
A Computer Model of a Grammar for English

Questions

Chris Callison-Burch

June 2000

Contents

1 Introduction 3
1.1 “Grammar Engineering” Explained 3
1.2 The LKB . 4
1.3 Downloading the Software . 4

2 Summary of Ginzburg and Sag (2000) 6
2.1 Overview of HPSG . 6
2.2 Semantic Argument Selection . 8
2.3 The Content of Questions . 10
2.4 Polar Interrogative Constructions 12
2.5 Wh-Questions . 14

2.5.1 Unbounded Dependencies 14
2.5.2 Nonsubject Wh-Interrogatives 17
2.5.3 Subject Wh-Interrogatives 19

2.6 Multiple Wh-Questions . 21

3 Theory vs. Implementation 28
3.1 Determinacy in Grammar Rule Length 28
3.2 Difference Lists . 29
3.3 Pumping Rules and Intermediate Types 31
3.4 Sets Treated as Lists . 34

4 Key Examples 35
4.1 Simple Declaratives . 35

4.1.1 Semantic Subcategorization 38
4.2 Focused and Unfocused “Do” . 40
4.3 Non-subject Wh-Interrogatives . 42

4.3.1 Distinguished From Topicalization 44
4.3.2 As Embedded Questions . 44

4.4 Subject Wh-Interrogatives . 45
4.5 Sensitivity to the Presence of Wh-Words 46

4.5.1 Pied Piping . 46
4.5.2 “The Hell” Examples . 47

4.6 Multiple Wh-Questions . 49

1

4.7 In-situ Wh-Questions . 51

5 Appendices 56
5.1 Types . 56
5.2 Pumping Rules . 65
5.3 Semantics . 68
5.4 Lexeme Types . 70
5.5 Root Symbol . 76

2

Chapter 1

Introduction

This document describes my senior honors project, which is an implementation of
a grammar for English questions. I have created a computer model of Ginzburg
and Sag’s theory of English interrogative constructions using the parsing software
developed at the Center for Study of Language and Information (CSLI). In this
chapter I describe the LKB parsing software, give instructions on downloading the
system, and comment on the process of grammar engineering. The next chapter
gives a summary of Ginzburg and Sag (2000). Chapter 3 details the discrepancies
between the Ginzburg and Sag theory and my implementation. Chapter 4 provides
a detailed discussion of a set of key example sentences. The appendices contain
tables describing all the grammar constructions, lexical rules, types, and example
lexical entries used in my implementation.

1.1 “Grammar Engineering” Explained

The process of modeling linguistic theories or “grammar engineering” is useful for
two reasons. First, and more obviously, the building of a large scale grammar is
useful for integration into natural language technologies. Because computers are
formal systems that require precise, logical instructions in order to function, they
are unable to use language, which is such a seamlessly intuitive process for humans.
Grammars can be used to create a system of representation for utterances in a
language, which allows a mapping to be specified between syntax and semantics.
Therefore the the surface form of sentences, which has wide variation, can be
represented in a more abstract, logical form. Logical representations are useful for
such applications as machine translation, for sophisticated information retrieval,
and for interfaces to various kinds of computer systems.

One possible approach to machine transltion is to build a logical representation
of the meaning of an input string using a grammar for the source language. That
representation then is fed to a grammar for the target language which generates a
sentence in that language which has an identical meaning as the input sentence.
Indeed, the LinGO grammar being developed at CSLI using the same tools that

3

I use, is integrated into the Verbmobil system, which performs speech to speech
translations between German, English and Japanese.

The second reason that prototyping grammars is useful is that a computational
model of a formal linguistic theory allows for practical testing of that theory on
a wide range of data. This is of great use to linguists because the interaction
of numerous, subtle constraints is often difficult to anticipate precisely. When
an additional grammatical construction is posited to broaden the coverage of a
grammar, it can have unexpected interactions with other pieces of the grammar
and cause over-generation. Building a computational model of a grammar allows
a linguist to quickly and accurately test the predictions made by that grammar.

1.2 The LKB

The LKB (Linguistic Knowledge Building) system is a grammar and lexicon de-
velopment environment for use with constraint-based linguistic formalisms. It is
specifically designed for the use of typed feature structures. It is intended to be
used for Natural Language Processing research involving unification-based linguis-
tic formalisms for parsing and generation. It has been most extensively tested with
grammars based on Head-driven Phrase Structure Grammars (HPSG), such as the
one described here, but it is intended to be compatible with most constraint-based
grammatical formalisms.

The best way to think about the LKB system is as a development environment
for a very high-level specialized programming language. Typed feature structure
languages are essentially based on one data structure – the typed feature structure,
and one operation – unification. This combination is powerful enough to allow the
grammar developer to write grammars and lexicons that can be used to parse
and generate natural language utterances. In effect, the grammar developer is
a programmer, and the grammars and lexicons comprise code to be run by the
system. The LKB system is therefore a software package for writing linguistic
programs, i.e., grammars. (Copestake in preparation).

It’s important not to confuse the LKB system and the grammars which run
on it. To be clear, I have had no part in writing the LKB software – it was
developed by others in the LinGO group at the Center for Study of Language and
Information, including Ann Copestake, John Carroll, Rob Malouf, and Stephan
Oepen – I have used the program to prototype a grammar based on the Ginzburg
and Sag text.

1.3 Downloading the Software

The LKB grammar development environment is available as a UNIX executable
file, and can be obtained from http://www-csli.stanford.edu/~aac/lkb.html
as gzipped tar files. Use Netscape to download the file appropriate to your flavor
of UNIX. At the command prompt type:

gunzip climimage.tar.gz

4

or
gunzip linuximage.tar.gz

depending on whether you are installing the Solaris or Linux version. This should
give you a .tar file which you can extract the LKB image from by typing:

tar xf climimage.tar
or

tar xf linuximage.tar
This will create the new directory called lkb/ containing several files including
the lkb executable. If you have trouble installing the LKB please refer to its
comprehensive documentation also available from the LKB homepage.

The grammar files need to be downloaded separately. They are linked from
http://www-csli.stanford.edu/~ccb.

5

Chapter 2

Summary of Ginzburg and
Sag (2000)

Ginzburg and Sag provide a comprehensive account of a wide range of syntactic
and semantic facts involved with English interrogative constructions. Their theory
is formulated in the constraint based linguistic formalism HPSG, and influenced
by situation theory semantics. The constructions that they examine include:

• Subject and Non-subject Wh-Interrogative Clauses

• Polar interrogatives

as well as a treatment of more exotic in-situ wh-interrogatives such as “echo”and
“reference” questions, which are generally not treated by other analyses and instead
deemed extra-grammatical. I have modeled the theory presented in Ginzburg and
Sag (2000) as closely as possible; I provide a detailed discussion about where my
implementation deviates from the theory in the next chapter.

2.1 Overview of HPSG

HPSG is a constraint-based linguistic formalism that uses typed feature structures
to define a fine-grained typology of language. Utterances in HPSG are modeled
as feature structures of type sign. The features associated with structures of this
type include phonology1, and synsem, the latter specifying both syntactic and
semantic information. The two fundamental subtypes of sign are word and phrase.

Previous versions of HPSG have used type hierarchies to express generalizations
about classes of words, and have included multiple inheritance as a way of generaliz-
ing across categories. For example, lexical types inherit from both a part of speech
(such as verb-lexeme, prep-lexeme, or adj-lexeme) and an argument selection type

1My implementation uses the feature orthography rather than phonology because I repre-
sent words with their conventional spellings rather than in a phonological form.

6

(such as strict-intransitive). This allows information which is common across dif-
ferent categories of words to be abstracted away from the individual lexical types.
Beginning with Sag (1997), this multidimensional approach has recently been used
to define construction hierarchies, which delineate the set of grammatical construc-
tions, and is further developed by Ginzburg and Sag. Phrases are modeled in terms
of their headedness and clausality. In this way generalizations across phrases are
expressed - for example the wh-interrogative-clause and topicalized-clause construc-
tions both inherit from head-filler-phrase gaining the constrains associated with
that type, and inherit individually from the core-clause and interrogative-clause
types which distinguish their behavior.

(1) phrase

clausality headedness

clause headed-phase

core-cl hd-fill-ph

inter-cl

top-cl wh-int-cl-cl

Perhaps the biggest change in the formulation of HPSG from Sag (1997) to
Ginzburg and Sag (2000) is the adoption of the Generalized Head Feature Prin-
ciple (shown in 2), which uses default unification to replace a number of other
independent principles, including the The HEAD Feature Principle, the Valence
Principle, the SLASH Inheritance Principle, and the STORE Inheritance Princi-
ple, which detail how information is passed from the head daughter to the mother
phrase.

(2) Generalized Head Feature Principle (GHFP):

hd-ph ⇒

ss / 1

hd-dtr
[

ss / 1

]

The ‘/’ notation indicates a default unification. The default unification op-
eration is formally defined in Lascarides and Copestake (1999), and affords an
extremely elegant way of formulating constraints. It essentially means that all fea-
tures are unified unless specified to have different values by a more specific type.
Thus, rather than having to specify the identification of values for each feature
through principles to factor out their application to specific types, the General-
ized Head Feature Principle states that all syntactic and semantic information is
shared by default between the mother and the head daughter and allows subtypes
of headed-phrase to override the general constraint for specific features. That is,
unless a construction specifies otherwise, then all features of a phrase are inherited
from its head.

7

The Generalized Head Feature Principle is arguably a stronger claim about
headedness than a set of independent inheritance principles. Rather than headed-
ness being distributed over half a dozen independent constraints which only have
the appropriate effect as a result of their interaction, the GHFP condenses the
constraints into a single claim about headed phrases.

The mechanics of the version of HPSG used by Ginzburg and Sag are otherwise
the same as in previous versions. I presuppose in the rest of this document that
the reader has a familiarity with HPSG.

2.2 Semantic Argument Selection

‘ Following the work of Hamblin and Karttunen, Ginzburg and Sag develop a
semantic typology which distinguishes between questions and propositions, but
further posit a type fact and a type outcome, and motivate these types by showing
that certain predicates select for clausal arguments which are describable neither
as propositions nor as questions. The authors represent their semantic ontology
HPSG’s type system:

(3) message

propositional non-propositional

proposition outcome fact question

The type hierarchy above describes the abstract semantic entities which can be
selected by predicates. The subtypes of the general type message are the semantic
distinctions that are necessary to explain the argument selection for question
embedding, true/false, factive, and mandative predicates.

One class of predicates embeds interrogative complements but not declarative
complements:

(4) a. Kim asked/wondered/investigated who left.

b. Kim asked/wondered/investigated #that Sandy left.

This class of question embedding predicates helps motivate the ontological dis-
tinction between questions and other types, because members of this class select
only for questions and ‘question–denoting nominals’ as their arguments.

A separate class of predicates, called true/false (TF) predicates which in-
cludes believe, assert, deny, prove, is incompatible with interrogative complements:

(5) a. # Bo supposes/assumes the question/issue of which pitcher will play
tomorrow.

b. # Bo supposes/assumes which pitcher will do what tomorrow.

c. # Carrie claimed/argued who came yesterday.

8

d. # Carrie denies/doubts who stole Mo’s key.

e. # Tony believes/suggests whether Bo stole Mo’s key.

Furthermore, TF predicates can only cooccur with propositions and nominal com-
plements of which truth can be predicated:

(6) a. #Jackie believed/doubted/assumed/proved Bo’s weight/my phone num-
ber.

b. Jackie knows/discovered Bo’s weight./my phone number.

c. #Billie’s weight./my phone number is true/false

d. Jo believed/doubted/assumed Billie’s story/the claim/the hypothe-
sis/the charges/the forecast.

e. Billie’s story/the claim/the hypothesis/the charges/the forecast is true/false.

Truth is predictable only of propositions, not of facts/possibilities:

(7) a. #The fact that Tony was ruthless is true.

b. #Tony’s being ruthless is true.

c. The possibility that Glyn might get elected is true.

d. The claim/hypothesis/proposition that Tony was ruthless is true/false.

Therefore the type fact is included in the hierarchy, and is distinct and incompatible
with the the type proposition. Predicates such as know, discover, reveal, forget are
described as factive because their complements must semantically be facts.

The argumentation for the existence of outcome as a distinct type in the ontol-
ogy is parallel to the one used to motivate the existence of the type question. There
exists a semantically coherent class of mandative predicates, including predicates
such as demand, require, prefer, instruct, which are incompatible with indicative
declaratives:

(8) a. #Bo demanded that Mo is released.

b. #Kjell demanded that Billie leaves the party.

c. #The citizens of Worms pray that Solomon’s book is found.

d. #The regulations require that Luca resigns next week.

e. #Glen orders that Billie is brought to see her.

but are acceptable with a distinct type of finite clause, subjunctives:

(9) a. Bo demanded that Mo be released.

9

b. Kjell demanded to leave the party.

c. The regulations require that Luca resign next week.

d. The citizens of Worms prayed that Solomon’s book be found.

e. Glen ordered that we be brought to see her.

f. Glen ordered Billie be brought to see her.

Here is the lexical entry for the verb “wonder”. Notice that it selects for an
argument with semantic type question, and therefore makes the correct predictions
about the data in (4).

(10)

orth 〈 “wonder” 〉

ss|loc|cat

head verb

arg-st 〈 [],
[

loc|cont question
]

〉

Similarly, the lexical entry for demand or require would specify an argument struc-
ture where the second argument is type outcome which only gets assigned to sub-
junctive verbs or infinitives, and will therefore only allow arguments like those in
(9), and rule out those in (8).

2.3 The Content of Questions

The contribution of wh-phrases in questions is captured by stipulating that ques-
tions have a feature call params with a value that is a set of parameters, which act
as unbound variables – the semantic elements that are being asked about. Each
wh-word introduces one parameter. The params feature performs two of the tasks
associated with wh-phrases: (1) it links the parameter for each wh-word to the ar-
gument position within the proposition and (2) it introduces restrictions that the
referent of the parameter must satisfy. Here are a few illustrations of the content
for questions:

10

(11) a. Who left? $→

question

params

param

index 1

restr
{

person(1)
}

prop

proposition

sit s

soa

quants 〈 〉

nucl

[

leave-rel

leaver 1

]

b. Who greeted who? $→

question

params

param

index 1

restr
{

person(1)
}

,

param

index 2

restr
{

person 2)
}

prop

proposition

sit s

soa

quants 〈 〉

nucl

greet-rel

greeter 1

greeted 2

Note that polar questions are treated uniformly in terms of an empty params
value:

11

(12) Did someone leave? $→

question

params {}

prop

proposition

sit s

soa

quants 〈

existential-qf

index 1

restr
{

person(1)
}

〉

nucl

[

leave-rel

leaver 1

]

Therefore, the generalization for the semantics for polar interrogative constructions
is:

(13)

question

params { }

prop

proposition

sit s

soa soa

Wh-questions are similarly structured, but have a nonempty set of parameters:

(14)

question

params {π, ...}

prop

proposition

sit s

soa soa

2.4 Polar Interrogative Constructions

The type which introduces question as the value of the content of a sign is
interrogative-clause. Each type of English question construction that Ginzburg
and Sag examine is defined to be a subtype of that general type. The inheritance
scheme for question types that they define is given in (15). Since interrogative
constructions all inherit from the type inter-cl which constrains its content value,
and thereby the content of all its subtypes, to be of type question.

12

(15) inter(rogative)-cl(ause)

h(eade)d-int-cl

pol(ar)-int-cl wh-int-cl

non-subject-wh-int-cl

(ns-wh-int-cl)

subject-wh-int-cl

(su-wh-int-cl)

insitu-int-cl

(is-int-cl)

...

Maximal subtypes of inter-cl inherit from the headedness dimension of phrase,
as well as from the clausality dimension shown here. For instance, polar-
interrogative-clause, which all ‘yes-no’ questions are instances of, is a subtype of
hd-int-cl and subject-auxiliary-inversion-phrase (sai-ph).

(16) sai-ph:

[

subj 〈 〉
]

→ H

word

inv +

aux +

subj 〈 0 〉

comps A

, 0 , A

The constraints contributed by sai-ph indicate that the phrase is an inverted
(inv +), auxialary (aux +) construction in which the subject argument follows the
head, and the complements follow the subject. Thus the only construction-specific
constraint that needs to be stated is the following:

(17) pol-int-cl:

cont

question

params {}

prop

[

proposition

soa 1

]

→ H

[

ic +

cont 1

]

, . . .

That is, the only things that are specific to this construction are that its content
is a question with no parapmeters to be filled (i.e. it is a question which can be
answered with “yes” or “no”) about the proposition formed by the content of the
head daughter. Furthermore, because the head daughter is constrained to be an

13

independant clause (ic +), this is inherited up to the mother and allows polar
interrogatives to stand alone as sentence – that is, they are not required to appear
in an embedded context as would be the case if they were ic -.

A typical ‘inverted’ polar interrogative clause, satisfying all the inherited con-
straints, is sketched in (18).

(18) S

pol-int-cl

head 2

vform fin

ic +

inv +

aux +

subj 〈 〉

comps 〈 〉

V

head 2

subj 〈 3 〉

comps 〈 4 〉

arg-st 〈 3 , 4 〉

3NP[nom] VP

4

[

vform base

subj 〈 3 〉

]

Does Kim visit Sandy

“Does Kim visit Sandy?” is inverted – the subject follows the verb “does”. It
is an auxilary construction (see Section 4.2 for details), and it is an independant
clause.

2.5 Wh-Questions

2.5.1 Unbounded Dependencies

The term “unbounded dependency” or “long-distance dependency” applies to a
range of syntactic phenomena, such as topicalization, wh-questions, and relative
clause constructions, and is used to describe a constituent’s being dislocated from
the place that it is normally realized, and occurring at a potentially unbounded
distance from that location. Commonly these dependencies occur in filler-gap
constructions:

14

(19) a. [These bagels]i, I like i. (topicalization)

b. [These bagels]i, they say they like i. (topicalization)

c. [Whose bagels]i do you like i? (wh-interrogative)

d. [From whom]i did you buy these bagels i? (wh-interrogative)

e. [What great bagels]i they bought i! (wh-exclamative)

All of these phenomena are treated using the type head-filler-phrase which
obeys the following constraint:

(20) hd-fill-ph:

[

subj 〈 〉

slash Σ2

]

→
[

loc 1

]

, H

phrase

head verb

slash
{

1

}

& Σ2

(20) creates a phrase from two daughters, a non-head daughter whose local
information is identified with an element from a head daughter’s slash value.

Elements are added to the slash set if not canonically realized. “Canonically
realized” constituents are those that participate in the standard head-complement
and head-subject constructions. Any item which normally appears as a complement
of a verb is treated as non-canonically realized when it appears in a fronted position
through a filler-head construction instead of its normal position following that
verb. All canonically realized arguments (i.e. items on the arg-st list) of a
word are added to the word’s subj, spr, and comps lists through the Argument
Realization Principle (21). Arguments which are not canonically realized, and
which participate in filler-gap dependencies, are marked as type gap-synsem and
are subtracted from the comps list.

(21) Argument Realization Principle:

word ⇒

ss|loc|cat

subj A

spr B

comps C ' list(gap-ss)

arg-st A ⊕ B ⊕ C

The type synsem is divided into two subtypes – canonical-ss and non-canonical-
ss, and non-canonical-ss is further divided into gap-ss and pronominal-ss. This
distinction allows non-canonically realized gap-ss arguments to be marked for re-
moval from the comps list. The type distinction also allows gap-ss to be further
constrained:

15

(22) gap-ss ⇒

loc 1

slash
{

1

}

Thus whenever a non-canonically realized element participates in a filler-gap
dependency, its local information is put into slash. This information is passed up
through the tree via the Slash Amalgamation Constraint on words:

(23) slash Amalgamation Constraint

word ⇒

ss

loc|cat

[

arg-st
〈

[slash Σ1], . . ., [slash Σn]
〉

]

slash (Σ1 ∪ . . . ∪ Σn)

This amalgamation constraint causes the slash value of a word to be the sum of
the slash values of all of its arguments. Amalgamation is not specific to the slash
value. It is a general mechanism which is harnessed for a number of other features,
including store and wh. Whenever the value of a feature is dependent on all of
a word’s arguments the set union operation of amalgamation can be employed.

In the case of slash amalgamation whenever a word’s argument is not canon-
ically realized, it is added to the word’s slash list. The value of a slash list is
passed up to a phrase from its head daughter. An element is removed from the
slash in a head-filler phrase construction, following the constraints in (20). The
filler daughter of such constructions is identified with the item being removed from
the slash list thus guaranteeing the dependency between the topicalized element
or wh-word, and the “gapped” constituent.

The process of slash amalgamation is detailed in the following tree for the
topicalized sentence “These bagels, I like.”

16

(24)

top-cl

slash
{}

[

ss|loc 2

]

decl-hs-cl

slash
{

2

}

These bagels I like

word

slash
{

2

}

subj 〈 1 〉

comps 〈 〉

arg-st 〈 1

[

canon-ss

slash {}

]

,

gap-ss

loc 2

slash
{

2

}

〉

“Like” contains two items on its arg-st list, which correspond to its subject
and object. In this case the object is type gap-ss, which means that it is sbubtracted
from the comps list in the ARP. Since the object is a gap-ss its slash list contains
one elemnt which is coindexed with the object’s loc value. This slash list is
amalgamated with the subject’s empty slash list to the word’s slash value. Like’s
singleton slash is passed up to the head subject clause, and then discharged in the
topicalze clause construction. Since the local value is coindexed with the object
of like, “these bagels” is associated the semantic role that the object plays.

2.5.2 Nonsubject Wh-Interrogatives

In contrast to pol-int-cl, ns-wh-int-cl inherits from the clausality dimension
through wh-int-cl (shown in 25) and from headedness through the hd-filler-ph
(shown above in 20).

(25) wh-int-cl:
[

cont
[

prop 2

]

]

→ [] H
[

cont 2

]

Therefore fronted wh-words are treated as extracted, just as topicalized el-
ements are, and associated with their canonical argument position through the
constraints on the hd-filler type. Furthermore, the [cont question] of nonsub-
ject wh-interrogatives is associated with a [cont proposition] contained in the
head daughter, because of the constraints of the wh-int-cl type. The elements of

17

the params of a question associate a wh-word with the semantic indices of that
proposition via the ‘Filler Inclusion Constraint’:

(26) Filler Inclusion Constraint (FIC):

wh-int-cl:
[

cont
[

params { 1 } & set
]

]

→

[

wh
{

1

}

]

, H

The lexical entries of wh-words are distinguished from other words in that they
have a non-empty set of elements for the feature store that is identified with the
feature wh. Non-interrogative lexical entries are specified to have an empty set for
the wh feature. The lexical entry for interrogative who may thus be formulated as
in (27).

(27) Interrogative who:

orth 〈 “who” 〉

ss

loc

cat NP

cont

param

ind i

restr { }

store

1

param

ind i

restr {person(i)}

wh
{

1

}

Because wh-words can be properly contained within the filler daughter (as op-
posed to the filler daughter being a single wh-word), additional constraints are
employed to ensure that such phrases are allowed to participate in wh-int-cl con-
structions, and are not excluded by the Filler Inclusion Constraint. For example,
in so-called “pied piping” dependencies, the wh-word is contained within the filler
daughter at an arbitrary depth:

(28) a. I wonder [[whose cousin] they like best].

b. I wonder [[...[whose cousin]’s friend’s ...dog] ate the pastry].

To guarantee that phrases which contain a wh-word occur in wh-int-cl construc-
tions, Ginzburg and Sag posit the wh-Amalgamation Constraint, which behaves
similarly to the slash Amalgamation Constraint in that the value of a word’s wh
feature is the amalgamation of its arguments wh values:

18

(29) wh Amalgamation Constraint

word ⇒

ss

loc|cat|arg-st
〈

[wh Σ1], . . ., [wh Σn]
〉

wh (Σ1 ∪ . . . ∪ Σn)

which ensures that any word which has an argument with a non-empty wh value
will itself have a non-empty wh value. This allows wh-words to be properly con-
tained within phrases, and thus allows for the pied piping examples.

Other construction specific constraints are also formulated. For instance, there
are two environments in which ns-wh-int-cl behaves differently – independent
clauses and embedded clauses. In independent nonsubject wh-interrogatives there
is an inverted auxiliary verb, whereas in embedded nonsubject wh-interrogatives
are there isn’t:

(30) a. [Who [will Sandy visit]]?

b. *[Who [Sandy will visit]]?

c. They wonder [who [Sandy will visit]].

d. *They wonder [who [will Sandy visit]].

Therefore ns-wh-int-cl is itself further constrained:

(31) Inversion Constraint (INVC):

[] → [] H

[

ic 1

inv 1

]

This constraint guarantees that main-clause [ic +] (ic represents the notion of in-
dependent clause), questions are inverted and that embedded [ic −] questions
are uninverted.

2.5.3 Subject Wh-Interrogatives

Ginzburg and Sag treat subject wh-interrogatives similarly to nonsubject wh-
interrogatives in that they treat the wh-constituent as extracted. In English subject
questions, the wh-phrase may appear to be in the subject position when compared
to analagous declarative construction:

(32) a. Who visits Merle?

b. Whose friends left?

c. Kim visits Merle.

d. Kim’s friends left.

19

However, Hukari and Levine (1995) show cross-linguistic evidence that lan-
guages which exhibit extraction sensitive phenomena through morpological mark-
ing also exhibit the same behavior for subject wh-interrogative constructions. This
suggests the generalization that all wh-questions should be treated in terms of selec-
tion of a slashed element by a lexical head. Therefore Ginzburg and Sag treat this
kind of interrogative as a head-filler construction where the subject is extracted:

(33) su-wh-int-cl:

[] →
[

loc 1

]

, H

subj

〈[

gap-ss

loc 1

]〉

A declarative-nonsubject-clause non-branching construction is used to the ex-
tract the subject, and create the appropriate [content proposition] semantics
which the question will take as its prop value. A typical example of a subject
wh-interrogative clause is the following:

20

(34) S

su-wh-int-cl

wh {}

slash
{ }

cont

question

params
{

8

}

prop 3

head 4

[

vform fin

ic +

]

subj 〈 〉

NP
[

loc 5

wh 8

]

‘S’

decl-ns-cl

wh {}

slash
{

5

}

cont 3

[

proposition

soa 6

]

head 4

subj 〈 1 〉

{

Who

Whose brother

}

VP

wh {}

slash
{

5

}

cont 6

head 4

subj

〈

1

[

gap-ss

loc 5

]

〉

visits Merle?

Thus in all subject wh-questions, the subject NP is in fact extracted and the
verb heading such a question is slashed. This treatment is thus consistent with the
generalizations of Hukari and Levine.

2.6 Multiple Wh-Questions

Recall that each interrogative wh-word (like 27) has a parameter which is associated
with a semantic argument of the verb. Other than the filler daughter of subject

21

and non-subject wh-interrogative constructions, which are required by the Filler
Inclusion Constraint (26) to contribute their parameter to the questions params
feature, other wh-words are not constrained as to when they contribute their pa-
rameter to the set. Therefore if one wh-interrogative clause is embedded within
another, the parameter of the embedded wh-interrogative word may be retrieved
from storage at the level of the embedded clause or the highest clause. This leads
to ambiguities in multiple wh-questions like

(35) Who wondered who saw what?

The parameter of “what” can thus become part of the meaning of either inter-
rogative clause, leading to ambiguous interpretations. The question can either-be
interpreted as asking who is the x such that x wondered: ‘who saw what’ or inter-
preted as asking who is the x and what is the y such that x wondered: ‘who saw
y’.

The mechanism for this parameter retrieval is treated similarly to the technique
of quantifier storage pioneered by Cooper (1975, 1983). In ‘Cooper storage’ stored
quantifiers are gathered up and passed up to successively higher levels of structure
until an appropriate scope assignment locus is reached.

Pollard and Yoo propose a slight modification to Cooper’s storage method, so
unscoped quantifiers are instead passed up to the mother in a headed structure
not from all the daughters, but only from the semantic head daughter. To achieve
this, they constrain the store value of a verb, requiring that it be the set union
of the store values of the verb’s arg-st members. We may adapt this proposal
in terms of the store Amalgamation Constraint formulated in ((36)).

(36) store Amalgamation Constraint (STAC):

word ⇒

ss|loc

[

arg-st 〈 [store Σ1],...,[store Σn] 〉

store Σ1 ∪ . . . ∪ Σn

]

On this approach, the store of the verb in (37) is nonempty and is passed up the
tree from head daughter to mother.

22

(37) S
[

store Σ

]

1 NP
[

store {some-person}
]

VP
[

store Σ

subj 〈 1 〉

]

some person V

store Σ

{

some-person,

every-memo

}

arg-st 〈 1 , 2 〉

subj 〈 1 〉

2 NP
[

store
{

every-memo
}

]

reads every memo

This same store Amalgamation Constraint is adapted for use with the param-
eters contributed by wh-words. It now contains two kinds of scope-objects – quan-
tifiers, contributed by words like “some” and “every”, and parameters, contributed
by wh-words. The retrieval of parameters from the store list is constrained by
the Wh-Question Retrieval principle (38) which requires that the store value of
a hd-int-cl be the head daughter’s store value, minus a set of parameters that
become the clause’s params set.

(38) Wh-Question Retrieval (WHQR)

hd-int-cl:

store Σ1

cont
[

params Σ2

]

 → . . . H
[

store Σ1 & Σ2

]

. . .

This constraint along with the Filler Inclusion Constraint (26) allows for exactly
the distribution of parameters in multiple wh-quesions, as with the ambiguous
interpretations of (35) above.

Nothing requires that the parameter of “what” be retrieved in the lowest clause.
If it is not, it continues being passed up in store and is retrieved in the higher
interrogative clause. The two alternative readings are depicted below:

23

(39) S

su-wh-int-cl

store {}

cont

question

params
{

πi

}

NPi

wh πi

loc 5

[

store
{

πi

}

]

Who

‘S’

cont proposition

store
{

πi

}

slash { 5 }

VP

cont soa

store
{

πi

}

slash { 5 }

V

store
{

πi

}

slash { 5 }

wondered

S

su-wh-int-cl

store {}

cont

question

params
{

πj ,πk

}

NPj

wh πj

loc 6

[

store
{

πj

}

]

who

‘S’

cont proposition

store
{

πj ,πk

}

slash { 6 }

VP

cont soa

store
{

πj ,πk

}

slash { 6 }

V

store
{

πj ,πk

}

slash { 6 }

saw

NPk

wh {}

store
{

πk

}

what

24

25

(40) S

su-wh-int-cl

store {}

cont

question

params
{

πi,πk

}

NPi

wh πi

loc 5

[

store
{

πi

}

]

Who

‘S’

cont proposition

store
{

πi,πk

}

slash { 5 }

VP

cont soa

store
{

πi,πk

}

slash { 5 }

V

store
{

πi,πk

}

slash { 5 }

wondered

S

su-wh-int-cl

store
{

πk

}

cont

question

params
{

πj

}

NPj

wh πj

loc 6

[

store
{

πj

}

]

who

‘S’

cont proposition

store
{

πj ,πk

}

slash { 6 }

VP

cont soa

store
{

πj ,πk

}

slash { 6 }

V

store
{

πj ,πk

}

slash { 6 }

saw

NPk

wh {}

store
{

πk

}

what

26

Thus the parameter storage mechanism allows for multiple wh-questions. Ginzburg
and Sag give further analysis of in situ questions, but the discussion of that anal-
ysis will be postponed to the Key Examples Chapter.

27

Chapter 3

Theory vs. Implementation

In Chapter 1, I compared typed feature structures to programming languages.
Since linguists working within constraint-based frameworks like HPSG use these
computationally amenable descriptions as a formal way of specifying linguistic
behavior, for the most part the grammars written by linguists may be straightfor-
wardly encoded into computational systems. That being said, there are a number of
points at which my implementation departs from the theory outlined by Ginzburg
and Sag. In this chapter, I highlight those points of departure.

3.1 Determinacy in Grammar Rule Length

A simple point that illustrates how the implementation differs from the theory is
that the implementation requires all grammar rules to be a determinate length
(because of the requirements of the LKB’s chart parser), whereas the theory uses
an abbreviation like the following to represent head-complement phrases with any
number of complements1:

(41) hd-comp-ph:

[] → H

[

word

comps A

]

, A

However, my implementation requires an individual hd-comp-ph grammar rule
for each comps list length. Therefore, I have limited the number of complements

1Ginzburg and Sag’s notation in (41) is intended to be equivalent to the following:

(i)

hd-comp-ph ⇒

hd-dtr

[

word

comps signs-to-synsems(A)

]

non-hd-dtrs A

where the ‘signs-to-synsems’ is a function which relates a list of signs to the corresponding list
of the synsems of those signs. I’m neglecting the fact that this sort of function is not definable
within the LKB, and instead trying to illustrate the simpler point that the LKB requires grammar
rules to be of a determinate length.

28

to two, and created a hd-comp-ph construction for each list length:

hd-comp-ph := hd-ph &
[HD-DTR #1,
DTRS < word & #1, ... >].

hd-comp-ph-0 := hd-comp-ph &
[HD-DTR.SS.LOC.CAT.COMPS < >,
DTRS < sign >].

hd-comp-ph-1 := hd-comp-ph &
[HD-DTR.SS.LOC.CAT.COMPS < #1 >,
DTRS < sign, phrase & [SS #1] >].

hd-comp-ph-2 := hd-comp-ph &
[HD-DTR.SS.LOC.CAT.COMPS < #1, #2 >,
DTRS < sign, phrase & [SS #1], phrase & [SS #2] >].

Thus for each construction in Ginzburg and Sag (2000) which uses such a shorthand
for the number of constructions, in my implementation balloons accordingly.

Notice that there is an additional deviation in the rules shown above – I have
replaced the feature nh-dtrs (non-head-daughters) with the feature dtrs and
I coindex the hd-dtr with an item on that list. This allows me to state simply
to the LKB that the order of daughters in any construction is simply the order
of the dtrs list. Rather than complicate the implementation by defining a set
of linear ordering constraints such as those described in Pollard and Sag (1987)
(which would be theoretically possible within the LKB), I have hand-defined the
ordering of the daughters of each construction using this generalized feature.

This also allows the composition of orthography to be simplified. I use
a standard difference list appending technique to build up the spellings on
phrases.

3.2 Difference Lists

Difference lists are a special type of list where a pointer is maintained to the end
of the list (the last feature). The are defined as follows:

diff-list := *top* &
[LIST *list*,
LAST *list*].

and specified to be the type for orth:

sign := feat-struc &
[ORTH *diff-list*,
SS synsem,
DTRS list-of-signs].

29

which allows a phrase’s orthography to be composed from its daughter’s orthogra-
phies:

unary-construction := phrase &
[ORTH #orth,
DTRS < [ORTH #orth] >].

binary-construction := phrase &
[ORTH [LIST #first,

LAST #last],
DTRS < [ORTH [LIST #first,

LAST #second]], [ORTH [LIST #second,
LAST #last]] >].

ternary-construction := phrase &
[ORTH [LIST #first,

LAST #last],
DTRS < [ORTH [LIST #first,

LAST #second]], [ORTH [LIST #second,
LAST #third]],

[ORTH [LIST #third,
LAST #last]] >].

Difference lists can be used in grammars as a general way of appending lists simply
using unification. In fact, difference list unification is the only method of appending
lists available in the LKB.

It’s also important to note that there is no list subtraction operation in the
LKB. Therefore it’s not possible to formulate the Argument Realization Principle
(given in 21) in the implementation the same way as formulated in the Ginzburg
and Sag theory. The theory’s definition of the ARP gives the comps list in terms
of the subtraction of a list of gap-synsems. While it’s straightforward to define
the arg-st as the append of the subj, spr, and comps using difference lists (as
below), it is impossible to remove the gap-synsems from the comps using the same
operation.

word := lex-sign &
[SS /l #ss & [LOC.CAT [SUBJ [LIST #first,

LAST #second],
SPR [LIST #second,

LAST #third],
COMPS [LIST #third,

LAST #last],
ARG-ST [LIST #first,

LAST #last]]],
DTRS < [SS /l #ss] >].

30

If the slash were a list-of-synsems rather than a list-of-locals and if it were the
case that extracted arguments always came from the beginning of the comps list or
the end of it, then it would be possible to use the difference list append to model the
ARP. Since this is not the case, there needs to be some other mechanism removes
items of type gap-ss from the comps list so that extraction will work correctly.

The removal of gap-synsems could be implemented though constraining type
hd-comp constructions to be binary branching. This would allow a non-branching
rule access to any item on the comps list, and any item could therefore be removed
and typed as gap-ss for extraction. However, while this is a viable option (indeed,
it is the solution used in the LinGO English Resource Grammar), I choose not
to use it since it would dramatically change the appearance of the trees, and I
wanted to try to match the Ginzburg and Sag text in appearance as well as theory.
Instead, I use a set of non-branching pumping rules which apply to lexemes to
remove arguments from the comps list. I’ll explain this in more detail in the next
section.

3.3 Pumping Rules and Intermediate Types

For the implementation of the Sag and Wasow (1999) textbook which I did two
years ago, I developed a novel technique for implementing Principle A of the bind-
ing theory. The textbook’s binding theory is formulated in English as:

• Principle A: An [ana +] synsem-struc must be outranked by a coindexed
synsem-struc.

• Principle B: An [ana –] synsem-struc must not be outranked by a coindexed
synsem-struc.

• The Anaphoric Agreement Principle further states that coindexed elements
share the same agr value.

It is not immediately clear how to treat this within the typed feature structure
formalism, unless one has the massive additional power (and resulting inefficiency)
of a framework like Richter’s (1999, 2000) RSRL. It is difficult to require that a
synsem be coindexed with another synsem that outranks it (that is, precedes it on
an arg-st list), because “outranking” or “preceding” is a difficult notion to define
when unification is the only operation available. One possible solution is to bound
the length of argument structures, breaking the length into specific instances, and
then describe each valid argument structure explicitly.

For example, the following would be examples of valid arg-st lists:

(42) a. 〈
[

syn|head|ana –
]

,
[

syn|head|ana –
]

〉

b.

〈

syn|head

[

ana –

agr 1

]

sem|index 2

,

syn|head

[

ana +

agr 1

]

sem|index 2

〉

31

c.

〈

syn|head

[

ana –

agr 1

]

sem|index 2

,

syn|head

[

ana +

agr 1

]

sem|index 2

,
[

syn|head|ana –
]

〉

d.

〈

syn|head

[

ana –

agr 1

]

sem|index 2

,
[

syn|head|ana –
]

,

syn|head

[

ana +

agr 1

]

sem|index 2

〉

e.

〈
[

syn|head|ana –
]

,

syn|head

[

ana –

agr 1

]

sem|index 2

,

syn|head

[

ana +

agr 1

]

sem|index 2

〉

f. et cetera

One can clearly see that, though perhaps tedious, it is possible to enumerate argu-
ment structures for a bounded list length. Furthermore, since argument structures
are generally no longer than three items long (possibly four in the case of the verb
trade), it’s actually manageable to do this enumeration.

It would be nice if enforcing the binding principles held was as simple as defining
each valid argument-structure as a subtype of the type arg-st. However, creating
subtypes of arg-st is not enough to constrain the arg-st list, because there is no
mechanism within the LKB for forcing a general type to be a more specific subtype.
This is available within the model theory governing the textbook’s theory because
valid feature structures can be described as being composed only of maximal sub-
types for certain values. That is, the Chapter 6 of the textbook describes “resolved
feature structures” as having the value for each feature be specified and maximally
specific. Therefore if the subtypes of the type for arg-st were constrained as in
(42), then a resolved feature structure containing the feature arg-st would have
to have a maximal specific subtype as its value. However, this constraint on the
well-formedness of feature structures is not available within the LKB, and does
not seem feasible within a computationally efficient system.

The problem then becomes one of mandating a type change, or forcing a set of
constraints on a structure. The strategy that I developed was to have a set of non-
branching pumping rules which applied to an (arbitrarily created) intermediate
type between lexeme and word. In order to move from this intermediate type to
word, a sign’s argument structure was forced to undergo a non-branching grammar
rule which caused its argument structure to unify with one of the valid arg-st
types. For example:

binding-rule-5 := word &
[SYN #syn,
SEM #sem,
ARG-ST #arg-st & < [SYN [HEAD [ANA false, AGR #agr]],

SEM [INDEX #ind]],

32

[SYN [HEAD [ANA true, AGR #agr]],
SEM [INDEX #ind]] >,

DTRS < inflected-lexeme & [SYN #syn,
SEM #sem,
ARG-ST #arg-st] >].

The argument structure specification in the rule above corresponds to the argument
structure in (42b). The rule applies to a synsem-struc of the intermediate type
inflected-lexeme, and produces a word which is identical to the inflected-lexeme
except that it’s argument structure has been constrained in accordance with the
binding restrictions. This pumping rule is similar to the zero-complement appli-
cation of the hd-comp construction which vacuously applies to a word which has
no complements, and changes it into a phrase. In the Sag and Wasow (1999) text-
book grammar the pumping of the hd-comp rule is mandatory because all other
grammar rules apply to feature structures of type phrase.

So in the theory outlined in the textbook, each lexeme must pass through an
inflectional rule before it becomes a word, which the head complement rule applies
to, creating a phrase which all other grammar rules apply to. In my implementation
of the textbook grammar, each lexeme must pass through an inflectional rule,
becoming an inflected lexeme which must go through a binding rule in order to
become a word which the head complement rule then applies to.

This strategy of having an intermediate type through which lexemes must pass,
which constrains them in some fashion, is a general one. It can be applied to
a number of circumstances, often without any efficiency loss.2 Indeed, in the
implementation of Ginzburg and Sag I use this strategy to ensure that the arg-st
is the append of the spr, subj and comps and that all gap-synsems are removed
from the comps list as per the Argument Realization Principle. Furthermore, I
use it to do store, wh and slash Amalgamation.

The non-branching rules that I use for the above principles are ordered to avoid
ambiguous parses which would result from applying the rules in varying orders. I
force an ordering by creating an intermediate type for each rule, and causing each
rule to apply to a different intermediate type and to produce the next intermediate
type, eventually producing the type word, which the rest of the grammar then
applies to. Each of the intermediate types correspond to the application of the
constraints that apply using these pumping rules. Therefore there is one type
inflected-lexeme+arp, which applies the Argument Realization Principle, another
inflected-lexeme+amalg which applies the store, slash, and wh Amalgamation
Constraints, and inflected-lexeme+gap which marks elements on the arg-st as
type gap-ss and removes them from the comps list.

2The application of the pumping rule for binding does cause a efficiency problem because for
each inflected lexemes it creates a number of words – one for each valid argument structure of
that lexeme’s arg-st length. The parse chart is then instantiated with these extra edges.

33

3.4 Sets Treated as Lists

Because set theoretic operations are not conducive to efficient computation, they
have not been implemented in the LKB. As such, sets were not available to me as a
type of object that could be part of the implementation. Therefore, where the the-
ory uses sets as feature values, I instead substituted difference lists, and simulated
set union with difference list appends. In places where the non-deterministic re-
trieval of elements of a set was required (as with Wh-Question Retrieval described
in (38)), I have simulated the retrieval by assuming a bounded set length and then
creating a number of rules which retrieved from every possible positions on the
list.

Interestingly, treating the value of slash as a list rather than as a set makes a
valuable linguistic prediction – causing slash to be a list, and limiting the retrieval
of filler elements to the start of that list rules out cross serial dependencies in cases
of multiple extraction. The Bouma et al. (in press) analysis of extraction, which
the Ginzburg and Sag work builds on, fails to make this prediction and instead
rules the unacceptability of such sentences to be linked to processing factors, and
not the the grammar itself. The Bouma et al. (in press) does harness the set
union operation to make correct predictions about parasitic gaps, relying on the
collapsing of values within the set. I am unable to simulate this behavior with
lists, without the implementation becoming incredibly cumbersome. I instead take
the cross serial predictions made by lists as a positive tradeoff for the loss of the
parasitic gap predictions, and have therefore not simulated the set behavior for
slash.

34

Chapter 4

Key Examples

In this chapter I go through the analysis for a set of key examples in great de-
tail. I start by walking through the parses for a set of simple declarative sen-
tences, then describe my treatment of the auxiliary “do”, then show examples of
wh-interrogative constructions, then illustrate some phenomena sensitive to the
presence of wh-words, then show examples of multiple wh-questions, and finally
describe some of the analysis of in situ questions.

4.1 Simple Declaratives

(43) a. Kim left.

b. *Kim leave.

The parse tree for the simple declarative statement “Kim left” is shown in
Figure 4.1. Notice that the nodes on the parse trees that my implementation
produces show the specific type for each phrase, rather than using the standard
(and less informative) abbreviations np, vp, pp, etc. The top node in this tree
represents the application of the declarative head-subject clause construction, and
is applied to a non-clausal head-complement phrase and a non-clausal verb phrase
both of which take zero complements and simply pump the words into phrases.

The verb “leave” inherits from the lexeme type strict-intransitive-verb which
inherits from the part of speech partition of lexeme through non-auxiliary-verb-
lexeme and from argument selection through the strict-intransitive type. The
information which each of these types contributes through inheritance is shown in
(44).

35

Figure 4.1: The parse for “Kim left.”

(44) lexeme

PART-OF-SPEECH ARGUMENT SELECTION

v-lxm

head verb

spr 〈 〉

subj 〈 NP 〉

str-intrs
[

arg-st 〈 [] 〉
]

non-auxv-lxm

head

[

inv –

aux –

]

siv

leave-1

orth 〈 “leave” 〉

head

verb

inv –

aux –

spr 〈 〉

subj 〈 NP 〉

arg-st 〈 [] 〉

36

The Past Tense Verb Inflectional Rule applies to the lexical entry, inflecting
the verb1 and adding the information that it is a finite, non-predicative verb which
describes a realis state of affairs:

(45) Past Verb Tense Inflectional Rule:

v-lxm

orth orth

ss ss

⇒

orth fpast(orth)

ss ss

loc

cat

head

verb

form fin

pred –

subj 〈
[

head|case nom
]

〉

cont r-soa

The Argument Realization Principle (which is simulated through a set of non-
branching rules in my implementation) then applies to the inflected form “left”,
and coindexes the subj value with the arg-st value, and assigns the comps to
be empty. Therefore the zero complement case of the non-clausal verb phrase
construction applies, turning “left” into a phrase. Since “left” is a finite, non-
inverted phrase with a non-empty subj list the declarative head-subject clause then
applies, binding the phrase “Kim” as the subject. The resulting phrase unifies
with the Root Symbol, and therefore parses. The Root Symbol has the following
specification in my implementation:

(46) The Root Symbol:

ss

loc

cat

head

[

verb

ic +

]

spr 〈 〉

subj 〈 〉

comps 〈 〉

cont message

store 〈 〉

slash 〈 〉

wh {}

The reason that (43b) “Kim leave” fails to parse is that it does not unify with
this specification. The parse chart in Figure 4.2 shows the inflectional rules which
apply to “leave”. The Base , Subjunctive/Imperative, Infinitival, and Non-3rd-
Singular verb inflectional rules all apply to the lexical entry leave-1 producing the

1The LKB’s system for inflection is similar in spirit to the function on orth shown in (45). It
adds a suffix to a string following a set of regular expressions. In cases of words like “leave” which
is irregular in its spelling for the past tense, the LKB looks up the correct spelling in a file called
irregs.lisp, which must be created by the grammar writer to avoid errors in overregularization.

37

Figure 4.2: The parse chart for “Kim leave.”

unchanged output “leave”. The word created by the application of the Non-3rd-
Singular verb Inflectional Rule blocks a sentence parsing because the application
of the decl-hs-cl with the 3rd person subject “Kim” fails. The Base Verb and
Infinitival Verb Inflectional Rules also block the decl-hs-cl construction, because
their form values are not compatible with fin.

The structure for “leave” when Subjunctive/Imperative Verb Inflectional Rule
(47) is applied successfully participates with “Kim” in the decl-hs-cl construction,
but fails to unify with the Root Symbol because the subjuntive adds the stipulation
that the verb be [ic –].

(47) Subjunctive/Imperative Verb Inflectional Rule:

v-lxm

orth orth

ss ss

⇒

orth orth

ss ss

loc

cat

head

verb

form fin

ic –

pred –

subj 〈
[

head|case nom
]

〉

cont r-soa

4.1.1 Semantic Subcategorization

In this section I will show an example of how the semantic argument selection
described in Section 2.2 integrates into parsing. I’ll show how the constraints on
the mandative predicate “insist” correctly predict the following data:

(48) a. I insist that Kim leave.

b. Kim did not leave.

c. *I insist that Kim does not leave.

38

Figure 4.3: The parse for “I insit that Kim leave.”

Figure 4.4: The parse for “Kim did not leave.”

As with other mandatives, the content of the complement of “insist” is con-
strained to be of type outcome:

(49)

v-lxm

orth 〈 “insist” 〉

ss|loc|cat

arg-st 〈 [],

loc

cat

[

subj 〈 〉

comps 〈 〉

]

cont outcome

〉

The reason why (48a, shown in Figure 4.3) parses and (43b) does not is because
the complementizer phrase headed by “that” allows for the [ic –] complement
“Kim leave” formed by the Subjunctive/Imperative Verb Inflectional Rule, whereas
the Root Symbol blocks it from standing alone.

39

The distinction between (48b - shown in Figure 4.4) successfully standing alone
as an independent clause and failing to be the complement of (48c) comes about
because of the restrictions on the semantic type outcome, which constrains its
state of affairs to be an irrealis-soa. The inflectional rules that form “did” and
“does” in the examples mark them as realis-soas and thus the fail to unify with
the constraints of the outcome required by “insist”.

4.2 Focused and Unfocused “Do”

I’ve incorporated the analysis of English auxiliaries presented in Sag (2000), which
presents an approach to the auxiliary system including a treatment of the distri-
bution of unfocused “do”:

(50) a. *Kim did leave.

b. Kim DID leave.

c. Did/DID/will Kim leave?

The most significant change in the Sag (2000) analysis from previous HPSG
accounts of English auxiliaries is that the feature aux is treated as an indicator
of auxiliary constructions (including finite negation, inversion, and contraction),
whereas in the past it had been previously used to distinguish between auxiliary
and non-auxiliary verbs. In this analysis non-auxiliary verbs remain [aux –], but
finite auxiliary verbs are left underspecified and instead are realized as [aux +]
or [aux -] depending on the grammatical construction that they appear in.

Such an analysis allows the classical problem of the distribution of focussed
“DO” and unfocused “do” to be solved simply have having two separate lexical
entries, with the one for “do” lexically specified as [aux +]. The interaction of
the constraints on auxiliary construction with the auxiliary specification of “do”
and the underspecification of “DO” thus models the idiosyncratic distribution.

The constraints on auxiliary constructions are as follow:

(51) a. Finite Verb Phrase (fin-vb):

fin-vb →

hd-dtr|ss|loc|cat|head

verb

aux 1

neg 1

b. Elliptical Verb Phrase (ellip-vp):

ellip-vp →

hd-dtr|ss|loc|cat|head

[

verb

aux +

]

c. Subject Auxiliary Inversion Phrase (sai-ph):

sia-ph →

hd-dtr|ss|loc|cat|head

verb

aux +

inv +

40

Figure 4.5: The parse for “Kim DID leave.”

Figure 4.6: The parse for “Did Kim leave?”

Verb phrase (vb-ph) constructions are treated as auxiliary constructions if and
only if their head is negated. “DO” can participate in either a standard ([aux
–]) VP construction (as in 50b, which is shown in Figure 4.5) or a finite nega-
tion auxiliary construction, whereas “do” must only participate in the auxiliary
construction, and is blocked otherwise (thus predicting the ungrammaticality of
50a).

Inverted constructions like (50c - shown in Figure 4.6) are always auxiliary con-
structions, and thus both the focused and unfocused lexical entries can participate
in it. Because of the [aux +] constraint on the construction, no unintended
parses will be generated by the non-auxiliary use of “DO” which is used in (50b).
Constructions which use the wh-complementizer “whether” block inverted con-
structions as its complement:

(52) a. I wonder if/whether Kim left.

b. *I wonder if/whether did Kim leave.

This prediction is made simply by specifying in the lexical entry for “whether”
that its complement be [inv –]:

41

Figure 4.7: The parse for “Who did Sandy see?”

(53)

orth 〈 “whether” 〉

ss

loc

cat

head

comp

ic −

vform 2

arg-st

〈

head

[

inv −

vform 2

]

cont 1

〉

cont

question

params { }

prop 1

4.3 Non-subject Wh-Interrogatives

(54) a. Who did/will Sandy see?

b. Who did/will Sandy think she saw?

The parse for “Who did Sandy see?” is shown in Figure 4.7. The complement
of “see” is marked as type gap-ss, and therefore not canonically realized in a head
complement phrase. Instead of being realized by that construction, its local value
is added to its slash list, and amalgamated onto the slash list of the verb “see”
because it appears on the verb’s argument structure. The slash of “see” is then
amalgamated into the slash of “did”. Note that this passing up of slash values
can happen for at an arbitrary depth of embedding. Figure 4.8 shows a single level
of embedding.

The Non-subject Wh-interrogative Clause (ns-wh-int-cl) construction inherits
from the Head-Filler Phrase (hd-fill-ph). Therefore the filler daughter “who” has

42

Figure 4.8: The parse for “Who did Sandy think she saw?”

its local value identified with the local value of the complement of “see”. Thus
the semantic index of “who” becomes associated with the seen argument of the
see relation.

The process of extraction and amalgamation is treated through two sets of
non-branching pumping rules in my implementation. The first are the store
Amalgamation rules which explicitly stitch together the store values of the argu-
ments on lexical-signs with varying lengths of arg-st, and assign an empty store
to items with no arguments:

store_amalg-0 := inflected-lexeme+store_amalg &
[SS [LOC [STORE <! !>,

CAT.ARG-ST < >]]].

store_amalg-1 := inflected-lexeme+store_amalg &
[SS [LOC [STORE #1,

CAT.ARG-ST < [LOC.STORE #1] >]]].

store_amalg-2 := inflected-lexeme+store_amalg &
[SS [LOC [STORE [LIST #first,

LAST #last],
CAT.ARG-ST < [LOC.STORE [LIST #first,

LAST #second]],

[LOC.STORE [LIST #second,
LAST #last]] >]]].

store_amalg-3 := inflected-lexeme+store_amalg &
[SS [LOC [STORE [LIST #first,

LAST #last],

43

CAT.ARG-ST < [LOC.STORE [LIST #first,
LAST #second]],

[LOC.STORE [LIST #second,
LAST #third]], [LOC.STORE [LIST #third,

LAST #last]] >]]].

The GAP rules work similarly, but instead of doing difference list stitching the
GAP rules mark arguments on the daughter’s comps list as gap-ss (thus making
the corresponding arg-st item a gap-ss) and then manually remove the non-
canonical arguments from the mother’s comps list:

canonical-comps := word &
[SS [LOC.CAT.COMPS #comps],
DTRS < [SS.LOC.CAT.COMPS #comps] >].

gap-1 := word &
[SS [LOC.CAT.COMPS < >],
DTRS < [SS.LOC.CAT.COMPS < gap-ss >] >].

gap-1-of-2 := word &
[SS [LOC.CAT.COMPS < #2 >],
DTRS < [SS.LOC.CAT.COMPS < gap-ss, #2 >] >].

gap-2 := word &
[SS [LOC.CAT.COMPS < #1 >],
DTRS < [SS.LOC.CAT.COMPS < #1, gap-ss >] >].

gap-both := word &
[SS [LOC.CAT.COMPS < >],
DTRS < [SS.LOC.CAT.COMPS < gap-ss, gap-ss >] >].

4.3.1 Distinguished From Topicalization

(55) a. Who did/will Sandy see?

b. *Kim did Sandy see?

The sentence “Kim did Sandy see?” fails as a ns-wh-int-cl construction, because
the Wh-interrogative Clause type stipulates that the filler daughter’s wh element
must be identified with an item on the params list. Because “Kim” is [wh { }]
it is incompatible with a non-empty wh value.

4.3.2 As Embedded Questions

(56) a. *Who Sandy saw?

44

Figure 4.9: The parse for “Kim, Sandy saw.”

b. Kim Sandy saw.

c. I wonder who Sandy saw.

d. *I wonder who did/will Sandy see.

The question “Who Sandy saw?” is ruled out because of the constraint on
ns-wh-int-cl that the head daughter (and thereby the construction itself, by the
Generalized Head Feature Principle - shown in (2)) be inverted only if it is also an
independent clause:

(57)
ns-wh-int-cl →

hd-dtr|ss|loc|cat|head

[

ic 1

inv 1

]

Since the constituent “Sandy saw” would only be formed through the Declarative
Head-Subject Clause (decl-hs-cl) construction as in the topicalized example “Kim
Sandy saw” (see Figure 4.9), it is marked [ic +] but [inv –]. Therefore “Sandy
saw” fails to unify as the head daughter of a ns-wh-int-cl, because it can be built
only by the decl-hs-cl construction which requires that the clause be [inv –].

The constraint on ns-wh-int-cl also distinguished between (56c) and (56d), be-
cause the lexical entry for “wonder” constrains its complement to be [ic –], and
thus must be uninverted.

4.4 Subject Wh-Interrogatives

An example of a subject wh-interrogative construction is shown in Figure 4.10.
The verb phrase “saw Kim” is formed through the standard application of the
non-clausal verb phrase construction.2 After that it is pumped through the declar-
ative non-subject clause construction which makes the subject a gap-ss, so that it is

2Note that my implementation covers an earlier draft of the Ginzburg and Sag text which
made a distinction between verb phrase, complementizer phrase, and non-verbal head-complement
constructions, rather than the finite vs. non-finite head complement constructions in the current
version.

45

Figure 4.10: The parse for “Who saw Kim?”

Figure 4.11: The parse for “Whose pictures of Sandy did Kim like?”

treated as extracted for reasons explained in section 2.5.3. The decl-ns-cl also pro-
duces a proposition which feeds the question formed by the subject wh-interrogative
construction.

The constraints on su-wh-int-cl and its parent wh-int-cl identify the loc value
of the wh-word “who” with the subject of the declarative clause, thus matching its
index to the correct semantic role.

4.5 Sensitivity to the Presence of Wh-Words

4.5.1 Pied Piping

The constraints contributed by the Wh-Amalgamation Constraint (29) correctly
predict that a wh-word can be properly contained within the filler daughter of a
wh-interrogative-clause. This sensitivity to the presence of a wh-word is illustrated
by so called “pied piping” examples like the following:

(58) a. Whose books did Kim read?

b. Whose pictures of Sandy did Kim like?

46

Figure 4.12: The parse for “Who the hell left?”

c. *Sandy’s pictures of whom did Kim like?

d. I wonder whose pictures of Sandy Kim likes.

e. *I wonder Sandy’s pictures of whom Kim likes.

The distribution of wh specified elements is further constrained by the wh-
Subject Prohibition (59) and the wh-Constraint (60):

(59) wh-Subject Prohibition (WHSP):

word ⇒

[

ss|loc|cat|subj list(
[

wh {}
]

)

]

(60) wh-Constraint (WHC):
Any non-initial element of a lexeme’s arg-st list must be [wh {}].

These constraints are formulated in such a way that the specifier of a common
noun like “picture” or “books” contributes its wh value to the noun, but a common
noun’s complements do not. Hence predicting the distinction between (58b - shown
in Figure 4.11) and (58c).

4.5.2 “The Hell” Examples

The modifier “the hell” is sensitive to the presence of wh-words. As well. It’s
perfectly mellifluous (if a bit base) to utter (61a - Figure 4.12), but is decidedly
ungrammatical to say (61b).

(61) a. Who the hell left?

b. *Did Kim the hell leave?

This fact is straightforwardly captured by creating a lexical entry for the modi-
fier “hell” indicating that the thing it modifies must have a parameter as an element
in its wh value:

47

(62)

orth 〈 “hell” 〉

ss|loc|cat|head

noun

mod 〈
[

wh 〈 param 〉
]

〉

Furthermore examples like (63a) and (63b) are ruled out by the constraint on
arg-st given by (60) that all non-initial elements be [wh < >].3

(63) a. *Kim read WHAT the hell?

b. *Who saw WHAT the hell?

Further, Ginzburg and Sag indicate that the wh value on wh-words is optional
(though the store still contains a parameter in interrogative wh-words regardless
of whether it is coindexed with the wh value). This leads to multiple lexical entries
in my implementation. Therefore, the entry for “who” which acts as the initial
argument of a verb is:

(64)

orth 〈 “who” 〉

ss

loc

cat|head

[

noun

comps 〈 〉

]

cont|index i

store 〈 1 〉

wh 〈 1

param

index i

restr 〈
[

r-person i

]

〉

〉

And the entry which is a non-initial argument is:

(65)

orth 〈 “who” 〉

ss

loc

cat|head

[

noun

comps 〈 〉

]

cont|index i

store 〈

param

index i

restr 〈
[

r-person i

]

〉

〉

wh 〈 〉

3This constraint is realized though the non-branching rule which applied the ARP in my
implementation, because it’s applied through a list type constraint (list-of-wh-empty-synsems)
on the rest of arg-st and empty arg-st lists don’t have a feature rest. Therefore, since my
ARP rules pay attention to whether the arg-st is empty, the constraint can be applied when it
is not.

48

Figure 4.13: The parse for “Who saw what?”

Ginzburg and Sag indicate that the wh Amalgamation Constraint is a default so
that lexical entries for wh-words which specify a wh value will not inherit their
wh value from their arguments. My implementation does not use the default
machinery to do this (and it’s not clear to me that it would work quite the way
outlined in the theory). Instead my implementation has the lexical entries for
wh-words marked as the intermediate type inflected-lexeme+amalag so that the
wh Amalgamation Constraint (which is implemented as a non-branching rule,
producing things of that type) does not apply to them.

Thus the distribution patterns of the modifying phrase “the hell” shown in
(63a) and (63b) is correctly predicted, since it only modifies things with a wh
value of < param >, which only occurs with initial arguments.

4.6 Multiple Wh-Questions

Recall from Section 2.6 that the Store Amalgamation Constraint (36) combines
the store value for each of a word’s arguments into its own store, and passes
that information up the tree in a mechanism similar to slash. Recall also that
the Wh-Question Retrieval constraint (38) allows any number of items from the
store to be retrieved at any headed-interrogative-clause. Therefore the parameters
contributed by multiple wh-words in a question are passed up through the tree and
retrieved by any question construction.

(66) a. Who saw WHAT?

b. Who wondered who saw WHAT?

The parse for “Who saw what?” is given in Figure 4.13. My implementation
builds the following semantics for the question:

[QUESTION
PARAMS: <! [PARAM

INDEX: <0>

49

RESTR: <! [R_PERSON
PERSON: <0>] !>],

[PARAM
INDEX: <1>
RESTR: <! [R_THING

THING: <1>] !>] !>

PROP: [PROPOSITION
SOA: [R-SOA

NUCL: [R_SEE
OBSERVER: <0>
OBSERVED: <1>]]

SIT: (SIT)]]

Notice that the the parameter contributed by “what” is correctly realized in the
params list of the question, along with the parameter of “who”.

Since the parameter for “what” in the question “Who wondered who saw
what?” can either be retrieved at the level of either of the subject-wh-interrogative-
clauses, it gets two interpretations. The semantics for the two parses is constructed
in an similar fashion as shown in (39) and (40):

[QUESTION
PARAMS: <! [PARAM

INDEX: <0>
RESTR: <! [R_PERSON

PERSON: <0>] !>],
[PARAM
INDEX: <1>
RESTR: <! [R_THING

THING: <1>] !>] !>

PROP: [PROPOSITION
SOA: [R-SOA

NUCL: [R_WONDER
WONDERER: <0>
WONDERED: [QUESTION

PARAMS: <! [PARAM
INDEX: <3>
RESTR: <! [R_PERSON

PERSON: <3>] !>] !>,
PROP: [PROPOSITION

SOA: [R-SOA
NUCL: [R_SEE

OBSERVER: <3>
OBSERVED: <1>]]

SIT: (SIT)]]]]

50

SIT: (SIT)]]

The second reading is the following:

[QUESTION
PARAMS: <! [PARAM

INDEX: <0>
RESTR: <! [R_PERSON

PERSON: <0>] !>] !>
PROP: [PROPOSITION

SOA: [R-SOA
NUCL: [R_WONDER

WONDERER: <0>
WONDERED: [QUESTION

PARAMS: <! [PARAM
INDEX: <2>
RESTR: <! [R_PERSON

PERSON: <2>] !>],
[PARAM
INDEX: <3>
RESTR: <! [R_THING

THING: <3>] !>] !>
PROP: [PROPOSITION

SOA: [R-SOA
NUCL: [R_SEE

OBSERVER: <2>
OBSERVED: <3>]]

SIT: S]]]]
SIT: S]]

The only difference between way that the above semantics are constructed from
the way that the semantics in the diagrams in Section 2.6 are constructed is that
the non-deterministic retrieval of elements from a set is simulated using lists. This
is accomplished by placing an upper bound on the length of the store list and
ballooning the rules for the subject and non-subject wh-interrogative constructions,
such that there is one rule for each possible retrieval from a position on the list.

4.7 In-situ Wh-Questions

Ginzburg and Sag analyze in situ questions – questions of the form

(67) a. Kim saw WHO?

which are often used as ‘echo’ or ‘reference’ questions, clarifying or reprising a pre-
vious statement. That is, the term ‘echo’ describes the particular use resulting from

51

mishearing a previous speech act; this use is marked by a characteristic intonation
pattern (focus-associated rise with spreading high tone). Reference questions, by
contrast, ask for clarification of the reference of some element in the immediately
prior utterance and have a distinct intonation pattern (focus-associated fall with
spreading low tone). Reprise uses of wh-sentences have generally been neglected by
other theories of questions – such uses have been dismissed as ‘extra-grammatical’
and supposed not to be genuine questions. However, Ginzburg and Sag analyze
reprise uses using similar mechanisms to the other question types that they treat.
The content of reprise of the following utterance is shown in (69):

(68) a. Prior Utterance: Chris is annoyed with Jan.

b. Interrogative Reprise: Chris is annoyed with who(m)?

c. Paraphrase of Reprise: Who did you assert/say that Chris is annoyed
with?

(69) Content of Reprise:

question

params

[

index k

restr {person(k)}

]

prop

sit s1

soa

quants 〈 〉

nucl

assert-rel

utterer i

msg-arg

proposition

sit s2

soa

quants 〈 〉

nucl

annoy-rel

annoyed j

annoyance k

bckgrnd {prev-spkr (i), named(j,Chris) }

This type of construction, where the a previous statement is reprised and in-
cludes a wh-constituent to clarify part of the statement, can be formulated as:

52

(70) repr-int-cl:

store {}

cont

prop|soa

quants 〈 〉

nucl

illoc-rel

utterer i

msg-arg 2

bckgrnd

{

prev-spkr(i), prev-utt(3),

subst-inst(2 , 3)

}

∪ Σ

→ H

[

cont 2

bckgrnd Σ

]

subst-inst(X,Y) abbreviates fact that the message X is a substitution-instance of
the message Y. prev-utt(X) indicates the previous speaker, and prev-spkr(X) in-
dicates the previous utterance. Thus, the background contains the information
that the speaker is asking for clarification on the previous utterance, rather than
introducing a new question.

Reprise questions involve focussed wh-words with the intonational patterns de-
scribed above. These focussed wh-words are distinguished in the theory and the
implementation using a feature foc on the parameter in lexical entries for those
words.

Ginzburg and Sag further give an analysis of non-reprising, or ‘direct’ in situ
questions. In contexts which allow non-reprising in situ wh-interrogatives, there
always exists the option of using a form that is all-focus, namely a sluice:

(i) A: I met someone in the office today.
B: Yeah, who?
B′: Yeah, you met who in the office today?

(ii) A: Dana told me that Chris claimed they found something in the office.
B: Hmm, what?
B′: Hmm, Dana told you that Chris claimed they found what in the office?

These sentences are analyzed as instances of the type direct-in-situ-interrogatives,
which is defined as:

(71) dir-is-int-cl:
[

cont|prop 1

]

→ H
[

cont 1

]

I have implemented both types of in situ questions, and get the same parses as
the theory predicts for the following sentences, shown in Figures 4.14 and 4.15:

(72) a. Kim saw WHO? (2 readings)

b. Who wondered what WHO saw? (ambiguous multiple wh or reprise).

53

Figure 4.14: The parse for “Kim saw WHO?”

54

Figure 4.15: The parse for “Who wondered what WHO saw?”

55

Chapter 5

Appendices

5.1 Types

TYPES

TYPE FEATURES/CONSTRAINTS IST
feat-struc *top*
sign

ORTH *list-of-strings*

SS synsem

DTRS *list*

feat-struc

synsem

LOC local

SLASH *list-of-locals*

WH *list-of-scope-objs*

REL *diff-list*

feat-struc

local

CAT category

CONT sem-obj

STORE *list-of-params*

feat-struc

category

HEAD pos

SUBJ list-of-synsems

SPR list-of-synsems

COMPS list-of-synsems

feat-struc

lex-cat [

ARG-ST list-of-synsems
] category

phrase-cat category

56

SUBTYPES OF SYNSEM

TYPE FEATURES/CONSTRAINTS IST
canon-ss synsem
noncanon-ss synsem
gap-ss [

LOC 1

SLASH 〈! 1 !〉

] noncanon-ss

pro-ss

SLASH 〈! !〉

LOC

[

STORE 〈! !〉

CAT|HEAD|CASE acc

]

noncanon-ss

ellip-ss

SLASH 〈! !〉

LOC

[

CAT phrase-cat

STORE 〈! !〉

]

noncanon-ss

neg-ss noncanon-ss

The type synsem is divided into two subtypes – canonical-synsem and non-
canonical-synsem. I have included the standard non-canonical-synsem types gap-ss
and pro-ss. I have also added the types ellip-ss, which distinguishes elided elements
and keeps them from contributing anything to slash or store, and the type neg-ss
which prevents “not” from being elided.

57

LEXICAL AND PHRASAL SIGNS

TYPE FEATURES/CONSTRAINTS IST
phrase

SS|LOC|CAT phrase-cat

[

HEAD pos

COMPS 〈 〉

]

sign

lex-sign

NEEDS-AFFIX
{

true, false
}

SS|LOC|CAT lex-cat

sign

lexeme lex-sign
word

NEEDS-AFFIX false

ORTH orth

SS / ss

[

LOC|CAT|SUBJ list-of-synsems-wh-empty
]

DTRS 〈

[

ORTH orth

SS / ss

]

〉

lex-sign

Ginzburg and Sag make a distinction between lexeme, word, and phrase, where
lexical/inflectional rules apply to signs of type lexeme and produce signs of type
word, and the head-complement constructions apply to words and produce phrases
which the remainder of the grammar rules apply to. I’ve increased the distinction
between types of sign by adding three intermediate types between lexeme and word.

58

INTERMEDIATE TYPES BETWEEN LEXEME AND WORD

TYPE FEATURES/CONSTRAINTS IST
inflected-lexeme

NEEDS-AFFIX / false

SS / ss

DTRS 〈
[

SS / ss

]

〉

lex-sign

inflected-lexeme+ARP

NEEDS-AFFIX false

ORTH orth

SS / ss

DTRS 〈

[

ORTH orth

SS / ss

]

〉

lex-sign

inflected-lexeme+amalg

NEEDS-AFFIX false

ORTH orth

SS ss

DTRS 〈

[

ORTH orth

SS ss

]

〉

lex-sign

In my implementation, inflectional rules apply to signs of type lexeme and
produce signs of type inflected-lexeme. Inflected lexemes become signs of type
inflected-lexeme+ARP with the application of one of the Argument Realization
Rules (shown below in Section 5.2). This type is fed into the Amalgamation
Rules which produce signs of type inflected-lexeme+amalg. Inflected lexemes which
have thus been constrained by the Argument Realization Principle and the slash,
store and wh Amalgamation Constraints are then feed into the Gap Rules, which
mark arguments as type gap-ss and remove them from the comps list, thus produc-
ing words, which the head-complement constructions apply to, as in the Ginzburg
and Sag theory.

59

PARTS OF SPEECH

TYPE FEATURES/CONSTRAINTS IST
pos

FORM form-cat

PRED
{

true, false
}

ANA
{

true, false
}

feat-struc

mod-type [

MOD *list*
] feat-struc

deg-type [

DEG
{

true, false
}

] feat-struc

verbal

FORM
{

fin, inf, inf, base, prp, pfp, pas
}

IC
{

true, false
}

INF
{

true, false
}

pos

verb

AUX
{

true, false
}

INV
{

true, false
}

NEG
{

true, false
}

MOD 〈 〉

verbal, mod-type

nonverbal pos
comp verbal
topic nonverbal
nominal-cat [

AGR index
] topic

noun [

CASE
{

nom, acc
}

] nominal-cat, mod-type

det [

COUNT
{

true, false
}

] nominal-cat, deg-type

conj nonverbal
adv topic, mod-type
adj nonverbal, mod-type, deg-type
prep nominal-cat

60

CLAUSALITY

TYPE FEATURES/CONSTRAINTS IST
clause

SS

LOC

[

CAT|SUBJ list-of-noncanon-ss

CONT message

]

WH 〈! !〉

phrase

non-clause phrase
core-cl

SS|LOC|CAT

HEAD

FORM
{

fin, inf
}

MOD 〈 〉

clause

rel-cl

SS|LOC

CAT

HEAD

IC false

INV false

MOD 〈
[

HEAD noun
]

〉

CONT fact

clause

decl-cl

SS|LOC|CONT propositional
[

SOA 1

]

HD-DTR|SS|LOC|CONT 1

core-cl, hd-ph

inter-cl [

SS|LOC|CONT question
] core-cl

hd-int-cl inter-cl, hd-ph
canon-int-cl

SS|LOC|CAT|HEAD

[

IC 1

INV 1

]

hd-int-cl

is-int-cl

SS|LOC|CAT|HEAD

[

FORM fin

IC true

]

hd-int-cl, hd-only-ph

wh-int-cl

SS|LOC|CONT

[

PARAMS|LIST|FIRST 1

PROP 2

]

HD-DTR|SS|LOC|CONT proposition 2

DTRS 〈
[

SS|WH 〈! 1 param !〉
]

, sign 〉

hd-int-cl, hd-fill-ph

imp-cl [

SS|LOC|CONT outcome
] core-cl

excl-cl [

SS|LOC|CONT fact
] core-cl

61

HEADEDNESS

TYPE FEATURES/CONSTRAINTS IST
hd-ph

SS / 1

HD-DTR sign
[

SS / 1

]

phrase

hd-comp-ph [

HD-DTR 1

DTRS 〈 word 1 , ... 〉

] hd-ph

nv-hd-comp-ph [

HD-DTR
[

SS|LOC|CAT|HEAD nonverbal
]

] hd-comp-ph

hd-comp-ph-0 [

HD-DTR|SS|LOC|CAT|COMPS 〈 〉

DTRS 〈 sign 〉

] nv-hd-comp-ph

hd-comp-ph-1

HD-DTR|SS|LOC|CAT|COMPS 〈 1 〉

DTRS 〈 sign, phrase
[

SS 1

]

〉

nv-hd-comp-ph

hd-comp-ph-2

HD-DTR|SS|LOC|CAT|COMPS 〈 1 , 2 〉

DTRS 〈 sign, phrase
[

SS 1

]

, phrase
[

SS 2

]

〉

nv-hd-comp-ph

vb-ph

HD-DTR|SS|LOC|CAT|HEAD verb

[

AUX 1

NEG 1

]

hd-comp-ph

vb-ph-0 [

HD-DTR|SS|LOC|CAT|COMPS 〈 〉

DTRS 〈 sign 〉

] vb-ph

vb-ph-1

HD-DTR|SS|LOC|CAT|COMPS 〈 1 〉

DTRS 〈 sign, phrase
[

SS 1

]

〉

vb-ph

vb-ph-2

HD-DTR|SS|LOC|CAT|COMPS 〈 1 , 2 〉

DTRS 〈 sign, phrase
[

SS 1

]

, phrase
[

SS 2

]

〉

vb-ph

vb-ph-3

HD-DTR|SS|LOC|CAT|COMPS 〈 1 , 2 , 3 〉

DTRS 〈 sign, phrase
[

SS 1

]

, phrase
[

SS 2

]

, phrase
[

SS 3

]

〉

vb-ph

62

HEADEDNESS

TYPE FEATURES/CONSTRAINTS IST
ellip-vp [

HD-DTR|SS|LOC|CAT|HEAD|AUX true
] hd-comp-ph

ellip-vp-0 [

HD-DTR|SS|LOC|CAT|COMPS 〈 ellip-ss 〉

DTRS 〈 sign 〉

] ellip-vp

ellip-vp-1

HD-DTR|SS|LOC|CAT|COMPS 〈 1 , ellip-ss 〉

DTRS 〈 sign, phrase
[

SS 1

]

〉

ellip-vp

cp-ph [

HD-DTR|SS|LOC|CAT|HEAD comp
] hd-comp-ph

cp-ph-1

HD-DTR|SS|LOC|CAT|COMPS 〈 1 〉

DTRS 〈 sign, phrase
[

SS 1

]

〉

cp-ph

cp-ph-2

HD-DTR|SS|LOC|CAT|COMPS 〈 1 , 2 〉

DTRS 〈 sign, phrase
[

SS 1

]

, phrase
[

SS 2

]

〉

cp-ph

hd-subj-ph

SS|LOC|CAT|SUBJ 〈 〉

HD-DTR 1

SS|LOC|CAT

[

SUBJ 〈 2 〉

SPR 〈 〉

]

DTRS 〈 phrase
[

SS 2

]

, phrase 1 〉

hd-ph

hd-spr-ph

SS|LOC|CAT|SPR 〈 〉

HD-DTR 1

[

SS|LOC|CAT
[

SPR 〈 2 〉
]

]

DTRS 〈 phrase
[

SS 2

]

, phrase 1 〉

hd-ph, binary-construction

63

HEADEDNESS

TYPE FEATURES/CONSTRAINTS IST
sai-ph

SS|LOC|CAT|SUBJ 〈 〉

HD-DTR 1

SS|LOC|CAT

HEAD

[

INV true

AUX true

]

SUBJ 〈 2 〉

DTRS 〈 word 1 , phrase
[

SS 2

]

, ... 〉

hd-ph

sai-ph-0 [

HD-DTR|SS|LOC|CAT|COMPS 〈 ellip-ss 〉

DTRS 〈 sign, sign 〉

] sai-ph

sai-ph-1

HD-DTR|SS|LOC|CAT|COMPS 〈 1 〉

DTRS 〈 sign, sign, phrase
[

SS 1

]

〉

sai-ph

sai-ph-2

HD-DTR|SS|LOC|CAT|COMPS 〈 1 , 2 〉

DTRS 〈 sign, sign, phrase
[

SS 1

]

, phrase
[

SS 2

]

〉

sai-ph

hd-adj-ph

HD-DTR 1

[

SS 2

]

DTRS 〈 1 ,

[

SS|LOC|CAT|HEAD
[

MOD 〈 2 〉
]

]

〉

hd-ph, non-clause

hd-fill-ph

SS

LOC|CAT|HEAD verb

SLASH

[

LIST rest

LAST last

]

HD-DTR 1

SS|SLASH

[

LIST *cons* 〈 2 | rest 〉

LAST *null* last

]

DTRS 〈 phrase

SS

[

LOC 2

SLASH 〈! !〉

]

, phrase 1 〉

hd-ph

hd-only-ph [

HD-DTR 1

DTRS 〈 1 〉

] hd-ph

non-hd-ph phrase

64

5.2 Pumping Rules

Argument Realization Principle Rules

TYPE FEATURES/CONSTRAINTS IST
ARP-no-args

SS|LOC|CAT

SPR 〈 〉

SUBJ 〈 〉

COMPS 〈 〉

ARG-ST 〈 〉

DTRS 〈 inflected-lexeme 〉

inflected-lexeme+ARP

ARP-comps-only

SS|LOC|CAT

SPR 〈 〉

SUBJ 〈 〉

COMPS comps ne-list

ARG-ST comps

[

REST list-of-synsems-wh-none
]

DTRS 〈 inflected-lexeme 〉

inflected-lexeme+ARP

ARP-spr+comps

SS|LOC|CAT

SPR 〈 spr 〉

SUBJ 〈 〉

COMPS comps

ARG-ST

[

FIRST spr

REST list-of-synsems-wh-none comps

]

DTRS 〈 inflected-lexeme 〉

inflected-lexeme+ARP

ARP-subj+comps

SS|LOC|CAT

SPR 〈 〉

SUBJ 〈 subj 〉

COMPS comps

ARG-ST

[

FIRST subj

REST list-of-synsems-wh-none comps

]

DTRS 〈 inflected-lexeme 〉

inflected-lexeme+ARP

65

Amalgamation Rules

TYPE FEATURES/CONSTRAINTS IST
amalgamation-0

SS

SLASH 〈! !〉

WH 〈! !〉

LOC

[

STORE 〈! !〉

CAT|ARG-ST 〈 〉

]

DTRS 〈 inflected-lexeme+ARP 〉

inflected-lexeme+amalg

amalgamation-1

SS

SLASH slash

WH wh

LOC

STORE store

CAT|ARG-ST 〈

SLASH slash

WH wh

LOC
[

STORE store

]

〉

DTRS 〈 inflected-lexeme+ARP 〉

inflected-lexeme+amalg

amalgamation-2

SS

LOC

STORE

[

LIST store−1

LAST store−last

]

CAT|ARG-ST 〈

LOC|STORE

[

LIST store−1

LAST store−2

]

LOC|STORE

[

LIST store−2

LAST store−last

]

〉

SS

SLASH

[

LIST slash−1

LAST slash−last

]

LOC|CAT|ARG-ST 〈

SLASH

[

LIST slash−1

LAST slash−2

]

SLASH

[

LIST slash−2

LAST slash−last

]

〉

SS

WH

[

LIST wh−1

LAST wh−last

]

LOC|CAT|ARG-ST 〈

WH

[

LIST wh−1

LAST wh−2

]

WH

[

LIST wh−2

LAST wh−last

]

〉

DTRS 〈 inflected-lexeme+ARP 〉

inflected-lexeme+amalg

66

There are additional Amalgamation Rules for argument structures of length
3 and 4, but the difference list stitching that they use make them unwieldy to il-
lustrate here.

Gap Rules

TYPE FEATURES/CONSTRAINTS IST
canonical-comps

SS
[

LOC|CAT|COMPS comps

]

DTRS 〈 inflected-lexeme+amalg
[

SS|LOC|CAT|COMPS comps

]

〉

word

gap-1

SS
[

LOC|CAT|COMPS 〈 〉
]

DTRS 〈 inflected-lexeme+amalg
[

SS|LOC|CAT|COMPS 〈 gap-ss 〉
]

〉

word

gap-1-of-2

SS
[

LOC|CAT|COMPS 〈 2 〉
]

DTRS 〈 inflected-lexeme+amalg
[

SS|LOC|CAT|COMPS 〈 gap-ss, 2 〉
]

〉

word

gap-2

SS
[

LOC|CAT|COMPS 〈 1 〉
]

DTRS 〈 inflected-lexeme+amalg
[

SS|LOC|CAT|COMPS 〈 1 , gap-ss 〉
]

〉

word

gap-both

SS
[

LOC|CAT|COMPS 〈 〉
]

DTRS 〈 inflected-lexeme+amalg
[

SS|LOC|CAT|COMPS 〈 gap-ss, gap-ss 〉
]

〉

word

67

5.3 Semantics

SOME BASIC SEMANTIC TYPES

TYPE FEATURES/CONSTRAINTS IST
sem-obj feat-struc
message sem-obj
propositional [

SOA soa

SIT sit

] message

proposition [

SOA r-soa
] propositional

fact [

SOA r-soa
] propositional

outcome [

SOA i-soa
] propositional

question [

PARAMS *list-of-params*

PROP proposition

] message

illoc-rel [

MSG-ARG message
] reln

assert-reln [

MSG-ARG proposition
] illoc-rel

ask-reln [

MSG-ARG question
] illoc-rel

order-reln [

MSG-ARG outcome
] illoc-rel

exclaim-reln [

MSG-ARG fact
] illoc-rel

soa [

NUCL reln
] sem-obj

r-soa soa
i-soa soa

68

MISC. SEMANTIC TYPES

TYPE FEATURES/CONSTRAINTS IST
null-sem sem-obj
scope-obj sem-obj
g-quant scope-obj
param

INDEX index

FOC boolean

RESTR list-of-relns

scope-obj

sit feat-struc
reln feat-struc

69

5.4 Lexeme Types

PART OF SPEECH

TYPE FEATURES/CONSTRAINTS IST
v-lxm

SS

LOC

CAT

HEAD

[

NEG false

ANA false

]

SPR 〈 〉

SUBJ 〈

LOC|CAT

phrase-cat

HEAD noun

SPR 〈 〉

COMPS 〈 〉

〉

WH 〈! !〉

lexeme

non-auxv-lxm

SS|LOC|CAT|HEAD

[

INV false

AUX false

]

v-lxm

auxv-lxm

SS|LOC|CAT

SUBJ 〈 1 〉

ARG-ST 〈 1 ,

LOC|CAT

SUBJ 〈 1

[

LOC|STORE 〈! !〉
]

〉

COMPS 〈 〉

〉

v-lxm

n-lxm

SS|LOC

CAT

HEAD

FORM / normal

ANA / false

AGR / ref-index

MOD / 〈 〉

SUBJ 〈 〉

SPR / 〈 〉

COMPS / 〈 〉

lexeme

70

PART OF SPEECH

TYPE FEATURES/CONSTRAINTS IST
pron-lxm

SS

LOC|CAT|HEAD

[

FORM / normal

ANA / false

]

WH 〈! !〉

n-lxm, no-args

cn-lxm

SS|LOC

CAT

HEAD
[

AGR|PERNUM agr

]

SPR 〈

LOC|CAT

phrase-cat

HEAD

det

AGR|PERNUM agr

COUNT / true

SPR 〈 〉

〉

n-lxm

pn-lxm

SS

LOC

[

CAT

[

HEAD
[

AGR|PERNUM 3sg
]

]

]

WH 〈! !〉

n-lxm, no-args

const-lxm lexeme
det-lxm

SS

LOC

CAT

HEAD det

SUBJ 〈 〉

SPR / 〈 〉

COMPS 〈 〉

CONT null-sem

const-lxm

p-lxm

SS|LOC|CAT

HEAD prep

SPR 〈 〉

COMPS 〈

LOC

CAT

phrase-cat

HEAD noun

SPR 〈 〉

〉

const-lxm

71

PART OF SPEECH

TYPE FEATURES/CONSTRAINTS IST
mkp-lxm

SS|LOC|CAT

HEAD
[

PRED true
]

SUBJ 〈 synsem 〉

p-lxm

pdp-lxm

SS|LOC|CAT

HEAD
[

PRED false
]

SUBJ 〈 〉

p-lxm

comp-lxm

SS

LOC|CAT

HEAD comp

SUBJ 〈 〉

SPR 〈 〉

WH 〈! !〉

const-lxm

adj-lxm

SS|LOC|CAT

HEAD

FORM normal

PRED true

MOD 〈
[

LOC|CAT|HEAD noun
]

〉

SUBJ / 〈 〉

SPR / 〈 〉

COMPS / 〈 〉

const-lxm

adv-lxm

SS|LOC|CAT

HEAD adv

SUBJ 〈 〉

SPR 〈 〉

COMPS 〈 〉

const-lxm

72

ARGUMENT SELECTION

TYPE FEATURES/CONSTRAINTS IST
no-args [

SS|LOC|CAT|ARG-ST 〈 〉
] lexeme

intr [

SS|LOC|CAT|ARG-ST 〈 synsem, ... 〉
] lexeme

str-intr [

SS|LOC|CAT|ARG-ST 〈 synsem 〉
] intr

intr-xcomp [

SS|LOC|CAT|ARG-ST 〈 synsem, synsem 〉
] intr

s-con

SS|LOC|CAT|ARG-ST 〈

[

LOC

[

CONT
[

INDEX 1

]

]

]

LOC|CAT

SPR 〈

[

LOC

[

CONT
[

INDEX 1

]

]

]

〉

COMPS 〈 〉

〉

intr-xcomp

tran [

SS|LOC|CAT|ARG-ST 〈 synsem, synsem, ... 〉
] lexeme

str-tr [

SS|LOC|CAT|ARG-ST 〈 synsem, synsem 〉
] tran

tran-xcomp [

SS|LOC|CAT|ARG-ST 〈 synsem, synsem, synsem 〉
] tran

73

SUBTYPES OF PART-OF-SPEECH AND ARG-SELECTION

TYPE FEATURES/CONSTRAINTS IST
siv non-auxv-lxm, str-intr
scv non-auxv-lxm, s-con
srv non-auxv-lxm, s-rais
prep-arg

SS|LOC|CAT|ARG-ST 〈 synsem,

LOC|CAT

phrase-cat

HEAD prep

SPR 〈 〉

COMPS 〈 〉

〉

lexeme

NP-trans-arg

SS|LOC|CAT|ARG-ST 〈 synsem,

LOC|CAT

phrase-cat

HEAD noun

SPR 〈 〉

COMPS 〈 〉

〉

tran

ditrans-arg [

SS|LOC|CAT|ARG-ST 〈 synsem, synsem, synsem 〉
] lexeme

dt-arg

SS|LOC|CAT|ARG-ST 〈 synsem,

LOC|CAT

phrase-cat

HEAD noun

SPR 〈 〉

COMPS 〈 〉

LOC|CAT

phrase-cat

HEAD noun

SPR 〈 〉

COMPS 〈 〉

〉

ditrans-arg

ptv-arg

SS|LOC|CAT|ARG-ST 〈 synsem,

LOC|CAT

phrase-cat

HEAD noun

SPR 〈 〉

LOC|CAT

phrase-cat

HEAD prep

SPR 〈 〉

〉

ditrans-arg

s-rais

SS|LOC|CAT|ARG-ST 〈 1 ,

LOC|CAT

[

SUBJ 〈 1 〉

COMPS 〈 〉

]

〉

lexeme

74

SUBTYPES OF PART-OF-SPEECH AND ARG-SELECTION

TYPE FEATURES/CONSTRAINTS IST
piv non-auxv-lxm, prep-arg
stv non-auxv-lxm, trans-arg
ctv

SS|LOC|CAT|ARG-ST 〈 synsem,

LOC

CAT

HEAD
[

FORM fin
]

SPR 〈 〉

COMPS 〈 〉

CONT proposition

〉

non-auxv-lxm, str-tr

dtv non-auxv-lxm, dt-arg
ptv non-auxv-lxm, ptv-arg
sia adj-lxm, str-intr
pia adj-lxm, prep-arg
sta adj-lxm, str-tr
sra adj-lxm, s-rais
sca adj-lxm, s-con

75

5.5 Root Symbol

TYPES

TYPE FEATURES/CONSTRAINTS IST
root

SS

LOC

CAT

HEAD
[

IC true
]

SPR 〈 〉

SUBJ 〈 〉

COMPS 〈 〉

CONT message

STORE 〈! !〉

SLASH 〈! !〉

WH 〈! !〉

phrase

76

Bibliography

Bouma, Gosse, Rob Malouf, and Ivan Sag. in press. Satisfying constraints
on extraction and adjunction. Natural Language and Linguitic Theory .

Copestake, Ann. in preparation. Implementing typed feature structure gram-
mars. Stanford University: CSLI.

Ginzburg, Jonathan, and Ivan Sag. 2000. English interrogative constructions.
Stanford University: CSLI. forthcoming.

Hukari, Tomas, and Robert Levine. 1995. Adjunct extraction. Journal of
Linguitics 31.195–226.

Lascarides, Alex, and Ann Copestake. 1999. Default representation in
constraint-based frameworks. Computational Linguitics 25.55–106.

Pollard, Carl, and Ivan Sag. 1987. Information-based syntax and semantics.
Stanford University: CSLI.

Sag, Ivan. 1997. English relative clause constructions. Journal of Linguistics .

——. 2000. Rules and exceptions in the English auxiliary system. Stanford Uni-
versity, ms.

——, and Tom Wasow. 1999. Syntactic theory: A formal introduction. Stanford
University: CSLI.

77

