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Chapter 1

Introduction

The objective of this thesis is to directly incorporate comparable corpora into the estimation of end-to-end statistical
machine translation (SMT) models. Typically, SMT models are estimated from parallel corpora, or pairs of translated
sentences. In contrast to parallel corpora, comparable corpora are pairs of monolingual corpora that have some cross-
lingual similarities, for example topic or publication date, but that do not necessarily contain any direct translations.
Comparable corpora are more readily available in large quantities than parallel corpora, which require significant
human effort to compile. We use comparable corpora to estimate machine translation model parameters and show that
doing so improves performance in settings where a limited amount of parallel data is available for training. Specifically,
we use comparable corpora in the following ways:

• We induce high quality translations for words and short multiword phrases using features estimated over com-
parable corpora and a small number of example translations.

• We estimate a variety of phrase table feature functions over phrase pairs both extracted from parallel data and
induced from comparable corpora.

• We show that the induced translations and new feature functions significantly improve the quality of machine
translations for both low resource language pairs and text domains.

In the last twenty years, statistical machine translation has improved dramatically as algorithms for using parallel
corpora to build translation models have improved. However, for many potential machine translation use cases, the
parallel corpora necessary to train high quality statistical models do not exist. Even if we restrict ourselves to those
markets with many potential users, focusing only on languages with tens of millions of speakers, there are thousands
of possible language pairs. At best, we have substantial quantities of parallel corpora in a few hundred of these.
Furthermore, in most of those cases, the parallel corpora consist of text from the government domain. For the vast
majority of languages and domains, zero or very little parallel data exists (Lopez and Post, 2013). This thesis focuses
on these critical low resource machine translation settings, where insufficient parallel corpora are available for training
statistical models.

This thesis addresses two slightly different low resource settings. The first is typically referred to simply as ‘low
resource machine translation’ and is characterized by the amount of parallel data available for training SMT models for
a given pair of languages. In Chapter 3 we present the amount of parallel data publicly available for over one hundred
languages paired with English. For Chinese and French, over one billion words of parallel text are available for training
SMT models. Additionally, for many languages, including, for example, Italian, Serbian, Japanese, and Ukrainian, over
one million words of parallel text are available. In this thesis, we generally define low resource language pairs as those
for which we have access to fewer than one million words of parallel data. Low resource language pairs include, for
example, Malayalam, Somali, Kazakh, and Afrikaans paired with English. Because doing evaluation on truly low
resource language pairs can be difficult, in some experiments we simulate low resource conditions by training SMT
models on samples of larger parallel training sets.

Figure 1.1 demonstrates the effect of using varying amounts of parallel training data to estimate a statistical machine
translation model. To show the effect, we sample varying amounts of training data from the very large French-English
Hansard parliamentary proceedings parallel corpus.1 We train SMT models on each set of training data and measure

1This corpus consists of manual transcriptions and translations form the Canadian parliament. It is described in more detail in Chapter 8.
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Figure 1.1: Illustration of the effect of training data size (x-axis) on translation quality (y-axis). We estimate French to
English translation models using varying amounts of the very large French-English Hansard parliamentary proceedings
parallel dataset. Then, we measure the performance of each model by translating a held-out French test set, also taken
from the French-English Hansard parliamentary proceedings, into English and computing the BLEU score, a metric
for automatically estimating translation quality.

the performance of each by translating a test set of French sentences, also taken from the Hansard corpus, and then
comparing the English machine translations with reference English translations. As the amount of parallel data in-
creases (along the x-axis), the quality of the machine translations increases. The effect is nearly linear with the log of
the amount of training data.

The second low resource setting that we address in this thesis involves the domain of the text that we wish to
translate. In many real-world translation settings we have access to parallel data in some text domain, for example
parliamentary proceedings, but we wish to translate text in another domain, for example from the medical domain.
Training SMT models on text in some ‘old-domain’ and then using the models to translate text in a ‘new-domain’
results in low quality translations due to the mismatch.

Figure 1.2 demonstrates the domain mismatch effect. The lower (red) bars show the results of using a French-
English SMT model trained on old-domain (parliamentary proceedings) data to translate text in two new-domains.2
When we, instead, use a combination of old-domain and new-domain parallel data to train our SMT models, perfor-
mance increases substantially. In the medical domain, the BLEU score increases by about 23% and in the science
domain, it increases by about 28%. The performance increases are substantial despite the fact that the old-domain
parallel training data is very large (about 150 million words). Such large gaps in performance mean that adapting
the old-domain models to new domains of text has the potential to yield much higher quality translations in the new-
domain.

In Chapter 3 we present results from our novel error analysis methodology which shed light on the types and
number of errors that are made when we train SMT models to translate between pairs of low resource languages. In
Chapter 8 we present a similar analysis of what goes wrong when we use an SMT model trained on text in one domain
to translate text in a different domain. In both cases, we find that most errors are due to unseen source language words
and phrases and unseen target language translations. We also find room for improving errors due to how different
translations are weighted, or scored, in the low resource SMT models.

In this thesis, we present and release comparable corpora in 151 languages paired with English as well as, for
most languages, a bilingual dictionary of single word translations. We harvested the comparable corpora from both

2Details about the new domain datasets are given in Chapter 8.
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Figure 1.2: Illustration of the effect of using old-domain data to translate text in two different new-domains. We
compare the performance of models trained on old-domain data only with that of models trained on both old and new
domain parallel training data. Our old domain data consists of the complete French-English Hansard parliamentary
proceedings dataset, and our new domain datasets are taken from the science and medical domains. When we add
new-domain training data to our strong old-domain baselines, translation quality increases by 23% and 28% BLEU on
the science and medical translation tasks, respectively.
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Figure 1.3: Visualization of the temporal similarity between a pair of word translations. The frequency of finlandia in
Spanish monolingual corpora over time is similar to that of finland in English monolingual corpora over time.

Wikipedia and online newspapers. Our bilingual dictionaries are compiled from a variety of sources, including elec-
tronic dictionaries, scanned and digitized paper dictionaries, and crowdsourced translations gathered on Amazon’s
Mechanical Turk platform. We provide details on the collection and content of each data resource in Chapter 3.

Using comparable corpora, we estimate a variety of signals of translation equivalence and use these signals to
both identify new translations and to score bilingually extracted translations. The signals estimated over comparable
corpora include contextual, temporal, topic, burstiness, and frequency similarity. Temporal similarity, for example, is
a measure of the similarity between temporal signatures of a source language word or phrase and a target language
word or phrase. The intuition behind this signal is that news stories in different languages published around the world
tend to discuss the same events as they occur. Temporal signatures are estimated using the frequencies of a given word
or phrase across a set of documents, each of which is associated with some timestamp. We can align source language
documents with target language documents by their timestamps and then directly compare temporal signatures. Figure
1.3 shows an example of the temporal signature of Spanish finlandia contrasted with that of English finland. The
temporal signatures are estimated over our comparable corpora of time-stamped web crawls of Spanish and English
online newspapers. In general, the country Finland is mentioned with similar frequency over time in both the Spanish
and English corpora. This temporal similarity signal is one weak indication that the two words may be translations of
one another. We estimate topic similarity in a similar way. However, instead of aligning document pairs by timestamp,
we aligned them by topic. Another signal, which is perhaps more obvious in the case of finlandia and finland, is
orthographic similarity. We also make use of this signal, which does not reference comparable corpora. In Chapter 4,
we present each signal in detail.

Although the signals of translation equivalence that we use in this thesis have all been proposed in prior work, we
present novel techniques for combining them to make accurate translation predictions. In particular, we define novel
ways to use the signals of translation equivalence to improve translation errors due to both unseen translations and
inaccurately scored translations. Prior work has induced unigram translations from comparable corpora using a variety
of unsupervised learning techniques, but most of this work does not go as far as to augment end-to-end SMT models
with the new translations. We present a novel supervised approach to inducing new translations from comparable
corpora. Our approach requires only a small number of example translations for training, and we integrate the new
translations into end-to-end SMT models trained in low resource conditions. We also present novel techniques for
integrating scores based on comparable corpora directly into end-to-end SMT models. We show that such scores lead
to improved translation quality in both of our low resource settings. Augmenting baseline SMT models with both new
translations and new scores yields even bigger performance gains.

In contrast to a lot of prior work on low resource machine translation (see Section 2.1.3), we take a language-
independent approach. This follows prior work on statistical machine translation, where the pipeline for training
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models is typically the same for any language pair. Because they depend only on data resources and not expert human
knowledge or hand-written rules, language independent approaches have the advantage of allowing for very quick
deployment of new systems for new language pairs. This is particularly advantageous in our target setting because
new low resource languages may become of interest suddenly, for example in emergency disaster situations. During
the January 2010 earthquake in Haiti, human volunteers translated Creole text messages that survivors sent to English
speaking relief workers. If SMT systems could be deployed very quickly in similar situations in the future, they may
be able to supplement or replace such crowdsourcing efforts (Lewis et al., 2011).

1.1 Contributions of this thesis
The major contributions of this thesis are as follows:

• We release ‘language packs’ for 151 human languages, which include bilingual dictionaries, comparable corpora
of Wikipedia document pairs, comparable corpora of time-stamped news text that we harvested from the web,
and, for non-roman script languages, dictionaries of name pairs, which are likely to be transliterations.

• We present a novel technique for using a small number of example word translations to learn a supervised model
for bilingual lexicon induction which takes advantage of a wide variety of signals of translation equivalence that
can be estimated over comparable corpora.

• We show that using comparable corpora to induce new translations and estimate new phrase table feature func-
tions improves end-to-end statistical machine translation performance for low resource language pairs as well as
domains.

• We present a novel algorithm for composing multiword phrase translations from multiple unigram translations
and then use comparable corpora to prune the large space of hypothesis translations. We show that these induced
phrase translations improve machine translation performance beyond that of component unigrams.

1.2 Structure of this document
Figure 1.4 gives a schematic overview of the thesis and shows how each chapter fits into a simplistic view of statistical
machine translation. The thesis is structured as follows:

• Chapter 2 gives an introduction to statistical machine translation, with a focus on the phrase-based model that we
use throughout the thesis. It also introduces and reviews prior work on expanding bilingual resources, including
bilingual lexicon induction and crowdsourcing translations, and domain adaptation for machine translation.

• Chapter 3 introduces the set of languages and text corpora that we use throughout the thesis. This chapter
also presents results from a novel error analysis technique to better understand what goes wrong in machine
translation when we train models on only small amounts of parallel training data.

• Chapter 4 details our novel technique for doing supervised bilingual lexicon induction using a diverse set of
similarity measures that indicate translation equivalence. This chapter includes an analysis of a number of factors
that contribute to the performance of bilingual lexicon induction, including word frequency and burstiness, the
size of the bilingual dictionary used for supervision, and the size of the comparable corpora. This chapter also
includes a direct comparison with a previously state-of-the-art model of bilingual lexicon induction.

• Chapter 5 describes how we adapt our techniques for using comparable corpora to score the similarity between
a pair of words in two languages to instead score a pair of multiword phrases. This chapter presents SMT
experiments where we replace bilingually estimated feature functions with those estimated over comparable
corpora.

• Chapter 6 applies our techniques for inducing translations (Chapter 4) and scoring a phrase table (Chapter 5) to
end-to-end low resource SMT for several truly low resource source languages.
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Chapter 5:
Phrase Table

Features

h1(fr,en), h2(fr,en), …fr     en     b1(fr,en), b2(fr,en), …

Chapter 4:
Induced Word Translations

Chapter 7:
Induced Phrase Translations

Chapter 6:
Zero or Limited 
Training Data

Chapter 8:
Train and Test 

Domain Mismatch

Chapter 3:
Comparable Corpora

Chapter 2:
Baseline Phrase-Based SMT

Figure 1.4: Schematic overview of the thesis. The large middle box depicts how we augment baseline phrase-based
SMT models using comparable corpora. In Chapter 2, we define our baseline models, which are trained on parallel
corpora. We describe our comparable corpora in Chapter 3. In Chapters 4 and 7, we present methods for using
the comparable corpora to induce new source-target word and phrase translation pairs, respectively, which we use to
augment baseline SMT models. In Chapter 5, we augment baseline models with new comparable corpora-based feature
functions. In Chapters 6 and 8, we present end-to-end SMT experiments using comparable corpora to augment baseline
models for translating low resource languages and domains.
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• Chapter 7 presents our approach to inducing multiword phrase translations using a novel algorithm based on
translation compositionality. It includes end-to-end SMT experiments that show that the quality of machine
translations improve when we augment models with new phrasal translations in addition to unigram translations.

• Chapter 8 applies our bilingual lexicon induction and phrase table scoring techniques to a domain adaptation
setting, where we have training data in some old-domain but wish to translate text in a new-domain. Additionally,
this chapter presents an analysis of the errors that occur in the domain shift setting.

• Chapter 9 concludes the thesis with an overview of the major research findings.

1.3 Related publications
This thesis is based on seven publications:

• Chapters 3 and 8 present and extend “Measuring machine translation errors in new domains,” which was pub-
lished in the Transactions of the Association for Computational Linguistics (TACL) in 2013 and is joint work
with John Morgan, Marine Carpuat, Hal Daumé III, and Dragos Munteanu.

• Chapter 3 presents the data that we released along with “The Language Demographics of Amazon Mechanical
Turk,” which was published in the Transactions of the Association for Computational Linguistics (TACL) in
2014 and is joint work with Ellie Pavlick, Matt Post, Dmitry Kachaev, and Chris Callison-Burch.

• Chapter 4 extends “Supervised Bilingual Lexicon Induction with Multiple Monolingual Signals,” which was
published in the Proceedings of the Conference of the North American Chapter of the Association for Computa-
tional Linguistics (NAACL) in 2013.

• Chapter 5 presents “Toward Statistical Machine Translation without Parallel Corpora,” which was published in
the Proceedings of the Conference of the European Association for Computational Linguistics (EACL) in 2012
and is joint work with Alex Klementiev, Chris Callison-Burch, and David Yarowsky.

• Chapter 6 extends “Combining Bilingual and Comparable Corpora for Low Resource Machine Translation,”
which was published in the Proceedings of the Workshop on Statistical Machine Translation (WMT) in 2013.

• Chapter 7 elaborates on “Hallucinating Phrase Translations for Low Resource MT,” which was published in the
Proceedings of the Conference on Natural Language Learning (CoNLL) in 2014.

• Chapter 8 extends “Using Comparable Corpora to Adapt MT Models to New Domains,” which was published in
the Proceedings of the Workshop on Statistical Machine Translation (WMT) in 2014.
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Chapter 2

Literature Review

2.1 Statistical Machine Translation
Statistical machine translation (SMT) was first formulated as a series of probabilistic models that learn word-to-word
correspondences from sentence-aligned bilingual parallel corpora. IBM researchers (Brown et al., 1988, 1993a) intro-
duced and tested the first statistical machine translation (SMT) system trained on pairs of source and target sentence
translations. They formulated SMT as a source-channel problem, as follows, where ê is the optimal output translation,
E is the set of all possible output sentences, and f is the input sentence:

ê argmax

e E
p e f argmax

e E
p e p f e

The translation model, p f e may be estimated by summing over all possible word alignments, A, in the corpus of
translated sentence pairs:

ê argmax

e E
p e f argmax

e E a A

p e p f, a e

However, for efficiency, typically the single best word alignment is used to estimate the translation model parameters.
Brown et al. (1990) proposed using the classic n-gram models often used in speech recognition to estimate the language
model parameters, p e , which is the probability of a sequence of target language words:

p e1, e2, e3, ..., ei p e1 p e2 e1 p e3 e1, e2 ... p ei e1, e2, e3, ..., ei 1

N-gram back off models estimate probabilities using local context, just n 1 preceding words, rather than the full
history. A trigram approximation is estimated as follows:

p ei e1, e2, e3, ..., ei 1 p ei ei 1, ei 2

2.1.1 Phrase-Based Machine Translation
The major developments in the SMT field have built directly upon the initial IBM word-based statistical models.
Marcu and Wong (2002) and Koehn et al. (2003) introduced phrase-based machine translation (PBMT), which takes
advantage of multi-word phrase translations. Current methods, including both phrase-based (Koehn et al., 2003; Och
and Ney, 2002) and hierarchical models (Chiang, 2005), typically start by word-aligning a bilingual parallel corpus
(Och and Ney, 2003). They extract multi-word phrases that are consistent with the Viterbi word alignments and use
these phrases to build new translations. Phrase extraction heuristics (Och and Ney, 2004; Tillmann, 2003; Venugopal
et al., 2003) produce a set of phrase pairs e, f , the phrase table, that are consistent with the word alignments.

Another important improvement to the original noisy channel formulation was proposed by Och and Ney (2002,
2004) and uses a linear model instead. This model was a crucial development in SMT because it allows the feature
space to easily extend beyond basic translation and language model probabilities. It is formalized as:

êI1 argmax

eI1 EI

1

1

Z
exp

M

m 1

�mhm eI1, f
J
1
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In this formulation, there are M features, each of which is a function, hm, of the source and target strings. The
source and target strings have lengths J and I , respectively. Features are typically defined for pairs of source and
target phrases, and the score of a full target output sentence, eI1, is computed by summing over all of its sub-phrases.
Z is a normalization constant, which can be ignored. During tuning, the feature weights, �m, are chosen to optimize
performance on a development set of source and target sentence translation pairs. One widely used tuning method is
Minimum Error Rate Training (MERT) (Och, 2003). Instead of maximum likelihood, MERT allows the optimization
of objectives that measure translation quality. One such objective function is BLEU (Papineni et al., 2002), which
compares system translations to reference translations produced by people. The BLEU score is based on n-gram
precision measures, which count how many n-grams in the reference translation are contained in the system output:

BLEU BP exp
N

n 1

wnlogpn

where BP is a brevity penalty, N is the maximum n-gram degree (typically 4), pn is the precision over phrases of
length n, and wn is a weight associated with each precision metric (typically uniform, resulting in a geometric mean
over n-gram precisions). We use BLEU to evaluate the quality machine translations throughout this thesis.

Recently, other tuning algorithms have been proposed that are more robust to a large feature space than MERT
(Cherry and Foster, 2012; Chiang et al., 2008, 2009; Hopkins and May, 2011). In this thesis, we make use of both
MERT and the batch version of the Margin Infused Relaxed Algorithm (MIRA) (Crammer et al., 2006). MIRA is an
online learner that makes updates based on ‘hope’ hypothesis translations, which are both high quality (as measured by
BLEU score) and reachable by the model, and ‘fear’ hypothesis translations, which are given high scores by the current
model but are low quality translations (Chiang et al., 2008). Cherry and Foster (2012) introduced a batch version of
the online MIRA algorithm.

In PBMT, phrase table features typically include phrase translation probabilities, � e f and � f e , which are
calculated via maximum likelihood estimation over the word-aligned training corpus. Since MLE overestimates � for
phrase pairs with sparse counts, lexical weighting feature functions are used to smooth. Lexical weighting features
consist of average word translation probabilities, w ei fj , and are calculated via phrase-pair-internal word alignments
(Koehn et al., 2003). Other typical features are n-gram language model scores and a phrase penalty, which governs
whether to use fewer longer phrases or more shorter phrases. Language model scores are estimated over target language
monolingual corpora, and the phrase penalty feature is uniform across all phrase pairs.

Tillman (2004) define a “lexicalized reordering” model for PBMT, which is based upon the relative positions of
target language phrases, which are translated according to the source language phrase sequence. That is, if two source
phrases, si 1 and si, translate into two target phrases, tj and tk, then a probability distribution is defined over the
relative position of the target phrases. The phrase tk can follow (be in order with) tj , be just before it (swapped), or
neither (discontinuous). Figure 2.1 shows these three reordering patterns. This reordering model is defined over the
entire target sequence as follows:

P tn1 , o
n
1

n

i 1

p ti, oi ti 1, oi 1

Where each oi has three possible values: monotonic (in order), swapped, or discontinuous (neither). The probability
of each phrase having each reordering value is dependent only upon the previously translated target phrase (ti 1) and
its reordering value.

The Moses SMT toolkit (Koehn et al., 2007) contains an implementation of the now-standard PBMT pipeline, and
we make use of it throughout this thesis. Figure 2.2 depicts the entire phrase-based SMT pipeline.

2.1.2 Other Models of Translation
Syntax-Based SMT Syntax-based machine translation grammars have shown improvements over phrase-based gram-
mars on some language pairs (Galley et al., 2004; Huang and Mi, 2010; Li et al., 2010b; Zollmann and Venugopal,
2006). There are essentially two ways to incorporate a syntax model into an SMT system. The first is to extract gram-
mar rules which have some syntactic structure and which combine into complete parse trees on the source side, target
side, or both. This is approach is enabled by not only high-performance parsers but also improvements to syntactic
decoding (Galley et al., 2006; Huang and Mi, 2010; Li et al., 2010a; Quirk and Menezes, 2006; Quirk et al., 2005;
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Figure 2.1: The reordering probabilities from the phrase-based models are estimated from bilingual data by calculating
how often in the parallel corpus a phrase pair f, e is orientated with the preceding phrase pair in the 3 types of
orientations (monotone, swapped, and discontinuous).
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Figure 2.2: Standard statistical machine translation pipeline. Parallel data is automatically word aligned. Using the
word alignments, a phrase table is extracted and scored. Discriminative training uses a small amount of parallel data
to set the weights for each parameter in the scored phrase table as well as for the language model, which is trained on
monolingual target language text. Finally, the scored tables, language model, and learned weights are used to decode
new text.
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Zollmann and Venugopal, 2006). Somewhat complementary, Koehn and Hoang (2007) integrates syntactic and mor-
phological information into grammar rules at the word level. The second way to integrate this information is to add
syntactically-informed features to any set of grammar rules, which may or may not contain syntactic structure (e.g.,
Hanneman et al. (2010)). This approach is enabled by recent developments in methods to efficiently and accurately
tune a large number of SMT feature parameters (Cherry and Foster, 2012; Chiang et al., 2009; Hopkins and May, 2011;
Liang et al., 2006).

Decipherment Decipherment combines techniques from cryptography and machine translation. It is typically cast
as an unsupervised substitution and transposition problem or, comparably, the task of building a translation model
when there is zero parallel text available to learn from. Knight et al. (2006) explore character and phonetic ciphers
as well as a toy word-substitution cipher. That work uses expectation-maximization to learn a noisy-channel model
and implements several slight modifications to improve performance. Snyder et al. (2010) discover word translations
for a lost language by mapping them onto cognates of a known related, modern language. That work only discovers a
bilingual lexicon and does not attempt to translate word sequences.

Ravi and Knight (2011) go further and use decipherment to translate multi-word expressions, and Nuhn et al.
(2012) and Ravi (2013) use pruning based on context similarity and a hash sampling strategy, respectively, to improve
training efficiency. Dou and Knight (2012) use decipherment over adjacent bigrams to learn new word translations.
That work focuses on a domain adaptation setting and augments an old-domain SMT model with new word translations
deciphered from comparable (nearly parallel) new-domain texts. Dou and Knight (2013) move from adjacent bigrams
to dependency bigrams. In that work, again, the new, deciphered lexicon is used to augment and adapt an old-domain
SMT model to a new-domain of text. In contrast to decipherment, we use small amounts of parallel data to train
supervised models, which we then use to augment baseline SMT systems.

2.1.3 Low Resource Machine Translation
Because the standard pipeline for training SMT models relies exclusively on parallel text, when such data is not
available in large quantities, machine translation quality tends to be poor. Much of the prior work on low resource
machine translation has focused on individual pipeline components or error types. For example, Xiang et al. (2010)
presents an alignment combination-based method for doing unsupervised word alignment on small amounts of bitext,
improving the word alignment component of the SMT pipeline. As we show in Chapter 3, errors due to unknown
words are a major reason for the performance degradation in low resource conditions, and a lot of prior research has
focused on these errors. We review that work in Section 2.1.4.

In addition to such focused efforts, there have been several long-term projects on low resource SMT that have
focused on improving the entire pipeline for particular language pairs. Much of this work relies on language-specific
resources and linguistic analysis. Here, we describe two of the major, recent efforts in developing high quality MT
systems for particular low resource language pairs. In contrast to these projects, we take a language-independent
approach to low resource machine translation in this thesis.

2.1.3.1 AVENUE

In the early 2000s, the AVENUE project (Carbonell et al., 2002; Lavie et al., 2003; Probst et al., 2002) researched
ways to rapidly develop MT systems for low-resource languages. The project’s first major MT system learned so-
called transfer-rules, which are synchronous context free grammar (SCFG) rules that also have the following: explicit
alignments between components (terminals or non-terminals), constraints on the source side, constraints on the target
side, and source-target constraints which dictate what features are transferred from the source to the target when the
rule is applied. Rules can be manually or automatically specified. In Probst et al. (2001), the rules are learned from a
carefully controlled corpus, which is intended to include examples of all basic linguistic structures and minimal pairs
which allow for linguistic feature detection 1 (Probst et al., 2001), and in Lavie et al. (2003) they are learned from a
combination of controlled and naturally occurring corpora. The assumption is that learning at least some transfer rules
from a controlled, linguistically representative corpus will yield better MT performance than a random set of translated
sentences. Automatically learned transfer rules are lexically tied to the training corpus but are later generalized and
composed. Probst (2003) describes how a bilingual corpus can be used to project target (high resource) side POS

1For example, the minimal pairs the rock fell and the rocks fell are both presented in order to determine if the low resource language marks
singular and plural nouns and the corresponding verbs differently. If a language does distinguish plural from singular, the elicitation process will go
on to determine if it also distinguishes dual nouns. It takes advantage of well-known typological implications to limit the search. For example, if a
language does not distinguish plural from singular nouns, it will not distinguish dual.
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and morphological tags onto a source (low resource) side lexicon. Lavie et al. (2004) extends the AVENUE model to
include frequency-based probabilities on the ruleset and does decoding over a translation lattice.

More recently, Monson et al. (2008) explains specific extensions of the original AVENUE system. In addition to
the integration of language-dependent paradigm-based morphological analyzers, that work describes a top down SCFG
grammar extractor. Llitjós (2006) describes how to incorporate user feedback into the model, and Alvarez et al. (2006)
describes the Minor Language Elicitation (MILE) corpus, which is a set of about 12,000 English sentences selected in
order to demonstrate a comprehensive set of linguistic phenomena and which the paper claims is a good corpus to have
translated into low resource languages. Clark et al. (2008b) use the Urdu translation of the MILE corpus to evaluate
their system for detecting linguistic typological features, which is based upon the dataset’s detailed annotations and a
method for clustering sentence minimal pairs. Clark et al. (2008a) extends this idea and develops an active learning
framework for choosing sentences from the MILE corpus to have annotated next, based upon the features detected so
far. That work uses the World Atlas of Language Structures (Haspelmath et al., 2005) for evaluation and the feature
detection system is reported to detect the correct value for 18 of the 21 target typological features for Spanish.

2.1.3.2 METIS-II

Carl et al. (2008), Vandeghinste et al. (2008), and Carl (2009) present the METIS-II low resource2 MT system. This
statistical MT system requires neither hand-written translation rules nor any parallel text. However, it does require POS
tagging and some morphological analysis on the low-resource source side text and performance increases if parses are
also available. Essentially, translation is done through the use of a POS-tagged lemmatized dictionary. The decoder
uses morphological information to choose among English full word forms, and, in some cases, and reordering is done
through language-dependent rules. Although this system does not depend on parallel text, it does heavily depend upon
sophisticated language-dependent resources.

2.1.3.3 Other work

Gangadharaiah (2011) tackles several data sparsity issues within the example-based machine translation (EBMT)
framework. These include translating OOV and rare words not only to increase the coverage of the translation model,
but also that of the target side language model. She also develops ways to automatically cluster translation phrase
pairs. The thesis also explores using phrase and phrase pair clusters to define the slots in translation and language
modeling templates, or class-based models. This work attempts to tackle some of the same data sparsity issues that
our work proposes to handle including, in particular, phrase table coverage. However, our models for doing so are
quite different and focus much more on the use of a variety of new non-parallel data resources. Laukaitis and Vasilecas
(2007) describes a hybrid approach to building an MT system to translate from English into a low resource language
(Lithuanian). Translating from English, this work is able to do a very deep linguistic analysis of source side text.

2.1.4 The OOV and rare word problem in SMT
Out-of-vocabulary (OOV) words, or source language words never seen during training but that then appear at test
time, is a well-acknowledged challenge for SMT, especially in low resource conditions. When an SMT system has no
evidence for how to translate these new words, they are typically either deleted or copied into the output identically,
which negatively impacts the quality of output translations in a very obvious way. The most common methods for
dealing with such lexical items include morphological analysis (Popovic and Ney, 2004; Yang and Kirchhoff, 2006),
stemming, using synonym lists (Callison-Burch et al., 2006), transliteration (Hassan and Sorensen, 2005; Irvine et al.,
2010a; Vilar et al., 2007), spelling expansion/correction, dictionary expansion/integration (Okuma et al., 2007), or
some combination of these (Habash, 2008).

Carbonell et al. (2006) and Gangadharaiah et al. (2010) present an approach to translate rare and OOV source
language words identically onto the target language and then use target language distributional similarity metrics and
a very large target side language model to identify translations. Callison-Burch et al. (2006) and Marton et al. (2009)
use monolingually-derived paraphrases to directly expand the SMT phrase table coverage. That is, that work identifies
OOV phrases in source language text and uses a large source language monolingual corpus to identify one or more
paraphrases for each OOV phrase. Existing phrase table entries for the paraphrases can then be used to add entries
for the original OOV source phrase. Somewhat similarly, Talbot and Osborne (2006) cluster ‘lexically redundant’

2This group refers to languages for which there are few NLP resource and datasets as ‘small languages.’
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source word types in order to reduce data sparsity. Other prior research (e.g., Goldwater and McClosky (2005); Luong
et al. (2010); Virpioja et al. (2010)) has moved the SMT unit of analysis from the word to the morpheme or even
character substrings (Neubig et al., 2012). Such approaches have the potential to reduce the number of unknown
source words due to rich morphologies. Nakov and Ng (2011) tackle morphologically rich source languages by treating
morphologically similar words as potential paraphrases.

While some approaches to the OOV problem (e.g., morphological analysis, stemming, paraphrasing) attempt to
map the OOV word onto an in-vocabulary source word, others (e.g., transliteration, dictionary expansion) output target
language word(s) directly. In this thesis, we focus on solving the OOV problem by identifying target language trans-
lations directly. In Section 2.2.1, we review relevant literature on bilingual lexicon induction, which is one dictionary
expansion method that is often approached as a separate task.

2.2 Expanding bilingual resources
As we showed in Chapter 1, the success of statistical machine translation is dependent on the amount and type of
parallel training data that is used to estimate models. Thus, prior research has focused on expanding the bilingual
resources available for training. Here, we review four approaches. The first two use comparable corpora to identify
additional pairs of translated words or sentences. Comparable corpora are pairs of monolingual corpora that have some
overlap, for example in genre or topic. In Section 3.3, we describe the notion of comparable corpora in more detail as
well as those that we use and release in this thesis. The third approach to expanding bilingual resources crowdsources
manual annotations, which has been made possible largely due to the Amazon Mechanical Turk platform (Callison-
Burch and Dredze, 2010). Finally, we review a variety of methods for automatically expanding the coverage of SMT
models directly.

2.2.1 Bilingual lexical induction
Bilingual lexicon induction is the task of identifying pairs of word translations from monolingual or comparable cor-
pora. Additionally, a small seed dictionary is also typically assumed. Induced word translations can be used to expand
the coverage of translation models extracted from parallel corpora, for example to translate OOV words (Section 2.1.4).
However, most prior work has treated bilingual lexicon induction as a standalone task, without actually integrating in-
duced translations into end-to-end machine translation. In this thesis, we present a novel approach to doing bilingual
lexicon induction in Chapter 4 and use then induced translations in end-to-end SMT in Chapters 6 and 8. Here, we
review prior work on bilingual lexicon induction. We give an overview of early work on contextual similarity and then
briefly cover a plethora of other approaches to the task and, finally, describe work on integrating induced translations
into end-to-end SMT.

2.2.1.1 Contextual Similarity

Rapp (1995) and Fung (1995) were the first to propose using the context of a given word as a clue to its translation.
Rapp (1995) creates co-occurrence matrices for the source and target languages, where the co-occurrence between a
pair of words is defined as follows:

Ai,j
f i, j 2

f i f j

Where f i, j is defined as the number of times words i and j, in the same language, occur in the same context in a
large monolingual corpus (Rapp (1995) uses a context window of 11 words), and f i is the total number of times word
i appears in the same corpus. After computing the two co-occurrence matrices, that work iteratively randomly permutes
one of them and calculates the similarity between them. The permutation is optimal when the similarity between the
matrices is maximal, which is when the ordered words in the two matrices are most likely to be translations of one
another. Results are given for a set of 100 English and German word translation pairs.

Later work, including Fung and Yee (1998) and Rapp (1999), use small seed dictionaries to project word-based
context vectors from one language into the other. That is, each position in contextual vector v corresponds to a word in
the source vocabulary3, and vectors v are computed for each source word in the test set. Fung and Yee (1998) calculates

3In fact, they need only correspond to those source words which have translations in the seed bilingual dictionary.
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Figure 2.3: Example of projecting contextual vectors over a seed bilingual lexicon. In monolingual text, Spanish
crecer appears in the context of the words empleo, extranjero, etc. A context vector is built and projected across a
seed dictionary. Context vectors for English words (policy, expand, etc.) are collected and then compared against the
projected context vector for Spanish crecer. Words with similar context vectors are likely to be translations of one
another.

the ith position of word w’s context vector, vw
i

, as:

vw
i

TFi,w IDFi

Where TFi,w is the number of times i and w co-occur (in this case, defined as appearing in the same sentence), and:

IDFi log
maxn

fi
1

Where maxn is the maximum frequency of any word in the corpus, and fi is the frequency of word i. Rapp (1999) uses
log-likelihood ratios instead of TF IDF . Once source and target language contextual vectors are built, each position
in the source language vectors is projected onto the target side using a seed bilingual dictionary. Finally, contextual
similarities are calculated. That is, each projected vector is compared, using any vector comparison method, with the
context vector of each target word. Word pairs with high contextual similarity are likely to be translations. This method
of projecting contextual vectors is illustrated in Figure 2.3. Rapp (1999) uses the same projection method as Fung and
Yee (1998) but uses log-likelihood ratios instead of TF IDF .

Other work has used dependency relations in place of adjacent words to define context (Andrade et al., 2012;
Garera et al., 2009). Turney and Pantel (2010) give a thorough overview of vector space models of meaning.

2.2.1.2 Other Monolingual Similarity Metrics

Schafer and Yarowsky (2002) exploit the idea that word translations tend to co-occur in time across languages, and
Schafer (2006) uses this and other contextual similarity measures to bootstrap a small seed bilingual dictionary and
induce full dictionaries for low resource languages. Klementiev and Roth (2006) also use the temporal cue to train a
phonetic similarity model for associating Named Entities across languages. Koehn and Knight (2002) use similarity in
spelling as another kind of cue that a pair of words may be translations of one another. Haghighi et al. (2008) make
use of contextual and orthographic clues to learn a generative model from monolingual texts and a seed lexicon. We
provide further details and compare directly against the model proposed by Haghighi et al. (2008) in Section 4.6.

Recent work has used graph-based models to induce translations. Mausam et al. (2010) uses freely available online
dictionaries and inference over translation graphs to compile a very large, multilingual dictionary. Laws et al. (2010)
use graph-based models to represent linguistic relations and induce translations. Tamura et al. (2012) employ the
classic notions of co-occurrence and contextual similarity but use graph-based label propagation to induce translations.
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Approaching the problem from an information retrieval perspective, Zhang et al. (2005) use a system based on
cross-lingual query expansion to identify translations for OOV words. Other recent work includes Mimno et al. (2009),
which proposes a polylingual topic model and matched high probability words in each topic across languages.

2.2.1.3 Integration with SMT

All bilingual lexicon induction and dictionary expansion methods could be used to supplement parallel data used for
estimating word alignments and scored phrase tables. The most obvious way to integrate lexicon induction output
into the SMT pipeline would be to induce translations for out-of-vocabulary and rare words. That is, if a word in
our test set does not have a translation in the phrase table, we could induce one for it. Although most work on
bilingual lexicon induction is motivated by the idea that outputs could be integrated into end-to-end SMT, until recently
such an extrinsic evaluation was rarely performed. Daumé and Jagarlamudi (2011) use canonical correlation analysis
(CCA) and both contextual and orthographic features to induce translations. Razmara et al. (2013) construct a graph
using source language monolingual text and identify translations for source language OOV words by pivoting through
paraphrases. In Irvine et al. (2013b), we presented a method for expanding an initial translation dictionary estimated
from old-domain parallel corpora by matching marginal probabilities over new-domain comparable corpora. Daumé
and Jagarlamudi (2011), Razmara et al. (2013), and our prior work in Irvine et al. (2013b) integrate translations into
an SMT model to improve performance in domain adaptation settings.

2.2.2 Extracting Parallel Data from Comparable Corpora
Resnik and Smith (2003), Munteanu and Marcu (2005), Abdul-Rauf and Schwenk (2009a), Abdul-Rauf and Schwenk
(2009b), and Smith et al. (2010) identify parallel sentences in comparable corpora, and Munteanu and Marcu (2006)
extend that original work to identify parallel sub-sentential fragments. The latter uses a probabilistic lexicon and
information retrieval methods to identify similar document pairs and then uses the same word translation probabilities
to detect parallel fragments within the document pairs. They supplement exiting parallel data with the new sentence and
fragment pairs evaluate end-to-end SMT systems trained on the augmented parallel datasets. Quirk et al. (2007) also
seek to identify phrase translation pairs from comparable corpora, but that method requires a first pass identification
of “promising” comparable pairs of sentences from paired comparable documents. It then uses a generative model
to extract fragment translation pairs. Similarly, Hewavitharana and Vogel (2011) seek to identify phrase translation
pairs from comparable corpora but require a first pass to identify a set of comparable sentences and then a second pass
through the data to find the best phrasal alignment within each sentence pair. These efforts at using comparable corpora
to expand parallel corpora are orthogonal to the approaches that we propose in this thesis. We use parallel corpora,
when available, and use comparable corpora to augment SMT models without assuming that they contain any novel
parallel text.

2.2.3 Crowdsourcing Translations
New online services like Amazon’s Mechanical Turk4 (MTurk) have made it possible to elicit translations from native
speakers at a relatively low cost. MTurk is an online platform where ‘requesters’ can pay ‘workers’ small amounts of
money to complete Human Intelligence Tasks (HITs). MTurk has been used in a variety of NLP research (e.g. Callison-
Burch and Dredze (2010); Snow et al. (2008); Zaidan and Callison-Burch (2011)). In our own work, we have used
MTurk to compile large bilingual dictionaries (Irvine and Klementiev, 2010; Pavlick et al., 2014). In Section 3.2.2, we
describe our crowdsourced dictionaries in detail. Zaidan and Callison-Burch (2011) spent less than $1,500 to recreate
the NIST Urdu Evaluation set, which consists of four English references for each of nearly 2,000 Urdu sentences.
Post et al. (2012) used MTurk to construct training, tuning, and testing parallel datasets for six low resource Indian
languages. Carbonell (2010) discusses some of the issues in collecting resources for low resource languages with
the goal of developing MT systems. He suggests that collecting treebanks, comprehensive bilingual dictionaries, and
detailed linguistic analyses may provide more gains than simply supplementing the available parallel data. However,
in the case of non-expert annotators, we cannot expect to be able to gather such thorough linguistic analyses. Ambati
and Carbonell (2009) introduce proactive learning, which could help select sentences and annotation types that would
most cost-effectively increase the performance of an MT system for a low-resource language.

4
www.mturk.com

www.mturk.com
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2.2.4 Automatically Expanding SMT Model Coverage
Instead of expanding general bilingual resources from which we can extract or build SMT models, some work has
augmented baseline models with synthetic phrase translations which are proposed automatically. In Chapter 7, we
present such a method based on phrase translation composition in order to expand the coverage of models trained in
low resource conditions.

Chahuneau et al. (2013) generate new synthetic phrase translations containing new target side morphological in-
flections. Ammar et al. (2013) propose new phrase pairs containing transliterations, inserted function words, and
morphological inflections. Tsvetkov et al. (2013) vary determiners in order to generate synthetic phrase pairs, and
Tsvetkov et al. (2014) use commonly confused phones for spoken language translation.

Sharoff et al. (2006) and Babych et al. (2007) use a combination of filtering and composing multiword translations
that is similar the the approach we propose in Chapter 7. However, they use their model to propose translations
of difficult expressions to human translators. Also somewhat similar to our approach, Garera and Yarowsky (2008)
compose translations of compound nouns using known unigram noun translations and pivoting across many languages.5
However, unlike that work, our method induces translations for any arbitrary multi-word phrase, not just noun-noun
compounds, and we use the translations in end-to-end SMT.

2.3 Domain Adaptation for Machine Translation
Domain adaptation is the task of modifying models trained on text in some old domain to work well on text from a new
domain. Prior work has adapted part-of-speech taggers (Blitzer et al., 2006; Daumé, 2007) and sentiment classifiers
(Blitzer et al., 2007), for example, to new domains of text. Building on the successes of domain adaptation in general
natural language processing and machine learning settings, domain adaptation for machine translation is a rapidly
growing area of research. The ‘domain’ of a text is typically assumed to be given, as Sekine (1997) states, ‘artificially
or intuitively defined by a human’ (p. 2). Examples of contrasting ‘domains’ range from topical (e.g. reviews of books
versus reviews of kitchen appliances (Blitzer et al., 2007)) to channel (e.g. newswire versus twitter (Gimpel et al.,
2011)) to genre or (e.g. speeches versus press releases (Foster and Kuhn, 2007)). Kilgarriff and Rose (1998) present
several information theoretic measures to estimate the similarity between a pair of documents, which could be used
to measure the homogeneity of a hypothesis domain. However, the question of how we should define and identify
text domains most effectively for natural language processing applications remains open. In this thesis, like the vast
majority of prior NLP research, we assume that domain is predefined.

Recent work on machine translation domain adaptation has focused on either the language modeling component
or the translation modeling component of an SMT model. Language modeling research has explored methods for
subselecting new-domain data from a large monolingual target language corpus for use as language model training
data (Gao et al., 2002; Klakow, 2000; Lin et al., 1997; Mansour et al., 2011; Moore and Lewis, 2010). Translation
modeling research has typically assumed that either (1) two parallel datasets are available, one in the old domain and
one in the new, or (2) a large, mixed-domain parallel training corpus is available. In the first setting, the goal is to
effectively make use of both the old-domain and the new-domain parallel training corpora (Civera and Juan, 2007;
Foster and Kuhn, 2007; Foster et al., 2010; Haddow, 2013; Haddow and Koehn, 2012; Koehn and Schroeder, 2007).
In the second setting, it has been shown that, in some cases, training a translation model on a subset of new-domain
parallel training data within a larger training corpus can be more effective than using the complete dataset (Axelrod
et al., 2011; Gascó et al., 2012; Mansour et al., 2011; Sennrich, 2012).

For many language pairs and domains, no new-domain parallel training data is available. Wu et al. (2008) machine
translate new-domain source language monolingual corpora and use the synthetic parallel corpus as additional training
data. Daumé and Jagarlamudi (2011), Zhang and Zong (2013), as well as our prior work in Irvine et al. (2013b) use
new-domain comparable corpora to mine translations for unseen words. That work follows a long line of research on
bilingual lexicon induction (Section 2.2.1). These efforts improve errors due to unseen translations. Our work in Irvine
and Callison-Burch (2014b) (Chapter 8) is the first to focus on fixing errors due to inaccurate translation model scores
in the setting where no new-domain parallel training data is available.

5e.g. Albanian hekurudhë hekur udhë splitting using lexicon lookup, English iron path using unigram translations, Italian ferro via,
German eisen bahn, and Swedish yärn väg using unigram translations into one or many other languages, ferrovia, eisenbahn, yärnväg by simple
concatenation, English railway using known translations



24



Chapter 3

Languages, Data, and Analysis

As we showed in Chapter 1, the amount and type of textual data resources available for a given language pair has
substantial impact on the performance of the SMT model that we are able to estimate. This chapter provides an
overview of publicly available datasets for training SMT models for a large number of languages paired with English.
First, we enumerate all of the languages that we study in the thesis. Then, in Section 3.2, we describe parallel datasets
and dictionaries. We introduce monolingual and comparable corpora and those corpora that we have harvested from the
web in Section 3.3. Throughout the thesis, we use these corpora to augment traditionally trained models of translation.
Finally, in 3.4, we present results from a novel error analysis technique to better understand what goes wrong in
machine translation when we train models in low resource conditions. We include an analysis of word alignment errors
and introduce a set of manual word alignments.

One major contribution of this thesis is the release of language packs for 151 languages paired with English. Each
language pack includes the following:

1. Bilingual dictionary of source language words and their English translations (96 of the 151 languages; described
in Section 3.2.2)

2. Comparable corpus of time-stamped source language online news text paired with English news text collected
on the same dates (115 of the 151 languages; described in Section 3.3.1).

3. Comparable corpus of source language Wikipedia pages paired with their inter-lingually linked English counter-
parts (142 of the 151 languages; described in Section 3.3.2).

4. For non-roman script languages: a dictionary of source language names paired with English equivalents, which
are likely transliterations (described in Section 3.3.2.).

3.1 Languages
Our set of languages of interest include both truly low resource languages (e.g. Somali, Nepali, Kyrgyz, Tigrinya) and
high resource languages (e.g. French, Spanish, Arabic, Chinese). Additionally, our language set includes a large degree
of linguistic diversity. Table 10.1 in Appendix 10 shows some basic linguistic features for each language as reported
in the World Atlas of Language Structures (WALS) (Haspelmath et al., 2005). Of the 151 languages, 78 are from the
Indo-European language family, 17 are Austronesian, 11 Altaic, 7 Afro-Asiatic, 7 Niger-Congo, 5 Sino-Tibetan, 4 each
are from the Dravidian and Uralic families, and 18 are from a variety of other families, including Quechuan, Eskimo-
Alteut, Tai-Kadai, and constructed languages, among others. Twenty-one of the languages are spoken in India; seven
are spoken in Spain, seven in the Philippines, six in Pakistan, six in Switzerland, five in France, and four in Indonesia.
Table 10.1 also presents the canonical sentential word order for each language; 47 are subject-verb-object (SVO)
ordered and 43 are subject-object-verb (SOV). Additionally, eight are VSO, two are VOS (Gilbertese and Malagasy,
both Austronesian languages), and eight have no dominant word order. The word order of the remaining languages is
not reported in WALS. Sixty-three languages are strongly suffixing, while another eleven are weakly suffixing. Fifteen
languages have little affixation while only three are strongly prefixing (Luganda, Shona, and Zulu, which are all Niger-
Congo languages). Most prefixing languages are either spoken in the southern half of Africa (e.g. Bantu languages)
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or are native North American and Mesoamerican languages, and currently little electronic textual data is available for
these language groups (Dryer, 2011).

3.2 Parallel Corpora and Dictionaries

3.2.1 Parallel Corpora
As we described in Chapter 2, Gale and Church (1991, 1993) and Brown et al. (1993b) first proposed the idea of
using pairs of translated sentences, or a parallel corpus, to train a statistical machine translation model. Since then,
standard approaches have moved from word-based models to phrase-based models (Koehn et al., 2003) and, more re-
cently, to syntax-based models (Chiang, 2005; Galley et al., 2004; Zollmann and Venugopal, 2006). All these standard
approaches to statistical machine translation still estimate model parameters exclusively from parallel corpora.

The largest publicly available parallel corpus is the French-English 10

9 corpus, which contains nearly 1 billion
words of sentence aligned French and English extracted automatically from a variety of websites (Callison-Burch et al.,
2009). Additionally, the French-English Hansard Canadian parliamentary proceedings1 contain about 150 million word
tokens of each language. As part of the DARPA Global Autonomous Language Exploitation (GALE) program, about
200 million words of Chinese-English and Arabic-English parallel text was compiled and made available for research.
The Europarl parallel corpus (Koehn, 2005) is another large, commonly used SMT dataset. It contains text in 21
languages extracted from the proceedings of the European Parliament. The corpora range in size from about 50 million
words in Danish, German, Spanish, Finnish, French, Italian, Dutch, Portuguese, and Swedish paired with English
to about 10 million words for Bulgarian and Romanian. Similarly, the Acquis corpus contains 4-8 million words of
parallel EU legal documents in each of 21 EU languages (Steinberger et al., 2006).

The MultiUN corpus2 is a collection of parallel text published on the United Nations website between 2000 and
2009 (Eisele and Chen, 2010). The Common Crawl parallel corpus (Smith et al., 2013) is a collection of parallel texts
in 18 languages paired with English. That dataset was harvested automatically from the Common Crawl corpus, a
102TB snapshot of about 2 billion public webpages.3 The corpora range from 130 million words of French-English
text to 200 thousand words of Pashto-English. Other low resource languages included in the Common Crawl parallel
corpus are Kannada, Somali, Telugu, Farsi, Bengali, Urdu, and Tamil. One million words of text or fewer is available
for each. Several datasets have been a byproduct of the annual Workshop on Statistical Machine Translation,4 including
the News Commentary corpus, which consists of about 3 million words of news text and commentary translated from
English into Czech, German, Spanish, French, and Russian. In this thesis, we also make use of parallel corpora
compiled through the use of crowdsourcing on Amazon’s Mechanical Turk platform (Post et al., 2012).

A variety of other parallel corpora have been released, many through the Open Parallel Corpus (OPUS) project5
and the European Language Resources Association (ELRA).6 Many of the OPUS and ELRA bitexts contain text from
a particular domain, such as movie subtitles and biomedical data (mostly prescription drug labels) from the European
Medicines Agency (EMEA). In Chapter 8, we address methods for adapting SMT models to new text domains.

A summary of the availability of parallel text for 96 languages paired with English is given in Figure 3.1 and the
corresponding values are given in Table 11.1 in Appendix 11. Only languages for which some parallel data is available
are plotted.7 Estimates of the number of speakers of each language are taken from the Ethnologue8 and are shown on
the x-axis. The amount of parallel data is given on the y-axis. It is important to keep in mind that the diversity of
content and translation quality vary dramatically across corpora. For example, the OPUS EMEA corpora contain small
vocabularies and large numbers of duplicate phrases, giving them low value for training models to translate text outside
of the narrow drug prescription labels domain.

Figure 3.1 shows a positive correlation (Pearson’s r 0.58 on raw, non-log transformed data) between the number
of speakers and amount of available parallel text. For example, Chinese and Spanish have the largest number of
speakers and very large parallel corpora are available for both. Similarly, Maori and Gaelic have few speakers and very

1
www.parl.gc.ca

2
www.euromatrixplus.net/multi-un/

3
commoncrawl.org/

4
www.statmt.org/

5
opus.lingfil.uu.se/

6
www.elra.info/

7We have not included the Bible or Book of Mormon in our estimates, which are both available for nearly all languages in the world.
8
www.ethnologue.com/

www.parl.gc.ca
www.euromatrixplus.net/multi-un/
commoncrawl.org/
www.statmt.org/
opus.lingfil.uu.se/
www.elra.info/
www.ethnologue.com/
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Figure 3.1: Thousands of speakers by millions of publicly available words of parallel data

little parallel data. In contrast, there are 260 and 190 million Hindi and Bengali speakers, respectively, but less than 2
million words of parallel data is available for each.

3.2.2 Bilingual Dictionaries

Throughout the thesis we also make use of bilingual dictionaries, which consist of translations of words and, in a few
instances, short phrases. We use (1) dictionaries extracted from word aligned parallel data, (2) existing electronic dic-
tionaries, (3) paper dictionaries scanned and digitized with optical character recognition (OCR),9 and (4) crowdsourced
dictionaries, gathered via Amazon Mechanical Turk (MTurk). Table 11.2 in Appendix 11 gives data statistics for all of
the dictionaries except those extracted from word-aligned parallel corpora, which vary across experiments.

In Pavlick et al. (2014), we describe an empirical study of the languages spoken by workers on Mechanical Turk.
In that work, we focused on the 100 languages which have the largest number of Wikipedia articles and posted HITs
asking workers to translate the most frequent 10, 000 words in the most viewed 1, 000 pages for each source language.
Although all of the source words in the Wikipedia dictionaries are unigrams, we allowed workers to translate them
into multi-word English phrases. Workers were shown words in the context of three Wikipedia sentences. Additional
details on experimental design and quality control mechanisms are given in Pavlick et al. (2014). As a result of that
project, for languages that do have high coverage on MTurk, we collected bilingual dictionaries of about 10, 000 words
translated into English. For the purposes of experiments in this thesis, we filter the dictionaries to include only high
quality translations. Specifically, we only use translations that have a quality score of at least 0.6 under the metric given
by Pavlick et al. (2014).

9Thanks to David Yarowsky for sharing his large collections of scanned dictionaries.
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3.3 Monolingual and Comparable Corpora
In his thesis, Schafer (2006) presents a detailed hierarchy of text resources used in machine translation, sorted by the
amount of supervision included in each. He describes the most supervised resources to be aligned source and target
language treebanks and the least supervised resources to be independent, monolingual source and target language
corpora without accompanying bilingual dictionaries. Monolingual corpora may be comparable in genre, topic, and/or
associated timestamps. In this thesis, we refer to monolingual corpora which overlap in genre as well as either topic
or associate timestamps as comparable corpora. Prior work has attempted to measure the degree of comparability
between a pair of corpora, for example using an existing bilingual dictionary (Li and Gaussier, 2010; Li et al., 2011) or
using performance on some task as a proxy (Su and Babych, 2012). We do not attempt to measure the comparability
between our corpora but, rather, we select corpora such that they are likely to contain text on the same topics. We
use two sources of monolingual comparable text corpora: (1) web crawls of online newspapers, and (2) Wikipedia.
In both cases, we harvest foreign language text as well as English text and estimate document alignments to link our
comparable corpora.

3.3.1 Web crawls
Online newspapers are good sources of high quality text for many languages. We began harvesting such data by
crawling several well-known news sources that publish stories in two or more languages, including Deutsch Welle and
Voice of America. In order to gather more data, particularly for less commonly used languages, we scraped a list of
44, 892 newspapers and their locations, URLs, and languages from the ABYZ News Links website.10 The resulting
database of newspapers contains links to online newspapers published in 128 languages, and we set up web crawls to
download the content from each daily.

Although ABYZ News Links provides labels of the primary publication language for each newspaper, we found
that in some cases these labels were incorrect and, in other cases, newspapers contain content in multiple languages.
This is particularly true for publications in regions where several languages are spoken. In order to obtain cleaner
labels, we use two language identification models: (1) the Compact Language Detection 2 (CLD2) system,11 and (2)
the system released by Bergsma et al. (2012). The CLD2 model consists of pre-trained Naive Bayes classifiers for over
80 languages that have been enhanced to distinguish between easily confused language pairs (Malay and Indonesian,
or Spanish and Portuguese, for example). In using this model, we provide language ‘hints,’ which increase the prior
probability of the ABYZ language labels slightly. The language identification system released by Bergsma et al. (2012)
is based on compression language models and is designed specifically for use on short inputs. It contains pre-trained
models for identifying 261 human languages. We use both language identification models to automatically identify the
language of each line of text in the web crawl data.

Qualitatively, we observe that the two language identification systems have different language-specific strengths
and weaknesses. The system released by Bergsma et al. (2012) is trained on Twitter data and is not always robust
to languages written in non-roman alphabets. For example, its Vietnamese model does not recognize the language
written in its native script. In contrast, the CLD2 system consistently recognizes Vietnamese. The CLD2 system,
however, frequently mistakes Zulu for Swedish because, even when Zulu is suggested as a hint language, Swedish has
a much higher prior probability. The Bergsma et al. (2012) model consistently recognizes Zulu. Additionally, for some
languages in our set, one or both systems don’t contain pre-trained models.

We use both sets of pre-trained models to identify the most likely language for each line of text in our web crawls,
and we generate a high-precision set of monolingual data consisting of text for which either automatic language iden-
tification tag matches the prior newspaper language labels. Table 11.3 in Appendix 11 shows the full amount of data
collected for each language as well as the size of each high precision language identification dataset. For most lan-
guages, the high precision set contains at least 90% of the full web crawls dataset, suggesting that language labels are
correct for most of our web crawls. However, for other languages the high precision set is only a small fraction of the
original. This is the case, for example, for Bosnian, Cebuano, Chinese, Kurdish, Serbian, and Uzbek. In the case of
Bosnian and Serbian, these languages are closely related and are frequently identified as one other, or as Croatian, by
our automatic language identification systems. Uzbek is written using both the Latin and the Cyrillic scripts, however
our language identification systems only recognize its Latin script form. For these languages, the relatively small size
of the high precision set is a result of errors by the language identification systems. However, in the case of Cebuano,

10
www.abyznewslinks.com/

11https://code.google.com/p/cld2/

www.abyznewslinks.com/
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Figure 3.2: Word cloud illustrating the amount of monolingual data (web crawls and Wikipedia) that we have gathered
and paired with English for 144 languages. Bigger fonts indicate more monolingual data. We have over 200 million
words for the following languages, which are not shown in this plot: Russian, Spanish, Farsi, French, Urdu, German,
and Italian.

Kurdish and Chinese, the full web crawls datasets contain a large amount of text in other languages, primarily En-
glish, and, in generating the high precision set, we eliminate such text. In all of the experiments in this thesis, unless
otherwise noted, when we refer to our web crawls datasets, we are referring to the high precision datasets.

Because our data is comprised of news stories, each document also has an associated time stamp, which we use to
define a rough document alignment with English news articles. That is, we treat the set of all foreign language news
stories published on a particular day as roughly comparable to those written in English on the same day. The degree of
comparability between such sets of documents varies greatly. We don’t attempt to divide articles published on a given
day by topic and infer a finer-grained alignment with English articles on the same topic. We leave this for future work
and, instead, use all available data.

In Irvine et al. (2014), we describe the American Local News Corpus, which is a parallel web crawl collection
effort focused on U.S newspapers. Our methodology for setting up the automatic crawlers and doing deduplication and
preprocessing is the same for the two corpora.
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3.3.2 Wikipedia
We also use Wikipedia as a source of monolingual data. For all languages, we use Wikipedia’s January 2014 data snap-
shots. To maximize the degree of comparability between our source language Wikipedia pages and English Wikipedia,
we only use those pages which have interlingual links with English pages. Unlike our newspaper web crawls, Wikipedia
content has fairly reliable language labels. However, for some languages, English content is copied from the English
Wikipedia without translation. We use the CLD2 language ID system to identify and remove English content from
other languages’ Wikipedias. The amount of Wikipedia data that we use for each language is given in Table 11.3 in
Appendix 11.

We also use Wikipedia as a source for example transliterations in non-roman script languages paired with English.
In Irvine et al. (2010b), we detailed how we mined transliteration training data from Wikipedia page titles for 150
languages. Wikipedia categorizes articles and maintains lists of all of the pages within each category. In mining
transliteration data, we took advantage of a particular set of categories that list people born in a given year. For
example, the Wikipedia category page ‘1961 births’ includes links to the ‘Barack Obama’ and ‘Michael J. Fox’ pages.
We iterated through birth years and the links to pages about people born in each year and then followed interlingual
links from each English page about a person, compiling a large list of person names (Wikipedia page titles) in many
languages. In Section 4.2.1.3, we use this data to train transliterators and transliterate source language words before
comparing their orthographies with English words.

Figure 3.2 illustrates the total amount of monolingual data (web crawls and Wikipedia) that we have for 144 of our
151 languages. We have over 1 billion words of monolingual data for Russian and Spanish and over 200 million for
Farsi, Urdu, French, German, and Italian. These languages are not shown in the figure.

3.4 Analysis
In Irvine et al. (2013a), we presented a taxonomy of error types related to lexical choice in machine translation as
well as two novel techniques for measuring the different types of machine translation errors. In the original paper, we
focused on the challenge of adapting machine translation models to new domains of text, and in Chapter 8, we present
our analysis of errors in a domain adaptation setting. Here, we measure the number of lexical choice errors of each
type that are made in low resource translation. We begin by outlining the error taxonomy and each analysis approach
given by Irvine et al. (2013a) and then present an analysis of what goes wrong when we do machine translation in low
resource conditions.

3.4.1 Approach
3.4.1.1 Error Taxonomy

Errors are categorized into a taxonomy of four error types, S4: (1) SEEN, (2) SENSE, (3) SCORE, and (4) SEARCH.
SEEN errors are a result of some source language phrases being unseen in training, or out-of-vocabulary. SENSE errors
are a result of source language phrases being seen in training but not with the correct target language translation. When
a source language phrase is observed in training with its correct translation, but that translation is scored lower than
another translation alternative during decoding, a SCORE error has been made. Finally, SEARCH errors are a result of
pruning translation options during beam search. These four error types account for all translation errors due to lexical
choice as opposed to word order.

3.4.1.2 Word Alignment Driven Evaluation

The micro analysis, WADE (Word Alignment Driven Evaluation), measures errors at the level of source language
words. WADE is based on the fact that we can word align a source language test sentence and its reference translation
in the target language. Additionally, the MT decoder naturally produces a word alignment between each input source
sentence and its output machine translation. WADE then checks whether the MT output has the same set of target
language words aligned to each source language word that we would hope for, given the reference.

In WADE, the unit of analysis is each word alignment between a source language word, fi, and a reference target
language word, ej . To annotate the aligned pair, ai,j , we consider the word(s), Hi, in the output sentence which are
aligned (by the decoder) to fi. If ej appears in the set Hi, then the alignment ai,j is marked correct. If not, the
alignment is categorized with one of the S4 error types. If the source word fi does not appear in the phrase table used
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Figure 3.3: Example of WADE visualization. Dashed boxes around the French input mark the phrase spans used by
the decoder. In this example, contient is translated correctly. The French word gadovist does not appear in the phrase
table, but because its identity translation is correct, it is marked as a Freebie. French que is translated as the empty
string, but the reference translates it as what. Because what was a possible translation for que in the model but it was
not chosen by the decoder, that alignment link is marked as a SCORE error.

for translation, then the alignment is marked as a SEEN error. If fi does appear in the phrase table, but it is never
observed translating as ej , then the alignment is marked as a SENSE error. If fi had been observed translating as ej , but
the decoder chose an alternate translation, then the alignment is marked as a SCORE error. For WADE, SCORE errors
correspond to errors in phrase table translation scores. Because WADE uses alignment links as its unit of analysis and
is agnostic to the word order in the output, it does not capture reordering errors. The results in Irvine et al. (2013a)
show that search errors are very infrequent, so, following that work, we mark all errors other than SEEN and SENSE
as SCORE errors. We make use of one additional category: Freebie. Our MT system copies unseen (OOV) source
words into the output, and “freebies” are source words for which this is correct. For related languages written in the
same script, like French or Spanish and English, freebies are fairly common. Because WADE’s unit of analysis is each
alignment link between the source text and its reference, it ignores unaligned words in the input source text.

Figure 3.3 shows an example of a WADE-annotated French to English translation. In addition to providing an easy
way to visualize and browse the errors in MT output, WADE allows us to aggregate counts over the S4 error types.

One potential shortcoming of WADE is that it relies on word alignments between our test and reference sets,
and alignment errors will result in errors in the error analysis. That is, if a word, fi, in a sentence in our test set is
incorrectly aligned with a word, ej , in the corresponding reference sentence, WADE will incorrectly indicate an error
in the output machine translation if the decoder does not also produce word ej from fi. In Appendix 12, we compare
WADE analyses based on automatic alignments with those based on manual word alignments which we gather using
MTurk. Although the results change with different sets of word alignments, we find that the general trends gleaned
from the analyses are consistent.

3.4.1.3 Table Enhancement for Translation Analysis

The macro analysis, TETRA (Table Enhancement for Translation Analysis), artificially supplements a baseline model
with different improvements taken from a pseudo-oracle model in order to measure deficiencies in the baseline and
potential sources of improvement. This type of analysis is appropriate for the domain adaptation case where a natural
comparison is between a baseline OLD-domain model and a pseudo-oracle NEW-domain model. In the low resource
case, we approximate a pseudo-oracle with a MT model trained in high resource conditions. We use the high resource
model to propose enhancements to the low resource system. This provides a realistic measure of what could be
achieved at a corpus level if each error category were targeted for improvement. Here, our experiments are conducted
using phrase-based SMT systems, so the translation models (TM) that are enhanced are the phrase table and reordering
table. We make three TM enhancements:

• +SEEN enhancement. In order to estimate the effect of SEEN errors, we enhance the TM of the low-resource (LR)
model by adding phrase pairs that translate words found only in the high-resource (HR) model, and we measure
the BLEU improvement. More precisely, we identify the set of phrase pairs in the HR TM for which the source
side contains at least one word that does not appear in the LR training data. These are the phrases responsible for
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SEEN errors. We build the system TETRA seen by adding these phrases to the LR model. When adding these
phrases, we add them together with their feature value scores.

• +SENSE enhancement: Analogously, the phrase pairs responsible for SENSE errors are those from the HR model
where the source side exists in the LR model, but their English translations do not. We build TETRA SENSE
by adding these phrases to the LR model.

• +SCORE enhancement: To isolate and measure the effect of phrase scores, we consider the phrases that our
LR and HR systems have in common. For each phrase pair in the intersection of the two tables, we replace
the LR feature scores with the HR feature score. In the case that a phrase pair appears in the LR table and
not the HR table, which occurs rarely as a result of word alignment differences between the two models, we
include the phrase pair with the LR feature scores. We replace phrase table translation scores and the lexicalized
reordering scores in our reordering table separately and then together. We compare the TETRA translation-
scores, TETRA reordering-scores, and TETRA all-scores results with the baseline LR model performance.

3.4.2 Experiments
In the experiments presented here, we focus on the following four languages paired with English: Bengali, Hindi, Urdu,
and Spanish. Bengali and Hindi paired with English are truly low resource language pairs. We use the small Bengali
and Hindi datasets released by Post et al. (2012). Training data consists of up to four translations of about 9 thousand
Bengali and Hindi sentences. For our WADE learning curve analyses, we simulate typical single-reference training
sets by randomly sampling single English translations of each source language training sentence. For the TETRA
analyses, we use the full datasets to train our high resource models. Because not a lot of parallel data is available for
these languages, the ‘high resource’ models that we use for the TETRA analyses are also impoverished. That is, we
augment low resource models with SEEN, SENSE, and SCORE error corrections estimated from only slightly higher
resource models. In all experiments, we use the four-reference tuning and test sets for each language released by Post
et al. (2012).

We use the 2009 Urdu-English NIST parallel dataset for the Urdu analysis. The training portion of this dataset
consists of 88, 108 parallel sentences, or about 1.6 million Urdu and English words.12 We use the development portion
of the NIST dataset for tuning each model and the 883 four-reference test set sentences for the analyses.

For Spanish-English, we use the Europarl v5 parallel corpus (Koehn, 2005). This corpus consists of about 1.7
million parallel sentences, nearly 50 million words of each language. Additionally, we use approximately 2, 500
single-reference parallel sentences each for tuning and testing. The tuning and test sets are newswire articles and are
taken from the 2010 WMT shared task (Callison-Burch et al., 2010).13

For each of the four language pairs, we randomly sample increasing numbers of sentence pairs and present learning
curves based on a WADE analysis. For the TETRA analysis, we use sampled training sets of 1, 000 sentences as low
resource (LR) models and the full training sets as high resource (HR) models. We do not attempt to hold the amount
of data used to train our HR models constant across languages but, rather, use as much data as possible for each. We
use GIZA++ to align each parallel corpus and extract a translation model with a phrase limit of five words. We use two
5-gram English language models in all experiments trained on: (1) the English side of the Europarl corpus, and (2) the
English side of the full training corpus for the given language pair.14 We retune the parameters of each model using
batch MIRA (Cherry and Foster, 2012).

3.4.2.1 WADE Analyses

In the cases that we have multiple test set reference translations (Bengali, Hindi, and Urdu), we use the single reference
translation that yields the highest BLEU score, given a particular machine translation output.15 Figure 3.4 gives an
example Bengali test set sentence and its translation under two different low resource models: one trained on one
thousand parallel sentences and the other on eight thousand parallel sentences. The reference translations that yield the
highest BLEU scores are slightly different. Moving from the first model to the second, two SEEN errors are corrected.
All of the test-reference alignment links are erroneous under the first machine translation and 50% are under the second.

12NIST also released an Urdu-English dictionary, which we do not use in our analyses here.
13news-test2008 plus news-syscomb2009 for tuning and newstest2009 for testing.
14For Spanish-English, we just use one language model since the training data is Europarl.
15In Section 6.4.4 we present a multi-reference version of WADE.
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Figure 3.4: WADE analysis on a single Bengali sentence translated using SMT models trained on (1) 1, 000 parallel
sentences, and (2) 8, 000 parallel sentences. The reference translations that yield the highest BLEU scores for each
machine translation vary slightly. In both cases, there are four alignment links between the Bengali test sentence and
the reference translation. Using the model trained on only one thousand sentence pairs, two of the alignment links are
marked as SEEN errors and the other two as SENSE errors. Using a model trained on eight thousand sentence pairs, the
SEEN errors are corrected, but the SENSE errors remain.

As we discussed in Irvine et al. (2013a), WADE allows for easy visualization of machine translation errors at
the sentence level as well as aggregate data statistics that describe errors at the corpus level. For example, using the
Bengali-English SMT model trained on 1, 000 parallel sentences, only 22% of alignment links in the test set are correct
and 78% are incorrect. Moving to the model trained on 8, 000 sentence pairs, 32% are correct and 68% are incorrect.

Figure 3.5 shows how the distribution of WADE error types changes with varying amounts of training data for
Spanish, Urdu, Bengali, and Hindi translation into English. The learning curves are very similar to one another. With
very little training data, SEEN and SENSE errors are the major sources of error. As the amount of training data increases,
the numbers of SEEN and SENSE errors decrease. Some of the errors are corrected while others become SCORE errors.
SCORE errors indicate that a given translation model has good coverage but translation alternatives are scored in such a
way that incorrect target translations are chosen in decoding. For both Spanish and Urdu, SCORE errors are the biggest
source of error when models are trained on at least 20 thousand parallel sentences. For Bengali and Hindi, fewer than
10 thousand parallel sentences are available for training, and, under the WADE analysis, SEEN and SENSE errors are
the main cause of translation errors when all available training data is used to train the translation models.
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Figure 3.5: Aggregate WADE analyses on Spanish and Urdu test sets translated using SMT models trained on varying
amounts of training data. For both source languages, The number of SEEN and SENSE errors decrease and the number
of correct alignments increases with the log of the training data. Although some SEEN and SENSE errors are corrected,
many become SCORE errors.

3.4.2.2 TETRA Analyses

We also use a TETRA analysis to answer the question of what goes wrong in translation models trained in low resource
conditions. Here, for each of the four source languages, we compare the performance of low resource (LR) models
trained on 1 thousand parallel sentences with high resource (HR) models trained on all available training data for
the given language pair. We use TETRA to augment each LR model with components from each HR model. Table
3.1 shows the results in terms of BLEU score. Augmenting the LR models with scores from the HR models makes
a very small impact. In fact, the HR scores actually hurt performance slightly for three of the four language pairs.
In contrast, augmenting the LR models with translations of previously unseen words and phrases yields consistently
substantial improvements in BLEU scores, from 2.1 points for Hindi to 6.5 for Spanish. The gains from adding new
sense translations are also high and range from 1.8 points for Spanish to 3.7 for Urdu.

The results of our TETRA analysis are consistent with what we found in the WADE analysis: in very low resource
conditions, SEEN and SENSE errors are more problematic than SCORE errors. This result is intuitive; in low resource
conditions models are estimated over small amounts of parallel data and have low coverage. That is, the models don’t
contain any or all of the possible translations for most source phrases. As the amount of parallel training data increases,
estimated translation models have higher coverage but are less precise and more prone to scoring errors.



LOW RESOURCE LANGUAGE AND DOMAIN MACHINE TRANSLATION 35

Language LR LR +SEEN LR +SENSE LR +SCORE-t LR +SCORE-r LR +SCORE-b HR
Bengali 4.03 6.39 ( 2.4) 6.65 (+ 2.6) 3.79 ( 0.2) 4.03 ( 0) 3.72 ( 0.3) 12.70
Hindi 6.23 8.35 (+ 2.1) 8.11 ( 1.9) 6.45 ( 0.2) 5.67 ( 0.6) 6.08 ( 0.2) 15.56
Urdu 7.22 11.64 (+ 4.4) 10.90 ( 3.7) 7.96 ( 0.7) 7.23 ( 0) 7.67 ( 0.5) 20.62
Spanish 11.35 17.82 (+6.5) 13.18 ( 1.8) 11.46 ( 0.1) 11.25 ( 0.1) 11.23 ( 0.1) 22.71

Table 3.1: TETRA BLEU score results. For each language, low resource (LR) models are trained on 1, 000 sentence
pairs, and high resource (HR) models are trained on the full available datasets (see Section 3.4.2). We use each
language’s HR model to artificially correct each LR model’s SEEN, SENSE, and SCORE errors. We correct phrase table
translation SCORE errors (SCORE-t) and reordering SCORE errors (SCORE-r) separately and then together (SCORE-b).
For each language, the TETRA augmentation that improves the performance of the LR model the most is highlighted.

3.4.3 Word Alignment Errors
In both the WADE and the TETRA analyses, we are agnostic to the difference between errors that occur as a result of
insufficient training data and those that occur as a result of word alignment errors. For example, a SENSE error may
occur because a source language phrase truly does not translate as a particular target language phrase in the parallel
data. In contrast, SENSE errors may also occur because a source language phrase is incorrectly word aligned, and, as a
result, our models don’t include the correct target translation in our translation grammars. Disentangling these effects
provides insight into potential performance gains from improving word alignments over the small parallel training texts
versus moving beyond the parallel training data to attack each error type. One way to disentangle these effects would be
to learn a model from manual word alignments over the training data and then compare errors made by the new model
with those made by the model based on automatic word alignments. However, manual word alignment is difficult and
time-consuming. Instead, we use the word alignment models learned in high resource conditions as a proxy for manual
alignments (Callison-Burch et al., 2004). Specifically, we perform additional experiments for Spanish-English and
Urdu-English translation comparing the following two word-aligned training datasets:

1. 1, 000 parallel sentences word-aligned using an alignment model estimated over the 1, 000 sentence pairs (LR
alignments).

2. 1, 000 parallel sentences word-aligned using an alignment model estimated using a high-resource training dataset
(HR alignments).

For Urdu, our high resource word alignment model is estimated over 1.6 million words of training data and for Spanish,
it is estimated over 50 million words of training data. Both datasets are described in Section 3.4.2.

Table 3.2 shows the results of our experiments disentangling the effects of the limited coverage of small training
sets and poorly estimated word alignment models. BLEU scores go up by about 3 points for Urdu when moving from
the low resource alignments to the high resource alignments. This is a considerable improvement in translation quality
resulting from improving word alignments alone. For Spanish, the BLEU score improves by about 1.5 points. For
both language pairs, most of the gain in translation quality comes from a reduction in SENSE errors. Although some
previously SENSE errors become SCORE errors, others are corrected. This is expected: although some source language
phrases were observed in training, when they were misaligned, incorrect translations were extracted and the correct
translations were not included in the grammars. SENSE errors are particularly pronounced when training data is sparse
and source phrases are observed infrequently, reducing the chances that they are aligned with correct translations.

3.4.4 Analysis Conclusion
Our analysis has shown that when we train translation models with only small amounts of parallel data, the major
sources of error are SEEN and SENSE errors. That is, many source language words and phrases are not observed at
all in training and many others are observed without all of their correct target language translations. In this thesis
we improve the performance of translation models learned over small amounts of parallel data by identifying new
source word and phrase translations using monolingual corpora. These new translations reduce the number of SEEN
and SENSE errors. We further improve performance by adding feature functions estimated over comparable corpora
that help models discriminate between good and bad translations, correcting SCORE errors.
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Correct Freebie Seen Sense Score BLEU
Urdu
LR Alignments 31.2 0.2 24.7 30.1 13.8 7.22
HR Alignments 37.7 0.2 23.4 21.8 16.9 10.20
Spanish
LR Alignments 38.0 5.0 22.3 22.8 12.0 11.35
HR Alignments 40.5 4.9 21.7 17.3 15.5 12.94

Table 3.2: Disentangling the effect of incorrect training data word alignments from the effect of a limited training
dataset. The percent of test set and reference translation word alignment links that are correct, freebies, or seen, sense,
or score errors are given along with BLEU scores. In both cases, a translation model is estimated over 1, 000 parallel
sentences. The low resource (LR) alignment model is estimated using only the 1, 000 parallel sentences, and the high
resource (HR) alignment model is estimated using much larger parallel datasets.



Chapter 4

Bilingual Lexicon Induction

Bilingual lexicon induction is the task of inducing word translations from monolingual corpora in two languages. Being
about to mine translations from monolingual text is potentially very powerful. In the case of low resource machine
translation, we often only have access to a small seed parallel corpus or a small (incomplete) bilingual dictionary as
the only bilingual resource available to translate entire texts. Therefore, there are likely to be many unknown (out-
of-vocabulary, or OOV) words in the text of interest. In Section 3.4, we showed that unseen words (SEEN errors) are
a major source of error in low resource SMT settings and, as we will show in Chapter 8, the same is true in domain
adaptation settings. Being able to mine translations for these words from monolingual corpora means that we could
produce some translation for every word in our text, achieving perfect model coverage (but not perfect accuracy).

In this chapter, we focus on the task of bilingual lexicon induction. Later, in Chapters 6 and 8, we integrate mined
translations into full, end-to-end low resource SMT models and domain adapted SMT models, respectively. We conduct
simulated low resource experiments by withholding some of the translations in our bilingual dictionary for evaluation.
We use the rest of the dictionary to inform the learning of a translation induction model. This setting mimics what we
expect from an actual low resource translation setting: we know how to translate some, but not all, foreign language
words.

4.1 Motivating Prior Work
As reviewed in Section 2.2.1, several monolingual distributional similarity metrics, including context, temporal, and
orthographic similarity have been proposed as signals that words are translations. Most prior work has used unsuper-
vised methods (like rank combination) to aggregate these types of orthogonal signals (Klementiev and Roth, 2006;
Schafer and Yarowsky, 2002). Surprisingly, no past research has employed supervised approaches to combine diverse
monolingually-derived signals for bilingual lexicon induction. The field of machine learning has shown repeatedly that
supervised models dramatically outperform unsupervised models, including for closely related problems like statistical
machine translation (Och and Ney, 2002).

For the bilingual lexicon induction task, a supervised approach is natural, particularly because computing contex-
tual similarity typically requires a seed bilingual dictionary (Rapp, 1995), and that same dictionary may be used for
estimating the parameters of a model to combine monolingual signals. Alternatively, in a low resource machine trans-
lation (MT) setting, it is reasonable to assume a small amount of parallel data from which a bilingual dictionary can be
extracted for supervision. In this setting, bilingual lexicon induction is critical for translating source words which do
not appear in the parallel data or dictionary.

Previous work in bilingual lexicon induction only reports results on inducing translations for the most frequent
source language words (often only nouns), completely avoiding any scalability or data sparsity issues. Because those
word counts are not sparse, that task is much easier than inducing translations for a random set of words, as Section
4.3 shows. In end-to-end SMT, unknown words tend to be relatively infrequent. This means that it is unclear whether
previous bilingual lexicon induction results would improve SMT quality for low resource languages. In Section 4.3,
we present experimental results on a wide variety of languages, for which a wide variety of monolingual corpora and
seed bilingual dictionaries are available. We also present bilingual lexicon induction results in terms of monolingual
word frequencies in order to understand the effects of data sparseness.
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4.2 Using Monolingual Data to Predict Translations
We frame bilingual lexicon induction as a binary classification problem; for a pair of source and target language words,
we predict whether the two are translations of one another or not. For a given source language word, we score all
target language candidates separately and then rerank them. We use a variety of signals derived from source and target
monolingual corpora as features and use supervision to estimate the strength of each. Our diverse set of signals, which
serve as features in our classification framework, include contextual, temporal, topical, orthographic, frequency, and
burstiness similarity. We presented our method for doing minimally supervised bilingual lexicon induction in Irvine
and Callison-Burch (2013b), and this chapter extends upon that work.

We describe the diverse set of monolingual signals in Section 4.2.1, several of which we first proposed in Klemen-
tiev et al. (2012). We report the performance of individual signals alone and a baseline method for combining them in
Section 4.2.3. Then, in Section 4.2.4, we use a supervised method for learning to combine the signals to predict word
translations.

4.2.1 Monolingual Signals of Translation Equivalence
4.2.1.1 Contextual Similarity

We use the vector space approach of Rapp (1999) to compute similarity between word in the source and target lan-
guages. More formally, assume that s1, s2, . . . sN and t1, t2, . . . tM are (arbitrarily indexed) source and target
vocabularies, respectively. A source word f is represented with an N -dimensional vector and a target word e is rep-
resented with an M -dimensional vector (see Figure 2.3). The component values of the vector representing a word
correspond to how often each of the words in that vocabulary appear within a two word window on either side of
the given word. These counts are collected using monolingual corpora. After the values have been computed, a con-
textual vector f is projected onto the English vector space using translations in a given bilingual dictionary to map
the component values into their appropriate English vector positions. This sparse projected vector is compared to the
vectors representing all English words, e. Each word pair is assigned a contextual similarity score c f, e based on the
similarity between e and the projection of f .

Various means of computing the component values and vector similarity measures have been proposed in literature
(e.g. Fung and Yee (1998); Rapp (1999)). Following Fung and Yee (1998), we compute the value of the k-th component
of f ’s contextual vector, fk, as follows:

fk nf,k log n nk 1

where nf,k and nk are the number of times sk appears in the context of f and in the entire corpus, and n is the maximum
number of occurrences of any word in the data. Intuitively, the more frequently sk appears with fi and the less common
it is in the corpus in general, the higher its component value. After projecting each component of the source language
contextual vectors into the English vector space, we are left with M -dimensional source word contextual vectors, F ,
and target word contextual vectors, E, for all words in the vocabulary of each language. We use cosine similarity to
measure the similarity between each pair of contextual vectors:

simcontext F,E
F E

F E

Table 4.1 shows example ranked lists using contextual similarity to rank English words for several Spanish words.
For example, contextual similarity ranks the English words reached, enjoyed, and contained highly as candidate trans-
lations of Spanish alcanzaron. These incorrect English words tend to appear in similar contexts as the correct English
translation, reached. In Appendix 13.1, we present results using a variety of both probabilistic and non-probabilistic
dictionaries to project contextual vectors.

4.2.1.2 Temporal Similarity

Some of our monolingual corpora have associated time stamps. In particular, each document in our web crawls of
online news websites has an associated publication date (see Section 3.3). We gather temporal signatures for each
source and target language unigram from our time-stamped web crawl data in order to measure temporal similarity
(Alfonseca et al., 2009; Klementiev and Roth, 2006; Schafer and Yarowsky, 2002). The intuition is that news stories
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alcanzaron sanitario desarrollos volcánica montana
reached exil advances volcanic arendt
enjoyed rhombohedral developments eruptive montana

contained apt changes coney glasse
contains immune placing rhonde teter

saw circulatory innovations bleaker waddingham
includes nervous use staten daryl
included endocrine changes robben callowhill

hit coordinate making ostrov richings
achieved ucsd addition ellesmere beswick
estates windowing allowing gilligan holgersson

Table 4.1: Example of ranked word translations using contextual similarity. The correct English translations, when
found, are bolded. English words are ordered by their contextual similarity scores with the given Spanish word.

in different languages will tend to discuss the same world events on the same day and, correspondingly, we expect
that source and target language words which are translations of one another will appear with similar frequencies over
time in monolingual data. For instance, if the English word tsunami is used frequently during a particular time span,
the Spanish translation maremoto is likely to also be used frequently during that time. Figure 4.1 illustrates how
the temporal distribution of Spanish terremoto is more similar to its English translation earthquake than to other
English words. Microsoft, one of the non-translations, like earthquake, is very bursty (formal definition given in
Section 4.2.1.6). Strength, another non-translation, in contrast, appears with fairly consistent frequency over time.
The temporal histograms for terremoto and earthquake both show significant peaks in the middle of the series, which
correspond to the major earthquake that occurred in Haiti in January of 2010. Although the two words have reasonably
well matched temporal signature, there are some differences. For example, there is an earthquake event near the end of
the series that is covered in Spanish news but not as much in English news.

We calculate the temporal similarity between a pair of words, simtemp F,E using the method defined by Klemen-
tiev and Roth (2006). We generate a temporal signature for each word by sorting the set of (time-stamped) documents
in the monolingual corpus into a sequence of equally sized temporal bins and then counting the number of word occur-
rences in each bin. Our English web crawl data is essentially limitless, so we restrict the English data that we use in
a particular foreign language experiment to be no more than three times the size of our source language web crawled
data, and only include news articles from those dates for which we also have source language articles. In our experi-
ments, we set the temporal bin size to 3 days, so the size of temporal signatures is equal to the number of days spanned
by our corpus divided by three. We normalize the temporal signature of each word by dividing all of the counts by the
total count and, again, we use cosine similarity to compare the normalized temporal signatures for a pair of words:

simtemp F,E
F E

F E
,

where F and E are source and target language word temporal signatures, respectively.
Table 4.2 shows example ranked lists using temporal similarity to rank English words for several Spanish words.

For example, ash and spewed, as well as the Icelandic volcano eyjafjallajokull, are all temporally similar to the Spanish
word volcánico. Since volcanic eruptions are generally talked about in newspapers all around the world when they
occur, it is not surprising that this signal is able to score several related words highly. In Appendix 13.2, we compare
the performance of using raw temporal signatures and using the Discrete Fourier Transform of those signatures.

4.2.1.3 Orthographic Similarity

We measure orthographic similarity between a pair of words as the normalized1 edit distance between the two words:

simorth f, e
ed f, e

e f
2

1Normalized by the average of the lengths of the two words
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Figure 4.1: Temporal histograms of the Spanish word terremoto paired with three English candidate translations:
the correct translation earthquake and the incorrect candidates microsoft and strength. The temporal histograms are
collected from monolingual texts spanning several years and show the number of occurrences of each word (on the
y-axes) across time. While the correct translation has a good temporal match (simtemp(terremoto, earthquake)
2 10

4), the non-translations are less temporally similar (simtemp(terremoto, microsoft) 2 10

5,
simtemp(terremoto, strength) 3 10

5). In all examples, only dimensions (dates) which are non-zero valued for
both signatures are shown, which results in the signature for terremoto appearing somewhat different across the three
comparisons.
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alcanzaron sanitario desarrollos volcánica montana
travel snowpocalypse occupied wawel dzv
road airport aer volcanic spatz
news dioxide madoff ash centimes

services steinmeier declaration spewed kleve
arts gobbling ponzi eyjafjallajokull reallocate

word investigating affects otunbajewa frostrup
special convicted suspected eruption roze
chief spy fed cloud minc
top offices combat rubell bicyclists

inspired bond arrested dormancy lgbt

Table 4.2: Example of ranked word translations using temporal similarity. The correct English translations, when
found, are bolded. English words are ordered by their temporal similarity scores with the given Spanish word.

Russian English
f o t f a u t

c y t s y
w u k s c h u k
Greek English
o � ´↵ o c h a
� ✏ ⇢ g e r

↵ � µ a l l m

Table 4.3: Examples of Russian to English and Greek to English transliteration rules extracted from pairs of person
names.

where ed is the standard Levenshtein edit distance between the two strings. For word classes that tend to be translit-
erated, rather than translated, (e.g. person and place names, and etymologically related words), we expect the edit
distances between English words and their translations to be small. Prior work has learned mappings between charac-
ter sets (e.g. Snyder et al. (2010); Yamada and Knight (1999)). Berg-Kirkpatrick and Klein (2011) use decipherment
techniques to learn correspondences between the alphabets of two languages given two lexicons containing unmatched
cognates.

For non-Roman script languages, we transliterate words into the Roman script before measuring orthographic
similarity, following our prior work in Irvine et al. (2010b). We treat transliteration as a monotone character translation
task and train models on the mined pairs of person names in foreign, non-Roman script languages and English. Because
transliteration is strictly a monotone operation, we do not allow reordering in our models. Additionally, unlike in
machine translation, our translation and language models can support very large n-gram sizes because the number of
characters in a given script is small compared to word vocabularies; we use phrase length limits of 10 when extracting
translation grammars and in estimating language models. We use a character-based language model trained on the
complete list of English names. Table 4.3 shows some example rules that we learn for transliterating Russian and
Greek into the Roman script.

In Irvine et al. (2010b), we provide a detailed evaluation of our transliteration technique. For purposes of bilingual
lexicon induction, we use the top-1 transliteration to compute edit distance.

Table 4.4 shows example ranked lists using orthographic similarity to rank English words for several Spanish
words. For those Spanish words that have English cognates, such as sanitario and volcánica, the orthographic signal
ranks correct translations highly.

4.2.1.4 Topic Similarity

Words and their translations are likely to appear in articles written about the same topic in two languages. Thus, topic
or category information associated with monolingual data can also be used to indicate similarity between a word and its
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alcanzaron sanitario desarrollos volcánica montana
alcantara sanitary ferroalloy volcanic montana
albanian sanitation barrosos volcanism fontana
lazzaroni unitario destroyers voltaic montane

lanaro sanitarium mccarroll vacancy mentana
aleandro sanitation disallows konica montagna
lazaros sagittario disallow dominica montanha
canaro sanitarias scrolls veronica montan
alianza kantaro payrolls monica montano
lazaro sanitorium carroll volcano montani

catanzaro santoro steamrolls vratnica montand

Table 4.4: Example of ranked word translations using orthographic similarity. The correct English translations, when
found, are bolded. English words are ordered by their orthographic similarity scores with the given Spanish word.

Barack_Obama Обама,_Барак
Virginia Виргиния

Iraq_War Иракская_война
Ückeritz Иккериц

Otto_von_Bismarck Бисмарк,_Отто_фон
Music Музыка

15
32
10
0
1
4

United 
States

Соединённые 
Штаты 
Америки

8
15
8
0
0
5

1
0
0
0
0
7 

0
2
0
0
0
0

Мексика ездить на 
велосипеде

Wikipedia

Figure 4.2: Illustration of how we compute the topical similarity between United States and three Russian candidate
phrase translations. We first collect the topical signatures for each phrase (e.g. United States appears in the page about
Barack Obama 15 times and in the page about Virginia 32 times.) based on the interlingually linked pages. We can
then directly compare each pair of topical signatures.

candidate translation. In order to score a pair of words, we collect their topic signatures by counting their occurrences
in each topic, normalize the signatures, and then comparing the resulting vectors. We, again, use the cosine similarity
measure:

simtopic F,E
F E

F E
,

where F and E are normalized source and target language word topical signatures, respectively.
In our experiments, we use interlingual links between Wikipedia articles to estimate topic similarity. We treat each

linked article pair as a topic and collect counts for each word across all articles in its corresponding language. Thus,
the dimensionality of a word’s topic signature corresponds to the number of interlingually linked article pairs, and each
value corresponds to the number of times the word appears in the given article. For each foreign language, the number
of Wikipedia articles linked to English pages is given in Table 11.3 in Appendix 11. The number of linked articles
range from 84 (Kashmiri) to over 500 thousand (French). Figure 4.2 illustrates this signal. Our Wikipedia-based topic
similarity signal is similar in spirit to polylingual topic models (Mimno et al., 2009).

Table 4.5 shows example ranked lists using topic similarity to rank English words for several Spanish words. Using
topic similarity, montana, miley, and hannah are ranked highly as candidate translations of the Spanish word montana.
The TV character Hannah Montana is played by actress Miley Cyrus, so the topic similarity between these words
makes sense.
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alcanzaron sanitario desarrollos volcánica montana
reached health developments volcanic montana

began transcultural developed eruptions miley
led medical development volcanism hannah

however sanitation used lava beartooth
early patient using plumes cyrus

including deliverables modern eruption crazier
took pharmaceutical based volcano bozeman

remained sewerage important volcanoes chelsom
several healthcare history breakouts absaroka

continued care different volcanically baucus

Table 4.5: Example of ranked word translations using topic similarity. The correct English translations, when found,
are bolded. English words are ordered by their topic similarity scores with the given Spanish word.

4.2.1.5 Frequency Similarity

Words that are translations of one another are likely to have similar relative frequencies in monolingual corpora. We
measure the frequency similarity of two words, simfreq , as the absolute value of the difference between the log of
their relative corpus frequencies, or:

simfreq e, f log
freq e

i freq ei
log

freq f

i freq fi

4.2.1.6 Burstiness Similarity

Burstiness is a measure of how peaked a word’s usage is over a particular corpus of documents (Pierrehumbert,
2012). Bursty words are topical words that tend to appear when some topic is discussed in a document. For example,
earthquake and election are considered bursty. In contrast, non-bursty words are those that appear more consistently
throughout documents discussing different topics, use and they, for example. Church and Gale (1995, 1999) provide
an overview of several ways to measure burstiness empirically. Following Schafer and Yarowsky (2002), we measure
the burstiness of a given word in two ways. The first is based on Inverse Document Frequency (IDF):

IDFw log
dfw
D

,

where dfw is the number of documents that w appears in, and D is the total number of documents in the collection.
The second burstiness measure, similar to that defined by Church and Gale (1995), is the average frequency of w
divided by the percent of documents in which w appears. We make one modification to the definition provided by
Church and Gale (1995) and use relative frequencies rather than absolute frequencies to account for varying document
lengths.

Bw
d
i

D rfw
d

i

dfw
,

where, as before, dfw is the number of documents in which w appears and rfw
d

i

is the relative frequency of w in
document di. Relative frequencies are raw frequencies normalized by document length. Table 4.6 shows examples
of high and low ranked bursty words under each measure for two different constant word frequencies. The examples
show that both measures of burstiness yield rankings that are consistent with our intuitions, yet they provide different
results.

We compare both the IDF and the B scores for pairs of words using ratios:

simIDF e, f min
IDFe

IDFf
,
IDFf

IDFe

simburst e, f min
Be

Bf
,
Bf

Be
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Frequency, f , and IDF Burstiness
number of words, n Top-5 Bottom-5 Top-5 Bottom-5

f 50, n 802

kratsa contemporaneously straubing-bogen wavering
tebet unrecognizable tebet busing

kagome categorizing cloppenburg unconvinced
khaldūn modern-style autosan redesigning

psittacosaurus crazed gøta oftentimes

f 100, n 303

subarticle call-ups penedès demoralized
trackmania workable lyrebird misgivings

lyrebird purports azarbaijan precluded
gârbea outnumber padstow workable
biecz unmatched trackmania forestall

Table 4.6: Examples of highest and lowest ranked English words according to two measures of burstiness. Empirical
estimates were taken from a subset of English Wikipedia data.

4.2.1.7 Additional Signals

In addition to the basic features listed above, we perform some experiments to test the usefulness of additional signals of
translation equivalence. Two such signals are word prefix contextual similarity and word suffix contextual similarity.
Prefix contextual similarity is calculated in the same way as the contextual similarity score, but we use source and
target word stems, or word prefixes up to five characters long, instead of full words. That is, the word prefix contextual
similarity score for the word pair (blanco, white) is the same as that of (blanca, white). In this particular example, we
collect only a single contextual vector for blanc{o,a}. In Spanish, this translation of the English word white appears
with either a masculine or feminine ending, depending on what it modifies. By summing the distributional counts of
blanco and blanca, we expect a contextual vector that is more similar to English white than either alone. We measure
the similarity of a pair of prefixal contextual vectors using cosine similarity, as before.

Suffix contextual similarity measure is similar to the word stem measure, except instead of using word prefixes, it
uses word suffixes of up to five characters long. For example, the word stem contextual similarity score of the word pair
(imposible, possible) is the same as that of (posible, imposesible). With this signal, we expect to sum over alternate
word prefixes in the same way that the word stem signal sums over alternate word suffixes. Again, the similarity
between a pair of suffixal contextual vectors is measured using cosine similarity.

In addition to prefix and suffix contextual similarity, we also estimate prefix and suffix topic and temporal similarity.
We also use an indicator feature which is positive if the source and target words are the same string. Of course, this
indicator is most useful for languages written in the same script. Finally, we add a final feature indicating the target
translation’s monolingual frequency, which serves as a sort of prior probability that the target word is of interest at all.
Specifically, we define this feature as the inverse of the log of the target word’s frequency.

Although we have limited our experiments to this set of varied signals of translation equivalence, our basic frame-
work is easily extendible.

4.2.2 Orthogonality of Signals
In this section we seek to answer two questions about how the signals presented in Section 4.2.1 interact. First,
intuitively, the signals presented seem orthogonal. That is, they provide very different types of information about how
words are used in language, and we hypothesize that the lists of ranked candidate translations under each signal are
uncorrelated with the exception (and hope!) that correct translation pairs rank relatively high according to all or most
of the signals. In our first set of experiments, we measure their orthogonality empirically. Second, we hypothesize
that some signals tend to rank translation candidates more accurately than others. For example, we would expect that
the frequency signal is a weaker predictor than, for example, orthographic similarity, particularly for closely related
language pairs. In our second set of experiments, we compare the accuracies of each signal and include analyses by
language and by part-of-speech.

In order to empirically measure orthogonality of our signals, we measure pairwise Spearman rank-order correlation
coefficients. Specifically, we first use each signal separately to rank all translation candidates. Then, we measure the
correlation between all pairs of ranked lists using the Spearman coefficient. A correlation coefficient of 1.0 indicates
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crawls-cont
wiki-cont -0.15 wiki-cont
temporal -0.14 -0.19 temporal
orth. -0.28 -0.31 -0.28 orth.
topic -0.15 -0.14 -0.13 -0.30 topic
freq. 0.01 0.13 0.02 -0.18 0.13 freq.
burst. -0.10 0.06 -0.07 0.06 0.11 0.28 burst.
idf 0.06 0.10 -0.12 -0.01 0.00 0.49 0.14

Table 4.7: Measure of the correlation (orthogonality) between signals. For each of 24 languages, we randomly select
1, 000 source language words and compute the Spearman rank correlation coefficient across pairwise ranked lists of
translation candidates generated by each of eight signals of translation equivalence. We average coefficients within
each language. The results here show the mean of the correlation coefficient between all pairs of signals across the 24
languages.

perfect positive correlation, -1.0 indicates perfect negative correlation, and coefficients close to zero indicate that our
signals do not correlate.

For each of 24 languages,2 we randomly select 1, 000 source language words and use each of our eight basic
translation signals to rank all candidate English translations. For each source language word and each pair of signals,
we measure the Spearman correlation coefficient. We average the pairwise results across the 1, 000 source words and
then average across languages.

Table 4.7 shows the results. The first thing to note is that the highest average correlation coefficient is between the
frequency and the inverse-document frequency (IDF) signals (0.49). This makes sense because IDF is based on word
frequency. The second highest value corresponds to a negative correlation (-0.31) between orthographic similarity and
wikipedia contextual similarity. These features are based on entirely different information, and we would not expect
them to have a positive correlation. The fact that they are negatively correlated is surprising, but confirms our intuition
that the signals provide orthogonal information.

The question of whether different signals tend to better predict the translations of different source words or whether
one or two signals always dominate remains. Relatedly, it is possible that some signals are better able to predict the
translations of certain classes of words that others. For example, it may be true that the orthographic and topic signals
are better at predicting the translations of named entities than, for example, the contextual signals, which may better
predict the translations of closed class words.

First, we ask how frequently each signal ranks the correct translation higher than any other signal. That is, we ask
how often each signal is a better predictor of how to translate a given word than all other signals. We use the same set
of randomly selected 1, 000 source language words used to estimate rank correlations. For each, we identify the rank
of the correct English translation under each of the eight basic signals. We then measure how often each signal ranks
the correct translation higher than the other signals. As elsewhere in this chapter, we use the Mechanical Turk (see
Section 3.2.2) dictionaries as gold standards.

Table 4.8 shows the results. Although each signal is the most informative for at least some source language words
in all 24 languages, the following three dominate most often: wikipedia contextual similarity, orthographic similarity,
and topic similarity. Given this result, we ask a related question: are some signals particularly informative for certain
classes of words? In order to begin to answer this question, we label each source word with the most frequent part-
of-speech (POS) tag for its English translation using the tagger in the Natural Language Toolkit (NLTK).3 We use the
pre-trained sequential backoff tagger released with NLTK, which tags sequences of English words with tags from the
Penn Treebank (Marcus et al., 1993). However, we do not tag word sequences but rather individual English words in
our test set. We use information from English because POS taggers are not readily accessible for many of our languages
of interest.

Given English POS tags projected onto each of our source language words, we perform a similar analysis as before,
but we now group source language words by POS tag. Then, for each language and all words in each POS category,
we count how often each signal ranks a correct translation higher than all other signals. Table 4.9 shows the results.
For clarity, we collapse some POS classes. For example, we mark both noun and plural nouns as simply ‘Noun.’

2We use the same set of 24 languages that we experiment with elsewhere in this chapter. The languages are listed in Table 4.11.
3
http://www.nltk.org/

http://www.nltk.org/
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Language crawls-cont wiki-cont temporal orth. topic freq. burst. idf
Azeri 3.6 41.0 3.6 11.0 30.3 5.9 4.2 0.4
Bulgarian 5.1 27.0 3.1 17.0 42.2 4.3 0.6 0.8
Bengali 8.7 26.7 0.9 15.4 40.4 4.5 2.3 1.2
Bosnian 8.8 41.2 4.2 16.5 21.8 4.7 2.5 0.4
Cebuano 12.7 22.1 7.3 20.6 25.7 4.6 6.4 0.5
Welsh 11.0 55.6 3.2 9.6 11.1 8.0 1.2 0.4
Gujarati 9.4 33.9 5.3 8.6 31.8 4.3 3.9 2.9
Hindi 4.5 25.5 2.0 10.6 46.7 4.9 2.8 2.9
Hungarian 4.6 36.1 0.0 10.1 25.7 12.5 5.4 5.7
Indonesian 12.3 54.9 4.3 10.8 6.4 7.9 0.5 2.8
Latvian 5.4 41.6 4.8 18.6 23.1 5.0 1.3 0.3
Nepali 11.2 32.0 6.4 12.5 27.6 5.1 4.2 0.8
Romanian 5.7 39.3 1.5 35.0 9.6 5.4 2.7 0.8
Slovak 4.8 42.1 4.2 17.5 22.8 4.3 3.3 1.0
Somali 8.7 28.3 3.4 11.1 18.1 17.4 12.5 0.5
Albanian 7.2 47.8 3.1 21.9 11.0 6.0 3.0 0.1
Serbian 3.8 27.4 1.6 17.5 42.8 4.5 1.6 0.7
Swedish 4.3 45.0 2.1 22.3 10.7 11.1 2.5 2.1
Tamil 7.7 25.2 1.8 4.2 53.7 5.1 1.6 0.8
Telugu 6.6 29.4 5.8 10.2 39.9 3.1 3.4 1.6
Turkish 6.8 43.4 8.7 9.8 15.2 11.4 2.5 2.1
Ukrainian 7.2 35.1 4.0 24.0 17.0 6.9 3.6 2.2
Uzbek 7.4 6.6 0.5 20.1 41.0 15.1 7.4 1.9
Vietnamese 11.0 16.6 9.7 7.7 21.0 16.6 3.3 14.1
Average 7.4 34.3 3.8 15.1 26.5 7.4 3.4 2.0

Table 4.8: Percent of 1, 000 words for which each translation signal ranks a correct translation highest, across 24
languages.
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POS Class % Words crawls-cont wiki-cont temporal orth. topic freq. burst. idf
Verb 10.9 8.9 34.0 4.6 7.3 31.1 9.1 2.9 2.1
Noun 64.8 7.0 36.7 3.5 17.4 23.7 7.0 2.9 1.9
Adverb 3.9 10.5 35.3 6.6 5.1 29.0 7.3 3.5 2.6
Adjective 13.3 6.2 34.4 3.1 19.0 27.3 5.5 3.1 1.4
Closed 7.1 9.4 28.4 5.3 6.6 36.8 5.4 7.0 1.1
Average 7.4 34.3 3.8 15.1 26.5 7.4 3.4 2.0

Table 4.9: Analysis of Signals by Part-of-Speech tag.

Because there are so few word types, we also collapse all closed class categories, including conjunctions, determiners,
and prepositions into a single ‘Closed’ category. In comparison with Table 4.8, results are grouped by POS tag instead
of by language. The final row is identical to that in Table 4.8. Because most (65%) words are nouns, the summary
statistics are dominated by them.

The results in Table 4.9 are very consistent across word classes with one notable exception. The orthographic
feature makes very good translation predictions for nouns and adjectives but not for the other word classes. This makes
sense; we would expect orthographic similarity to be informative for borrowed and transliterated words, which tend to
be nouns. The overall consistency suggests that there is likely little to gain from training word class-specific models for
making translation predictions. In Section 4.2.3, we define a baseline method for combining the orthogonal features to
make a single translation prediction, and in Section 4.2.4 we learn models for combining features.

4.2.3 Individual Monolingual Signals
The features that we use to identify word translations are based on the signals described above, and similarity scores are
estimated over two source of comparable corpora, web crawls and Wikipedia (see Section 3.3 for a detailed description
of each dataset):

1. Web Crawls Contextual Similarity

2. Web Crawls Temporal Similarity

3. Orthographic Similarity

4. Wikipedia Contextual Similarity

5. Wikipedia Topic Similarity

6. Wikipedia Frequency Similarity

7. Wikipedia IDF Similarity

8. Wikipedia Burstiness Similarity

9. Web Crawls Prefix Contextual Similarity

10. Web Crawls Prefix Temporal Similarity

11. Web Crawls Suffix Contextual Similarity

12. Web Crawls Suffix Temporal Similarity

13. Wikipedia Prefix Contextual Similarity

14. Wikipedia Prefix Topical Similarity

15. Wikipedia Suffix Contextual Similarity

16. Wikipedia Suffix Topical Similarity

17. String Identity
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18. Inverse Log of Target Wikipedia Frequency

Table 4.10 shows examples of Romanian words paired with several English words, both correct and incorrect, and
scored with all 18 features.

It’s intuitive that combining these orthogonal measures would improve performance on bilingual lexicon induction,
and Schafer (2006) showed that to be true. We define our baseline for combining our set of monolingual signals, H , to
be the mean reciprocal rank (MRR) across all features:

MRRe
h H

1
r
h

e

H

where rh e is the rank of English word e under the monolingual similarity measure h. This unsupervised approach to
rank aggregation assumes no prior knowledge of which signals are likely to be the most informative.

We measure performance using accuracy in the top-k ranked translations. We define top-k accuracy over some set
of ranked lists L as follows:

acck
l L Ilk
L

where Ilk is an indicator function that is 1 if and only if a correct item is included in the top-k elements of list l. That
is, top-k accuracy is the proportion of ranked lists in a set of ranked lists for which a correct item is included in the
highest k ranked elements.

Figure 4.3 shows the performance of each of the monolingual similarity measures alone as well as the baseline
MRR method for combining them. Each box-and-whisker plot shows the top-10 accuracy range, quartiles, and median
across a set of 24 diverse languages (listed in Figure 4.11). The Wikipedia topic and context features using whole words
and word prefixes are the highest performing single features. More importantly, Figure 4.3 shows that even using the
simple MRR method of combining signals is more effective than using any single feature. This result motivates our
approach to using supervision to learn how to optimally combine these orthogonal signals and output a more accurate
ranking.

4.2.4 Learning to combine orthogonal monolingual signals
We use a supervised approach to combining the monolingual signals enumerated above. For each language, we choose
up to 10, 000 source language words among those that occur in each of our comparable corpora (web crawls and
wikipedia) at least ten times and that have at least one translation in our gold standard dictionaries. In this chapter, in
order to keep our experiments consistent across languages, we use the Mechanical Turk (see Section 3.2.2) dictionaries
as gold standards. Because some monolingual datasets and some dictionaries are small, the source word samples are
smaller than 10, 000 for some languages. For example, although our MTurk dictionary contains translations for 9, 977
Gujarati words, only 4, 442 of those words appear at least ten times in both of our monolingual corpora. We randomly
divide the source language words into three equally sized sets for training, development, and testing.

We learn binary classifiers to predict whether a pair of words are translations of one another or not. The translations
in our training data serve as positive training examples. The negative training examples are constructed by randomly
pairing source language words in the training data with English words.4 We use our development data to set the
number of negative examples positive example. Using three negative examples for each positive example optimized
performance on the development set. At test time, after scoring all source language words in the test set paired with all
English words in our candidate set,5 we rank the English candidates by their classification scores and evaluate accuracy
in the top-k translations.

We use the fast, online learner implemented in the Vowpal Wabbit package (Agarwal et al., 2014) to estimate the
parameters of our log-linear classifiers.6 VW uses a gradient descent-based algorithm for learning binary predictors,
and we perform 100 learning passes over the training data. Although our current feature space is somewhat small,

4Among those that appear at least ten times in our monolingual data, consistent with our candidate set.
5All English words appearing at least three times in our monolingual data. In practice, we further limit the set to those that occur in the top-1000

ranked list according to at least one of our signals. Because words outside of these top-1000 lists are extremely unlikely to end up with a relatively
high prediction score, doing so does not impact our performance but speeds up the prediction step.

6We use http://hunch.net/
˜

vw/ version 6.1.4, and run it with the following arguments that affect how updates are made in learning:
–exact adaptive norm –power t 0.5

http://hunch.net/~vw/
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Figure 4.3: Performance using each of the 18 features separately to rerank translation candidates as well as our baseline
method for combining them, which uses the simple mean reciprocal rank across all features. Box and whisker plots
depict the distribution of performance across a set of 24 languages. The three lines in each box illustrate the first,
second (median), and third quartiles. Outliers (defined as being more than 1.5 times the interquartile range away from
either quartile) are shown with circles. The whiskers show non-outlier minimum and maximum values.
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Figure 4.4: Top-10 bilingual lexicon induction accuracy of the baseline MRR approach to combining signals and our
proposed supervised approach for each of 24 languages.

in future work we plan to scale up learning to take advantage of, for example, full context vectors, and VW will
be well-suited to learn over very large feature spaces. We train classifiers separately for each source language, and
the learned weights vary based on, for example, corpora size and the relatedness of the source language and English
(i.e. the number of cognates). Although the scale of feature values varies somewhat (e.g. frequency difference can
be greater than 1), making it difficult to interpret feature weights, we compared feature weights and found that the
highest weighted feature for 19 languages is the Wikipedia topic similarity feature, and the highest for 5 languages is
the Wikipedia context feature. These results are consistent with what we saw comparing the performance of individual
features in Figure 4.3.

4.3 Experiments
For each source language, we use our trained models to induce translations for each source language word in our
test sets, and we do evaluation against our gold standard bilingual dictionaries. We rank English translations by their
translation classification score and measure percent accuracy in the top-k. This measure is somewhat conservative
since the dictionaries aren’t expected to be exhaustive, meaning that some target language translations for a given
source language word won’t appear in the dictionary and the system won’t be given credit for ranking these target
items high in its translation list. This is particularly true here because we have used the MTurk dictionaries, which are
somewhat noisy. However, in these experiments, we only evaluate on words that do appear in our bilingual dictionary.
It’s possible that such words are easier to translate than, say, a given OOV word in some sentence which we wish to
translate. The results presented in this section are on the held-out blind test sets described above.

4.3.1 Comparison with Unsupervised Baseline
Table 4.11 shows the top-10 bilingual lexicon induction accuracy results for each language using the baseline model as
well as the supervised discriminative models.7 Figure 4.4 shows the same top-10 accuracies, sorted by performance.
Finally, Figure 4.5 shows summary box-and-whisker plots for both the MRR baseline and our proposed supervised
model. It’s clear that the supervised method outperforms the baseline by a large margin for all 24 languages. Results
using the supervised models vary from 11% accuracy on Uzbek to 57% accuracy on Bulgarian. The average accuracy
across languages using the MRR baseline is 15.8% and using a supervised approach is 34.2%, or greater than twice the
average baseline accuracy.

7Performance is different from that reported in Irvine and Callison-Burch (2013b) because, here, we have done additional quality control and
cleaning over our MTurk dictionaries, which we use for training and evaluation, as described in 3.2.2. Our feature set is also slightly different,
including, for example, the burstiness feature, which was not a part of our original feature set presented in Irvine and Callison-Burch (2013b).
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Figure 4.5: Summary box-and-whisker plots of the top-10 bilingual lexicon induction accuracies of the baseline and
our proposed supervised approach over 24 languages

4.3.2 Analysis by Word Frequency
Figure 4.6 presents results on the same set of experiments, but bins source language words by their Wikipdia corpus
frequency.8 We binned the words in each evaluation test set by frequency, and each bin contains 100 source language
words. That is, the most frequent 100 source language words were put in the first bin, and the least frequent were put
into the last bin. The horizontal axis in each figure plots the average corpus frequency of the words in a given bin
versus the percent of those source language words that have a correct translation in the top-k ranked list of translations.

The results in Figure 4.6 are presented starting with the language with the least amount of Wikipedia data (So-
mali) and ending with the language with the largest amount (Swedish), among those languages for which results are
presented. Corpus frequencies for even the most frequent words in the first few source languages are very small. For
example, the average frequency of the 100 most frequent Somali words is only 13.

Prior work on bilingual lexicon induction has focused on identifying translations for frequent words. In general, our
monolingual signals are stronger for those words that appear frequently in monolingual corpora than for those words
that appear less frequently and have sparse context and temporal counts. Therefore, we hypothesized that translation
accuracy would be higher for frequent words than for less frequent words, resulting in accuracies that go up from left
to right, or from lower frequency to higher frequency, in the figures. Figure 4.6 shows that this effect holds true, but it
is not as strong as we expected.

To quantify the effects of frequency, we compute the Spearman rank-order correlation coefficient between the
frequency rank of a given source word and the rank of its correct translation.9 Across all languages, we find a slightly
positive average correlation on average, 0.08, indicating that, as we expected, more frequency words tend to have
higher ranked correct translations. This effect is significant to a p-value of 0.01 for 14 of the 24 languages,10 however
the correlation is not as large as we expected. In Section 4.3.3 we do a similar analysis based on burstiness.

4.3.3 Analysis by Word Burstiness
Figure 4.7 presents results again on the same set of experiments but bins source language words by their Wikipedia
corpus burstiness. We use the burstiness definition (Bw, not IDFw) given in Section 4.2.1.6. As we did for the word
frequency analysis, we bin the words in each evaluation set by burstiness, with each bin containing 100 source words.
That is, the 100 most bursty source language words were put in the first bin, and the least bursty were put into the last

8Because the features estimated over the Wikipedia corpora are much stronger than those estimated over the web crawls, we find the analysis
over Wikipedia frequency to be more meaningful than combining word frequencies across corpora.

9Although we have integer-valued frequency information, our comparison variable only contains ranks, so we convert frequency to an ordinal
variable by ranking the words in each test set by their Wikipedia monolingual frequencies, from highest to lowest.

10Bosnian, Cebuano, Somali, Nepali, Gujarati, Bengali, Latvian, Indonesian, Welsh, Tamil, Turkish, Telugu, Hungarian, Swedish
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(b) Nepali
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(c) Cebuano
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(d) Gujarati
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(e) Welsh
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(f) Bengali
50 100 200

0
20

40
60

80
10

0

●

●

●

Ac
cu

ra
cy

, %

Frequency

Top 100
Top 10
Top 1

(g) Uzbek
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(h) Albanian
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(i) Azeri
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(j) Bosnian
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(k) Telugu
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(l) Tamil
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(m) Latvian
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(n) Hindi
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(o) Ukrainian
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Figure 4.6: Bilingual lexicon induction as a function of source word frequency in Wikipedia monolingual data. Among
the languages shown, we have the least monolingual data for Somali and the most for Swedish.



54

MRR Supervised Absolute % Relative
Language Baseline Model Improvement Improvement
Vietnamese 2.5 7.9 5.4 216.0
Uzbek 4.3 10.8 6.5 151.2
Somali 9.1 18.1 9.0 98.9
Turkish 9.0 22.5 13.5 150.0
Hungarian 8.1 22.6 14.5 179.0
Nepali 11.0 22.8 11.8 107.3
Azeri 10.7 25.6 14.9 139.3
Cebuano 12.3 28.3 16.0 130.1
Indonesian 17.4 32.0 14.6 83.9
Swedish 15.4 32.6 17.2 111.7
Slovak 13.6 36.6 23.0 169.1
Bengali 19.6 37.4 17.8 90.8
Ukrainian 13.6 37.7 24.1 177.2
Tamil 17.1 37.9 20.8 121.6
Latvian 16.6 38.5 21.9 131.9
Albanian 19.4 39.6 20.2 104.1
Telugu 25.7 41.0 15.3 59.5
Bosnian 19.0 43.1 24.1 126.8
Hindi 25.9 43.4 17.5 67.6
Welsh 14.5 44.4 29.9 206.2
Gujarati 33.3 45.3 12.0 36.0
Serbian 18.8 47.2 28.4 151.1
Romanian 17.3 47.6 30.3 175.1
Bulgarian 26.0 56.9 30.9 118.8
Average 15.8 34.2 18.3 129.7

Table 4.11: Top-10 Accuracy on test set. Performance increases for all languages moving from the baseline (MRR
Baseline) to discriminative training (Supervised Model). The average accuracy across languages using the MRR base-
line is 15.8 and using our supervised approach is 34.2.

bin. The horizontal axis in each figure plots the average burstiness of the words in a given bin versus the percent of
those source language words that have a correct translation in the top-k ranked list of translations.

We hypothesized that it may be easier to induce translations for bursty words than for non-bursty words because
their temporal and topic signatures are very peaked. The results in Figure 4.7 confirm this. Again, without binning by
burstiness, we compute the Spearman rank-order correlation coefficient between the rank of a given word’s burstiness
and the rank of its correct translation. Across all languages, we find a positive average correlation on average, 0.25,
indicating that, as we expected, we tend to rank correct translations higher for more bursty words. This effect is
significant to a p-value of 0.01 for all 24 languages. Comparing our results here with those in Section 4.3.2, we see
that burstiness is a better indicator of ranking performance on a given word than frequency.

4.3.4 Analysis by Amount of Monolingual Data

Figure 4.8 plots the average top-10 and top-100 accuracies versus the total amount of monolingual data (web crawls
and Wikipedia; amounts given separately in Table 11.3 in Appendix 11) for each of the 24 languages. In general,
an increase in monolingual data seems to improve accuracy. The correlation is not perfect, however. For example,
performance on Turkish and Vietnamese is relatively poor despite the relatively large amount of monolingual data
available for each.
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Figure 4.7: Bilingual lexicon induction as a function of source word burstiness in Wikipedia monolingual data.
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Figure 4.8: Total size of source language comparable corpora (Wikipedia and web crawls) in millions versus top-10
bilingual lexicon induction accuracy.

4.4 Learning Curve Analyses

4.4.1 Translated Word Pairs

Figure 4.9 shows learning curves over the number of positive training instances for each source language. In all cases,
the number of randomly generated negative training instances is three times the number of positive. For all languages,
performance is stable after about 300 correct translations are used for training. This shows that our supervised method
for combining signals requires only a small training dictionary. In most cases, for a new language, a dictionary of this
size could be mined from the Internet or created using crowdsourcing (Irvine and Klementiev, 2010).

4.4.2 Monolingual Data

Given the results presented in Section 4.3, one remaining question that we may want to answer is the following: How
much monolingual data would we need to ensure high quality induced bilingual lexicons? Or, put slightly differently,
do our experiments show any signs of bilingual lexicon induction performance leveling off after a certain amount of
monolingual data is available? If so, any further performance gains would have to be made by improving our techniques
instead of, for example, expanding our web crawls to additional websites. These are important considerations as we
move to integrating induced translations into end-to-end SMT.

Figure 4.10 shows bilingual lexicon induction learning curves for four languages, Gujarati, Albanian, Azeri, and
Tamil. Top 1, top 10, and top 100 accuracies are plotted on the y-axis for each language, and the x-axis shows
the amount of monolingual data used to score and rank translation candidates. We generated the learning curves by
sampling the web crawl and wikipedia monolingual corpora at the same rate. The total amount of monolingual data
available for Gujarati is about 5 million words, and it is about 11 million for Azeri, 13 million for Tamil, and 15 million
for Albanian.

Performance levels off after about half of the Azeri and Tamil data and one third of the Albanian data are used. This
corresponds to about 5 million words. For Gujarati, performance increases rapidly up to the full amount of 5 million
monolingual words. These results indicate that we need at least a few million words of comparable corpora to achieve
good performance, and using more monolingual data does not harm performance.
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(d) Gujarati
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(h) Albanian

0 200 400 600 800 1000

0
20

40
60

80
10

0

●

●
●
●

●

●
●

● ●
● ●

Ac
cu

ra
cy

, %

Positive Training Data Instances

Top 100
Top 10
Top 1

(i) Azeri
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(k) Telugu
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(n) Hindi
0 200 400 600 800 1000

0
20

40
60

80
10

0

●●

●

●

●

●

●

● ●
●

●

Ac
cu

ra
cy

, %

Positive Training Data Instances

Top 100
Top 10
Top 1
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Figure 4.9: Learning curves over number of positive training instances, up to 1,000. For some languages, 1,000 positive
training instances are not available. In all cases, the number of negative training instances is three times the number of
positive. For all languages, performance is fairly stable after about 300 positive training instances.



58

●

●

●

●

●

●
●

50 100 200 500 1000 2000 5000

0
20

40
60

80
10

0

Ac
cu

ra
cy

, %

Thousands of Words of Monolingual Data

● Top 100
Top 10
Top 1

(a) Gujarati

●

●

●

●

● ●

●

100 200 500 1000 2000 5000 10000

0
20

40
60

80
10

0

Ac
cu

ra
cy

, %

Thousands of Words of Monolingual Data

● Top 100
Top 10
Top 1

(b) Azeri
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(c) Tamil
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(d) Albanian

Figure 4.10: Bilingual lexicon induction learning curves over varying comparable corpora sizes for (a) Gujarati, (b)
Albanian, (c) Azeri, and (d) Tamil. The x-axis is shown on a log scale.
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4.5 Learning Models Across Languages
The results in Section 4.4.1 showed that we only need a few hundred pairs of translated words to learn a high-
performing discriminative model for inducing word translations. Although we expect that this amount of data could
be quickly gathered for any language pair of interest, this assumption may not always hold. It may be desirable then
to use a model trained on data for another language pair. For example, if we were unable to obtain the few hundred
Gujarati-English word translations needed to achieve high bilingual lexicon induction performance, we may use the
classification model trained on Hindi data, which is a closely related language. Here, we present experiments using a
model trained on data from one language pair to induce translations for another language pair. That is, for example, we
test the effectiveness of the discriminative model weights that we learned using Hindi-English data to score and rerank
hypothesis Gujarati-English translations, for example. Note that we only use the learned discriminative weights across
languages (one for each feature); in all cases, we estimate the feature values themselves using same-language compara-
ble corpora. In our example, we estimate feature values for pairs of Gujarati and English words using Gujarati-English
comparable corpora, but then we use the weights learned over our Hindi training data to combine the features in order
to predict Gujarati translations. In all experiments, we use the same set of 18 features described in Section 4.2.3.11

Interestingly, we find that the weight vectors obtained from other languages often result in higher test set perfor-
mance than those obtained on that languages’s development set. Table 4.12 shows the results for 20 language pairs.
Results on the diagonal are identical to those presented in Table 4.11. Test set languages are listed in each row and
columns indicate the trained model used to make predictions. For 6 of the 20 languages (Telugu, Tamil, Indonesian,
Bulgarian, Romanian, Vietnamese), using the model trained on that language’s training data performs better than using
any of the 19 models trained using data in another language. These six languages are mostly relatively high resource
languages, for which we have large comparable corpora. Interestingly, of the remaining 14 languages, for half (Nepali,
Welsh, Bengali, Albanian, Azeri, Bosnian, Turkish) we see the highest performance on the test set when we make pre-
dictions using the model trained on Indonesian data. There do not seem to be any trends that correspond to language
relatedness. In most cases, models trained on languages for which there is more comparable corpora available than
there is for the test language tend to perform better. This is not an intuitive result because, at test time, features are
computed over the test language’s comparable corpora.

In general, Figure 4.12 shows that there is little variance in performance when we vary the model used to make
predictions at test time. That is, the weights that we learn for our 18 features do not vary tremendously across the
training datasets for different languages. This is an important finding as it suggests that, even if we do not have access
to any example word translations for a given language pair, we may use a model trained on translations and comparable
corpora from an alternate language pair to make high quality predictions.

4.6 Comparison with Prior Work
We compare our discriminative bilingual lexicon induction approach with the popular generative model presented in
Haghighi et al. (2008). Haghighi et al. (2008) presents a canonical correlation analysis (CCA) based approach to
inducing bilingual lexicons. The generative model presented in that work first generates a set of one-to-one matchings,
M , between pairs of source and target words. Then, a feature vector is generated for each matched word type, si
and tj , from a ‘language-independent concept,’ zi,j . Similar to our work, source and target words are represented by
feature vectors characterizing their orthographies and contexts in monolingual corpora. However, unlike our work,
the generative model proposed in Haghighi et al. (2008) allows neither source nor target word types to have multiple
translations. Inference is done through boostrapped EM; the best CCA parameters, ✓, are computed in the M-step, and
the maximum weighted bipartite matching is found in the E-step using the Hungarian algorithm. In the first iteration,
an initial lexicon is used to seed the E-step, and in additional EM iterations, an increasing number of high-confidence
matchings are included until a complete bipartite matching is identified. The approach is referred to as matching
canonical correlation analysis (MCCA).

In the original paper, Haghighi et al. (2008) presents results on several language pairs. However, evaluation is only
done over nouns, which is a bursty word class, and lexicons are limited to high-frequency words. As we showed in
Sections 4.3.2 and 4.3.3, frequent and bursty words tend to be the easiest to translate accurately.

Using code released by Haghighi et al. (2008), we directly compare our system with the MCCA approach. We

11Our contextual similarity feature is also dependent on having access to a bilingual dictionary for contextual vector projection. We ignore this
here in order to keep results comparable to those presented in Section 4.3.
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Model Accuracy (%)
MCCA 15.1
Discriminative Model w/ Context and Orth. Features Only 24.3
Discriminative Model w/ All Features 42.3

Table 4.13: Comparison of bilingual lexicon induction accuracies using (1) matching canonical correlation analysis
(MCCA), (2) our supervised discriminative model using only contextual and orthographic features, and (3) our super-
vised discriminative model using our complete feature set. Accuracy is measured as the percent of test set translations
that are correctly matched by each model’s full bipartite matching.

present experiments on the Spanish-English language pair, taking monolingual corpora from our Wikipedia collection
and bilingual lexicons from our MTurk dictionary. We randomly sample about 6, 000 Wikipedia page pairs, which
contain about 5 million words of text in both languages. This amount of monolingual data is comparable to what
was used in the experiments presented in Haghighi et al. (2008). We identify a bilingual dictionary of 1, 100 word
translation pairs in the MTurk dictionary for which both the source and target lexicons are unique and all words appear
in monolingual corpora greater than ten times. We randomly select 100 word pairs to serve as a seed lexicon in the
MCCA approach and as training data in our discriminative approach, and we use the remaining 1, 000 word pairs as an
evaluation set.

We use the standard learning parameters in the MCCA code released by Haghighi et al. (2008), which include ten
iterations of bootstrapped EM and a context window of size four. The MCCA model uses both orthographic features
and contextual features estimated over the Wikipedia monolingual corpora. We use MCCA to compute a full bipartite
matching and measure accuracy over the complete test set of 1, 000 translation pairs.

We use the seed lexicon of 100 word pairs to train our supervised discriminative model. As before, we randomly
select three times as many negative examples for training. We then use the learned model to score all words in the
source test lexicon paired with all words in the target test lexicon. In order to make our results comparable, we follow
Haghighi et al. (2008) and use the Hungarian algorithm (Kuhn, 1955) to find the best set of one-to-one bipartite
matchings across the source and target lexicons, maximizing the total score across all matchings. We measure the
performance of our discriminative model using, like Haghighi et al. (2008), only orthographic and contextual features.
Then, we also measure performance when we add our topic, frequency, and burstiness similarity features to the model.

Table 4.13 shows the performance of each bilingual lexicon induction model. The MCCA approach correctly
matches 15% of the 1, 000 test set pairs. Our discriminative approach using only orthographic and contextual similarity
features correctly matches 24%. When we add our full feature set, our model achieves 42% accuracy. These results
demonstrate that our discriminative model needs no more training data than is needed to seed a generative model like
the one presented in Haghighi et al. (2008). This is consistent with our results in Section 4.4.1, where we showed that
our models can achieve high accuracies on the bilingual lexicon induction task using only small amounts of supervision.

In addition to our discriminative model outperforming the MCCA generative model on the matching task, it has
the added advantage of not being restricted to predicting 1:1 word translations. This is critical as, even for closely
related language pairs, many words do not have a one-to-one correspondence across languages. One example from the
domain adaptation setting is the French word enceinte. In medical contexts, it translates as pregnant in English, but
in government contexts it translates as place, house, or chamber and in scientific contexts is translates most frequently
as enclosures. We would not want to restrict models of bilingual lexicon induction to choosing only one sense, or one
translation, for French enceinte. That is, the polysemy of words varies across languages and it is important to be able
to account for this in any model of bilingual lexicon induction.

4.7 Conclusions
On average, we observe gains of greater than 100% over an unsupervised rank-combination baseline by using a seed
bilingual dictionary and a diverse set of monolingual signals to train a supervised classifier. Using supervision for
bilingual lexicon induction makes sense. In some cases a dictionary is already assumed for computing contextual
similarity, and, in the remaining cases, one could be compiled, for example through crowdsourcing (Callison-Burch
and Dredze, 2010; Irvine and Klementiev, 2010; Pavlick et al., 2014). Our supervised framework has the additional
advantage that any new monolingually-derived similarity metrics can easily be added as new features.
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Our experiments showed that we only need a few hundred example translations to learn a high quality model of
bilingual lexicon induction. Additionally, we showed that even in the case that this small amount of supervision is
not available, we can effectively use a model trained on a different language pair to induce translations. We have
also observed that translating less frequent and less bursty words is harder than translating more frequent, more bursty
words. We found that using more monolingual data does not hurt performance, but high quality lexicons can be induced
with just a few million words of comparable corpora. These findings inform our machine translation experiments,
which follow in Chapters 6 and 8.

In Chapter 5, we expand the ideas presented in this chapter to score pairs of phrases, in addition to pairs of unigrams.
This allows us to score all phrase pairs found in a phrase-based statistical machine translation phrase table and, in
theory, induce phrasal translations in addition to unigram translations. Doing so introduces lots of new challenges
because there are many more phrases than word types and because phrase counts are sparser than word counts. These
challenges are explored in detail in Chapter 7.



Chapter 5

Monolingual Phrase Table Scoring

In this chapter, we begin with the idealization that a set of hypothesis phrase pairs is given, and we use comparable
corpora to score this existing phrase table. We define features over phrase pairs that are based on comparable corpora
and are similar to those proposed for unigrams in Chapter 4. Then, we present SMT experiments where we replace
the standard bilingually estimated feature set with new features estimated over comparable corpora. We examine the
degradation in translation performance when bilingually estimated translation probabilities are removed, and show that
more than 50% of the loss can be recovered with our proposed feature set. We further show that our monolingual
features add 1.5 BLEU points when combined with standard bilingually estimated phrase table features. Much of the
work in this chapter was published in Klementiev et al. (2012). In Klementiev et al. (2012) we also propose a novel
algorithm for estimating a lexicalized reordering model from comparable corpora. However, here and in the rest of this
thesis, we only focus on lexical choice, not reordering.

5.1 Phrase Table Scoring
Here we extend the feature set defined for words in Chapter 4 to phrases. We use the following signals of translation
equivalence for phrase pairs:

1. Web Crawls Contextual Similarity

2. Web Crawls Temporal Similarity

3. Wikipedia Contextual Similarity

4. Wikipedia Topic Similarity

5. Orthographic Similarity

For each phrase pair in our set, we measure phrasal contextual, temporal, and topic similarity and lexical contextual,
temporal, topic, and orthographic similarity.

5.1.1 Phrasal Features
We estimate phrasal features exactly as we did for word pairs. That is, we gather contextual, temporal, and topic
vectors for each source and target phrase in our set of phrase pairs using the corresponding side of our comparable
corpora. Phrasal temporal and topic vector signatures are M -dimensional, where M is the number of days or topics in
our corpus, and each element contains counts of the number of times the given phrase appeared in the data associated
with each date or topic. As we did for words, we normalize temporal and topic signatures by dividing each count by
the total count, and, again, we use cosine similarity to compare pairs of normalized vectors:

simtemp F,E
F E

F E
,

where F and E are source and target language phrase temporal or topic signatures, respectively.
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We also estimate phrasal contextual similarity. Contextual vectors are collected as before: we identify each appear-
ance of source phrase f and target phrase e in our comparable corpora and collect counts of the words that appear in
the context of each phrase. That is, although we collect contextual vectors for phrases, each component of the vectors
corresponds to how often a particular unigram appears in its context. We do not collect counts of phrases that appear
in the context of f and e because their counts are generally very sparse. As with words, we compute the value of the
k-th component of f ’s contextual vector, fk as follows:

fk nf,k log n nk 1

where nf,k and nk are the number of times sk appears in the context of f and in the entire corpus, and n is the maximum
number of occurrences of any word in the data. We project each component of the source language contextual vectors
into the English vector space and then use cosine similarity to compare contextual vectors.

Because the word order internal to a phrase may vary across its translations, phrasal orthographic similarity is
unlikely to be informative. For example, English artificial intelligence translates into Spanish as inteligencia artificial.
Although the phrase pair contains two pairs of cognates with strong orthographic similarity, because their word order
is opposite, measuring orthographic similarity on the phrase pair directly would not be effective without additional
modeling of movement.

5.1.2 Lexical Features
We compute not only phrasal features but also lexical similarity features for each phrase pair. Our lexical equivalents
of the phrase-level similarity scores are based on the similarity of individual words within the phrases. To compute
these lexical similarity features, we average similarity scores over all pairs of words in the two phrases. For example,
for the phrase pair the artificial intelligence and la inteligencia artificial, we compute the average similarity between
all nine word pairs. By averaging over all word pairs, we avoid propagating word alignment errors while also effec-
tively penalizing unaligned words. In many cases, we observed that, because individual words are more frequent than
multiword phrases, the accuracy of the lexical features is higher than their phrasal equivalents. We compute lexical
features for all of the signals enumerated above: contextual, temporal, topic, and orthographic.

5.2 Experiments with An Existing Phrase Table
We use the Spanish-English (high resource) and Urdu-English (low resource) language pairs to test our method for
estimating translation phrase table features from comparable corpora. This allows us to compare our method against
the normal bilingual training procedure. We expect bilingual training to result in higher translation quality because it is
a more direct method for learning translation probabilities. After removing bilingually estimated translation features,
our goal is to recover as much of the loss as possible using features estimated over comparable corpora.

For both language pairs we begin with phrase-based SMT models trained using the Moses framework (Koehn et al.,
2007). With the exception of maximum phrase length, which is set to 3 in our Spanish experiments, we use default
values for all of the parameters. We learn lexicalized reordering models from the parallel training corpora and use them
in all experiments.1

For Spanish, we use the full Europarl v5 parallel training corpus (Koehn, 2005). Our Spanish experiments use a
trigram language model trained on the English side of the Europarl corpus using SRILM with Kneser-Ney smoothing.
We tune feature weights (rerunning tuning for all experiments) using minimum error rate training (MERT) and a
development bitext of 2,553 sentence pairs. We use the development and test data distributed in WMT shared task
(Callison-Burch et al., 2010).2 The Spanish test set is translated newswire articles consisting of 2,525 single-reference
sentence pairs.

We use the Urdu training/development/test corpora released by Post et al. (2012) (more details on this dataset are
given in Chapter 6). Following that work, in our Urdu experiments we use a 5-gram language model trained on the
English side of the training corpus. For each Urdu experiment, we rerun tuning using batch MIRA (Cherry and Foster,
2012).

In our Spanish-English experiments, we compare the effect of estimating the parameters of our model from two
sets of comparable corpora, detailed in Table 5.1:

1In Klementiev et al. (2012), we present a method for also estimating a lexicalized reordering model from comparable corpora.
2Specifcally, news-test2008 plus news-syscomb2009 for dev and newstest2009 for test.
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Europarl Gigaword Wikipedia
date range 4/96-10/09 5/94-12/08 n/a
shared dates 829 5,249 n/a
ES articles n/a 3,727,954 59,463
EN articles n/a 4,862,876 59,463
ES lines 1,307,339 22,862,835 2,598,269
EN lines 1,307,339 67,341,030 3,630,041
ES words 28,248,930 774,813,847 39,738,084
EN words 27,335,006 1,827,065,374 61,656,646

Table 5.1: Monolingual training data statistics for Spanish-English phrase table feature replacement experiments.

Spanish-English phrase table Urdu-English phrase table
Phrase pairs 3, 093, 228 1, 529, 084
Foreign phrases 89, 386 478, 943
English phrases 926, 138 579, 944
Foreign Unigrams 13, 216 32, 198
Average # translations 98.7 7.7
Foreign Bigrams 41, 426 63, 373
Average # translations 31.9 4.3
Foreign Trigrams 34, 744 89, 867
Average # translations 13.5 3.1

Table 5.2: Statistics about the Spanish-English and Urdu-English phrase tables used in feature replacement experi-
ments. The numbers of unique unigrams, bigrams, and trigrams are given for each language along with the average
number of translations for each.
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• First, we treat the two sides of the Europarl parallel corpus as a comparable corpus, where the contextual and
temporal distributions of phrases are very similar across languages.3

• Next, we estimate the features from truly comparable, non-parallel corpora. To estimate the contextual and tem-
poral similarity features, we use the Spanish and English Gigaword corpora.4 These corpora are substantially
larger than the Europarl corpus, providing 27x as much Spanish and 67x as much English for contextual sim-
ilarity, and 6x as many paired dates for temporal similarity. Topical similarity is estimated using Spanish and
English Wikipedia articles that are paired with inter-language links.

To project context vectors from Spanish to English, we use our electronic Spanish-English bilingual dictionary (see
Table 11.2 in Appendix 11). The context vectors for words and phrases incorporate co-occurrence counts using a
two-word window on either side.

In our Urdu experiments, we only measure the effect of using truly monolingual datasets to estimate feature values.
In particular, we use the news crawl (286 million words of Urdu) and Wikipedia (3.2 million words of Urdu) datasets
that we described in Section 3.3.

Across all of our experiments, we keep our sets of phrase pairs consistent. The Spanish phrase table contains over
3 million phrase pairs extracted from the word-aligned parallel Europarl corpus, and the Urdu table contains about
1.5 million phrase pairs. We maintain the phrase pairs but drop their associated translation scores and then estimate
replacement similarity scores over comparable corpora. The set of possible translations is constrained for each source
phrase and therefore is likely to contain good translations. However, the average number of possible translations is
high, especially for Spanish where they range from nearly 100 translations for each unigram to 14 for each trigram.
For Urdu, because the training data is smaller, the average number of translations is smaller, ranging from 8 for each
unigram to 3 for each trigram. Table 5.1 gives some data statistics about the set of phrase pairs for both source
languages. The phrase tables contain a lot of noise, which results in poor end-to-end translation quality without good
estimates of the translation quality of each phrase pair, as Section 5.2.1 shows.

5.2.1 Results
5.2.1.1 Ablation Experiments

Figure 5.1 shows the results of our Spanish experiments and Figure 5.2 shows the results of our Urdu experiments. Our
standard SMT model for Spanish achieves a BLEU score of 21.87, and our standard model for Urdu achieves a BLEU
score of 20.39. When we remove phrase table features from each, the Spanish and Urdu BLEU scores drop 9 points to
to 12.86 and 8 points to 12.32, respectively.

Spanish Experiments 3-6 show how much our proposed features can help the model recover when they are estimated
over the Europarl training corpus, treating the two sides as a comparable corpus. Of the temporal, orthographic, and
contextual features, the temporal feature performs the best. Together (Experiment 6, ‘All CC’), they recover more than
each individually, yielding a total gain of 4 BLEU points.

Spanish Experiments 8-12 estimate each of the features from non-parallel comparable corpora. Remarkably, esti-
mating our new features over the non-parallel corpora (Experiment 12) performs better than estimating features over
the parallel corpus itself (Experiment 6). Using all of the features estimated over the Gigaword and Wikipedia corpora
yields a total gain of over 5 BLEU points, or about 56% of the BLEU point loss that occurred when we dropped all
of the original translation features. Much of this gain is due to the topic similarity feature, which we estimate using
Wikipedia but for which we have no equivalent Europarl feature.

For Urdu, Experiments 3-7 show how using features estimated over monolingual data can help recover some of the
loss incurred when we remove all features (Experiment 2). The context and topic features alone help more than either
the temporal or orthographic feature. Using all four new feature types, we regain about 3 BLEU points, or about 36%
of the BLEU point loss.

5.2.1.2 Combining Bilingually and Monolingually Estimated Features

Finally, we supplement the standard bilingually estimated model parameters with our monolingual features (Spanish
Experiment 13, Urdu Experiment 8). For Spanish, we see a 1.5 BLEU point increase over the standard model. Again,

3Haghighi et al. (2008) also used this method to show how well translations could be learned from monolingual corpora under ideal conditions,
where the contextual and temporal distribution of words in the two monolingual corpora are practically identical.

4We use the Agence France-Presse (afp), Associated Press Worldstream (apw), and Xinhua News Agency (xin) sections of the corpus.
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Figure 5.1: Spanish-English results replacing bilingually estimated phrase table features with monolingually estimated
features. Much of the loss in BLEU score when bilingually estimated features are removed from a Spanish-English
translation system (Experiment 2) can be recovered when they are replaced with monolingual equivalents estimated
from Europarl data (Experiments 3-6; ‘CC’ refers to features estimated over comparable corpora). The second chart
shows the performance of monolingual features derived from non-parallel comparable corpora. Over 56% of the BLEU
score loss can be recovered (Experiment 12). When we use both bilingually and monolingually estimated features
(Experiments 7 and 13), BLEU scores improve by over one point.

this result is higher than if we supplement the original model with features estimated over the parallel training corpus
(Experiment 7). This indicates that our monolingually estimated scores as well as the Gigaword and Wikipedia com-
parable corproa are able to capture some novel information not contained in the standard feature set. For Urdu, we see
a 0.6 BLEU point gain when we use monolingually estimated features in addition to the standard bilingually estimated
ones.

5.3 Phrase Table Scoring Conclusions
This chapter showed that, given a high-quality but noisy phrase table, our new set of translation features, which are
based on comparable corpora and are closely related to our bilingual lexicon induction feature set, do a good job of
distinguishing good phrase pairs from bad phrase pairs. By comparing the full monolingual experiment (‘All CC’ in
Figure 5.1) with the experiment that used the bare phrase table to translate, we can see that the monolingual scores
greatly improve that baseline model’s accuracy. Using the new features based on comparable corpora, we were able
regain over 56% of the BLEU point loss that occurred when we dropped the bilingually estimated phrase table features.

We also observed promising results supplementing a baseline SMT model with features estimated over comparable
corpora. In Chapter 6 we expand upon that idea and, beginning with a small bitext, use comparable corpora to supple-
ment a baseline SMT model. There we also drop the idealization that we begin with a high quality phrase table. Later,
in Chapter 8 we use the feature set described here to supplement SMT models in a domain adaptation setting.
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Figure 5.2: Urdu-English results replacing bilingually estimated phrase table features with monolingually estimated
features. For Urdu, over 36% of the loss in BLEU score when bilingually estimated features are removed can be
recovered when they are replaced with monolingual equivalents estimated from comparable corpora (Experiment 7).
When we use both bilingually and monolingually estimated features (Experiments 8), the BLEU score improves by
over half a point.



Chapter 6

End-to-End SMT with Zero or Small
Parallel Texts

In this chapter, we build upon the bilingual lexicon induction technique developed in Chapter 4 as well as our approach
to scoring phrase pairs using comparable corpora, which we presented in Chapter 5. Here, we consider the settings in
which we have access to (1) bilingual dictionaries but no parallel sentences for training, and (2) only a small amount
of parallel training data. In the first case, we wish to augment a baseline dictionary gloss with additional translations
and features estimated using source and target language comparable corpora. Similarly, in the second case, we wish to
augment a baseline statistical model learned over small amounts of parallel training data with additional translations
and features estimated over comparable corpora. Assuming access to a bilingual dictionary or small amount of parallel
text is realistic, especially considering the recent success of crowdsourcing translations (Ambati, 2011; Pavlick et al.,
2014; Post et al., 2012; Zaidan and Callison-Burch, 2011).

We frame the shortcomings of SMT models trained on limited amounts of parallel text1 in terms of accuracy and
coverage. Coverage refers to the word and phrase translations that a model has any knowledge of at all, and it is low
when the training text is small, which results in a high out-of-vocabulary (OOV) rate. Even for source language words
and phrases that we do observe in small training sets, many of the possible target language translations are typically
not observed. Our definition of coverage encompasses both SEEN and SENSE errors, which we introduced in Chapter
3. It can also loosely be thought of as the recall of a given SMT model, or, of all of the possible translations that exist
between a pair of languages, the number which are included in the model.

Accuracy refers to the correctness, or the precision, of the translation pairs and their corresponding probability
features that make up the translation model. Our SMT models contain both translation and reordering probabilities.
In Chapter 3, we introduced SCORE errors, and we used a TETRA analysis to measure the impact of both translation
SCORE and reordering SCORE errors in low resource settings. We found that because the quality of unsupervised
automatic word alignments correlates with the amount of available parallel text and alignment errors result in errors in
extracted translation pairs, accuracy tends to be low in low resource settings. Additionally, estimating translation and
reordering probabilities over sparse training sets results in inaccurate feature scores.

In this Chapter, we focus on SEEN errors, which impact the coverage of an SMT model, and translation SCORE
errors, which impact the accuracy of an SMT model. By inducing translations for low frequency words, we also
improve SENSE errors. We do not tackle reordering SCORE errors.

6.1 Improving Coverage
Figure 6.1 shows the percent of word tokens and word types in a development set that are OOV with respect to varying
amounts of training data for several Indian languages (datasets described in Section 6.4.12). In order to improve the
coverage of our low resource translation models, we use the supervised bilingual lexicon induction technique that we
presented in Chapter 4 to learn translations for words which appear in our test sets but not our training data (OOVs).

1We consider low resource settings to be those with parallel datasets of fewer than 1 million words. Most standard MT datasets contain tens or
hundreds of millions of words.

2Note that in this analysis, we do not use the dictionaries, only complete sentences of training data.
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Figure 6.1: Token-based and type-based OOV rates across six Indian languages. The curves are generated by randomly
sampling the training datasets described in Section 6.4.1.

Source গািণিতকভােব ফাংশন অিভেষক 0পাষাকও ফ3টেনাট 0বাঝার 

Induced 
Translations

mathematical!
equal!

ganitikovabe

function!
functions!
variables

made!
goal!

earned

shaky!
pashan!
shirts

mutant!
futbol!

futebol

vain!
newton!

boer

Correct 
Translation mathematically function inauguration dress footnote understand

Figure 6.2: Examples of OOV Bengali words, our top-3 ranked induced translations, and their correct translations.
Correct induced translations are bolded.

As before, we use a diverse set of features estimated over comparable corpora and a small set of known translations as
supervision for training a discriminative classifier, which makes predictions (translation or not a translation) on test set
words paired with all possible translations. Possible translations are taken from the set of all target words appearing in
the comparable corpora. Candidates are ranked according to their classification scores. In the settings that we explore
in this chapter, we have access to either a seed bilingual dictionary or a small parallel corpus, which makes such a
supervised approach to bilingual lexicon induction a natural choice.

We use the same feature set as in Chapter 4, which includes the temporal, contextual, topic, orthographic, and
frequency similarity between a candidate translation pair. We derive translations to serve as positive supervision from
our existing bilingual dictionaries or from automatically aligned parallel text3 and, as before, use random word pairs as
negative supervision, depending on the experimental setting. Figure 6.2 shows some examples of Bengali words, their
correct translations, and the top-3 translations that this framework induces.

In our initial experiments, we add the single highest ranked English candidate translation for each source language
OOV to our phrase tables. Adding these translations by definition improves the coverage of our MT models.

3GIZA++ intersection alignments over all training data.
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6.2 Improving Accuracy
Following the phrase table scoring methods presented in Chapter 5, we use comparable corpora to estimate additional
features over the translation pairs in our phrase tables and include those features in tuning and decoding in order to
improve the accuracy of our models. We compute both phrasal and lexical features for all of the following except or-
thographic similarity, for which we only use lexically smoothed features, resulting in nine additional features: temporal
similarity based on time-stamped web crawls, contextual similarity based on web crawls and Wikipedia (separately),
orthographic similarity using normalized edit distance, and topic similarity based on inter-lingually linked Wikipedia
pages. As before, we use time-stamped web crawl data to estimate temporal similarity, Wikipedia interlingual links to
estimate topic similarity, and both corpora to estimate contextual similarity. Our expectation is that by adding a diverse
set of similarity features to the phrase tables, our models will better distinguish between good and bad translation pairs,
improving accuracy.

6.3 Zero Parallel Data Setting
In this section, we assume that no parallel corpus of translated sentences is available for training. Instead, we build
statistical translation models using existing bilingual dictionaries, transliterations, and induced translations and trans-
late several Wikipedia pages in each of 22 languages. We chose to translate the following source language Wikipedia
pages because they are familiar topics, cover a variety of subjects, and exist in many languages: Barack Obama, Islam,
and Forest.

We generate phrase tables for each source language based on (1) bilingual dictionaries, (2) transliterations, and (3)
induced translations for OOV words. We described our bilingual dictionaries in Section 3.2.2. Our dictionaries consist
mostly of unigram translations but do include some multiword phrase pairs. As we described in Section 4.2.1.3, we
do transliteration by training character-based translation models on Wikipedia page titles. We generate the 1-best
transliteration for all non-domain script source language words. We used the data, features, and reranking methods
described in Chapter 4 to propose 10 translations for each OOV source language word. Then, we score each patchwork
phrase table using the same similarity features described above: web crawls contextual similarity, web crawls temporal
similarity, Wikipedia contextual similarity, Wikipedia topic similarity, and orthographic similarity. We compute both
phrasal and lexical translation features. Additionally, we estimate a lexicalized reordering model from our Wikipedia
comparable corpora using the algorithm that we proposed in Klementiev et al. (2012). We estimate a language model
over the entire English Wikipedia corpus except those five topical pages which we wish to translate.

Typically in statistical machine translation, in addition to using parallel corpora to estimate the parameters of an
SMT model, a small bitext is also used as a development set to tune the feature weights of the log linear model. For
many of the low resource languages that we experiment with here, such data is not readily available even in the small
quantities needed for tuning. Rather than gather tuning sets for each language, we reuse the weights that were learned
for a Bengali-English MT experiment4 that used the same set of monolingually derived features. Of course, the source
language and corpora change substantially in these new experiments, and the optimal weights are unlikely to be the
same. In the next section, 6, we make use of small amounts of bitext to seed a phrase table, tune feature weights, and
also for automatic evaluation.

Because we do not have translations for source language Wikipedia pages, we cannot evaluate translation quality
with an automatic metric like BLEU. However, because the topics are familiar, it is possible to read the output and
get a qualitative sense of the translation quality. Table 14.1 in Appendix 14 shows the first few lines of each source
language page on Barack Obama translated into English. In Section 6.4.3, we present a variety of BLEU score results
on test sets for which we do have reference translations.

Figures 6.3 and 6.4 show the first few sentences of the Hindi Wikipedia pages on Forest and Islam translated several
ways. In each figure, the Hindi source paragraph is given in (1) followed by a dictionary gloss (2) and a transliteration
gloss (3). The dictionary glosses are based on our original bilingual dictionaries (see Table 11.2 in Appendix 11). If
the dictionaries contain more than one translation of a given word, we pick one randomly. We transliterate each Hindi
word to obtain the transliteration glosses. We use the machine translation based approach to transliteration presented in
Irvine et al. (2010b) and, like that work, train models based on Wikipedia person-page titles. In both sets of translations,
the dictionary glosses are somewhat readable, but there are many OOV words. The transliterations, in contrast, are not
nearly as readable. Although the transliterations of some cognates, including hayadrologik and biosphia in the forest

4The Bengali model was chosen at random.
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translation, are understandable, most words are not. In our experiments, we have seen that the number of cognates and
named entities, which can often be accurately transliterated instead of translated, vary by subject matter. For example,
in the Hindi page on Barack Obama, there are many more ‘transliteratable’ words than the Hindi page on forests.

The ‘Dictionary + Transliterations + Monolingual Scoring’ (4) translation model uses a phrase table of dictionary
translations and transliterations (used for the two word glosses) and our approach to monolingually scoring a phrase ta-
ble described in Chapter 5, including both translation and reordering scoring. The next translation (5) is the same as the
previous but also includes top-10 translations that we induce for each Hindi word by the methods presented in Chapter
4. Translation 5 is equivalent to those presented in Section 6.3 and uses no parallel data for training. For translations
4-5, as well as 6-7, we use a 5-gram language model trained on the English gigaword corpus. Translations 4 and 5 both
have the ability to combine the strengths of our dictionary translations and our transliterations, and both are much better
translations than either gloss. Scoring the dictionary pairs and the transliterations monolingually allows our translation
model to learn how to distinguish competing translations for a given word. Introducing induced translations has a
few noticeably good effects. For example, in the first sentence of the forest translation, the transliterations uchucha,
esjangal, and podahe are used in the ‘Dictionary + Transliterations + Monolingual Scoring’ model. However, the next
translation uses the induced translations systolic, canopy, and headless instead of the transliterations. It’s unlikely that
any of these words is a completely accurate translation, but they are closer than the non-English transliterations.

Translation 6 is produced by the model trained on our small Hindi training bitext (used in Section 6.4) and the
gigaword-based English language model. The final translation (7) takes advantage of our entire bag of tricks: the
small training bitext, our bilingual dictionaries, transliterations, induced translations, and monolingual scoring. The
phrase table is populated with the top-10 induced translations, top-1 transliterations, dictionary pairs, and phrase pairs
extracted from the word aligned training text. Each phrase pair is scored monolingually and those taken from the bitext
are also scored bilingually. We use bilingually-estimated reordering scores when they are available and monolingually
estimated scores (Klementiev et al., 2012) for the remaining phrase pairs. Like the dictionary word gloss, using the
model trained on the small bitext to translate the Hindi text alone results in many OOV words. However, using the small
bitext allows us to accurately translate common words and phrase and function words, for example which is and one
of the most important. Qualitatively, we prefer the final translation for each Hindi paragraph, which takes advantage of
both bilingual and monolingual resources. This is consistent with the BLEU score results presented in Section 6.4.3.

6.4 Small Parallel Corpora Setting
In the next set of experiments, we begin with a baseline SMT model learned from a small parallel corpus and augment
the model to improve its coverage and accuracy. As before, we combine techniques that take advantage of a variety of
signals that can be estimated from comparable corpora. As in Chapter 4, we estimate a variety of signals of translation
equivalence and combine those signals in order to predict translations for OOV words. Additionally, as in Chapter 5,
we use the same comparable corpora and signals to estimate translation feature scores for new and existing translation
pairs in our SMT model. We see improvements in translation quality between 0.5 and 1.4 BLEU points translating the
following low resource languages into English: Tamil, Telugu, Bengali, Malayalam, Hindi, and Urdu.5

6.4.1 Data
Post et al. (2012) used Mechanical Turk to collect small parallel corpora for the following Indian languages and
English: Tamil, Telugu, Bengali, Malayalam, Hindi, and Urdu. They collected both parallel sentence pairs and a
dictionary of word translations.6 We use all six datasets, which provide real low resource data conditions for six truly
low resource language pairs. Table 6.1 shows statistics about the datasets.

As usual, we use both our web crawls and our Wikipedia comparable corpora for each language pair. Dataset sizes
are given in Table 11.3 in Appendix 11.

6.4.2 Experimental setup
We use the training/development/test data splits given by Post et al. (2012) and, following that work, include the
dictionaries in the training data and report results on the devtest set using case-insensitive BLEU and four references.

5We published the results presented in this section in Irvine and Callison-Burch (2013a).
6No dictionary was provided for Hindi.
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एक वन एक उ&च घन)व * साथ एक .e0 1 2ड़ -lrb- tree -rrb- एसज5गल * कई प रi भाषाए> , 1 जो की वi भि Bन मानद5डo पर आधा रi त J.यह पोदाM लगभग 
९.४ % पPQवी की सतह को घeर R 1 -lrb- या 30 % -rrb- जो की आवासo -lrb- habitat -rrb- STUोलो गi क Vवाह -lrb- hydrologic flow -rrb- मोWलातो Xस 
-lrb- modulator -rrb- , और मि Zी -lrb- soil -rrb- बचाव , एक पPQवी * बीओ ]फि अ का सव` धi क मह)वपa Xण पहलuआe * गठन.का Vवास करR 1 इ तi हास 
बताता 1 , की " वन " एक बीहड़ .e0 जि सका मतलब कानaनी तौर पर बाजa * लि ए नi ध` रi त शि कार -lrb- hunting -rrb- * iारा साम5ती -lrb- feudal -rrb- 
कuलीनता -lrb- nobility -rrb- 1 , और इन शि कार ज5गलo जkरी lयादा अगर m सभी -lrb- no5 ज5गली नहp q रॉयल वन -lrb- royal forest -rrb- -

rrb- .हालs कi  , शि कार * ज5गलo अtसर वuडलuड * मह)वपa Xण .e0o को शा मि ल कi या जब कi  , शvद वन अ5ततः ज5गली भa मि  अ धi क सामाBयतः मतलब करx 
* लि ए आया था.एक वuडलuड -lrb- woodland -rrb- जो की एक ज5गल y भि Bन 1 .

Original Text (1)

one forest one उ&च density its साथ one field is wood ( tree ) एसज5गल its lots definitions , is which of various मानद5डo on based J.यह 
पोदाM total ९.४ % the earth of surface को surround R is ( either 30 % ) those of आवासo ( habitat ) STUोलो गi क Vवाह ( hydrologic flow ) 
मोWलातो Xस ( modulator ) , and soil ( soil ) safeguard , one the earth its बीओ ]फि अ का rules important sides of गठन.का foreign do is 

history telling is , of " forest " one बीहड़ field whose means कानaनी for on बाजa of for nidhirit शि कार ( hunting ) its iारा साम5ती ( feudal ) 
कuलीनता ( nobility ) is , and these शि कार in jungles compulsory more if me all ( see wild no was royal forest ( royal forest ) ) .हालs कi  , 
शि कार its in jungles usual वuडलuड its importance areas को शा मि ल did while , शvद forest at the end wild land more generally means do 

of for was था.एक वuडलuड ( woodland ) which of one ज5गल from different is . 

Dictionary Word Glosses (2)

ak vn ak uchcha ghantwa ke sath ak ksatra ha ped ( tree ) esjangal ke ki pribhashaën , ha jo ki vibhinn mandndon pr adharit 
han.yh podahe lgbhag . % prithvi ki sath ko gher te ha ( ya 30 % ) jo ki avason ( habitat ) hayadrologik prawah ( hydrologic flow ) 
modulators ( modulator ) , mitti ( soil ) bchaw , ak prithvi ke biosphia ka sarveadhik mahatwpurn phluon ke gthn.ka prawas krate 

ha dharampal battata ha , ki " vn " ak bihd ksatra jiska mtalb kanuni taur pr baju ke lier nirdharit shikar ( hunting ) ke dwara 
samanti ( feudal ) kulenta ( nobility ) ha , in shikar junglon jruri jayada agar man sbhi ( dekhen jungali nhin the royle vn ( royal 
forest ) ) .hallanki , shikar ke junglon aksr woodland ke mahatwpurn ksatron ko shamill kiya jbki , shbd vn antt: jungali bhumi 

adhik samanyat: mtalb karne ke lier aya tho.aq woodland ( woodland ) jo ki ak jangal se bhinn ha .

Transliteration Gloss (3)

one forest one uchcha density of sath one field is tree ( tree ) esjangal of many definitions , is which of various mandndon on 
based han.yh podahe nearly . % of the earth surface ko surround te is ( or 30 % of which ) avason ( habitat ) hayadrologik 

prawah ( hydrologic flow ) modulators ( modulator ) , and soil ( soil ) safeguard , one of the earth biosphia ka more important 
sides of gthn.ka foreign to do is history telling is , of " forest " one bihd field whose means kanuni for on its baju for nidhirit shikar 
( hunting ) of dwara samanti ( feudal ) kulenta ( nobility ) is , and these shikar forests necessary more if among all ( see no wild 

was royal forest ( royal forest ) ) .hallanki , shikar of forests often woodland of important areas ko shamill did while , shbd forest at 
the end wild land more generally means do its for was tho.aq woodland ( woodland ) which of one jangal from different is .

Dictionary + Transliterations + Monolingual Scoring (4)

one forest one systolic density of which one field is tree ( tree ) canopy of many definitions , is which of various crm on based 
han.yh nearly headless . % of the earth surface ko surround te is ( or 30 % ) which of keyhole ( organisms ) canopy irr ( telecom 

low ) modulators ( coniferous ) , and soil ( erosion ) safeguard , one the earth of app ka more important sides of gthn.ka foreign to 
do is history telling is , of " forest " one maestra field whose means responsibility for on pulleys of for nidhirit mane ( africana ) of 
dhara necker ( electors ) émigrés ( forest ) is , and these lions forests more necessary if among all ( see no wild the royal forest 

( royal society ) ) .hallanki , mane of forests often evergreen of important areas ko they did while , quirk forest at the end wild land 
more generally means do its for was tho.aq evergreen ( forests ) which of one forest from different is .

Dictionary + Transliterations + Induced + Monolingual Scoring (5)

a forest with a high density is one area of the tree ( एसज5गल ) many definitions of the tree , which is full of various मानद5डo पोदाM 
based on almost ९.४ % to the surface of the earth is ' घeर ) ( or 30 % of the habitat , which produced ( flow ) ) ( flow STUोलो गi क 

( hydrologic ) मोWलातो Xस ( modulator ) soil , and the will of the earth , one of the most important scripts बीओ ]फि अ गठन.का . history 
tells everybody , " " the " " forest , which a बीहड़ area on legal means for बाजa ( hunting victim decided by the feudal ) कuलीनता 

( ( साम5ती ) ) nobility , and these victim is more important ज5गलo ( , forests , see if all in were not royal forest .हालs कi  ( ) ) royal forest 
of the victim , often वuडलuड ज5गलo included to the important areas , while in the forest , word means more generally , forest land for 

वuडलuड came to woodland ( ) था.एक , which is different from the one from .

Small Bitext Translation (6)

a high density of a forest area is with a tree ( tree ) canopy of definitions , which is one of the many different crm based on this 
canopy almost . % of the earth 's surface to surround ' is ( or 30 % ) which houses , ( elephants ) canopy flow ( hydrologic low ) 
canopy ( canopy ) , and the soil ( erosion ) saved , one of the most important earth 's monoculture gthn.ka journey of scripts . " " 

he tells the history , " " a forest area maestra , whose legal means for the pulley on decided victim ( elephants ) by tong 
( electors ) danton ( forest ) , and more important forests victim if these all in ( see was not , wild royal forest ( royal 

forest ) ) .hallanki , victim of the evergreen often forests of important areas , while . finally , wild forest land , the word means 
more commonly used to refer to came tho.aq evergreen ( forests ) , which is different from the one from .

Small Bitext Trans + Dict + Translit + Induced + Mono Scoring (7)

Figure 6.3: First paragraph of Hindi Wikipedia page on Forest, and a progression of translations of it.
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इ"लाम ध 'म -lrb- ملاسلإا  -rrb- ईसाई ध 'म * बाद अनuयाइयo * आधार पर 5 नi या का 8सरा सब 9 बड़ा ध 'म ; । इ"लाम श>द अरबी भाषा का श>द ; जि सका मDल श>द सEलमा ; जि स की दो 
प रi भाषाएH I -lrb- १ -rrb- अमन और शL तi  -lrb- २ -rrb- आOमसम 'पण ।

ई"लाम ए*Qरवाद को मानता ; । इस* अनuया यi यo का Sमuख वi Qास ; कi  ईQर सi Uफ़ एक ; और पDरी सW Xि  Y सi Uफ़ वह ही म हi मा -lrb- इबादत -rrb- * लायक ; , और सW Xि  Y हर चीज़ , ज़i दा 
और ^जान , दW_य और अदW_य उसकी इaछा * सामc आOमसम पi त और शLत ; । इ"लाम ध 'म की प वi e पu"तक का नाम क़uरआन ; जि सका हi दी Y मतलब स"वर पाठ ; । इस* अनuया यi यo को 
अरबी Y मu "लि म कहा जाता ; , जि सका बjवचन मuसलमान होता ; । मuसलमान यह वi Qास रखk ; कi  क़uरआन जि lाईल -lrb- ईसाईयत Y gabriel -rrb- नामक एक फ़ रi _k * mारा , मuहnमद 
साहब को ७वp सदी * अरब Y , लगभग २३ साल Y याद-कsठस् ‍ थ कराया गया था । मuसलमान इ"लाम को कोई नया ध 'म नहp मानk । उन* अनuसार ईQर c मuहnमद साहब 9 पहw भी धरती पर 
कई 8त xy I , जि नY इlाहीम , मDसा और ईसा शा मि ल I । मuसलमानo * अनuसार मDसा और ईसा * कई उपzशo को लोगo c वi क{त कर दi या । अ धi कतम मuसलमानo * लि | मuहnमद साहब ईQर 

* अ }ति म 8त ~ और क़uरआन मनu�य जा तi  * लि | अ }ति म सHzश ; ।

Original Text (1)

islam religion ( ملاسلإا  ) christian religion of after अनuयाइयo its foundation / support on world का another all from huge religion is । islam श>द arabic 
language का श>द is whose worth श>द सEलमा is from which of दो प रi भाषाएH are ( 1 ) अमन and peace ( २ ) dedicated । 

ई"लाम ए*Qरवाद को believe is । for this followers का major वi Qास is that god सi Uफ़ one is and complete universe me सi Uफ़ that only म हi मा ( worship ) its 
लायक is , and universe me every thing , ज़i दा and ^जान , view and invisible his desire its front आOमसम पi त and quiet is । islam religion of holy book का 
name kuran -holy book of islam is whose hindi me means स"वर lesson is । for this followers को arabic me मu "लि म कहा go is , whose बjवचन muslim 
happens is । muslim यह वi Qास रखk is that koran जि lाईल ( ईसाईयत among gabriel ) नामक one फ़ रi _k of mारा , mohammad saheb को ७वp century its 

arab me , total 23 year me याद-कsठस् ‍ tha कराया went था । muslim islam को कोई नया religion no know as । his अनuसार god c mohammad saheb from 
before also earth on lots embassdor sent are , in which इlाहीम , musa and ईसा शा मि ल is । muslims its अनuसार musa and ईसा of many lectures को 

people c वi क{त do gave । maximum muslims its for mohammad saheb god of अ }ति म embassdor was and koran मनu�य race of for अ }ति म message is । 

Dictionary Word Glosses (2)

islam dharam ( ملاسلإا  ) isai dharam ke bad anuyaiyon ke adhar pr dunia ka dusara sb se bdha dharam ha . islam shbd arbi bhasha ka shbd ha 
jiska moole shbd sallama ha gis ki do pribhashaën han ( i ) aman shanti ( ii ) atamsamarpn .

islam akeshwarvad ko manta ha . iske anuyayion ka pramukh viswaas ha ki ishwar sierf ak ha puri s.ti man sierf vh hi mahima ( ibadt ) ke laik ha , 
s.ti man har chez , zinda began , drishy adrishy usky iachha ke samane atamsamarpit shant ha . islam dharam ki pavitra pustek ka nam quran ha 
jiska hindi man mtalb sswar path ha . iske anuyayion ko arbi man muslim kha jata ha , jiska bahuvchn musalman hota ha . musalman yh viswaas 

rkhte ha ki quran gibrail ( isaiyat man gabriel ) namk ak frishte ke dwara , muhammad sahb ko viiwin sdi ke arb man , lgbhag ii sal man yad-
kanthus ‍ th karaya ghiya tha . musalman islam ko koi nya dharam nhin manate . unce anussaur ishwar ne muhammad sahb se phle bhi dhrati pr 

ki dut bhage han , jinman ibrahim , musa isa shamill han . musalmanon ke anussaur musa isa ke ki upadeshon ko logon ne vicrit kar dia . 
adhictam musalmanon ke lier muhammad sahb ishwar ke anthim dut the quran manushy jati ke lier anthim sandesh ha .

Transliteration Gloss (3)

islam religion ( ملاسلإا  ) christian religion of after anuyaiyon its basis on world ka second all from big religion is . islam shbd arabic language ka 
shbd is whose original shbd sallama is from which of do pribhashaën is ( 1 ) aman and peace ( ii ) dedicated .

islam akeshwarvad ko believe is . its followers ka major viswaas is that god sierf one is and complete universe among sierf that only mahima 
( worship ) of laik is , and universe among each and every thing zinda , and began , view and invisible his desire of front atamsamarpit and quiet 

is . islam religion of holy book ka name quran is whose hindi among means sswar path is . its followers ko arabic among muslim kha go is , whose 
bahuvchn muslim happens is . muslim yh viswaas rkhte is that koran gibrail ( isaiyat among gabriel ) namk one frishte of dwara , muhammad 
saheb ko viiwin century of arab man , nearly 23 year among yad-kanthus ‍ tha karaya made tha . muslim islam ko koi nya no religion feel . his 

anussaur god ne muhammad saheb from before also earth on many dut is sent , in which ibrahim , musa and isa shamill is . muslims of anussaur 
musa and isa of many lectures ko people ne vicrit do give . maximum muslims of for muhammad saheb god of anthim dut and the koran manushy 

race for its anthim message is .

Dictionary + Transliterations + Monolingual Scoring (4)

islam religion ( alevi ) christian religion of after adulation of basis on world ka second all from big religion is . islam quirk arabic language ka quirk 
is whose original quirk isis is from which of do rima is ( 1 ) aman and peace ( ii ) dedicated . 

islam anic ko believe is . its followers ka major undead is that god sirf one is and complete universe among sirf that only pardes ( worship ) of 
below is , and universe among each and every thing , sexiest and began , view and invisible his desire of front ndf and quiet is . islam religion of 
holy book ka name koran is whose hindi among means guttural path is . its followers ko arabic among muslim who go is , whose verbs muslim 
happens is . muslim yh undead there is that quran reciters ( crucifixion among pen ) took one of frisbee dhara , muhammad saheb ko nagari 

century of arab man , nearly 23 year among yad-kanthus ‍ tha online made tha . muslim islam ko but this no religion feel . his like god ne 
muhammad saheb from before also earth on many dut is sent , in which suras , genesis and middle there is . muslims of being genesis and 

middle of many lectures ko people ne folklore do had . maximum muslims of for muhammad saheb god of shunga dut and the koran manus race 
of for shunga message is .

Dictionary + Transliterations + Induced + Monolingual Scoring (5)

islam religion ( ) ملاسلإا  after the christian religion on the basis of followers to the world 's second largest religion . islam is the word of the arabic 
language is the word , which is the word salma of which are two means अमन ( 1 ) ( 2 ) submission and peace . 

ई"लाम believes in monotheism . its followers believe that god is the only one in the whole universe , and only the glory of the ( लायक , ) , and all 
the things in the creation and ^जान चीज़ , ज़i दा , god , are at his will and quiet . islam 's holy book is the name of the quran , which means recitation 
in hindi . its followers are called muslims in arabic , is the plural of muslims . muslims believe that quran in christianity ) gabriel ( gabriel , by the 

faristha named to prophet muhammad in the 7th century in arabia , almost 23 years in the verses of the याद-कsठस् was made to islam . muslims do 
not believe that there is no new religion . according to him , before the prophet muhammad , god has also sent many messengers on earth , in 

which includes , musa and isa are included . according to the muslims , musa and isa many people pervert . for the majority of muslims 
mohammed saheb was the last prophet of god and quran for the human race is the last message .

Small Bitext Translation (6)

islam , christianity ) alevi ( religion after the followers on the basis of the world is the second largest religion islam . word of the arabic language 
from which means is are ( 1 ) aman and peace ( 2 ) surrender . 

islam monotheism . this is to the head of the followers believe that there is only one god , and only in the whole world , he is the lack of ) worship 
( , and in every thing , sexiest creation and imran , god , in front of the wish and are peaceful . islam 's holy book is the name of the quran 

recitation in hindi , which means its adherents . muslims in arabic , it is said , whose big muslim . muslims believe that quran gabriel ( christianity 
in gabriel ) named a frisbee by the , to the prophet muhammad in the 7th century , the arab almost 23 years in the verses of the yad-kanthus . 
muslims , islam is a new religion . do not believe according to mohammed before god has also sent envoy on earth , in which there are many 
including , musa bc . muslims are included , and according to the teachings of musa bc , and many people to deform . many muslims for the 

messenger of god 's prophet muhammad was the last of the quran and the last message for mankind .

Small Bitext Trans + Dict + Translit + Induced + Mono Scoring (7)

Figure 6.4: First paragraph of Hindi Wikipedia page on Islam, and a progression of translations of it.
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Language Words of Training Data Dev Types Dev Tokens
Sentences Dictionary % OOV % OOV

Tamil 334, 714 77, 240 44 25

Telugu 414, 094 40, 742 39 21

Bengali 239, 555 6, 783 37 18

Malayalam 263, 086 151, 194 6 3

Hindi 658, 977 0 34 11

Urdu 615, 635 116, 496 23 6

Table 6.1: Information about datasets released by Post et al. (2012): words in the source language parallel sentences
and dictionaries, and percent of development set word types and tokens that are OOV (do not appear in either section
of the training data).

Language Top-1 Acc. Top-10 Acc.
Tamil 4.5 10.2
Telugu 32.8 47.9
Bengali 17.9 29.8
Malayalam 12.9 23.0
Hindi 44.3 57.6
Urdu 16.1 33.8

Table 6.2: Percent of word types in a held out portion of the training data which are translated correctly by our bilingual
lexicon induction technique. Evaluation is over the top-1 and top-10 outputs in the ranked lists for each source word.

We use the Moses phrase-based MT framework (Koehn et al., 2007). For each language, we extract a phrase table with
a phrase limit of seven. In order to make our results comparable to those presented in Post et al. (2012), we follow
that work and use the English side of the training data to train a language model. Using a language model trained on
a larger corpus (e.g. the English side of our comparable corpora) may yield better results, but such an improvement
is orthogonal to the focus of this work. Throughout our experiments, we use the batch version of MIRA (Cherry and
Foster, 2012) for tuning the feature set.7 We rerun tuning for all experimental conditions and report results averaged
over three tuning runs (Clark et al., 2011).

Our baseline uses the bilingually extracted phrase pairs and standard translation probability features. We augment
it with the single top ranked translation for each OOV to improve coverage (+ OOV Trans) and with additional features
to improve accuracy (+Features). We make each modification separately and then together. Then we present additional
experiments where we induce translations for low frequency words, in addition to OOVs (6.4.3.3), append top-k trans-
lations (6.4.3.4), vary the amount of training data used to induce the baseline model (6.4.3.5), and vary the amount of
comparable corpora used to estimate features and induce translations (6.4.3.6).

6.4.3 Results

6.4.3.1 Bilingual Lexicon Induction

Before presenting end-to-end MT results, we examine the performance of the supervised bilingual lexicon induction
technique that we use for translating OOVs. In Table 6.2, top-1 accuracy is the percent of source language words in a
held out portion of the training data 8 for which the highest ranked English candidate is a correct translation. Post et al.
(2012) gathered up to six translations for each source word, so some have multiple correct translations. Performance
is lowest for Tamil and highest for Hindi. For all languages, top-10 accuracy is much higher than the top-1 accuracy.
In Section 6.4.3.4, we explore appending the top-k translations for OOV words to our model instead of just the top-1.

7We experimented with MERT and PRO as well but saw consistently better baseline performance using batch MIRA.
8We retrain with all training data for MT experiments.
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Tamil Telugu Bengali Malayalam Hindi Urdu
Experiment BLEU Diff. BLEU Diff. BLEU Diff. BLEU Diff. BLEU Diff. BLEU Diff.
Baseline 9.45 11.72 12.07 13.55 15.01 20.39
+Features 9.77 +0.32 11.96 +0.24 12.25 +0.18 14.15 +0.60 15.34 +0.33 20.97 +0.58
+OOV Trans. 9.45 0.00 12.20 +0.48 12.74 +0.67 13.65 +0.10 15.59 +0.58 21.30 +0.91
+Feats & OOV 9.98 +0.53 12.25 +0.53 12.55 +0.48 14.18 +0.63 16.08 +1.07 21.78 +1.39
OOV Oracle 12.32 +2.87 16.04 +4.32 16.41 +4.34 13.55 0.00 17.72 +2.71 22.80 2.41
Hiero 9.81 12.46 12.72 13.72 15.53 19.53
SAMT 9.85 12.61 13.53 14.28 17.29 20.99

Table 6.3: BLEU performance gains that target coverage (+OOV Trans.) and accuracy (+Features), and both (+Feats
& OOV). OOV oracle uses OOV translations from automatic word alignments. Hiero and SAMT results are reported
in Post et al. (2012).

6.4.3.2 Improving Coverage and Accuracy in End-to-End SMT

Table 6.3 shows our results adding OOV translations, adding features, and then both. Additional translation features
alone, which improve our models’ accuracy, increase BLEU scores between 0.18 (Bengali) and 0.60 (Malayalam)
points.

Adding OOV translations makes a big difference for some languages, such as Bengali and Urdu, and almost no
difference for others, like Malayalam and Tamil. The OOV rate (Table 6.1) is low in the Malayalam dataset and high
in the Tamil dataset. However, as Table 6.2 shows, the translation induction accuracy is low for both. Since few of
the supplemental translations are correct, we don’t observe BLEU gains. In contrast, induction accuracies for the other
languages are higher, OOV rates are substantial, and we do observe moderate BLEU improvements by supplementing
phrase tables with OOV translations.

In order to compute the potential BLEU gains that we could realize by correctly translating all OOV words (achiev-
ing 100% accuracy in Table 6.2), we perform an oracle experiment. We use automatic word alignments over the test
sets to identify correct translations and append those to the phrase tables.9 The results, in Table 6.3, show possible
gains between 4.3 (Telugu and Bengali) and 0 (Malayalam) BLEU points above the baseline. Not surprisingly, the
possible gain for Malayalam, which has a very low OOV rate, is very low. Our +OOV Trans. model gains between 0%
(Tamil) and 38% (Urdu) of the potential improvement.

Using comparable corpora to improve both accuracy (+Features) and coverage (+OOV Trans.) results in transla-
tions that are better than applying either technique alone for five of the six languages. BLEU gains range from 0.48
(Bengali) to 1.39 (Urdu). We attribute the particularly good Urdu performance to the relatively large comparable cor-
pora (Table 11.3). In Section 6.4.3.6, we present results varying the amount of Urdu-English comparable corpora used
to induce translations and estimate additional features.

Table 6.3 also shows the Hiero (Chiang, 2005) and SAMT (Zollmann and Venugopal, 2006) results that Post
et al. (2012) report for the same datasets. Both syntax-based models outperform the phrase-based MT baseline for
each language except Urdu, where the phrase-based model outperforms Hiero. Here, we extend a phrase-based rather
than a syntax-based system because it is simpler. However, we expect that our improvements will also apply to
syntactic models. Because our efforts have focused on the accuracy and coverage of translation pairs and have not
addressed reordering or syntax, we expect that combining them with an SAMT grammar will result in state-of-the art
performance.

6.4.3.3 Translations of Low Frequency Words

Given the positive results in Section 6.4.3.2, we hypothesize that mining translations for low frequency words, in
addition to OOV words, may improve accuracy. For source words which only appear a few times in the parallel training
text, the bilingually extracted translations in the standard phrase table are likely to be inaccurate and incomplete.
Augmenting a model with additional translations for low frequency words may fix some previously SENSE errors, in
which a source word was observed in training but not with its correct translation. Therefore, we perform additional
experiments varying the minimum source word training data frequency for which we induce additional translations.
That is, if freq wsrc M , we induce a new translation for it and include that translation in our phrase table.

9Because the automatic word alignments are noisy, this oracle is conservative.
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Language Baseline M : trans added for freq wsrc M
0 1 5 10 25 50

Tamil 9.5 10.0 9.9 10.2 10.2 9.9 10.2
Telugu 11.7 12.3 12.2 12.3 12.4 12.3 11.9
Bengali 12.1 12.6 12.8 13.0 12.9 13.1 13.0
Malayalam 13.6 14.2 14.1 14.2 14.2 13.9 13.9
Hindi 15.0 16.1 16.1 16.2 16.2 16.0 15.8
Urdu 20.4 21.8 21.8 21.8 21.9 22.1 21.8

Table 6.4: Varying minimum parallel training data frequency of source words for which new translations are induced
and included in the phrase-based model. In all cases, the top-1 induced translation is added to the phrase table and
features estimated over comparable corpora are included (i.e. +Feats & Trans model).

Note that in the results presented in Table 6.3, M 0. In these experiments, we include our additional phrase table
features estimated over comparable corpora and hope that these scores will assist the model in choosing among multiple
translation options for low frequency words, one or more of which is extracted bilingually and one of which is induced
using comparable corpora. Table 6.4 shows the results when we vary M . As before, we average BLEU scores over
three tuning runs.

In general, modest BLEU score gains are made as we augment our phrase-based models with induced translations
of low frequency words. The highest performance is achieved when M is between 5 and 50, depending on language.
The largest gains are 0.5 and 0.3 BLEU points for Bengali and Urdu, respectively, at M 25. This is not surprising;
we also saw the largest relative gains for those two languages when we added OOV translations to our baseline model.
With the addition of low frequency translations, our highest performing Urdu model achieves a BLEU score that is 1.7
points higher than the baseline.

In different data conditions, inducing translations for low frequency words may result in better or worse perfor-
mance. For example, the size of the training set impacts the quality of automatic word alignments, which in turn
impacts the reliability of translations of low frequency words. However, the experiments detailed here suggest that
including induced translations of low frequency words will not hurt performance and may improve it.

6.4.3.4 Appending Top-K Translations

So far we have only added the top-1 induced translation for OOV and low frequency source words to our phrase-based
model. However, the bilingual lexicon induction results in Table 6.2 show that accuracies in the top-10 ranked trans-
lations are, on average, nearly twice the top-1 accuracies. Here, we explore adding the top-k induced translations.
We hope that our additional phrase table features estimated over comparable corpora will enable the decoder to cor-
rectly choose between the k translation options. We induce translations for OOV words only (M 0) and include all
comparable corpora features.

Table 6.5 shows performance as we append the top-k ranked translations for each OOV word and vary k. With the
exception of Bengali, using a k greater than 1 does not increase performance. In the case of Bengali, and additional 0.2
BLEU is observed when the top-25 translations are appended. In contrast, we see performance decrease substantially
for other languages (0.7 BLEU for Telugu and 0.2 for Urdu) when the top-25 translations are used. Therefore, we
conclude that, in general, the models do not sufficiently distinguish good from bad translations when we append more
than just the top-1. Although using a k greater than 1 means that more correct translations are in the phrase table, it
also increases the number of possible outputs over which the decoder must search.

6.4.3.5 Learning Curves over Parallel Data

In the experiments above, we only evaluated our methods for improving the accuracy and coverage of models trained
on small amounts of bitext using the full parallel training corpora released by Post et al. (2012). Here, we apply the
same techniques but vary the amount of parallel data in order to generate learning curves. Figure 6.5 shows learning
cures for all six languages. In all cases, results are averaged over three tuning runs. We sample both parallel sentences
and dictionary entries.
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Language Baseline k: top-k translations added
1 3 5 10 25

Tamil 9.5 10.0 10.0 9.8 10.0 10.0
Telugu 11.7 12.3 11.7 11.9 11.7 11.6
Bengali 12.1 12.6 12.6 12.6 12.7 12.8
Malayalam 13.6 14.2 14.2 14.2 14.2 14.1
Hindi 15.0 16.1 16.0 15.9 15.9 15.9
Urdu 20.4 21.8 21.8 21.7 21.5 21.6

Table 6.5: Adding top-k induced translations for source language OOV words, varying k. Features estimated over com-
parable corpora are included (i.e. +Feats & Trans model). The highest BLEU score for each language is highlighted.
In many cases differences are less than 0.1 BLEU.

All six learning curves show similar trends. In all experimental conditions, BLEU performance increases approx-
imately linearly with the log of the amount of training data. Additionally, supplementing the baseline with OOV
translations improves performance more than supplementing the baseline with additional phrase table scores based on
comparable corpora. However, in most cases, supplementing the baseline with both translations and features improves
performance more than either alone. Performance gains are greatest when very little training data is used. The Urdu
learning curve shows the most gains as well as the cleanest trends across training data amounts. As before, we attribute
this to the relatively large comparable corpora available for Urdu.

6.4.3.6 Learning Curves over Comparable Corpora

In our final experiment, we consider the effect of the amount of comparable corpora that we use to estimate features
and induce translations. We present learning curves for Urdu-English because we have the largest amount of compa-
rable corpora for that pair. We use the full amount of parallel data to train a baseline model, and then we randomly
sample varying amounts of our Urdu-English comparable corpora. Sampling is done separately for the web crawl and
Wikipedia comparable corpora. Figure 6.6 shows the results. As before, results are averaged over three tuning runs.

The phrase table features estimated over comparable corpora improve end-to-end MT performance more with
increasing amounts of comparable corpora. In contrast, the amount of comparable corpora used to induce OOV trans-
lations does not impact the performance of the resulting MT system as much. The difference may be due to the fact
that data sparsity is always more of an issue when estimating features over phrase pairs than when estimating features
over word pairs because phrases appear less frequently than words in monolingual corpora. Our comparable corpora
features are estimated over phrase pairs while translations are only induced for OOV words, not phrases. So, it makes
sense that the former would benefit more from larger comparable corpora.

6.4.4 Post-Augmentation WADE Analysis
Earlier in the thesis, in Section 3.4.2, we presented a WADE analysis showing the relative frequency of SEEN, SENSE,
and SCORE errors made by models trained on small amounts of bitext. In Section 6.4.3.2, we showed improvements in
translation quality as measured by BLEU when we applied our methods for using comparable corpora to improve SEEN
and SCORE errors. Here, we analyze our augmented models using WADE in order to better understand the effects of
our comparable corpora-based modifications. We begin by presenting a version of WADE that uses multiple reference
translations (Section 6.4.4.1) and then present the results of the analysis (Section 6.4.4.2).

6.4.4.1 WADE with Multiple References

Recall that the basic unit of analysis for WADE is an alignment link. With WADE, we word align (either manually
or automatically) each source language test set sentence with its target language reference translation. Then, we
compare the set of word alignments between a given source language test sentence and its machine translation with the
reference links. Alternative machine translations are compared with respect to how many of the reference links they
cover. Figure 6.7 shows an example. It is easy to compare the first sentence to the second using WADE because they
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Figure 6.5: Comparison of learning curves over lines of parallel training data for four SMT systems: our baseline
phrase-based model (baseline), model that supplements the baseline with translations of OOV words induced using
our supervised bilingual lexicon induction framework (+Trans), model that supplements the baseline with additional
phrase table features estimated over comparable corpora (+Feats), and a system that supplements the baseline with
both OOV translations and additional features (+Trans & Feats).
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Figure 6.6: Urdu to English translation results using varying amounts of comparable corpora to estimate features and
induce translations.
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Figure 6.7: Example using WADE to compare two machine translations. Moving from the first machine translation to
the second, one sense error is corrected, one score error is corrected, and one seen error becomes a sense error.

are each evaluated over the same set of four reference links. In the example, two errors in the first machine translation
are corrected in the second, and another shifts from a SEEN error to a SENSE error.

In contrast to WADE, the basic unit of analysis in the BLEU metric is each ngram in the target language machine
translation output. Generalizing the BLEU metric from one reference to many involves allowing each ngram in the
output to match an ngram in any of the available reference translations. For example, if we had a second reference
translation for the example given in Figure 6.7 that read it is handsome, then the second machine translation, he is
very handsome, would achieve a perfect unigram precision even though neither reference contains all of the same word
tokens.10 The BLEU metric is intentionally simple, allowing for flexibility in the number of reference translations
(Papineni et al., 2002).

Because WADE’s unit of analysis involves the reference translation itself, it is more difficult to generalize it to

10The lack of higher order ngram matches would prevent the output from receiving a perfect BLEU score.
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Figure 6.8: Example of the complications involved in using WADE to compare two machine translations using two ref-
erence translations. Identifying corresponding alignment links, comparing error categories, and dealing with incorrect
automatic alignments are all challenges in doing a WADE analysis using multiple reference translations.

multiple references than it is to generalize BLEU. That is, BLEU measures the following: is the output similar to the
set of reference translations? In contrast, WADE measures is the reference translation included in the output and, if
not, why? BLEU measures precision over the machine translation output; WADE measures recall over the reference
translations (and, specifically, over reference alignments, allowing for detailed error annotation). Generalization is
further complicated by the fact that, in practice, we often use automatic word alignments and do no enforce consistency
across partially overlapping reference translations.

Consider Figure 6.8. In comparison with Figure 6.7, we now have a second reference translation, he is pretty, and
the goal is now to combine the analysis using the first (top) reference and the second (bottom) reference translation,
with the ultimate goal of comparing the first (left) machine translation output with the second (right). In some cases, it
is clear which reference alignment links correspond and how to combine them. For example, in the first reference lindo
is aligned with cute and in the second reference lindo is aligned with pretty. The first MT model does not include a
translation of lindo, so both reference alignments are marked as SEEN errors. It is clear that in any model of integrating
the two reference translations to produce a single analysis, the first MT model should be credited with having made a
SEEN error due to the OOV word lindo. The second MT model makes a SENSE error with respect to the first reference
translation because it had not seen lindo translate as cute. However, it makes a SCORE error with respect to the second
reference because, although the reference translation pretty was available in the model, it instead preferred handsome.
In this case, it is less obvious which error type we should credit to the translation model. However, we argue that
SCORE errors are lower on the error hierarchy than SENSE errors because the latter could change to the former as
models are augmented but the opposite would never happen unless translations are removed from the model. Utilizing
such an error hierarchy is reasonable in our experimental settings, where our comparison systems are always supersets
of the baselines; translation pairs and scores are never removed from baseline models. We acknowledge that such an
approach may not be appropriate in all settings, however.
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Next, consider the first word in the test sentence, él, which is aligned with he in the first reference and with he is
in the second. The first output makes one SENSE error with respect to the first reference and two SENSE errors with
respect to the second. In combining references, it is not clear whether the output should be marked as having made one
or two sense errors. This example illustrates how alignment errors make the analysis difficult to do accurately.

Our approach to doing WADE analyses with multiple references slightly redefines the unit of analysis. Instead of
using test-reference alignment links initially, we first consider each word in the source language input. For each word
in a given test sentence, we identify the reference for which the set of WADE-annotated links out of the test word are
‘best.’ As mentioned, we use a hierarchy of error types to define those that are more egregious than others (i.e. SEEN
errors are worse than SENSE errors, SENSE errors are worse than SCORE errors). Consider the first MT output in the
example in Figure 6.8. The best set of annotated alignments from the first test set word, él, are taken from the first
reference (a single SENSE error). The WADE-annotated alignments from the second word, es, are identical under both
references (a single correct link). The third word, muy, is more accurately translated under the second reference (zero
links in comparison with a SCORE error) and, finally, the alignment from the fourth word, lindo, is a SEEN error under
both references.

This approach requires us to rigorously define how to compare two sets of annotated alignments. We employ the
following strategy:

1. SEEN errors are assigned 4 points, SENSE errors are assigned 3 points, SCORE errors are assigned 2 points, and
a correct alignment is assigned 0 points.

2. For each set of reference links, point values are averaged across all alignment links. If there are no word align-
ments to a given test set word, a null alignment point value of 1 is assigned.

For each input test word, we use this strategy to compare the alignment links between it and the set of aligned words
in each of our reference translations and choose the lowest scoring set. The chosen set of ‘best’ alignment links for
each input word are included in the cumulative WADE analysis, which, as in the original formulation of WADE, is
measured across a single set of test-reference alignment links. In the case that we only have one reference translation,
the ‘best’ set of alignment links for each test word is always taken from the sole reference translation, and the resulting
analysis follows our original definition of WADE, given in Section 3.4.1.2.

One drawback of this approach is that it does not reward longer ngram matches. That is, for example, the first word
in an input sentence could be best matched with the first reference, the second word with the second reference, the
third word with the third reference, etc. This is a general shortcoming of WADE, and it is only made more clear in the
multiple reference version. However, this is the cost of being able to generate detailed error-type annotations.

6.4.4.2 Analysis

Table 6.6 shows the results of our multi-reference WADE analysis over the output from several of the low resource
models described in Section 6.4.3. In particular, we present WADE results over the models represented by the first and
last point in each of the four learning curves and six source languages shown in Figure 6.5.

In general, the results of the WADE analyses are what we might expect. When we add translations for OOV words
( Translations models), the number of SEEN errors decrease substantially.11 The corresponding increases in SENSE
errors indicate that many of the previously SEEN errors become SENSE errors, which makes sense; our models have
now seen the previously OOV words, but they do not include all correct translations because our bilingual lexicon
induction method is imperfect. In most cases the number of correct alignments also increases, which is in keeping with
the observed increases in BLEU score.

It would be insightful to be able to measure the shifts between error types across different outputs. For example,
it appears that we when add our induced translations, many previously SEEN errors become SENSE errors and some
are corrected. It would be interesting to see the frequency of each shift. Although this is straightforward to measure in
a single reference setting, it is more complicated with multiple references. For example, in the output of a first SMT
model a given source language test word may have a best set of alignment links with a reference that includes one SEEN
error and one SENSE error. Then, in the output of a second SMT model, the same source language test word may have
a best set of alignment links with a different refers that includes one SCORE error and one correct link. Because the
two sets of best alignment links consider different reference translations, we cannot know whether the original SEEN

11A few SEEN errors remain for those words which appear so infrequently in our comparable corpora that we are not able to induce translations
for them.
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Language Model SEEN SENSE SCORE Correct BLEU

Bengali

500 sentence pairs baseline 48.0 23.0 4.9 24.1 2.30
Scores 48.0 23.0 4.9 24.1 2.13
Translations 2.3 64.8 4.0 28.9 3.50
Scores and Translations 2.3 64.4 3.8 29.4 3.17

Full training data 20.6 17.5 11.7 50.1 12.07
Scores 20.6 17.6 11.9 49.9 12.25
Translations 1.3 35.6 11.6 51.5 12.74
Scores and Translations 1.3 35.6 11.6 51.6 12.55

Tamil

500 sentence pairs baseline 71.0 9.8 0.6 18.6 1.69
Scores 71.0 9.8 0.6 18.6 1.71
Translations 2.3 74.2 0.6 23.0 2.53
Scores and Translations 2.3 74.2 0.6 22.9 2.49

Full training data 26.3 20.9 10.1 42.7 9.45
Scores 26.3 20.9 10.3 42.5 9.77
Translations 1.6 44.2 10.0 44.1 9.45
Scores and Translations 1.6 44.3 10.1 43.9 9.98

Telugu

500 sentence pairs baseline 69.5 14.4 8.2 7.9 2.04
Scores 69.5 14.4 8.3 7.9 2.04
Translations 5.5 64.9 3.7 25.9 4.18
Scores and Translations 5.5 64.9 3.8 25.9 4.24

Full training data 28.8 18.2 14.0 39.0 11.72
Scores 28.8 18.2 13.9 39.1 11.96
Translations 3.0 42.9 14.1 40.0 12.20
Scores and Translations 3.0 42.9 13.9 40.3 12.25

Urdu

500 sentence pairs baseline 41.9 18.1 4.2 35.7 1.83
Scores 42.0 18.1 4.4 35.6 2.26
Translations 1.5 45.6 4.3 48.6 5.44
Scores and Translations 1.5 45.6 4.4 48.4 5.43

Full training data 8.7 7.1 9.5 74.7 20.39
Scores 8.7 7.1 9.8 74.4 20.97
Translations 0.6 14.0 9.4 76.0 21.30
Scores and Translations 0.6 14.1 9.6 75.7 21.78

Hindi

500 sentence pairs baseline 30.2 12.4 5.8 51.6 4.23
Scores 30.5 12.5 6.3 50.7 4.46
Translations 1.4 35.0 5.8 57.8 6.05
Scores and Translations 1.4 35.2 6.1 57.3 6.09

Full training data 11.9 6.3 8.3 73.5 15.01
Scores 11.9 6.3 8.4 73.4 15.34
Translations 0.7 16.4 8.3 74.5 15.59
Scores and Translations 0.7 16.3 8.1 74.8 16.08

Malayalam

500 sentence pairs baseline 79.8 7.0 1.9 11.3 0.5
Scores 79.6 6.9 1.2 12.2 0.42
Translations 4.1 75.5 5.4 14.9 1.21
Scores and Translations 4.1 75.6 5.7 14.6 0.99

Full training data 2.2 37.8 12.2 47.8 13.55
Scores 2.2 37.7 11.9 48.1 14.15
Translations 1.5 38.6 12.7 47.2 13.65
Scores and Translations 1.5 38.5 12.4 47.6 14.18

Table 6.6: WADE Analysis of Augmented SMT Models. The percent of alignment links in the ‘best’ set (computed
separately for each input source language word) that are annotated with each error type is given. For comparison, the
multi-reference BLEU score on the output from each model is also given.
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error or the original SENSE error has been corrected. To make such an inference we would need to align the reference
translations with one another. We leave further research in this vein for future work.

In the results we presented in Section 6.4.3, when we added new phrase table features estimated over our compa-
rable corpora, we typically observed small but consistent increases in BLEU scores, and we attributed these gains to
a decrease in SCORE errors. However the results in Table 6.6 do not show consistently decreasing numbers of SCORE
errors when we add the new features. As mentioned, WADE does not estimate the quality of multi-word ngrams.
However, when we manually compare the outputs from our feature-augmented models with the outputs from our base-
line models, we see that they tend to include longer ngram matches with the reference translations. That is, our new
features seem to correct reordering errors more often than they correct lexical selection errors. This is possible in cases
where the new feature functions give high scores to phrase translations, and the decoder is able to translate longer
complete phrases. We can see this effect in the component ngram precisions that contribute to overall BLEU scores.
For example, the Malayalam baseline model trained on the full dataset achieves a BLEU score of 13.55 and when we
add our comparable corpora-based features, the BLEU score increases to 14.15. However, SCORE errors only decrease
in number slightly. When we take a closer look at the BLEU score, we see that the unigram precision only increases
by 3% but the bigram precision increases by 5%.

6.4.4.3 WADE Analysis Conclusions

WADE was originally meant to be a tool for doing error analysis, not for evaluating and comparing machine trans-
lations. The distinction is slight but significant. As an error analysis technique, it provides a nice way to visualize
system outputs and gives a general sense of what types of lexical selection errors are made. However, using the
method to evaluate and compare only slightly different models and their outputs is perhaps not appropriate. When we
compare very similar machine translation outputs, errors in the automatic word alignments that WADE is based upon
become relatively more substantial. Additionally, making the fine-grained distinctions and comparisons required for
doing multi-reference WADE is unsatisfying as an overall measure of translation quality. Both error analysis and au-
tomatic methods for measuring quality are important and active subfields of machine translation, and we leave further
improvements to methods like WADE to future work.

6.5 End-to-End SMT with Zero or Small Parallel Texts Conclusion
In this chapter, we applied bilingual lexicon induction techniques that we presented in Chapter 4 and phrase table
scoring techniques that we presented in Chapter 5 to the settings where we have zero or only a small amount of parallel
text for training SMT models. We focused on translating truly low resource languages. Our experiments showed the
following:

1. In settings where we have only a dictionary of word translations, compiling a model that takes advantage of
transliterations, feature functions estimated over comparable corpora, and induced translations increases the
readability of outputs substantially. Our qualitative experiments show that beginning with even a very small
parallel corpus instead of a dictionary of word translations further improves translation quality substantially.

2. When we begin with a small training bitext, our approaches to improving coverage (induced translations) and
accuracy (new phrase table feature functions) improve BLEU scores, and their combined impact is nearly addi-
tive.

3. In additional experiments on low resource languages where we begin with a small amount of parallel training
data, we found the following:

(a) Inducing translations for low frequency words in addition to OOV words can improve BLEU scores mod-
estly.

(b) Augmenting baseline models with top-k induced translations where k ranges from 3 to 25 can improve
performance beyond augmenting models with only top-1 translations.

(c) The impact of our coverage and accuracy improvements is greatest when very little training data ( 10, 000
sentence pairs) is used.

(d) The size of our comparable corpora impacts the accuracy of our new feature functions more than the quality
of our induced translations.
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4. We presented a multi-reference version of WADE. Although the resulting analyses are insightful, we caution that
the methodology should be used carefully and not in all experimental conditions.

In Chapter 4, we presented methods for inducing word translations. In Chapter 7, we use those techniques to induce
multi-word translations. Doing so involves considerable additional challenges.
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Chapter 7

Phrase Translation Mining

In this chapter, we move from inducing word translations to inducing phrase translations. Figure 7.1 shows the percent
of n-grams in our Hindi and Spanish SMT tuning sets that appear in varying amounts of training data. It is clear from
the plots that when only limited amounts of parallel training data are available, the corresponding phrase tables will
have limited coverage, particularly for multi-word source phrases. In this chapter, we present our approach to inducing
phrase translations beyond those that can be identified with small amounts of bitext.

Like our methods for scoring phrase pairs, we use bilingual lexicon induction in order to learn phrase translations
from comparable corpora. If the source and target language each contain, for example, 100, 000 unigram word types,
the number of pairwise comparisons is about 10 billion, which is significant but computationally feasible. In theory,
we could follow our method for inducing word translations directly in order to induce multiword phrase translations.
That is, we could score all source language phrases paired with all target language phrases using signals derived from
comparable corpora and use the phrase pairs extracted from the small bitext as supervision for combining the signals in
a discriminative classifier. However, in contrast to unigrams, the difficulty in inducing a comprehensive set of phrase
translations is that the number of phrases, on both the source and target sides, is immense, and such a brute force
approach is not computationally feasible. In theory, the number of possible phrases of up to length m in the target
language is V m

t , where Vt is the size of the target language unigram vocabulary. That is, a target language phrase, in
theory, is any sequence of m words sampled from Vt. Similarly, the number of possible phrases of up to length m
in the source language is V m

s , where Vs is the size of the source language unigram vocabulary. Using a brute-force
induction method comparable to our method for inducing unigram translations would require making V m

t V m
s phrase

comparisons.
Of course, we don’t observe all possible ordered combinations of words in a language in naturally occurring text.

For example, outside of this document, the phrase “round moses phrases” is unlikely to occur even though all three
words in the phrase are reasonably common.1 However, even if we limit the phrase comparisons to those that we
observe in monolingual corpora, the number of pairwise comparisons is computationally infeasible. For example, there
are about 83 and 113 million unique phrases up to length three in the English and Spanish Wikipedias, respectively.
The total number of pairwise comparisons necessary to do an exhaustive search over all source and target language
phrases is over 9 quadrillion. Thus, even if we limit the task to short, observed phrases, the number of required pairwise
phrase comparisons is infeasible.

In addition to the computational challenges, doing an exhaustive pairwise search for phrase translations may not
yield good results. Rapp and Sharoff (2014) showed, for example, that multiword phrases are too infrequent for a
model based only on contextual information to make good predictions. This negative result was found even in the
scenario where over half a billion words of source and target language Wikipedia data was used.

However, supplementing a low resource machine translation model with induced phrase translations is potentially
quite useful. Multi-word translation units have been shown to improve the quality of SMT dramatically (Koehn et al.,
2003). Phrase translations allow translation models to memorize local context-dependent translations and reordering
patterns.

There are several ways to reduce the computational complexity of this task as we have defined it, including the
following:

• Reduce the complexity of estimating monolingual signals
1In fact, a google search on the trigram yields zero results
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(c) Spanish Type-Based
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(d) Spanish Token-Based

Figure 7.1: Hindi (a, b) and Spanish (c, d) type-based (a,c) and token-based (b, d) phrasal OOV rates for the SMT
development set for each language over a varying number of training data words. The Spanish training data consists
of about 50 million words of Europarl text, and the Hindi training data consists of about 180 thousand words of
crowdsourced translations of Wikipedia documents.
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– Sample monolingual corpora
⇤ Uniformly, for building signatures of all phrases
⇤ Proportional to the frequency of a given phrase

– Ignore dimensions that are unlikely to be informative (e.g. very low or high frequency words as contexts)

• Reduce the complexity of computing the similarity between pairs of monolingual signatures

– Use randomized algorithms (e.g. locality sensitive hashing (Charikar, 2002; Goemans and Williamson,
1995; Indyk and Motwani, 1998)) to reduce the dimensionality of signatures

• Prune the set of phrase pair comparisons

– Limit the set of source phrases for which to induce translations
– Limit the set of target phrases which are eligible to be translations for any source phrase
– For each source phrase, limit the set of target phrases to those that are more likely translations
– Approximate the search over all target phrases by sorting signatures and comparing only the k-closest

signatures in the sort, rather than all (e.g. using PLEB, or Point Location among Equal Balls techniques
(Indyk and Motwani, 1998))

In this chapter, we focus on the major source of complexity: the number of pairwise phrase comparisons. Rather
than compare all source language phrases with all target language phrases, we identify ways to propose a smaller set of
hypothesis phrase translations for each source language phrase. In Section 7.1, we explore several ways to efficiently
filter the search space of all target language phrases and in Section 7.2 we explore ways to compose target phrase
translations from known unigram translations. Both sets of exploratory experiments motivate the novel algorithm that
we propose in Section 7.2.2. We use features estimated over comparable corpora to rank candidate target phrase trans-
lations in Section 7.2.3, using a method similar to the one we developed in Chapter 4 for ranking unigram translations.
Finally, in Section 7.3, we present experiments using induced phrase translations in end-to-end SMT. This chapter
presents and extends the methods and experiments that we published in Irvine and Callison-Burch (2014a).

7.1 Option 1: Fast Phrase Pair Filtering
One way to reduce the the set of N2 pairwise phrase comparisons is to do an initial, fast pruning of the set, proposing
only a subset for full monolingual similarity scoring. We want the subsets of candidate phrase pairs to (i) include as
many high quality phrase pairs as possible, and (ii) be small enough so that it is feasible to compute the monolingual
similarity between all pairs in the set. That is, we would like both recall and precision on the set to be high. There is a
tradeoff between including as many good pairs as possible (emphasizing a high recall) and limiting the size of the list
(emphasizing a high precision), which we will discuss throughout our experiments.

The main intuition behind our approach is the following: there are some characteristics of given source phrases
that may allow us to effectively and efficiently prune the space of all possible target phrase translations to a much
smaller subset. For example, it may be true that source language bigrams are almost never translated as trigrams in
the target language. Or it may be true that the number of stop words in a given source language phrase is usually the
same as in its target language translation. Or, perhaps, given that we have access to a bilingual dictionary of single
word translations, translations of source phrases are likely to contain at least one word translation that we already
know about. Some filters, such as these, can be implemented efficiently as inverted indices. Figure 1 shows a naive
approach to constructing a phrase table; all source language phrases are compared with all target language phrases. In
contrast, the algorithm in Figure 2, only compares each source language phrase with target language phrases for which
some given feature holds. In order to make filtering efficient, we would only want to allow features which can be
pre-computed and stored in inverted indices. Doing so eliminates the need to iterate over the entire set of all possible
target phrases for each source phrase.

We may also want to allow the use of multiple features in order to prune the space of target phrases. For example,
Algorithm 3 sketches a pruning model that chooses the subset of target phrases that have feature number 1 or both
features 2 and 3, or both. This model could, for example, correspond to the following: for each source phrase,
choose target phrases that contain a translation of at least one word in the source phrase and/or that have the same
length and the same number of stop words. In this case, the function getFeat1 would return a set of all of the target
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for src in srcPhrases do
for trg in trgPhrases do

compare(src,trg);
end

end
Algorithm 1: Unpruned comparison of src and trg source and target phrases.

for src in srcPhrases do
feat = getFeat(src);
for trg in featToTrgP[feat] do

compare(src,trg);
end

end
Algorithm 2: Pruning source and target phrase comparisons using features implemented as inverted indices.

for src in srcPhrases do
feat1 = getFeat1(src);
feat2 = getFeat2(src);
feat3 = getFeat3(src);
for trg in union(featToTrgP1[feat1] , intersection(featToTrgP2[feat2], featToTrgP3[feat3]) ) do

compare(src,trg);
end

end
Algorithm 3: Pruning source and target phrase comparisons using features implemented as inverted indices.

language translations of all unigrams in the source phrase, and the function featToTrgP1 would, given a set of target
language words, return a set of all phrases that contain at least one of those words. Similarly, getFeat2 would return
the length of the input source phrase, and featToTrgP2 would return a set of all target phrases with a given length.
The inverted indices require a fixed amount of time to construct, which depends on the number of target language
phrases and the complexity of the feature computation. Additionally, they have the potential to require large amounts
of memory if a given target phrase is associated with many feature values. For example, the featToTrgP inverted index
associates each target phrase with all translations of each of its component unigrams. In this work, we largely ignore
memory requirements and aim to minimize time complexity. Computing the intersection of two sets, a and b, requires
O(min(len(a),len(b))) time. Therefore, we hope to only use intersected features if at least one of them typically returns
a relatively small set of target phrases.

In Appendix 15 we present a set of detailed experiments in which we automatically learn filters for very quickly
pruning the space of hypothesis target language phrase translations. Fortunately, our experiments show that we can
achieve both a high accuracy and a high filtering rate with a small number of filters, all of which can be implemented
as inverted indices. Those experiments directly led to the algorithm that we propose in Section 7.2.

7.2 Option 2: Composing Phrase Translations
In Section 7.1, we cast the problem of reducing the number of pairwise comparisons necessary to induce a phrasal
translation dictionary as one of filtering. In that top-down approach, we started with a very large set of candidate
English phrase translations and learned ways to very quickly prune that space given some source phrase that we were
interested in translating. In this section, we present a bottom-up approach where we begin with a source phrase and
compose target language phrase translations using what we know about how the unigrams in the source phrase translate.

Our bottom-up, compositional method builds upon the notion that many phrase translations can be composed from
the translations of its component words and subphrases. For example, Spanish la bruja verde translates into English
as the green witch. Each Spanish word corresponds to exactly one English word. The phrase pair could be memorized
and translated as a unit, or the English translation could be composed from the translations of each Spanish unigram.

Zens et al. (2012) found that only 2% of phrase pairs in German-English, Czech-English, Spanish-English, and
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French-English phrase tables consist of multi-word source and target phrases and are non-compositional. That is, for
these languages, the vast majority of phrase pairs in a given phrase table could be composed from smaller units. That
work defines compositionality strictly: a phrase pair is defined as compositional if there exists a set of smaller phrase
pairs that can be used together to produce the same phrase translation. For example, if a model contains the translation
from Spanish gobierno to English government, from Spanish de to English of, and from Spanish Francia to English
France, then the larger phrase translation from Spanish gobierno de Francia to English government of France could be
composed. In contrast, the English translation French government could not be composed unless there were additional
rules allowing, for example, de Francia to translate as French.

Our approach here takes advantage of the fact that many phrases can be translated compositionally. However, in
order to achieve high recall in our set of hypothesis translations, we explore looser definitions of compositionality
than is typical. In particular, we experiment with ignoring stop words in both the source and target phrases and using
unigram prefix stem translations to allow for unseen suffixal variations.2

7.2.1 Motivating Experiments
We formulate several experiments to answer these research questions:

1. What percent of phrase translations could be correctly translated by composition, using known unigram transla-
tions (a bilingual dictionary)?

2. Would a low resource translation model benefit from composing its unigram translations into phrases?

3. Would a low resource translation model benefit further from also composing translations using a bilingual lexicon
learned from monolingual texts?

We define the process of compositional translation as follows:

1. Given a source phrase, identify all known unigram translations of each source word.

2. Enumerate all combinations of per-word dictionary translations.3

3. Enumerate all permutations of all combinations.4

Given this definition of compositional translation, we ask our first question: For a given language pair, what
percent of phrase translations could be correctly translated by composition, using known unigram translations (bilingual
dictionary)? That is, if we only had access to unigram translations, what percent of phrases could we translate correctly
through composition? To answer this question, we use the same sets of phrase translations extracted from manually
aligned development set Spanish and Hindi sentence pairs that we used in Appendix 15.2 (500 sentence pairs each; see
Appendix 12). There are about 6, 000 and 3, 000 bigram and trigram translations in the Spanish and Hindi datasets,
respectively. Here, we ask how many of the phrase pairs could be generated by compositional translation using each
of the following:

1. Unigram translations extracted from a seed bitext

2. Unigram translations extracted from a seed bitext, with optional stop word insertion and deletion

3. Unigram translations extracted from a seed bitext and induced from comparable corpora, with optional stop word
insertion and deletion

For both dictionary types, we use five character prefix stems, and we use the top-5 induced unigram translations
for each source language word type in our induced dictionary. We compute statistics using initial unigram translations
extracted from 1, 000, 2, 000, 4, 000, and 8, 000 randomly sampled lines of the Spanish-English Europarl bitext and
the Hindi-English parallel corpus as well as each complete corpus. For comparison, we also compute the percent of
test set phrase pairs that are reachable given each word aligned training corpus. Some pairs that are unreachable using
our composition technique and word alignment unigram dictionary may be reachable under a different phrase pair

2E.g., if nuestros translates as our, we also consider our a translation of nuestras, since they share the prefix nuest-.
3e.g. If the first source word in a source bigram has two dictionary translations, t11 and t12, and the second has three, t21, t22, and t23, then

there are six combinations of unigram translations: t11t21; t12t21; t11t22; t12t22; t11t23; and t12t23
4e.g. The pair t11t21 is permuted so that the final set of composed phrases contains both t11t21 and t21t11
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Reachable via Reachable via
Test Data Training Data Composition Total

Bitext Src Total In Training Aligned + Stop + Induced Reachable
Size Phrases Translations Bitext Training Ins/Del Trans
Spanish
1k

5623 6468

5.0% 8.0% 10.6% 18.6% 21.7%
2k 7.1% 9.5% 13.7% 20.6% 24.6%
4k 10.0% 11.0% 16.6% 22.7% 28.1%
8k 12.8% 12.9% 19.9% 25.1% 31.6%
Full 40.5% 17.7% 28.5% 30.8% 51.0%
Hindi
1k

2423 2841

2.8% 7.2% 11.0% 17.7% 19.1%
2k 5.3% 9.4% 14.9% 19.9% 22.5%
4k 7.7% 12.4% 18.5% 23.2% 27.0%
8k 11.3% 13.9% 21.4% 25.0% 30.4%
Full 18.2% 16.4% 25.0% 27.8% 36.7%

Table 7.1: Percent of bigram and trigram translations that could be composed from unigram translations. Corpus size is
given in number of sentence pairs and determines the phrase table from which initial unigram translations are extracted.
The first column of results gives the percent of test phrase pairs that are reachable using the training text alone, without
composing any additional translations. The next set of results show the percent of phrase pairs that are reachable
via compositional translation. The first column shows results using only the unigram translations in the phrase table
for composition. The second column also allows for stop words to be deleted from the source (e.g. Given Spanish
‘la paz en,’ the ‘la’ can be ignored and ‘peace in’ qualifies as a compositional translation) or inserted in the English
(e.g. Spanish ‘negociación,’ English ‘negotiation’ can be generated compositionally and ‘the’ can be inserted, giving
‘the negotiation.’). The third column also uses unigram translations induced using our supervised bilingual lexicon
induction technique. The final column of results shows the total percent of test set phrase pairs that could be covered
by both standard extraction from training data and via translation composition.

extraction heuristic. For example, the grow-diag-final heuristic that we use allows for null aligned words in extracted
pairs. Table 7.1 shows the compositionality statistics. Note that we only evaluate over multiword source phrases up to
length three (bigrams and trigrams).

The results in Table 7.1 show that by adding composed phrase translations, we may more than double the number
of high quality phrase translations in our models. For very low resource conditions, the number of reachable phrase
translations increases from less than 10% to over 20%. For example, the Hindi-English baseline model trained on
2, 000 sentence pairs contains only 5.3% of the test set phrase translation pairs. However, when we use the phrase
table and induced unigram translations to augment the baseline phrase table with compositional phrase translation, that
number increases to 22.5%. Recall that the translations used for evaluation come from a manually word aligned held-
out development set, not from the training data used to build initial translation models. A 100% coverage would mean
that all translations for all phrases up to length three (defined as those which are consistent with the word alignments)
in the development set were contained in the phrase table.

Another interesting result in the motivating experiments presented in Table 7.1 is that the compositionality rates for
Spanish and Hindi are very similar. One may expect that because Spanish and English are more closely related, more
phrases would be translated compositionally. However, our results do not show that. It would be interesting to do a
similar analysis on a pair of completely unrelated languages (e.g. a non-Indo-European language). Because we do not
have manual word alignments for such a language pair, we leave this for future work.

The composition algorithm that allows for stop word insertion and deletion and which uses dictionaries derived
from both the aligned parallel corpora and induced unigram translations (the last column in Table 7.1) is exactly
equivalent to the second decision tree presented in Appendix 15.2. Originally, the algorithm was presented as a top-
down decision tree; here it has been presented as a bottom-up compositional algorithm. In Section 7.2.2, we define
the efficient version of the algorithm formally, which uses inverted indexes as proposed in Section 7.1. However,
we emphasize that the algorithm can be thought of either as a top-down filtering or as a bottom-up composition. In
fact, our filtering experiments directly informed the way that we defined our composition algorithm. We showed in
Appendix 15.2 that filters based on unigram translations were definitively more informative than those based on phrase
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not having dependent on the centros electorales .

no was no one in the polling stations .

no había nadie en los centros electorales .

original composeable 
from original

original composeable 
from induced

original

Baseline:

Input:

Hallucination 
Oracle:

Figure 7.2: Example output from motivating experiment: a comparison of the baseline and full oracle translations of
Spanish no habı́a nadie en los centros electorales, which translates correctly as there was nobody at the voting offices.
The full oracle is augmented with translations composed from the seed model as well as induced unigram translations.
The phrase was no one is composeable from habı́a nadie given the seed model. In contrast, the phrase polling stations
is composeable from centros electorales using induced translations. For each translation, the phrase segmentations
used by the decoder are highlighted.

length, monolingual frequencies and frequency differences, and we designed our algorithm for composing translations
accordingly.

We now move to our second and third questions: Would an end-to-end low resource translation model benefit
from composing its unigram translations into phrases? Would this be further improved by adding unigram translations
that are learned from monolingual texts? Prior research has found that allowing an MT model to memorize longer
translation units is crucial to achieving good performance. However, it’s not clear how much of the observed perfor-
mance gains are due to compositional phrase translations. There are two reasons for the gains from memorizing longer
translation units; one involves compositional phrases and the other does not. First, memorizing longer translation units
allows for the memorization of lexical choice and reordering patterns, including within compositional translations.
For example, ciudadanos cubanos translates as cuban citizens and centros electorales translates as polling stations.
In these cases, the Spanish phrases are translated compositionally, but the order of the two words is swapped in the
English phrase. Additionally, the most frequent translation of Spanish centros is actually centers, however, in the con-
text of electorales, stations is the preferred translation. Although these lexical choice and reordering patterns could
be recovered by a high quality lexicalized or syntactic reordering model in combination with a language model, using
longer translation units reduces the risk of making lexical choice and reordering errors.

Figure 7.2 illustrates how compositional phrase translations can result in improved translation quality. The baseline
model is trained on a small amount of data, and it typically translates individual words instead of phrases. In a system
augmented with compositional phrase translations, the translation was no one is composed from habia nadie, since
habia translates as was in the baseline model, nadie translates as one, and no is a stop word. Similarly, the translation
polling stations is composed from individual translations: centros translates as stations, and electorales translates as
polling.

The second reason that memorizing longer translation units is beneficial is that non-compositional phrase transla-
tions may be learned. For example, content words may be left untranslated, as in productos quı́micos chemicals,
rather than chemical products. Similarly, centros electorales may be translated simply as polls. Or, more interestingly,
phrases may be idiomatic, such as maternidad remunerada maternity leave, where the unigram remunerada typi-
cally translates as paid, and the Spanish phrase maternidad remunerada as well as the English phrase maternity leave
mean, idiomatically, ‘the period during which a new mother is allowed paid time off.’

We answer our second and third questions by starting with low-resource Spanish-English and Hindi-English base-
lines trained from 2000 sentence pairs each ( 60k words), and, for given sets of source phrases, augmenting each with
(1) phrasal translations composed from its unigram translations, and (2) phrasal translations composed of a mix of the
baseline unigram translations plus the monolingually-induced unigrams. We also add a set of monolingually-estimated
feature functions.
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Experiment
BLEU

Baseline Monolingually
Features Estimated Feats.

Spanish
Low Resource Baseline 13.47 13.35
+ Oracle compositional trans. from training 14.90 15.18
+ Oracle compositional trans. from training and induced 15.47 15.94
Hindi
Low Resource Baseline 8.49 8.26
+ Oracle compositional trans. from training 9.12 9.54
+ Oracle compositional trans. from training and induced 10.09 10.19

Table 7.2: Motivating Experiment: BLEU results using the baseline SMT model and composeable oracle translations
with and without induced unigram translations.

For our motivating experiment we use oracle translations. Composed translations were only added to the phrase
table if they were contained in the reference. This eliminated the huge number of noisy translations that are created by
taking all of the permutations and combinations that arise when composing translations (we address this issue without
using an oracle in Section 7.2.3).

In Section 7.3.3, we describe the set of source language phrases for which we compose translations. In the oracle
experiments here, we augment a baseline model with translations for the same set of source language phrases. We
use GIZA++ to word align our tuning and test sets. For both languages, we learn an alignment over our tuning and
test sets and complete parallel training sets, and use a standard phrase pair extraction heuristic5 to identify oracle
phrase translations. We add oracle translations to each baseline model without bilingually estimated translation scores6

because such scores will not be available for our automatically induced translations. Instead, as Section 7.2.3 details,
we estimate 30 new phrase table features using comparable corpora. Thus, in our oracle experiments, we also measure
performance using oracle phrase pairs scored with these features.

Table 7.2 shows the results of our oracle experiments. Augmenting the baselines with the subset of oracle transla-
tions which are composed given the unigram translations in the baseline models themselves (i.e. in the small training
sets) yields a BLEU score improvement of about 1.4 points for Spanish and about 0.6 for Hindi. This finding itself is
noteworthy, and we investigated the reason for it. A representative example of a compositional oracle translation that
was added to the Spanish model is para evitarlos, which translates as to prevent them. In the training corpus, para
translates far more frequently as for than to. Thus, it is useful for the translation model to know that, in the context of
evitarlos, para should translate as to and not for. Additionally, evitarlos was observed only translating as the unigram
prevent. The small model fails to align the adjoined clitic los with its translation them. However, our loose definition
of compositionality allows the English stop word them to appear anywhere in the target translation.

In the first result, composeable translations do not include those that contain new, induced word translations. Using
the baseline model and induced unigram translations to compose phrase translations results in a 2 and 1.6 BLEU point
gain for Spanish and Hindi, respectively.

In Section 7.2.3, we describe the feature set that we use to rank hypothesized English translations for each Spanish
and Hindi phrase. The second column of Table 7.2 shows the results of augmenting the baseline models with the same
oracle phrase pairs as well as the new features estimated over all phrase pairs. Although the features do not improve
the performance of the baseline models, this diverse set of scores improves performance dramatically when new, oracle
phrase pairs are added. Adding all oracle translations and the new feature set results in a total gain of about 2.6 BLEU
points for Spanish and about 1.9 for Hindi. These gains are the maximum that we could hope to achieve by augmenting
models with our composed translations and new feature set.

To recap, we had asked the following motivating questions:

1. What percent of phrase translations could be correctly translated by composition, using known unigram transla-
tions (a bilingual dictionary)?

2. Would a low resource translation model benefit from composing its unigram translations into phrases?
5grow-diag-final
6We use an indicator feature for distinguishing new composed translations from bilingually extracted phrase pairs.
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3. Would a low resource translation model benefit further from also composing translations using a bilingual lexicon
learned from monolingual texts?

In answer to the first question, we found that, for both Spanish and Hindi, between about 20% and 30% of test set
phrases could be translated by composition using known unigram translations. The results vary depending on the
initial bilingual dictionary and the composition algorithm used. For the second question, we found that low resource
Spanish and Hindi models improved by 1.4 and 0.6 BLEU points, respectively, when we augmented baselines with
phrase translations composed from unigrams contained in the baseline models themselves. When we also added phrase
translations composed from induced unigram translations (third question), we observed BLEU score increases of 2 and
1.6 for Spanish and Hindi, respectively.

7.2.2 Phrase Composition Algorithm
We have motivated our approach to loosely composing phrasal translations from the perspective of pruning the search
space of all target phrases as well as from the perspective of composing translations from an existing unigram dictio-
nary. Henceforth we will refer to our general approach as one of composition. A formal definition of our algorithm for
composing phrase translations is shown in Algorithm 4, and an example translation is composed in Figure 7.3. Given
a source language phrase, our approach considers all combinations and all permutations of all unigram translations
for each source phrase content word. We ignore stop words in the input source phrase and allow any number of stop
words anywhere in the output target phrase. As discussed in Section 7.1, we pre-compute an inverted index that maps
sorted target language content words to sets of phrases containing those words in any order along with, optionally,
any number of stop words. Our algorithm for composing candidate phrase translations is given in Algorithm 4, and
an example translation is composed in Figure 7.3. Although in our experiments we compose translations for source
phrases up to length three, the algorithm is generally applicable to any set of source phrases of interest.

Algorithm 4 yields a set of target language translations for any source language phrase for which all content
unigrams have at least one known translation. As in our filtering experiments in 15.2, in an initial pruning step,
we add a monolingual frequency cutoff to the composition algorithm and only add target phrases that have a frequency
of at least ✓Freq

T

to the inverted index. Doing so eliminates improbable target language constructions early on, for
example house handsome her or cute a house. The size of the set of output translations depends on ✓Freq

T

, the input
phrase, and the unigram dictionaries.

7.2.3 Pruning Phrase Pairs Using Scores Derived from Comparable Corpora
We further prune the large, noisy set of hypothesized phrase translations before augmenting the seed translation model.
To do so, we use a supervised setup very similar to that used for inducing unigram translations in Chapter 4; we
estimate a variety of signals that indicate translation equivalence, including temporal, topical, contextual, and string
similarity. As we showed in Chapter 5, such signals are effective for identifying phrase translations as well as unigram
translations. In our experiments here, we add ngram length, alignment, and unigram translation features that are
specific to our framework of phrase translation composition:

• Web crawl phrasal context similarity score
• Web crawl lexical context similarity score, averaged over aligned unigrams
• Web crawl phrasal temporal similarity score
• Web crawl lexical temporal similarity score, averaged over aligned unigrams
• Wikipedia phrasal context similarity score
• Wikipedia lexical context similarity score, averaged over aligned unigrams
• Wikipedia phrasal topic similarity score
• Wikipedia lexical topic similarity score, averaged over aligned unigrams
• Normalized edit distance, averaged over aligned unigrams
• Absolute value of difference between the logs of the source and target phrase Wikipedia monolingual frequencies
• Log target phrase Wikipedia monolingual frequency
• Log source phrase Wikipedia monolingual frequency
• Indicator: source phrase is longer
• Indicator: target phrase is longer
• Indicator: source and target phrases same length
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Input: A set of source language phrases of interest, S, each consisting of a sequence of words sm1 , sm2 , ...smi ; A
list of all target language phrases, targetPhrases; Source and target stop word lists, Stopsrc and
Stoptrg; Set of unigram translations, tsm

i

, for all source language words smi Stopsrc; monolingual
target language phrase frequencies, FreqT ; Monolingual frequency threshold ✓Freq

T

Output: Sm S, a set of candidate phrase translations, Tm
1 , Tm

2 , ...Tm
k

Construct TargetInvertedIndex:
for T targetPhrases do

if FreqT T ✓Freq
T

then
T words tj T if tj Stoptrg
Tsorted sorted T
append T to TargetInvertedIndex[Tsorted]

end
end

for Sm S do
S words smi Sm if smi Stopsrc
CombsS ts 1 ts 2 ... ts

k

T
for cs CombsS do

cs
sorted

sorted cs
T T TargetInvertedIndex cs

sorted

end
Tm T

end

Algorithm 4: Computing a set of candidate compositional phrase translations for each source phrase in the set S.
An inverted index of target phrases is constructed that maps sorted lists of content words to phrases that contain
those content words, as well as optionally any stop words, and have a frequency of at least ✓Freq

T

. Then, for a given
source phrase Sm, stop words are removed from the phrase. Next, the cartesian product of all unigram translations
is computed. Each element in the product is sorted and any corresponding phrases in the inverted index are added to
the output.
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casa house
linda pretty
linda cute
linda handsome

la casa linda
stop words removed

casa linda
Cartesian product  
of unigram translations

cute, house 
handsome, house 
house, pretty

Inverted Index lookups

pretty house 
the pretty house 
a pretty house 
cute house 
house and handsome

Bilingual Dictionary:

Input Phrase:

A

B

C

D

Figure 7.3: Example of loosely composed translations for the Spanish input in A, la casa linda. In B, we remove the
stop word la. Then, in C, we enumerate the cartesian product of all unigram translations in the bilingual dictionary and
sort the words within each alphabetically. Finally, we look up each list of words in C in the inverted index, and corre-
sponding target phrases are enumerated in D. The inverted index contains all phrasal combinations and permutations
of the word lists in C which also appear monolingually with some frequency and with, optionally, any number of stop
words.

• Number of source content words higher than target
• Number of target content words higher than source
• Number of source and target content words same
• Number of source stop words higher than target
• Number of target stop words higher than source
• Number of source and target stop words same
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• Percent of source words aligned to at least one target word
• Percent of target words aligned to at least one source word
• Percent of source content words aligned to at least one target word
• Percent of target content words aligned to at least one source word
• Percent of aligned word pairs aligned in bilingual training data
• Percent of aligned word pairs in induced dictionary
• Percent of aligned word pairs in stemmed induced dictionary

As we did for inducing unigram translations in Chapter 4, we learn a log-linear model for combining the features
into a single score for predicting the quality of a given phrase pair. We extract training data from our baseline translation
models trained on our small parallel corpora. We rank hypothesis translations for each source phrase using classifi-
cation scores and keep the top-k. We found that using a score threshold sometimes improves precision. However, as
experiments below show, the recall of the set of phrase pairs is more important, and we did not observe improvements
in translation quality when we used a threshold.

7.3 End-to-end SMT with Induced Phrase Translations

7.3.1 Experimental Setup
In our SMT experiments here, we assume our typical data setting of having access to only a small parallel corpus. For
our Spanish experiments, we randomly sample 2, 000 sentence pairs (about 57, 000 Spanish words) from the Spanish-
English Europarl v5 parallel corpus (Koehn, 2005). For our Hindi experiments, we use the parallel corpora released
by Post et al. (2012). Again, we randomly sample 2, 000 sentence pairs from the training corpus (about 39, 000 Hindi
words). Additionally, we use approximately 2, 500 and 1, 000 single-reference parallel sentences each for tuning and
testing our Spanish and Hindi models, respectively. Spanish tuning and test sets are newswire articles taken from the
2010 WMT shared task (Callison-Burch et al., 2010).7 We use the Hindi development and testing splits released by
Post et al. (2012).

7.3.2 Unigram Translations
Of the 16, 269 unique unigrams in the source side of our Spanish MT tuning and test sets, 73% are OOV with respect to
our training corpus. 21% of unigram tokens are OOV. For Hindi, 61% of the 8, 137 unique unigrams in the tuning and
test sets are OOV with respect to our training corpus, and 18% of unigram tokens are OOV. However, because automatic
word alignments estimated over the small parallel training corpora are noisy, we use bilingual lexicon induction to
induce translations for all unigrams. We use our Wikipedia and online news web crawls comparable corpora to estimate
similarity scores. Together, the two datasets contain about 900 million words of Spanish data and about 50 million
words of Hindi data. For both languages, we limit the set of hypothesis target unigram translations to those that appear
at least 10 times in our comparable corpora.

We use 3, 000 high probability word translation pairs extracted from each parallel corpus as positive supervision
and 9, 000 random word pairs as negative supervision. We use Vowpal Wabbit8 for learning. The top-5 induced
translations for each source language word are used as both a baseline set of new translations (Section 7.3.5.3) and for
composing phrase translations.

7.3.3 Composing and Pruning Phrase Translations
There are about 183 and 66 thousand unique bigrams and trigrams in the Spanish and Hindi tuning and test sets,
respectively. However, many of these phrases do not demand new hypothesis translations. We do not translate those
which contain numbers or punctuation. Additionally, for Spanish, we exclude names, which are typically translated
identically between Spanish and English.9 We exclude phrases which are sequences of stop words only. Additionally,
we exclude phrases that appear more than 100 times in the small training corpus because our seed phrase table likely

7news-test2008 plus news-syscomb2009 for tuning and newstest2009 for testing.
8
http://hunch.net/

˜

vw/, version 6.1.4. with standard learning parameters
9Our names list comes from page titles of Spanish Wikipedia pages about people. We iterate through years, beginning with 1AD, and extract

names from Wikipedia ‘born in’ category pages, e.g. ‘2013 births,’ or ‘Nacidos en 2013.’

http://hunch.net/~vw/
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already contains high quality translations for them. Finally, we exclude phrases that appear fewer than 20 times in our
comparable corpora as our comparable-corpora based features are unreliable when estimated over so few tokens. We
hypothesize translations for the approximately 15, 000 and 6, 000 Spanish and Hindi phrases, respectively, which meet
these criteria. Our approach for inducing translations straightforwardly generalizes to any set of source phrases.

In defining loosely compositional phrase translations, we use both the induced unigram dictionary and the dictio-
nary extracted from the word aligned parallel corpus. We expand these dictionaries further by mapping unigrams to
their five-character word prefixes. We use our Wikipedia comparable corpora to construct stop word lists, containing
the most frequent 300 words in each language, and indexes of monolingual phrase frequencies. Recall that there are
about 83 and 38 million unique phrases up to length three in the English sides of the Spanish and Hindi comparable
corpora. However, we use a target monolingual frequency filter and ignore those target phrases that appear fewer than
twenty times in the Spanish set and fewer than ten times in the Hindi set, reducing the size of each to 1.3 and 1.1 mil-
lion English phrases, respectively. On average, our Spanish model yields 7, 986 English translations for each Spanish
bigram, and 9, 231 for each trigram, or less than 0.1% of all possible candidate English phrases. Our Hindi model
yields even fewer candidate English phrases, 826 for each bigram and 1, 113 for each trigram, on average.

We use the features enumerated in Section 7.2.3 to rerank candidate target translations for each source phrase. We
extract supervision from the seed translation models by first identifying phrase pairs with multi-word source strings,
that appear at least three times in the training corpus, and that are composeable using unigram translations in the models
and induced dictionaries. Then, for each language pair, we use the 3, 000 that have the highest p f e scores as positive
supervision. We randomly sample 9, 000 compositional phrase pairs from those not in each phrase table as negative
supervision. As with inducing unigram translations, we use Vowpal Wabbit for learning a log linear model to score any
phrase pair and rerank candidate target translations by their classification scores.

7.3.4 MT Experimental Setup
We use GIZA++ to word align each training corpus. We use the Moses SMT framework (Koehn et al., 2007) and the
standard phrase-based MT feature set, including phrase and lexical translation probabilities and a lexicalized reordering
model. When we augment our models with new translations, we use the average reordering scores over all bilingually
estimated phrase pairs. We tune all models using batch MIRA (Cherry and Foster, 2012). We average results over three
tuning runs and use approximate randomization to measure statistical significance (Clark et al., 2011).

For Spanish, we use a 5-gram language model trained on the English side of the complete Europarl corpus and
for Hindi a 5-gram language model trained on the English side of the complete training corpus released by Post et al.
(2012). We train our language models using SRILM with Kneser-Ney smoothing. Our baseline models use a phrase
limit of three, and we augment them with translations of phrases up to length three in our experiments.

7.3.5 Results
7.3.5.1 Unigram Translations

Table 7.3 shows examples of top ranked translations for several Spanish words. Although performance is generally
quite good, we do observe some instances of false cognates, for example the top ranked translation for aburridos,
which translates correctly as bored, is burritos. Using automatic word alignments as a reference, we find that 44% of
Spanish tuning set unigrams have a correct translation in their top-10 ranked lists and 62% in the top-100. For Hindi,
31% of tuning set unigrams have a correct translation in their top-10 ranked lists and 43% in the top-100. These results
are slightly lower than those reported in Chapter 4, where we observed a 43% top-10 and 60% top-100 accuracy. The
difference is likely due to the lower frequency and burstiness of the average word type in the tuning data.

7.3.5.2 Composed Phrase Pairs

Before moving to end-to-end SMT experiments, we evaluate the goodness of the composed and pruned phrase pairs
themselves. In order to do so, we use the same set of oracle phrase translations described in Section 7.2.1.10

Table 7.4 shows the top three English translations for several Spanish phrases along with their model scores. Com-
mon, loose translations of some phrases are scored higher than less common but literal translations. For example, very
obvious scores higher than very evident as a translation of Spanish muy evidentes. Similarly, dutch minister is scored
higher than netherlands minister as a translation for ministro neerlandès.

10We do not use our manually aligned sets here because we only have annotations for a subset of the development and test sets.
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Spanish abdominal abejorro abril aburridos accionista aceite actriz

Top 5 English
Trans.

abdominal bumblebees april burritos actionists adulterated actress
abdomen bombus march boredom actionist iooc actor

bowel xylocopa june agatean telmex olive award
appendicitis ilyitch july burrito shareholder milliliters american

acute bumble december poof antagonists canola singer

Table 7.3: Top five induced translations for several source words. Correct translations are bolded. aceite translates as
oil.

Spanish English Score

ambos partidos
two parties 5.72
both parties 5.31
and parties 3.16

televisión estatal
state television and 8.12

state television 7.13
television interview 4.24

muy poderoso
very powerful 3.50
powers were 1.77

were powered 1.61

habı́a apoyado
were supported 4.80
were members 4.52
had supported 4.39

ministro neerlandès
finnish minister 4.76
finnish ministry 2.77
dutch minister 1.31

unas cuantas semanas
over a week 4.30
a few weeks 3.72
few weeks 3.22

muy evidentes
very obvious 1.88
very evident 1.87

obviously very 1.84

prácticamente imposible
almost impossible 5.43

almost all 3.52
almost impossible to 2.22

Table 7.4: Top three compositional translations for several source phrases and their scores generated by our supervised
discriminative model. Correct translations are bolded.

We use model scores to rerank candidate translations for each source phrase and keep the top-k translations. Figure
7.4 shows the precision and type-based recall (the percent of source phrases for which at least one correct translation
is generated) as we vary k for each language pair. At k 1, precision and recall are about 27% for Spanish and
about 25% for Hindi.11 At k 100, recall increases to 57% for Spanish and precision drops to 2%. For Hindi, recall
increases to 40% and precision drops to 1%.

Moving from k 1 to k 100, precision drops at about the same rate for the two source languages. However,
recall increases less for Hindi than for Spanish. We attribute this to two things. First, our oracle experiments in Section
7.2.1 showed that there is less to gain in composing phrase translations for Hindi than for Spanish. Second, the accuracy
of our induced unigram translations is lower for Hindi than it is for Spanish. Without accurate unigram translations,
we are unable to compose high quality phrase translations.

Because we composed translations for source phrases that appear in the training data up to 100 times, our baseline
model includes some of the oracle phrase translations. Not surprisingly, the bilingually extracted phrase pairs have

11Since we are computing type-based recall, and at k=1, we produce exactly one translation for each source phrase, precision and recall are the
same.
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Experiment BLEU
Spanish Hindi

Baseline 13.47 8.49
+ Mono. Scores 13.35 8.26
+ Mono. Scores & OOV Trans 14.01 8.31
+ Phrase Trans, k=1 13.90 8.16
+ Phrase Trans, k=2 14.07 8.86*
+ Phrase Trans, k=5 14.30* 8.89*
+ Phrase Trans, k=25 14.50* 9.00*
+ Phrase Trans, k=200 14.57* 9.04*

Table 7.5: Experimental results. First, the baseline models are augmented with monolingual phrase table features and
then also with the top-5 induced translations for all OOV unigrams. Then, we append the top-k composed phrase
translations to the third baseline models. BLEU scores are averaged over three tuning runs. We measure the statis-
tical significance of each +Phrase Trans model in comparison with the highest performing (bolded) baseline for each
language; * indicates statistical significance with p 0.01 over the baseline performance.

high precision (81% and 40% for Spanish and Hindi, respectively) and low recall (6% and 15% for Spanish and Hindi,
respectively).

7.3.5.3 End-to-End Translation

Table 7.5 shows end-to-end translation BLEU score results. Our first baseline SMT models are trained using only
2, 000 parallel sentences and no new translation model features. Our Spanish baseline achieves a BLEU score of 13.47
and our Hindi baseline a BLEU score of 8.49. When we add the 30 new feature functions estimated over comparable
monolingual corpora, performance is slightly lower, 13.35 for Spanish and 8.26 for Hindi. Our third baselines augment
the second with unigram translations for all OOV tuning and test set source words. We append the top-5 translations
for each,12 score both the original and the new phrase pairs with the new feature set, and retune. With these additional
unigram translations, performance increases to 14.01 for Spanish and 8.31 for Hindi.

We append the top-k composed translations for the source phrases described in Section 7.3.1 to the third baseline
models. Both original and new phrase pairs are scored using the new feature set. BLEU score results are shown
at different values of k along the precision-recall plots for each language pair in Figure 7.4 as well as in Table 7.5.
We would expect that higher precision and higher recall would benefit end-to-end SMT. As usual, a tradeoff exists
between precision and recall, however, in this case, improvements in recall outweigh the risk of a lower precision. As
k increases, precision decreases but both recall and BLEU scores increase. For both Spanish and Hindi, BLEU score
gains start to taper off at k values over 25.

In additional experiments, we found that without the new features the same sets of composed phrase pairs hurt
performance slightly in comparison with the baseline augmented with unigram translations, and results don’t change
as we vary k.13 Thus, the translation models are able to effectively use the higher recall sets of new phrase pairs because
we also augmented the models with 30 new feature functions, which help them distinguish good from bad translations.

7.3.6 Discussion
Our results showed that including a high recall set of composed translations in our augmented phrase table successfully
improved the quality of our machine translations. The algorithm that we proposed for hypothesizing translations is
flexible, and in future work we plan to modify it slightly to output even more candidate translations. For example, we
could retrieve target phrases which contain at least one source word translation instead of all. Alternatively, we could
identify candidates using entirely different information, for example the monolingual frequency of a source and target
word, instead of unigram translations. This type of inverted index may improve recall in the set of hypothesis phrase
translations at the cost of generating a much bigger set for reranking.

12The same set used for composing phrase translations.
13For all values of k between 1 and 100, without the new features, BLEU scores are about 13.70 for Spanish
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Our new phrase table features were informative in distinguishing correct from incorrect phrase translations, and
they allowed us to make use of noisy but high recall supplemental phrase pairs. This is a critical result for research on
identifying phrase translations from non-parallel text. We also believe that using fairly strong target (English) language
models contributed to our models’ ability to discriminate between good and bad composed phrase pairs. We leave
research on the influence of the language model in our setting to future work.

In this work, we experimented with two language pairs, Spanish-English and Hindi-English. While Spanish and
English are very closely related, Hindi and English are less related. Our oracle experiments showed potential for
composing phrase translations for both language pairs, and, indeed, in our experiments using composed phrase trans-
lations we saw significant translation quality gains for both. We expect that improving the quality of induced unigram
translations will yield even more performance gains.

The vast majority of prior work on low resource MT has focused on Spanish-English (Dou and Knight, 2012, 2013;
Haghighi et al., 2008; Klementiev et al., 2012; Ravi, 2013; Ravi and Knight, 2011). Although such experiments serve as
important proofs of concept, we believe it is important to also experiment with a more truly low resource language pair.
The success of our approach that we have seen for Spanish and Hindi suggests that it is worth pursuing such directions
for other even less related and resourced language pairs. In addition to language pair, text genre and the degree of
looseness or literalness of given parallel corpora may also affect the amount of phrase translation compositionality.
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Figure 7.4: Precision and recall curve with BLEU scores for the top-k scored composed translations. k varies from 1
to 200. Baseline model performance is shown with a red triangle..
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Chapter 8

From Low Resource MT to Domain
Adapted MT

In this chapter, we apply several of our techniques for improving the performance of machine translation for low
resource language pairs to low resource text domains. We present and extend the approaches and results that we
published in Irvine and Callison-Burch (2014b). Domain adaptation in machine translation is known to be a challenging
research problem that has substantial real-world application. In this setting, we have access to training data in some
old-domain of text but very little or no training data in the domain of the text that we wish to translate. For example,
we may have a large corpus of parallel newswire training data but no training data in the medical domain, resulting in
low quality translations at test time due to the mismatch.

In Section 3.4 and, originally, in Irvine et al. (2013a), we introduced a taxonomy for classifying machine translation
errors related to lexical choice as well as two techniques, WADE and TETRA, for measuring the impact of each error
type. Recall that our ‘S4’ taxonomy includes SEEN, SENSE, SCORE, and SEARCH errors. In Section 8.2, we present
WADE and TETRA error analyses in a domain shift setting. We conclude that SEEN and SENSE errors are the most
frequent but that there is also room for improving errors due to inaccurate translation model scores.

In this chapter, we use comparable corpora to reduce the number of SEEN and SCORE errors in a domain adaptation
setting. In Carpuat et al. (2013), we defined the SenseSpotting task, where the goal is to identify words in a new-domain
monolingual text that appeared in the old-domain text but which have a new, previously unseen sense. Although some
sense shifts do not demand new translations, many do. If we could reliably identify words with new senses in new-
domain text, then it may be possible to use our bilingual lexicon induction techniques to learn new translations for
them and reduce SMT SENSE errors. We leave this for future work.

We assume the setting where we have an old-domain parallel training corpus but no new domain training cor-
pus.1 We do, however, have access to a mixed-domain comparable corpus. We identify new-domain text within our
comparable corpus and use that data to (1) estimate new translation features on the translation models extracted from
old-domain training data, and (2) induce translations for unseen words. Specifically, we focus on the French-English
language pair because carefully curated datasets exist in several domains for tuning and evaluation. Following our
prior work, we use the Canadian Hansard parliamentary proceedings as our old-domain and adapt models to both the
medical and the science domains. At over 8 million sentence pairs, the Canadian Hansard dataset is one of the largest
publicly available parallel corpora and provides a very strong baseline. In Irvine et al. (2013a), we showed that, unlike
the newswire domain, the medical and science domains are very different from the parliamentary proceedings domain.

We give details about each dataset in Section 8.1. In Section 8.2, we present an error analysis of what goes wrong
when we shift domains. Finally, in Sections 8.4 and 8.5, we describe novel methods for reducing, first, the number of
SCORE errors and, then, SEEN errors in a domain adaptation setting.

8.1 Domain Adaptation Data
We assume that the following data is available in our translation setting:

1Some prior was has referred to old-domain and new-domain corpora as out-of-domain and in-domain, respectively.
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Corpus Source Words Target Words
Training
Canadian Hansard 161.7 m 144.5 m
Tune-1 / Tune-2 / Test
Medical 53k / 43k / 35k 46k / 38k / 30k
Science 92k / 120k / 120k 75k / 101k / 101k
Language Modeling and Comparable Corpus Selection
Medical - 5.9 m
Science - 3.6 m

Table 8.1: Summary of the size of each corpus of text used in this chapter in terms of the number of source and target
word tokens.

• Large old-domain parallel corpus for training

• Small new-domain parallel corpora for tuning and testing

• Large new-domain English monolingual corpus for language modeling and identifying new-domain-like com-
parable corpora

• Large mixed-domain comparable corpus, which includes some text from the new-domain

These data conditions are typical for many real-world uses of machine translation. A summary of the size of each
corpus is given in Table 8.1, and brief descriptions of the parallel datasets are below. In all cases, we use publicly
available training, tuning, and test sets.2

Hansard: Canadian parliamentary proceedings, consists of manual transcriptions and translations of meetings of
Canada’s House of Commons and its committees from 2001 to 2009. Discussions cover a wide variety of topics, and
speaking styles range from prepared speeches by a single speaker to more interactive discussions. It is significantly
larger than Europarl, the common source of old domain data (Foster and Kuhn (2007), Koehn and Schroeder (2007),
and Haddow and Koehn (2012), among others).

Medical: Medical documents from the European Medicines Agency (EMEA), made available with the OPUS
corpora collection (Tiedemann, 2009). This corpus primarily consists of drug usage guidelines, which use boilerplate
sentences that are often repeated across documents.

Science: Parallel abstracts from scientific publications in many disciplines including physics, biology, and com-
puter science. The data was collected from two distinct sources: (1) Canadian Science Publishing made available
translated abstracts from their journals which span many research disciplines; (2) parallel abstracts from PhD theses in
Physics and Computer Science collected from the HAL public repository (Lambert et al., 2012).

Parallel corpora are not available for the vast majority of text domain and language pair combinations in quanti-
ties large enough to train domain-specific models. In this chapter, we do not use any new-domain parallel data for
training; we assume that we only have enough for tuning and testing. However, we do use the English side of the
new-domain training corpora for language modeling and for identifying new-domain-like comparable corpora from
our mixed domain comparable corpus. We address how we select new-domain comparable corpora in Section 8.3.

8.2 WADE and TETRA Analyses
Before applying our techniques for using comparable corpora to improve machine translation performance, we analyze
what types of errors are made when we use a translation model trained on old domain data to translation text in some
new domain. We extract a phrase-based model with a phrase limit of seven from the full Hansard parallel dataset.
We use the standard phrase-based SMT feature set, including forward and backward phrase and lexical translation
probabilities as well as a standard lexicalized reordering model. For each domain, we use two 5-gram language models:

2
http://www.umiacs.umd.edu/

˜

hal/damt/

http://www.umiacs.umd.edu/~hal/damt/
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Domain % Correct % Seen Errors % Sense Errors % Score Errors
OLD MIXED %� OLD MIXED %� OLD MIXED %� OLD MIXED %�

Medical 55.97 62.60 +12% 9.28 4.01 -56% 16.16 13.76 -15% 18.59 19.63 + 6%
Science 56.20 61.50 +9% 10.22 5.63 -45% 13.58 13.11 - 3% 20.00 19.77 - 1%

Table 8.2: WADE: Percent correct, percent seen errors, percent sense errors, and percent score errors. The changes
(%�) from OLD to MIXED are also given; here, negative changes are good (error reduction).

Correct Incorrect

Total

Cor Seen Score Seen Sense

Medical
Cor 48.3 0.0 3.1 0.0 0.0 51.5

Seen-C 1.6 2.8 0.1 0.0 0.0 4.5

Score 5.3 0.0 13.3 0.0 0.0 18.6

Seen-I 2.3 0.0 0.5 4.0 2.5 9.3

Sense 2.3 0.0 2.6 0.0 11.3 16.2

Total 59.8 2.8 19.6 4.0 13.8 100

Science
Cor 49.8 0.0 3.6 0.0 0.0 53.3

Seen-C 1.4 1.4 0.0 0.0 0.0 2.9

Score 5.8 0.0 14.2 0.0 0.0 20.0

Seen-I 1.8 0.0 0.3 5.6 2.5 10.2

Sense 1.4 0.0 1.6 0.0 10.6 13.6

Total 60.1 1.4 19.8 5.6 13.1 100

Table 8.3: Percent of WADE annotation changes moving from OLD (rows) to MIXED (columns) models, for each
domain. Non-zero off-diagonals are bolded. Seen-C indicates Freebies, and Seen-I indicates unseen words that were
mistranslated.

one estimated over the English side of the Hansard data and the other estimated over the English side of the domain-
specific parallel corpus. In later experiments, we also use the English side of the parallel corpora to identify new-
domain like comparable corpora (see Section 8.3). We tune the models using batch MIRA (Cherry and Foster, 2012)
and development sets in each domain and then use the models to translate each test set.

In our experiments below, we do not make use of the French side of the new-domain parallel corpora at all.
However, for the purposes of our comparison analyses here, we train a single model on the combination of all old-
domain and all new-domain parallel training data. Recall that the key idea behind TETRA is to enhance a baseline
translation model, in this case, OLD, an MT system trained on old domain parallel text, to compare the impact of
potential sources of improvement. We use parallel new domain data to propose enhancements to the OLD system.
This provides a realistic measure of what could be achieved if one had access to parallel data in the new domain. The
specific system we build, called MIXED, is a linear interpolation of a translation model trained only on old domain
data and a model trained only on new domain data (Foster and Kuhn, 2007). The mixing weights are selected via grid
search on a tuning set, selecting for BLEU. We also present WADE analyses on the MIXED system, which, again,
provides insight into the potential impact of targeting improvements in each error category.

Table 8.2 shows the results of a WADE analysis on the machine translated test set in each domain. As in Section
3.4, we assume that SEARCH is not a major source of error. In both domains, the WADE analysis shows that just over
50% of the alignment links between test set sentences and their references are translated correctly by the old-domain
model, and the percent of total correct alignment links increases by about 5% under MIXED. For both domains, most of
the errors analyzed by WADE are SCORE errors, followed by SENSE and then SEEN. The number of SEEN errors goes
down dramatically when moving from the OLD model to the MIXED. This is somewhat less true for SENSE errors. At
first glance, it appears that the MIXED model is worse in terms of SCORE errors according to WADE. However, recall
that in our WADE analysis, many errors that used to be SEEN and SENSE errors in the OLD model may become SCORE
errors in the new domain.

To see the full picture, we must look at how the different error categories change from the OLD system to the
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Domain OLD OLD +SEEN OLD +SENSE OLD +SCORE MIXED
Medical 28.69 31.02 (+ 8%) 30.59 (+ 7%) 30.21 (+ 5%) 36.60
Science 26.13 27.72 (+ 6%) 27.29 (+ 4%) 28.68 (+10%) 32.23

Table 8.4: TETRA results on science and medical domains using OLD and MIXED models (first and last columns),
OLD enhanced with seen translations (second), sense translations (third), and scores (fourth), together with percent
improvements in terms of BLEU score. Here, positive improvements are good (higher BLEU scores).

MIXED system in WADE. This is shown in Table 8.3. In this table, the rightmost column contains the total percentage
of errors in the OLD systems; the rows labeled Total show the total percentage of errors in the MIXED systems; the
remaining cells these errors changing from OLD to MIXED. For the medical domain, the OLD system has 18.6%
SCORE errors. Of those, 5.3% are fixed in the MIXED system.

For our two domains of interest, addressing SEEN errors can be substantially helpful, in terms of both BLEU
score and the fine-grained distinctions considered by WADE. The more interesting conclusion, however, is that simply
bringing in new words isn’t enough. Table 8.3 shows that in these two domains there are a substantial number of errors
that transition from being SEEN-Incorrect to SENSE-Incorrect. This indicates that besides observing a new word, we
must also observe it with all of its correct translations.

Likewise, there is a lot to be gained in BLEU by correcting new SENSE translation errors (essentially the same
percentage as for SEEN). But this is harder to solve. We can see in Table 8.3 that from the SENSE errors of the OLD
system, half become correct but the other half become SCORE errors. So giving appropriate scores to the new senses is
a challenge. This makes sense: these new sense are now “competing” with old ones, and getting the interpolation right
between old and new domain tables is difficult.

Table 8.4 shows the results of our TETRA analysis, which is largely consistent with what we see in the WADE
analysis. That is, for both domains, fixing SEEN errors can be substantially helpful in terms of BLEU score as well as
the finer-grained distinctions considered by WADE. The same is true to a lesser degree for SENSE errors. The more
interesting conclusion, however, is that simply translating new words is not enough; we must also observe a new word
with all of its correct translations and translation scores.

In Irvine et al. (2013a), we concluded that that majority of the difference between the performance of the old-
domain model and each of the mixed-domain models, which are trained using both old and new domain parallel data,
is due to SEEN and SENSE errors. Old-domain models also make many SCORE errors. However, they can be difficult to
correct, even given some new domain parallel training data, because manipulating scores can hurt as often as it helps.
In our experiments in Section 8.3, rather than manipulate the existing OLD model scores, we augment a model with
new features estimated using new-domain comparable corpora.

8.3 New-Domain Comparable Corpora
We once again use Wikipedia as a source of comparable corpora. There are over half a million pairs of inter-lingually
linked French and English Wikipedia documents.3 We assume that we have enough monolingual new-domain data in
one language to rank Wikipedia pages according to how new-domain-like they are. In particular, in our experiments
here, we use our new-domain English language modeling data to measure new-domain-likeness. We could have tar-
geted our learning even more by using our new-domain French test sets to select comparable corpora. Doing so may
increase the similarity between our test data and comparable corpora. However, to avoid overfitting any particular test
set, we use our large English new-domain LM corpus instead.

For each inter-lingually linked pair of French and English Wikipedia documents, we compute the percent of English
phrases up to length four that are observed in the English monolingual new-domain corpus and rank document pairs
by the geometric mean of the four overlap measures. More sophisticated ways to identify new-domain-like Wikipedia
pages (e.g. Moore and Lewis (2010)) may yield additional performance gains, but, qualitatively, the ranked Wikipedia
pages seem reasonable for the purposes of generating a large set of top-k new-domain document pairs. The top-10
ranked pages for each domain are listed in Table 8.5. The top ranked science domain pages are primarily related to
concepts from the field of physics but also include computer science and chemistry topics. The top ranked medical
domain pages are nearly all prescription drugs, which makes sense given the content of the EMEA medical corpus.

3We limit our set to those pages that are at least 500 words long, avoiding pages with only small amounts of natural language content.
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Science Medical
Diagnosis (artificial intelligence) Pregabalin

Absorption spectroscopy Cetuximab
Spectral line Fluconazole

Chemical kinetics Calcitonin
Mahalanobis distance Pregnancy category

Dynamic light scattering Trazodone
Amorphous solid Rivaroxaban

Magnetic hyperthermia Spironolactone
Photoelasticity Anakinra

Galaxy rotation curve Cladribine

Table 8.5: Top 10 Wikipedia articles ranked by their similarity to a new-domain English corpus.

In our experiments in Section 8.4, we explore the effect of varying the number of comparable document pairs used to
estimate the new feature scores.

8.4 Using Comparable Corpora to Score Phrase Tables for Domain Adapta-
tion

We begin with a scored phrase table estimated using our old-domain (Hansard) parallel training corpus. Then, we use
the methods described in Chapter 5 to supplement the baseline model with additional translation scores estimated over
new-domain comparable corpora. We rank English Wikipedia documents according to how new-domain-like they are
and use the top-k pages to estimate the following additional phrase table features: (1) phrasal context similarity, (2)
lexical context similarity, (3) phrasal topic similarity, (4) lexical topic similarity, and (5) lexical string similarity. The
details of each feature function are given in Chapter 5.

These similarity metrics all allow for scores of zero, which can be problematic for our log-linear translation models.
We use our second tuning sets4 to tune a minimum threshold parameter for our new features. We measure performance
in terms of BLEU score on the second tuning set as we vary the new feature threshold between 1e 07 and 0.5 for
each domain. A threshold of 0.01, for example, means that we replace all feature with values less than 0.01 with 0.01.
For both new-domains, performance drops when we use thresholds lower than 0.01 and higher than 0.25. We use a
minimum threshold of 0.1 for all experiments presented below for both domains.

We word align our old-domain training corpus using GIZA++ and use the Moses SMT toolkit (Koehn et al., 2007)
to extract a phrase table. Our baseline models use a phrase limit of seven and the standard phrase-based SMT feature
set, including forward and backward phrase and lexical translation probabilities. Additionally, we use the standard
lexicalized reordering model. We experiment with three 5-gram language models trained using SRILM with Kneser-
Ney smoothing on (1) the English side of the Hansard training corpus, (2) the relevant new-domain monolingual
English corpus, and (3) the English side of our comparable corpora. We use the top 50, 000 most new-domain-like
English Wikipedia documents (about 60 million words for each domain) to train our comparable corpora language
models.5 We experiment with different language model combinations to measure how much performance varies with
our access to monolingual new-domain language modeling data.

Our first comparison system augments the standard feature set with the orthographic similarity feature, which is not
based on comparable corpora. Our second comparison system uses both the orthographic feature and the contextual
and topic similarity features estimated over a random set of comparable document pairs. The third system estimates
contextual and topic similarity using new-domain-like comparable corpora. We tune our phrase table feature weights
for each model separately using batch MIRA (Cherry and Foster, 2012) and new-domain tuning data. Results are
averaged over three tuning runs, and we use the implementation of approximate randomization released by Clark et al.
(2011) to measure whether the output of each feature-augmented model is statistically significantly different from the
baseline model that uses the same language model.

4test2 datasets released by Irvine et al. (2013a)
5We experimented with language models estimated over varying numbers of top-k new-domain-like English documents and did not observe any
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Language Model(s) Medical Science

Old

Baseline 22.70 21.29
+ Orthographic Feature 23.09* ( 0.4) 21.86* ( 0.6)

+ Orthographic & Random CC Features 23.22* ( 0.5) 21.88* ( 0.6)
+ Orthographic & New-domain CC Features 23.98* ( 1.3) 22.55* ( 1.3)

Old+New

Baseline 28.82 26.18
+ Orthographic Feature 29.02 ( 0.2) 26.40* ( 0.2)

+ Orthographic & Random CC Features 28.86 ( 0.0) 26.52* ( 0.3)
+ Orthographic & New-domain CC Features 29.16* ( 0.3) 26.50* ( 0.3)

Old+CC

Baseline 22.70 21.71
+ Orthographic Feature 23.14* ( 0.4) 22.05* ( 0.3)

+ Orthographic & Random CC Features 23.23* ( 0.5) 22.40* ( 0.7)
+ Orthographic & New-domain CC Features 23.62* ( 0.9) 22.96* ( 1.3)

Table 8.6: Comparison between the performance of baseline old-domain translation models and domain-adapted mod-
els in translating science and medical domain text. We experiment with different combinations of three language
models: old, trained on the English side of our Hansard old-domain training corpus, new, trained on the English side
of the parallel training data in each new domain, and cc, trained on the English side of our comparable corpora. We
use comparable corpora of 5, 000 (1) random, and (2) the most new-domain-like document pairs to score phrase tables.
All results are averaged over three tuning runs, and we perform statistical significance testing comparing each system
augmented with additional features with the baseline system that uses the same LMs. * indicates that the BLEU scores
are statistically significantly different to a p-value of less than 0.01 compared with the baselines.

Table 8.6 presents a summary of our results on the test set in each domain.6 We compare (1) a baseline SMT model,
(2) our baseline augmented with features estimated over 5 thousand randomly selected pairs of Wikipedia pages, (3)
our baseline augmented with features estimated over 5 thousand pairs of Wikipedia pages selected for their similarity
with our new-domain target language corpus.

Using only the old-domain LM, our baselines yield BLEU scores of 22.70 and 21.29 on the medical and science test
sets, respectively. When we add the orthographic similarity feature, BLEU scores increase significantly, by about 0.4
on the medical data and 0.6 on science. Adding the contextual and topic features estimated over a random selection of
comparable document pairs improves BLEU scores slightly in both domains. Finally, using the most new-domain like
document pairs to estimate the contextual and topic features yields a 1.3 BLEU score improvement over the baseline
in both domains. For both domains, this result is a statistically significant improvement7 over each of the first three
systems.

In both domains, the new-domain language models contribute substantially to translation quality. Baseline BLEU
scores increase by about 6 and 5 BLEU scores points in the medical and science domains, respectively, when we
add the new-domain LMs. In the medical domain, neither the orthographic feature nor the orthographic feature in
combination with contextual and topic features estimated over random document pairs results in a significant BLEU
score improvement. However, using the orthographic feature and the contextual and topic features estimated over new-
domain document pairs yields a small but significant improvement of 0.3 BLEU. In the science domain, in contrast, all
three augmented models perform statistically significantly better than the baseline. Contextual and topic features yield
only a slight improvement above the model that uses only the orthographic feature, but the difference is statistically
significant. For the science domain, when we use the new domain language model, there is no difference between esti-
mating the contextual and topic features over random comparable document pairs and those chosen for their similarity
with new-domain data.

In the medical domain, the language model trained on 50, 000 English documents in our comparable corpora does
not improve performance above the baseline that uses only the old domain LM. In contrast, with the new language
model, BLEU scores increase by about 0.4 in the science domain in all experimental conditions. Differences across
domains may be due to the fact that the medical domain corpora are much more homogenous, containing the often
boilerplate text of prescription drug labels, than the science domain corpora. The science domain corpora, in contrast,

significant difference in performance; none of the LMs improve translation quality.
6The slight differences between baseline BLEU scores and those presented in Table 8.4 are due only to variation in tuning. In each table we

presented those published in our prior work, Irvine et al. (2013a) and Irvine and Callison-Burch (2014b).
7p-value 0.01
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Training Data Percent of Words
Word Frequency Medical Science

Tokens 0 (OOV) 7.3% 5.8%
Type 23.5% 27.8%
Tokens

5

9.6% 7.7%
Type 30.4% 35.3%
Tokens

10

10.7% 8.6%
Type 32.9% 38.32%

Table 8.7: Type and token-based OOV rate on the tuning set for each new domain, with respect to the full Hansard
corpus.

contain abstracts from several different scientific fields; because that data is more diverse, a randomly chosen mixed-
domain set of comparable corpora may still be relevant and useful for adapting a translation model.

Figure 8.1 shows learning curves over a varying number of comparable document pairs for each domain. The
simple baseline uses only the standard bilingual phrase table features estimated over the old-domain parallel training
corpus and both the old and new LMs. Our proposed approach orders comparable document pairs by how new-domain-
like they are and augments models with the orthographic feature as well as the contextual and topic features estimated
over the top-k document pairs. As a result, using more comparable document pairs means that there is more data from
which to estimate signals, but it also means that the data is less new-domain like overall.

In the medical domain, we do not observe additional performance gains by using more than just a few thousand
comparable document pairs to estimate the new features. In fact, performance drops when 10, 000 or more document
pairs are used. Again, we attribute this to the homogeneity of the medical data; only a small set of documents in our
comparable corpora are in the same domain of text. In contrast, BLEU scores improve very slightly as we add more
comparable document pairs in the science domain. These gains are not statistically significant, however.

The two major findings in the experiments presented here are as follows: (1) Doing domain adaptation by using
new-domain comparable corpora to score a phrase table estimated over old-domain data can significantly improve
translation quality, and (2) Results are highly dependent on the type and size of the initial mixed-domain comparable
corpus as well as the homogeneity of the text domain of interest.

8.5 Using Comparable Corpora to Translate Unseen Words for Domain Adap-
tation

In Section 8.4, we used new-domain comparable corpora to reduce the number of SCORE errors in a domain adaptation
SMT setting. Here, we use comparable corpora to reduce the number of SEEN errors. As was the case for low resource
SMT, there is a lot to be gained in terms of translation quality from identifying translations for previously unseen, or
OOV, words. As in Chapter 6, we use the bilingual lexicon induction technique introduced in Chapter 4 to identify
new unigram translations, in this case for unknown and low frequency words in our new-domain tuning and test sets.
Table 8.7 gives the rate of OOV and low frequency words for each domain’s tuning set with respect to the full Hansard
corpus.

8.5.1 Bilingual Lexicon Induction Model
We train a bilingual lexicon induction model on 3, 000 unigram translations taken from the word-aligned Hansard
old-domain corpus. As in Chapter 4, we use three times as many randomly chosen word pairs as examples of non-
translations. Here, we only use features extracted from Wikipedia data. Our feature set includes the following, a subset
of those used in Chapter 4:

1. Orthographic Similarity
2. Wikipedia Contextual Similarity
3. Wikipedia Topic Similarity
4. Wikipedia Frequency Similarity
5. Wikipedia IDF Similarity
6. Wikipedia Burstiness Similarity
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(a) Medical

(b) Science

Figure 8.1: Translation performance in terms of BLEU score as we vary the number of comparable document pairs
used for scoring. Our approach ranks comparable document pairs by how new-domain-like they are, so, as the number
increases, we estimate features over a larger amount of data, but the data is less homogeneous.

7. String Identity
8. Inverse Log of Target Wikipedia Frequency

We test our model on a held-out set of 2, 000 translations from our old domain data. Our French BLI models
achieve top-1 and top-10 accuracies of 44% and 63%, respectively.

8.5.2 Evaluation of Induced Translations
We identify all new-domain words that appear ten or fewer times in our old-domain training data. Using the model
learned over old-domain word pairs, we induce a top-k list of translations for each word in our new-domain list. We
allow all English words that appear three or more times in our comparable corpora as candidate translations. As usual,
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Domain Comparable Corpus Top-1 Accuracy Top-10 Accuracy

Medical

Random 5k 4.1 6.0
Top 5k Medical 29.7 42.5

Top 50k Medical 27.5 42.5

Science

Random 5k 6.0 9.0
Top 5k Science 21.0 31.6
Top 50k Science 24.9 38.9

Table 8.8: Performance of bilingual lexicon induction on tuning set words in each domain that appear 10 or fewer
times in the old-domain training data. Accuracies give the percent of source words for which a correct target language
translation appears in its top-k ranked list of induced translations.

before moving to end-to-end SMT experiments, we measure the quality of our induced translations intrinsically. Table
8.8 shows the top-1 and top-10 accuracies of induced translations for the OOV and low frequency words in each
domain’s tuning set using several different comparable corpora. Overall, performance is substantially lower than what
we observed over our held out old-domain test set. However, here, the unigrams for which we would like to induce
translations are low frequency. As we showed in Chapter 4, the performance of our bilingual lexicon induction models
tends to be lower on lower frequency words.

In Section 8.4, we compared the impact of augmenting a baseline SMT model with new features estimated over
a random set of comparable document pairs and those estimated over new-domain comparable document pairs. We
perform similar experiments here and compare the accuracy of induced unigram translations when we estimate features
over (1) a general corpus of comparable document pairs, and (2) new-domain comparable document pairs. In all
experiments, we use the same trained model for ranking candidate translations and only vary how we estimate features
over our test sets. Because we have assumed that we do not have access to a new-domain parallel training corpus
or dictionary, we do not train a domain-specific model of bilingual lexicon induction. For both the medical and the
science domain, estimating features over the 5, 000 most new-domain document pairs dramatically outperforms doing
so over a random set of 5, 000 document pairs. In the medical domain, top-1 accuracy increases from 4% to 30% when
we move from random documents to new-domain document pairs, and in the science domain it increases from 6% to
21%. When we use the 50, 000 instead of the 5, 000 most new-domain-like document pairs to estimate features, we
observe only slight performance increases for science and no additional gains on the medical data. This is consistent
with our experiments estimating new phrase table features; using more data is slightly helpful in the science domain
but not in the medical domain. Again, we attribute this to the relative heterogeneity of the science domain corpora in
comparison with the medical domain corpora.

8.5.3 Integrating Translations into End-to-End SMT
Table 8.9 shows the results of our end-to-end SMT experiments where we do domain adaptation by (1) adding new
features estimated over new-domain comparable corpora (Section 8.4), improving SCORE errors, (2) adding new trans-
lations induced from new-domain comparable corpora, improving SEEN errors, and (3) adding both new scores and
new translations. As before, we compare the impact of estimating features and identifying new translations using a ran-
dom set of comparable document pairs with using new-domain comparable document pairs. We present results using
the old-domain language model only as well as both the old and new domain language models. In all experiments, we
add the top-1 ranked translation for each OOV and low frequency word as well as accent-stripped identity translations,
which we showed to be useful in our prior work (Irvine et al., 2013b).

In general, the results show that augmenting models with translations of OOV and low frequency words does not
improve performance in most cases. The one exception is in the medical domain using both the old and new domain
LMs; BLEU scores increase by about 0.2 in comparison with the model augmented with scores alone. We attribute this
negative result to two things. First, because our old-domain Hansard training corpus is so large, OOV rates are fairly
low even in our domain adaptation setting. As Table 8.7 shows, only about 7% and 6% of word tokens in the medical
and science tuning sets, respectively, are OOV, which corresponds to about two words per sentence in the science data
and about one word per sentence in the medical data.8 Secondly, our top-1 accuracies are only about 30% and 20% on

8Sentences in the science data are much longer, about 32 words on average, than those in the medical data, which are about 16 words long on
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Domain Comparable SMT Model Language Model
Corpus Old Old + New

Medical

Baseline 22.70 28.82

Random 5k
Scores 23.22* ( 0.5) 28.86 ( 0.0)
Induced Translations 22.12* ( 0.6) 28.27* ( 0.6)
Scores & Induced Translations 22.46 ( 0.2) 28.26* ( 0.6)

Top 5k Medical
Scores 23.98* ( 1.3) 29.16* ( 0.3)
Induced Translations 22.32 ( 0.4) 28.88 ( 0.1)
Scores & Induced Translations 23.62* ( 0.9) 29.35* ( 0.5)

Science

Baseline 21.29 26.18

Random 5k
Scores 21.88* ( 0.6) 26.52 ( 0.3)
Induced Translations 20.20* ( 1.1) 25.39* ( 1.1)
Scores & Induced Translations 21.02* ( 0.3) 25.69* ( 0.8)

Top 5k Science
Scores 22.55* ( 1.3) 26.50 ( 0.3)
Induced Translations 20.39* ( 0.9) 25.90* ( 0.3)
Scores & Induced Translations 21.45 ( 0.2) 26.29 ( 0.1)

Table 8.9: BLEU score results applying our methods for scoring a phrase table ( Scores), inducing translations for
OOV and low frequency words ( Induced Translations), and both ( Scores & Induced Translations) in a domain
adaptation SMT setting. The highest BLEU scores for each domain and LM condition are highlighted.

the medical and science data, respectively. Because OOV rates are low and our lexicon induction accuracy is modest,
our efforts to improve SEEN errors yield small or no gains. Although there are more low frequency words than OOV
words, unlike the low resource language pair setting that we explored in Chapter 6, because our old-domain baselines
are trained on such a large corpus, there are likely to be many fewer alignment errors, and, hence, our models are more
likely to contain accurate translations for low frequency items.

In our prior work in Irvine et al. (2013b), we used an alternate approach to inducing translations for OOV and low
frequency words in a domain adaptation setting and saw substantial gains in BLEU scores. However, in that work,
we limited our old-domain training set to every 32nd line in the original set, making the baseline model much weaker
and easier to improve. We would likely see more gains from augmenting models with induced translations using the
methods presented here if our initial baselines were also weaker.

8.5.4 Conclusion
In this chapter, we applied our methods for using comparable corpora to score an existing phrase table and induce
translations to the domain adaptation setting. We showed that using comparable corpora selected for their new-domain-
likeness to score a phrase table resulted in statistically significant improvements in French-English translation quality
above very strong baseline systems for both the science and medical domains. We also presented one negative result;
using our methods for inducing translations for OOV words and augmenting models in the same domain adaptation
setting did not result in improvements in translation quality. We attribute this primarily to the strength of our baseline
models, which have low OOV rates.

average.



Chapter 9

Conclusion

The performance of statistical machine translation models is heavily dependent upon the amount and type of parallel
data used for training. For some language pairs and domains of text, for example French-English newswire or par-
liamentary proceedings, very large amounts of parallel data are available and the quality of machine translation has
improved dramatically in the past two decades as methods for learning models from such data have matured. However,
for many language pairs and domains of text, very little or no parallel data is available. Without parallel data, we are
unable to use standard methods to estimate high quality statistical translation model parameters and, thus, are unable
to generate high quality machine translations. In this thesis, we used comparable corpora to improve the performance
of SMT models trained using little or no parallel data. In particular, in this thesis we used comparable corpora to
identify new word and phrase translations and to estimate translation probabilities. Many of our techniques were taken
from prior work in bilingual lexicon induction; one of the major contributions of this thesis is the application of such
techniques to end-to-end SMT.

In Chapter 3 we presented dictionaries and comparable corpora that we have collected for over 150 human lan-
guages. Our dictionaries come from a variety of sources, including scanned paper dictionaries and through crowd-
sourcing efforts. Although some dictionaries were publicly available already, others were not, and the compilation of
new and existing dictionaries is a valuable resource for ongoing research in multilingual natural language processing.
Our comparable corpora come from Wikipedia and crawls of online news websites. Wikipedia is freely available for
download and has been used extensively in prior NLP research. One small contribution of this thesis is the release of
Wikipedia data for 142 foreign languages which has already been extracted from the original source HTML, prepro-
cessed, and paired with inter-lingually linked English pages. The comparable news data that we release is a result of a
multi-year web crawl effort. Unlike the Wikipedia data, our news crawl data is a novel resource. Like the Wikipedia
data, we release preprocessed datasets for over 100 languages.

This thesis presents two novel error analysis techniques and makes use of both throughout. In Chapter 3, we
presented Table Enhancement for Translation Analysis (TETRA) and Word Alignment Driven Evaluation (WADE),
which are two methods for measuring different types of lexical choice errors. In Irvine et al. (2013a), we released code
for running both types of analysis. In Section 6.4.4.2, we expanded our original WADE definition to take advantage of
multiple reference translations. Sections 3.4.2 and 8.2 gave the results of our analyses over outputs produced by low
resource models trained on small amounts of parallel data and those produced by models trained on old-domain data,
respectively. In both settings, the results of our analyses showed the major sources of error result from unseen source
language words and unseen translations. In Sections 6.4.4.2 and 8.2, we showed that augmenting models with new
translations is not enough; we must also score them accurately.

In Chapter 4 we presented a new supervised discriminative approach to inducing word translations. We defined
and used a variety of features estimated over comparable corpora and a small number of example translations to
learn a model for classifying word pairs as translations or non-translations. We provided an extensive analysis of the
effectiveness of the following signals, most of which we estimated using comparable corpora: contextual, temporal,
orthographic, topic, frequency, and burstiness similarity. Most features had been used in prior work on bilingual lexicon
induction. The one exception is our topic feature, which we defined and which proved to be one of the most valuable
signals for predicting translations. Using a diverse feature set, we observed gains on the bilingual lexicon induction task
of greater than 100% over an unsupervised rank-combination baseline using the same feature set. We also observed
gains of greater than 60% over a previously state-of-the-art model (Haghighi et al., 2008) using the same feature subset
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as the prior work. When we used our full feature set, we saw improvements of over 180% above the Haghighi et al.
(2008) baseline. We showed that our proposed model is robust to the amount and type of training data; high quality
models may even be learned using supervision from a different language pair. Additional experiments showed that
bursty, frequent words are easier to translate than less bursty, infrequent words. Throughout our bilingual lexicon
induction experiments, we presented results inducing English translations for source words in 24 foreign languages,
emphasizing the general applicability of our approach.

In Chapter 5, we adapted our techniques for estimating signals of translation equivalence for pairs of words in
order to score pairs of phrases. In our experiments, we showed that, given a high-quality but noisy phrase table,
our new comparable corpora-based feature functions did a good job of distinguishing high quality from low quality
phrase pairs. When we dropped all of the bilingually estimated features from a phrase table and replaced them with
our monolingual equivalents, we were able to regain 56% of the loss in our Spanish-English setting and 36% of the
loss in our Urdu-English experiments. These experiments demonstrated the strength of the features estimated over
comparable corpora.

In Chapter 6, we dropped the Chapter 5 assumption that we were given a set of high quality phrase pairs. Instead,
we assumed a more realistic setting in which we had access to a small amount of parallel text from which to estimate
a baseline SMT model. We augmented the low resource SMT models with both new translations identified using our
discriminative bilingual lexicon induction model (Chapter 4) and new phrase pair features estimated over comparable
corpora (Chapter 5). We found that improvements resulting from new translations and new features are nearly additive,
and we observed total BLEU score gains of up to 1.5 points for the following truly low resource languages: Bengali,
Hindi, Malayalam, Tamil, Telugu, and Urdu. Although the gains in BLEU score were substantial, the gains in terms
of the readability of the output machine translations were dramatic. This was largely due to our models translating
previously unknown words. Additional experiments showed that each of the following can also improve performance:
augmenting models with more than a single translation for source words, inducing translations for low frequency source
words as well as OOV words, and using as much comparable corpora as possible to estimate new feature functions.

Chapter 6 mainly presents experimental results building upon the novel ideas developed in Chapters 4 and 5.
However, the Chapter 6 experiments are a valuable result in that they bridge prior work on bilingual lexicon induction
with end-to-end machine translation. Although prior work on bilingual lexicon induction has typically pointed to
machine translation as an application, very little prior work has actually incorporated induced bilingual lexicons into
SMT models. In fact, a lot of prior work only induced translations for frequent nouns (e.g. Haghighi et al. (2008)),
and it remained to be seen if inducing translations for, for example, OOV words and augmenting SMT models with the
new phrase pairs would improve translation quality. We showed that induced translations integrated into end-to-end
SMT can improve machine translations and measured their effect in a variety of experimental conditions. Also unlike
prior work, we found it important and valuable to experiment with truly low resource languages.

In Chapter 7, we proposed a method for composing phrase translations from multiple unigram translations. The
composition algorithm that we defined and used is more flexible than prior definitions of compositionality. That is, it
generates more translation candidates for source phrases than more strict definitions. We provided a rigorous analysis
of the tradeoffs between generating high-precision, lower recall sets of composed phrase translations and generating
low-precision, higher recall sets. We deliberately chose a fairly high-recall algorithm for composing translations and
then used features estimated over comparable corpora to prune and rank large sets of hypothesis composed phrase
translations. For both Spanish-English and Hindi-English translation, we observed improvements in translation quality
of over half a BLEU point above baselines augmented with induced unigram translations and monolingual features.

In Chapter 8 we used comparable corpora to tackle the domain shift problem in machine translation, which is
closely related to that of working with low resource language pairs. In this setting, we have large amounts of parallel
training data in some old domain of text but not enough training data in the new domain to train a high quality SMT
model. We experimented with French to English translation of medical and scientific text given large amounts of
parliamentary proceedings old-domain parallel text because large, public datasets exist for that language pair and those
domains. We used our methods for inducing new translations and scoring existing phrase pairs to augment baseline
models and observed gains in translation quality of up to 1.3 BLEU points over very strong French-English baselines.
As was the case for low resource language pairs, our approaches improve translation quality more than BLEU scores
may suggest because we target and translate previously unknown words, which contribute substantially to readability.
Like the results in Chapter 6, Chapter 8 largely presents experimental results employing the techniques developed in
previous chapters. However, these experimental results provide valuable insight into the potential for using comparable
corpora to augment SMT models in a variety of settings. In particular, like Chapter 6, Chapter 8 presents novel results
applying bilingual lexicon induction to end-to-end SMT.
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We believe that making use of alternative data resources is critical for expanding the applicability of statistical
machine translation beyond the few language pairs and domains for which large parallel datasets exist. In this thesis,
we have taken advantage of one such data resource, comparable corpora. In particular, we have improved and ap-
plied previous approaches to bilingual lexicon induction to end-to-end SMT. Our experiments show that augmenting
baseline SMT systems with new translations and features estimated over comparable corpora can improve translation
performance significantly for truly low resource language pairs.
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Chapter 10

Language Set

Language Family Location Word
Order

Affixing

Afrikaans Indo-European South Africa - -
Albanian Indo-European Albania, Serbia, Montenegro SVO Strongly suffixing
Alemannic German Indo-European Switzerland, Germany, Austria,

etc.
None Strongly suffixing

Amharic Afro-Asiatic Ethiopia SOV Weakly suffixing
Ao Sino-Tibetan India SOV Weakly suffixing
Arabic Afro-Asiatic Africa, Middle East, etc. VSO Strongly suffixing
Aragonese Indo-European Spain - -
Armenian Indo-European Armenia None Strongly suffixing
Assamese Indo-European India SOV Strongly suffixing
Asturian Indo-European Spain - -
Azeri Altaic Azerbaijani SOV Strongly suffixing
Bashkir Altaic Russia SOV Strongly suffixing
Basque Basque France, Spain SOV Equal
Belarusian Indo-European Belarus None Strongly suffixing
Bengali Indo-European Bangladesh, India SOV -
Bihari Indo-European India - -
Bishnupriya Manipuri Indo-European India, Bangladesh, Myanmar - -
Bosnian Indo-European Bosnia-Herzegovina - -
Breton Indo-European France SVO Weakly suffixing
Buginese Austronesian Indonesia SVO -
Bulgarian Indo-European Bulgaria SVO Strongly suffixing
Burmese Sino-Tibetan Myanmar SOV Strongly suffixing
Catalan Indo-European Spain SVO -
Cebuano Austronesian Philippines VSO -
Central Bicolano Austronesian Philippines - Little affixation
Chinese (Mandarin) China Sino-Tibetan SVO Strongly suffixing
Chuvash Altaic Russia SOV Strongly suffixing
Croatian Indo-European Croatia SVO Strongly suffixing
Czech Indo-European Czech Republic SVO Weakly suffixing
Danish Indo-European Denmark SVO Strongly suffixing
Dari Indo-European Afghanistan - -
Dhivehi Indo-European Maldives - -
Dutch Indo-European Netherlands None Strongly suffixing
Esperanto Constructed - - -
Estonian Uralic Estonia SVO Strongly suffixing
Faroese Indo-European Denmark - -
Farsi Indo-European Iran SOV Weakly suffixing
Finnish Uralic Finland SVO Strongly suffixing
French Indo-European France, Switzerland SVO Strongly suffixing
Galician Indo-European Spain - -
Georgian Kartvelian Georgia SOV Weakly suffixing
German Indo-European Austria, Germany, Switzerland None Strongly suffixing
Gilbertese (Kiribati) Austronesian Kiribati VOS Equal
Goan Konkani Indo-European India - -
Greek Indo-European Greece None Strongly suffixing
Gujarati Indo-European India SOV -
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Table 10.1 – continued from previous page
Language Family Location Word

Order
Affixing

Haitian Other (Creole) Haiti - -
Hebrew Afro-Asiatic Israel SVO Weakly suffixing
Hindi Indo-European India SOV Strongly suffixing
Hungarian Uralic Hungary None Strongly suffixing
Icelandic Indo-European Iceland SVO Strongly suffixing
Ido Constructed - - -
Ilokano Austronesian Philippines VSO -
Indonesian Austronesian Indonesia SVO Strongly suffixing
Irish Indo-European Ireland VSO Equal
Italian Indo-European Italy, Switzerland SVO Strongly suffixing
Japanese Japanese Japan SOV Strongly suffixing
Javanese Austronesian Indonesia - -
Kalaallisut (West
Greenlandic)

Eskimo-Alteut Greenland SOV Strongly suffixing

Kannada Dravidian India SOV Strongly suffixing
Kapampangan Austronesian Philippines - -
Kashmiri Indo-European India, Pakistan SVO -
Kazakh Altaic Kazakhstan - -
Khasi Austro-Asiatic India SVO Little affixation
Khmer Austro-Asiatic Cambodia SVO Little affixation
Kinyarwanda Niger-Congo Rwanda SVO -
Korean Korean North Korea, South Korea SOV Strongly suffixing
Kurdish Indo-European Iran, Iraq SOV Weakly suffixing
Kyrgyz Altaic Kyrgyzstan - Strongly suffixing
Lao Tai-Kadai Laos, Thailand SVO Little affixation
Latin Indo-European - - -
Latvian Indo-European Latvia SVO Weakly suffixing
Lithuanian Indo-European Lithuania SVO Strongly suffixing
Lombard Indo-European Italy, Switzerland - -
Low Saxon Indo-European Germany - -
Luganda Niger-Congo Uganda - Strongly prefixing
Luxembourgish Indo-European Luxembourg - -
Macedonian Indo-European Macedonia SVO -
Malagasy Austronesian Madagascar VOS Little affixation
Malayalam Dravidian India SOV -
Malaysian Austronesian Malaysia - -
Marathi Indo-European India SOV Strongly suffixing
Maltese Afro-Asiatic Malta - -
Maori Austronesian New Zealand VSO Little affixation
Mizo Sino-Tibetan Bangladesh, India SOV Little affixation
Mongolian (Khalkha) Altaic Mongolia SOV Strongly suffixing
Montenegrin Indo-European Montenegro SVO Strongly suffixing
Neapolitan Indo-European Italy - -
Nepali Indo-European Nepal SOV Strongly suffixing
Newar / Napal Bhasa Sino-Tibetan Nepal SOV Strongly suffixing
Norwegian Indo-European Norway SVO Strongly suffixing
Norwegian (nynorsk) Indo-European Norway SVO Strongly suffixing
Occitan Indo-European France - -
Oriya Indo-European India SOV Strongly suffixing
Pangasinan Austronesian Philippines VSO -
Panjabi Indo-European India, Pakistan SOV Strongly suffixing
Papiamento Other (Creole) Netherlands, Antilles - -
Pashto Indo-European Afghanistan, Pakistan SOV Strongly suffixing
Piedmontese Indo-European Italy - -
Polish Indo-European Poland SVO Strongly suffixing
Portuguese Indo-European Portugal SVO Strongly suffixing
Quechua Quechuan Peru, Bolivia, Equador SOV Strongly suffixing
Romani Indo-European United Kingdom None Strongly suffixing
Romanian Indo-European Romania SVO Strongly suffixing
Romansh Indo-European Switzerland - -
Russian Indo-European Russia SVO Strongly suffixing
Sami Uralic Finland, Norway, Sweden SVO Strongly suffixing
Sanskrit Indo-European India - -
Serbian Indo-European Serbia SVO Strongly suffixing
Serbo-Croatian Indo-European Bosnia-Herzegovina, Croatia,

Serbia, and Montenegro
SVO Strongly suffixing
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Table 10.1 – continued from previous page
Language Family Location Word

Order
Affixing

Shona Niger-Congo Zimbabwe SVO Strongly prefixing
Sicilian Indo-European Italy - -
Sindhi Indo-European India, Pakistan - -
Sinhalese Indo-European Sri Lanka SOV -
Slovak Indo-European Slovakia - -
Slovenian Indo-European Slovenia SVO Strongly suffixing
Somali Afro-Asiatic Somalia SOV Strongly suffixing
Spanish Indo-European Spain SVO Strongly suffixing
Sundanese Austronesian Indonesia SVO Little affixation
Swahili Niger-Congo Tanzania SVO Weakly prefixing
Swedish Indo-European Finland, Sweden SVO Strongly suffixing
Tagalog Austronesian Philippines VSO Little affixation
Tajik Indo-European Tajikistan SOV Weakly suffixing
Tamil Dravidian India, Sri Lanka SOV Strongly suffixing
Tatar Altaic Russia SOV Strongly suffixing
Telugu Dravidian India SOV Strongly suffixing
Tetum Austronesian East Timor SVO Little affixation
Thai Tai-Kadai Thailand SVO Little affixation
Tibetan Sino-Tibetan China SOV -
Tigre Afro-Asiatic Eritrea SOV Weakly suffixing
Tigrinya Afro-Asiatic Eritrea, Ethiopia SOV -
Tongan Austronesian Tonga VSO/VOS Little affixation
Tok Pisin Other (Pidgin) Papua New Guinea - -
Turkish Altaic Turkey SOV Strongly suffixing
Turkmen Altaic Turkmenistan SOV -
Uighur Altaic China SOV Strongly suffixing
Ukrainian Indo-European Ukraine SVO Strongly suffixing
Urdu Indo-European Pakistan SOV Strongly suffixing
Uzbek Altaic Afghanistan, Uzbekistan SOV Strongly suffixing
Valencian Indo-European Spain - -
Vietnamese Austro-Asiatic Vietnam SVO Little affixation
Volapk Constructed - - -
Walloon Indo-European Belgium, France - -
Waray-Waray Austronesian Philippines - -
Welsh Indo-European United Kingdom VSO Strongly suffixing
Western Panjabi Indo-European India, Pakistan - -
West Frisian Indo-European Netherlands - -
Wolof Niger-Congo Gambia, Senegal SVO Little affixation
Yoruba Niger-Congo Benin, Nigeria SVO Little affixation
Zazaki Indo-European Turkey SOV -
Zulu Niger-Congo South Africa SVO Strongly prefixing

Table 10.1: List of 151 languages for which we release language packs, with linguistic annotations taken from WALS.
Blanks indicate missing WALS feature values. Locations are places where a given language is spoken canonically. In
some cases, a given language is spoken much more widely than indicated, for example Spanish is spoken not only in
Spain but throughout Latin America. If there is no dominant word order, ”None” is listed.
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Chapter 11

Data Resources

Thousands of Thousands of
Language Native Speakers Parallel Tokens
Afrikaans 4949 700
Albanian 7436 21240
Amharic 21811 232
Arabic 223010 452840
Armenian 5924 9
Assamese 12828 21
Asturian 110 100
Basque 657 1502
Belarusian 7818 313
Bengali 193263 1579
Berber 10000 200
Bosnian 2216 14416
Breton 1200 300
Bulgarian 6795 143589
Catalan 7220 2391
Chinese 1197392 1156726
Crimean Tatar 475 10
Croatian 5533 110104
Czech 9469 229625
Danish 5592 206182
Dutch 22984 320001
Estonian 1078 72515
Farsi 56645 8907
Finnish 4994 161035
French 68458 1725721
Gaelic 63 2
Galician 3185 1119
Georgian 4237 88
German 83812 353575
Greek 13068 247447
Gujarati 46633 400
Hausa 24988 3
Hebrew 5302 88383
Hindi 260302 1816
Hungarian 12319 159166
Icelandic 243 7456
Ido 0 10
Indonesian 23200 8281
Irish 106 3401
Italian 61068 318102
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Table 11.1 – continued from previous page
Thousands of Thousands of

Language Native Speakers Parallel Tokens
Japanese 122072 15312
Kalmyk 360 1
Kannada 37739 371
Kashubian 100 100
Kazakh 8077 308
Khmer 14224 800
Kinyarwanda 7189 600
Korean 66418 7224
Kurdish 29960 83
Latvian 1472 37030
Lithuanian 3130 38621
Luxembourgish 320 30
Macedonian 1710 11151
Maithili 32800 100
Malay 59418 17500
Malayalam 33534 774
Maltese 429 19701
Marathi 71780 62
Mongolian 5753 1
Nepali 14410 421
Northern Sami 20 200
Norwegian 4741 35918
Occitan 2048 103
Oriya 50137 29
Panjabi 93171 500
Pashto 26940 208
Pedi 4101 1
Polish 39042 105115
Portuguese 202468 297147
Pushto 26940 8
Quechua 9062 1
Romanian 23623 218135
Russian 161727 207119
Serbian 9262 92433
Sinhala 15577 896
Slovak 5007 56337
Slovene 1906 104119
Somali 16559 318
Spanish 405638 779585
Swedish 8381 144733
Tagalog 24216 23
Tajik 4479 400
Tamil 68763 2167
Tatar 5407 1
Telugu 74049 1353
Thai 20421 6600
Turkish 50733 128300
Uighur 8791 17
Ukrainian 36028 2930
Upper Sorbian 13 88
Urdu 63431 3846
Uzbek 21930 100
Vietnamese 67762 5815
Walloon 600 200
Welsh 536 357
Western Frisian 467 200
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Table 11.1 – continued from previous page
Thousands of Thousands of

Language Native Speakers Parallel Tokens
Xhosa 7817 300

Table 11.1: Thousands of native speakers and thousands of parallel text (paired with English) for each of 96 languages.
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Language Scr
Scanned Paper Electronic Crowdsourced All Dicts

Source Total Source Total Source Total Source Total
Words Trans. Words Trans. Words Trans. Words Trans.

Afrikaans r - - - - 8, 223 8, 247 8, 223 8, 247
Albanian r - - 44, 245 104, 608 9, 109 9, 127 51, 351 112, 241
Amharic o 8, 051 8, 093 8, 051 8, 093
Arabic a - - 75, 911 149, 054 10, 103 10, 144 83, 138 157, 886
Aragonese r - - - - 2, 502 2, 518 2, 502 2, 518
Armenian o - - - - 1, 806 1, 876 1, 806 1, 876
Asturian r - - - - 6, 202 6, 214 6, 202 6, 214
Azeri r 2, 047 2, 263 225, 756 225, 808 9, 356 9, 367 236, 442 237, 051
Basque r - - 828 880 9, 017 9, 031 9, 440 9, 726
Belarusian c - - - - 9, 884 9, 894 9, 884 9, 894

Bengali r - - 1, 073 1, 161 - - 1, 073 1, 161
o - - 408 444 10, 127 10, 155 10, 364 10, 494

Bosnian r 9, 643 15, 093 - - 9, 241 9, 305 17, 428 23, 388
Breton r - - - - 2, 086 2, 089 2, 086 2, 089

Bulgarian r - - 5, 057 7, 514 - - 5, 057 7, 514
c - - 67, 663 152, 016 10, 241 10, 287 77, 904 162, 303

Catalan r - - - - 8, 827 8, 852 8, 827 8, 852
Cebuano r - - - - 6, 338 6, 637 6, 338 6, 637
Chinese o - - 54, 164 82, 080 3, 512 3, 963 57, 294 85, 833
Czech r - - 69, 659 180, 496 9315 9329 75, 788 187, 474
Danish r - - - - 8, 092 8, 101 8, 092 8, 101
Dutch r - - 54, 519 122, 323 7, 797 8, 120 58, 141 127, 513

Farsi r 5, 412 6, 663 - - - - 5, 412 6, 663
a - - 96, 208 172, 722 2, 907 2, 926 98, 448 175, 160

Finnish r - - - - 8, 535 8, 550 8, 535 8, 550
French r - - 45, 041 103, 267 7, 792 8, 299 49, 030 108, 625
Galician r - - - - 8, 726 8, 738 8, 726 8, 738
Georgian o - - - - 5, 837 5, 897 5, 837 5, 897
German r - - 54, 039 140, 818 8, 020 8, 093 58, 015 146, 135
Greek o - - 42, 921 82, 069 10, 173 10, 185 53, 094 92, 254
Gujarati o - - - - 9, 977 19, 795 9, 977 19, 795
Haitian r - - - - 5, 620 5, 663 5, 620 5, 663
Hebrew o - - - - 8, 460 8, 491 8, 460 8, 491

Hindi r - - 25, 305 58, 179 - - 25, 305 58, 179
o - - - - 9, 681 9, 824 9, 681 9, 824

Hungarian r - - 138, 585 258, 304 8, 679 8, 771 143, 407 264, 519
Icelandic r - - - - 7, 172 7, 177 7, 172 7, 177
Ilokano r - - - - 4, 318 4, 411 4, 318 4, 411
Indonesian r 31, 799 64, 900 1, 388 2, 143 7, 383 7, 440 35, 442 71, 685
Irish r - - 831 887 8, 369 8, 373 8, 769 9, 012
Italian r - - 36, 663 84, 951 7, 964 8, 056 40, 569 89, 616
Japanese o - - - - 8, 366 8, 516 8, 366 8, 516
Javanese r - - - - 7, 138 7, 358 7, 138 7, 358
Kannada o - - - - 10, 017 10, 192 10, 017 10, 192
Kapampangan r - - 911 1, 000 2, 036 2, 092 2, 750 2, 942
Kazakh r 1, 979 2, 261 137, 403 138, 300 30 30 139, 303 140, 526
Korean o - - 66, 384 88, 717 7, 486 7, 506 72, 279 95, 676
Kurdish r - - 4, 159 6, 632 33 35 4, 186 6, 665
Kyrgyz r 1, 897 2, 164 67, 727 67, 773 - - 69, 547 69, 890
Latin r - - 6, 853 18, 884 - - 6, 853 18, 884
Latvian r - - 33, 486 74, 936 9, 722 9, 746 40, 647 83, 024
Lithuanian r - - - - 9, 692 9, 706 9, 692 9, 706
Low Saxon r - - - - 5, 600 5, 651 5, 600 5, 651
Luxembourgish r - - - - 4, 610 4, 617 4, 610 4, 617
Macedonian c - - - - 9, 961 9, 968 9, 961 9, 968
Malagasy r - - - - 159 159 159 159
Malayalam o - - - - 10, 127 10, 199 10, 127 10, 199
Malaysian r - - 5, 986 9, 438 7, 661 7, 704 11, 292 15, 851
Marathi o - - - - 10, 041 10, 254 10, 041 10, 254
Maltese r - - 5, 395 7, 574 - - 5, 395 7, 574
Maori r - - 13, 566 27, 965 - - 13, 566 27, 965
Mongolian r - - 612 948 - - 612 948

Nepali r 4, 771 6, 074 - - - - 4, 771 6, 074
o - - - - 9, 899 9, 942 9, 899 9, 942

Newar / Nepal
Bhasa

o - - - - 4, 915 4, 921 4, 915 4, 921
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Table 11.2 – continued from previous page

Language Scr
Scanned Paper Electronic Crowdsourced All Dicts

Source Total Source Total Source Total Source Total
Words Trans. Words Trans. Words Trans. Words Trans.

Norwegian r - - - - 8, 050 8, 057 8, 050 8, 057

Panjabi r - - 13, 342 24, 758 - - 13, 342 24, 758
o 5, 641 18, 549 15, 783 32, 538 9, 765 10, 060 28, 224 58, 844

Pashto a - - - - 382 411 382 411
Polish r - - 56, 233 133, 036 9, 050 9, 096 63, 007 140, 534
Portuguese r - - 790 840 8, 457 8, 469 9, 046 9, 204
Romanian r - - 48, 088 130, 458 8, 560 8, 597 54, 305 137, 470
Russian c - - 89, 785 213, 073 870 874 90, 655 213, 947
Serbian r - - 55, 349 122, 710 10, 022 10, 077 65, 166 132, 638
Serbo-Croatian r - - - - 9, 438 9, 465 9, 438 9, 465
Sindhi a - - - - 331 345 331 345
Slovak r - - 48, 683 122, 015 9, 315 9, 328 55, 477 129, 485
Slovenian r - - - - 9, 111 9, 115 9, 111 9, 115
Somali r - - 227 230 6, 912 6, 946 7, 055 7, 116
Spanish r - - 73, 589 204, 754 8, 647 8, 690 77, 465 209, 810
Sundanese r - - - - 4, 537 4, 559 4, 537 4, 559
Swahili r - - - - 7, 328 7, 357 7, 328 7, 357
Swedish r - - 58, 012 116, 784 8, 098 8, 122 62, 593 122, 770
Tagalog r 78, 081 155, 170 24, 498 62, 505 7, 854 7, 964 96, 476 213, 419
Tamil o 58, 236 161, 754 - - 10, 119 10, 212 66, 242 171, 228

Tatar r 1, 642 1, 862 - - - - 1, 642 1, 862
c - - 3, 795 4, 818 - - 3, 795 4, 818

Telugu o - - - - 10, 064 10, 177 10, 064 10, 177
Thai o - - 6, 517 14, 170 4, 594 4, 713 10, 640 18, 732
Tibetan r - - 25, 145 55, 520 - - 25, 145 55, 520
Tigrinya r - - 55 56 - - 55 56
Turkish r 114, 826 231, 795 397, 863 572, 847 9, 073 9, 602 493, 571 776, 089
Turkmen r 1, 824 1, 978 68, 050 76, 282 - - 69, 007 77, 528
Uighur r 1, 880 2, 131 3, 827 4, 774 - - 5, 480 6, 723

Ukrainian r - - 8, 324 14, 056 - - 8, 324 14, 056
c - - - - 10, 005 10, 013 10, 005 10, 013

Urdu r - - 15, 208 33, 832 - - 15, 208 33, 832
a - - - - 10 10 10 10

Uzbek r 1, 964 2, 222 124, 280 154, 991 4, 342 4, 481 128, 420 160, 177
Vietnamese r - - - - 4, 117 4, 270 4, 117 4, 270
Waray-Waray r - - - - 5, 033 5, 282 5, 033 5, 282
Welsh r - - 14, 586 25, 832 7, 166 7, 176 19, 124 31, 259
West Frisian r - - - - 4, 411 4, 437 4, 411 4, 437
Wolof r - - - - 36 36 36 36
Yoruba r - - - - 1, 810 1, 855 1, 810 1, 855

Table 11.2: Data statistics for all dictionaries. The number of unique source sides in each dictionary is given along
with the total number of translations. The second column indicates whether the primary script used in the dictionary is
Roman (r), Cyrillic (c), Arabic (a), or other (o).
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Language Web Crawls Wikipedia
Total High Precision Words PagesWords Words

Afrikaans 2, 204, 061 2, 074, 212 7, 296, 726 18, 904
Albanian 9, 127, 415 8, 958, 410 6, 388, 669 19, 860
Alemannic German* 0 0 4, 447, 599 9, 759
Amharic 619, 349 562, 065 414, 578 3, 073
Ao* 19, 701 - 0 0
Arabic 18, 919, 351 15, 434, 228 38, 805, 091 115, 624
Aragonese 2, 676, 458 2, 339, 692 2, 685, 326 15, 078
Armenian 3, 161, 317 3, 049, 295 5, 912, 883 30, 046
Assamese* 413 0 828, 350 1, 061
Asturian 329, 080 119, 837 2, 177, 174 8, 616
Azeri 3, 842, 179 3, 769, 223 6, 747, 026 26, 896
Bashkir* 7, 425, 473 0 818, 838 5, 112
Basque 7, 135, 032 7, 115, 461 24, 033, 895 93, 890
Belarusian 10, 570, 854 9, 632, 568 9, 726, 774 41, 657
Bengali 8, 295, 164 8, 159, 086 4, 998, 454 18, 603
Bihari* 0 0 68, 093 2, 250
Bishnupriya Manipuri* 954, 790 0 1, 394, 021 14, 986
Bosnian 8, 647, 129 2, 627, 513 7, 515, 961 19, 981
Breton 0 0 7, 962, 606 30, 732
Buginese* 0 0 264, 962 13, 152
Bulgarian 34, 042, 882 32, 684, 588 33, 926, 577 88, 436
Burmese* 4, 190, 851 4, 111, 818 1, 660, 176 3, 639
Catalan 4, 067, 627 3, 956, 588 81, 185, 339 182, 412
Cebuano 1, 886, 463 1, 180, 374 2, 755, 209 52, 026
Central Bicolano* 0 0 343, 513 4, 330
Chinese 2, 067, 024 59, 997 49, 808, 610 288, 528
Chuvash* 0 0 1, 259, 044 6, 534
Croatian* 4, 509, 460 4, 476, 599 26, 242, 455 58, 328
Czech 1, 553, 645 1, 539, 509 61, 572, 889 136, 353
Danish 6, 807, 398 6, 652, 405 13, 908, 104 40, 832
Dari* 3, 607, 320 - 0 0
Dhivehi* 2, 544, 804 2, 351, 921 383, 263 1, 967
Dutch 24, 186, 602 23, 784, 141 89, 235, 296 299, 329
Esperanto* 1, 216, 714 1, 081, 055 17, 182, 282 78, 997
Estonian* 5, 765, 919 5, 605, 449 14, 626, 071 50, 777
Faroese* 678, 443 483, 512 925, 705 4, 691
Farsi 703, 507, 414 699, 678, 151 34, 957, 979 145, 609
Finnish 5, 607, 541 5, 132, 451 43, 164, 766 166, 371
French 131, 582, 433 111, 885, 989 340, 158, 674 575, 923
Galician 1, 511, 284 1, 349, 748 24, 948, 863 52, 645
Georgian 3, 889, 908 3, 771, 502 8, 762, 070 42, 447
German 58, 381, 197 51, 519, 965 314, 275, 796 488, 360
Gilbertese* 311, 488 - 0 0
Goan Konkani* 2, 360, 130 - 0 0
Greek 13, 523, 704 13, 326, 526 29, 680, 446 52, 724
Gujarati 1, 084, 719 1, 035, 840 3, 958, 031 3, 909
Haitian 49, 855 49, 845 1, 055, 107 28, 247
Hebrew 10, 917, 090 10, 840, 597 52, 719, 531 83, 317
Hindi 31, 123, 091 30, 202, 526 16, 198, 183 25, 078
Hungarian 542, 736 523, 814 69, 695, 400 127, 406
Icelandic 1, 161, 186 1, 156, 491 4, 457, 412 17, 469
Ido* 0 0 3, 364, 125 14, 509
Ilokano 0 0 658, 476 4, 714
Indonesian 5, 067, 534 4, 797, 560 26, 769, 690 83, 274
Irish 1, 594, 775 1, 581, 142 2, 849, 017 16, 924
Italian 16, 875, 295 14, 134, 178 212, 715, 388 452, 758
Japanese 79, 015 51, 278 117, 633, 625 296, 243
Javanese 0 0 3, 469, 927 14, 105
Kalaallisut (West Greenlandic)* 7, 936 0 68, 255 1, 386
Kannada 1, 036, 132 1, 001, 895 8, 248, 416 6, 134
Kapampangan 0 0 520, 096 5, 233
Kashmiri* 0 0 3, 077 84
Kazakh 3, 213, 297 0 9, 001, 990 71, 874
Khasi* 2, 538, 370 - 0 0
Khmer* 16, 453, 655 16, 212, 496 813, 036 1, 638
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Table 11.3 – continued from previous page

Language Web Crawls Wikipedia
Total High Precision Words PagesWords Words

Kinyarwanda* 0 0 88, 369 1, 263
Korean 5, 589, 281 5, 571, 812 37, 776, 582 132, 629
Kurdish 4, 892, 227 392, 812 1, 348, 330 6, 351
Kyrgyz 6, 335, 216 0 974, 905 3, 237
Lao* 3, 674, 166 3, 674, 166 98, 824 826
Latin 0 0 9, 546, 651 68, 134
Latvian 36, 156, 391 35, 663, 711 9, 432, 914 33, 024
Lithuanian 2, 854, 697 2, 783, 953 18, 865, 990 68, 942
Lombard* 0 0 2, 717, 835 20, 604
Low Saxon 0 0 4, 700, 093 13, 106
Luganda* 3, 019, 265 0 4, 844 112
Luxembourgish 1, 650, 310 991, 132 5, 132, 551 21, 735
Macedonian 2, 084, 421 2, 047, 306 15, 443, 536 39, 669
Malagasy 0 0 8, 089, 089 34, 431
Malayalam 4, 056, 931 3, 998, 017 5, 080, 980 17, 009
Malaysian 1, 057, 879 751, 874 14, 064, 735 112, 780
Marathi 28, 215, 299 0 2, 453, 664 21, 931
Maltese 1, 114, 480 1, 076, 440 1, 255, 312 1, 857
Maori 0 0 144, 200 2, 188
Mizo* 11, 189, 501 - 0 0
Mongolian 1, 188, 640 0 1, 991, 844 8, 211
Montenegrin* 909, 499 - 0 0
Neapolitan* 0 0 599, 295 6, 654
Nepali 3, 489, 101 0 1, 878, 168 5, 854
Newar / Nepal Bhasa 0 0 810, 380 12, 505
Norwegian 10, 575, 063 0 26, 372, 263 84, 347
Norwegian (nynorsk)* 0 0 12, 720, 136 52, 542
Occitan* 0 0 11, 401, 942 58, 717
Oriya* 109, 020 0 411, 392 2, 344
Pangasinan* 0 0 36, 697 832
Panjabi 1, 955, 959 1, 919, 939 1, 019, 519 5, 382
Papiamento* 1, 409, 987 1, 270, 770 167, 483 757
Pashto 6, 820, 583 0 936, 001 2, 281
Piedmontese* 0 0 3, 075, 850 40, 796
Polish 10, 433, 634 9, 891, 731 136, 151, 261 471, 136
Portuguese 21, 206, 449 19, 116, 752 129, 161, 465 404, 826
Quechua* 0 0 1, 040, 087 9, 492
Romani* 3, 902, 611 109, 324 39, 965 445
Romanian 17, 608, 197 16, 090, 347 34, 672, 327 135, 874
Romansh* 3, 479, 519 3, 168, 779 511, 959 2, 575
Russian 1, 555, 264, 838 1, 386, 337, 881 210, 652, 169 400, 797
Sami* 383, 959 239, 705 172, 007 3, 692
Sanskrit* 4, 617, 096 0 768, 072 4, 534
Serbian 15, 194, 828 8, 654, 008 37, 575, 834 131, 854
Serbo-Croatian 0 0 22, 695, 385 57170
Shona* 2, 933, 420 2, 828, 187 92, 205 1, 121
Sicilian* 0 0 1, 501, 971 15, 454
Sindhi 1, 365, 512 0 48, 095 134
Sinhalese* 1, 472, 454 1, 363, 578 1, 814, 948 2775
Slovak 113, 163, 058 42, 560, 917 23, 477, 764 107, 958
Slovenian 2, 735, 189 2, 712, 060 20, 259, 361 57, 218
Somali 3, 250, 014 1, 937, 974 267, 383 1, 470
Spanish 913, 465, 084 861, 256, 956 232, 437, 776 374, 651
Sundanese 0 0 1, 286, 508 6, 810
Swahili 4, 276, 643 3, 523, 452 2, 714, 133 16, 362
Swedish 11, 307, 825 11, 199, 464 70, 923, 386 274, 152
Tagalog 3, 966, 447 3, 229, 425 434, 511 7, 298
Tajik* 4, 012, 768 0 885, 687 12, 851
Tamil 3, 928, 554 3, 852, 001 9, 154, 660 23, 468
Tatar 12, 082, 366 407 1, 535, 849 8, 410
Telugu 3, 254, 373 3, 220, 910 8, 769, 259 8, 841
Tetum* 66, 742 24, 598 54, 292 385
Thai 219, 210 219, 012 7, 431, 040 48, 679
Tibetan 6, 374, 651 6, 362, 553 643, 850 2, 516
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Table 11.3 – continued from previous page

Language Web Crawls Wikipedia
Total High Precision Words PagesWords Words

Tigre* 5, 350, 042 - 0 0
Tigrinya 0 0 5, 621 106
Tongan* 3, 033, 770 1, 934, 709 58, 127 405
Tok Pisin* 2, 701, 541 0 35, 249 968
Turkish 14, 409, 942 13, 432, 854 30, 385, 844 89, 577
Turkmen 0 0 265, 073 1, 425
Uighur 1, 200, 333 0 325, 025 1, 938
Ukrainian 21, 836, 916 20, 383, 329 72, 135, 536 208, 915
Urdu 286, 461, 259 284, 998, 217 3, 266, 533 15, 347
Uzbek 8, 304, 074 1, 087, 171 5, 368, 879 71, 081
Valencian* 599, 617 - 0 0
Vietnamese 2, 468, 179 2, 466, 133 53, 471, 136 194, 374
Volapuk* 0 0 15, 308, 318 97, 588
Walloon* 0 0 627, 486 3, 123
Waray-Waray 0 0 2, 858, 127 102, 823
Welsh 6, 573, 628 6, 565, 494 4, 414, 153 28, 066
Western Panjabi* 0 0 1, 598, 223 19, 589
West Frisian 1, 766, 944 0 5, 014, 518 13, 978
Wolof 0 0 230, 337 943
Yoruba 0 0 473, 264 23, 006
Zazaki* 0 0 255, 262 2, 380
Zulu* 530, 705 427, 748 23, 095 433

Table 11.3: Amount of monolingual online newspaper crawls and Wikipedia data, by language, after tokenization
and pairing with English comparable corpus. The high precision web crawl data contains only text identified by an
automatic language identification system as a particular language. High precision dataset statistics are omitted for
languages for which no language ID system was available. Languages marked with a * indicate those for which we do
not have a bilingual dictionary.



Chapter 12

WADE Analysis: Comparison of the use of
Automatic and Manual Word Alignments

For our WADE analyses, incorrect word alignments over our test sets are also problematic because the analysis is based entirely upon them. That
is, if a word, f

i

, in a sentence in our test set is incorrectly aligned with a word, e
j

, in the corresponding reference sentence, WADE will incorrectly
indicate an error in the output machine translation if the decoder does not produce word e

j

from f
i

. In order to estimate the effect of incorrect
test-reference alignments on our WADE analyses, we manually align a subset of our test sets.1 We then compare the result of a WADE analysis
using manual alignments versus alignments estimated using a high resource and low resource automatic alignment model.

We use MTurk to gather manual word alignment annotations for a subset of our Spanish and Hindi test sets. We began by manually aligning
10 Spanish-English and Hindi-English sentence pairs ourselves and used this small set of gold alignments as a means to identify qualified MTurk
workers who provide high quality annotations. Two local native Hindi speakers each annotated ten Hindi-English sentence pairs. Following previous
work (Graça et al. (2008); Kruijff-Korbayová et al. (2006); Melamed (1998), among others), we measure agreement as follows, where A1 are the
alignments given by the first annotator and A2 are the alignments given by the second annotator:

Agreement
2 A1 A2

A1 A2

Our two Hindi annotators achieved 91.5% average agreement, and we used the union of their alignments as a gold standard. For Spanish, we used a
single set of gold standard alignment annotations.

Because manual word alignment is a difficult task (Melamed, 1998), we only annotate sentence pairs for which both the source and target are
no more than 20 words long. Following Och and Ney (2003), we allow workers to indicate both ‘sure’ and ‘possible’ alignments. Sure alignments
indicate a direct correspondence and possible alignments ambiguous or loose correspondences. We provide workers with initial sure and possible
word alignments based on intersection alignments and the grow-diag-final heuristic, respectively, and ask them to correct the alignment links. To
generate the initial alignments, we concatenate full training sets with our test sets and run GIZA++ in both directions. For the purposes of evaluating
the quality of a worker’s alignments compared to our gold set, we measure alignment precision, recall, and F-measure using the union of annotators’
alignments. We measure each as follows, where G is the set of gold alignments and A is the set of workers’ annotated alignments:

recall
A G

G
precision

A G

A
FMeasure 2

precision recall

precision recall

In comparison with the small set of Spanish-English gold word-aligned sentence pairs, the average precision, recall, and F-measure of the initial
(GIZA++ and grow-diag-final) alignment set are 79.5%, 81.8%, and 80.3%, respectively. For Hindi, the average precision, recall, and F-measure are
74.4%, 78.8%, and 76.0%, respectively. We give these initial alignments to workers to correct. We expect that good annotators will have a higher
agreement with our gold annotations than the automatic alignments do.

For both Spanish and Hindi, we post word alignment HITs for the ten sentence pairs with gold standard annotations and ask up to 25 workers
to complete them. For Hindi, the mean F-measure of the 250 annotations was 0.81 with a standard deviation of 0.17. For Spanish, the mean
F-measure of the 250 annotations was 0.76 with a standard deviation of 0.19. We identified those 12 Hindi-English and 6 Spanish-English workers
who annotated at least five sentence pairs and achieved an average F-Measure score of at least 0.7 and approved those workers to do additional word
alignment tasks. Our final set of annotations contains manual alignments for 500 Hindi-English sentence pairs and 500 Spanish-English sentence
pairs. We paid workers $0.35 per alignment task and had each sentence pair annotated by two workers. The total cost of annotation, including the
HITs used only to identify reliable workers, was $962.50. We paid an effective hourly wage of $8.34 and $6.77 and workers spent, on average, 3
minutes and 2.5 minutes for the Hindi and Spanish HITs, respectively. Across all 500 Hindi-English HITs, the average agreement (defined above)
between each pair of manual alignments is 86.2%, which is only slightly less than the average agreement, 91.5%, between our two expert, local
annotators over the set of ten gold aligned sentences. For the Spanish-English HITs, the average agreement is 87.5%.

We rerun several WADE analyses using the subset of test data with manual alignments and compare the following:

1. Test-Reference word alignments using a low resource (LR) alignment model estimated over 1, 000 sentence pairs

2. Test-Reference word alignments using a high resource (HR) alignment model estimated using our full training sets for each language.

3. Manually annotated test-reference word alignments gathered on MTurk.

1We also use these manual word alignments in Chapter 7.
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Total Number
Correct Freebie Seen Sense Score of Alignments

Hindi
Automatic (LR) Test Set Alignments 31.4 0.4 29.7 30.6 7.9 5, 450
Automatic (HR) Test Set Alignments 32.5 0.4 30.4 28.2 8.5 5, 372
Manual Test Set Alignments 31.2 0.4 28.0 31.2 9.3 5, 827
Spanish
Automatic (LR) Test Set Alignments 34.9 3.7 27.7 24.9 8.7 8, 001
Automatic (HR) Test Set Alignments 37.7 4.1 23.7 23.5 11.1 7, 492
Manual Test Set Alignments 33.8 3.7 20.7 31.7 10.0 8, 419

Table 12.1: A comparison of WADE results over a subset of the test sets for which we have both automatic and manual
word alignments. For both Spanish and Hindi, the analysis is done over 500 sentence pairs.

Table 12.1 shows the results. First, we note that the WADE Hindi-English analysis based on low resource does not vary by much in comparison
with that based on high resource test-reference word alignments. Similarly, there is little difference between the analysis based on manual
word alignments and those based on automatic alignments. Although the percent of automatic alignment links that are marked as correct by
WADE when using an automatic word alignment between the test and reference sets is higher than when considering manually annotated alignment
links, there are about 8% more manual alignment links than automatic. Thus, the raw number of alignments which are annotated by WADE as
correct is actually higher under the set of manual links. The main observation, however, is that the general trends gleaned from each set of analyses
is consistent: for Hindi-English translation, most of the mistakes are of type SEEN or SENSE, and many fewer SCORE errors are made. This is
reassuring and indicates that, even if we do not have enough parallel data from which to estimate a high quality automatic word alignment model, a
WADE analysis based on noisy word alignments yields a reliable perspective on the types of errors that exist in a set of machine translations.

The discrepancies between the WADE analyses using different alignments are larger for Spanish-English than Hindi-English. However, the
major trends are consistent, whether we rely upon manual or automatic alignments: SEEN and SENSE errors are a big source of error, and there are
fewer SCORE errors. When moving from lower quality (low resource automatic) to higher quality (manual) alignments, the number of alignments
classified as SEEN errors decreases, as expected. At the same time, the number of alignments classified as SENSE errors increases as many previous
SEEN errors become SENSE errors under a more accurate set of word alignments. As we found in the Hindi experiments, there are more manual
word alignment links than automatic.



Chapter 13

Bilingual Lexicon Induction

13.1 Contextual Vector Projection Dictionaries
Throughout the experiments in Chapter 4, we assumed access to some bilingual dictionary, which we used to project source language contextual
vectors into the space of target language contextual vectors before scoring contextual similarity. In this section, we compare using a probabilistic
dictionary for projection with using a non-probabilistic dictionary.

One of the data scenarios which we are most interested in is the case where we have access to a modest amount of parallel training data, and
we wish to use monolingual resources to improve our statistical MT model. In this situation, we can use automatic word alignments to extract a
dictionary. Along the way, we can also collect counts of how many times each source and target word pair are aligned and use relative frequencies
to estimate conditional probabilities, p trg src . We can then probabilistically project each context vector. For example, say we have the following
context vector for some Spanish word: [blanco: 2, casa: 1, bueno: 2]. Our probabilistic dictionary may tell us that blanco translates as English
white with probability 1.0, but casa translates as home with probability 0.25 and house with probability 0.75 and, similarly, bueno translates as good
with probability 0.6 and as ok with probability 0.4. Our probabilistically projected context vector would then be: [white: 2, home: 0.25, house:
0.75, good: 1.2, ok: 0.8]. Using a non-probabilistic dictionary, the resulting context vector would be: [white: 2, home: 1, house: 1, good: 2, ok: 2].
Intuitively, using a probabilistic dictionary for projection should allow us to give less credit to infrequent translations and also to avoid projecting
too much mass for source words with many target translations.

For this set of experiments, we use the Indian languages corpora described in Post et al. (2012). In particular, we use the parallel training sets
for Tamil, Bengali, and Hindi to extract probabilistic dictionaries. We compare using intersection and grow-diag-final GIZA++ alignments (Och
and Ney, 2003). In all cases, we extract contextual vectors from both crawled data and Wikipedia data and project them separately, using the given
projection dictionary. We then train and use a reranker based on only the two contextual feature vectors. As a result, top-k accuracies are much lower
than when we use more complete feature sets. However, by isolating the contextual similarity features, we may make comparisons across context
vector projection dictionaries.

Table 13.1 shows results using several different contextual vector projection dictionaries. In general, it’s clear that using both the original
Mechanical Turk dictionaries and those derived from the word aligned training data is better than either either alone. Additionally, intersection
alignments tend to result in higher top-1 performance than using the less precise but higher recall grow-diag-final alignments. Conversely, the grow-
diag-final alignments yield higher top-10 and top-100 performances. Using probabilistic projections tends to slightly hurt performance, at least for
this low resource condition.

13.2 Comparison of Temporal Signatures
In Section 4.2.1.2, we described our method for estimating and comparing the temporal signatures of a pair of words. In our bilingual lexicon
induction experiments, we found temporal similarity to be a weak but useful signal of translation equivalence.

Here, we compare two methods for measuring the similarity between a pair of temporal signatures. Recall that word w’s temporal signature is
an M -dimensional vector of counts of the number of times w appears in each of M time periods, and each count is normalized by the sum of all
counts. In our web crawl data, we have dates associated with articles and each time period corresponds to a single day. In the experiments presented
above, we used a simple dot product to estimate similarity. However, this metric may not be ideal. For example, it may be the case that an event is
covered extensively in news stories in one language on a particular day or week but that same event is not picked up in the newspapers of another
language until some time after. We have attempted to account for such a temporal shift by using a sliding window of three days when populating
temporal signatures, but the sliding window would not be able to smooth over longer shifts, which would result in poorly aligned temporal signatures.

Here, we compare the performance of using temporal signatures based on normalized raw frequency counts with a more sophisticated trans-
formation of the signatures.1 In order to account for temporal shifts, or imperfectly aligned time series, we compute the discrete Fourier transform
(DFT), F X , of each M -dimensional series X:

F X
k

M 1

m 0

x
m

e i2⇡mk M

where k is an index over the output transformed vector.2 The Fourier transform assumes a series of equally spaced samples. In our datasets, however,

1In all experiments here, we use the same three-day sliding window that was used in earlier experiments.
2Thanks to Mike Carlin for, after all those years, teaching me about discrete Fourier transforms.
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Dictionary Probabilistic Including OOV Accuracy
MTurk Top-1 Top-10 Top-100

Tamil
MTurk No Yes 5.50 13.61 28.02
Intersection Alignments-Based No No 6.71 17.53 34.61
Intersection Alignments-Based No Yes 8.10 20.64 37.28
Intersection Alignments-Based Yes No 3.73 10.60 26.42
Intersection Alignments-Based Yes Yes 4.62 12.29 28.44
Grow-diag-final Alignments-Based No No 7.28 22.36 40.15
Grow-diag-final Alignments-Based No Yes 7.77 23.01 40.67
Grow-diag-final Alignments-Based Yes No 4.90 13.17 30.39
Grow-diag-final Alignments-Based Yes Yes 5.22 13.92 30.78
Bengali
MTurk No Yes 7.05 17.45 35.45
Intersection Alignments-Based No No 9.36 22.79 41.76
Intersection Alignments-Based No Yes 11.19 25.61 44.53
Intersection Alignments-Based Yes No 6.29 15.44 33.03
Intersection Alignments-Based Yes Yes 8.20 18.88 37.23
Grow-diag-final Alignments-Based No No 6.61 27.76 49.06
Grow-diag-final Alignments-Based No Yes 7.09 28.73 49.92
Grow-diag-final Alignments-Based Yes No 7.49 19.74 39.80
Grow-diag-final Alignments-Based Yes Yes 8.97 21.89 41.25
Hindi
MTurk No Yes 7.01 17.80 39.15
Intersection Alignments-Based No No 13.44 30.25 54.40
Intersection Alignments-Based No Yes 14.42 31.51 55.58
Intersection Alignments-Based Yes No 7.13 18.60 39.63
Intersection Alignments-Based Yes Yes 8.47 20.95 43.06
Grow-diag-final Alignments-Based No No 6.96 23.85 54.47
Grow-diag-final Alignments-Based No Yes 7.08 24.58 54.85
Grow-diag-final Alignments-Based Yes No 8.24 21.45 44.87
Grow-diag-final Alignments-Based Yes Yes 8.95 23.37 46.91

Table 13.1: Comparison of dictionaries used to project context vectors. Evaluation is over all source language words
in the MT development set. Gold standard translations are taken from the automatically word aligned development
set and its reference translations as well as all of our available bilingual dictionaries for each language. If any gold
standard English translation is found in the top-k ranking for a given source word, we consider that source word to be
accurate in the top-k.

we frequently don’t have data for every day in the range of a given time series, particularly for lower resourced languages. In the experiments here,
we simply ignore days with missing data. However, we experiment with low as well as high resource languages, for which there are very few missing
samples.

The Fourier transform is an equivalent representation of our original time series as a sum of complex sinusoids. Such a representation is
common in signal processing for characterizing slow versus fast modulations in the original time series. In particular, the magnitude of the DFT,
X̂

k

: F X
k

, quantifies the strength of these modulations regardless of any time shifts in the original time series. It is this temporal phase-
invariance of the DFT magnitude that makes it useful for comparing pairs of time series that may have similar overall temporal structure but may be
shifted versions of one another. Therefore, to compare pairs of temporal signatures, we use a the dot product of the DFT magnitudes, i.e.:

sim
temp

dft

F̂ Ê

F̂ Ê

where F̂ F F
k 1
2

1 and Ê F E
k 1
2

1 , ignoring the DC terms.
We experiment with three language pairs, Spanish-English, Indonesian-English, and Cebuano-English, to test the effect of using Fourier trans-

forms in measuring temporal similarity. Spanish-English is a high-resource language pair, and we have nearly a billion words of Spanish time-
stamped web crawls. Indonesian-English is a medium-resource language pair; we have about five million words of web crawled data. In contrast,
we have only about one million words of Cebuano web crawled data.

In order to compare the effectiveness of using standard temporal signatures versus their Fourier transforms, we experiment only with words
for which we have reasonably strong temporal signatures. That is, our estimates of the temporal signatures of words that appear in our comparable
corpora infrequently are sparse and unlikely to be meaningful whether we use Fourier transforms or not. Therefore, for each language pair, we collect
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Signatures Source Target Candidate Mean Mean Rank Accuracy
Test Words Translations Rank Percentile Top-10 Top-100

Cebuano
Norm Frequencies

202 4, 452
2, 055 46.2% 0% 2.5%

DFT of Norm Frequencies 3, 148 70.7% 0% 1.0%

Indonesian
Norm Frequencies 741 18, 376

6, 608 36.0% 0% 0.3%
DFT of Norm Frequencies 11, 225 61.1% 0% 0%

Spanish
Norm Frequencies

1, 000 20, 050
5, 272 26.3% 1% 3.4%

DFT of Norm Frequencies 7, 583 37.8% 0% 0%

Table 13.2: Translating ranking performance using temporal signatures comprised of normalized frequency counts
versus their Discrete Fourier Transforms.

temporal signatures for only those source and target language words that have a monolingual frequency of at least 300 in our comparable corpora. We
then prune the source language words to those which, given our bilingual dictionaries, have a known translation in the set of frequent English words.
This results in a test set of 26, 349 Spanish, 741 Indonesian, and 202 Cebuano words. We further prune the Spanish set by randomly sampling
1, 000 words. For both raw and Fourier transformed temporal signatures, we estimate the similarity between a pair of temporal signatures using dot
product. We compare each source language word with each English candidate translation. There are about 20, 18, and 4 thousand candidate English
translations in the search space for our Spanish, Indonesian, and Cebuano experiments, respectively. We rank these English candidate translations
by their similarity scores with test source word and evaluate using mean rank and top-k accuracy.

Before considering aggregate results over each set of test source language words, we spot check the impact of using Fourier transforms on several
example word pairs. Figure 13.1 show histograms of the similarities between a given source language word and the English candidate translations.
The similarity between the source word and the highest ranked correct English translation is given on each subfigure. Note that we normalize
similarity scores by the sum of all scores and plot the scores times 1, 000 for readability. We sample three Spanish words of varying burstiness:
terremoto (earthquake), which is has a high burstiness, aventurero (adventurer), which has an average burstiness, and riqueza (riches), which has a
low burstiness. The pairs of similarity histograms, in general, look similar. The Spanish words terremoto and riqueza have very low similarity scores
with their correct English translations, quake or earthquake and riches. However, the Spanish word aventurero has very high similarity, 5.07, with
its English translation adventurer using raw frequency-based temporal signatures. The similarity score using Fourier transformed vectors is 0.90.
Although this value is high, it is not as discriminating.

Figure 13.2 provides an additional illustration for comparing pairs of raw frequency based temporal signatures and their Fourier transforms. The
top two figures, (a) and (b), show the raw frequency and Fourier transformed signatures, respectively, of terremoto paired with its correct translation,
earthquake. Both pairs of signatures show similarities. Note that the lower dimensions of the Fourier transformed signatures have higher magnitudes
than the higher dimensions, indicating the presence of stronger, slower modulations over time. The bottom two figures, (c) and (d), show the raw
frequency and Fourier transformed signatures, respectively, of the same word paired with an incorrect, though, in some contexts, topically related,
English candidate translation, strength. Although both pairs of signature show less similarity than was present for the correct English translation, the
raw frequency signature shows even less than the pairs of Fourier transformed signatures, which is the desired behavior.

Table 13.2 shows aggregate results across our entire test sets of our experiments measuring the impact of computing Fourier transforms of our
frequency-based signatures before measuring temporal similarity. For our task and datasets, using Fourier transforms hurts performance slightly. For
all language pairs, correct English translations are ranked higher in the set of all ranked candidates when we use raw temporal signatures than when
we use their Fourier transforms. As expected, performance is higher for Spanish-English than the other language pairs. Because our web crawls a
much larger for that language pair than the others, the temporal signatures that we estimate are more complete and meaningful. However, given the
general unpromising results presented here, we do not use Fourier transforms of our temporal vectors in place of raw frequency-based vectors as a
feature in our bilingual lexicon induction models.
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(a) Raw Frequency Temporal Signatures (b) Fourier Transformed Temporal Signatures

(c) Raw Frequency Temporal Signatures (d) Fourier Transformed Temporal Signatures

(e) Raw Frequency Temporal Signatures (f) Fourier Transformed Temporal Signatures

Figure 13.1: Histograms of similarity scores between several Spanish test set words and all English candidate transla-
tions. Similarity scores are shown on the x-axis and the frequency of different scores is shown on the y-axis. Frequency-
based temporal signatures are used to compute similarity scores in the histograms on the left (green) and their Fourier
transforms are used to compute similarity scores in the histograms on the right (blue). The Spanish word terremoto,
which means earthquake or quake, is the source language test word in (a) and (b). In (c) and (d), it is riqueza, which
means riches or wealth, and in (e) and (f) it is alcanzaron, which means reached. On each plot, we give the similarity
between the source language test word and the highest scoring correct English translation.
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(a) Raw Frequency Temporal Signatures (b) Fourier Transformed Temporal Signatures

(c) Raw Frequency Temporal Signatures (d) Fourier Transformed Temporal Signatures

Figure 13.2: Comparison of temporal signatures for the Spanish word terremoto. Both raw and Fourier transformed
signatures are compared with both a correct, earthquake, and incorrect, strength, English candidate translation.
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Chapter 14

Zero-Parallel Data Translations

Table 14.1 gives translations of the first 4-5 sentences of foreign language Wikipedia pages on Barack Obama. A blue word indicates a dictionary
translation, red indicates a transliteration, and green indicates an induced translation. Black words are induced translations that turn out to have
exactly the same string as the input. Orange indicates that a word was both the best transliteration and in the top-10 induced translations.

Language Translation Output
Nepali senator barack obama ( birth : 4 august , 1961 america ) ryan washington is — he this country first folio ( african

americans ) washington is . he 20 january , 2009 for day position newly shy take is done . senator barack personnel
herald senate and 2008 in america blamed for viewing parties democratic candidate was . senator barack l aung san
in 1991 graduate formed , where he barack obama l slaves first african president also was . 1997 from presidential
senator senate transcript three complete to do before communal senator obama in the form of work done and citizens
authority responded in the form of spherical did . 1992 from presidential upto he harvard law university constitutional
law amendment work also did san . 2000 in american house af representatives vargas get for doing unsuccessful in
2003 after january his sight born obama was . away seats in primary victory achieved in 2003 and did not directly
for elected was . 109 n trinidad democratic blank oval in the form of traditional he hat-htiarmathi control and federal
treasury in use more public than doing support plans in making coperation . did he eastern europe , middle east
and africa royal journey also . went 110 n trinidad and tobago change change , climate change , climate change
and tobago defeat nepalese closely related welfare vidheyk-nirmana-ma he did coperation . world war important
contribution did want delivered year graduate 2009 for nobel prize exchange

Somali barack obama it is a man of juvenile and you to cargo many mediation between and usa indiana it is 47 . old the he
was born hawaii in the region last month 27 juli seeds , year 1961 dii. the birth just father people black is from came
from nairobi of kenya and mother of white people is from , watch region areas of country america him and ladies
barack obama , the have the two girls and with with called mail and sasha the father the from he left him and two
years of old to the he studied from give leads the osaka harvard . adding the the after he returned to the land from
came from of kenya . illinois after , senator obama the mother is she married a man from came from the country
indonesia. and then they to have moved from srilanka are mostly migrants and is in nominee while to he stayed
out-it in the one 1971dii until 1969 . obama , when the after to , he returned hawaii region of the mother in the end
it was , the there with avoiding lived in mother he was born of was white .

Uzbek senator barack obama ii ( pronunciation nava : barak obama ; a second time 1961-yili 4-avgust ) the united states
44- as well as of the present presidents . buganda chicago maine task list senator bavaria . 2009-yil 9-oktabrida
totalitarian policy for nobel prize by thailand . all open barack obama says president barack obama , white it

Azeri barak huseyn barack ( . ing barack obama ii keyes ; 4 august 1961 ) - congress the united presidency 44th president .
2009-cu in nobel peace award said . vital 4 august 1961-ci in hawaii hilo born the barak huseyn barack obama father
also ordinary huseyn barack obama ( father ) , cowboys his mother ordinary the puck carey obama imam . obama
the his father with obama the the mother hawaii university am were . barak barack 1983-c in colombia radcliffe he
graduated from the and 1985-ci in obama salinas in that place obama and oldenburg obama obama living conditions
improve for hasan the caucasian koller started to work . 1991-ci in barack harvard law school nights .
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Language Translation Output
Tamil guo barack obama ( bezos barack obama , transcribe : baptismal immerse baptisms , born : august 4 , 1961 ) , of

america 2008 republic leader elections mls democracy party baptisms . now he submersion obama state support
younger as members . those who are america allawi africa america race from first republic leader in manjrekar , and
sent house fifth abraick-amerike native in manjrekar for them present . colombia immerse harvard leber immerse
slam received obama politics world insead in front of obama south in society obama ( page opinion ) public law
obama numb . 1997il obama state basu unctad 2004 time in power he was there . 1992 first 2004 time chicago
university leber college ito numb . 2000il america lobbyists elections defeat to get 2003 disclosures obama aacsb
obama begins . obama in the state legislative as members will be cipher , 2004l democracy party national obama
he did obama national level attention baptisms . after november 2004 from that year america parliment elections 70
% immerse greatness obama joined . 2004il democracy party fers aru were period in power obama bashir . central
government weapons control akbar law tupac . 2006il democratic party isga layne later on election fraud , climate
bitmap , blix extremism , before immerse orphanages likewise automaker related laws was written by february
. 2007il republic leader election competition declare obama iraq war adrs audacity , power freedom delusions ,
outside aacsb politicians on effect reduced , to everyone hygienic program as own important principles that said .

Albanian barack obama downturn hussein obama ( born on 4 august 1961 in honolulu , hawaii ) is president of 44-t to him to
united states of america . barack obama is winner of price in behalf of nobel prizes in year 2009 . he is president
first afro-american . ¡p¿ in year 2004 he was elected in american satin in illinois . candidature such as president in
campaign of elections and declared in 10 in a word 2007 in wheelchair ( illinois ) . on 3 june 2008 obama reached ,
in accordance with of data to cnn , derive and necessary to vote for to nominated as candidate for president , within
party that his , by left at thereby lugar and mcmillan americans , wife of old to us president bill clinton . in 27 august
2008 barack obama was moria on way out of official to epp and democratic party such as obama for president .

Bengali barack obama hussain , junior ( english language : spoken spoken prize , jr ) . ( births 4th august , 1961 ) nobel peace
reward winner and united states joyner obama . president he democratic of the party member . of before he united
states quang illinois province selected representative or senator responsibility celebrate did . obama 2008 of the year
4th november was held united states joyner mckinney in the election winner was and 2009 of the year 20th january
oath did receive . october 9 , 2009 date obama in peace nobel prize give do is . primary life barack obama united
states joyner hawaii province capital honolulu birth did . his father in kenia isolates nation barack obama hussain
cinri ( spoken spoken prize , ) sr. was one economist and his mother ann obama ( windus reelected ) was united states
obama ( mainly english o irish ) . obama howai-manoa father of university to read during the time an unsatisfied
with his identity o marriage is . 2 obama year in age his baba-mayer jolie happen . mother obama after indonesian
lolo dunham ( javanese : obama ) interracial marriage did . obama many of childhood time span indonesia . 10 year
in age he his obama nana-nanir near came came . in the next obama harvard university from in law degree gain did

Welsh barack hussein obama ii is 44ain president the united states . a ’n member of ’r democratic party . the was obama in
senator from illinois from 2004 to 2008 . was elect its presidential election in november 2008 against john mccain
. the was oprah winfrey and ted kennedy in his support . he is ’r african american first available in order to elect its
president in the united states . took in university and columbia university the law , harvard . at after published her
that for stand for the presidency in february 2007 , published also its edmund in order to see his soldiers country in
pull out of iraq and yan . its history early born obama on 4 august 1961 in honolulu , hawaii ; in son in order to
barack obama , high , black man from napa muscat dunham in kenya and ann dunham , americans skin jones of
wichita , kansas . met her parents while they in hawaii university .

Bosnian nobel hage biden i ( fon . hound khatib biden i ; born 4. august 1961 in honolulu , hawaii , now - ) is american
politician and 44 . president united american country , therefore former member american senate ( representative
country illini ) . biden is was candidate in front of democratic parties to elections for president united american
country , which were are rune november 4. 2008. years , on which is won republicans john mccain . biography born
from marriage keyes father and american mothers , most its own life translated by is in honolulu , to hawaiians . in
period since 1967 . - 1971. years lived is from mother and specter in jakarta , indonesia , where is elementary and
school . graduated is right at harvard university and columbia .

Latvian biden hussein obama , youngest ( , born ) is forty fourth , as well as current u.s. president . he is first peachtree ,
which is interprets this post . out of 2005. annual by ratzinger presidential nominee obama was illinois state senator .
barrack obama inauguration ceremony was . obama is hiatus columbia university and harvard obama school ( harvard
law school ) , a he was first harvard law api beyonce president . when obama was public employee chicago , where he
mission as well practice that human rights lawyer . out of 1997. as 2004. the obama on three presidents was elected
barack obama . he as well out of 1992. as 2004. the chicago university obama school press pcf constitutionalist right
. 2000. year he ballon place u.s. higher vichy , but 2004. year november obama was elected u.s. senate .

Indonesian onyango hussein obama ( ii ; ) there was president american union which these days to hold and to form president
america the union ke-44 . onyango to become since 20 january 2009 to succeed george walker bush . before he
is junior senator from illinois and then to win in election president 2008 to 4 november 2008 . he went home and
brought his title with him by 2009 , obama announced such as winner gift from god honor peace prize due to conduct
of the relations of one state with another by peaceful means to promote international to to solve masalah-masalah
international . obama is descent afrika-amerika the first president to be the american union after previously to form
descent afrika-amerika the first which yudhoyono by a political party and definitions which can be used as a principle
for the whole processing of the language matter large american to to be president . columbia university graduate and
school unwritten law in as it is based on custom harvard university ; in there he to hold such as president harvard law
review , obama to work such as coordinator society and to hold such as civil rights lawyer to be appointed before
senate chicago as long as three times to start 1997 until 2004 .
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Language Translation Output
Romanian barack obama second dcp ( pronounced in english / churchman obama obama / ; n . 4 august 1961 , honolulu , hawaii

, the son of senator barack obama , sr. born in province kenyans obama , with ethnic group luo and al by ann obama
born in wichita , kansas ) there is al 44-lea chairman al the states united ( first afro-american high in this position

) , for of the elections held on 4 november 2008 , by the side of envy obama as to vice-president ) . was has been
investing acting on 20 january 2009 and l-a changed by his predecessor george w. bush . the son of one kenyans ,
barack hussein obama , sr. and al of a u.s. , ann obama alex , obama was spent a large part of childhood in honolulu
, hawaii . in six as far as decade of lived in jakarta , with his mother and father with the object of cruel , indonesia .
graduate al graduated columbia and al faculty of right leg from harvard , to a run for the sake of entrance into harta
public so as to join a al the senate state illinois between 1997 and 2004 , obama was wrought such as conciliator tce
, docent university and such as solicitor specialized in the defense rights leaders .

Serbian barack hussein obama - ( ii ) - ( , born august 4. 1961 in honolulu , on jiao , in sad ) is current american president
, chosen on elections year 2008. . member is democratic party . of 2005. to 2008. was is younger senator from
illinois . born is in honolulu on jiao , as child molestation and carjacker . grown is on different places . bigger
part own childhood spent is on jiao , and four year in youth is spent in indonesia . graduated is political science on
columbia university , and the title lustig usurper ( - ( j.d. ) - ) acquired is on harvard . before but which is became
senator in senate states illinois ( between 1997. and year 2004. ) , dealt with is social work and grillo , in areas civil
rights . their campaign for entry in american senate is started 2003. year . on elections is won republican alan , see
also gatsby with great majority of 70 % votes . in process presidential campaign , obama is promised , that will in
case his win on elections seen to significant changes in washington and that will to him one of priorities to be retreat
american troops from iraq .

Turkish barack obama def ( , birth . 4 august 1961 ) the united states of ’nin state bond presidency . 4 november 2008’de
being made the us 2008 presidential elections ’nde major ’nin 44. president elect and 20 january 2009 history such
acts as a george w. bush ’tan obrador . the us history the multiracial state bond presidency . life the us ’nin hawaii
rochelle in the city of mauna obama medicine center of gravity ’nde the world was . with self as much as name
carrying father kenya ’nn nairobi region ’ndeki ruhr naga obama residential district in was born and brought up in
the lap of luxury any obama . the refrain from obama of muslim when ( in private muslim ) sexist all the next world
and valdes to cause has been . on the other hand the view muslims obama or obama fairness to cause has been his
mother ann yeats in that case kansas state wiccans in the city of was born and brought up in the lap of luxury any
olmos . obama ’nn old lady and father , his father’s foreign student in that hawaii ’de met and got married . new
married obama binary 2 years old divorce . father boston ’a step by step cambridge university ’nde doctorate degree
to make and 1965 in kenya ’ya back . returned to his mother in that case once again any foreign student one cadres
obama sanya ’yla second any marriage to make .

Ukrainian baranov obama k. in obata ma ( ; writer . 4 august 1961 ) & the ; - american poet , 44-i president usa , former senator
from illinois state in congress usa . first was elected to senate state illinois in 1996 . in november 2004 with when
bmx barack obama hinojosa political opponents on elections - and was reelected congress united states america ,
after assassination attempt obama in parliament representatives usa in 2000 . in democratic party got nomination on
incumbent president and 23 august 2008 r. announced the choice candidacies joe biden on obama vice-presidenta
. for results elections 4 november 2008 gained r. victory above augment candidate jon obama and 20 january year
2009 was first in history country president tryout usa . biography barack obama born in honolulu , hawaii state ,
in his barack hussein obamy-starshogo that anna oremans . joho father origins with settlement allegory province
nyanza republic kenya , and have with place wichita american state kansas . father chaplin under hour training in
cochlea university , where obama-starshi later as dozens student . when obama two years ago joho father at first
mullis , and afterwards officially lakota divorce . joho father began training in pedagogical in harvard university ,
where he gained blasts degree doctor that returned to kenya . have obama married marry yanukovych , this time for
indonesian students inhabiting acu , from which in being born daughter .

Hindi barack hussein obama ( birth : august , 1961 ) america of chatrier president of a nation is . they the country its
first saharan ( african american ) president of a nation is . they 20 january , 2009 ko president of a nation post
of oath lee . obama biden region from smallest gaylord and 2008 among america of president of a nation post of
for godot morcha its candidate was . obama harvard lo school from 1991 among graduate became , where they
harvard lo voight of before african american adarsh also stay . 1997 from ussr biden normand among three complete
zemin does its east obama ne aquatic organiser of shape among work did is and citizens rights advocates of shape
among behaviorists of is . 1992 from ussr tk they chicago law solan among constitutional law and order ka wile
also did . mizrahi 2000 among american house of representatives among seat nor does among amnesia even after its
january 2003 among they american normand ka stance did and march ussr among bandages career goals of . number
2003 among normand of for selected went . trinamool congress among tuc lieberman member of shape among they
traditional weapons on control and federal dictionary of use among more entire corporate ka support to do biden of
build among cooperation had . they east europe , middle east and africa of royal travel on also went . trinamool
congress among tuc and of elections , worldcom environment of change , nuclear terrorism and war from quit okay
soldiers of ripe from associated biden of build among they cooperation had . kuban among notable contribution of
for barack obama ko year 2009 of nobell peace prize of for selected made is .
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Language Translation Output
Bulgarian barack hussein obama ii ( ) e 44-iat and urged president of sast out of democratic party elected e on 4 november

2008 as well g. resting in place on 20 january year 2009 . barack obama e the first slur in history , which e elected
in this position . elected e for the sake of nobel laureate for the sake of peace for the sake of year 2009 . early years
barack obama e home in honolulu , hawaii in the 1961 winter . his parents is zapata during lem one there . father
is barack obama-sthe-elder e out of kenya , a mother is an obama e white ohno in wichita , kansas . they is divided
, when he e in 2 years and later on is divorced . guv in obama is back in kenya and managed to see its son just
over before cabinet in car crash in 1982 . after divorce their mother to him is princess for the sake of lolo obama as
well all family is move in homeland is part , indonesia . there obama visit schools in jakarta , realizes as long as 10
years . after obama is back in honolulu , where live with parents in mother one as far as graduation in its secondary
education in the 1979 .

Slovak rodham tymoschuk votes ( * 4. august 1961 , oahu , hawaii ) is former senator united states in return for state illinois
and by 20. january 2009 44 . president united states , who won in delong presidential elections in the 2008 . is in
order piety bluford , who himself has become american reelected . so is first lugar president united states . childhood
barack obama himself born on oahu for windsurfer barack obama acu st. out of of baguio sigler lugar out of kenya
and ann dunham , comanche hazelwood city out of miron in armory . his parents the meet in the 1960 by studies
at tufts university in city obama , that was his father insures students . pair the 2. zombie february 1961 , sinatra
himself as had barack obama two years and in the 1964 the divorced . obama father himself returned to kenya and
just his son again before than died in the course of farina talked during the 1982 .

Urdu mark obama new hampshire i turkey mission ke during barack hussein obama anis so calgary i american state hawaii
i born have . who 2 february 1961w his marriage did . who ke father of relationship kenya is that is why mother
of hawaii is was . parents did meeting during talib knowledgeable hawaii university i happen where on an ke father
obama on read came have them . obama did umar two year folger when an ke parents i separation is were . divorce
ke after obama mine mother ke with america and some of period ke for indonesia i flow are because an ke step father
of relationship indonesia is was . they of columbia university and harvard university law school is education get did
and harvard university man he harvard no ke first batch black cover american president make . they of chicago i first
biden social man and then special counsel work what . he eight year till state rodham did politics i are active and
year two thousand four man he american senate ke for selected have . obama did wife michelle apes also chaudhry
there and yale and harvard did read happen that . who did two daughters but which did obama nine and six year that
. barack obama of last year february i american presidential selection did race i but occur of announcement what
was . he of iraq from military back dating of promise did he and bush ke against iraq on army decay and iraq war
ke ke against one american gathering mi but have and promise did ke if he president selected have then he iran is
also war without fight went but some also country is without fight went . barack obama of barack clinton his soon
de and mine obama of announcement do give and he america first ke obama cover president that . 4 november 2008
his obama sworn i sharif is gone but who did obama this precinct did obama did munich he one day first do death
were were .

Table 14.1: Translations of the first 4-5 sentences of foreign language Wikipedia pages on Barack Obama. A blue
word indicates a dictionary translation, red indicates a transliteration, and green indicates an induced translation. Black
words are induced translations that turn out to have exactly the same string as the input. Orange indicates that a word
was both the best transliteration and in the top-10 induced translations.



Chapter 15

Fast Phrase Pair Filtering

In Section 7.1 we introduced the idea of using filters implemented as inverted indices to very quickly prune the set of target phrases which should
be considered hypothesis translations for a given source phrase. Here, we provide a detailed set of experiments in which we automatically learn and
then evaluate a variety of filters. The results found here inspired the algorithm based on compositionality presented in 7.2.2.

15.1 Exploratory Experiments in Learning Effective, Efficient Filters
We take a supervised approach to learning how to filter the space of all target phrases, given a source phrase. We use high probability (details below)
phrase translation pairs as positive supervision and random phrase pairs as negative supervision to learn a decision tree classifier that makes the
following binary prediction: a given pair of phrases should be maintained as hypothesis translations (correct) or should be filtered out (incorrect).
Unlike many other models of classification, decision trees are learned by greedily choosing the feature which most effectively splits the data for
making accurate label predictions. Because we want to filter the set of target phrases using as few phrase pair features as possible, decision trees are
an appropriate way to model pruning; we can stop learning after some maximum number of decision nodes, or filters, have been constructed. Figure
15.1 shows a decision tree that corresponds to the example given in Figure 3.

We begin by choosing the feature on which to split the data using information gain, a standard measure for building decision trees using
supervised data. Information gain is defined as the reduction in entropy, H , of the labeled training data, D, when feature f is known:

IG D, f H D H D f

We use an information gain cutoff of ✓
IG

and do not split a given branch of the decision tree further if IG is not at least ✓
IG

. Given supervision
in the form of phrase pairs with a binary correct or incorrect label, we can learn a decision tree that predicts whether any arbitrary phrase pair is
correct or incorrect.

We experiment with Spanish and Hindi. These languages are diverse yet we have access not only to parallel training data for each but also
sizable collections of manual word alignments, which we use to extract clean sets of phrase translations for evaluation (see Section 15.2). For each
language, we extract a phrase translation table from parallel training data using a phrase limit of three. For Spanish, we use the Europarl parallel
corpus(Koehn, 2005), and, for Hindi, the corpora released by Post et al. (2012). We identify all phrase pairs for which the phrasal and lexical
translation probabilities in both directions are at least 0.1 and label them as correct. All possible pairs of source and target phrases which are not in
the correct set are assumed to be incorrect. Using the sets of all source and target phrases in the phrase table and their labels, we sample 2, 000 and
20, 000 correct and incorrect phrase pairs, respectively, and use half of each for training and half for testing. In end-to-end MT settings, we expect
the positive-negative ratio to be much smaller. That is, a single source phrase may have a handful of correct translations and the remaining tens of
millions of target language phrases are incorrect. We address this empirically in Section 15.2.

In our exploratory experiments here, we learn a variety of decision tree filters and measure the effectiveness of each. In truly low resource
conditions, we are unlikely to have enough parallel training data to accurately estimate word alignments and extract a clean set of phrase pair
translations to use as supervision. However, this supervision is only used in the exploratory experiments presented here. Our goal is to gain a general
understanding of what types of filters are effective in pruning the space of candidate target phrase translations. We don’t intend to learn language-
specific decision tree filters in low resource SMT conditions. Rather, the hope is learn and analyze decision tree filters for several languages and then
develop a general, language-independent approach to filtering.

In contrast, the features that we use to do filtering do not assume access to large language resources; our language-independent filtering algorithm
will take advantage of the features that we define and analyze here and we want to be able to estimate them for any language pair. To this end, we
use the following set of external resources to define features:

1. ‘Initial’ unigram dictionary. Our ‘initial’ dictionaries consist of unigram translations extracted from random samples of 2, 000 lines of
word-aligned parallel training data in each language.

2. Induced dictionary of unigram translations. We use the initial dictionaries and the lightly supervised bilingual lexicon induction technique
presented in Chapter 4 to induce top-5 translations for all words in the development, and test sets for each language.

3. Stop word lists. We use the most frequent 300 unigrams in the Wikipedia of each language as stop word lists.

4. Monolingual phrase frequencies. We precompute the frequencies of all unigrams, bigrams, and trigrams in the monolingual Wikipedia
corpus for each language.

These resources are consistent with our definition of low resource conditions.
Given the above resources, we define the following binary features over source phrase s, target phrase t, and dictionary D:
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Figure 15.1: Example of decision tree, which could be implemented as shown in the algorithm in Figure 3. Feature
tests are shown in boxes and decisions in circles.

• Length-based features

– len s len t : Source and target are same length

– len s len t : Source is longer than target

– len s len t : Target is longer than source

– len s
stop

len t
stop

: Source and target have same number of stop words

– len s
content

len t
content

: Source and target have same number of content words

• Dictionary-based features

– len s
trans

len s : All source words have translations from the dictionary in the target words.

– len s
content

trans

len s
content

: All content source words have translations in the target content words.

– len s
stop

trans

len s
stop

: All stop source words have translations in the target words.

– len s
trans

0 : At least one source word has translation in the target words.

– len s
content

trans

0 : At least one source content word has translation in target words.

– len s
stop

trans

0 : At least one source stop word has translation in target words.

• Monolingual frequency-based features

– log2 freq
s

log2 freq
t

3 : The difference between the logs of the frequencies of the source and target is less than 3.

– log2 freq
s

log2 freq
t

10 : The difference between the logs of the frequencies of the source and target is less than 10.

– log2 freq
s

log2 freq
t

20 : The difference between the logs of the frequencies of the source and target is less than 20.

– log2 freq
s

log2 freq
t

50 : The difference between the logs of the frequencies of the source and target is less than 50.

– log2 freq
s

log2 freq
t

100 : The difference between the logs of the frequencies of the source and target is less than 100.

– freq
t

5 : Target phrase monolingual frequency is greater than 5.

– freq
t

10 : Target phrase monolingual frequency is greater than 10.

– freq
t

20 : Target phrase monolingual frequency is greater than 20.

– freq
t

50 : Target phrase monolingual frequency is greater than 50.

– freq
t

100 : Target phrase monolingual frequency is greater than 100.
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✓IG Num Attr. Train Test
Acc Prec Rec Filt Acc Prec Rec Filt

Hindi
Baseline 0 91 - 0 100 91 - 0 100
0.01 27 99.5 99.9 96.8 99.9 98.5 97.7 91.4 99.6
0.02 18 99.5 99.6 96.8 99.9 98.5 97.7 91.4 99.6
0.05 3 99.1 99.6 94.3 99.9 98.6 99.6 90.4 99.9
0.10 1 98.9 98.1 94.3 99.7 98.6 99.6 90.4 99.9
Spanish
Baseline 0 91 - 0 100 91 - 0 100
0.01 67 99.2 99.6 91.6 100.0 98.8 98.4 87.7 99.9
0.05 27 98.5 100.0 83.2 100.0 98.1 99.3 80.0 99.9
0.10 24 98.5 100.0 83.1 100.0 98.1 99.4 79.9 100.0
0.15 6 98.3 97.2 83.2 99.8 98.1 97.7 81.2 99.8
0.20 1 98.1 94.9 83.3 99.6 98.0 95.6 81.3 99.6

Table 15.1: Varying information gain (IG) threshold: Accuracies, precision, recall, and filtering rate of several learned
decision trees over train and test data for each source language. The baseline strategy, which maximizes accuracy, is to
label everything as incorrect. Num Attr. indicates the total number of decision point nodes in the tree. The best result
for each metric on the test data is highlighted for each source language.

s
stop

and t
stop

refer to the stop words in s and t, respectively, and s
content

and t
content

refer to the non-stop words in s and t, respectively.
Dictionary-based features are templates; we use features where the dictionary corresponds to (1) the initial dictionary, (2) the stemmed initial dictio-
nary, (3) the initial and induced dictionaries, (4) the stemmed initial and stemmed induced dictionaries. We use a five character prefix for stemming.
There are 24 dictionary-based features in all. len s

trans

refers to the total number of words in s that are translated in t, len s
content

trans

refers to the total number of words in s
content

that are translated in t
content

, and len s
stop

trans

is defined analogously. freq
s

and freq
t

refer
to the monolingual frequencies of s and t. These 39 features are available as splitting points in learning decision trees.

It should be noted that some of our features subsume others. For example, if translations for all source words appear in the target phrase, then
it is also true that translations of all content source words appear in the target phrase. In some instances, we may learn decision trees that can be
simplified by taking advantage of these feature hierarchies. Simplifying trees is useful not only for human intelligibility but also from the perspective
of filter efficiency.

Given the decision tree learning algorithm described above, training data consisting of labeled correct and incorrect phrase translation pairs,
and our 39 features, we construct several decision trees for each source language. Figure 15.2 shows trees learned for filtering Hindi-English phrase
pairs with ✓

IG

0.05 and ✓
IG

0.10 and for filtering Spanish-English phrase pairs with ✓
IG

0.15 and ✓
IG

0.20. All trees use a
dictionary-based feature for splitting on the first node.

The Hindi decision tree with an information gain threshold of 0.05 filters (predicts the ‘Incorrect’ label) all target language phrases that do not
either (1) contain translations of all source content words, given the stemmed initial and induced dictionaries, or (2) contain translations of all source
content words, given the initial dictionary. Note that this learned decision tree is an example of one that could be simplified. The first decision node
splits on the feature that checks whether all source words have translations in the target phrase, given the stemmed initial and induced dictionaries.
However, any phrase that would pass one of the next two filters would necessarily pass the first; the first decision node could be removed without
changing any output labels.

We define test set accuracy as the percent of all phrase pairs that are labeled correctly and define precision and recall as usual:

precision
true

correct

predicted
correct

predicted
correct

recall
true

correct

predicted
correct

true
correct

Recall that both our training and our testing datasets have a 1 : 10 ratio of positive to negative examples. Baseline accuracy, therefore, is
91%, which is what we would achieveby labeling all pairs as incorrect. With this strategy, precision is undefined because no instances are labeled
as correct, and recall is 0%. For this task, we are also interested in true negatives, or the number of incorrect phrase pairs correctly labeled as
incorrect. A higher true negative rate means that we are effectively pruning more incorrect pairs, which will speed up processing without resulting
in any missed correct translations. We define filtered as the percent of all true negatives that are correctly labeled as incorrect (essentially recall on
‘incorrect’ labels):

filtered
true

incorrect

predicted
incorrect

true
incorrect

Table 15.1 shows the train and test accuracies, precision, recall, and filtered rate of (1) the baseline strategies, which maximize accuracy, (2) the
Hindi and Spanish learned decision trees shown in Figure 15.2, and (3) several additional results for each language pair with varying ✓

IG

values.
The first thing to note in the table is that, as expected, as the information gain threshold, ✓

IG

increases, the trees become less complex, as
indicated by the number of decision tree splitting nodes (Num Attr.). In general, trees with fewer splitting nodes will filter our very large search
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(a) Hindi, ✓
IG

0.05 (b) Hindi, ✓
IG

0.10

(c) Spanish, ✓
IG

0.15 (d) Spanish, ✓
IG

0.20

Figure 15.2: Hindi ((a)-(b)) and Spanish ((c)-(d)) phrase pair decision trees using information gain as a splitting
criterion. Feature tests are shown in boxes and decisions in circles. The accuracies of each tree are shown in Table
15.1.



LOW RESOURCE LANGUAGE AND DOMAIN MACHINE TRANSLATION 147

●

●

●

●

60 70 80 90 100
90

92

94

96

98

100

Recall

Pr
ec
is
io
n

0.01

0.5
1

10

0.01
10

Hindi
Spanish

Figure 15.3: Precision and recall as we vary F-measure � from 0.01 to 10. For both Spanish and Hindi phrase pairs,
we learn decision trees with an F-measure splitting threshold of 0.15.

space of target language phrases faster than those with more splitting nodes, or lower IG thresholds. In particular, fewer splitting nodes will result
in fewer union and intersection operations like those illustrated in Figure 3. The second thing to note is that there is a clear tradeoff between tree
complexity and accuracy. The most complex Spanish filtering tree, with ✓

IG

0.01, has 67 tree decision nodes and achieves 98.4% and 87.7%
precision and recall, respectively, on the test data. In contrast, the least complex Spanish filtering tree, with ✓

IG

0.20, has only 1 decision node.
It achieves a lower precision, 95.6%, and recall, 81.3%. In general, the results in Table 15.1 demonstrate that most of the filtering can be done with
just a couple levels in the tree while still achieving a fairly high recall.

A higher complexity tree does not necessarily result in higher accuracy because the learner’s objective is information gain, not precision or
recall. We have also experimented with choosing splitting points based on weighted F-measure instead of information gain. This allows us to specify
a parameter, �, that indicates the desired tradeoff between maintaining a higher recall (larger �) or higher precision (smaller �):

F
�

1 �2 precision recall

�2 precision recall

Figure 15.3 shows how different values of � affect precision and recall for Hindi. In those experiments, we use an F-measure threshold of 0.15 for
both languages, which limits the learned trees to those that are relatively simple; none of the trees in the results shown in Figure 15.3 have more
than six decision nodes. The Spanish trees change as we vary � more than the Hindi trees do, which achieve generally higher recall and precision.
The high precision (� 0.01) and high recall (� 10) learned decision trees for both Spanish and Hindi are shown in Figure 15.5. The high
precision trees for each language turn out to be the same and filter using the single feature that indicates if all source words in the source phrase
have a translation in the target phrase under the initial dictionary. This feature makes sense as a high precision indicator of translation equivalence.
The high recall trees are slightly different for the two languages but both use the stemmed initial and induced dictionaries; the Hindi tree checks
whether all content source words have translations in the target phrase, and the Spanish tree checks whether at least one source word of any type
has a translation in the target phrase. Both of these features use not only the highest recall dictionary among the four dictionaries, but they also only
check that a subset of source words have translations in the target, not all source words. As was the case with the information gain decision trees
shown in Figure 15.2, dictionary-based features are preferred as a first splitting node. In Section 15.2, we experiment with using all of the single
node decision trees shown in Figure 15.5 in combination with target language monolingual frequency filters to further reduce the size of the English
candidate search spaces.

15.2 Scaling Up
In our exploratory experiments above, we used a random sample of target phrases as negative examples for training and evaluation. However, when
we scale up our filtering algorithms to induce phrase translations for machine translation, we must filter all target phrases. In our experiments here,
we use decision trees to filter all target phrases that appear in our target language monolingual data. When moving from ten thousand incorrect
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Lang Unigrams Bigrams Trigrams All
All Singletons All Singletons All Singletons All Singletons

Spanish
Spanish 2.7 1.5 27.0 18.7 83.4 66.8 113.1 87.0
English 1.7 1.0 19.4 13.2 61.9 50.1 83.0 64.4

Hindi
Hindi 0.6 0.3 4.2 3.1 9.8 8.4 14.5 11.9
English 0.9 0.5 9.4 6.5 27.9 23.0 38.3 29.9

Table 15.2: Data statistics about the number of phrases in the Spanish and Hindi comparable Wikipedia corpora. All
numbers are in millions.

target translations to ten million, using a filter with high precision becomes critical. For example, consider the case where, for each source phrase,
our search space consists of ten million target phrases, of which only a few, at most, are correct translations. A filter that achieves 99% precision
will fail to filter away 100, 000 incorrect target phrases. Although this would be a considerable reduction from the original search space of all target
phrases, a full comparison using more sophisticated features, for example based on large comparable corpora, would still be quite computationally
expensive.

In this section, we explore the feasibility and effectiveness of using some of the filters identified automatically in Section 15.1 to filter the search
space of all target language phrases for each input source phrase. For each language pair, our target phrase search space consists of all ungirams,
bigrams, and trigrams appearing in the English side of each Wikipedia comparable corpus. Table 15.2 shows some statistics about the number of
ngrams observed in the English side of each comparable corpus. There are 83 and 38 million unique English phrases in the documents on the English
side of the Spanish-English and Hindi-English Wikipedia comparable corpora, respectively, nearly 80% of which are singletons for both sets. We
make an assumption that the translation of any Hindi phrase will appear in the English side of the Hindi-English comparable corpus and likewise
for Spanish. This is certainly not correct (as results in Table 15.3 will show), however it is, practically, the best that we can do in our experimental
framework. Later, we will use our comparable corpora to rank candidate phrase translations. Therefore, if a given English phrase doesn’t appear
in those comparable corpora, our comparable corpora-based features will be zero-valued and our models won’t have any evidence to rank those
candidates highly.

For testing, we extract1 a new, held-out set of translated phrase pairs from sets of manually aligned Spanish and Hindi sentence pairs in our
SMT development sets (500 sentence pairs each; see Section 12). There are about 6 and 3 thousand bigram and trigram translations in the Spanish
and Hindi sets, respectively, that we use for testing here. For each source phrase, we filter the entire set of 83 and 38 million target language phrases
for Spanish and Hindi, respectively. The goal is to reduce the search space as much as possible for each source phrase while maintaining correct
target translations in the filtered sets.

Table 15.3 presents results using baseline methods that filter on target language monolingual frequency only. Some correct English translations
don’t appear in the Wikipedia target phrases at all, so the maximum recall, without pruning, is 81.6% and 72.3% for Spanish and Hindi, respectively.
Examples of correct target language phrase translations in the Spanish test set that do not appear in the English side of the Spanish-English Wikipedia
comparable corpus include whole manufacturing industry, seventh american alert, and on ordinary headphones. Seventy-two percent of these
unobserved correct translations are trigrams; only one percent are unigrams, which are mostly proper nouns, including beckstein, siviglian, and
coach-in-chief.

The simple frequency-based filters demonstrate again the tradeoff between maintaining a high recall and reducing the set of possible target
phrases. For example, the Hindi baseline that filters all target phrases that appear fewer than five times in monolingual data results in 61.8% recall
and reduces the space of possible target phrases by 94%, but going further, the baseline that filters target phrases that appear fewer than 25 times
results in only 49.6% recall but reduces the space of possible target phrases by 99%. It is also important to note that unless source and target phrases
appear at least a few times in monolingual data, we likely will not be able to estimate high-quality features for them using our comparable corpora
and, correspondingly, likely will not be able to identify correct translations. Therefore, we implement decision tree based filters in combination with
target frequency threshold baselines.

We implement the three decision trees shown in Figure 15.5 as inverted index lookups. The decision trees each filter using a single feature:

1. At least one source word has a translation in the target phrase, given the stemmed initial and induced dictionaries.

2. All source content words have translations in the target phrase, given the stemmed initial and induced dictionaries.

3. All source words have translations in the target phrase, given the initial dictionary.

We refer to these as trees 1, 2, and 3 and compare their performance with that based on target monolingual frequency alone (Table 15.3). Additionally,
we experiment with using target monolingual frequency filters in combination with each decision tree. We compute precision-recall curves by
varying the minimum target monolingual frequency. A good filtering technique would achieve high recall but also dramatically reduce the candidate
translation search space.

Figure 15.4 shows the results. Instead of precision, which is extremely small in all cases, we plot recall versus the average size of the filtered
set per source phrase in the test set. Recall is measured over all pairs of source and target phrase translations in the test sets. As expected, the
monolingual frequency-based filters achieve high recall at the cost of very large numbers of candidate translations per source phrase. The goal of
the other filters is to reduce that space further in a source phrase specific way without compromising recall. Moving from the first decision tree
to the second and from the second to the third, both recall and the average number of translations per source phrase decrease. For example, using
a frequency threshold of 10, the Spanish filter based on target monolingual frequency alone achieves 67% recall but maintains about 2.6 million

1We use the grow-diag-final phrase pair extraction heuristic.
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Language Minimum Recall Thousands of Translations
Target Frequency per Source Phrase

Spanish

100 49.55 263

50 55.0 520

25 60.3 1, 031
10 66.7 2, 590
5 71.6 5, 478
1 81.6 83, 024

Hindi

100 39.42 107

50 44.8 216

25 49.6 423

10 56.7 1, 098
5 61.8 2, 445
1 72.3 38, 251

Table 15.3: Comparison of filters that use only target phrase monolingual frequencies for pruning. Recall is measured
over all pairs of source and target translations extracted from a subset of our manually aligned SMT development sets.
The final column gives the thousands of target phrases that are not filtered away by a given frequency filter and, as a
result, are maintained as possible translations for all source phrases.

candidate target phrase translations per source phrase. At the same frequency threshold, the first decision tree achieves 44% recall and reduces the
average number of candidate target phrase translations much further, to about 200 thousand. The second decision tree achieves 24% recall and
reduces the search space to about 2 thousand, on average. The most precise decision tree achieves only 9.7% recall but also maintains only 4 target
translations per source phrase, on average.

Recall that the size of our original unfiltered set of candidate English phrase translations was 83 million for Spanish. If we were interested in
inducing translations for, for example, 20 thousand source language phrases, comparing each with the unfiltered set of target phrases would take
about 1.5 quadrillion pairwise comparisons. Using a target monolingual frequency filter of 10 would reduce the number of comparisons to about 52
trillion. The three filters that are source phrase dependent would reduce the space even further to 4 billion, 40 million, and 80 thousand, respectively.
The second filter appears to provide a happy medium; recall is fairly high and the average number of candidate target phrase translations per source
phrase is manageable.
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Figure 15.4: Tradeoff between recall and the average size of the filtered set across the test sets of source phrases, for
several filters. The bottom right corner is best: high recall and small sets of candidate target translations.
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(a) Hindi, � 0.01 (b) Hindi, � 10

(c) Spanish, � 0.01 (d) Spanish, � 10

Figure 15.5: Hindi ((a)-(b)) and Spanish ((c)-(d)) phrase pair decision trees using F-Measure as a splitting criterion,
with a threshold of 0.15. Feature tests are shown in boxes and decisions in circles. Trees correspond to the highest
precision and highest recall decision trees for each language shown in Figure 15.3.
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Irvine, A., Morgan, J., Carpuat, M., Daumé, III, H., and Munteanu, D. (2013a). Measuring machine translation errors in new domains. Transactions
of the Association for Computational Linguistics (TACL), 1(October).
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