison-Burch, 2005), which posits that two English words are potential paraphrases of

each other if they share one or more foreign translations. We apply two clustering algo-

rithms, Hierarchical Graph Factorization Clustering (Yu et al., 2005; Sun and Korhonen,

2011) and Self-Tuning Spectral Clustering (Ng et al., 2001; Zelnik-Manor and Perona, 2004),

and systematically explore different ways of defining the similarity matrix that they use as

input. We exploit a variety of features from PPDB to cluster its paraphrases by sense,

including its implicit graph structure, aligned foreign words, paraphrase scores, predicted

entailment relations, and monolingual distributional similarity scores.

Our goal in the first half of this chapter is to determine which algorithm and features are

the most effective for clustering paraphrases by sense. We address three research questions:

• How does paraphrase-based information compare to other similarity metrics when

used for sense clustering? We systematically compare different ways of defining ma-

trices that specify the similarity between pairs of paraphrases.

• Are better clusters produced by comparing second-order paraphrases? We use PPDB’s

graph structure to decide whether mosquito and pest belong to the same sense cluster

by comparing lists of paraphrases for the two words.

• Can entailment relations inform sense clustering? We exploit knowledge like beetle

is-an insect, and that there is no entailment between malfunction and microbe.

Our method produces sense clusters that are qualitatively and quantitatively good, and

that represent a substantial improvement to the PPDB resource.

In the second part of the chapter, we demonstrate a downstream application for the induced

sense clusters by using them for the task of lexical substitution. In this task, systems
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are presented with a target word in a sentence, and asked to propose a ranked list of

appropriate substitutes that maintain the original meaning of the sentence. We show that

when proposing substitutes from among the target word’s PPDB paraphrases, the sense

clusters can be used in conjunction with off-the-shelf embedding-based lexical substitution

models to substantially improve the models’ ability to propose relevant substitutes.

3.2. Graph Clustering Algorithms

To partition paraphrases by sense, we use two advanced graph clustering methods. Both of

them allow us to experiment with a variety of similarity metrics. What follows are high-level

overviews of each algorithm, succeeded by more in-depth implementation details for each

method.

3.2.1. Hierarchical Graph Factorization Clustering

The Hierarchical Graph Factorization Clustering (HGFC) method was developed by Yu et

al. (2006) to probabilistically partition data into hierarchical clusters that gradually merge

fine-grained clusters into coarser ones. Sun and Korhonen (2011) applied HGFC to the

task of clustering verbs into Levin (1993)-style classes. Sun and Korhonen extended the

basic HGFC algorithm to automatically discover the latent tree structure in their clustering

solution and incorporate prior knowledge about semantic relationships between words. They

showed that HGFC far outperformed agglomerative clustering methods on their verb data

set. We adopt Sun and Korhonen’s implementation of HGFC for our experiments.

HGFC takes as input a graph G(P,E), where nodes in P represent the set of paraphrases

to be clustered, and undirected edges in E connect them pairwise. This graph can also be

represented as a nonnegative, symmetric affinity matrix W = {wij} where rows and columns

represent paraphrases pi ∈ P , and entries wij denote the similarity between paraphrases

sim(pi, pj). The HGFC algorithm works by iteratively factorizing W into bipartite graphs,

where in the first round the nodes on the left side represent paraphrases, and nodes on the

right represent senses. In subsequent rounds, nodes on the right represent coarser clustering
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(a) Undirected graph for target
word bug. Wider lines signify
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(b) The corresponding affinity
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insect  

mosquito    
cockroach  

beetle    
parasite    
microbe  

bacterium    
virus    

glitch  
error    

failure    
fault  

mistake    
malfunction    
microphone  

wire    
tracker    

informer  
snitch    

pest  

insect, mosquito, pest  
cockroach
beetle
parasite
microbe, bacterium
virus
glitch
error, failure, fault, mistake
malfunction
microphone, wire
wire, tracker, informer, snitch

(c) The bipartite graph in-
duced by the first iteration of
HGFC. Note wire is assigned
to two clusters.

Figure 13: The graph, corresponding affinity matrix W , and bipartite graph created by the
first iteration of HGFC for target word bug (n)

solutions. The output of HGFC is a set of clusterings of increasingly coarse granularity.

The algorithm automatically determines the number of clusters at each level. For our task,

this has the benefit that a user can choose the cluster granularity most appropriate for

the downstream task (as illustrated in Figure 15). Another benefit of HGFC is that it

probabilistically assigns each paraphrase to a cluster at each level of the hierarchy. If some

pi has high probability in multiple clusters, we can assign pi to all of them (Figure 13c).

HGFC Implementation Details

This section provides further detail on the implementation of HGFC. Recall that the input to

the HGFC algorithm is an affinity matrix W , where rows and columns represent paraphrases

in the paraphrase set to be clustered, pi ∈ PPSet, and entries wij denote the similarity

between paraphrases sim(pi, pj) based on some chosen similarity measure. We achieved

best results by normalizing the rows of W such that the L2 norm of each row is equal to 1.

The idea behind HGFC is that the pairwise similarity values wij can also be estimated

using the construction of a bipartite graph K(P, S), where one side contains paraphrase

nodes pi from P and the other consists of nodes from S = {su}ku=1 corresponding to the
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latent senses. Under this construction, each paraphrase in P is connected to senses in S.

Specifically, the mapping from paraphrases in P to senses in S is done by the n× k affinity

matrix B, where rows represent paraphrases, columns represent senses, and each matrix

entry Biu gives the weight between paraphrase pi and sense su (Yu et al., 2005). Although

paraphrase pairs are no longer directly connected in the bipartite graph, their similarity

can be estimated using hops over senses su ∈ S:

w′ij =
k∑

u=1

biubju
λu

=
(
BΛ−1BT

)
ij

(3.1)

Here, Λ = diag(λ1, . . . , λk) and λu denotes the degree of each sense vertex su (λu =∑n
i=1 biu). If the sum of each paraphrase’s row in B is 1, then intuitively biu corresponds

to the likelihood that paraphrase pi belongs to sense su. HGFC uses these likelihoods to

produce a soft clustering from the paraphrases in P to the senses in S (Zhou et al., 2004).

HGFC uncovers B and Λ by decoupling them with H = BΛ−1 and minimizing distance

function `(W,HΛHT ), which gives the difference between the actual similarities in W and

the estimated similarities in HΛHT .

Using the divergence distance `(X,Y ) =
∑

ij(xijlog
xij
yij
−xij + yij), Yu et al. (2006) showed

that the following update equations are non-increasing:

h̃iu ∝ hiu
∑
j

wij
(HΛHT )ij

λuhju; normalize s.t.
∑
i

h̃iu = 1 (3.2)

λ̃u ∝ λu
∑
ij

wij
(HΛHT )ij

hiuhju; normalize s.t.
∑
u

λ̃u =
∑
ij

wij . (3.3)

Finally, having minimized `(W,HΛHT ), we can calculate the new affinity matrix W̃ that

gives affinities between senses:
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w̃uv =
n∑
i=1

biubiv
di

= (BTD−1B)uv (3.4)

where D = diag(d1, . . . , dn) and di =
∑k

u=1 biu.

HGFC works iteratively to create clusters of increasingly coarse granularity. In each round

l, the previous round’s graph W̃l−1 of size ml−1 ×ml−1 is clustered into m1 senses using

equations 3.2 to 3.4. At each level l, the cluster assignment probabilities for the original

pi ∈ P can be recovered from Bl as follows:

prob(s(l)
u |pi) = (D−1

1 B1D
−1
2 B2D

−1
3 B3 . . . D

−1
l Bl)iu (3.5)

We let the algorithm automatically discover the clustering tree structure by setting ml equal

to the number of non-empty clusters from round l − 1 minus one.

Algorithm 1 HGFC Algorithm (Yu et al. 2006)

Require: Paraphrase set PPSet of size n, affinity matrix W of size n× n
1: W0 ←normalize(W )
2: Build the graph G0 from W0, and m0 ← n
3: l← 1
4: Initialize cluster count c← n
5: while c > 1 do
6: ml ← clustercount− 1
7: Factorize Gl−1 to obtain bipartite graph Kl with the affinity matrix Bl of size ml−1×
ml (eq. 2, 3)

8: Build graph Gl with affinity matrix W̃l = BT
l D
−1
l Bl, where Dl’s diagonal entries are

obtained by summation over Bl’s columns (eq. 4)
9: Compute the cluster assignment probabilities Tl = D−1

1 B1D
−1
2 B2 . . . D

−1
l Bl (eq. 5)

10: Set c equal to the number of non-empty clusters in T minus one.

Running the HGFC algorithm returns a set of clusterings of increasingly coarse granular-

ity. For each cluster assignment probability matrix Tl we can recover the soft clustering

assignment for each input paraphrase pi using a threshold parameter τ . We simply take the

assignment for each pi to be the set of senses with probability less than τ away from the

maximum probability for that pi, i.e. {su|abs(T (l)
iu −maxvT

(l)
iv ) ≤ τ}

47



3.2.2. Spectral Clustering

The second clustering algorithm experimented with is Self-Tuning Spectral Clustering (Zelnik-

Manor and Perona, 2004). Like HGFC, spectral clustering takes an affinity matrix W as

input, but the similarities end there. Whereas HGFC produces a hierarchical clustering,

spectral clustering produces a flat clustering with k clusters, with k specified at runtime.

The Zelnik-Manor and Perona (2004) self-tuning method is based on Ng et al. (2001)’s

spectral clustering algorithm, which computes a normalized Laplacian matrix L from the

input W , and executes K-means on the largest k eigenvectors of L.

Spectral Clustering Implementation Details

The algorithm is ’self-tuning’ in that it enables clustering of data that is distributed accord-

ing to different scales. For each data point pi (i.e. each row in W ) input to the algorithm,

it constructs a local scaling parameter σi:

σi = sim(pi, pK) (3.6)

where pK is the Kth nearest neighbor of point pi. Like Zelnik and Perona, we use K = 7 in

our experiments.

Using local σi, we can then calculate an updated affinity matrix Â based on similarities

given in the input W as follows:

Âij =


wij

σiσj
i 6= j

0 otherwise

(3.7)

The complete algorithm we use for spectral clustering is described in Algorithm 2.
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Algorithm 2 Spectral Clustering Algorithm (Ng et al. 2001, Zelnik-Manor and Perona
2004)

Require: Paraphrase set PPSet of size n, affinity matrix W of size n × n, number of
clusters k

1: Compute the local scale σi for each paraphrase pi ∈ PPSet using Eq. 3.6
2: Form the locally scalled affinity matrix Â, where Âij is defined according to Eq. 3.7
3: Define D to be a diagonal matrix with Dii =

∑n
j=1 Âij and construct the normalized

affinity matrix L = D−1/2ÂD−1/2.
4: Find x1, . . . , xk, the k largest eigenvectors of L, and form the matrix X = [x1, . . . , xk] ∈

Rn×k.
5: Re-normalize the rows of X to have unit length yielding Y ∈ Rn×K .
6: Treat each row of Y as a point in Rk and cluster via k-means.
7: Assign the original point pi to cluster c if and only if the corresponding row i of the

matrix Y was assigned to cluster c.

3.3. Similarity Measures

Each of our clustering algorithms take as input an affinity matrix W where the entries wij

correspond to some measure of similarity between words i and j. For the 20 paraphrases

in Figure 12, W is a 20x20 matrix that specifies the similarity of every pair of paraphrases

like microbe and bacterium or microbe and malfunction. We systematically investigated four

types of similarity scores to populate W .

3.3.1. Paraphrase Scores

Bannard and Callison-Burch (2005) defined a paraphrase probability in order to quantify

the goodness of a pair of paraphrases, based on the underlying translation probabilities

used by the bilingual pivoting method. Recall from Section 2.1 that more recently, (Pavlick

et al., 2015b) used supervised logistic regression to combine a variety of scores so that they

align with human judgements of paraphrase quality. PPDB 2.0 provides this nonnegative,

real-valued ppdbscore for each pair of words in the database, although the scores are not

necessarily symmetric (i.e. ppdbscore(i, j) may not equal ppdbscore(j, i)). It can be

used directly as a similarity measure:
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wij =


max(ppdbscore(i, j),ppdbscore(j, i)) (i, j) ∈ PPDB

0 otherwise

(3.8)

In our dataset, values for ppdbscore range from 1.3 to 5.6. PPDB 2.0 does not provide a

score for a word with itself, so we set ppdbscore(i, i) to be the maximum ppdbscore(i, j)

such that i and j have the same stem. The ppdbscore for word pairs that are not linked

in PPDB defaults to 0.

3.3.2. Second-Order Paraphrase Scores

A more recent family of approaches to WSI represents a word as a feature vector of its

substitutable words, i.e. paraphrases (Yatbaz et al., 2012; Baskaya et al., 2013; Melamud

et al., 2015a).

Work by Baskaya et al. (2013) and Melamud et al. (2015a) showed that comparing words

on the basis of their shared paraphrases is effective for WSI. We define two novel similarity

metrics that calculate the similarity of words i and j by comparing their second-order

paraphrases. Instead of comparing microbe and bacterium directly with their PPDB 2.0

score, we look up all of the paraphrases of microbe and all of the paraphrases of bacterium,

and compare those two lists.

Figure 14: Comparing second-order paraphrases for malfunction and fault based on word-
paraphrase vectors. The value of vector element vij is ppdbscore(i, j).

Specifically, we form notional word-paraphrase feature vectors vpi and vpj where the features
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correspond to words with which each is connected in PPDB, and the value of the kth element

of vpi equals ppdbscore(i, k). We can then calculate the cosine similarity or Jensen-Shannon

divergence between vectors:

simPPDB.cos(i, j) = cos(vpi , v
p
j ) (3.9)

simPPDB.js(i, j) = 1− JS(vpi , v
p
j ) (3.10)

where JS(vpi , v
p
j ) is calculated assuming that the paraphrase probability distribution for

word i is given by its L1-normalized word-paraphrase vector vpi . Concretely, the Jensen-

Shannon divergence is given by:

JS(vpi , v
p
j ) =

1

2
KL(vpi ‖M) +

1

2
KL(vpj ‖M) (3.11)

where KL is Kullback-Liebler divergence and M = 1
2(vpi + vpj ).

3.3.3. Similarity of Foreign Word Alignments

Like earlier methods that use multilingual word alignments from parallel corpora to approx-

imate the semantic similarity of English words or word instances (Dyvik, 1998; Ide et al.,

2002; Van der Plas and Tiedemann, 2006), we implement a third similarity metric that

estimates word similarity based on foreign alignments.

PPDB is derived from bilingual corpora. We recover the aligned foreign words and their

associated translation probabilities that underlie each PPDB entry. For each English word

in our dataset, we get each foreign word that it aligns to in the Spanish and Chinese bilingual

parallel corpora used by Ganitkevitch and Callison-Burch (2014). We use this to define a

foreign word alignment similarity metric, simTRANS(i, j) for two English paraphrases i and
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j. This is calculated as the cosine similarity of the word-alignment vectors vai and vaj where

each feature in va is a foreign word to which i or j aligns, and the value of entry vaif is the

translation probability p(f |i).

simTRANS(i, j) = cos(vai , v
a
j ) (3.12)

In our work we use Spanish and Chinese foreign translations and probabilities drawn from

the corpora used to generate the Multilingual PPDB (Ganitkevitch and Callison-Burch,

2014).

3.3.4. Monolingual Distributional Similarity

Lastly, we populate the affinity with a distributional similarity measure based on word2vec

(Mikolov et al., 2013b). Each paraphrase i in our data set is represented as a 300-dimensional

word2vec embedding vwi trained on part of the Google News dataset.1 Phrasal para-

phrases that did not have an entry in the word2vec dataset are represented as the mean of

their individual word vectors, and we use a rule-based method to map British to American-

ized spellings where necessary. We use the cosine similarity between word2vec embeddings

as our measure of distributional similarity.

simDISTRIB(i, j) = cos(vwi , v
w
j ) (3.13)

3.4. Determining the Number of Senses

The optimal number of clusters for a set of paraphrases will vary depending on how many

senses there ought to be for an target word like bug. It is generally recognized that optimal

sense granularity depends on the application (Kilgarriff, 1997; Palmer et al., 2007; Ide and

Wilks, 2007). WordNet has notoriously fine-grained senses, whereas most word sense disam-

1https://code.google.com/p/word2vec/
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biguation systems achieve better performance when using coarse-grained sense inventories

(Navigli, 2009). Depending on the task, the sense clustering for target word coach in Figure

15b with k = 5 clusters may be preferable to the alternative with k = 3 clusters. An ideal

algorithm for our task would enable clustering at varying levels of granularity to support

different downstream NLP applications.

Both of our clustering algorithms can produce sense clusters at varying granularities. To

determine the optimal number of clusters for a given input and clustering algorithm, we

use the mean Silhouette Coefficient (Rousseeuw, 1987) to measure the ‘quality’ of various

clustering solutions at different levels of granularity. The Silhouette Coefficient balances op-

timal inter-cluster tightness and intra-cluster distance, and is calculated for each paraphrase

pi as

s(pi) =
b(pi)− a(pi)

max{a(pi), b(pi)}
(3.14)

where a(pi) is pi’s average intra-cluster distance (average distance from pi to each other pj

in the same cluster), and b(pi) is pi’s lowest average inter-cluster distance (distance from

pi to the nearest external cluster centroid). The Silhouette Coefficient calculation takes as

input a matrix of pairwise distances, so we simply use 1−W where the affinity matrix W

is calculated using one of the similarity methods we previously defined.

For each clustering algorithm, we choose as the ’solution’ the clustering which produces

the highest mean Silhouette Coefficient. For HGFC this requires calculating the mean

Silhouette Coefficient at each level of the resulting tree structure and choosing the level

that maximizes the score. For spectral clustering, where the number of clusters must be

specified prior to execution, we cluster each paraphrase set for a range of cluster numbers

k ∈ [2,min(20, n], where n is the number of paraphrases, and choose the optimal solution

based on mean Silhouette Coefficient.2

2For spectral clustering there has been significant study into methods for automatically determining the
optimal number of clusters, including analysis of eigenvalues of the graph Laplacian, and finding the rotation
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autobus 
bus 
carriage 
railcar 
car 
stagecoach 
stage 
trainer, instructor 
teacher, tutor 
manager 
handler 
omnibus 

(a) HGFC clustering result for coach (n)

c1: trainer, tutor, instructor, teacher, manager, handler 
c2: stagecoach, stage 
c3: omnibus, bus, autobus, car, carriage, railcar 

k=3 

c1: trainer, tutor, instructor, teacher 
c2: stagecoach, stage 
c3: omnibus, bus, autobus 
c4: car, carriage, railcar 
c5: manager, handler 

k=5 

(b) Spectral clustering result for coach (n)

surmise 
reckon, imagine 
guess, pretend, suppose, think 
distrust, mistrust 
doubt 

(c) HGFC clustering results for suspect (v)

c1: reckon, pretend, think, imagine 
c2: guess, suppose, surmise 
c3: distrust, doubt, mistrust 

k=3 

c1: reckon, think 
c2: pretend, imagine 
c3: guess, doubt 
c4: suppose, surmise 
c5: distrust, mistrust 

k=5 

(d) Spectral clustering results for suspect
(v)

Figure 15: HGFC and Spectral Clustering results for coach (n) and suspect (v).

3.5. Incorporating Entailment Relations

Pavlick et al. (2015a) added a set of automatically predicted semantic entailment relations

for each entry in PPDB 2.0. The entailment types that they include are Equivalent, Forward

Entailment, Reverse Entailment, Exclusive, and Independent. While a negative entailment

relationship (Exclusive or Independent) does not preclude words from belonging to the same

sense of some target word, a positive entailment relationship (Equivalent, Forward/Reverse

Entailment) does give a strong indication that the words belong to the same sense.

of the Laplacian that brings it closest to block-diagonal (Zelnik-Manor and Perona, 2004). We experimented
with these and other cluster analysis methods such as the Dunn Index (Dunn, 1973) in our work, but
found that using the simple Silhouette Coefficient produced clusterings that were competitive with the more
intensive methods, in far less time.

54



We seek a straightforward way to determine whether entailment relations provide informa-

tion that is useful to the final clustering algorithm. Both of our algorithms take an affinity

matrix W as input, so we add entailment information by simply multiplying each pairwise

entry by its entailment probability. Specifically, we set

wij =


(1− pind(i, j))sim(i, j) (i, j) ∈ PPDB

0 otherwise

(3.15)

where pind(i, j) gives the PPDB 2.0 probability that there is an Independent entailment

relationship between words i and j. Intuitively, this should increase the similarity of words

that are very likely to be entailing like fault and failure, and decrease the similarity of

non-entailing words like cockroach and microphone.

3.6. Experimental Setup

We follow the experimental setup of Apidianaki et al. (2014). We focus our evaluation on

a set of target words drawn from the LexSub test data (McCarthy and Navigli, 2007), plus

16 additional handpicked polysemous words.

3.6.1. Gold Standard Clusters

One challenge in creating our clustering methodology is that there is no reliable PPDB-sized

standard against which to assess our results. WordNet synsets provide a well-vetted basis

for comparison, but only allow us to evaluate our method on the 38% of our PPDB dataset

that overlaps it. We therefore evaluate performance on two test sets. Examples of clusters

from each dataset are given in Appendix A.3.

WordNet+ Our first test set is designed to assess how well our solution clusters align

with WordNet synsets. We chose 185 polysemous words from the SEMEVAL 2007 dataset

and an additional 16 handpicked polysemous words. For each we formed a paraphrase
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set that was the intersection of their PPDB 2.0 XXXL paraphrases with their WordNet

synsets, and their immediate hyponyms and hypernyms. Each reference cluster consisted of

a WordNet synset, plus the hypernyms and hyponyms of words in that synset. On average

there are 7.2 reference clusters per paraphrase set.

CrowdClusters Because the coverage of WordNet is small compared to PPDB, and

because WordNet synsets are very fine-grained, we wanted to create a dataset that would

test the performance of our clustering algorithm against large, noisy paraphrase sets and

coarse clusters. For this purpose we randomly selected 80 target words from the SEMEVAL

2007 dataset and created paraphrase sets from their unfiltered PPDB2.0 XXL entries. We

then iteratively organized each paraphrase set into reference senses with the help of crowd

workers on Amazon Mechanical Turk. On average there are 4.0 reference clusters per

paraphrase set. A full description of our method is included in Appendix A.2.

3.6.2. Evaluation Metrics

We evaluate our method using two standard metrics: the paired F-Score and V-Measure

(see Appendix A.1). Both were used in the 2010 SemEval Word Sense Induction Task

(Manandhar et al., 2010) and by Apidianaki et al. (2014). We give our results in terms

of weighted average performance on these metrics, where the score for each individual

paraphrase set is weighted by the number of reference clusters for that target word.

3.6.3. Baselines

We evaluate the performance of HGFC on each dataset against the following baselines:

Most Frequent Sense (MFS) assigns all paraphrases pi ∈ P to a single cluster. By

definition, the completeness of the MFS clustering is 1.

One Cluster per Paraphrase (1c1par) assigns each paraphrase pi ∈ P to its own

cluster. By definition, the homogeneity of 1c1par clustering is 1.
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Random (RAND) For each query term’s paraphrase set, we generate five random clus-

terings of k = 5 clusters. We then take F-Score and V-Measure as the average of each

metric calculated over the five random clusterings.

SEMCLUST We implement the SEMCLUST algorithm (Apidianaki et al., 2014) (Sec-

tion 2.3.1) as a state-of-the-art baseline. Since PPDB contains only pairs of words that

share a foreign word alignment, in our implementation we connect paraphrase words with

an edge if the pair appears in PPDB. We adopt the word2vec distributional similarity

score simDISTRIB for our edge weights.

MFS 1c1par RAND SEMCLUST HGFC* Spectral*
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(a) Clustering method performance against Word-
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Clusters

Figure 16: Hierarchical Graph Factorization Clustering and Spectral Clustering both sig-
nificantly outperform all baselines except 1c1par V-Measure.

3.7. Experimental Results

Figure 16 shows the performance of the two advanced clustering algorithms against the base-

lines. Our best configurations3 for HGFC and Spectral outperformed all baselines except

1c1par V-Measure, which is biased toward solutions with many small clusters (Manandhar

et al., 2010), and performed only marginally better than SEMCLUST in terms of F-Score

alone. The dominance of 1c1par V-Measure is greater for the WordNet+ dataset which

has smaller reference clusters than CrowdClusters. Qualitatively, we find that methods

3Our top-scoring Spectral method, Spectral*, uses entailments, ppdbscore similarities, and simDISTRIB

to choose k. Our best HGFC method, HGFC*, uses entailments, simDISTRIB similarities, and ppdbscore
to choose k.
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Avg #
Method F-Score V-Measure Clusters

ppdbscore 0.410 0.437 6.0
simDISTRIB 0.376 0.440 5.7
simPPDB.cos 0.389 0.428 7.20
simPPDB.JS 0.385 0.425 7.1
simTRANS 0.358 0.375 6.2

SEMCLUST 0.417 0.180 2.3
Reference 1.0 1.0 5.6

Table 4: Average performance and number of clusters produced by our different similarity
methods.

that strike a balance between high F-Score and high V-Measure tend to produce the ‘best’

clusters by human judgement. If we consider the average of F-Score and V-Measure as a

comprehensive performance measure, our methods outperform all baselines.

On our dataset, the state-of-the-art SEMCLUST baseline tended to lump many senses of

the target word together, and produced scores lower than in the original work. We attribute

this to the fact that the original work extracted paraphrases from Europarl, which is much

smaller than PPDB, and thus created affinity matrices W which were sparser than those

produced by our method. Directly applied, SEMCLUST works well on small data sets, but

does not scale well to the larger, noisier PPDB data. More advanced graph-based clustering

methods produce better sense clusters for PPDB.

The first question we sought to address with this work was which similarity metric is the

best for sense clustering. Table 4 reports the average F-Score and V-Measure across 40

test configurations for each similarity calculation method. On average across test sets and

clustering algorithms, the paraphrase similarity score (ppdbscore) performs better than

monolingual distributional similarity (simDISTRIB) in terms of F-Score, but the results are

reversed for V-Measure. This is also shown in the best HGFC and Spectral configurations,

where the two similarity scores are swapped between them.

Next, we investigated whether comparing second-order paraphrases would produce better

clusters than simply using ppdbscore directly. Table 4 also compares the two methods
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that we had for computing the similarity of second order paraphrases – cosine similarity

(simPPDB.cos) and Jensen-Shannon divergence (simPPDB.JS). On average across test sets

and clustering algorithms, using the direct paraphrase score gives stronger V-Measure and

F-score than the second-order methods. It also produces coarser clusters than the second-

order PPDB similarity methods.
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Figure 17: Histogram of metric change by adding entailment information across all experi-
ments.

Finally, we investigated whether incorporating automatically predicted entailment relations

would improve cluster quality, and we found that it did. All other things being equal, adding

entailment information increases F-Score by .014 and V-Measure by .020 on average (Figure

17). Adding entailment information had the greatest improvement to HGFC methods with

simDISTRIB similarities, where it improved F-Score by an average of .03 and V-Measure

by an average of .05.

3.8. Using sense clusters to improve lexical substitution

Having demonstrated how to organize paraphrase pairs into clusters denoting senses, we

next show how the resulting clusters can be used as part of the downstream task of lexical
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substitution – i.e. choosing appropriate substitutes for a target word in context. Similarly

to Apidianaki (2016), we focus on the specific goal of selecting appropriate substitutes from

the set of PPDB paraphrases for the target word instance.

The lexical substitution task (McCarthy and Navigli, 2007) (hereafter ‘lexsub’) requires

systems to predict substitutes for target word instances that preserve their meaning in

context. Systems are evaluated on the extent to which the substitute ranking produced by

the model agrees with a substitute ranking produced by humans. State-of-the-art lexsub

models (Melamud et al., 2015b; Roller and Erk, 2016a; Melamud et al., 2016) typically use

word and context embeddings to propose substitutes that are similar to the target word

and a good fit for the context; they do not explicitly consider word sense when proposing

substitutes.

Here we propose sense promotion with paraphrase sense clusters as a post-processing step

that improves the lexsub results of embedding-based models. Given a substitute ranking

produced by any lexsub model, sense promotion boosts the rank of words belonging to

the sense cluster that is most applicable to the target context, while maintaining their

relative order. In this section, sense promotion is demonstrated with PPDB sense clusters

produced using the spectral clustering method described in Section 3.2.2. We show via

an oracle experiment that this technique has the potential to improve the top performing

embedding-based lexsub models’ precision-at-5 by up to 48%, and that using a simple word

sense disambiguation method to choose the most appropriate cluster we can realize gains

of up to 19% over the embedding-based models’ original rankings.

3.8.1. Sense Promotion for Lexical Substitution

The lexsub task presents systems with a sentence having one token designated as the target

word. Systems are required to propose ranked substitutes for the target word in context

that preserve the original meaning of the sentence. For example, given the sentence What a

funny joke!, a good system might propose the substitute ranking humorous, comical, silly,
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entertaining. Lexical substitution systems are evaluated on how well their proposed ranking

overlaps with a set of human-proposed substitutes. In an ‘all-words’ ranking setting, where

the model’s proposed substitutes come from an open vocabulary, the usual evaluation metric

is precision-at-x (we use x ∈ {1, 3, 5}), that is, the proportion of the model’s top-x ranked

substitutes that appear in the (unordered) set of human-annotated substitutes.

Current embedding-based lexsub systems predict substitutes that are (a) similar to the tar-

get word, and (b) a good fit within the target context, on the basis of their word embedding

similarity. These models typically utilize word embeddings trained to encode distributional

similarity, such as word2vec (Mikolov et al., 2013b) or Glove (Pennington et al., 2014); they

ignore explicit sense representation.

We propose sense promotion as a method for improving the rankings of embedding-based

lexsub systems. The general idea behind sense promotion is to start with a set of ranked

substitutes generated by an embedding-based model. Then, using the paraphrase sense

clusters generated in this chapter as a sense inventory, we determine which cluster represents

the most likely sense of the word in context using a simple word sense disambiguation

method described in Section 3.8.2. Finally we elevate the relative rank of substitutes that

belong to the chosen cluster to the top of the rankings. See Table 5 as an example.

In practice, sense promotion is implemented as follows. For each sentence, the set of para-

phrase sense clusters for the target word is assumed as that word’s sense inventory. Given a

set of ranked substitutes for the target word in context as output by some embedding-based

lexsub model, we simply add a large number (10,000) to the ranking model’s score for words

belonging to the ‘best’ sense cluster. The success of the sense promotion method depends

on two things: having a set of sense clusters that accurately capture the senses of the target

word, and having a decently reliable word sense disambiguation (WSD) model to predict

the best sense cluster.
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Sentence
In part, prices reflect development of a market structure
based on such variables as the number of prints.

Human-generated Substitutes business, industry, sector

Model-generated Ranking

(P@1/5/10 = 0.0/0.0/0.1)

marketplace, currency, stock, pricing, price, share,
economy, listing, transaction, sector, cost, purchasing,
workforce, industry, business, trader, circulation, value,
buying, supply, segment, enterprise . . .

Best-Fit Sense Cluster
business, competition, economy, industry, institutes,
sector

Sense-Promoted Ranking

(P@1/5/10 = 0.0/0.6/0.3)

economy, sector, industry, business, competition,
institutes, marketplace, currency, stock, pricing, price,
share, listing, transaction, cost, purchasing, workforce,
trader, circulation, value, buying, supply, segment...

Table 5: In this toy example, the lexsub task presents systems with the sentence at top, and
requests substitutes for the target word market. Model-generated rankings are compared
to human-generated substitutes. In the model-generated ranking, the correct substitutes
are scattered throughout the rankings. Using sense clusters as a sense inventory, sense
promotion predicts the most applicable sense cluster for the target context, and elevates its
members to the top of the model’s rankings. The resulting sense-promoted rankings have
more human-generated substitutes appearing near the top of the list.

3.8.2. Experiments

Sense promotion experiments are run with the dual goals of demonstrating that sense pro-

motion is an effective method for improving the precision of embedding-based lexsub models,

and assessing whether the sense clusters generated in this chapter can be applied to this

task.

Dataset

For the experiments, target word instances and human-generated substitutes are drawn

from the “Concepts in Context” (CoInCo) corpus (Kremer et al., 2014). CoInCo is a lexical

substitution dataset containing over 15K sentences corresponding to nearly 4K unique target

words. We extract a test set from CoInCo by first finding all target words that have at least
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10 sentences, and at least 10 PPDB paraphrases with ppdbscore at least 2.0 (to ensure

that there are enough PPDB paraphrases of good quality). For each of the 243 resulting

targets, we extract a random selection of their corresponding sentences to generate a test

set of 2241 sentences in total.

Ranking models

Our approach requires a set of rankings produced by a high-quality lexical substitution

model to start. We generate substitution rankings for each target/sentence pair in the

test sets using two contemporary models based on word embeddings: AddCos (Melamud

et al., 2015b), and Context2Vec (Melamud et al., 2016). In each case, the set of possible

substitutes to be ranked for each target word is taken to be all of that target’s paraphrases

from PPDB-XXL.

The first set of rankings comes from the AddCos model of Melamud et al. (2015b). Add-

Cos quantifies the fit of substitute word s for target word t in context C by measuring the

semantic similarity of the substitute to the target, and the similarity of the substitute to

the context:

AddCos(s, t,W ) =
|W | · cos(s, t) +

∑
w∈W cos(s, w)

2 · |W |
(3.16)

The vectors s and t are word embeddings of the substitute and target generated by the

skip-gram with negative sampling model (Mikolov et al., 2013b,a). The context W is the

set of words appearing within a fixed-width window of the target t in a sentence (we use a

window (cwin) of 1), and the embeddings c are context embeddings generated by skip-gram.

In our implementation, we train 300-dimensional word and context embeddings over the 4B

words in the Annotated Gigaword (AGiga) corpus (Napoles et al., 2012) using the gensim

word2vec package (Řeh̊uřek and Sojka, 2010).4

4The word2vec training parameters we use are a context window of size 3, learning rate alpha from 0.025
to 0.0001, minimum word count 100, sampling parameter 1e−4, 10 negative samples per target word, and 5
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The second set of rankings comes from the Context2Vec model of Melamud et al.

(2016). It is more complex than AddCos, and has modestly outperformed AddCos on

the SemEval-2007 lexsub benchmark (McCarthy and Navigli, 2007). Instead of represent-

ing the sentential context using the embeddings of neighboring words, it embeds the entire

sentence using a bi-directional long short-term memory (LSTM) neural network (Zhou and

Xu, 2015; Lample et al., 2016) followed by a multi-layer perceptron. Lexical substitutes are

ranked based on the cosine similarity of the substitute’s word embedding with the sentence

embedding. We train the Context2Vec model on the Annotated Gigaword corpus using

its default settings.

Sense inventories

We assess the performance of sense clusters produced using the best spectral cluster-

ing method of Section 3.2.2, which used entailments, PPDB2.0Score similarities, and

simDISTRIB to choose k spectral.

For each of the 243 target words in the CoInCo test set, we extract paraphrases from

PPDB-XXL having ppdbscore over thresholds of 2.0 and 2.3. We then cluster each para-

phrase set using the spectral method. This results in two ’sense inventories’ for evaluation:

spectral:ppdbscore ≥2.0, and spectral:ppdbscore ≥2.3. We also generate the set of

extended WordNet synsets (WordNet+) for each target as a baseline. Recall from the

earlier experiments that extended WordNet synsets are composed of lemmas for each of the

target word’s WordNet synsets, plus their direct hypernyms and direct hyponyms.

Performing word sense disambiguation

Three methods are compared for selecting the best sense cluster given a target word instance

in context.

The first Oracle method provides an upper bound on the sense promotion performance

training epochs.
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of each sense inventory. In this setting, we assume that there exists a WSD oracle which

chooses the cluster that maximizes the sum of precision-at-x scores for x ∈ {1, 3, 5, 10}.

The second Random method provides a lower bound. Here we run five iterations of choosing

a random sense cluster for promotion, and calculate the average sense-filtered GAP score

over the five iterations.

The third BestFit method uses a simple WSD method to predict the correct sense. For

a target word in context, we first generate the AddCos score for all words appearing in

the sense inventory. We then multiply each word’s AddCos score by its ppdbscore with

the target word, and take the set of top-5 scoring words. We then choose as the ’best-fit’

the cluster with greatest overlap with the top-5 set. This ‘best-fit’ method finds the sense

that aligns with the top-ranked substitutes, and contains words with a strong paraphrase

relationship with the target.5

Results

We first generate Original AddCos and Context2Vec model rankings for each of the

roughly 2k instances in the CoInCo test set, and report the average Original precision

metrics (P@{1/3/5}). Then, for each experimental combination of ranking model, sense

inventory, and WSD method, we perform sense promotion over each model’s rankings and

report the average sense-promoted precision scores. Results are given in Table 6.

While the AddCos lexsub model out-performs the Context2Vec model when used on

its own in terms of original rankings, we see that for both lexsub models, running sense

promotion using any of the three sense inventories with Oracle WSD indicates that there is

potential to increase the precision of the top-1/3/5 ranked substitutes substantially. Fur-

thermore, using the simple BestFit WSD method, while not reaching the upper bounds of

precision implied by the Oracle experiment, leads to significant improvements for all sense

5The ppdbscore itself was shown to be a strong method for ranking substitute paraphrases in context
by Apidianaki (2016).

65



Context2Vec

Sense Inv. Original Random BestFit Oracle

spectral:ppdbscore ≥2.0
14.5 / 12.1 / 11.1

15.7 / 13.0 / 11.8 19.1 / 16.3 / 14.9 35.7 / 26.2 / 22.1
spectral:ppdbscore ≥2.3 19.6 / 16.8 / 15.6 23.2 / 20.5 / 18.5 37.1 / 28.2 / 23.8

WordNet+ 22.9 / 17.3 / 14.7 31.7 / 24.2 / 20.1 63.2 / 38.8 / 28.6

AddCos

Sense Inv. Original Random BestFit Oracle

spectral:ppdbscore ≥2.0
28.3 / 21.5 / 18.2

22.7 / 17.3 / 14.9 30.4 / 24.2 / 20.1 48.3 / 33.0 / 26.3
spectral:ppdbscore ≥2.3 27.6 / 21.0 / 18.6 31.7 / 25.9 / 21.7 48.1 / 33.7 / 26.9

WordNet+ 25.2 / 20.4 / 18.6 34.9 / 26.9 / 22.6 66.0 / 42.0 / 32.1

Table 6: Average P@{1/3/5} scores achieved by lexsub models context2vec and AddCos
before (Original) and after (Random, BestFit, and Oracle) sense cluster promotion.

inventories as well. For example, by running sense promotion over AddCos rankings using

BestFit WSD with the spectral:ppdbscore ≥2.3 sense clusters, the precision of the top-

5 ranked substitutes increases from 18.2% to 21.7% – a nearly 20% relative improvement.

This validates that sense promotion is an effective, yet simple, method for improving the

precision of embedding-based lexsub models using sense clusters.

In general, using the smaller, higher-quality spectral:ppdbscore ≥2.3 clusters for sense

promotion results in greater precision gains than using the larger spectral:ppdbscore

≥2.0 clusters. However, neither of our automatically-generated sense inventories produce

gains as dramatic as those resulting from sense filtering with WordNet+ clusters. This

suggests that the hand-crafted WordNet senses better capture sense distinctions than our

automatically-generated sense clusters.

We find that the random sense promotion produces no improvement over AddCos rankings,

and minimal improvement over the Context2Vec rankings. Promoting using the BestFit

WSD method always out-performs random sense promotion.

To give some concrete examples of how sense promotion with the various inventories works,

the sense-promoted output for several CoInCo instances is given in Table 7. The examples

help to highlight a few relevant points about the sense clustering method. First, it is impor-

tant to note that sense promotion preserves the relative lexsub model’s original ranking of

each word within the selected cluster; this is why the correct substitute sorrowful in the sec-
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ond example is still ranked in fifth place under Oracle filtering for the spectral:ppdbscore

≥2.3 sense clusters, after several proposed substitutes that are not in the gold set. This also

explains how the Oracle P@1 score for the larger spectral:ppdbscore ≥2.0 sense clusters

can be higher than that for the smaller spectral:ppdbscore ≥2.3 clusters (37.1 vs 35.7).

Second, recall that the WordNet+ sense inventory can assign one word to multiple sense

clusters. In the second example, the word sad appears in two WordNet+ sense clusters,

and thus is in the selected cluster under both the Oracle and BestFit methods.

Sentence In a blink of the strobe light, he was on his
feet and dashing from the room.

Gold Subs chamber; area; space; quarter; place

Top-5 AddCos Original door; bathroom; table; lavatory; ballroom

Top-5 spectral:ppdbscore ≥2.3 Oracle compartment; area; desk; space; headroom

Top-5 3spectral:ppdbscore ≥2.3 BestFit ballroom; classroom; lounge; courtroom; bed-
room

Top-5 WordNet+ Oracle door; bathroom; lavatory; ballroom; class-
room

Top-5 WordNet+ BestFit door; bathroom; lavatory; ballroom; class-
room

Sentence I’m sorry things happened this way.

Gold Subs sad; regretful; sorrowful; angry; unhappy

Top-5 AddCos Original sad; happy; ashamed; regretful; afraid

Top-5 spectral:ppdbscore ≥2.3 Oracle regretful; afraid; disappointed; unfortunate;
sorrowful

Top-5 spectral:ppdbscore ≥2.3 BestFit regretful; afraid; disappointed; unfortunate;
sorrowful

Top-5 WordNet+ Oracle regretful; bad; sad; happy; ashamed

Top-5 WordNet+ BestFit sad; distressing; pitiful; deplorable;
lamentable

Table 7: Examples of sense promotion output. Human-annotated substitutes are shown in
blue.

3.9. Conclusion

This chapter has examined how paraphrases can be applied to the task of learning the

possible senses, or meanings, of a target word. Bilingually-induced paraphrases from PPDB

played a central role in two ways. First, based on the assumption that a target word’s

paraphrase set contains terms pertaining to each of its senses, we clustered the paraphrases
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within that set to discriminate the target word’s different senses. Second, we showed that

using a paraphrase-based signal (ppdbscore) to measure the similarity between terms to

be clustered is an effective way to ensure each cluster contains terms that share a common

meaning.

In our experiments, we experimented with two clustering algorithms (Spectral and HGFC)

and five similarity metrics for paraphrase sense clustering. The results indicate that the

ppdbscore similarity metric consistently produces high-quality clusters when evaluated

against either WordNet synsets or a crowd-sourced dataset of ground-truth sense clusters,

regardless of the clustering algorithm used. However, our overall best scores were produced

by combining the ppdbscore metric for measuring term similarity with a monolingual

distributional similarity metric for selecting the optimal number of sense clusters, showing

that the two types of features are complementary. When evaluated against WordNet synsets,

the sense clusters produced by the best Spectral Clustering algorithm give a 64% relative

improvement in paired F-Score over the closest baseline.

The second half of this chapter focused on applying the automatically-induced sense clusters

to the downstream task of lexical substitution. Most recent lexical substitution models, like

AddCos and Context2Vec, use word and context embeddings to propose appropriate

ranked substitutes for a target word in context that are both similar in meaning to the

original target word, and a good fit for the particular context. These models do not explicitly

model word sense. We proposed a simple post-processing method, called ‘sense promotion,’

that uses sense clusters to improve the precision of embedding-based lexical substitution

models by boosting the rank of substitutes that belong to the most appropriate sense

cluster given the context. Applying sense promotion with a set of PPDB sense clusters

generated using our spectral method led to a 12% improvement in average precision-at-1

and a 19% improvement in average precision-at-5 of AddCos lexical substitution rankings

over a dataset of roughly 2000 target word instances (Kremer et al., 2014).
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CHAPTER 4 : Learning Scalar Adjective Intensity from Paraphrases

4.1. Introduction

The previous chapter proposed a method for using signals from bilingually-induced para-

phrases to discriminate word sense. In this chapter we examine the use of paraphrase-based

signals to another task in lexical semantics: predicting the relative intensity between two

scalar adjectives.

Semantically similar adjectives are not fully interchangeable in context. Although hot and

scalding are related, the statement “the coffee was hot” does not imply the coffee was

scalding. Hot and scalding are scalar adjectives that describe temperature, but they are not

interchangeable because they vary in intensity. A native English speaker knows that their

relative intensities are given by the ranking hot < scalding. Understanding this distinction

is important for language understanding tasks such as sentiment analysis (Pang and Lee,

2008), question answering (de Marneffe et al., 2010), and textual inference (Dagan et al.,

2006).

particularly pleased ↔ ecstatic

quite limited ↔ restricted

rather odd ↔ crazy

so silly ↔ dumb

completely mad ↔ crazy

Figure 18: Examples of paraphrases from PPDB of the form RB JJu ↔ JJv which can be
used to infer pairwise intensity relationships (JJu < JJv).

Existing lexical resources such as WordNet (Miller, 1995; Fellbaum, 1998) do not include

the relative intensities of adjectives. As a result, there have been efforts to automate the

process of learning intensity relations, as discussed earlier in Section 2.3.2 (e.g. Sheinman

and Tokunaga (2009), de Melo and Bansal (2013), Wilkinson (2017), etc.). Many existing

approaches rely on pattern-based or lexicon-based methods to predict the intensity ranking of

adjectives. Pattern-based approaches search large corpora for lexical patterns that indicate

an intensity relationship – for example, “not just X, but Y” implies X < Y (see Table 9
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for other examples). As with pattern-based approaches for other tasks (such as hypernym

discovery (Hearst, 1992)), they are precise but have relatively sparse coverage of comparable

adjectives, even when using web-scale corpora (de Melo and Bansal, 2013; Ruppenhofer

et al., 2014). Lexicon-based approaches employ resources that map an adjective to a real-

valued number that encodes both intensity and polarity (e.g. good might map to 1 and

phenomenal to 5, while bad maps to -1 and awful to -3). They can also be precise, but may

not cover all adjectives of interest. Examples from the lexicon of Taboada et al. (2011),

used in this study, are given in Table 8

Adjective Score

exquisite 5
beautiful 4
appealing 3

above-average 2
okay 1

ho-hum -1
pedestrian -2

gross -3
grisly -4

abhorrent -5

Table 8: Examples of scores for
scalar adjectives describing appear-
ance from the SO-CAL lexicon
(Taboada et al., 2011). Score mag-
nitude indicates intensity.

Weak-Strong Patterns Strong-Weak Patterns

* (,) but not * not * (,) just *
* (,) if not * not * (,) still *

not only * but * not * (,) though still *
* (,) (and/or) almost * * (,) or very *

Table 9: Examples of adjective ranking patterns
used in de Melo and Bansal (2013).

We propose paraphrases as a new source of evidence for the relative intensity of scalar

adjectives. Specifically, adjectival paraphrases, such as really great ↔ phenomenal, can be

exploited to uncover intensity relationships. A paraphrase pair of the above form, where one

phrase is composed of an intensifying adverb and an adjective (really great) and the other

is a single-word adjective (phenomenal), provides evidence that great < phenomenal. By

drawing this evidence from large, automatically-generated paraphrase resources like PPDB,

it is possible to obtain high-coverage pairwise adjective intensity predictions at reasonably

high accuracy.
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We demonstrate the usefulness of paraphrase evidence for inferring relative adjective in-

tensity in two tasks: ordering sets of adjectives along an intensity scale, and inferring the

polarity of indirect answers to yes/no questions. In both cases, we find that combining the

relatively noisy, but high-coverage, paraphrase evidence with more precise but low-coverage

pattern- or lexicon-based evidence improves overall quality.

Relative intensity is just one of several dimensions of gradable adjective semantics. In

addition to intensity scales, a comprehensive model of scalar adjective semantics might also

incorporate notions of intensity range (Morzycki, 2015), adjective class (Kamp and Partee,

1995), and scale membership according to meaning (Hatzivassiloglou and McKeown, 1993).

In this chapter we take the position that relative intensity is worth studying on its own

because it is an important component of adjective semantics, usable directly for some NLP

tasks such as sentiment analysis (Pang and Lee, 2008), and as part of a more comprehensive

model for other tasks like question answering (de Marneffe et al., 2010).

4.2. Paraphrase-based Intensity Evidence

Adjectival paraphrases provide evidence about the relative intensity of adjectives. We claim

that a paraphrase of the form RB JJu ↔ JJv – where one phrase is comprised of an adjective

modified by an intensifying adverb (RB JJu), and the other is a single-word adjective (JJv)

– is evidence that the first adjective is less intense than the second (JJu < JJv). Here, we

propose a new method for encoding this evidence and using it to make pairwise adjective

intensity predictions. First, a graph (JJGraph) is formed to represent over 36k adjectival

paraphrases having the specified form (Figure 19). Next, data in the graph are used to

make pairwise adjective intensity predictions.

4.2.1. Identifying Informative Adjectival Paraphrases

In JJGraph, nodes are adjectives, and each directed edge (JJu −−→
RB

JJv) corresponds to an

adjectival paraphrase of the form RB JJu ↔ JJv – for example, very tall ↔ large – where

one ‘phrase’ (JJv) is an adjective and the other (RB JJu) is an adjectival phrase containing
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Figure 19: A subgraph of JJGraph, depicting its directed graph structure.

an adverb and adjective (see Figure 18 for examples).

The first step in creating JJGraph is to identify adjectival phrase (ADJP) paraphrases

in PPDB-XXL that match the specified template RB JJu ↔ JJv. We search for such

paraphrases as follows.

Given an ADJP paraphrase pair, we denote as P1 the phrase with longer token length, and

P2 the shorter phrase. We assume that P2 consists of a single adjective, and P1 consists of

an adjective modified by an adverb. More specifically, within P1 of length n, we identify

the adjective as the last token, and the adverbial modifier the concatenated tokens from

the first to (n− 1)th token. For the purposes of this study, phrases where the adverb meets

one of the following criteria are ignored: longer than 4 tokens; consists of a single character;

consists of the word not ; ends with one of the tokens about, and, in, or, the, or to; or

contains digits.

4.2.2. Identifying Intensifying Adverbs

Adverbs in PPDB can be intensifying or de-intensifying. An intensifying adverb (e.g. very,

totally) strengthens the adjectives it modifies. In contrast, a de-intensifying adverb (e.g.

slightly, somewhat) weakens the adjectives it modifies. Since edges in JJGraph ideally point
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Round 1 very hard ↔ harder
kinda hard ↔ harder

so hard ↔ harder
pretty hard ↔ harder
⇓

Round 2 very pleasant ↔ delightful
kinda hard ↔ tricky

so wonderful ↔ brilliant
pretty simple ↔ plain

⇓
Round 3 more pleasant ↔ delightful

really hard ↔ tricky
truly wonderful ↔ brilliant
quite simple ↔ plain

Figure 20: Bootstrapping process for identifying intensifying adverbs. The adverbs found
in Rounds 1 and 3 are used to build intensifying edges in JJGraph.

in the direction of increasing intensity, the first step in the process of creating JJGraph is

to identify a set of adverbs that are likely intensifiers to be included as edges.

For this purpose, we generate a set R of likely intensifying adverbs within PPDB using a

bootstrapping approach (Figure 20). The process starts with a small seed set of adjective

pairs having a known intensity relationship. The seeds are pairs (ju, jv) from PPDB-XXL1

such that ju is a base-form adjective (e.g. hard), and jv is its comparative or superlative

form (e.g. harder or hardest)2. Using the seeds, we identify intensifying adverbs by finding

adjectival paraphrases in PPDB of the form (riju ↔ jv); because ju < jv, adverb ri is

inferred to be intensifying (Round 1). All such ri are added to initial adverb set R1. The

process continues by extracting paraphrases (riju′ ↔ jv′) with ri ∈ R1, indicating additional

adjective pairs (ju′ , jv′) with intensity direction inferred by ri (Round 2). For example, if

ri = very is an adverb identified in Round 1, then finding the paraphrase very pleasant ↔

delightful in Round 2 would lead us to infer that pleasant < delightful. Finally, the adjective

pairs extracted in this second iteration are used to identify additional intensifying adverbs

R3, which are added to the final set R = R1∪R3 (Round 3). To continue with the previous

1PPDB comes in six increasingly large sizes from S to XXXL; larger collections have wider coverage but
lower precision. Our work uses XXL.

2Such pairs were identified by lemmatizing with NLTK’s WordNetLemmatizer (Loper and Bird (2002)).
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example, if the relation pleasant < delightful is assumed in Round 2, and super pleasant

↔ delightful is a paraphrase in PPDB, then super will be added to the set of intensifying

adverbs R3.

In all, this process generates a set of 610 adverbs. Examination of the set shows that the

process does capture many intensifying adverbs like very and abundantly, and excludes

many de-intensifying adverbs appearing in PPDB like far less and not as. However, due

to the noise inherent in PPDB itself and in the bootstrapping process, there are also a few

de-intensifying adverbs included in R (e.g. hardly, kind of ) as well as adverbs that are

neither intensifying nor de-intensifying (e.g. ecologically). It will be important to take this

noise into consideration when using JJGraph to make pairwise intensity predictions.

4.2.3. Building JJGraph

JJGraph is built by extracting all 36,756 adjectival paraphrases in PPDB of the specified

form RB JJu ↔ JJv, where the adverb belongs to R. The resulting graph has 3,704 unique

adjective nodes. JJGraph is a multigraph, as there are frequently multiple intensifying

relationships between pairs of adjectives. For example, the paraphrases pretty hard ↔

tricky and really hard ↔ tricky are both present in PPDB. There can also be contradictory

or cyclic edges in JJGraph, as in the example depicted in the JJGraph subgraph in Figure

19, where the adverb really connects tasty to lovely and vice versa. Self-edges are allowed

(e.g. really hard ↔ hard).

4.2.4. Pairwise Intensity Prediction

Examining the directed adverb edges between two adjectives ju and jv in JJGraph provides

evidence about the relative intensity relationship between them. However, it has just been

noted that JJGraph is noisy, containing both contradictory/cyclic edges and adverbs that

are not uniformly intensifying. Rather than try to eliminate cycles, or manually annotate

each adverb with a weight corresponding to its intensity and polarity (Ruppenhofer et al.,

2015; Taboada et al., 2011), we aim to learn these weights automatically in the process of
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predicting pairwise intensity.

Given adjective pair (ju, jv), we build a classifier that outputs a score from 0 to 1 indicating

the predicted likelihood that ju < jv. Its binary features correspond to adverb edges from

ju to jv and from jv to ju in JJGraph. The feature space includes only adverbs from R

that appear at least 10 times in JJGraph, resulting in features for m = 259 unique adverbs

in each direction (i.e. from ju to jv and vice versa) for 2m = 518 binary features total. Note

that while all adverb features correspond to predicted intensifiers from R, there are some

features that are actually de-intensifying due to the noise inherent in the bootstrapping

process (Section 4.2.2).

We train the classifier on all 36.7k edges in JJGraph, based on a simplifying assumption

that all adverbs in R are indeed intensifiers. For each adjective pair (ju, jv) with one or

more direct edges from ju to jv, a positive training instance for pair (ju, jv) and a negative

training instance for pair (jv, ju) are added to the training set. A logistic regression classifier

is trained on the data, using elastic net regularization and 10-fold cross validation to tune

parameters.

The model parameters output by the training process are in a feature weights vector w ∈

R2m (with no bias term) which can be used to generate a paraphrase-based score for each

adjective pair:

scorepp(ju, jv) =
1

1 + exp−wxuv
− 0.5 (4.1)

where xuv is the binary feature vector for adjective pair (ju, jv). The decision boundary

0.5 is subtracted from the sigmoid activation function so that pairs predicted to have the

directed relation ju < jv will have a positive score, and those predicted to have the opposite

directional relation will have a negative score.
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4.2.5. Examining Adverb Weights

One interesting artefact of the adjective pair intensity classifier is the feature weights vector,

w, which assigns two numeric weights to each adverb represented in the feature space (one

weight corresponding an edge in each direction). Intuitively, the weights might be expected

to correspond to the intensification strength of each adverb.

Similarly to adjectives, adverbs can be classified according to their strength or as modi-

fiers. Some studies group adverbs into discrete categories such as maximizers (absolutely,

completely, totally, etc), boosters (very, terribly, highly, etc), moderators (rather, pretty,

fairly), or diminishers (a little, slightly, somewhat) (Paradis, 1997) – with each category

being weaker than the previous. Ruppenhofer et al. (2015) took a slightly different ap-

proach, asking crowd workers to assign a score to each of 14 adverbs according to their

place along an intensity scale. In order to examine whether the adverb feature weights from

our adjective intensity classifier are reflective of their strength as modifiers, we compare

Ruppenhofer’s adverb scores to the mean weight of each adverb in our feature space:

weight(r) =
wr:uv − wr:vu

2
(4.2)

where wr:uv gives the feature weight of adverb r in the ju → jv direction, and wr:vu gives

the feature weight of adverb r in the jv → ju direction. If an adverb has high weight, this

means that it is strongly indicative of a weak-strong relationship for adjective pair (ju, jv)

when it modifies ju, and strongly indicative of a strong-weak relationship when it modifies

jv. The comparison between the mean feature weight and the Ruppenhofer et al. (2015)

scores is depicted in Figure 21.

Based on this limited analysis, it does not appear that the classifier weights correlate well

with adverb intensity. In particular, adverbs slightly and almost have a much higher than

expected classifier weight, given their status as diminishers. This may be the result of the
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Figure 21: A comparison between human-annotated adverb intensity weights from Rup-
penhofer et al. (2015), and mean adverb weights from the pairwise intensity classifier (Eq.
4.2).

simplifying assumption that was made when training the classifier, namely that all adverbs

in the graph were intensifiers.

4.3. Other Intensity Evidence

Our experiments compare the proposed paraphrase approach with existing pattern- and

lexicon-based approaches.

4.3.1. Pattern-based Evidence

We experiment with the pattern-based approach of de Melo and Bansal (2013). Given a

pair of adjectives to be ranked by their intensity, de Melo and Bansal (2013) cull intensity

patterns from Google n-Grams (Thorsten and Franz, 2006) as evidence of their intensity

order. Specifically, they identify 8 types of weak-strong patterns (e.g. “X, but not Y”) and

7 types of strong-weak patterns (e.g. “not X, but still Y”) that are used as evidence about
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the directionality of the intensity relationship between adjectives. Given an adjective pair

(ju, jv), an overall pattern-based weak-strong score is calculated:

scorepat(ju, jv) =
(Wu − Su)− (Wv − Sv)

count(ju) · count(jv)
(4.3)

where Wu and Su quantify the pattern evidence for the weak-strong and strong-weak inten-

sity relations respectively for the pair (ju, jv), and Wv and Sv quantify the pattern evidence

for the pair (jv, ju). Wu and Su are calculated as:

Wu =
1

P1

∑
p1∈Pws

count(p1(ju, jv))

Su =
1

P2

∑
p2∈Psw

count(p2(ju, jv))

(4.4)

Wv and Sv are calculated similarly by swapping the positions of ju and jv. For example,

given pair (good, great), Wu might incorporate evidence from patterns “good, but not great”

and “not only good but great”, while Sv might incorporate evidence from the pattern “not

great, just good”. Pws denotes the set of weak-strong patterns, Psw denotes the set of

strong-weak patterns, and P1 and P2 give the total counts of all occurrences of any pattern

in Pws and Psw respectively. The score is normalized by the frequencies of ju and jv in

order to avoid bias due to high-frequency adjectives. As with the paraphrase-based scoring

mechanism (Equation 4.1), scores output by this method can be positive or negative, with

positive scores being indicative of a weak-strong relationship from ju to jv. Note that

score(ju, jv) = −score(jv, ju).
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4.3.2. Lexicon-based Evidence

We use the manually-compiled SO-CAL3 lexicon as our third, lexicon-based method for

inferring intensity. The SO-CAL lexicon assigns an integer weight in the range [−5, 5] to

2,826 adjectives. The sign of the weight encodes sentiment polarity (positive or negative),

and the value encodes intensity (e.g. atrocious, with a weight of -5, is more intense than

unlikable, with a weight of -3). SO-CAL is used to derive a pairwise intensity prediction for

adjectives (ju,jv) as follows:

scoresocal(ju, jv) = |L(jv)| − |L(ju)|,

iffsign(ju) = sign(jv)

(4.5)

where L(jv) gives the lexicon weight for jv. Note that scoresocal is computed only for

adjectives having the same polarity direction in the lexicon; otherwise the score is undefined.

This is because adjectives belonging to different half scales, such as freezing and steaming,

are frequently incomparable in terms of intensity (de Marneffe et al., 2010).

4.3.3. Combining Evidence

While the pattern-based and lexicon-based pairwise intensity scores are known to be precise

but low-coverage (de Melo and Bansal, 2013; Ruppenhofer et al., 2015), we expect that

the paraphrase-based score will produce higher coverage at lower accuracy. Thus we also

experiment with scoring methods that combine two or three score types. When combining

two metrics x and y to generate a score for a pair (ju, jv), we simply use the first metric

x if it can be reliably calculated for the pair, and back off to metric y otherwise. More

formally, the combined score for metrics x and y is given by:

3https://github.com/sfu-discourse-lab/SO-CAL
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scorex+y(ju, jv) = αx · gx(scorex(ju, jv))

+ (1− αx) · gy(scorey(ju, jv))

(4.6)

where αx ∈ {0, 1} is a binary indicator corresponding to the condition that scorex can

be reliably calculated for the adjective pair, and gx(·) is a scaling function (see below).

If αx = 1, then scorex is used. Otherwise, if αx = 0, then we default to scorey. When

combining three metrics x, y, and z, the combined score is given by:

scorex+y+z(ju, jv) = αx · gx(scorex(ju, jv))

+ (1− αx) · scorey+z(ju, jv)

(4.7)

The criteria for having αx = 1 varies depending on the metric type. For pattern-based

evidence (x=‘pat’), αx = 1 when adjectives ju and jv appear together in any of the intensity

patterns culled from Google n-grams (e.g. a pattern like “ju, but not jv” exists). For lexicon-

based evidence (x=‘socal’), αx = 1 when both ju and jv are in the SO-CAL vocabulary,

and have the same polarity (i.e. are both positive or both negative). For paraphrase-based

evidence (x=‘pp’), αx = 1 when ju and jv have one or more edges directly connecting them

in JJGraph.

Since the metrics to be combined may have different ranges, we use a scaling function gx(·)

to make the scores output by each metric directly comparable:

gx(w) = sign(w) ·
(

log(|w|)− µx

σx
+ γ

)
(4.8)
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where µx and σx are the estimated population mean and standard deviation of log(scorex)

(estimated over all adjective pairs in the dataset), and γ is an offset that ensures positive

scores remain positive, and negative scores remain negative. In our experiments we set

γ = 5.

By way of comparison, Table 10 shows the pairwise intensity predictions made by each

of the individual score types, and a combination of the three, on eight randomly selected

adjective pairs from the datasets used in Section 4.4.

Pair gold scorepp scorepat scoresocal scorepat+socal+pp

gigantic, huge > > −− −− >
good, great < < < < <
huge, enormous < < −− < <
gigantic, big > > −− −− >
few, many < −− < −− <
light, bright < > > −− >
quick, speedy < < −− > >
fresh, new < −− −− −− −−

Table 10: Pairwise intensity direction predicted by each of the individual score types, and
a combination of the three. The symbol < indicates a weak-strong pair, > indicates a
strong-weak pair, and −− indicates that the score type could not be computed for that
pair.

4.4. Ranking Adjective Sets by Intensity

The first experimental application for the different paraphrase evidence is an existing model

for predicting a global intensity ordering within a set of adjectives. Global ranking models

are useful for inferring intensity comparisons between adjectives for which there is no explicit

evidence. For example, in ranking three adjectives like warm, hot, and scalding, there may

be direct evidence indicating warm < hot and hot < scalding, but no way of directly

comparing warm to scalding. Global ranking models infer that warm < scalding based on

evidence from the other adjective pairs in the scale.
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Dataset
# of
Scales

Min/Max/Mean
Scale Size

# of
Unordered
(unequal)
Pairs

Example Scale

deMelo 87 3 / 8 / 3.90 524 (466) {clean} < {spotless, immaculate}
Crowd 79 2 / 8 / 3.18 293 (250) {low} < {limited} < {scarce}
Wilkinson 21 2 / 5 / 2.81 61 (61) {dry} < {arid} < {parched}

Table 11: Characteristics of the scalar adjective datasets used for evaluation. The deMelo
scale example shows an instance of an equally-intense pair (spotless, immaculate).

4.4.1. Global Ranking Model

We adopt the mixed-integer linear programming (MILP) approach of de Melo and Bansal

(2013) for generating a global intensity ranking. This model takes a set of adjectives A =

{a1, . . . , an} and directed, pairwise adjective intensity scores score(ai, aj) as input, and

assigns each adjective ai a place along a linear scale xi ∈ [0, 1]. The adjectives’ assigned

values define the global ordering. If the predicted weights used as input are inconsistent,

containing cycles, the model resolves these by choosing the globally optimal solution.

Recall that all pairwise scoring metrics produce a positive score for adjective pair (ju, jv)

when it is likely that ju < jv, and a negative score otherwise. Consequently, the MILP

approach should result in xu < xv when score(ju, jv) is positive, and xu > xv otherwise.

This goal is achieved by maximizing the objective function:

∑
u,v

sign(xv − xu) · score(ju, jv) (4.9)

de Melo and Bansal (2013) propose the following MILP formulation for maximizing this

objective, which we implement using the Gurobi ILP software (Gurobi Optimization, 2016)

and utilize in our experiments:
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max
u,v

∑
u,v

(wuv − suv)·score(ju, jv)

s.t. duv = xv − xu ∀u, v ∈ N

duv − wuvC ≤ 0 ∀u, v ∈ N

duv + (1− wuv)C > 0 ∀u, v ∈ N

duv + suvC ≥ 0 ∀u, v ∈ N

duv − (1− suv)C < 0 ∀u, v ∈ N

xu ∈ [0, 1] ∀u ∈ N

wuv ∈ {0, 1} ∀u, v ∈ N

suv ∈ {0, 1} ∀u, v ∈ N

(4.10)

The variable duv is a difference variable that captures the difference between xv and xu.

The constant C is an arbitrarily large number that is at least
∑

u,v |score(ju, jv)|. The

variables wuv and suv are binary indicators that correspond to a weak-strong or strong-

weak relationship between ju and jv respectively; the objective encourages wuv = 1 when

score(ju, jv) > 0, and suv = 1 when score(ju, jv) < 0. Note that while de Melo and Bansal

(2013) also propose an additional term in the objective that incorporates synonymy evidence

from WordNet in their ranking method, we do not implement this part of the model.

4.4.2. Experiments

We experiment with using each of the paraphrase-, pattern-, and lexicon-based pairwise

scores as input to the global ranking model in isolation. To examine how the scoring

methods perform when used in combination, we also test all possible ordered combinations

of 2 and 3 scores.

Experiments are run over three distinct test sets (Table 11). Each dataset contains ordered

sets of scalar adjectives belonging to the same scale. In general, scalar adjectives describing

the same attribute can be ordered along a full scale (e.g. freezing to sweltering), or a half
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scale (warm to sweltering); all three test sets group adjectives into half scales. The three

datasets are described here, and their characteristics are given in Table 11.

deMelo (de Melo and Bansal, 2013)4. 87 adjective sets are extracted from WordNet ‘dumb-

bell’ structures (Gross and Miller, 1990), and partitioned into half-scale sets based on their

pattern-based evidence in the Google N-Grams corpus (Thorsten and Franz, 2006). Sets

are manually annotated for intensity relations (<, >, and =).

Wilkinson (Wilkinson and Oates, 2016). Twelve adjective sets are generated by presenting

crowd workers with small seed sets (e.g. huge, small, microscopic), and eliciting similar

adjectives. Sets are automatically cleaned for consistency, and then annotated for intensity

by crowd workers. While the original dataset contains full scales, we manually sub-divide

these into 21 half-scales for use in this study. Details on the modification from full- to

half-scales are in Appendix A.6.

Crowd. We also crowdsourced a new set of adjective scales with high coverage of the

PPDB vocabulary. In a three-step process, we first asked crowd workers whether pairs

of adjectives describe the same attribute (e.g. temperature) and therefore should belong

along the same scale. Second, sets of same-scale adjectives were refined over multiple rounds.

Finally, workers ranked the adjectives in each set by intensity. The final dataset includes

293 adjective pairs along 79 scales.

We measure the agreement between the gold standard ranking of adjectives along each scale

and the predicted ranking using three commonly-used metrics:

Pairwise accuracy. For each pair of adjectives along the same scale, we compare the

predicted ordering of the pair after global ranking (<, >, or =) to the gold-standard ordering

of the pair, and report overall accuracy of the pairwise predictions.

Kendall’s tau (τb). This metric computes the rank correlation between the predicted

4http://demelo.org/gdm/intensity/
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(rP (J)) and gold-standard (rG(J)) ranking permutations of each adjective scale J , incorpo-

rating a correction for ties. Values for τb range from −1 to 1, with extreme values indicating

a perfect negative or positive correlation, and a value of 0 indicating no correlation between

predicted and gold rankings. We report τb as a weighted average over scales in each dataset,

where weights correspond to the number of adjective pairs in each scale.

Spearman’s rho (ρ). We report the Spearman’s ρ rank correlation coefficient between

predicted (rP (J)) and gold-standard (rG(J)) ranking permutations. For each dataset, we

calculate this metric just once by treating each adjective in a particular scale as a single

data point, and calculating an overall ρ for all adjectives from all scales.

More detail on each evaluation metric is given in Appendix A.1.

4.4.3. Experimental Results

The results of the global ordering experiment, reported in Table 12, are organized as follows:

Score Accuracy pertains to performance of the scoring methods alone – prior to global

ranking – while Global Ranking Results pertains to performance of each scoring method

as used in the global ranking algorithm. Within Score Accuracy there are two metrics.

Coverage gives the percent of unique same-scale adjective pairs from the test set that can be

directly scored using the given method. For scorepat, covered pairs are all those that appear

together in any recognized pattern; for scorepp, covered pairs are those directly connected

in JJGraph by one or more direct edges; for scoresocal, covered pairs are all those for which

both adjectives are in the SO-CAL lexicon and the metric is defined. Pairwise Accuracy

gives the accuracy of the scoring method (before global ranking) on just the covered pairs,

meaning that the subset of pairs scored by each method varies. Within Global Ranking

Results, we report pairwise accuracy, weighted average τb, and ρ calculated over all pairs

after ranking – including both pairs that are covered by the scoring method, and those

whose pairwise intensity relationship has been inferred by the ranking algorithm.

The results indicate that the pairwise score accuracies (before ranking) for scorepat and
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Score Accuracy
(before ranking)

Global Ranking Results

Test
Set

Score Type Coverage Pairwise
Acc.

Pairwise
Acc.

Avg.
τb

ρ Example Predicted Scale

deMelo
scorepat 0.48 0.844 0.650 0.633 0.583 {clean} < {spotless, immaculate}*
scorepp 0.33 0.458 0.307 0.071 0.090 {immaculate, clean} < {spotless}
scoresocal 0.28 0.546 0.246 0.110 0.019 {clean} < {spotless} < {immaculate}
scorepat+socal 0.61 0.757 0.653 0.609 0.533 {clean} < {spotless} < {immaculate}
scorepat+socal+pp 0.70 0.722 0.644 0.564 0.482 {clean} < {spotless} < {immaculate}

Crowd
scorepat 0.11 0.784 0.321 0.203 0.221 {limited, low, scarce}
scorepp 0.74 0.676 0.597†† 0.437† 0.405 {low} < {limited} < {scarce}*
scoresocal 0.35 0.757 0.421 0.342 0.293 {limited, low, scarce}
scoresocal+pp 0.81 0.687 0.621†† 0.470†† 0.465 {low} < {limited} < {scarce}*
scoresocal+pat+pp 0.82 0.694 0.639†† 0.495†† 0.480 {low} < {limited} < {scarce}*

Wilkinson
scorepat 0.44 0.852 0.475 0.441 0.435 {quick} < {speedy, fast}
scorepp 0.80 0.753 0.639 0.419 0.450 {quick} < {fast} < {speedy}*
scoresocal 0.31 0.895 0.312 0.317 0.422 {fast} < {speedy} < {quick}
scorepat+pp 0.89 0.833 0.738†† 0.605 0.564 {quick} < {fast} < {speedy}*
scorepat+socal+pp 0.89 0.833 0.754†† 0.638 0.611 {quick} < {fast} < {speedy}*

††: p ≤ .01 †: p ≤ .05

Table 12: Pairwise relation prediction and global ranking results for each score type in
isolation, and for the best-scoring combinations of 2 and 3 score types on each dataset.
For the global ranking accuracy and average τb results, we denote with the † symbol scores
for metrics incorporating paraphrase-based evidence that significantly out-perform both
scorepat and scoresocal under the paired Student’s t-test, using the Anderson-Darling test
to confirm that scores conform to a normal distribution (Fisher, 1935; Anderson and Darling,
1954; Dror et al., 2018). Example output is also given, with correct rankings starred.

scoresocal are higher than those of scorepp for all datasets, but that their coverage is rela-

tively limited. The one exception is the deMelo dataset, where scorepat has high coverage

because the dataset was compiled specifically by finding adjective pairs that matched lex-

ical patterns in the corpus. For all datasets, highest coverage is achieved using one of the

combined metrics that incorporates paraphrase-based evidence.

Figure 22 examines the trade-off between each score type’s coverage and accuracy in more

detail. Here are presented the percent of all unique adjective pairs from the three datasets

(878 pairs total) covered by each score type, plotted against the pairwise accuracy of each

score type on the pairs it covers. Points to the upper right have both high coverage and

high accuracy. Visualized in this way, it is straightforward to see that combining two or

three score types increases the percentage of pairs covered, without sacrificing a substantial
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Figure 22: Scatterplot of the proportion of all unique pairs from the 3 datasets (878 pairs
total) covered by each score type, versus the pairwise accuracy of each score type on the
pairs it covers. Combining the three score types together (scorepat+socal+pp) produces the
best balance of coverage and accuracy.

amount in terms of accuracy. The best balance of coverage and accuracy is achieved by

scorepat+socal+pp, which has 75% accuracy at 79% coverage.

The impact of these trends is visible on the Global Ranking Results. When using pairwise

intensity scores to compute the global ranking, higher coverage by a metric drives better

results, as long as the metric’s accuracy is reasonably high. Thus the paraphrase-based

scorepp, with its high coverage, gets better global ranking results than the other single-

method scores for two of the three datasets. Further, we find that boosting coverage with a

combined metric that incorporates paraphrase evidence produces the highest post-ranking

pairwise accuracy scores overall for all three datasets, and the highest average τb and ρ on

the Crowd and Wilkinson datasets. We conclude that incorporating paraphrase evidence

can improve the quality of this model for ordering adjectives along a scale because it gives

high coverage with reasonably high quality.
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The performance trends on the deMelo dataset differ from those on the Crowd and Wilkin-

son datasets. In particular, scorepp and scoresocal have substantially lower pre-ranking

pairwise accuracy on the pairs they cover in the deMelo dataset than they do for Crowd

and Wilkinson: scorepp has an accuracy of just 0.458 on covered pairs in the deMelo dataset,

compared with 0.676 and 0.753 on the Crowd and Wilkinson datasets, and score differences

for scoresocal are similar. The near-random prediction accuracies of scorepp and scoresocal

on deMelo before ranking lead to near-zero correlation values on this dataset after global

ranking. To explore possible reasons for these results, we assessed the level of human agree-

ment with each dataset in terms of pairwise accuracy. For each test set, we asked five

crowd workers to classify the intensity direction for each adjective pair (ju, jv) in all scales

as less than (<), greater than (>), or equal (=). We found that humans agreed with the

‘gold standard’ direction 65% of the time on the Bansal dataset, versus 70% of the time

on the Crowd and Wilkinson datasets. It is possible that the more difficult nature of the

Bansal dataset, coupled with its method of compilation (i.e. favoring adjective pairs that

co-occur with pre-defined intensity patterns), lead to the lower coverage and lower accuracy

of scorepp and scoresocal on this dataset.

4.5. Indirect Question Answering

The second task that we address is answering indirect yes or no questions. Several studies

of pragmatics have observed that answers to such polar questions frequently omit an explicit

yes or no response (Grice, 1975; Hirschberg, 1984, 1985; Green and Carberry, 1994, 1999;

de Marneffe et al., 2010). For example:

Q: Did the Eagles win the Super Bowl again?

A: They lost the divisional playoff.

Hirschberg (1985) attributes these indirect responses to attempts by the answering speaker

to provide enough information so that the direct response can be derived, while saying as

much as she truthfully can that is relevant to the exchange.
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In some cases the implied direct answer depends on the relative intensity of adjective mod-

ifiers in the question and answer. For example, in the exchange:

Q: Was he a successful ruler?

A: Oh, a tremendous ruler.

the implied answer is yes, which is inferred because successful ≤ tremendous in terms of

relative intensity. Conversely, in the exchange:

Q: Does it have a large impact?

A: It has a medium-sized impact.

the implied answer is no because large > medium-sized.

de Marneffe et al. (2010) compiled an evaluation set for this task by extracting 123 examples

of such indirect question-answer pairs (IQAP) from dialogue corpora (including the two

examples repeated above). In each exchange, the implied answer (annotated by crowd

workers to be yes or no5) depends on the relative intensity relationship between modifiers in

the question and answer texts. In their original paper, the authors utilize an automatically-

compiled lexicon to make a polarity prediction for each IQAP.

4.5.1. Predicting Answer Polarity

Our goal is to see whether paraphrase-based scores are useful for predicting the polarity of

answers in the IQAP dataset. As before, we compare the quality of predictions made using

the paraphrase-based evidence with predictions made using pattern-based, lexicon-based,

and combined scoring metrics.

To use the pairwise scores for inference, we employ a decision procedure nearly identical to

that of de Marneffe et al. (2010). If jq and ja are scorable (i.e. have a scorable intensity

relationship along the same half-scale), then jq ≤ ja implies the answer is yes (first example

above), and jq > ja implies the answer is no (second example). If the pair of adjectives is

5The original dataset contains two additional examples where the answer is annotated as uncertain, but
de Marneffe et al. (2010) exclude them from the results and so do we.
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Given: A dialogue exchange consisting of a polar question and answer, where the answer
depends on the relative intensities of distinct modifiers jq and ja in the question and answer
respectively:

1. if jq or ja are missing from the score vocabulary, predict “UNCERTAIN”

2. else, if score(JJq, JJa) is undefined, predict “NO”

3. else, if score(JJq, JJa) ≥ 0, predict “YES”

4. else, predict “NO”

5. If the question or answer contains negation, map a “YES” answer to “NO and a “NO”
answer to “YES”

Figure 23: Decision procedure for using pairwise intensity scores for predicting polarity of
an IQAP instance, based on de Marneffe et al. (2010).

not scorable, then the predicted answer is no, as the pair could be antonyms or completely

unrelated. If either jq or ja is missing from the scoring vocabulary, the adjectives are

impossible to compare and therefore the prediction is uncertain. The full decision procedure

is given in Figure 23.

4.5.2. Experiments

The decision procedure in Figure 23 is carried out for the 123 IQAP instances in the

dataset, varying the score type. We report the accuracy, and macro-averaged precision,

recall, and F1-score of the 85 yes and 38 no instances, in Table 13 alongside the percent

of instances with adjectives out of vocabulary. Only the combined scores for the two best-

scoring combinations, scoresocal+pp and scoresocal+pat+pp, are reported.

The simplest baseline of predicting all answers to be “YES” gets highest accuracy in this

imbalanced test set, but all score types perform better than the all-“YES” baseline in terms

of precision and F1-score. Bouyed by its high precision, the scoresocal – which is derived

from a manually-compiled lexicon – scored higher than scorepp and scorepat. But it mis-

predicted 33% of pairs as uncertain because of its limited overlap with the IQAP vocabulary.

Meanwhile, scorepp had relatively high coverage and a mid-level F-score, while scorepat

scored poorly on this dataset due to its sparsity; while all modifiers in the IQAP dataset
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Method %OOV Acc. P R F

all-“YES” .00 .691 .346 .500 .409

deMarneffe (2010) .02 .610 .597 .594 .596

scoresocal .33 .504 .710 .481 .574
scorepp .09 .496 .568 .533 .550
scorepat .07 .407 .524 .491 .507

scoresocal+pp .09 .634 .690 .663 .676
scoresocal+pat+pp .06 .642 .684 .683 .684

scoresocal+pat+pp+demarneffe .01 .667 .675 .701 .688

Table 13: Accuracy and macro-averaged precision (P), recall (R), and F1-score (F) over yes
and no responses on 125 question-answer pairs. The percent of pairs having one or both
adjectives out of the score vocabulary (and therefore resulting in an uncertain prediction)
is listed as %OOV.

are in the Google N-grams vocabulary, most do not have observed patterns and therefore

return predictions of “NO” (item 2 in Figure 23). As in the global ranking experiments,

the paraphrase-based evidence is complementary to the lexicon-based evidence, and thus

the combined scoresocal+pp and scoresocal+pat+pp produce significantly better accuracy than

any score in isolation (McNemar’s test, p < .01), and also out-perform the original expected

ranking method of de Marneffe et al. (2010) (although they do not beat the best-reported

score on this dataset, F-score=0.706 (Kim and de Marneffe, 2013)). Further, because the

deMarneffe method has high coverage (only 2% of pairs OOV), we can add it as a fourth

scoring type to the combined scoresocal+pat+pp in order to increase its coverage further.

Doing so produces our highest F-score overall (0.688).

A detailed error analysis of the results produced by scoresocal+pat+pp reveals that of the 46

questions it got wrong, 7 (15%) were due to one or both adjectives being OOV, 11 (24%)

were questions where the adjective in the answer was modified by an intensifying adverb,

which was not handled by our decision procedure, 4 (9%) were cases where the question and

answer adjectives were synonymous, and the rest (roughly 50%) were caused by incorrect

polarity predictions. Therefore, further gains on this task might be made by modifying the

decision procedure to handle adverb modifiers, and improving the accuracy of the adjective
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intensity prediction method.

4.6. Conclusion

The pivot method used to extract bilingually-induced paraphrases is built on top of tech-

niques for phrase-based machine translation. As a result, some paraphrases in PPDB are

composed of a single-word term on one side, and a multi-word phrase that respects sen-

tence constituent boundaries on the other. This, coupled with their wide coverage, makes

bilingually-induced paraphrases uniquely useful for studying the meaning of compositional

phrases at scale.

In this chapter, we focused on adjectival phrase paraphrase pairs as a source of informa-

tion for inferring relative scalar adjective intensity. We found that this paraphrase-based

intensity evidence produces pairwise predictions that are less precise than those produced

by pattern- or lexicon-based evidence, but with substantially higher coverage. Thus para-

phrases can be successfully used as a complementary source of information for reasoning

about adjective intensity.

This finding supports one of the central themes of this thesis – that paraphrase-based signals

can be combined effectively with other types of features to produce robust models of lexical

semantics.
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CHAPTER 5 : Extracting Sense-specific Examples of Word Use via Bilingual

Pivoting

5.1. Introduction

The previous two chapters examined ways in which signals, or features, derived from

bilingually-induced paraphrases can be used directly in models for lexical semantic tasks.

We saw that while paraphrase-based signals were reasonably effective for discriminating

word sense and predicting scalar adjective intensity on their own, in both cases the model

accuracy improved when combining paraphrase features with monolingually-extracted fea-

tures like contextual similarity and lexico-syntactic patterns. In this way, the bilingually-

and monolingually-induced features were shown to be complementary.

This chapter shifts focus toward a method for using paraphrases to build sense-tagged cor-

pora which can then be used to train models for sense-aware tasks. Namely, we exploit

bilingual pivoting (Bannard and Callison-Burch, 2005) – the same technique used to ex-

tract PPDB – as a means to extract sense-specific examples of word and phrase usage. This

chapter details the process of extracting sentences for a target word pertaining to a partic-

ular sense. In the next chapter, we will use these sense-specific contexts to train models for

tasks where contextualized meaning is important.

5.2. Motivation

Firth famously said that “The complete meaning of a word is always contextual, and no

study of meaning apart from a complete context can be taken seriously” (Firth, 1935). While

lexical semantic tasks, such as relation prediction, have been studied extensively in a non-

contextual setting (as we did in Chapters 3 and 4), applying such models to a downstream

task like textual inference or question answering requires taking the full context into account.

For example, it may be true that a flower is a type of plant, but flower is not within the

realm of possible answers to the question “Which plant will GM close next year?”
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Many NLP tasks are built around the challenge of inferring meaning within a specific

context. Word sense induction, for example, aims to enumerate the potential different

meanings of a given phrase within a large corpus (Navigli, 2009), and typically does so by

comparing the contexts of each phrase instance. A recent trend in representation learning

is to model semantics at the word sense level rather than the word type level, either via

continuous models of contextual meaning (Peters et al., 2017, 2018; Devlin et al., 2019), or

discrete sense representations (Reisinger and Mooney, 2010; Huang et al., 2012; Neelakantan

et al., 2014; Chen et al., 2014; Guo et al., 2014; Li and Jurafsky, 2015; Kawakami and Dyer,

2015; Mancini et al., 2017; Šuster et al., 2016; Upadhyay et al., 2017). Even within the field

of semantic relation prediction, some work has moved beyond the traditional non-contextual

task to a study of predicting semantic relations in context (Huang et al., 2012; Shwartz and

Dagan, 2016a; Vyas and Carpuat, 2017).

It can be a challenge to develop corpora for training models for tasks where contextualized

word meaning is important, since particular attention must be paid to making sure the

distribution of instances for a given word reflects its various meanings. Previous approaches

to constructing sense-aware corpora include manual annotation (Edmonds and Cotton,

2001; Mihalcea et al., 2004; Hovy et al., 2006; Weischedel et al., 2013), the use of existing

lexical semantic resources like WordNet (Miller, 1995; Vyas and Carpuat, 2017), supervised

sense tagging using word sense disambiguation systems (Ando, 2006; Zhong and Ng, 2010;

Rothe and Schütze, 2015), or unsupervised sense tagging based on foreign word alignments

(Gale et al., 1992; Dagan and Itai, 1994; Diab and Resnik, 2002; Ng et al., 2003; Lefever

et al., 2011).

This chapter proposes a new method for compiling sense-specific instances of word use in a

fully automatic way, inspired by the bilingual pivoting technique used to extract paraphrases

in PPDB (Bannard and Callison-Burch, 2005; Ganitkevitch et al., 2013; Pavlick et al.,

2015b). Our approach is based on the idea that the many fine-grained senses of a word

are instantiated by its paraphrases. For example, the word plant has different meanings
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corresponding to its paraphrases vegetable, installation, and factory. Our method enables

the automatic extraction of sentences containing plant in its factory sense (“The inspection

commission visited a graphite plant and a missile engine testing facility...”) or its vegetable

sense (“We have seen the first genetically modified plant raw goods arrive in Europe”).

Unlike other unsupervised methods for sense tagging that use foreign translations as proxies

for sense labels, our method uses same-language paraphrases to denote sense, and exploits

their shared translations to extract sense-specific sentences from bitext corpora. Because we

use same-language paraphrases as sense labels, it is straightforward to map the extracted

sentences to existing sense inventories.

The automatic sense-tagging method we describe in Section 5.4.3 is applied to produce

a new resource called Paraphrase-Sense-Tagged Sentences (PSTS), which contains up to

10,000 sentences for each of the 3 million highest-quality lexical and phrasal paraphrase

pairs in PPDB 2.0 (Pavlick et al., 2015b). In Section 5.5.3, the sentences in PSTS are

evaluated by humans based on how ‘characteristic’ they are of the paraphrase meaning,

and we describe a method for re-ranking the sentences to correlate with human judgments

of sentence quality. Chapter 6 builds on this chapter by demonstrating potential uses of

PSTS for training models for sense-aware tasks.

5.3. Methods for Sense Tagging

In general, there are three basic categories of techniques for generating sense-tagged corpora:

manual annotation, the application of supervised models for word sense disambiguation,

and unsupervised methods. Manual annotation asks humans to hand-label word instances

with a sense tag, assuming that the word’s senses are enumerated in an underlying sense

inventory (typically WordNet) (Petrolito and Bond, 2014). Manually sense-tagged corpora,

such as SemCor (Miller et al., 1994) or OntoNotes (Weischedel et al., 2013), can then be

used to train supervised word sense disambiguation (WSD) classifiers to predict sense labels

on untagged text. Top-performing supervised WSD systems achieve roughly 74% accuracy

in assigning WordNet sense labels to word instances (Ando, 2006; Rothe and Schütze,
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2015). In shared task settings, supervised classifiers generally out-perform unsupervised

WSD systems (Mihalcea et al., 2004).

Within the set of unsupervised methods, one of the most prolific ideas is to use foreign

translations as proxies for sense labels of polysemous words (Brown et al., 1991; Dagan,

1991) (see Section 2.2.2). This is based on the assumption that a polysemous English word

e will have different translations into a target language, depending on the sense of e that

is used. To borrow an example from Gale et al. (1992), if the English word e =sentence

is translated to the French f =peine (judicial sentence) in one context and the French

f ′ =phrase (syntactic sentence) in another, then the two instances in English can be tagged

with appropriate sense labels based on a mapping from the French translations to the En-

glish sense inventory. This technique has been frequently applied to automatically generate

sense-tagged corpora, in order to overcome the costliness of manual sense annotation (Gale

et al., 1992; Dagan and Itai, 1994; Diab and Resnik, 2002; Ng et al., 2003; Chan and Ng,

2005; Lefever et al., 2011). Our approach to unsupervised sense tagging in this chapter is

related, but different. Like the translation proxy approach, our method relies on having

bilingual parallel corpora. But in our case, the sense labels are grounded in English para-

phrases, rather than in foreign translations. This means that our method does not require

any manual mapping from foreign translations to an English sense inventory. It also enables

us to generate sense-tagged examples using bitext over multiple pivot languages, without

having to resolve sense mapping between languages.

5.4. Generating Paraphrase-Sense-Tagged Sentences

Here we propose a method for exploiting bilingual pivoting (Bannard and Callison-Burch,

2005) to construct a large dataset of sense-specific phrase instances in context. Bilingual

pivoting discovers same-language paraphrases by ‘pivoting’ over bilingual parallel corpora.

Specifically, if two English phrases such as coach and trainer are each translated to the

same Slovenian phrase trener in some contexts, then this is taken as evidence that coach

and trainer have approximately similar meaning. We use this idea in reverse: if two English
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phrases are known to have similar meaning (i.e. are paraphrases), we find the translations

they share in common, and find sentences in bitext corpora where each phrase has been

aligned to one of their common translations. For example, given the paraphrase pair coach

↔ trainer, if we want to find an English sentence where coach means trainer (as opposed

to bus or railcar), we look for sentences in English-Slovenian parallel corpora where coach

has been aligned to their common translation trener.

The general process for extracting PSTS sentences for PPDB paraphrase pair x ↔ y from

the English side of English-to-foreign bitext corpora is as follows.1 Because the pair x↔ y

is in PPDB, and PPDB was extracted using the pivot method, we can assume there exists

some set F xy of foreign phrases to which x and y have both been independently translated.

To find sentences containing x that correspond to its sense as a paraphrase of y, we simply

enumerate English sentences containing x from the parallel corpora where x is aligned to

some f ∈ F xy. Sentences for y are extracted in the same way. We refer to the set of English

sentences containing x in its sense as a paraphrase of y as Sẋy, and the set of English

sentences containing y in its x sense as Sxẏ. Note that for some other paraphrase pair

involving x, say x ↔ z, there may be sentences that appear in both Sẋy and Sẋz if their

sets of shared translations, F xy and F xz, overlap. The process is illustrated in Figure 24,

and described in further detail below.

5.4.1. Step 1; Finding Shared Translations

In order to find sentences containing the English term x where it takes on its meaning as a

paraphrase of y, we begin by finding the sets of foreign translations for x and y, F x and F y

respectively. These translations are enumerated by processing the phrase-based alignments

induced between English sentences and their translations within a large, amalgamated set

of English-to-foreign bitext corpora. Once the translation sets F x and F y are extracted for

the individual terms, we take their intersection as the set of shared translations, F xy.

1Note that x ↔ y is characterized by both the lexicalizations (word or phrase) of x and y, and a shared
part-of-speech tag (for words) or sentence constituent label (for phrases). For example, the paraphrase pair
NN: bug ↔ bother is separate from the pair VB: bug ↔ bother.
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Figure 24: Diagram of the process for extracting sentences containing the noun x =bug in
its y =virus sense from parallel corpora for PSTS set Sẋy. In Step (1), the set of translations
shared by bug and virus is enumerated and named F xy. In Step (2), the translations f ∈ F xy
are ranked by PMI(y, f), in order to prioritize bug ’s translations most ‘characteristic’ of
its meaning in the virus sense. In Step (3), sentences where bug has been aligned to the
French translation f =virus are extracted from bitext corpora and added to the set Sẋy.
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5.4.2. Step 2: Prioritizing Translations to Produce Characteristic Sentences

Our goal is to build Sẋy such that its sentences containing x are “highly characteristic” of x’s

shared meaning with y, and vice versa. However, not all pivot translations f ∈ F xy produce

equally characteristic sentences. For example, consider the paraphrase pair bug ↔ worm.

Their shared translation set, F bug,worm, includes the French terms ver (worm) and espèce

(species), and the Chinese term 虫 (bug). In selecting sentences for S
˙bug,worm, PSTS

should prioritize English sentences where bug has been translated to the most characteristic

translation for worm – ver – over the more general 虫 or espèce.

The degree to which a foreign translation is “characteristic” of an English term can be

quantified by the pointwise mutual information (PMI) of the English term with the foreign

term, based on the statistics of their alignment in bitext corpora. To avoid unwanted biases

that might arise from the uneven distribution of languages present in our bitext corpora,

we treat PMI as language-specific. Given language l containing foreign words f ∈ l, we use

shorthand notation fl to indicate that f comes from language l. The PMI of English term

e with foreign word fl can be computed as:

PMI(e, fl) =
p(e, fl)

p(e) · p(fl)
=
p(fl|e)
p(fl)

(5.1)

The term in the numerator of the rightmost expression is the translation probability p(fl|e),

which indicates the likelihood that English word e is aligned to foreign term fl in an English-

l parallel corpus. Maximizing this term promotes the most frequent foreign translations for

e. It is calculated as:

p(fl|e) =
count(e→ fl)∑
f ′∈l count(e→ f ′)

(5.2)

where (e→ fl) indicates the event that e is aligned to fl in a bitext sentence pair.
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The term in the denominator is the likelihood of the foreign word, p(fl). Dividing by

this term down-weights the emphasis on frequent foreign words. This is especially helpful

for mitigating errors due to mis-alignments of English words with foreign stop words or

punctuation. The foreign word probability is calculated as:

p(fl) =
count(fl)∑
f ′∈l count(f ′)

(5.3)

5.4.3. Step 3: Extracting Sentences

To extract Sẋy, the set of English sentences containing x for paraphrase pair x ↔ y, we

first order their shared translations, f ∈ F xy, by decreasing PMI(y, f). Then, for each

translation f in order, we extract up to 2500 sentences from the bitext corpora where x is

translated to f . This process continues until Sẋy reaches a maximum size of 10k sentences.2

As a result of selecting sentences containing x in decreasing order of PMI(y, f), we intend

for PSTS to include contexts where the sense of x is most closely related to its paraphrase

y. Table 14 gives examples of sentences extracted for various paraphrases of the adjective

hot, ordered by decreasing PMI.

(x↔ y) f log p(f |y) log p(f) PMI(y, f) Sentence segment

hot ↔ warm
cálida (es) -1.96 -12.75 10.79 With the end of the hot season last year, ...
ciep lego (pl) -3.92 -14.34 10.42 I think that a hot cup of milk...would be welcome.
chaudes (fr) -3.30 -12.63 9.33 Avoid getting your feet too close to hot surfaces...

hot ↔ spicy
吃辛辣 (zh) -4.41 -17.75 13.34 People...should shun hot dishes.

épicé (fr) -1.61 -14.32 12.72 Hot jambalaya!
pimentés (fr) -5.75 -17.34 11.59 Get your red hot pu-pus!

hot ↔ popular
en vogue (fr) -7.32 -16.46 9.14 Ross is so hot right now.
très demande (fr) -9.11 -17.47 8.36 This area of technology is hot.
热门 (zh) -3.61 -11.77 8.17 Now the town is a hot spot for weekend outings.

Table 14: Example PSTS sentence segments for the adjective x=hot as a paraphrase of
y ∈ {warm, spicy,popular}. For each example, the pivot translation f is given along with
its translation probability p(f |y), foreign word probability p(f), and PMI(y, f).

PSTS is extracted from the same English-to-foreign bitext corpora used to generate En-

2Note that this process means that for some frequent English words, PSTS contains sentences pertaining
to only four different translations.
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POS Paraphrase pairs Mean |Sẋy| Median |Sẋy|

N* 1.8M 856 75
V* 1.1M 972 54
R* 0.1M 1385 115
J* 0.3M 972 72

Total 3.3M 918 68

Table 15: Number of paraphrase pairs and sentences in PSTS by macro-level part of speech
(POS). The number of sentences per pair is capped at 10k in each direction.

glish PPDB (Ganitkevitch et al., 2013), consisting of over 106 million sentence pairs, and

spanning 22 pivot languages. Sentences are extracted for all paraphrases as needed to cover

the vocabulary in the experiments in Sections 6.2.3-6.4.4, as well as all paraphrases with

a minimum ppdbscore threshold of at least 2.0. The threshold value serves to produce a

resource corresponding to the highest-quality paraphrases in PPDB, and eliminates consid-

erable noise. In total, sentences were extracted for over 3 million paraphrase pairs covering

nouns, verbs, adverbs, and adjectives (21 part-of-speech tags total). Table 15 gives the total

number of paraphrase pairs covered and average number of sentences (combined for both

phrases) per pair. Results are given by macro-level part-of-speech, where, for example, N*

covers part-of-speech tags NN, NNS, NNP, and NNPS, and constituent tag NP.

5.5. Evaluating and Re-Ranking PSTS

In order to assess the quality of the resource we solicit human judgments. There are two

primary questions to address:

• Do automatically-extracted PSTS sentences for a paraphrase pair truly reflect the

shared sense of that paraphrase pair? Specifically, for sentences like sbug where sbug ∈

S
˙bug,virus, does the meaning of the word bug in sbug actually reflect its shared meaning

with virus?

• How well does the PMI-based unsupervised ranking method correlate with human

judgments of contextual similarity? If we draw a random sentence sbug from S
˙bug,virus,
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which was generated by pivoting over foreign translation f , does the value PMI(virus, f)

actually tell us how similar the meaning of bug is to virus in this sentence?

5.5.1. Human annotation setup

To investigate these questions, we ask humans to evaluate how characteristic PSTS sen-

tences are of their corresponding paraphrase pair. Specifically, for a paraphrase pair like

bug↔insect, annotators are presented with a sentence containing bug from S
˙bug,insect, and

asked whether bug means roughly the same thing as insect in the sentence. We repeat

the process in the other direction, showing annotators sentences containing insect from

Sbug,
˙insect, and asking them whether insect means roughly the same thing as bug in each

case. The annotators can choose from responses yes (the meanings are roughly similar),

no (the meanings are different), unclear (there is not enough contextual information to

tell), or never (these words can never have similar meaning). We instruct annotators to

ignore grammaticality in their responses, and concentrate specifically on the semantics of

the paraphrase pair. An example annotation instance within the user interface is shown in

Figure 25.

Figure 25: Screenshot of a single annotation instance for the sentence-paraphrase pair
(serror, bug).

Human annotation is run in two rounds, with the first round of annotation completed by

NLP researchers, and the second (much larger) round completed by crowd workers via

Amazon Mechanical Turk (MTurk). Responses from the first round of annotations are

used to construct ‘control’ instances to gauge worker accuracy and agreement in the second

round.

In the first round of annotation (done by NLP researchers), sentence-paraphrase instances
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are generated for annotation as follows. We begin with a list of 40 hand-selected poly-

semous target words (10 each of nouns, verbs, adjectives, and adverbs). For each target

word x, there are 3 paraphrases y randomly selected from PPDB (two lexical and one

phrasal).3 Next, for each paraphrase pair x ↔ y, we randomly select three sentences from

PSTS containing the target word x, sx ∈ Sẋ,y, and use them to form sentence-paraphrase

annotation instances (sx, y). Instances are also generated for each paraphrase pair in the

reverse direction, selecting three sentences containing y, sy ∈ Sx,ẏ, to form annotation in-

stances (sy, x). Of the 720 total instances generated in this way, we randomly select a batch

of 240 to present to researchers for annotation. The actual annotation is carried out by

a group of 10 annotators, split into 5 teams of 2. To encourage consistency, each pair of

annotators works together to annotate each instance. For redundancy, we also ensure that

each instance is annotated separately by two pairs of researchers. In this first round, the

annotators have inter-pair agreement of 0.41 Fleiss’ kappa (after mapping all never answers

to no), indicating weak agreement (Fleiss, 1971).

In the second round we follow a similar method for generating instances for annotation.

Starting with the same set of 40 target words, there are now 4 paraphrases (3 lexical, 1

phrasal) selected randomly from PPDB for each target. For each x↔ y paraphrase pair, we

randomly select 4 sentences from PSTS in each direction. Of the 1280 sentence-paraphrase

instances generated, we randomly choose 1000 total for annotation. Each instance is evalu-

ated individually by 7 workers on MTurk. In each MTurk assignment, we also include one

of the instances from round one that was annotated as unanimously yes or unanimously

no by the NLP researchers in order to gauge agreement between rounds. In round two, the

annotators have inter-annotator agreement of 0.33 Fleiss’ kappa (after mapping all never

answers to no), which is slightly lower than that of the NLP researchers in round 1. The

crowd workers had 75% absolute agreement with the ‘control’ instances inserted from the

previous round.

3In order to promote high-quality paraphrase pairs, we randomly select from paraphrases in PPDB having
a PPDB2.0 Score of at least 2.0 (for lexical paraphrases) or 3.0 (for phrasal paraphrases)
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5.5.2. Human annotation results

In order to assess the quality of sentences in the PSTS resource, we measure the average

annotator score for each instance, where no and never answers are mapped to the value

0, yes answers are mapped to the value 1, and unclear answers are ignored (because the

annotator indicated there was not enough contextual information to make a decision). The

combined results of this calculation from both rounds are given in Table 16.

Overall, the average score of each instance is 0.63, indicating that more sentence-paraphrase

instances from PSTS are judged by humans to have similar meaning than dissimilar mean-

ing. The results vary by part of speech, and whether the paraphrases involved are lexical

(i.e. single word) or phrasal. In general, adjectives produce higher-quality PSTS sentences

than the other parts of speech. For nouns and adjectives, phrasal paraphrase pairs are

judged to have higher quality than lexical paraphrase pairs. For verbs and adverbs, the

results are reversed.

POS Lexical/Phrasal Avg.Rating

NN
Lexical 0.57
Phrasal 0.67

VB
Lexical 0.66
Phrasal 0.51

JJ
Lexical 0.69
Phrasal 0.73

RB
Lexical 0.67
Phrasal 0.37

Total Combined 0.63

Table 16: Human evaluation of contextual similarity of sentence pairs.

Given that there is such variation in the quality of PSTS sentences, it would be useful

to have a metric that indicates quality. In the formation of PSTS, we used the point-

wise mutual information PMI(y, f) of the English paraphrase y with the shared foreign

translation f as an indicator for how characteristic a sentence containing English target
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word x is of its shared meaning with y. Here we evaluate whether that was actually a good

metric, by measuring the Spearman correlation (Appendix A.1) between the PMI metric

and averaged annotated human judgements of sentence-paraphrase quality. The results for

this calculation are given in Table 17.

POS ρ p-value

NN 0.12 0.04
VB 0.26 < 0.01
JJ 0.17 < 0.01
RB 0.29 < 0.01

Combined 0.22 < 0.01

Table 17: Spearman correlation (ρ) between PMI and average human rating of contextual
similarity for each sentence.

The Spearman correlation between the PMI metric and the average human rating for each

sentence-paraphrase instance was 0.22 (p < 0.01), indicating only a weak positive correla-

tion. In order to analyze why this is the case, we qualitatively examined instances that have

high PMI but low human rating (first case) and vice versa (second case). Table 18 shows

examples for each of these cases.

Case Reason
Example

Target Paraphrase Sentence Translation PMI Rating

High PMI,
Low Rating

More specific
paraphrase

tight watertight
...ensure the room is light
tight.

étanche (fr) 11.8 0.0

Opposite
ADVP

really not at all
Kate was really upset
when you made your
choice to come with us.

pas du tout (fr) 12.0 0.1

Low PMI,
High

Rating

Polysemous
paraphrase

bureau board
...a senior official with the
Beijing health bureau said
Friday.

�
éjÊ�Ó (ar) 0.7 1.0

Table 18: Examples of annotated instances where the PMI between the paraphrase and
shared translation did not correlate with the human rating.

In the first case, we examined ten target sentence-paraphrase instances that had an average

human rating below 0.2, and PMI of the English paraphrase with the shared foreign trans-

lation more than 11.4, or 1.5 standard deviations above the mean (the PMI values were
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approximately normally distributed over instances, with mean 6.3 and standard deviation

3.4). Examining these instances with high PMI but low human rating indicated two trends.

In eight of the ten cases, the paraphrase could be classified as a rarer and more specific

instance of the target word, and the shared foreign translation was also relatively rare (i.e.

had a smaller than average translation probability). The more specific paraphrase was not

an appropriate substitute for the target sentence in these cases, leading to a low human

rating. But because probability p(f) of the shared translation was low and the alignment

probability between the translation and the paraphrase, p(f |e), was relatively high (as

specific words tend to have fewer possible translations than general words), the PMI score

PMI(e, f) = p(f |e)
p(f) was high. The other two instances with high PMI but low human rating

were both ADVP paraphrase pairs, which were semantically opposites but likely extracted

as paraphrases via biligual pivoting due to instances where one of the adverbial modifiers

was translated in an opposite way. For example, the adverb phrases (really ↔ not at all)

are PPDB paraphrases, and may share an aligned foreign phrase like the French pas du tout

if, for example, really upset has been translated as pas du tout joyeux or not at all happy.

In the second case, we examined fifteen target sentence-paraphrase instances that had an

average human rating above 0.8, and PMI value less than 1.2, or 1.5 standard deviations

below the mean. The vast majority of these had low PMI driven by a low alignment

probability p(f |e), due to the paraphrase e being a polysemous word whose most frequent

sense is something other than the target.

5.5.3. Supervised Sentence Quality Ranking

Although PMI was used as a sentence quality indicator when extracting sense-specific sen-

tences for each paraphrase pair, our analysis indicates that PMI is only weakly correlated

with human judgements of sentence quality. In order to enable selection within PSTS of the

most characteristic sentences for each paraphrase pair for downstream tasks, this section

describes a model to re-rank PSTS sentences in a way that better correlates with human

judgements of their quality.
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Our goal is to train a model that can predict the average human quality rating for a target

sentence-paraphrase instance. Concretely, given a target word x, its paraphrase y, and a

sentence sx ∈ Sẋ,y extracted by pivoting over translation f , the model should predict a

score whose magnitude indicates how characteristic sx is of x’s shared meaning with y.

We formulate this as ordinary least squares linear regression, where the dependent variable

is the quality rating and the features are computed based on the input. There are four

groups, or types, of features used in the model:

• PPDB Features. For paraphrase pair x ↔ y, there are seven corresponding fea-

tures from PPDB 2.0 used as input to the model. These correspond to the pair’s

ppdbscore, and six additional features concerning translation and paraphrase prob-

abilities.

• Contextual Features. The three contextual features are designed to measure the

distributional similarity between the target x and paraphrase y, as well as the sub-

stitutability of paraphrase y for the target x in the given sentence. They include the

mean cosine similarity between paraphrase y and tokens within a two-word context

window of x in sentence sx; the cosine similarity between context-masked embeddings

for x and y in sx (using the method of Vyas and Carpuat (2017) – see Section 2.3.3);

and the AddCos lexical substitutability metric where y is the substitute, x is the

target, and the context is extracted from sx (Eq. 3.16) (Melamud et al., 2015b).

• Syntactic Features. There are five binary indicator features used to indicate the

coarse part-of-speech label assigned to paraphrase pair x ↔ y (NN, VB, RB, or JJ),

and whether x↔ y is a lexical or phrasal paraphrase pair.

• PMI. The final feature is simply PMI(y, f) (Eq. 5.1).

The features used as input to the model training process are the sixteen listed above, as

well as their interactions as modeled by degree-2 polynomial combinations (153 features
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total). During training and validation, we apply feature selection using recursive feature

elimination in cross-validation as detailed below.

The dataset available for training and evaluating the model is composed of the 1227 target

sentence-paraphrase instances that were annotated in one or both rounds of human eval-

uation, after ignoring instances marked as ‘unclear’ by two or more workers. The quality

rating for each instance is taken as the average annotator score, where no and never answers

are mapped to the value 0, yes answers are mapped to the value 1, and unclear responses

are ignored.

Due to the limited size of the dataset, we first use cross-validation to estimate the model

reliability, and subsequently re-train the linear regression model on the entire set of instances

for weighting sentences in PSTS. For model evaluation, we run 5-fold cross-validation. In

each fold, we first run recursive feature elimination with cross-validation (RFECV) (Guyon

et al., 2002) on the training portion, then train a linear model on the selected features and

predict ratings for the test portion. The predicted ratings on held-out portions from each

fold are compared to the mean annotator ratings, and Spearman correlation is calculated

on the combined set of all instances (Figure 26b).

The resulting correlation between predicted and human ratings is 0.40, which is substan-

tially higher than the correlation of 0.22 between target sentence PMI and human ratings.

Additionally, while a correlation of 0.40 is not very high, it is important to note that the

correlation between each individual annotator and the mean of other annotators over all

target sentence-paraphrase instances was only 0.37. Thus the model predicts the mean

annotator rating with roughly the same reliability as individual annotators.

Finally, we re-train the regression on the entire dataset of target-sentence instances (again

using RFECV to select features). This model can be used to score and re-rank all sentences

in the PSTS resource. In the chapter that follows, we refer to the score produced by this

model as the sentence quality score.
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(a) Correlation between PMI and average human rat-
ings

(b) Correlation between model-predicted and average
human ratings

Figure 26: The Spearman correlation between sentence PMI and average human rating is
ρ = 0.22 (a); by using linear regression to predicts average sentence ratings, the correlation
increases to ρ = 0.40 (b).

5.6. Conclusion

In Chapter 3 we assumed that the various meanings of a word could be modeled by discrete

sense clusters, and presented a method for partitioning the paraphrases of a target word

into clusters representing its coarse senses. In this chapter, we took the more extreme view

that the fine-grained senses of a word are instantiated by its paraphrases. We applied this

idea to the challenge of automatically building sense-tagged corpora. The proposed method

adapts bilingual pivoting (Bannard and Callison-Burch, 2005) to extract paraphrase-specific

examples of target words automatically from the English side of bilingual parallel corpora.

Our proposed method was used to produce a dataset called Paraphrase-Sense-Tagged Sen-

tences (PSTS) containing sentence-level contexts for over 3M paraphrase pairs from PPDB

(Ganitkevitch et al., 2013; Pavlick et al., 2015b). The quality of sentences in PSTS was eval-

uated by humans, who indicated that the majority of sentences pertaining to a paraphrase

pair were reflective of the shared meaning of that pair. In order to enable the selection of

the highest-quality sentences from PSTS, we also trained a regression model to predict the

human quality rating of each sentence.
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One of the limitations of the work in this chapter is that we avoided a direct comparison

between the sense-specific word usage examples in PSTS, and those that might be produced

using a pre-trained word sense disambiguation model. The advantages of using bilingual

pivoting, rather than a WSD model, to extract sense-specific contexts for target words are

that the process does not require an underlying sense inventory, making it flexible, and is

completely unsupervised. We leave the direct comparison between PSTS and a hypothetical

resource produced using a WSD model for future work.
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CHAPTER 6 : Applications of Sense-specific Examples of Word Use

6.1. Introduction

This chapter extends the previous one by demonstrating the ability to use sense-specific

word instances from the Paraphrase-Sense-Tagged Sentences (PSTS) dataset as a training

bed for three lexical semantic tasks: fine-grained sense embeddings, word sense induction,

and contextual relation prediction.

In the first case, we take the view that a word has as many fine-grained senses as it has para-

phrases, and we use PSTS as the basis for generating fine-grained sense (paraphrase-level)

embeddings for terms in PPDB. We describe two different methods for training paraphrase

embeddings over PSTS. Then, we evaluate the embeddings produced by each method on

a set of semantic similarity and relatedness benchmarks, and compare the performance of

each paraphrase-embedding method to a counterpart embedding model at the word type

level. We show that the paraphrase embeddings do a better job at capturing semantic

similarity than their word embedding counterparts.

In the second application, we describe a method for word sense induction that assumes

the PPDB sense clusters from Chapter 3 as a sense inventory, and uses the paraphrase

embeddings from PSTS to map word instances onto the most appropriate sense. The

method is shown to produce competitive results on two existing shared task datasets.

Finally, we use the PSTS sentences corresponding to known hypernym-hyponym pairs to

automatically generate training data for a contextual hypernym prediction model. The

dataset created is five times larger than existing datasets for this task. We train a contextual

hypernym prediction model on this PSTS dataset, and show that it leads to more accurate

predictions than the same model trained on a smaller, hand-labeled training set.
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6.2. Applications 1: Paraphrase Embeddings

In some applications, encoding terms at the type level may be too general because an indi-

vidual word or phrase can mean multiple things. Having one vector per phrase type means

that we cram all the meanings of a phrase into a single vector, which can be problematic.

For instance, when clustering paraphrases of bug by the sense of bug they convey, the vector

for bug ’s paraphrase mike encodes both its male-name sense and audio sense. Clustering al-

gorithms fail to cluster mike with microphone because the embedding for mike is dominated

by its name sense.

At a very fine-grained level, we might say that a given word has as many senses as it has

paraphrases; the word bug has slightly different senses when understood to be a paraphrase

of microphone, insect, or mosquito, although clearly the latter two meanings are related.

By assigning a different vector to each of bug ’s paraphrase-level senses, we hope to capture

the variety of semantic meaning attributable to each of bug ’s paraphrases.

This section proposes two approaches for generating paraphrase-level embeddings based on

the sentences available in PSTS. The first is based on the skip-gram word embedding model

(Mikolov et al., 2013b), and the second is based on the BERT contextual embedding model

(Devlin et al., 2019). For a paraphrase pair x ↔ y, we produce paraphrase embeddings in

each direction, vx→y and vy→x, which each reflect the meaning of the first term in its shared

sense with the second. For example, for a paraphrase pair like (bug ↔ pest), there is an

associated paraphrase embedding in each direction: the embedding vbug→pest encodes the

meaning of bug in its sense as a pest, and the embedding vpest→bug encodes the meaning

of pest in its sense as a bug. The embeddings are not equal in both directions because the

paraphrase relationship is not necessarily synonymous. In the case of (bug ↔ pest), for

example, pest is more general than bug. Ideally, the paraphrase-level embeddings should

encode this distinction.
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6.2.1. Paraphrase-level skip-gram Transfer Embeddings (PP-SG)

The first general approach taken to train paraphrase-level embeddings for paraphrase pairs

in PSTS is based on continued training of skip-gram embeddings (Mikolov et al., 2013b,a).

To train a paraphrase-level embedding such as vbug→pest, we start with a pre-trained skip-

gram model, and continue training the word embedding for bug using its contexts from

the PSTS sentences in Sbug,pest. While running continued training, we hold the context

embedding layer fixed and apply the gradient update only to the word embedding for bug.

The resulting embedding vbug→pest (which we refer to as PP-SG) thus shares the same

embedding space as the original pre-trained model, and can be compared directly with

word-type embeddings (abbreviated WT-SG) in the original pre-trained embedding space.

The equation for updating the paraphrase vector vw for each input sentence is:

vt+1
w = vtw − α ·

(∑
c∈C

(σ(vc · vtw)− 1) · vc +
∑
c∈N

σ(vc · vtw) · vc
)

(6.1)

where vtw is a vector for term w at time t, C is the set of context words appearing within

a fixed-width window of w, N is the set of randomly-selected negative sample words (with

size |C| · n, where n is a tuned parameter), and α is the learning rate. The function σ is

the logistic function, i.e. σ(x) = 1
1+e−x .

To train paraphrase-level embeddings for PSTS, we begin with a skip-gram model that has

been pre-trained on the Annotated Gigaword corpus (Napoles et al., 2012), and includes

embeddings for all single- and multi-word phrases in PPDB2.0.1 The skip-gram model has a

variety of parameters to be tuned, including the context window size, learning rate, number

of negative samples, and epochs. In addition to these, we introduce the continued training

1The base skip-gram model is trained with the following parameters: context window of size 3, learning
rate alpha from 0.025 to 0.0001, minimum word count 100, sampling parameter 1e−4, 10 negative samples
per target word, and 5 training epochs. Embeddings for multi-word phrases were generated by replacing
each instance of a multi-word phrase from the PPDB vocabulary in the training corpus with single token by
substituting spaces for underscores (e.g. merchant marine → merchant marine).
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parameters of maximum number of sentences from Sxy (ordered by decreasing quality score)

to use for continued training, and minimum PMI of sentences chosen for continued training.

All of these parameters are tuned using grid search, where we evaluate each parameter

combination on a small hand-crafted development set of target words and their paraphrases

using a word sense clustering task. For each of four target words x in (bug.n, film.n, hot.j,

and bright.j ), we train paraphrase-level embeddings vx→p for paraphrases of x. We then

use K-Means to cluster the resulting paraphrase vectors, and evaluate the quality of the

predicted clustering as compared to hand-crafted sense clusters using the metrics paired F-

Score and V-Measure. We choose the parameter setting that maximizes the sum of F-Score

and V-Measure for this test.2

This continued skip-gram training approach is carried out for all paraphrases present in

PSTS. To qualitatively examine the resulting paraphrase embeddings, Table 19 shows the

nearest word-type neighbors in the original model space prior to continued training for

words bug, pest, and microbe. Following, Table 20 shows the nearest word-type and para-

phrase neighbors in the model space for the corresponding paraphrase embeddings vbug→pest,

vpest→bug, vbug→microbe, and vmicrobe→bug after continued training.

Intuitively, the continued training process should nudge paraphrase embeddings away from

the word-type embedding from which they began (which will be dominated by that word’s

most frequent sense), and toward the sense indicated by the paraphrase. This is what

appears to be happening. For example, the nearest neighbors of the word type bug before

continued training contain terms related to bug ’s sense as a computer virus (viruses, y2k),

but the nearest word-type neighbors for the paraphrase vector vbug→pest after continued

training include only words related to bug ’s pest sense (pest, insect, infestations, bug, and

armyworm). Likewise, the nearest neighbors of the word type pest include different types

of pests (e.g. weed, fungus), while the nearest neighbors of the paraphrase vector vpest→bug

are concentrated closer to bug-type pests (e.g. insect, armyworm).

2The final parameters chosen are a 5-token context window, 5 negative samples (n = 5), 10 epochs, initial
learning rate alpha=0.25, maximum 150 sentences from Sẋy and Sxẏ, and minimum PMI 8.0.
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Word vector (WT-SG) Nearest words by WT-SG vector

vbug bugs, worm, viruses, y2k, infestation

vpest pests, insect, weed, fungus, infestation

vmicrobe
bacterium, bacteria, parasite, organism,

pathogen

Table 19: Nearest neighbors for words bug, pest, and microbe in the original model space,
prior to continued training.

Paraphrase vector (PP-SG)
Nearest words by WT-SG

vector
Nearest paraphrases by PP-SG vector

vbug→pest
pest, insect, infestations, bug,

armyworm

(pest→bug), (bug→worm),

(worm→bug), (bug→debugging),

(pest→cockroach)

vpest→bug
pest, insect, infestations,

armyworm, pests

(bug→pest), (pest→cockroach),

(bug→worm), (worm→bug),

(bug→debugging)

vbug→microbe
bug, parasite, bacteria,

bacterium, microbe

(microbe→bug), (bug→germ),

(bug→bacterium), (microbe→germ),

(bug→microorganism)

vmicrobe→bug
microbe, bacteria, bacterium,

parasite, microbes

(bug→microbe), (microbe→germ),

(bug→germ), (bacterium→bug),

(germ→bug)

Table 20: Nearest neighbors for paraphrase-level skip-gram transfer embeddings, after con-
tinued training.

6.2.2. Paraphrase-level BERT Embeddings (PP-BERT)

The Bidirectional Encoder Representations from Transformers (BERT) method of Devlin

et al. (2019) also provides a convenient mechanism for deriving a context-specific repre-
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sentation for paraphrases. Given a token tk in context (t1, . . . , tk, . . . , tn), BERT produces

a vector for tk that is corresponds to the final hidden layer for that token within a deep

bidirectional Transformer encoder (Vaswani et al., 2017).

We use the pre-trained BERT-base (uncased) model3 to generate paraphrase-specific em-

beddings (called PP-BERT) based on the contexts in PSTS. For a paraphrase pair x↔ y,

we produce vectors vx→y and vy→x that are both specifically linked to pair x ↔ y. The

vectors are derived from the PSTS contexts Sẋy and Sxẏ respectively as follows.

Assume the set of sentences containing x, Sẋy, is ranked based on the sentence quality

ranking model developed in Section 5.5.3 and truncated to have length at most m (we

set m = 100). Each sentence sẋyi ∈ Sẋy contains the target word x, and can therefore

be used to generate a sentence-specific BERT representation for x.4 To combine the term

embeddings corresponding to all m sentences s ∈ Sẋy, we simply take a weighted average

over the m sentences, where the weight ascribed to each sentence is the the quality score for

that sentence. Table 22 gives the nearest paraphrase neighbors for four resulting PP-BERT

paraphrase embeddings of bug.

As we did with the skip-gram embeddings, it is useful to have a comparable word type-level

BERT embedding model for comparison to form type-level BERT embeddings (abbreviated

WT-BERT), we randomly select 100 instances of a term x from PSTS sets Sẋ? and take

their average. Table 21 gives the nearest word-type neighbors for three terms in WT-BERT

embedding space.

3https://github.com/google-research/bert
4If x is a phrase with multiple words, we average the BERT representations for each token in x to get

the contextual representation for the phrase x.
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Term vector (WT-BERT) Nearest terms by WT-BERT vector

vbug bug, a bug, bugging, fault, problem

vpest
pests, pesticide, pest-control, pesticides, the

pest

vmicrobe
microbes, microbial, micro-organism,

anti-microbial, a bacterium

Table 21: Nearest neighbors for words bug, pest, and microbe in the WT-BERT embedding
space.

Paraphrase vector (PP-BERT)
Nearest terms by WT-BERT

vector

Nearest paraphrases by PP-BERT

vector

vbug→pest
bug, the bug, bugs, bugging,

a bug

(bug→animal), (bug→virus),

(bug→worm), (bug→debugging),

(bug→problem)

vpest→bug
pest, pests, the pest, insect,

pest-control

(pest→lice), (pest→cockroach),

(pest→larvae), (pest→infection),

(pest→parasite)

vbug→microbe
bug, the bug, bugs, the bugs,

a virus

(bug→germ), (bug→bacterium),

(bug→virus), (bug→thing),

(bug→microorganism)

vmicrobe→bug

microbe, microbes, microbial,

micro-organism,

micro-organisms

(microbe→germ),

(microbe→bacterium),

(microbe→organism),

(microbe→microorganism),

(microbe→micro-organism)

Table 22: Nearest neighbors for paraphrase-level PP-BERT token embeddings.
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6.2.3. Intrinsic Evaluation: Predicting Semantic Similarity

Having constructed phrase representations that encode meaning at the paraphrase level,

we next test the hypothesis that these paraphrase-level embeddings, which capture a fine-

grained sense of a word, capture semantic meaning more precisely than their embedding

counterparts at the word type level. For this we evaluate both types of representations

via semantic similarity and relatedness prediction, which is frequently used as an intrinsic

evaluation method for word embedding quality (Baroni et al., 2014).

The task of semantic similarity prediction is as follows: given two terms x and y (out of

context), a system must assign a score that indicates the level of semantic similarity or relat-

edness that holds between the terms. High scores correspond to high similarity/relatedness

and vice versa. The task is evaluated by calculating the correlation of the system’s pre-

dictions with human-annotated values. Generally, systems compute a predicted value for a

word pair (x, y) based on the cosine similarity of their term embeddings, cos(vx, vy).

For both types of embeddings generated from PSTS (i.e. skip-gram transfer embeddings

and BERT paraphrase embeddings), we compare the performance of these paraphrase-level

embeddings to their word-type counterparts. This enables us to evaluate the hypothesis that

representing terms at the fine-grained paraphrase level leads to more accurate semantic rep-

resentation. Specifically, we run experiments comparing four different term representation

methods:

• skip-gram Embeddings

– WT-SG. Word-type embeddings from the pre-trained skip-gram model used as

the starting point for training PP-SG embeddings.

– PP-SG. The paraphrase-level embeddings produced by continued training of

WT-SG embeddings on the top-100 sentences (in terms of PMI) for each para-

phrase pair in PSTS.
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• BERT Embeddings

– WT-BERT. Word-type embeddings generated by averaging the BERT repre-

sentation for each term in 100 randomly selected contexts from PSTS.

– PP-BERT. The paraphrase-level embeddings produced by averaging the BERT

embeddings for the top-100 sentences (in terms of PMI) for each paraphrase pair

in PSTS.

When computing similarity between a pair of terms using paraphrase embeddings, the

question of how to select which paraphrases to use to represent each term in the pair

naturally arises. Concretely, given term x with paraphrase set PPSet(x), and term y with

paraphrase set PPSet(y), how do we choose paraphrases p ∈ PPSet(x) and q ∈ PPSet(y)

to represent terms x and y with embeddings vx→p and vy→q? In these experiments, we

compare three methods:

• Mean Similarity (mean). When calculating similarity between terms x and y, we

can take the mean cosine similarity between all paraphrase embeddings for x and all

paraphrase embeddings for y:

avgp∈P (x),q∈P (y)cos(vx→p, vy→q) (6.2)

• Maximum Similarity (max). When representing terms x and y, we choose the

pair of paraphrase embeddings vix, vjy that maximize the pairwise cosine similarity

between the two terms:

maxp∈P (x),q∈P (y)cos(vx→p, vy→q) (6.3)

• Shortest Path (sp). Alternatively, we can use the PPDB graph itself to help disam-

biguate the terms x and y, and in doing so, select which paraphrase representations
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Figure 27: A partial view of the PPDB graph between fox and hound, with the shortest
path highlighted. When calculating similarity between these terms using shortest path
paraphrase embeddings, hound would be represented using vhound,puppy and fox would be
represented using vfox,beast.

to use. If terms x and y are direct paraphrases of one another in PPDB, we simply

use the corresponding embeddings vx→y and vy→x. If x and y are not direct para-

phrases in PPDB, but there exists a shortest path between them in the PPDB graph

(x, p, . . . , q, y), then we use the embeddings for paraphrases x ↔ p and y ↔ q such

that p and q lie directly adjacent to x and y respectively along the shortest path (see

Figure 27). To compute the shortest path, we create a graph representation of PPDB,

where terms are nodes and edges represent direct paraphrases. We weight each edge

(x, y) by the inverse ppdbscore for pair x↔ y.

Semantic similarity and relatedness prediction is run over seven existing benchmark datasets

– four containing primarily noun pairs (WS353-SIM, WS353-REL (Finkelstein et al., 2002),

MC-30 (Miller and Charles, 1991), and RG-65 (Rubenstein and Goodenough, 1965)), two

containing primarily verbs (SimVerb-3500 (Gerz et al., 2016) and YP-130 (Yang and Powers,

2005)), and one containing a mix of parts of speech (SimLex-999 (Hill et al., 2015)). Of the

seven benchmarks, all are focused on semantic similarity with the exception of WS353-REL,
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WS353-SIM WS353-REL MC-30 RG-65 SIMLEX-999 SimVerb-3500 YP-130

Predominant POS NN mix VB

Original Dataset Size 203 252 30 65 999 3500 130
Pct Pairs Covered 0.99 0.99 1.00 0.98 0.99 0.92 0.91

Embedding Method WS353-SIM WS353-REL MC-30 RG-65 SIMLEX-999 SimVerb-3500 YP-130

WT-SG 0.734 0.567 0.671 0.666 0.414 0.398 0.644
PP-SG mean 0.578 0.426 0.724 0.741 0.482 0.353 0.444
PP-SG max 0.638 0.438 0.822 0.814 0.601 0.510 0.657
PP-SG sp 0.648 0.465 0.821 0.748 0.604 0.530 0.614

WT-BERT 0.700 0.541 0.754 0.786 0.534 0.423 0.653
PP-BERT mean 0.720 0.559 0.767 0.774 0.533 0.436 0.658
PP-BERT max 0.739 0.610 0.881 0.912 0.589 0.465 0.707
PP-BERT sp 0.721 0.579 0.802 0.786 0.588 0.490 0.673

Table 23: Semantic similarity and relatedness results. For each of 7 datasets, we use the
specified Embedding type and paraphrase selection Method to represent pairs for computing
semantic similarity or relatedness. Results are given in terms of Spearman correlation with
human-annotated ratings.

which assigns scores based on term relatedness (e.g. related terms hotel and reservation have

a high relatedness score, while synonymous terms midday and noon have a high similarity

score).

Table 23 gives the results on the seven benchmarks for each combination of term represen-

tation and (for paraphrases) similarity calculation method. Scores are reported in terms

of Spearman correlation (ρ) between model predictions and human-annotated similarity

scores (Appendix A.1). All correlation coefficients noted are significant (p ≤ 0.001). The

table also lists the percent of pairs covered by all embedding types in each dataset, as some

datasets contained words that were out of vocabulary for the skip-gram embeddings. For

the purpose of direct comparison, any word pair that was out of vocabulary for one or more

embedding types was ignored in scoring.

For both the skip-gram transfer embeddings and averaged BERT paraphrase embeddings,

we find that predicting semantic similarity at the paraphrase level leads to generally better

results than doing so at the word-type level, indicating that the paraphrase-level embeddings

provide a more precise encoding of meaning than the word-type embeddings. The only

exceptions to this trend occurred on the WS353 datasets for the skip-gram embeddings,
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where the word-type embeddings out-performed their paraphrase-level counterparts.

Unsurprisingly, we also find that for the noun benchmarks, the 768-dimensional BERT para-

phrase embeddings out-performed the 300-dimensional skip-gram representations. However,

for two of the three benchmarks containing verbs, the smaller skip-gram transfer embeddings

achieve higher scores than the larger BERT embeddings. On SimLex-999, which contains

a mixture of parts of speech, the BERT embeddings performed better than the skip-gram

embeddings for nouns, while skip-gram out-performed BERT on verbs and adjectives.

In terms of the methods for calculating similarity between available paraphrase embeddings,

best results were achieved by the max and shortest path methods. This contradicts an

earlier finding by Dubossarsky et al. (2018), who showed that most previous work on multi-

sense embeddings reports the best scores achieved using the mean method. They explain

that taking the mean similarity is equivalent to sub-sampling and multiple estimation of

word vector representations, thereby reducing bias in the cosine similarity calculations. To

examine these results more closely, we compare the paraphrase embeddings chosen by the

max and shortest path methods for different word pair comparisons.

Word Pair
Human
Rating

Shortest Path Maximum Similarity

mud, dirt 7.3 vmud→dirt, vdirt→mud vmud→earth, vdirt→sand
bar, jail 1.9 vbar→court, vjail→custody vbar→club, vjail→lock−up
plead, beg 9.1 vplead→beg, vbeg→plead vplead→beg, vbeg→urge

multiply, divide 1.8
vmultiply→spread,
vdivide→spread

vmultiply→strengthen,
vdivide→subdivide

Table 24: Paraphrase embeddings selected by shortest path and maximum similarity meth-
ods to represent word pairs from SIMLEX-999.

In summary, we have proposed a method for using the paraphrase-specific contexts present

in PSTS to generate term representations at the sub-word level based on two different

embedding techniques. Through evaluation on word similarity and relatedness prediction

benchmarks, we demonstrate that these paraphrase embeddings capture meaning more

precisely than their word-type level counterparts.
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6.3. Applications 2: Word Sense Induction

PSTS provides sentence-level contexts for different senses of a target word. The second

application setting we use to evaluate the utility of PSTS is in using PSTS’ sense-specific

contexts to aid in the task of word sense induction (WSI).

Word sense induction is the task of discriminating the different meanings, or senses, of a

target word that are present in some corpus (see Section 2.3.1). Systems are presented

with a set of sentences containing a shared target word. Each sentence must be annotated

with a sense label, such that sentences where the target has the same meaning get the

same label. Importantly, unlike in the related task of word sense disambiguation, systems

are not provided with a pre-defined sense inventory to guide the labeling of the different

senses. Systems must both determine how many senses exist for each target, and properly

assign the same label to each same-sense instance. Systems are evaluated by comparing the

predicted labeling to a human-annotated set of ‘ground truth’ sense labels for each sentence.

Our approach to WSI incorporates both the paraphrase sense clusters produced in Chapter

3, and the paraphrase-level embeddings produced from PSTS in Section 6.2.3. We assume

that the sense clusters for a target word represent its possible meanings, and use the para-

phrase embeddings as a bridge to map each target word instance to the most appropriate

sense cluster. Note that while our WSI model operates very much like a WSD model in

that it maps word instances to senses from an underlying sense inventory, an important

distinction is that we assume no prior knowledge of the sense inventory (WordNet) used for

evaluation. Instead, we produce our own sense inventory in an unsupervised way through

paraphrase clustering.

6.3.1. WSI Method

Specifically, given a target word t, we call its set of PPDB sense clusters C = {c1, c1, . . . , ck}.

Each sense cluster ci contains a set of paraphrases of t: ci = {p1, p2, . . . , pm} (such that for

each pj , t ↔ pj is a paraphrase in PPDB). Each paraphrase has an associated paraphrase

123



embedding that represents its shared sense with t, vt→p. The task presents our system with

a set of target word instances, s1, s2, . . . , sn. Each is a short passage of text containing the

target t. We denote as vs a vector embedding that represents the context of the target t in

sentence s. In order to map each target word instance s to the most appropriate sense cluster

c, we compare the context representation vs to the set of paraphrase representations in c,

Vc = {vt→p : p ∈ c},5 via an affinity function f(vs, Vc). For example, a target instance for the

target word t =plant might be the sentence s =The plant employs between 800 and 900 on

three shifts, and the word plant in this context would be represented using a vector vs. This

instance can be compared to the PPDB sense cluster for plant, c = {station,powerplant}, by

calculating the value of an affinity function that takes the context vector vs and paraphrase

vectors vplant→station and vplant→powerplant as input. Figure 28 depicts this process.

We experiment with two affinity functions, average (favg(vs, Vc)) and maximum (fmax(vs, Vc)):

favg(vs, Vc) = avg
p∈c

cos(vs, vt→p) (6.4)

fmax(vs, Vc) = max
p∈c

cos(vs, vt→p) (6.5)

Each comparison function takes in a contextual embedding from a target word instance, and

a set of paraphrase embeddings from a sense cluster, and produces a score that indicates

the affinity between the target word instance and the sense cluster. We assign each instance

s to the cluster which maximizes the comparison function.

6.3.2. Experiments

The datasets used for our WSI experiment come from two shared tasks – SemEval-2007

Task 2 (Agirre and Soroa, 2007) and SemEval-2010 Task 14 (Manandhar et al., 2010).

5In practice, we experiment with using embeddings in both directions: target embeddings vt→p, and
paraphrase embeddings vp→t, and report the results for both settings. For the rest of the method description
we just use notation for the target direction for brevity.

124



Figure 28: Illustration of process for calculating the affinity between a target instance of
plant (n) (si) and a PPDB sense cluster (c4). The context embedding for the target instance
(vsi) is compared to the (plant ↔ *) embeddings for paraphrases in c4. The target instance
will be assigned to the sense cluster which maximizes the affinity function f , which may be
one of favg (Eq. 6.4) or fmax (Eq. 6.5).
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SemEval-2007 contains 27,312 sentences for 100 target nouns and verbs, and SemEval-2010

contains 8,915 sentences for 100 noun and verb targets. In both cases, the ground truth

sense annotations are derived from WordNet 1.7.1 senses. The targets in SemEval-2007

have 3.68 senses on average, and there are 3.85 senses on average for targets in SemEval-

2010. Clustering quality metrics are used to evaluate system output for each target word,

by comparing clusters formed by sentences with the same predicted sense to clusters formed

by sentences with the same ground truth sense.

In addition to experimenting with the function used to map a target word instance to a

sense cluster, we also vary our experiments along two additional axes: the type of con-

textual representation used to represent target word instances (each type associated with a

particular flavor of paraphrase embedding), and the direction of the paraphrase embeddings

(target vt→p vs. paraphrase vp→t). The contextual representations used are:

• BERT: To represent target t in sentence s, we use the 768-dimensional contextualized

embedding for t generated by the same pre-trained BERT model used in Section 6.2.2.

The complementary paraphrase embeddings used in this setting are PP-BERT.

• SG-WIN5: In this setting, we represent the context of target t in sentence s by

averaging the skip-gram context embeddings from words appearing within a window

of 5 words to either side of t.6 The skip-gram model used is the same used to initialize

the PP-SG embeddings, and the complementary paraphrase embeddings used in this

setting are PP-SG.

Our WSI method is applied to the SemEval-2007 and SemEval-2010 datasets, varying (a)

the function used to map sentences to clusters (favg vs. fmax), (b) the type of contextual

representation used (BERT vs SG-WIN5), and (c) the direction of paraphrase embedding

used (paraphrase vp→t vs. target vt→p). As the assumed sense inventory, we use PPDB sense

clusters generated using our best-performing spectral method from Chapter 3,7 where clus-

6We also experimented with window widths of 1 and 3, but 5 out-performed them in all experiments.
7This spectral method uses ppdbscore to measure the similarity between paraphrases to be clustered,
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ters for each target are formed by clustering all the target’s paraphrases having ppdbscore

at least 2.3.

We also implement several baselines for comparison:

• KMeans. For each type of context embedding, we run KMeans clustering on the

contexts for sentences to be labeled, setting k to the number of PPDB sense clusters.

• Most Frequent Sense (MFS). The most-frequent-sense baseline assigns the same

sense label to all sentences for a given target.

• Random. This baseline executes 10 random clusterings for each target, with the

number of clusters set to the number of ground truth senses. We report average

scores over the 10 runs.

6.3.3. Results

The predicted mappings produced by each method are compared to the ground truth sets

of human-annotated WordNet 1.7.1 senses. Results for each dataset are reported in Tables

25 and 26. Table 25 reports the results in terms of paired F-Score, and Table 26 reports

the results in terms of adjusted rand index (ARI), a metric that does not share the positive

bias toward the most-frequent-sense baseline (i.e. assigning all sentences for a target word

to a single sense). Appendix A.1 provides more details on each of these evaluation metrics.

For both datasets and context embedding types, we find that our method of assigning a

sense to a target word instance by mapping its context embedding to a PPDB sense cluster

via paraphrase embeddings out-performs the baseline of K-means clustering on the context

embeddings alone. Moreover, our method’s performance would have placed it second in

both shared tasks among all original task participants in terms of paired F-score, and first

in Sem-Eval 2010 overall in terms of ARI by a substantial margin.

and monolingual contextual similarity (operationalized as the cosine similarity of 300-dimensional skip-
gram word embeddings trained on the Google News corpus) as input to the silhouette score metric used to
determine the optimal number of senses.
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Ctx. Embedding WSI Method SemEval-2007 Sem-Eval 2010

BERT

Kmeans 0.484 0.414
favg, Target PP-BERT 0.604 0.567
fmax, Target PP-BERT 0.641 0.588
favg, Paraphrase PP-BERT 0.672 0.623
fmax, Paraphrase PP-BERT 0.680 0.578

SG-WIN5

Kmeans 0.466 0.439
favg, Target PP-SG 0.609 0.529
fmax, Target PP-SG 0.685 0.545
favg, Paraphrase PP-SG 0.613 0.532
fmax, Paraphrase PP-SG 0.677 0.546

MFS Baseline 0.789 0.635
Random Baseline 0.379 0.319

Best in Task 0.787∗ 0.633∗∗

Table 25: WSI results in terms of paired F-Score. Numbers reported are the weighted
average FScore over the 100 targets in each dataset, where each target is weighted by the
number of applicable sentences. Our systems’ best output would have ranked them as
2nd among participants in both competitions, behind the top-scoring systems *UBC-AS
(SemEval-2007) and **Duluth-WSI-SVD-Gap (SemEval2010).

One somewhat surprising result is that representing the context of each target word instance

using its 768-dimensional contextualized BERT token embedding did not consistently out-

perform the method of averaging 300-dimensional skip-gram embeddings within a context

window. This indicates that although BERT token embeddings do encode information

about the context of each token via attention mechanisms within the Transformer encoder

architecture (Vaswani et al., 2017), they do not capture enough of this contextual informa-

tion for us to ignore the surrounding tokens entirely for context-sensitive tasks.

In summary, this set of WSI experiments indicates that micro-sense embeddings derived

from PSTS can be used in conjunction with PPDB sense clusters to discriminate and label

target word instances with their specific meaning in context.

6.4. Applications 3: Contextual Hypernym Prediction

Finally, we aim to demonstrate that PSTS can be used to automatically construct a dataset

for a contextual lexical semantic prediction task, without the need for any human annota-
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Ctx. Embedding WSI Method SemEval-2007 Sem-Eval 2010

BERT

Kmeans 0.004 0.006
favg, Target PP-BERT -0.004 0.218
fmax, Target PP-BERT 0.000 0.150
favg, Paraphrase PP-BERT -0.003 0.163
fmax, Paraphrase PP-BERT 0.005 0.122

SG-WIN5

Kmeans 0.003 0.004
favg, Target PP-SG -0.001 0.080
fmax, Target PP-SG 0.008 0.067
favg, Paraphrase PP-SG -0.003 0.077
fmax, Paraphrase PP-SG 0.012 0.070

MFS Baseline 0.000 0.000
Random Baseline 0.000 0.002

Best in Task 0.022∗ 0.043∗∗

Table 26: WSI results in terms of adjusted rand index (ARI). Numbers reported are the
weighted average ARI over the 100 targets in each dataset, where each target is weighted
by the number of applicable sentences. Our systems’ best results would have placed 2nd
and 1st among participants in the 2007 and 2010 competitions respectively. Top-scoring
systems in each competition in terms of ARI were *UPV.SI (SemEval-2007) and **Duluth-
WSI-CO-PK2 (SemEval2010).

tion, pre-defined sense inventory, or pre-trained word sense disambiguation model. The task

used as the testbed for demonstration is predicting hypernymy in context.

Most previous work on hypernym prediction has been done out of context. In this setting,

the input to the task is a pair of terms like (table, furniture), and the model aims to predict

whether the second term is a hypernym of the first (in this case, it is). However, more

recently, both Shwartz and Dagan (2016a) and Vyas and Carpuat (2017) have pointed out

that hypernymy between two terms depends on the contexts in which they appear. Consider

the following sentences:

He set the glass down on the table.

Results are reported in table 3.1.

She entertained the table with her jokes.

In the first context, the table in question is indeed a type of furniture. However, in the
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second and third, the term table is used with different meanings, and in these cases is not a

hyponym of furniture. This is the motivation for studying the task of predicting hypernymy

within a given context, where the input to the problem is a pair of sentences each containing

a target word, and the task is to predict whether a hypernym relationship holds between

the two targets. Example task instances are given in Table 27.

Ex. Target Word Related Word Contexts Hypernym?

(a) chessboard board

The bottom chessboard is the realm of
cross-border transactions that occur outside
of government control.

With such an unequal position on the
board, any efforts to seek a draw are
pathetic when the council is about to
checkmate us.

Yes

(b) day night

Legislation should change attitudes, although
change could not occur from one day to the
next.

The night before you put very pertinent ques-
tions to the parents.

No

(c) fiberboard board

The fluting or corrugated fiberboard shall be
firmly glued to the facings.

Industrial plants produce paper and board
with a capacity exceeding 20 tons per day.

Yes

(d) chessboard board

The bottom chessboard is the realm of cross-
border transactions that occur outside of gov-
ernment control.

These people are already on board fishing
vessels and we should use them to maximum
advantage to understand the characteristics of
those fisheries.

No

Table 27: Examples of target and related words that may be hypernyms in some sense,
depending on the contexts in which they appear.

Previous work on this task has relied on either human annotation, or the existence of a

manually-constructed lexical semantic resource (i.e. WordNet), to generate training data.

In the case of Shwartz and Dagan (2016a), who examined fine-grained entailment relations

in context, a dataset of 3,750 sentence pairs was compiled by automatically extracting sen-
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tences from Wikipedia containing target words of interest, and asking crowd workers to

manually label sentence pairs with the appropriate fine-grained entailment relation. Sub-

sequently, Vyas and Carpuat (2017) studied the related task of hypernym prediction in

context.8 They generated a larger dataset of 22k sentence pairs which used example sen-

tences from WordNet as contexts, and WordNet’s ontological structure to find sentence

pairs where the presence or absence of a hypernym relationship could be inferred. This

section builds on both previous works, in that we generate an even larger dataset of 116k

sentence pairs for studying hypernymy in context, and use the existing test sets for eval-

uation. However, unlike the previous methods, our dataset is constructed without any

manual annotation or reliance on WordNet for contextual examples. Instead, we leverage

the sense-specific contexts in PSTS to generate sentence pairs automatically.

6.4.1. Producing a Hypernym Prediction Training Set

Because PSTS can be used to query sentences containing target words with a particular

fine-grained sense, our hypothesis is that, given a set of term pairs with known semantic

relations, we can use PSTS to automatically produce a large, high-quality training set of

sentence pairs for contextual hypernym prediction. More generally, our goal is to generate

training instances of the form:

(t, w, ct, cw, l)

where t is a target term, w is a possibly related term, ct and cw are contexts, or sentences,

containing t and w respectively, and l is a binary label indicating whether t and w are a

hyponym-hypernym pair in the senses as they are expressed in contexts ct and cw. The

proposed method for generating such instances from PSTS relies on WordNet (or another

lexical semantic resource) only insofar as we use it to enumerate term pairs (t, w) with

known semantic relation; the contexts (ct, cw) in which these relations hold or do not are

8Fine-grained entailment prediction and hypernym prediction are closely related; in an upward-monotone
sentence, a hyponym entails its hypernym, e.g. virus entails bug in “I caught a stomach virus.”
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generated automatically from PSTS.

The training set is deliberately constructed to contain instances representing each of the

following desired types:

(a) Positive instances, where (t, w) hold a hypernym relationship in contexts ct and cw

(l = 1) (Table 27, examples a and c).

(b) Negative instances, where (t, w) hold some semantic relation other than hypernymy

(such as meronymy or antonymy) in contexts ct and cw (l = 0). This will encourage

the model to discriminate true hypernym pairs from other semantically related pairs

(Table 27, example b).

(c) Negative instances, where (t, w) hold a known semantic relation, including possibly

hypernymy, in some sense, but the contexts ct and cw are not indicative of this relation

(l = 0). This will encourage the model to take context into account when making a

prediction (Table 27, example d).

Beginning with a target word t, the procedure for generating training instances of each type

from PSTS is as follows:

• Find related terms. The first step is to find related terms w such that the pair

(t, w) are related in WordNet with relation type r (which could be one of synonym,

antonym, hypernym, hyponym, meronym, or holonym), and t ↔ w is a paraphrase

pair present in PSTS. The related terms are not constrained to be hypernyms, in

order to enable generation of instances of type (b) above.

• Generate contextually related instances (types (a) and (b) above). Given term

pair (t, w) with known relation r, generate sentence pairs where this relation is as-

sumed to hold as follows. First, order PSTS sentences in S ṫw (containing target t) and

Stẇ (containing related term w in its sense as a paraphrase of t) by decreasing qual-

ity score, as predicted by the regression model from Section 5.5.3. Next, choose the
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top-k sentences from each ordered list, and select sentence pairs (ct, cw) ∈ S ṫw × Stẇ

where both sentences are in their respective top-k lists. Add each sentence pair to

the dataset as a positive instance (l = 1) if r = hypernym, or as a negative instance

(l = 0) if r is something other than the hypernym relation.

• Generate contextually unrelated instances (type (c) above). Given term pair

(t, w) with known relation r, generate sentence pairs where this relation is assumed

not to hold as follows. First, pick a confounding term w′ that is a paraphrase of w (i.e.

w ↔ w′ is in PPDB), but unrelated to the target t in PPDB. This confounding term is

designed to represent an alternative sense of w. In order to select a confounding term

that is most different in meaning from the target, choose the paraphrase of w whose

word embedding (based on some word embedding model) has lowest cosine similarity

with the embedding of t. Next, select the top-k/2 sentences containing related term

w in its sense as w′ from Sẇw
′

in terms of quality score. Combine these sentences

cw with sentences ct drawn from the top-k sentences from S ṫw in the previous step

to form negative instances. Repeat the process in the other direction, choosing a

confounding term t′ corresponding to an alternative sense of t, and combine sentences

from S ṫt
′ × Stẇ to form additional negative instances.

To form the contextual hypernym prediction dataset, this process is carried out over a set

of 3,558 target nouns drawn from the Shwartz and Dagan (2016a) and Vyas and Carpuat

(2017) datasets, as well as nouns within the top-10k most frequent words in the Google

ngrams corpus (after throwing away the first 1k words as stop words). For each target

noun, all hypernyms, hyponyms, synonyms, antonyms, co-hyponyms, and meronyms from

WordNet were selected as related terms. The number of sentences, k, selected for each

target/related term pair was 3. This process resulted in a dataset of 116k instances, of

which 28% are positive contextual hypernym pairs (type (a)). The 72% of negative pairs

are made up of 34% instances where t and w hold some relation other than hypernymy in

context (type (b)), and 38% instances where t and w are unrelated in the given context.
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6.4.2. Predicting Hypernymy in Context

Having automatically generated a dataset from PSTS for studying hypernymy in context,

the next steps are to adopt a contextual hypernym prediction model to train on the dataset,

and then to evaluate its performance on existing hypernym prediction test sets.

The model adopted for predicting hypernymy in context is a fine-tuned version of the BERT

pre-trained transformer model (Devlin et al., 2019) (Figure 29). Specifically, we use BERT

in its configuration for sentence pair classification tasks, where the input consists of two

tokenized sentences (ct and cw), preceded by a ‘[CLS]’ token and separated by a ‘[SEP]’

token. In order to highlight the target t and related term w in each respective sentence,

we surround them with left and right bracket tokens “<” and “>”. The model predicts

whether the sentence pair contains contextualized hypernyms or not by processing the input

through a transformer encoder, and feeding the output representation of the ‘[CLS]’ token

through fully connected and softmax layers.

6.4.3. Experiments

To test our hypothesis that PSTS can be used to generate a large, high-quality dataset

for training a contextualized hypernym prediction model, we perform experiments that

compare the performance of the BERT hypernym prediction model on existing test sets

after training on our PSTS dataset, versus training on only the original, or the combined

original and PSTS, training sets.

There are two existing datasets for contextual hypernym prediction that are used in our

experiments. The first, which we abbreviate as S&D-binary, is a binarized version of the

fine-grained entailment relation dataset from Shwartz and Dagan (2016a). While the orig-

inal dataset contained five different entailment types, we convert all forward-entailment

and flipped reverse-entailment instances to positive (hypernym) instances, and the rest to

negative instances. The resulting dataset has 3750 instances (18% positive and 82% nega-

tive), split into train/dev/test portions of 2630/190/930 instances respectively. The second
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Figure 29: Illustration of the contextual hypernym prediction model based on fine-tuning
BERT (Devlin et al., 2019). Input sentences ct and cw are tokenized, prepended with a
[CLS] token, and separated with a [SEP] token. The target word t in the first sentence,
ct, and the related word w in the second sentence, cw, are highlighted by surrounding them
with < and > tokens. The class label (hypernym or not) is predicted by feeding the output
representation of the [CLS] token through fully-connected and softmax layers.

dataset used in our experiments is “WordNet Hypernyms in Context” (WHiC) from Vyas

and Carpuat (2017). It contains 22,781 instances (23% positive and 77% negative), split

into train/dev/test portions of 15716/1704/5361 instances respectively.

For both datasets, we compare results of the BERT sentence pair classification model on the

test portions after fine-tuning on the PSTS dataset alone, the original training set alone,

or a combination of the PSTS dataset with the original training set. In order to gauge how

similar the datasets are to one another, we also experiment with training on S&D-binary

and testing on WHiC, and vice versa. In each case we use the dataset’s original dev portion

for tuning the BERT model parameters (batch size, number of epochs, and learning rate).

6.4.4. Results

Results are reported in terms of weighted average F-Score over the positive and negative

classes, and given in Table 28.
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Training Set Test Set F1

S&D-binary

WHiC

0.686
WHiC 0.787
PSTS 0.722
PSTS+WHiC 0.783

S&D-binary

S&D-binary

0.792
WHiC 0.717
PSTS 0.803
PSTS+S&D-binary 0.833

Table 28: Performance of the BERT fine-tuned contextual hypernym prediction model
on two existing test sets, segmented by training set. All results are reported in terms of
weighted average F1.

In the case of S&D-binary, we find that training on the 116k-instance PSTS dataset leads

to a modest improvement in test set performance of 1.4% over training on the original

2.6k-instance training set. Combining the PSTS and original training sets leads to a more

substantial 5.2% performance over training on the original dataset alone. However, on the

WHiC dataset, it turns out that training on the PSTS dataset as opposed to the original

15.7k-instance training set leads to a relative 8.5% drop in performance. The WHiC results

obtained by the BERT classifier after training on the original dataset are equivalent to the

best results reported in Vyas and Carpuat (2017) – 0.54 F1 for the positive (hypernym)

class.

Training on S&D-binary/testing on WHiC and vice versa gives the lowest scores for both

datasets, indicating that there is something characteristically different between the two

datasets. Given that training with PSTS improves performance on S&D-binary but not on

WHiC suggests that PSTS is more similar to S&D-binary.

In conclusion, our experiments indicate that the sense-specific contexts in PSTS can be used

to automatically generate a large dataset for training a contextual hypernym classifier that

leads to better performance than training on a small dataset of hand-annotated instances

(S&D-binary), and nearly comparable performance to training on a dataset generated from

a hand-crafted resource (WHiC). This suggests that it is worth exploring the use of PSTS
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to generate sense-specific datasets for other contextual lexical semantic tasks.

6.5. Conclusion

This chapter aimed to demonstrate the utility of PSTS via three downstream tasks. The

first task was to train paraphrase-level embeddings, which capture word meaning at a fine-

grained level. We showed via semantic similarity and relatedness benchmarks that these

sub-word-level embeddings captured a more precise notion of semantic similarity than their

word type-level counterparts. Next, we demonstrated how to use the sense-specific instances

of target words in PSTS within a system for word sense induction (WSI), by using the

sentences as a bridge to map WSI test instances in context to their most likely sense cluster

(as produced in Chapter 3). Finally, we leveraged PSTS to automatically produce a training

set for the task of contextualized hypernym prediction, without the need for a sense tagging

model, manual annotation, or existing hand-crafted lexical semantic resources. To evaluate

this training set, we adopted a hypernym prediction model based on the BERT transformer

(Devlin et al., 2019), and showed that this model, when trained on the large PSTS training

set, produces more accurate in-context hypernym predictions than the same model trained

on a small hand-crafted training set.

The work in this chapter and the previous supports the primary assertion of this thesis that

bilingually-induced paraphrases provide useful signals for computational modeling of lexical

semantics – in this case, for modeling fine-grained word sense. Because the paraphrase set

for a target word contains terms pertaining to its various senses, we can view paraphrases

as instantiating the possible fine-grained senses of a word. Using the pivot method it is

possible to automatically extract usages of each target word that pertain to each of its

paraphrases. These example usages can then be viewed as a (micro-) sense tagged corpus,

and used for training sense-aware models via distributional methods.
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CHAPTER 7 : Conclusion

The ability to model the meanings of words and their inter-relationships is key to the

long-standing goal of natural language understanding. By and large, the bulk of work

in computational modeling of lexical semantics has been focused on learning from signals

present in large monolingual corpora – including the distributional properties of words and

phrases, and the lexical and syntactic patterns within which they appear. Each of these

signals, while useful, has its own drawbacks related particularly to challenges in modeling

polysemy or coverage limitations. The goal of this thesis has been to examine bilingually-

induced paraphrases as a different source of signal for learning about the meanings of words

and their relationships. The key characteristics of such paraphrases that make them well-

suited to the task are their wide (and noisy) scope, their natural coverage of both words and

phrases, and the inclusion of multiple meanings among the paraphrases of a polysemous tar-

get word. The previous chapters explored how paraphrases from the Paraphrase Database

(PPDB) (Ganitkevitch et al., 2013; Pavlick et al., 2015b) can be exploited to model word

sense, predict scalar adjective intensity, and generate sense-specific examples of word usage.

In doing so, it was shown that these key characteristics of paraphrases complement the

weaknesses of other monolingual signals. Combining paraphrase-based information with

these other signals leads to better models of lexical semantics.

7.1. Summary of Contributions

The first half of this thesis focused on models that directly incorporate features derived

from bilingually-induced paraphrases for lexical semantic tasks, beginning with a study

of word sense. One of the key characteristics of paraphrases that make them useful for

studying word sense is that the set of paraphrases for a polysemous target word contains

terms pertaining to each of its various senses (Apidianaki et al., 2014). Whereas traditional

approaches to word sense induction have focused on clustering the contexts within which a

polysemous word appears to uncover its senses, we took the related approach of clustering
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bug 
(n)

 insect   beetle   
cockroach   mosquito   

pest 
c1

 glitch   error   
malfunction   fault   
mistake   failure 

c2

microbe  virus    
parasite   bacterium 

c3

tracker  
microphone   wire 
 informer   snitch 

c4

Figure 30: Repeated from Section 3.7, this figure depicts our goal in Chapter 3 to partition
paraphrases of an input word like bug into clusters representing its distinct senses.

a polysemous word’s paraphrases in order to enumerate its different meanings.

In Chapter 3, we presented a systematic study of various methods for clustering paraphrases

by word sense (Figure 30). Not only did we leverage a word’s paraphrases to represent its

various senses, but we also examined the second-order relationships that exist between terms

within the paraphrase set that can be used to delineate those senses. Our experimental

setup compared two clustering algorithms utilizing five different measurements of inter-

word similarity, including paraphrase strength, monolingual distributional similarity, and

overlapping translations. Because the number of senses for a word is unknown, we also

proposed a method for automatically choosing the optimal number of sense clusters based on

the Silhouette Coefficient (Rousseeuw, 1987) cluster quality metric. By evaluating clustering

output against two sets of ground truth sense clusters, it was shown that using paraphrase

strength as a method for computing inter-word similarity produced consistently high-quality

clusters, regardless of the clustering algorithm used. However, the best overall results were

achieved by combining paraphrase strength and monolingual distributional similarity as

metrics for measuring intra-word similarity and selecting the optimal number of clusters,

showing that these two signals are complementary to one another.

Our sense clustering study in Chapter 3 was followed by demonstration of how to apply

the sense clusters to the downstream task of lexical substitution (lexsub) – suggesting a
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ranked list of meaning-preserving substitutes for a target word in context. We proposed

the ‘sense promotion’ method as a post-processing step to improve the precision of lexsub

models that are based on neural word embeddings. Sense promotion works by elevating the

rank of a model’s predicted substitutes that belong to the target’s most appropriate sense

cluster in the given context. Using sense clusters generated in the first half of the chapter

in this setting led to a 19% improvement in average precision-at-5 for a state-of-the-art

embedding-based lexsub model when evaluated over a test set of approximately 2000 target

word instances.

Next, in Chapter 4, we shifted focus to using paraphrase-based signals in the task of pre-

dicting relative scalar adjective intensity. The adjectives funny and hilarious both describe

humor, but funny is less intense than hilarious. The goal of our model was to predict the

relative intensity relationship between a pair of such scalar adjectives describing a common

attribute. Here, as in the previous chapter, we developed a model that directly incorpo-

rated features derived from bilingually-induced paraphrases, and compared the performance

of that model to models derived from lexico-syntactic patterns and a manually-compiled

adjective intensity lexicon. The paraphrase-based features were extracted from over 36k

adjectival phrase paraphrase pairs under the assumption that, for example, paraphrase pair

seriously funny ↔ hilarious suggests that funny < hilarious. Due to the wide coverage and

noisiness of PPDB, the paraphrase-based model could make predictions for more adjective

pairs than could the pattern-based or lexicon-based models, but with lower accuracy. By

evaluating on the downstream tasks of globally ranking sets of scalar adjectives by intensity

and inferring the polarity of indirect answers to yes/no questions, we showed that combining

the wide-coverage paraphrase-based model with the more precise pattern- and lexicon-based

models led to better performance on both tasks over using any single model in isolation.

The second half of this thesis further explored the relationship between a target word’s

paraphrases and its senses. One perennial challenge in distributional models of semantics is

the issue of polysemy: a given word type can have (sometimes drastically) different mean-
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particularly pleased ↔ ecstatic

quite limited ↔ restricted

rather odd ↔ crazy

so silly ↔ dumb

completely mad ↔ crazy

Figure 31: In Chapter 4, we used paraphrases from PPDB of the form RB JJu ↔ JJv to
infer pairwise intensity relationships (JJu < JJv).

ings depending on its context. Any attempt to represent meaning at the word type level,

therefore, confounds a word’s different senses in a single type-level representation. For many

tasks that rely on modeling word meaning within a particular context, such as recognizing

textual entailment, this type-level representation is insufficient. However, it is challenging

to construct training corpora for these tasks where words must be used in a particular sense.

Researchers building sense-aware corpora typically resort to manual annotation (Edmonds

and Cotton, 2001; Mihalcea et al., 2004; Hovy et al., 2006), crowdsourcing (Huang et al.,

2012; Shwartz and Dagan, 2016a), or rely on existing manually-compiled lexical semantic

resources (Vyas and Carpuat, 2017). Paraphrases can help.

In Chapter 5, we used bilingually-induced paraphrases to extract sentences that are in-

dicative of a particular sense of a polysemous word. Our proposed method exploits the

idea that paraphrases for a target word represent its various meanings, coupled with the

ability to extract paraphrase instances at scale through bilingual pivoting. Unlike some

previous methods for producing sense-tagged corpora, ours does not rely on manual anno-

tation or having a pre-trained word sense disambiguation model. The resulting collection

of sentences, which is called Paraphrase-Sense-Tagged Sentences (PSTS), contains up to

10k sentence-level contexts for more than 3M paraphrases in PPDB. The sentences for each

paraphrase pair are characteristic of the shared meaning of that pair. For example, sen-

tences for the paraphrase pair hot ↔ spicy include “People should shun hot dishes,” while

sentences for the paraphrase hot ↔ popular include “This area of technology is hot.” We

evaluated the quality of sentences in PSTS with the assistance of crowd workers, who in-

dicated that the majority of sentences for a paraphrase pair were indeed indicative of that
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pair’s meaning. We then used the crowd annotations to train a sentence ranking model,

which assigns high scores to the sentences for a paraphrase pair that are most characteristic

of the pair’s meaning.

Chapter 6 demonstrated how to use PSTS as a training bed for lexical semantic models

that must incorporate word sense. First, based on the extreme assertion that a word has as

many micro-senses as it has paraphrases, we used PSTS as a corpus for training sub-word

(paraphrase-level) embeddings based on monolingual distributional models of word repre-

sentation. Evaluating these paraphrase embeddings on a variety of semantic similarity and

relatedness benchmarks, we showed that they out-perform their word type-level embedding

counterparts. Next, we applied these paraphrase embeddings to a word sense induction

(WSI) task. In this case, the paraphrase embeddings were used as a bridge to map target

word instances to their most likely sense cluster (as induced in Chapter 4). This method

produced competitive scores on test sets from two previous SemEval WSI shared tasks.

Finally, we used PSTS to automatically produce a large training set (116k instances) for

the task of predicting hypernymy in context, without the need for manual annotation or

reliance on WordNet. To assess the quality of the training set, we adopted a hypernym

prediction model based on the BERT transformer encoder (Devlin et al., 2019), and showed

that this model, when trained on the PSTS training set, out-performed the same model

trained on a manually-labeled training set by 5% relative improvement in F-Score.

7.2. Evolving Models of Word Sense

A recurring theme throughout this thesis has been the tension between discrete versus

continuous notions of word sense. Chapter 3 assumes that there exists a discrete partitioning

of paraphrases for a target word into sense clusters, whereas Chapters 5-6 throw away this

assumption and instead use paraphrases to represent the fine-grained meanings of a target

word. As the chapters are laid out chronologically, it is worth mentioning the rationale

behind this shift in sense modeling from discrete to fine-grained.
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Figure 32: In Chapter 5, we extracted sentences containing the noun x =bug in its y =virus
sense from parallel corpora for PSTS by (1) finding translations shared by bug adn virus, (2)
ranking the translations to prioritze bug ’s translations most ‘characteristic’ of its meaning
in the virus sense, and (3) extracting sentences where bug was aligned to highly-ranked
French translations from bitext corpora.
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In Chapter 3 we took a simplified view that word senses can be discretely partitioned

by clustering paraphrases. We assumed that for each target word, there exists a set of

disjoint senses, and that these senses can be represented by a human-generated partitioning

of paraphrases (e.g. Figure 30). The goal of our automatic clustering method was to

replicate the human-generated paraphrase clusters as closely as possible. While we briefly

acknowledged that varying degrees of sense granularity may be better suited to different

tasks, we adopted an intrinsic cluster quality metric to choose an ‘optimal’ number of senses

for each word.

There are two primary issues with the assumption of a ‘ground truth’ sense inventory

adopted in Chapter 3. First, humans have notoriously low agreement in manual sense-

tagging tasks (Cinková et al., 2012). In our work, we noted low agreement in the related

tasks of crowd clustering (Appendix A.2) and later the evaluation of sentence-paraphrase

quality in PSTS (Section 5.5.3). Second, the granularity of sense distinctions that matter

can vary depending on the situation or application. For example, in Figure 30, bug ’s para-

phrases virus and bacterium are clustered together because they are both micro-organisms

that can make people sick. If someone is warned, “Wash your hands often – there’s a bug

going around.” the given sense inventory is sufficient; hand washing can prevent the spread

of both types. However, for a clinician, the distinction between virus and bacterium is

all-important because it impacts how the disease should be treated. Sense distinctions that

matter can vary, based on the situational context.

After completing the work in Chapter 3, our initial intent was to combine sense clustering

with hypernym prediction in order to develop a new method for taxonomy induction. The

method for generating meaning-specific examples of word usage in Chapter 5 was originally

conceived as a way to generate sentence-level contexts for each sense cluster, in order to

make contextualized hypernym predictions. Ultimately, the taxonomy-building effort was

frustrated by the issues of low human agreement and situation-dependent sense distinctions

noted above.
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However, in building PSTS, we realized that its abstraction of one-paraphrase-per-meaning

was a more generalizable approach to word sense modeling than sense clustering. PSTS

abandons the assumption of a single ground-truth sense inventory for each target word –

although if a user prefers to map each paraphrase to some underlying sense inventory, it is

straightforward to do so (as we did during the WSI experiment in Chapter 6). Interestingly,

we found that this fine-grained, yet still discrete, model of word sense could be more useful

than a completely continuous model in some settings; during the WSI experiment in Chapter

6, clustering the continuous BERT embeddings for target word instances using K-Means

did not perform well as a baseline for mapping word instances to a sense inventory, while

mapping target word instances to sense clusters via paraphrase embeddings did. This

indicates that BERT, which is a state-of-the-art model for text representation that has

excellent performance in many language understanding benchmarks, still does not capture

all we need to know about word sense.

The main question remains – which method for sense modeling is best? Our answer is

that it depends; both the coarse-grained, discrete representation in Chapter 3 and the

fine-grained, paraphrase-based representation in Chapter 5 can be useful insofar as they

help improve performance on some downstream task. The former was shown to be helpful

for lexical substitution, the latter was useful for building precise multi-sense embeddings

and a contextualized hypernym prediction dataset, and the two were successfully used in

combination for the task of WSI. However, in general, representing fine-grained senses as

paraphrases is a more flexible approach that avoids the rigid assumption of an underlying

sense inventory.

7.3. Discussion and Future Work

The most important conclusion of this thesis is that signals from bilingually-induced para-

phrases can be effectively used within computational models of lexical semantics. Further-

more, when used in combination with signals from monolingual corpora like word distri-

bution and lexico-syntactic patterns, paraphrases provide complementary information that
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leads to more robust models. One reason is that the paraphrase set for a target word covers

many of the target word’s possible meanings, and therefore paraphrases can be used to

model word sense as we saw in Chapters 3 and 5-6. Another important characteristic of

paraphrases is that because the pivot method used to extract them is derived from phrase-

based machine translation, paraphrases naturally contain multi-word phrases – not just

single words. We saw how adjectival phrase paraphrases could be leveraged to generate fea-

tures that indicate relative adjective intensity in Chapter 4. Finally, because paraphrases

can be extracted automatically and at scale, their wide coverage complements the lim-

ited coverage of other signals like lexico-syntactic patterns and manually-compiled lexicons,

which was demonstrated in Chapter 4.

This thesis leaves open several questions, which represent limitations of this study and

may be areas for future research. First, we have limited our study to paraphrases induced

bilingually via the pivot method in PPDB. In no place do we compare with paraphrases

automatically generated using other methods, such as monolingual distributional techniques

(Lin and Pantel, 2001b,a), monolingual machine translation (Quirk et al., 2004), or neural

back-translation (Iyyer et al., 2018). Therefore it is unclear whether our conclusions can be

extended to paraphrases in general, or if they are limited to PPDB paraphrases. Second,

our study of using paraphrases for generating sense-tagged corpora in Chapters 5 and 6

does not compare directly with other methods for sense tagging, such as supervised word

sense disambiguation models. While it may be possible to argue that the additional noise

introduced by using our unsupervised method instead of supervised methods is a worthwhile

tradeoff because no pre-training is needed, we cannot argue this definitively without directly

comparing both methods in order to quantify the differences in accuracy.

One natural extension of this work would be the application of paraphrase-based signals to

other problems in lexical semantics. These studies should be focused on problems that could

benefit from the strengths of paraphrases, such as those that require awareness of word sense,

can benefit from comparison of multi-word phrases to their single-word equivalents, or need
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high-coverage features. One example of such a task might include taxonomy induction (e.g.

Snow et al. (2006); Kozareva and Hovy (2010); Ustalov et al. (2017), and others), where

it has been shown that explicitly modeling word sense enables the use of more efficient

algorithms (Cocos et al., 2018a). Another possible extension is the application of our

method for extracting features from PPDB for relative adjective intensity prediction to

other semantic relationships; for example, it may be possible to apply a similar technique

to predicting hypernymy (i.e. small dog ↔ puppy implies a puppy is a type of dog).

Another question is how to best apply the structured lexical semantic models such as those

that are output by our work (e.g. sense clusters and adjective scales) to downstream tasks.

An important trend over the past several years in natural language processing has been the

shift toward building end-to-end neural models for language understanding tasks such as

question answering, sentiment prediction, and natural language inference. These models,

while powerful, largely lack the ability to make general inference about facts and relation-

ships that are not explicitly mentioned in their training text. For example, the BERT model,

which achieves human-level performance on the SQUAD extractive question answering task

where the answer to a question must be located within a span of text (Devlin et al., 2019;

Rajpurkar et al., 2016), falls short on the more difficult ARC challenge set of grade school

multiple choice science questions where inference over external facts is required (Clark et al.,

2018)1. An exciting line of future work is building end-to-end models that can reference

and reason over structured semantic resources. There is some research in this general area

already for reasoning over knowledge bases (e.g. Khashabi et al. (2016); Xiong et al. (2017))

that provides a strong starting point. Expanding this work to deal with multiple sources

of information, and resolve uncertainty and noise in the knowledge resources, would enable

us to integrate structured lexical semantic resources like those produced within this thesis

into powerful end-to-end models for language understanding.

1https://leaderboard.allenai.org/arc/submissions/, accessed 05 Jan 2019
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APPENDIX

A.1. Evaluation Metrics

This appendix provides further detail on evaluation metrics that are used throughout the

thesis.

A.1.1. Classification Metrics

Assume a binary classification task, where each item within a set has a ground truth class

label (either positive or negative), and a predicted class label (also p′ositive or n′egative).

The items can be partitioned into subsets based on their true and predicted classes:

Pred.

Class

Actual Class

p n

p′

True

Positive

(TP)

False

Positive

(FP)

n′

False

Negative

(FN)

True

Negative

(TN)

Precision Precision measures the ratio of true positives (TP ) to all predicted positives

(TP ∪ FP ):

precision =
|TP |

|TP ∪ FP |

That is, precision estimates the likelihood that an item predicted to have the positive class

label is actually positive.
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Recall Recall measures the ratio of true positives (TP ) to actual positives (TP ∪ FN):

recall =
|TP |

|TP ∪ FN |

That is, recall estimates the share of truly positive items that have been classified as positive.

F-Score F-Score is the harmonic mean of precision and recall:

fscore =
2 · precision · recall
precision+ recall

A.1.2. Cluster Comparison Metrics

Cluster comparison metrics are designed to quantify the quality of a predicted clustering

by comparing it to a set of ground truth or ‘reference’ clusters.

Given a set of items to be clustered of size N , let C = {ci|i = 1 . . . n} be a partition of the

N items into n reference classes, and K = {kj |j = 1 . . .m} be a partition of the N items

into m predicted clusters. A contingency table, recording the assignment of each item to

a reference class i and predicted cluster j, is given by A = {aij}, where each aij is the

number of items from reference class ci that have been assigned to predicted cluster kj ,

that is aij = |ci ∩ kj |.

Paired F-Score Frames the clustering problem as a classification task (Manandhar et al.,

2010). It first generates the set of all pairs of items belonging to the same reference cluster,

F (C). The number of such pairs is given by |F (C)| =
∑|C|

i=1

(|ci|
2

)
. It then generates the set

of all pairs of items belonging to the same predicted cluster, F (K). The number of such

pairs is given by |F (K)| =
∑|K|

j=1

(|kj |
2

)
.

Precision, recall, and F-score can then be calculated in the usual way, i.e. precision =
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F (K)∩F (C)
F (K) , recall = F (K)∩F (C)

F (C) , and fscore = 2·precision·recall
precision+recall .

Note that when the predicted clustering assigns all items to the same cluster (the most

frequent sense baseline), the recall is equal to 1. In general, Paired F-Score is known to give

a high score to the MFS baseline, and to be biased toward giving high scores to clustering

solutions with a small quantity of large predicted clusters.

V-Measure assesses the quality of the clustering solution against reference clusters in

terms of clustering homogeneity and completeness (Rosenberg and Hirschberg, 2007).

Homogeneity describes the extent to which each cluster kj is composed of paraphrases

belonging to the same reference class ci. It is defined by the conditional entropy of the class

distribution given the predicted clustering, H(C|K). A clustering is perfectly homogeneous

(H(C|K) = 0) when each predicted cluster contains only items from the same reference

class. In the case where there is only one reference class (and thus H(C) = 0), homogeneity

is defined to be 1.

homg. =


1 if H(C) = 0

1− H(C|K)
H(C) otherwise

H(C|K) = −
|K|∑
k=1

|C|∑
c=1

ack
N

log
ack∑|C|
c=1 ack

H(C) = −
|C|∑
c=1

∑|K|
k=1 ack
N

log

∑|K|
k=1 ack
N

Completeness refers to the extent to which all points in a reference cluster ci are captured in a

single predicted cluster kj . It is defined by the conditional entropy of the predicted clustering

given the class distribution, H(K|C). A clustering is perfectly complete (H(K|C) = 0)

when each predicted cluster contains all items from a single reference class.
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comp. =


1 if H(K) = 0

1− H(K|C)
H(K) otherwise

H(K|C) = −
|C|∑
c=1

|K|∑
k=1

ack
N

log
ack∑|K|
k=1 ack

H(K) = −
|K|∑
k=1

∑|C|
c=1 ack
N

log

∑|C|
c=1 ack
N

V-Measure is the harmonic mean of homogeneity and completeness:

V-Measure =
2 · homg. · comp.
homg.+ comp.

Note that in the case that the predicted clustering assigns each item to its own singleton

class (sometimes referred to as the one-cluster-per-item baseline), the homogeneity is equal

to 1. Thus the V-Measure is high for this baseline. In general, V-Measure is known to be

biased toward giving high scores to predicted clusterings having a large number of small

clusters.

Adjusted Rand Index (ARI) The Rand Index (RI) computes the similarity between

a clustering solution and reference clusters by considering all possible pairs of clustered

elements, and comparing pair assignment (to same or different clusters) in the reference to

the pairs’ assignments in the clustering solution (Hubert and Arabie, 1985). Specifically,

if a gives the number of pairs of items that are assigned to the same cluster and have the

same reference class, and b gives the number of pairs of items that are assigned to different

clusters and have different reference classes, then the Rand Index is computed as:
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RI =
a+ b(
N
2

)
The ARI adjusts the RI for chance (Hubert and Arabie, 1985; Pedregosa et al., 2011), and

can be calcluated using the contingency table A:

ARI =

∑
ck

(
ack
2

)
−
[∑

c

(
ac∗
2

)∑
k

(
a∗k
2

)]
/
(
N
2

)
1
2

[∑
c

(
ac∗
2

)
+
∑

k

(
a∗k
2

)]
−
[∑

c

(
ac∗
2

)∑
k

(
a∗k
2

)]
/
(
N
2

)
A perfect matching between the predicted and reference clusters will yield the maximum

ARI score of 1. The ARI metric does not have the biases toward small or large clusters

that Paired F-Score and V-Measure have.

In our work we used the implementations of ARI and V-Measure from the Python Scikit-

learn package (Pedregosa et al., 2011).

A.1.3. Correlation Metrics

Correlation metrics are designed to measure the similarity of two rankings. For the following

explanations, assume a set of n elements {x1, x2, . . . , xn}, and two ranking functions σ1 and

σ2 such that σ1(xi) gives the rank of element xi under the first ranking, and σ2(xi) gives

the rank of element xi under the second ranking.

Kendall’s tau-b (τb) . This metric computes the rank correlation between the rankings

σ1 and σ2, incorporating a correction for ties in one or both lists. Values for τb range from

−1 to 1, with extreme values indicating a perfect negative or positive correlation, and a

value of 0 indicating no correlation between the two lists.

The τb metric is calculated in terms of the number of concordant and discordant pairs. A

pair (xi, xj) is said to be concordant if xi and xj have the same relative ordering under

both rankings; that is, either σ1(xi) < σ1(xj) and σ2(xi) < σ2(xj), or σ1(xi) > σ1(xj)

152



and σ2(xi) > σ2(xj). A pair (xi, xj) is said to be discordant if xi and xj have different

ordering under the two rankings; that is, either σ1(xi) < σ1(xj) and σ2(xi) > σ2(xj), or

σ1(xi) > σ1(xj) and σ2(xi) < σ2(xj). A pair (xi, xj) is tied if either σ1(xi) = σ1(xj) or

σ2(xi) = σ2(xj); a tied pair is neither concordant nor discordant.

τb =
(number of concordant pairs)− (number of discordant pairs)√

(N1) ·
√

(N2)

where N1 gives the number of pairs that are not tied under σ1, and N2 gives the number of

pairs that are not tied under σ2.

Spearman’s rho (ρ) . Spearman’s ρ rank correlation coefficient gives the Pearson’s

correlation between rankings σ1 and σ2:

ρ =
cov(σ1, σ2)

std(σ1) · std(σ2)

where cov(σ1, σ2) is the covariance of the rankings, and std(σ) is the standard deviation of

a ranking.
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A.2. Crowd Clustering Task

This Appendix describes the Human Interface Task (HIT) design for clustering paraphrases

by word sense in Chapter 3.

We want reasonable sets of sense-clustered paraphrases against which to evaluate our auto-

matic clustering method. Although WordNet synsets are a well-vetted standard, they are

insufficient for the task by themselves because of their limited coverage. Using WordNet

alone would only allow us to evaluate our method as applied to the 38% of paraphrases for

our target word list in PPDB that intersect WordNet. So instead we combine crowdsourc-

ing and manual review to construct a reasonable human-generated set of sense-clustered

paraphrases.

Some of the paraphrase sets in our PPDB XXL dataset contain more than 200 phrases,

making it unreasonable to ask a single worker to cluster an entire paraphrase set in one

sitting. Instead, we take an iterative approach to crowd clustering by asking individual

workers to sort a handful of new paraphrases over multiple iterations. Along the way, as

workers agree on the placement of words within sense clusters, we add them to a ’crowd-

gold’ standard. In each iteration, workers can see the most up-to-date crowd gold clustering

solution and are asked to sort new, unclustered paraphrases within it.

A.2.1. Iterative Clustering Methodology

Each clustering iteration t includes a sort phase in which workers are presented with a list

of m unsorted paraphrases U t = {ut1, ut2...utm} for a single target word w, and a partial

sense clustering solution Ct−1 = {ct−1
1 , ct−1

2 ...ct−1
k } as generated in previous iterations. The

initial round is unseeded, with C0 = ∅. Workers are asked to sort all unsorted words uti

by adding them to one or more existing clusters ctj≤k or new clusters ctj>k. For each target

word, n workers sort the same list U t in each iteration. We add a word uti to the crowd

clustering solution Ctif at least τ ×n workers agree on its placement, where τ is a threshold
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parameter.

Consolidating Worker Results

When workers add unsorted words to an existing cluster cj≤k, it is easy to assess worker

agreement; we can simply count the share of workers who add word ui to cluster cj . But

when workers add words to a new cluster, we must do additional work to align the j’s

between workers.

For unsorted words added to new clusters, we consolidate worker placements in iteration t

by creating a graph G with a node for each ui ∈ U t added by any worker to a new cluster

cj>k. We then add weighted edges between each pair of nodes ui and u′i in G by counting the

number of workers who sorted ui and u′i together in some new cluster. Finally we remove

edges with weight less than τ ×n and take the resulting biconnected components as the set

of newly added clusters Ct \ Ct−1.

For quality control, we introduce a ’bogus’ word that is obviously not a paraphrase of any

word in U t in each round. We ask workers to identify the bogus word and place it in a trash

bin. We ignore the results of workers who fail this quality control measure at least 75% of

the time.

Merge Phase

We find qualitatively that consolidating clusters based on biconnected components generates

overlapping but incomplete clusters after several iterations. So we include a merge phase

after every third clustering iteration that enables workers to merge clusters from Ct−1 before

sorting new words into Ct. As with the sorting phase, we merge clusters ct−1 and c′t−1 if at

least τ × n workers agree that they should be merged.
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A.2.2. Final Cleanup

Using our method, the size of clusters is monotonically increasing each iteration. So before

we use the final crowd-clustered data set, we manually review its contents and make cor-

rections where necessary. Examples of reference clusters used in our experiments are given

in Appendix A.3.

A.2.3. User Interface

Our user interface (Figure 33) presents each worker with a ’grab bag’ of unclustered words

for a given target on the left, and a sorting area on the right. Workers are asked to sort all

unclustered words by dragging each one into a bin in the sorting area that contains other

words sharing the same sense of the target.

We set the maximum size of the grab bag to be 10 words. This is based on experimentation

that showed worker clustering performance declined when the size of the grab bag was

larger.
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In this HIT, we loosely define paraphrases as sets of words that mean approximately the same thing.

In the white box on the right is a set of paraphrases for the word bug, grouped by the sense of bug that they convey.
Bins should contain groups of words that all mean approximately the same thing in some sense.

In the blue box at the left are a group of unsorted words. Your job is to finish the sorting task.

You can duplicate the words that belong in more than one bin using the ‘Duplicate a Word’ dropdown.

Please note: As a quality control measure, we have inserted one false paraphrase into the list of sortable words. 
Please place this false paraphrases and any other words unrelated to the target word bug in the red trash bin
at the bottom right.

Click to show/hide an example.

(a) Sorting user interface instructions to workers.

(b) Sorting user interface.

(c) Merge user interface.

Figure 33: Amazon Mechanical Turk user interface for crowdsourcing reference clusters.
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A.3. Example Ground-Truth Clusters

Here we provide examples of ground-truth clusters for the experiments in Chapter 3.

Table 29: WordNet+ Reference Sense Cluster Examples

Query Term Sense Clusters

film (n) c0: wrap, sheet, wrapping

c1: flick, picture, telefilm, show, movie, feature, production,

documentary

c2: episode, sequence, roll, footage, reel, negative, microfilm

c3: cinema

touch (v) c0: strike, engage, hit, press, feel, handle

c1: handle, deal, care

c2: strike, affect, move, stir, get

c3: be, reach

c4: allude, suggest

c5: receive, take, have

c6: focus on, relate, pertain, regard, concern, involve, apply, affect,

hold, refer

c7: disturb, modify, violate, change, alter

c8: contact, stick, rub, meet, ring, cover

c9: impact, hit, influence, bother, modify, alter, treat, strike, affect,

stimulate, change

soil (n) c0: silt, dirt, subsoil, mud, sand, clay, earth, ground

c1: territory

c2: farmland, land, sod, bottom, turf, ground, tillage

c3: filth, dirt

treat (v) c0: feed, provide, cater

Continued. . .
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Table 29: WordNet+ Reference Sense Cluster Examples (continued)

Query Term Sense Clusters

c1: analyze, relieve, analyse, remedy, administer, medicate, nurse, care

for, correct, manipulate, operate

c2: touch, touch on, run, refine, process, affect, digest

c3: react, respond

c4: handle, deal, cover, broach, initiate, address, talk about, discuss

c5: present, give

c6: criminalize, interact, abuse, handle, nurse

severely (r) c0: badly, seriously, gravely

c1: hard

c2: sternly

dark (n) c0: nighttime, night

c1: shadow, darkness

c2: blackness, black, darkness, night

c3: darkness

c4: darkness
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Table 30: CrowdCluster Reference Sense Cluster Examples

Query Term Sense Clusters

post (n) c0: positions, job, occupations, position

c1: posting, outpost

c2: poste, postal

extended (a) c0: extension, extend, expanding, expanded, extending, enlarged,

stretched, extensive, expand, increased

c1: better, enhanced

c2: extending, protracted, stretched, prolonged

let (v) c0: continued, remained, retained, had

c1: derived, prepared

c2: ’m leaving, headed, get going, got to go now, going to do, leaving,

leave, be used, got to go

c3: shown, saw, showed, demonstrated

c4: rented, afforded, hired, rent, rented out, owned

c5: dropped, declined

c6: forgot, forgotten

c7: helped, provided, added, included, offered, gave, awarded

clean (v) c0: clean-up, cleanliness, clear, ’s clean, get cleaned up, cleansing,

wiped clean, cleanse, taken up

c1: given up, dropped out

c2: is true, potable, drinkable, is healthy, is safe

so (r) c0: then, now then, well then, so then

c1: yes

c2: accordingly, so therefore, therefore, thereby, hence, consequently,

thus

c3: so too, as well, too

Continued. . .
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Table 30: CrowdCluster Reference Sense Cluster Examples (continued)

Query Term Sense Clusters

c4: very

c5: even
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A.4. Full Chapter 3 Clustering Results

Full results for all sense clustering experiments from Chapter 3 are given in Tables 31 and

32. The results given in columns WordNet+ and CrowdClusters indicate the appropriate

metric’s weighted average across all query words for that set of reference clusters. The

result for each query term is weighted by its number of reference classes.

Table 31: HGFC Clustering Results

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

PPDB2.0Score PPDB2.0Score False F-Score 0.3497 0.4571

V-Measure 0.3906 0.4731

True F-Score 0.3504 0.4594

V-Measure 0.3946 0.4681

simPPDB.cos False F-Score 0.3627 0.4979

V-Measure 0.3947 0.4797

True F-Score 0.3539 0.4897

V-Measure 0.3929 0.4395

simPPDB.js False F-Score 0.3667 0.4737

V-Measure 0.3899 0.4346

True F-Score 0.3550 0.4969

V-Measure 0.3896 0.4387

simDISTRIB False F-Score 0.3528 0.4893

V-Measure 0.3332 0.3755

True F-Score 0.3587 0.5095

V-Measure 0.3375 0.3989

simTRANS False F-Score 0.3494 0.4336

V-Measure 0.3571 0.3413

True F-Score 0.3562 0.4390

V-Measure 0.3654 0.3502

simPPDB.cos PPDB2.0Score False F-Score 0.3213 0.5007

V-Measure 0.3256 0.3198

Continued. . .
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Table 31: HGFC Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

True F-Score 0.3465 0.4634

V-Measure 0.3465 0.4280

simPPDB.cos False F-Score 0.2828 0.4336

V-Measure 0.4755 0.4569

True F-Score 0.3280 0.4425

V-Measure 0.4548 0.4754

simPPDB.js False F-Score 0.3045 0.4165

V-Measure 0.4999 0.4622

True F-Score 0.3350 0.4691

V-Measure 0.4187 0.4706

simDISTRIB False F-Score 0.2977 0.4772

V-Measure 0.3794 0.3270

True F-Score 0.3381 0.4422

V-Measure 0.3662 0.3498

simTRANS False F-Score 0.3158 0.4102

V-Measure 0.3373 0.3083

True F-Score 0.3276 0.4168

V-Measure 0.3642 0.3148

simPPDB.JS PPDB2.0Score False F-Score 0.3222 0.4754

V-Measure 0.3045 0.3482

True F-Score 0.3530 0.4570

V-Measure 0.3703 0.4340

simPPDB.cos False F-Score 0.2839 0.4191

V-Measure 0.4728 0.4799

True F-Score 0.3357 0.4365

V-Measure 0.4457 0.4595

simPPDB.js False F-Score 0.2952 0.3942

V-Measure 0.4659 0.4703

Continued. . .
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Table 31: HGFC Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

True F-Score 0.3341 0.4452

V-Measure 0.4391 0.4451

simDISTRIB False F-Score 0.3009 0.4811

V-Measure 0.3469 0.3535

True F-Score 0.3435 0.4781

V-Measure 0.3563 0.3500

simTRANS False F-Score 0.3104 0.4026

V-Measure 0.3114 0.3651

True F-Score 0.3247 0.4191

V-Measure 0.3535 0.3197

simDISTRIB PPDB2.0Score False F-Score 0.2324 0.4476

V-Measure 0.5261 0.1822

True F-Score 0.3311 0.5005

V-Measure 0.4617 0.4697

simPPDB.cos False F-Score 0.2300 0.4373

V-Measure 0.5548 0.2467

True F-Score 0.3098 0.4920

V-Measure 0.4724 0.4429

simPPDB.js False F-Score 0.2476 0.4526

V-Measure 0.4370 0.2681

True F-Score 0.3179 0.4847

V-Measure 0.4935 0.4807

simDISTRIB False F-Score 0.2170 0.3925

V-Measure 0.5751 0.3977

True F-Score 0.2972 0.4663

V-Measure 0.4905 0.3744

simTRANS False F-Score 0.2430 0.4036

V-Measure 0.4942 0.3057

Continued. . .
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Table 31: HGFC Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

True F-Score 0.2957 0.4144

V-Measure 0.4254 0.4056

simTRANS PPDB2.0Score False F-Score 0.2943 0.4593

V-Measure 0.2271 0.1530

True F-Score 0.3105 0.4587

V-Measure 0.3094 0.4566

simPPDB.cos False F-Score 0.2969 0.4663

V-Measure 0.2987 0.2300

True F-Score 0.2923 0.4735

V-Measure 0.3925 0.4353

simPPDB.js False F-Score 0.3027 0.4581

V-Measure 0.2862 0.1976

True F-Score 0.3001 0.4830

V-Measure 0.3563 0.4340

simDISTRIB False F-Score 0.3001 0.4617

V-Measure 0.2390 0.2267

True F-Score 0.2996 0.4624

V-Measure 0.3011 0.3367

simTRANS False F-Score 0.2323 0.3781

V-Measure 0.4748 0.3106

True F-Score 0.2620 0.3887

V-Measure 0.4095 0.3435

165



Table 32: Spectral Clustering Results

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

PPDB2.0Score PPDB2.0Score False F-Score 0.3268 0.4304

V-Measure 0.5534 0.5046

True F-Score 0.3292 0.4312

V-Measure 0.5497 0.5326

simPPDB.cos False F-Score 0.3454 0.4865

V-Measure 0.4698 0.4881

True F-Score 0.3517 0.4856

V-Measure 0.4731 0.4983

simPPDB.js False F-Score 0.3462 0.4858

V-Measure 0.4556 0.4886

True F-Score 0.3510 0.4837

V-Measure 0.4652 0.4946

simDISTRIB False F-Score 0.3494 0.5067

V-Measure 0.4452 0.4796

True F-Score 0.3570 0.5093

V-Measure 0.4513 0.4812

simTRANS False F-Score 0.3231 0.4279

V-Measure 0.4240 0.4287

True F-Score 0.3274 0.4527

V-Measure 0.4330 0.4330

simPPDB.cos PPDB2.0Score False F-Score 0.3430 0.4888

V-Measure 0.4823 0.4535

True F-Score 0.3317 0.4526

V-Measure 0.5290 0.4803

simPPDB.cos False F-Score 0.3175 0.4166

V-Measure 0.5594 0.5244

True F-Score 0.3396 0.4635

V-Measure 0.5019 0.4426

Continued. . .
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Table 32: Spectral Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

simPPDB.js False F-Score 0.3176 0.4115

V-Measure 0.5354 0.5053

True F-Score 0.3357 0.4660

V-Measure 0.4793 0.4265

simDISTRIB False F-Score 0.3381 0.4639

V-Measure 0.4703 0.5018

True F-Score 0.3476 0.4811

V-Measure 0.4224 0.4115

simTRANS False F-Score 0.3204 0.4940

V-Measure 0.4069 0.3706

True F-Score 0.3234 0.4437

V-Measure 0.4089 0.3371

simPPDB.JS PPDB2.0Score False F-Score 0.3389 0.4875

V-Measure 0.4627 0.4560

True F-Score 0.3252 0.4385

V-Measure 0.5206 0.4753

simPPDB.cos False F-Score 0.3084 0.4109

V-Measure 0.5442 0.5247

True F-Score 0.3327 0.4740

V-Measure 0.4993 0.4509

simPPDB.js False F-Score 0.3035 0.4003

V-Measure 0.5233 0.4947

True F-Score 0.3327 0.4679

V-Measure 0.4702 0.4423

simDISTRIB False F-Score 0.3285 0.4701

V-Measure 0.4581 0.4905

True F-Score 0.3412 0.4885

V-Measure 0.4321 0.4065

Continued. . .
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Table 32: Spectral Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

simTRANS False F-Score 0.3095 0.4786

V-Measure 0.3968 0.3385

True F-Score 0.3130 0.4550

V-Measure 0.3955 0.3418

simDISTRIB PPDB2.0Score False F-Score 0.3182 0.5105

V-Measure 0.4113 0.4587

True F-Score 0.3150 0.4454

V-Measure 0.5241 0.4815

simPPDB.cos False F-Score 0.3160 0.4436

V-Measure 0.4805 0.5080

True F-Score 0.3436 0.4707

V-Measure 0.4770 0.4574

simPPDB.js False F-Score 0.3124 0.4658

V-Measure 0.4547 0.5086

True F-Score 0.3472 0.4761

V-Measure 0.4646 0.4313

simDISTRIB False F-Score 0.2813 0.4244

V-Measure 0.5137 0.5341

True F-Score 0.3367 0.4700

V-Measure 0.4637 0.4465

simTRANS False F-Score 0.2984 0.4876

V-Measure 0.3728 0.3685

True F-Score 0.3173 0.4501

V-Measure 0.3876 0.3531

simTRANS PPDB2.0Score False F-Score 0.2706 0.4461

V-Measure 0.4154 0.2677

True F-Score 0.2617 0.4029

V-Measure 0.5202 0.4749

Continued. . .
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Table 32: Spectral Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

simPPDB.cos False F-Score 0.2636 0.4379

V-Measure 0.4629 0.3650

True F-Score 0.2674 0.4231

V-Measure 0.5107 0.4268

simPPDB.js False F-Score 0.2647 0.4417

V-Measure 0.4416 0.3655

True F-Score 0.2667 0.4242

V-Measure 0.5106 0.4250

simDISTRIB False F-Score 0.2652 0.4562

V-Measure 0.4291 0.3655

True F-Score 0.2640 0.4476

V-Measure 0.5158 0.4111

simTRANS False F-Score 0.2601 0.4441

V-Measure 0.4180 0.3240

True F-Score 0.2584 0.3850

V-Measure 0.5131 0.4079

169



A.5. Crowdsourcing Adjective Scales

In Chapter 4 we utilized two previously-released datasets of gold standard adjective intensity

rankings (de Melo and Bansal, 2013; Wilkinson and Oates, 2016), and also generated a

third, new set of gold standard adjective scales through crowdsourcing in order to maximize

coverage of our JJGraph vocabulary. This appendix details the process of creating the new

crowdsourced dataset. Our general approach was, first, to compile clusters of adjectives

describing a single attribute, and second, to rank adjectives within each cluster by their

intensity.

A.5.1. Generating Adjective Sets

We generated clusters of adjectives modifying a shared attribute by partitioning sets of

related adjectives associated with a single target word in JJGraph. For example, given

the target adjective hot, we might generate the following clusters from the set of associated

words warm, heated, boiling, attractive, nice-looking, new, and popular :

c1 = {warm, heated, boiling}

c2 = {attractive, nice-looking}

c3 = {new, popular}

Each cluster represents a sense of the target adjective, and thus the adjectives within a

cluster can be ordered along a single scale of increasing intensity. Clusters do not need to

be disjoint, as some adjectives have multiple senses.

Partitioning the sets was accomplished with the aid of crowd workers on Amazon Mechanical

Turk (MTurk) in two stages. Here we describe the process.

We began by selecting target adjectives with high centrality in JJGraph around which

to create gold standard clusters. An adjective has “high centrality” if it is among the

200 most central nodes according to two of three centrality measurements – betweenness
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centrality, closeness centrality, and degree centrality. With this criterion, we selected 145

target adjectives from JJGraph around which adjective sets were generated.

For each target adjective, we then generated a candidate set of related adjectives to pass

to our first MTurk task, which asked workers to remove unrelated adjectives from the

candidate sets. We compile an initial candidate set for each of the 145 target adjectives by

collecting the first 20 words encountered in a breadth-first search starting at the adjective

in JJGraph.

Our first MTurk task aimed to remove unrelated adjectives from the 145 candidate sets (see

Figure 34). We presented workers with pairs of adjectives, one being the target adjective

and the other a word from that target’s candidate set. Three Turkers assessed each pair of

adjectives. If a majority of Turkers declared that a pair of adjectives did not describe the

same attribute, then the candidate word was removed from that target’s set.

Figure 34: First MTurk HIT for constructing gold standard adjective clusters. Each question
consists of a target adjective (left) and a cluster candidate adjective (right).
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Figure 35: Second MTurk HIT for constructing gold standard adjective clusters.

Once we had a clean set of related adjectives for each target, our second task asked workers to

partition the related words (Figure 35). Between 2 and 10 Turkers constructed a clustering

for each target adjective. Once a predefined level of agreement was reached among Turkers

for a target adjective’s clusters, the clusters were deemed “gold.”

In total, we constructed gold standard clusterings for 145 adjectives. Each candidate set

was partitioned into an average of 3.26 clusters.

A.5.2. Ranking Adjectives in a Cluster

Given a clustering of related adjectives for each of the 145 target words, our next step was

to ask MTurk workers to order adjectives within a single cluster by intensity.

We completed the ordering in a pairwise fashion. For each adjective cluster, we asked 3

MTurk workers to evaluate – for each pair of adjectives (ju, jv), whether ju was less, equally,

or more intense than jv. The inter-annotator agreement on this task (Cohen’s kappa) was

κ = 0.53, indicating moderate agreement.

Finally, we filtered each cluster to include only adjectives with a unanimous, consistent
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global ranking. More specifically, if a cluster has adjectives ju, jv, and jw, and workers

unanimously agree that ju < jv and jv < jw, then workers must also unanimously agree

that ju < jw for the ranking to be consistent. After this final step, our dataset consisted of

79 remaining clusters having from 2 to 8 ranked adjectives each (mean 3.18 adjectives per

cluster).
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A.6. Adapting the Wilkinson Dataset

The Wilkinson dataset (Wilkinson and Oates, 2016) as published provides 12 full adjective

scales between polar opposites, e.g. (ancient, old, fresh, new). We manually subdivided

each scale into half scales for compatibility with the other datasets in this study, producing

21 half scales total. The procedure for dividing a full- into a half-scale was as follows:

1. If the full scale contains two central adjectives where the polarity shifts from negative

to positive, sub-divide the scale between them (e.g. divide the scale (simple, easy,

hard, difficult) between central adjectives easy and hard).

2. Otherwise, if the full scale contains a central neutral adjective, subdivide the full

scale into halves with the neutral adjective belonging to both half scales (e.g. divide

(freezing, cold, warm, hot) into (freezing, cold, warm) and (warm, hot)).

3. If any of the resulting half scales has length 1, delete it.

hideous ugly || pretty beautiful gorgeous

dark dim || light bright

same alike similar || different

simple easy || hard difficult

parched arid dry || damp moist wet

|| few some several many

horrible terrible awful bad || good great wonderful awesome

freezing cold warm || warm hot

ancient old || fresh new

slow || quick fast speedy

miniscule tiny small || big large huge enormous gigantic

idiotic stupid dumb || smart intelligent

Table 33: Converting the 12 Wilkinson full scales to 21 half scales. The || symbol denotes
the location where full scales are split into half scales. Strike-through text indicates a
half-scale was deleted due to having a single adjective.

Table 33 enumerates the half-scales we generated from the full Wilkinson dataset.
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A.7. Full Chapter 4 Results

Only the best results for combined scoring methods were given in the main body of Chapter

4. Here we provide the full results for all combinations attempted on both experiments.

Method %OOV Acc. P R F

scoresocal+pat+pp 0.06 0.642 0.684 0.683 0.684
scoresocal+pp+pat 0.06 0.642 0.678 0.676 0.677
scoresocal+pp 0.09 0.634 0.690 0.663 0.676
scoresocal+pat 0.07 0.634 0.680 0.670 0.675
deMarneffe (2010) 0.02 0.610 0.597 0.594 0.596
scoresocal 0.26 0.504 0.710 0.481 0.574
scorepp+pat 0.06 0.504 0.559 0.547 0.553
scorepp+pat+socal 0.06 0.504 0.559 0.547 0.553
scorepp+socal+pat 0.06 0.504 0.559 0.547 0.553
scorepp+socal 0.09 0.496 0.568 0.533 0.550
scorepp 0.09 0.496 0.568 0.533 0.550
scorepat+pp 0.06 0.423 0.532 0.517 0.524
scorepat+socal+pp 0.06 0.423 0.532 0.517 0.524
scorepat+pp+socal 0.06 0.423 0.532 0.517 0.524
scorepat+socal 0.07 0.415 0.528 0.504 0.516
scorepat 0.07 0.407 0.524 0.491 0.507
all-“YES” 0.00 0.691 0.346 0.500 0.409

Table 34: Full Chapter 4 IQAP Results. Accuracy and macro-averaged precision (P), recall
(R), and F1-score (F) over yes and no responses on 123 question-answer pairs. The percent
of pairs having one or both adjectives out of the score vocabulary is listed as %OOV. Rows
are sorted by descending F1-score.
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Score Accuracy
(before ranking)

Global Ranking Results

Test
Set

Score Type
Cover-
age

Pairwise
Acc.

Pairwise
Acc.

Avg. τb ρ

deMelo

scorepat 0.480 0.844 0.650 0.633 0.583
scorepp 0.325 0.458 0.307 0.071 0.09
scoresocal 0.277 0.546 0.246 0.110 0.019
scorepat+pp 0.623 0.742 0.619 0.543 0.511
scoresocal+pp 0.478 0.523 0.380 0.162 0.106
scorepat+socal 0.609 0.757 0.653 0.609 0.533
scorepat+pp+socal 0.698 0.718 0.637 0.537 0.463
scorepat+socal+pp 0.698 0.722 0.644 0.564 0.482
scorepp+socal+pat 0.698 0.635 0.579 0.393 0.327
scorepp+pat+socal 0.698 0.661 0.599 0.437 0.372
scoresocal+pp+pat 0.698 0.647 0.589 0.430 0.341
scoresocal+pat+pp 0.698 0.680 0.613 0.496 0.395

Crowd

scorepat 0.112 0.784 0.321 0.203 0.221
scorepp 0.738 0.676 0.597 0.437 0.405
scoresocal 0.348 0.757 0.421 0.342 0.293
scorepat+pp 0.747 0.696 0.627 0.481 0.432
scoresocal+pp 0.812 0.687 0.621 0.470 0.465
scorepat+socal 0.412 0.750 0.476 0.373 0.298
scorepat+pp+socal 0.821 0.686 0.630 0.462 0.440
scorepat+socal+pp 0.821 0.686 0.624 0.465 0.472
scorepp+socal+pat 0.821 0.670 0.630 0.456 0.435
scorepp+pat+socal 0.821 0.670 0.630 0.456 0.435
scoresocal+pp+pat 0.821 0.690 0.633 0.481 0.480
scoresocal+pat+pp 0.821 0.694 0.639 0.495 0.480

Wilkinson

scorepat 0.443 0.852 0.475 0.441 0.435

scorepp 0.795 0.753 0.639 0.419 0.450
scoresocal 0.311 0.895 0.312 0.317 0.422
scorepat+pp 0.885 0.833 0.738 0.605 0.564
scoresocal+pp 0.795 0.773 0.672 0.484 0.565
scorepat+socal 0.639 0.846 0.59 0.503 0.506
scorepat+pp+socal 0.885 0.833 0.738 0.605 0.564
scorepat+socal+pp 0.885 0.833 0.754 0.638 0.600
scorepp+socal+pat 0.885 0.750 0.672 0.426 0.414
scorepp+pat+socal 0.885 0.750 0.672 0.426 0.414
scoresocal+pp+pat 0.885 0.769 0.705 0.492 0.504
scoresocal+pat+pp 0.885 0.833 0.754 0.638 0.611

Table 35: Full Chapter 4 pairwise relation prediction and global ranking results.
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