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Abstract

The Joint Probability Model proposed
by Marcu and Wong (2002) provides
a probabilistic framework for modeling
phrase-based statistical machine transla-
tion (SMT). The model’s usefulness is,
however, limited by the computational
complexity of estimating parameters at the
phrase level. We present a method of
constraining the search space of the Joint
Probability Model based on statistically
and linguistically motivated word align-
ments. This method reduces the complex-
ity and size of the Joint Model and allows
it to display performance superior to the
standard phrase-based models for small
amounts of training material.

1 Introduction

Machine translation is a hard problem because of the
highly complex, irregular and diverse nature of nat-
ural languages. It is impossible to accurately model
all the linguistic rules that shape the translation pro-
cess, and therefore a principled approach uses sta-
tistical methods to make optimal decisions given in-
complete data.

The original IBM Models (Brown et al., 1993)
learned only word-to-word alignment probabilities
which made it computationally feasible to estimate
model parameters from large amounts of training
data. Phrase-based SMT models, such as the Align-
ment Template Model (Och, 2003b), improve on

word-based models because phrases provide local
context which leads to better lexical choice and more
reliable local reordering. However, most phrase-
based models extract their phrase pairs from previ-
ously word-aligned corpora using ad-hoc heuristics.
These models perform no search for optimal phrasal
alignments. Even though this is an efficient strategy,
it is a departure from the rigourous statistical frame-
work of the IBM Models.

Marcu and Wong (2002) proposed a Joint Proba-
bility Model which directly estimates phrase trans-
lation probabilities from the corpus. This model
neither relies on potentially sub-optimal word align-
ments nor on heuristics for phrase extraction. In-
stead, it searches the phrasal alignment space, si-
multaneously learning translation lexicons for both
words and phrases. The Joint Model has been shown
to outperform standard models on restricted data sets
such as the small data track for Chinese-English in
the 2004 NIST MT Evaluation (Przybocki, 2004).

However, considering all possible phrases and all
their possible alignments vastly increases the com-
putational complexity of the Joint Model when com-
pared to its word-based counterpart. This results in
prohibitively slow training and heavy use of mem-
ory resources. The large size of the model means
that only a very small proportion of the alignment
space can be searched, and this reduces the chances
of finding optimum parameters. Furthermore, the
complexity of the Joint Model makes it impossible
to scale up to the larger training corpora available to-
day, preventing the model from being more widely
adopted.

We propose a method of constraining the search



space of the Joint Model to areas where most of the
unpromising phrasal alignments are eliminated and
yet as many potentially useful alignments as pos-
sible are still explored. The Joint Model is con-
strained to phrasal alignments which do not contra-
dict a set high confidence word alignments for each
sentence. These high confidence alignments can in-
corporate information from both statistical and lin-
guistic sources. We show that by using the points
of high confidence from the intersection of the bi-
directional Viterbi alignments to reduce complex-
ity, translation quality also improves. We also show
that the addition of linguistic information from a
machine readable dictionary and aligning identical
words further improves the model.

In addition to showing how the translation quality
can be improved through linguistic constraints, we
show how to more quickly estimate the parameters.
We describe a modification to the Expectation Max-
imisation (EM) algorithm which greatly increases
the speed of the training without compromising the
quality of the resulting translations.

2 Models

2.1 Standard Phrase-based Model

Most phrase-based models (Och, 2003b; Koehn et
al., 2003; Vogel et al., 2003) rely on a pre-existing
set of word-based alignments from which they in-
duce their parameters. In this project we use the
model described by Koehn et al. (2003) which ex-
tracts its phrase alignments from a corpus that has
been word aligned. From now on we refer to this
phrase-based model as the Standard Model.

The Standard Model decomposes the foreign
input sentence F into a sequence of I phrases
f1, . . . , f I . Each foreign phrase fi is translated to
an English phrase ei using the probability distribu-
tion θ(f i|ei). English phrases may be reordered us-
ing a relative distortion probability d(·). The model
is defined as follows:

p(F |E) =
I∏

i=1

θ(f i|ei)d(·) (1)

As alignments between phrases are constructed
from word alignments, there is no summing over
possible alignments. This model performs no search

for optimal phrase pairs. Instead, it extracts phrase
pairs (f i, ei) in the following manner. First, it uses
the IBM Models to learn the Viterbi alignments for
English to Foreign and Foreign to English. It then
uses a heuristic to reconcile the two alignments,
starting from the points of high confidence in the in-
tersection of the two Viterbi alignments and grow-
ing towards the points in the union. Points from the
union are selected if they are adjacent to points from
the intersection and their words are previously un-
aligned. Och and Ney (2004) discusses and com-
pares variations on this strategy.

Phrases are then extracted by selecting phrase
pairs which are ‘consistent’ with the symmetrised
alignment. Here ‘consistent’ means that all words
within the source language phrase are only aligned
to the words of the target language phrase and vice
versa. Finally the phrase translation probability dis-
tribution is estimated using the relative frequencies
of the extracted phrase pairs.

This approach to phrase extraction means that
phrasal alignments are locked into the symmetrised
alignment. This is problematic because the sym-
metrisation process will grow an alignment based
on arbitrary decisions about adjacent words, and,
because word alignments inadequately represent
the real dependencies between translations. Also,
by heuristically creating phrasal alignments from
the Viterbi word-level alignments, we throw away
the probabilities that were estimated when learning
word alignment parameters and we can introduce er-
rors. In contrast, the Joint Model can search areas of
the alignment space in order to learn a distribution of
possible phrasal alignments that better handles the
uncertainty inherent in the translation process.

2.2 Joint Probability Model
The Joint Probability Model (Marcu and Wong,
2002), does not rely on a pre-existing set of word-
level alignments. Like the IBM Models, it uses
Expectation Maximisation to align and estimate the
probabilities for sub-sentential units in a parallel
corpus. Unlike the IBM Models, it does not con-
strain the alignments to being single words.

The basic model is defined as follows. Phrases
are created from words and commonly occurring se-
quences of words. Concepts, cj , are defined as a
pair of aligned phrases < ei, f i >. A set of con-



cepts which completely covers the sentence pair is
denoted by C. Phrases are restricted to being se-
quences of words which occur above a certain fre-
quency in the corpus. We use a threshold of 5 oc-
currences. Commonly occurring phrases are more
likely to lead to the creation of useful phrase pairs,
because they are more likely to occur in the test data.
Without restricting ourselves to frequent phrases, the
search space would be much larger.

The probability of a sentence and its translation is
the sum of all possible alignments, C each of which
is defined as the product of the probability of all in-
dividual concepts:

p(F,E) =
∑
C∈C

∏
<ei,f i>∈C

p(< ei, f i >) (2)

The model is trained by initialising the translation
table and then performing EM as described below.

2.2.1 Initialising Translation Table
Before starting EM all phrasal alignments are as-

sumed to be equally probable. Under these circum-
stances, the probability of a concept cj in sentences
(E,F ) is equal to the number of phrasal alignments
which contain this concept divided by the total num-
ber of phrasal alignments that can be built between
the two sentences. This probability can be approx-
imated by using the lengths of the two phrases and
the lengths of the two sentences with Stirling num-
bers of the second kind as described by Marcu and
Wong (2002). We are thus able to initialise all pos-
sible alignments.

The size of the translation table is largely deter-
mined by the initialisation phase, and so it greatly
impacts on the scalability of the model.

2.2.2 Expectation Maximisation
After initialising the translation parameters, align-

ments will have different probabilities. It is no
longer possible to collect fractional counts over all
possible alignments in polynomial time. EM is
therefore performed approximately to improve pa-
rameters and increase the probability of the corpus.

An iteration of EM starts by creating an initial
phrasal alignment of high probability. This is done
by selecting the highest probability concepts that
cover the sentence pair. Then the model hill-climbs

towards the optimal Viterbi alignment by using a
set of modifying operations. These operations break
and merge concepts, swap words between concepts
and move words across concepts. The model cal-
culates the probabilities associated with all align-
ments generated in this process and collects frac-
tional counts for the concepts based on these proba-
bilities.

2.2.3 Complexity
Training the Joint Model is even more compu-

tationally challenging than training the already de-
manding IBM models. Considering all possible seg-
mentations of phrases and all their possible align-
ments vastly increases the number of possible align-
ments that can be formed between two sentences.
This number is exponential with relation to the
length of the shorter sentence.

E Length F Length No. Alignments
5 5 6721
10 10 818288740923
20 20 4.4145633531e+32
40 40 2.7340255177e+83

Table 1. The number of possible phrasal alignments for
sentence pairs calculated using Stirling numbers of the
second kind.

Table 1 shows just how many phrasal alignments
are possible between sentences of different length.
Even for medium length sentences that are 20 words
in lengths, the total number of alignments is huge.
Apart from being intractable, when one has a very
large parameter estimation space the EM algorithm
struggles to discover good parameters. One ap-
proach to dealing with this problem is to constrain
the search space. For example, Pereira and Sch-
abes (1992) proposed a method for dealing with this
problem for PCFG estimation from treebanks. They
encouraged the probabilities into good regions of the
parameter space by constraining the search to only
consider parses that did not cross Penn-Treebank
nodes. We adopt a similar approach for constraining
the joint model, by only considering alignments that
do not contradict high probability word alignments.

During EM a very small proportion of the possi-
ble alignments are searched and many good align-
ments are likely to be missed. Normally alignments



that are not visited in an iteration of EM, would be
dropped from the phrase table, which can result in a
sparseness of data. In order to avoid this, we take an
approach similar to ‘sparse EM’ described by Neal
and Hinton (1998). Counts from previous iterations
are retained after being weighted lower, so as to al-
low the current iteration to have a significant impact
on the probabilities.

3 Constraining the Joint Model

The Joint Model requires a strategy for restricting
the search for phrasal alignments to areas of the
alignment space which contain most of the prob-
ability mass. We propose a method which exam-
ines phrase pairs that are consistent with the set
of high confidence word alignments defined for the
sentence. By ‘consistent’ we mean that for a concept
< ei, f i > to be valid, we make sure that if any word
in ei is part of a high confidence alignment, then the
word to which it is aligned must be included in f i

and vice versa. Phrases must still occur above a cer-
tain frequency in the corpus to be considered.

The constraints on the model are applied during
both the initialisation phase and the EM phase of
the training. To constrain the phrase pairs during
EM, we assign a small, non-zero probability to all
phrase pairs that are not consistent with the word
alignments which will then only be considered when
unaligned words remain after linking together high
probability phrase pairs. Since all words must be
aligned, there is no analogue of the NULL word
present within the IBM models.

3.1 IBM Constraints

The Standard Model is based on a complex series of
models, parameters and heuristics which allow it to
be efficient. The Joint Probability Model is a more
principled and conceptually simpler model but it is
very inefficient. By using the IBM Models to con-
strain the Joint Model, we are searching areas in the
phrasal alignment space where both models overlap.
We combine the advantage of prior knowledge about
likely word alignments with the ability to perform a
probabilistic search around them.

The IBM constraints are the high confidence word
alignments that result from taking the intersection of
the bi-directional Viterbi alignments. This strategy
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Figure 1. The area of alignment space searched using
IBM constraints and applying the restriction to common
phrases.

for extracting phrase pairs that are coherent with the
Viterbi alignments is similar to that of the phrase-
based Standard Model. However, the constrained
Joint Model does not lock the search into a heuristi-
cally derived symmetrized alignment.

Figure 1 shows the space searched by the model
for an example sentence. All valid concepts are con-
sistent with all high confidence word alignments and
either comprise of words or commonly occurring
phrases. The concept <‘wir’,‘consider’> would
break the high confidence alignment between ‘wir’
and ‘we’ and would therefore be invalid. We can
also see that the model searches more intensively ar-
eas of the sentence about which there is little cer-
tainty. Searching over an area of lower probabil-
ity is preferable to using a heuristic to arbitrarily
align all unaligned words. Searching allows good
phrasal alignments to be discovered, for instance
<‘das überprüfen’, ‘consider this’ >.

By using the IBM Models to constrain the Joint
Model, we are searching areas in the phrasal align-
ment space where both models overlap. We combine
the advantage of prior knowledge about likely word
alignments with the ability to perform a probabilistic
search around them.

3.2 Linguistic Constraints

By constraining the Joint Model using high con-
fidence word alignments, any external knowledge



sources can be included into the probabilistic frame-
work. Linguistic constraints can be combined to
guide the training of the Joint Model. In this
paper we use a bilingual dictionary and identical
words to contribute further alignment points. These
constraints are combined a straightforward manner.
First the IBM constraints are collected, then words
that are identical in the source and target phrase
and that do not contradict the IBM alignments are
aligned. Finally, single word entries from the dictio-
nary that connect a word in the source sentence to a
word in the target sentence are used to align as yet
unaligned words. Our dictionary includes morpho-
logical variations like plural and tense.

These linguistic constraints are useful with small
sets of training data, but for larger corpora, dictio-
naries and identical words would contribute less to
the quality of the final translations. However, the
advantage of being able to include any knowledge
about word alignments within a statistical model is
compelling.

4 Improving the Joint Model

4.1 Lexical Weighting

The Joint Probability Model can only be trained with
small amounts of parallel data and consequently the
resulting parameters suffer from sparse counts. In
order to make fractional counts more reliable, we
can include information which encodes our prior
belief about word-to-word alignments. This is de-
sirable as word alignments are less prone to sparse
statistics than phrasal alignments.

When training the Joint Model, we have initially
assumed a uniform probability across all possible
alignments. In a sentence, concepts of the same size
will be assigned the same fractional counts. If one
concept occurs more often over the entire corpus, its
final parameter value will be higher. However, when
the training corpus is very small, it is unlikely for the
model to have seen representative occurrences of the
concepts.

In order to overcome this problem, the Joint
Model can use information about word-alignments
generated by the IBM models. A simple way to in-
clude this knowledge is to use the high confidence
points from the intersection of the bi-directional
Viterbi alignments. Concepts which contain many

points of high confidence will be more probable than
concepts of the same size which contain none.

We define a prior count which reflects the proba-
bility of the phrasal alignment given the high confi-
dence word alignments:

pc(e, f) =
|align|

min(|e|, |f |)
We divide the number of word alignments contained
within the concept by the total number of possible
word alignments for the concept, which is equal to
the length of the shorter of the two phrases. We add
a small fraction (0.1) to both the numerator and the
denominator to smooth and avoid zero probabilities.

One way to include this prior count in the model
would be to calculate it separately and then use it in
the decoding process as one of the features of the
log linear model. This would be similar to the lexi-
cal weighting employed by Koehn et al. (2003). In
the Joint Model, however, we must perform EM and
including these probabilities in the training of the
model will improve the overall quality of alignments
searched. These counts are thus included in the ini-
tialisation phase of the Joint Model training with the
calculation of the fractional counts:

fc(e, f) = (1 − λ)p(e, f |E,F ) + λpc(e, f)

The fractional count for each concept in each sen-
tence is calculated by interpolating the joint proba-
bility of the concept, based on the Stirling numbers,
and the prior count, which reflects the probability
of the phrasal alignment given the high confidence
word alignments. The use of the weight to balance
the two contributions allows us to adjust for differ-
ences in scale and our confidence in each of the two
measures. After testing various settings for λ the
value 0.5 gave the best Bleu scores. Callison-Burch
et al. (2004) used a similar technique for combin-
ing word and sentence aligned data. However, they
inserted data from labelled word alignments which
meant that they did not need to sum over all possible
alignments for a sentence pair.

4.2 Fast Hill-climbing
The constraints on the Joint Model reduce its size
by restricting the initialisation phase of the train-
ing. This is one of the two major drawbacks of the



model discussed by Marcu and Wong (2002). The
other major drawback is the computational cost of
the training procedure. Fast hill-climbing is neces-
sary to make EM training more tractable.

The Joint Model examines all possible swaps,
splits, merges and moves for the set of concepts
that have been selected as part of the initial align-
ment. Normal hill-climbing repeatedly performs a
very expensive search over all possible steps, select-
ing the best step each time and applying it until no
further improvement is found. In fast hill-climbing,
instead of selecting only the best step, we collect all
the steps that improve the probability of the initial
phrasal alignment, and only search once. We then
apply them one by one to the initial phrasal align-
ment.

This approach has the disadvantage of heavily
weighting the initial alignment. All alignments gen-
erated during one iteration of EM are only one step
away from the pervious alignment, so the counts for
the concepts in this alignment will be high. This is a
drastic change to Viterbi training, but such measures
are needed to reduce the training time from nearly 5
hours to complete one iteration of EM for just 5000
sentences.

5 Experiments

The experiments were run using the German-
English Europarl corpus (Koehn, 2005). Europarl
contains proceedings from the European Parliament
covering the years 1996-2003. The test set consisted
of the standard Europarl test set of 1755 sentences
which ranged from 5 to 15 words in length. This
makes results directly comparable to Koehn et al.
(2003). For the language model we used the SRI
Language Modelling Toolkit (Stolcke, 2002) to train
a trigram model on the English section of the Eu-
roparl corpus.

To perform the translations we used the
Pharaoh (Koehn, 2004) beam search decoder
version 1.2.8, with all the standard settings. Our
evaluation metric was Bleu (Papineni et al., 2002)
which compares the output sentences with human
translated sentences using 4-gram precision.

The translation models are included within a log-
linear model (Och and Ney, 2002) which allows a
weighted combination of features functions. Only

three features were used for both the Joint and the
Standard Model: p(e|f), p(f |e) and the language
model, and they were given equal weights.

5.1 Fast Hill-Climbing
EM training of the Joint Model was prohibitively
slow even for the smallest data sets, so the first ex-
periment explores the gains to be made by using fast
hill-climbing on a training corpus of 5000 sentences.

Figure 2. Time taken for EM training in minutes per itera-
tion for 5,000 sentences on a machine with 2Gb RAM and
a 2.4GHz CPU

In Figure 2 we can see that fast hill-climbing is
much faster than the normal hill-climbing. We have
reduced the time taken to perform the first iteration
from nearly 5 hours to about 40 minutes, which is
about a factor of eight.

Figure 3. Bleu scores using 5,000 sentences training
data

The effect of fast hill-climbing on the quality of
translations can be seen in Figure 3. The default
method slightly outperforms fast hill-climbing for



the first few iterations, but then fast hill-climbing
overtakes it. The difference in performance between
the two methods is small and we apply fast hill-
climbing in the remaining experiments.

5.2 IBM Constraints
The effect of applying IBM word constraints is ex-
plored by comparing it to the unconstrained Joint
Model and to the Standard Model. The uncon-
strained Joint Model becomes intractable with very
small amounts of training data. On a machine with 2
Gb of memory, we were only able to train on 10,000
parallel sentences (429234 words) of the German-
English Europarl corpora. Beyond this, pruning is
required to keep the model in memory during EM.

In Tables 2 and 3 we can see the differences in
size and performance between the baseline model
and the Joint Model for different sizes of training
corpora. The unconstrained Joint Model produces a
very large translation table, containing more than 6
million phrase pairs. The size of the model hampers
its performance, resulting in a poor Bleu score.

By using IBM constraints, the performance of the
Joint Model improves by guiding it to explore the
more promising areas of the search space. It even
out-performs phrase-based Standard Model. The re-
sulting translation table is, however, still quite large
and only about four times smaller than the uncon-
strained Joint Model. On examining the phrase pairs
produced for each sentence, we discovered that the
reason for the large size of the model was due to
longer sentences for which there were few points of
high confidence.

The lexical weighting also improve the perfor-
mance of the Joint Model. The addition of informa-
tion about word alignments allows for better deci-
sions about phrasal alignments because of the spar-
sity of data in the phrasal alignment space.

Corpus Size 10,000 20,000 40,000
Standard Model 21.69 23.61 25.52
Joint Model 19.93 - -
+ IBM 22.13 23.08 24.16
+ IBM + Lex 22.79 24.33 25.99

Table 2. Bleu scores for the Joint Model with IBM con-
straints and prior counts, corpus size indicates number of
sentence pairs

Corpus Size 10,000 20,000 40,000
Standard Model 0.09 0.20 0.41
Joint Model 6.17 - -
+ IBM 1.45 2.73 4.99
+ IBM + Lex 1.45 2.72 4.96

Table 3. Translation table size in millions of phrase pairs

5.3 Linguistic Constraints
The effect of adding linguistic constraints to the
IBM word constraints is shown in tables 4 and 5.

The bilingual dictionary which comes with Ding,
an open source translation program1 was used.

Corpus Size 10,000 20,000 40,000
Standard Model 0.09 0.20 0.41
Joint + IBM + Lex 1.45 2.72 4.96
+ Ident. 1.36 2.55 4.64
+ Ident. + Dict. 1.09 2.07 3.83

Table 4. Translation table size in millions of phrase pairs
when linguistic constraints are added to the Joint Model

Corpus Size 10,000 20,000 40,000
Standard Model 21.69 23.61 25.52
Joint + IBM + Lex 22.79 24.33 25.99
+ Ident. 23.30 24.90 26.12
+ Ident. + Dict. 23.20 24.96 26.13

Table 5. Bleu scores for different training corpus sizes

Table 4 shows that by adding high confidence
alignments for identical words and forcing phrase
pairs to be consistent with these as well as the IBM
constraints, we reduce the size of the model but only
slightly. Including points from the bilingual dictio-
nary results in a sizeable reduction of about 20%.

Table 5 shows that the inclusion of lexical infor-
mation into the model improves performance. The
improvement in Bleu score seems to reduce with the
increase in training data. As the model is trained on
more data, external knowledge sources provide less
advantage.

5.4 Scalability
Even though the constrained Joint Model reduces
complexity, pruning is still needed in order to scale

1See http://www-user.tu-chemnitz.de/f̃ri/ding/



up to larger corpora. After the initialization phase of
the training, all phrase pairs with fractional counts
less than 10 million times that of the phrase pair with
the highest count, are pruned from the phrase table.
This reduced the phrase table from 5.38 to 2.89 mil-
lion phrase pairs. The model is also parallelized in
order to speed up training.

To test the scalability of the Joint Model with
pruning, we performed experiments on a larger par-
allel corpus. We used the Spanish-English data from
the 2006 HLT-NAACL Workshop on Statistical Ma-
chine Translation, which consists of 730,740 sen-
tences of training data and 3064 test sentences which
are on average much longer than the test sentences
used in previous experiments. Here sparse EM was
not used to avoid running out of memory. The
weights of the feature functions were optimized us-
ing minimum error rate training (Och, 2003a).

BLEU Size
Joint + IBM 26.17 2.28
Standard Model 28.35 19.04

Table 6. Bleu scores and model size in millions of phrase
pairs for Spanish-English

The results in Table 6 show that the Joint Model is
capable of training on larger data sets, with a reason-
able performance. On smaller data sets, as shown
in sections 5.2 and 5.3 the Joint Model shows per-
formance superior or comparable to the Standard
Model. However, here it seems that the Standard
Model has an advantage which is statistically sig-
nificant according to the sign method (Koehn and
Monz, 2006). This is almost certainly related to the
fact that the Joint Model results in a much smaller
phrase table. The size of the resulting Joint Model is
in fact comparable to the size of the model in previ-
ous experiments when training with just 20,000 sen-
tences. This is because the model must be kept in
memory for collecting fractional counts in EM and
even though the corpus is bigger, the memory avail-
able remains the same (the Standard Model phrase
table is created on disk). To keep the Joint Model
within memory, pruning is necessary after initial-
ization because this is where most phrase pairs are
visited. During EM, only a very small proportion
of phrase pairs are visited and the model shrinks
slightly with each iteration.

Pruning eliminates many phrase pairs, but further
investigation indicates that this has little impact on
BLEU scores. The fact that only a small proportion
of the alignment space is searched is very likely to
be hampering the Joint Model’s performance. The
small number of alignments visited leads to data
sparseness and over-fitting. Another factor could
be efficiency trade-offs like the fast but not optimal
competitive linking search for phrasal alignments.

6 Related Work

DeNero et al. (2006) argue that training a translation
model at the phrase level results in inferior param-
eters to the standard, heuristic phrase-based mod-
els. They suggest that the reason for this is that EM
optimizes by selecting different segmentations and
loses important phrase translation ambiguity. They
say that the model results in a very peaked distri-
bution and entropy drops too low. However, their
argument only holds for conditional models. In a
conditional model, there is competition for the prob-
ability mass of the conditioned word, and instead of
spreading that mass between different translations,
different segmentations will tend to be selected for.

DeNero et al.’s argmuents do not apply to a joint
model. There is no such competition and the result-
ing phrase table’s entropy is in fact higher than that
of the Standard Model.

7 Conclusion

The Joint Model is a more principled way to es-
timate phrase translation probabilities than the ad
hoc heuristics that are standardly used in SMT. The
Joint Model presents challenges including a larger
search space, local minima and over-fitting. But
these can all be overcome straightforwardly through
constraints on the search space, good initialization,
bias towards retain shorter phrase pairs, and limiting
the number of iterations of EM training.

In this paper we have shown that using the Joint
Probability Model to estimate phrase translation
probabilities results in a better performance than the
heuristic approach for smaller data sets. This sug-
gests that there are gains to be had by using a more
principled statistical framework. For larger data
sets performance is slightly behind the phrase-based
models. This seems likely to be due to the smaller



number of alignments extracted in the final iteration
of EM and future work will concentrate on ways to
alleviate this.

By introducing constraints to the alignment space
we can greatly reduce the complexity of the model
and increase its performance. The strategy of us-
ing IBM constraints with the Joint Model allows it
to search areas of the alignment space with a higher
probability mass, resulting in better parameters. A
constrained Joint Probability Model can train on
larger corpora making the model more widely appli-
cable. Also, our particular method of constraining
the Joint Model makes it easy to include linguistic
information within SMT’s probabilistic framework
to improve alignment quality.

The Joint Model would benefit from lexical
weighting like that used in many phrase-based mod-
els (Koehn et al., 2003). Using IBM Model 1 to ex-
tract a lexical alignment weight for each phrase pair
would decrease the impact of data sparseness, and
other kinds of smoothing techniques will be inves-
tigated. Better search algorithms for Viterbi phrasal
alignments during EM would increase the number
and quality of model parameters.
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