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Abstract

We explore how to improve machine trans-
lation systems by adding more translation
data in situations where we already have
substantial resources. The main challenge
is how to buck the trend of diminishing re-
turns that is commonly encountered. We
present an active learning-style data solic-
itation algorithm to meet this challenge.
We test it, gathering annotations via Ama-
zon Mechanical Turk, and find that we get
an order of magnitude increase in perfor-
mance rates of improvement.

1 Introduction

Figure 1 shows the learning curves for two state of
the art statistical machine translation (SMT) sys-
tems for Urdu-English translation. Observe how
the learning curves rise rapidly at first but then a
trend of diminishing returns occurs: put simply,
the curves flatten.

This paper investigates whether we can buck the
trend of diminishing returns, and if so, how we can
do it effectively. Active learning (AL) has been ap-
plied to SMT recently (Haffari et al., 2009; Haffari
and Sarkar, 2009) but they were interested in start-
ing with a tiny seed set of data, and they stopped
their investigations after only adding a relatively
tiny amount of data as depicted in Figure 1.

In contrast, we are interested in applying AL
when a large amount of data already exists as is
the case for many important lanuage pairs. We de-
velop an AL algorithm that focuses on keeping an-
notation costs (measured by time in seconds) low.
It succeeds in doing this by only soliciting trans-
lations for parts of sentences. We show that this
gets a savings in human annotation time above and
beyond what the reduction in # words annotated
would have indicated by a factor of about three
and speculate as to why.
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Figure 1: Syntax-based and Hierarchical Phrase-
Based MT systems’ learning curves on the LDC
Urdu-English language pack. The x-axis measures
the number of sentence pairs in the training data.
The y-axis measures BLEU score. Note the di-
minishing returns as more data is added. Also
note how relatively early on in the process pre-
vious studies were terminated. In contrast, the
focus of our main experiments doesn’t even be-
gin until much higher performance has already
been achieved with a period of diminishing returns
firmly established.

We conduct experiments for Urdu-English
translation, gathering annotations via Amazon
Mechanical Turk (MTurk) and show that we can
indeed buck the trend of diminishing returns,
achieving an order of magnitude increase in the
rate of improvement in performance.

Section 2 discusses related work; Section 3
discusses preliminary experiments that show the
guiding principles behind the algorithm we use;
Section 4 explains our method for soliciting new
translation data; Section 5 presents our main re-
sults; and Section 6 concludes.



2 Related Work

Active learning has been shown to be effective
for improving NLP systems and reducing anno-
tation burdens for a number of NLP tasks (see,
e.g., (Hwa, 2000; Sassano, 2002; Bloodgood
and Vijay-Shanker, 2008; Bloodgood and Vijay-
Shanker, 2009b; Mairesse et al., 2010; Vickrey et
al., 2010)). The current paper is most highly re-
lated to previous work falling into three main ar-
eas: use of AL when large corpora already exist;
cost-focused AL; and AL for SMT.

In a sense, the work of Banko and Brill (2001)
is closely related to ours. Though their focus is
mainly on investigating the performance of learn-
ing methods on giant corpora many orders of mag-
nitude larger than previously used, they do lay out
how AL might be useful to apply to acquire data
to augment a large set cheaply because they rec-
ognize the problem of diminishing returns that we
discussed in Section 1.

The second area of work that is related to ours is
previous work on AL that is cost-conscious. The
vast majority of AL research has not focused on
accurate cost accounting and a typical assumption
is that each annotatable has equal annotation cost.
An early exception in the AL for NLP field was
the work of Hwa (2000), which makes a point of
using # of brackets to measure cost for a syntac-
tic analysis task instead of using # of sentences.
Another relatively early work in our field along
these lines was the work of Ngai and Yarowsky
(2000), which measured actual times of annota-
tion to compare the efficacy of rule writing ver-
sus annotation with AL for the task of BaseNP
chunking. Osborne and Baldridge (2004) argued
for the use of discriminant cost over unit cost for
the task of Head Phrase Structure Grammar parse
selection. King et al. (2004) design a robot that
tests gene functions. The robot chooses which
experiments to conduct by using AL and takes
monetary costs (in pounds sterling) into account
during AL selection and evaluation. Unlike our
situation for SMT, their costs are all known be-
forehand because they are simply the cost of ma-
terials to conduct the experiments, which are al-
ready known to the robot. Hachey et al. (2005)
showed that selectively sampled examples for an
NER task took longer to annotate and had lower
inter-annotator agreement. This work is related to
ours because it shows that how examples are se-
lected can impact the cost of annotation, an idea

we turn around to use for our advantage when de-
veloping our data selection algorithm. Haertel et
al. (2008) emphasize measuring costs carefully for
AL for POS tagging. They develop a model based
on a user study that can estimate the time required
for POS annotating. Kapoor et al. (2007) assign
costs for AL based on message length for a voice-
mail classification task. In contrast, we show for
SMT that annotation times do not scale according
to length in words and we show our method can
achieve a speedup in annotation time above and
beyond what the reduction in words would indi-
cate. Tomanek and Hahn (2009) measure cost by #
of tokens for an NER task. Their AL method only
solicits labels for parts of sentences in the interest
of reducing annotation effort. Along these lines,
our method is similar in the respect that we also
will only solicit annotation for parts of sentences,
though we prefer to measure cost with time and
we show that time doesn’t track with token length
for SMT.

Haffari et al. (2009), Haffari and Sarkar (2009),
and Ambati et al. (2010) investigate AL for SMT.
There are two major differences between our work
and this previous work. One is that our intended
use cases are very different. They deal with the
more traditional AL setting of starting from an ex-
tremely small set of seed data. Also, by SMT stan-
dards, they only add a very tiny amount of data
during AL. All their simulations top out at 10,000
sentences of labeled data and the models learned
have relatively low translation quality compared to
the state of the art.

On the other hand, in the current paper, we
demonstrate how to apply AL in situations where
we already have large corpora. Our goal is to buck
the trend of diminishing returns and use AL to
add data to build some of the highest-performing
MT systems in the world while keeping annota-
tion costs low. See Figure 1 from Section 1, which
contrasts where (Haffari et al., 2009; Haffari and
Sarkar, 2009) stop their investigations with where
we begin our studies.

The other major difference is that (Haffari et al.,
2009; Haffari and Sarkar, 2009) measure annota-
tion cost by # of sentences. In contrast, we bring
to light some potential drawbacks of this practice,
showing it can lead to different conclusions than
if other annotation cost metrics are used, such as
time and money, which are the metrics that we use.



3 Simulation Experiments

Here we report on results of simulation experi-
ments that help to illustrate and motivate the de-
sign decisions of the algorithm we present in Sec-
tion 4. We use the Urdu-English language pack1

from the Linguistic Data Consortium (LDC),
which contains ≈ 88000 Urdu-English sentence
translation pairs, amounting to≈ 1.7 million Urdu
words translated into English. All experiments in
this paper evaluate on a genre-balanced split of the
NIST2008 Urdu-English test set. In addition, the
language pack contains an Urdu-English dictio-
nary consisting of ≈ 114000 entries. In all the ex-
periments, we use the dictionary at every iteration
of training. This will make it harder for us to show
our methods providing substantial gains since the
dictionary will provide a higher base performance
to begin with. However, it would be artificial to
ignore dictionary resources when they exist.

We experiment with two translation models: hi-
erarchical phrase-based translation (Chiang, 2007)
and syntax augmented translation (Zollmann and
Venugopal, 2006), both of which are implemented
in the Joshua decoder (Li et al., 2009). We here-
after refer to these systems as jHier and jSyntax,
respectively.

We will now present results of experiments with
different methods for growing MT training data.
The results are organized into three areas of inves-
tigations:

1. annotation costs;

2. managing uncertainty; and

3. how to automatically detect when to stop so-
liciting annotations from a pool of data.

3.1 Annotation Costs
We begin our cost investigations with four sim-
ple methods for growing MT training data: ran-
dom, shortest, longest, and VocabGrowth sen-
tence selection. The first three methods are self-
explanatory. VocabGrowth (hereafter VG) selec-
tion is modeled after the best methods from previ-
ous work (Haffari et al., 2009; Haffari and Sarkar,
2009), which are based on preferring sentences
that contain phrases that occur frequently in un-
labeled data and infrequently in the so-far labeled
data. Our VG method selects sentences for transla-
tion that contain n-grams (for n in {1,2,3,4}) that

1LDC Catalog No.: LDC2006E110.

Init:
Go through all available training
data (labeled and unlabeled)
and obtain frequency counts for
every n-gram (n in {1, 2, 3, 4})
that occurs.
sortedNGrams← Sort n-grams by
frequency in descending order.

Loop
until stopping criterion (see Section 3.3) is met

1. trigger ← Go down sortedNGrams list
and find the first n-gram that isn’t covered in
the so far labeled training data.
2. selectedSentence← Find a sentence
that contains trigger.
3. Remove selectedSentence from unlabeled
data and add it to labeled training data.

End Loop

Figure 2: The VG sentence selection algorithm

do not occur at all in our so-far labeled data. We
call an n-gram “covered” if it occurs at least once
in our so-far labeled data. VG has a preference
for covering frequent n-grams before covering in-
frequent n-grams. The VG method is depicted in
Figure 2.

Figure 3 shows the learning curves for both
jHier and jSyntax for VG selection and random
selection. The y-axis measures BLEU score (Pap-
ineni et al., 2002),which is a fast automatic way of
measuring translation quality that has been shown
to correlate with human judgments and is perhaps
the most widely used metric in the MT commu-
nity. The x-axis measures the number of sen-
tence translation pairs in the training data. The VG
curves are cut off at the point at which the stopping
criterion in Section 3.3 is met. From Figure 3 it
might appear that VG selection is better than ran-
dom selection, achieving higher-performing sys-
tems with fewer translations in the labeled data.

However, it is important to take care when mea-
suring annotation costs (especially for relatively
complicated tasks such as translation). Figure 4
shows the learning curves for the same systems
and selection methods as in Figure 3 but now the
x-axis measures the number of foreign words in
the training data. The difference between VG and
random selection now appears smaller.

For an extreme case, to illustrate the ramifica-



0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000
0

5

10

15

20

25

30
jHier and jSyntax: VG vs Random selection (BLEU vs Sents)

Number of Sentence Pairs in the Training Data

B
L

E
U

 S
co

re

 

 

jHier: random selection
jHier: VG selection
jSyntax: random selection
jSyntax: VG selection

where we will 
start our main experiments

where previous AL for 
SMT research stopped 

their experiments

Figure 3: Random vs VG selection. The x-axis
measures the number of sentence pairs in the train-
ing data. The y-axis measures BLEU score.

tions of measuring translation annotation cost by #
of sentences versus # of words, consider Figures 5
and 6. They both show the same three selection
methods but Figure 5 measures the x-axis by # of
sentences and Figure 6 measures by # of words. In
Figure 5, one would conclude that shortest is a far
inferior selection method to longest but in Figure 6
one would conclude the opposite.

Measuring annotation time and cost in dol-
lars are probably the most important measures
of annotation cost. We can’t measure these for
the simulated experiments but we will use time
(in seconds) and money (in US dollars) as cost
measures in Section 5, which discusses our non-
simulated AL experiments. If # sentences or #
words track these other more relevant costs in pre-
dictable known relationships, then it would suffice
to measure # sentences or # words instead. But it’s
clear that different sentences can have very differ-
ent annotation time requirements according to how
long and complicated they are so we will not use
# sentences as an annotation cost any more. It is
not as clear how # words tracks with annotation
time. In Section 5 we will present evidence show-
ing that time per word can vary considerably and
also show a method for soliciting annotations that
reduces time per word by nearly a factor of three.

As it is prudent to evaluate using accurate cost
accounting, so it is also prudent to develop new
AL algorithms that take costs carefully into ac-
count. Hence, reducing annotation time burdens
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Figure 4: Random vs VG selection. The x-axis
measures the number of foreign words in the train-
ing data. The y-axis measures BLEU score.

instead of the # of sentences translated (which
might be quite a different thing) will be a corner-
stone of the algorithm we describe in Section 4.

3.2 Managing Uncertainty
One of the most successful of all AL methods de-
veloped to date is uncertainty sampling and it has
been applied successfully many times (e.g.,(Lewis
and Gale, 1994; Tong and Koller, 2002)). The
intuition is clear: much can be learned (poten-
tially) if there is great uncertainty. However, with
MT being a relatively complicated task (compared
with binary classification, for example), it might
be the case that the uncertainty approach has to
be re-considered. If words have never occurred
in the training data, then uncertainty can be ex-
pected to be high. But we are concerned that if a
sentence is translated for which (almost) no words
have been seen in training yet, though uncertainty
will be high (which is usually considered good for
AL), the word alignments may be incorrect and
then subsequent learning from that translation pair
will be severely hampered.

We tested this hypothesis and Figure 7 shows
empirical evidence that it is true. Along with VG,
two other selection methods’ learning curves are
charted in Figure 7: mostNew, which prefers to
select those sentences which have the largest # of
unseen words in them; and moderateNew, which
aims to prefer sentences that have a moderate #
of unseen words, preferring sentences with ≈ ten
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Figure 5: Random vs Shortest vs Longest selec-
tion. The x-axis measures the number of sentence
pairs in the training data. The y-axis measures
BLEU score.

unknown words in them. One can see that most-
New underperforms VG. This could have been due
to VG’s frequency component, which mostNew
doesn’t have. But moderateNew also doesn’t have
a frequency preference so it is likely that mostNew
winds up overwhelming the MT training system,
word alignments are incorrect, and less is learned
as a result. In light of this, the algorithm we de-
velop in Section 4 will be designed to avoid this
word alignment danger.

3.3 Automatic Stopping

The problem of automatically detecting when to
stop AL is a substantial one, discussed at length
in the literature (e.g., (Bloodgood and Vijay-
Shanker, 2009a; Schohn and Cohn, 2000; Vla-
chos, 2008)). In our simulation, we stop VG once
all n-grams (n in {1,2,3,4}) have been covered.
Though simple, this stopping criterion seems to
work well as can be seen by where the curve for
VG is cut off in Figures 3 and 4. It stops af-
ter 1,293,093 words have been translated, with
jHier’s BLEU=21.92 and jSyntax’s BLEU=26.10
at the stopping point. The ending BLEU scores
(with the full corpus annotated) are 21.87 and
26.01 for jHier and jSyntax, respectively. So
our stopping criterion saves 22.3% of the anno-
tation (in terms of words) and actually achieves
slightly higher BLEU scores than if all the data
were used. Note: this ”less is more” phenomenon
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Figure 6: Random vs Shortest vs Longest selec-
tion. The x-axis measures the number of foreign
words in the training data. The y-axis measures
BLEU score.

has been commonly observed in AL settings (e.g.,
(Bloodgood and Vijay-Shanker, 2009a; Schohn
and Cohn, 2000)).

4 Highlighted N-Gram Method

In this section we describe a method for solicit-
ing human translations that we have applied suc-
cessfully to improving translation quality in real
(not simulated) conditions. We call the method the
Highlighted N-Gram method, or HNG, for short.
HNG solicits translations only for trigger n-grams
and not for entire sentences. We provide senten-
tial context, highlight the trigger n-gram that we
want translated, and ask for a translation of just the
highlighted trigger n-gram. HNG asks for transla-
tions for triggers in the same order that the triggers
are encountered by the algorithm in Figure 2. A
screenshot of our interface is depicted in Figure 8.
The same stopping criterion is used as was used in
the last section. When the stopping criterion be-
comes true, it is time to tap a new unlabeled pool
of foreign text, if available.

Our motivations for soliciting translations for
only parts of sentences are twofold, corresponding
to two possible cases. Case one is that a translation
model learned from the so-far labeled data will be
able to translate most of the non-trigger words in
the sentence correctly. Thus, by asking a human
to translate only the trigger words, we avoid wast-
ing human translation effort. (We will show in
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Figure 7: VG vs MostNew vs ModerateNew se-
lection. The x-axis measures the number of sen-
tence pairs in the training data. The y-axis mea-
sures BLEU score.
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Figure 8: Screenshot of the interface we used for
soliciting translations for triggers.

the next section that we even get a much larger
speedup above and beyond what the reduction in
number of translated words would give us.) Case
two is that a translation model learned from the so-
far labeled data will (in addition to not being able
to translate the trigger words correctly) also not be
able to translate most of the non-trigger words cor-
rectly. One might think then that this would be a
great sentence to have translated because the ma-
chine can potentially learn a lot from the transla-
tion. Indeed, one of the overarching themes of AL
research is to query examples where uncertainty is
greatest. But, as we showed evidence for in the
last section, for the case of SMT, too much un-
certainty could in a sense overwhelm the machine
and it might be better to provide new training data
in a more gradual manner. A sentence with large

#s of unseen words is likely to get word-aligned
incorrectly and then learning from that translation
could be hampered. By asking for a translation
of only the trigger words, we expect to be able to
circumvent this problem in large part.

The next section presents the results of experi-
ments that show that the HNG algorithm is indeed
practically effective. Also, the next section ana-
lyzes results regarding various aspects of HNG’s
behavior in more depth.

5 Experiments and Discussion

5.1 General Setup

We set out to see whether we could use the HNG
method to achieve translation quality improve-
ments by gathering additional translations to add
to the training data of the entire LDC language
pack, including its dictionary. In particular, we
wanted to see if we could achieve translation im-
provements on top of already state-of-the-art per-
forming systems trained already on the entire LDC
corpus. Note that at the outset this is an ambitious
endeavor (recall the flattening of the curves in Fig-
ure 1 from Section 1).

Snow et al. (2008) explored the use of the Ama-
zon Mechanical Turk (MTurk) web service for
gathering annotations for a variety of natural lan-
guage processing tasks and recently MTurk has
been shown to be a quick, cost-effective way to
gather Urdu-English translations (Bloodgood and
Callison-Burch, 2010). We used the MTurk web
service to gather our annotations. Specifically, we
first crawled a large set of BBC articles on the in-
ternet in Urdu and used this as our unlabeled pool
from which to gather annotations. We applied the
HNG method from Section 4 to determine what to
post on MTurk for workers to translate.2 We gath-
ered 20,580 n-gram translations for which we paid
$0.01 USD per translation, giving us a total cost
of $205.80 USD. We also gathered 1632 randomly
chosen Urdu sentence translations as a control set,
for which we paid $0.10 USD per sentence trans-
lation.3

2For practical reasons we restricted ourselves to not con-
sidering sentences that were longer than 60 Urdu words, how-
ever.

3The prices we paid were not market-driven. We just
chose prices we thought were reasonable. In hindsight, given
how much quicker the phrase translations are for people we
could have had a greater disparity in price.



5.2 Accounting for Translation Time

MTurk returns with each assignment the “Work-
TimeInSeconds.” This is the amount of time be-
tween when a worker accepts an assignment and
when the worker submits the completed assign-
ment. We use this value to estimate annotation
times.4

Figure 9 shows HNG collection versus random
collection from MTurk. The x-axis measures the
number of seconds of annotation time. Note that
HNG is more effective. A result that may be par-
ticularly interesting is that HNG results in a time
speedup by more than just the reduction in trans-
lated words would indicate. The average time to
translate a word of Urdu with the sentence post-
ings to MTurk was 32.92 seconds. The average
time to translate a word with the HNG postings to
MTurk was 11.98 seconds. This is nearly three
times faster. Figure 10 shows the distribution of
speeds (in seconds per word) for HNG postings
versus complete sentence postings. Note that the
HNG postings consistently result in faster transla-
tion speeds than the sentence postings5.

We hypothesize that this speedup comes about
because when translating a full sentence, there’s
the time required to examine each word and trans-
late them in some sense (even if not one-to-one)
and then there is an extra significant overhead time
to put it all together and synthesize into a larger
sentence translation. The factor of three speedup
is evidence that this overhead is significant effort
compared to just quickly translating short n-grams
from a sentence. This speedup is an additional
benefit of the HNG approach.

5.3 Bucking the Trend

We gathered translations for≈ 54,500 Urdu words
via the use of HNG on MTurk. This is a rela-
tively small amount, ≈ 3% of the LDC corpus.
Figure 11 shows the performance when we add
this training data to the LDC corpus. The rect-

4It’s imperfect because of network delays and if a person
is multitasking or pausing between their accept and submit
times. Nonetheless, the times ought to be better estimates as
they are taken over larger samples.

5The average speed for the HNG postings seems to be
slower than the histogram indicates. This is because there
were a few extremely slow outlier speeds for a handful of
HNG postings. These are almost certainly not cases when the
turker is working continuously on the task and so the average
speed we computed for the HNG postings might be slower
than the actual speed and hence the true speedup may even
be faster than indicated by the difference between the aver-
age speeds we reported.
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Figure 9: HNG vs Random collection of new data
via MTurk. y-axis measures BLEU. x-axis mea-
sures annotation time in seconds.

angle around the last 700,000 words of the LDC
data is wide and short (it has a height of 0.9 BLEU
points and a width of 700,000 words) but the rect-
angle around the newly added translations is nar-
row and tall (a height of 1 BLEU point and a
width of 54,500 words). Visually, it appears we
are succeeding in bucking the trend of diminish-
ing returns. We further confirmed this by running
a least-squares linear regression on the points of
the last 700,000 words annotated in the LDC data
and also for the points in the new data that we ac-
quired via MTurk for $205.80 USD. We find that
the slope fit to our new data is 6.6245E-06 BLEU
points per Urdu word, or 6.6245 BLEU points for
a million Urdu words. The slope fit to the LDC
data is only 7.4957E-07 BLEU points per word,
or only 0.74957 BLEU points for a million words.
This is already an order of magnitude difference
that would make the difference between it being
worth adding more data and not being worth it;
and this is leaving aside the added time speedup
that our method enjoys.

Still, we wondered why we could not have
raised BLEU scores even faster. The main hur-
dle seems to be one of coverage. Of the 20,580 n-
grams we collected, only 571 (i.e., 2.77%) of them
ever even occur in the test set.

5.4 Beyond BLEU Scores

BLEU is an imperfect metric (Callison-Burch et
al., 2006). One reason is that it rates all ngram
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Figure 10: Distribution of translation speeds (in
seconds per word) for HNG postings versus com-
plete sentence postings. The y-axis measures rel-
ative frequency. The x-axis measures translation
speed in seconds per word (so farther to the left is
faster).

mismatches equally although some are much more
important than others. Another reason is it’s not
intuitive what a gain of x BLEU points means in
practice. Here we show some concrete example
translations to show the types of improvements
we’re achieving and also some examples which
suggest improvements we can make to our AL se-
lection algorithm in the future. Figure 12 shows a
prototypical example of our system working.

Figure 13 shows an example where the strategy
is working partially but not as well as it might. The
Urdu phrase was translated by turkers as “gowned
veil”. However, since the word aligner just aligns
the word to “gowned”, we only see “gowned” in
our output. This prompts a number of discussion
points. First, the ‘after system’ has better transla-
tions but they’re not rewarded by BLEU scores be-
cause the references use the words ‘burqah’ or just
‘veil’ without ‘gowned’. Second, we hypothesize
that we may be able to see improvements by over-
riding the automatic alignment software when-
ever we obtain a many-to-one or one-to-many (in
terms of words) translation for one of our trigger
phrases. In such cases, we’d like to make sure that
every word on the ‘many’ side is aligned to the

1 1.2 1.4 1.6 1.8
x 10

6

21

21.5

22

22.5

23

23.5

Bucking the Trend: JHiero Translation Quality versus 
Number of Foreign Words Annotated

B
L

E
U

 S
co

re

Number of Foreign Words Annotated

last approx. 700,000 
foreign words 

annotated in LDC data 
the approx. 54,500 foreign words

we selectively sampled for 
annotation 

cost = $205.80

Figure 11: Bucking the trend: performance of
HNG-selected additional data from BBC web
crawl data annotated via Amazon Mechanical
Turk. y-axis measures BLEU. x-axis measures
number of words annotated.

single word on the ‘one’ side. For example, we
would force both ‘gowned’ and ‘veil’ to be aligned
to the single Urdu word instead of allowing the au-
tomatic aligner to only align ‘gowned’.

Figure 14 shows an example where our “before”
system already got the translation correct without
the need for the additional phrase translation. This
is because though the “before” system had never
seen the Urdu expression for “12 May”, it had seen
the Urdu words for “12” and “May” in isolation
and was able to successfully compose them. An
area of future work is to use the “before” system to
determine such cases automatically and avoid ask-

Figure 12: Example of strategy working.



Figure 13: Example showing where we can im-
prove our selection strategy.

Figure 14: Example showing where we can im-
prove our selection strategy.

ing humans to provide translations in such cases.

6 Conclusions and Future Work

We succeeded in bucking the trend of diminishing
returns and improving translation quality while
keeping annotation costs low. In future work we
would like to apply these ideas to domain adap-
tation (say, general-purpose MT system to work
for scientific domain such as chemistry). Also, we
would like to test with more languages, increase
the amount of data we can gather, and investigate
stopping criteria further. Also, we would like to
investigate increasing the efficiency of the selec-
tion algorithm by addressing issues such as the one
raised by the 12 May example presented earlier.
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