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Abstract

Our goal is to extract answers from pre-
retrieved sentences for Question Answering
(QA). We construct a linear-chain Conditional
Random Field based on pairs of questions
and their possible answer sentences, learning
the association between questions and answer
types. This casts answer extraction as an an-
swer sequence tagging problem for the first
time, where knowledge of shared structure be-
tween question and source sentence is incor-
porated through features based on Tree Edit
Distance (TED). Our model is free of man-
ually created question and answer templates,
fast to run (processing 200 QA pairs per sec-
ond excluding parsing time), and yields an F1
of 63.3% on a new public dataset based on
prior TREC QA evaluations. The developed
system is open-source, and includes an imple-
mentation of the TED model that is state of the
art in the task of ranking QA pairs.

1 Introduction

The success of IBM’s Watson system for Question
Answering (QA) (Ferrucci et al., 2010) has illus-
trated a continued public interest in this topic. Wat-
son is a sophisticated piece of software engineering
consisting of many components tied together in a
large parallel architecture. It took many researchers
working full time for years to construct. Such re-
sources are not available to individual academic re-
searchers. If they are interested in evaluating new
ideas on some aspect of QA, they must either con-
struct a full system, or create a focused subtask

⇤Performed while faculty at Johns Hopkins University.

paired with a representative dataset. We follow the
latter approach and focus on the task of answer ex-
traction, i.e., producing the exact answer strings for
a question.

We propose the use of a linear-chain Conditional
Random Field (CRF) (Lafferty et al., 2001) in or-
der to cast the problem as one of sequence tagging
by labeling each token in a candidate sentence as ei-
ther Beginning, Inside or Outside (BIO) of an an-
swer. This is to our knowledge the first time a
CRF has been used to extract answers.1 We uti-
lize not only traditional contextual features based on
POS tagging, dependency parsing and Named Entity
Recognition (NER), but most importantly, features
extracted from a Tree Edit Distance (TED) model
for aligning an answer sentence tree with the ques-
tion tree. The linear-chain CRF, when trained to
learn the associations between question and answer
types, is a robust approach against error propaga-
tion introduced in the NLP pipeline. For instance,
given an NER tool that always (i.e., in both train-
ing and test data) recognizes the pesticide DDT as
an ORG, our model realizes, when a question is
asked about the type of chemicals, the correct an-
swer might be incorrectly but consistently recog-
nized as ORG by NER. This helps reduce errors in-
troduced by wrong answer types, which were esti-
mated as the most significant contributer (36.4%)
of errors in the then state-of-the-art QA system of
Moldovan et al. (2003).

The features based on TED allow us to draw the

1CRFs have been used in judging answer-bearing sentences
(Shima et al., 2008; Ding et al., 2008; Wang and Manning,
2010), but not extracting exact answers from these sentences.



connection between the question and answer sen-
tences before answer extraction, whereas tradition-
ally the exercise of answer validation (Magnini et
al., 2002; Penas et al., 2008; Rodrigo et al., 2009)
has been performed after as a remedy to ensure the
answer is really “about” the question.

Motivated by a desire for a fast runtime,2 we
base our TED implementation on the dynamic-
programming approach of Zhang and Shasha
(1989), which helps our final system process 200
QA pairs per second on standard desktop hardware,
when input is syntactically pre-parsed.

In the following we first provide background on
the TED model, going on to evaluate our implemen-
tation against prior work in the context of question
answer sentence ranking (QASR), achieving state of
the art in that task. We then describe how we cou-
ple TED features to a linear-chain CRF for answer
extraction, providing the set of features used, and fi-
nally experimental results on an extraction dataset
we make public (together with the software) to the
community.3 Related prior work is interspersed
throughout the paper.

2 Tree Edit Distance Model

Tree Edit Distance (§2.1) models have been shown
effective in a variety of applications, including tex-
tual entailment, paraphrase identification, answer
ranking and information retrieval (Reis et al., 2004;
Kouylekov and Magnini, 2005; Heilman and Smith,
2010; Augsten et al., 2010). We chose the variant
proposed by Heilman and Smith (2010), inspired by
its simplicity, generality, and effectiveness. Our ap-
proach differs from those authors in their reliance
on a greedy search routine to make use of a complex
tree kernel. With speed a consideration, we opted
for the dynamic-programming solution of Zhang
and Shasha (1989) (§2.1). We added new lexical-
semantic features §(2.2) to the model and then eval-
uated our implementation on the QASR task, show-
ing strong results §(2.3).

Feature Description
distance tree edit distance from answer

sentence to question
renNoun
renVerb
renOther

# edits changing POS from or to
noun, verb, or other types

insN, insV,
insPunc,
insDet,
insOtherPos

# edits inserting a noun, verb,
punctuation mark, determiner
or other POS types

delN, delV, ... deletion mirror of above
ins{N,V,P}Mod
insSub, insObj
insOtherRel

# edits inserting a modifier for
{noun, verb, preposition}, sub-
ject, object or other relations

delNMod, ... deletion mirror of above
renNMod, ... rename mirror of above
XEdits # basic edits plus sum of in-

s/del/ren edits
alignNodes,
alignNum,
alignN, alignV,
alignProper

# aligned nodes, and those that
are numbers, nouns, verbs, or
proper nouns

Table 1: Features for ranking QA pairs.

2.1 Cost Design and Edit Search

Following Bille (2005), we define an edit script be-
tween trees T1, T2 as the edit sequence transforming
T1 to T2 according to a cost function, with the total
summed cost known as the tree edit distance. Basic
edit operations include: insert, delete and rename.

With T a dependency tree, we represent each node
by three fields: lemma, POS and the type of depen-
dency relation to the node’s parent (DEP). For in-
stance, Mary/nnp/sub is the proper noun Mary in
subject position.

Basic edits are refined into 9 types, where the
first six (INS LEAF, INS SUBTREE, INS, DEL LEAF,
DEL SUBTREE, DEL) insert or delete a leaf node, a
whole subtree, or a node that is neither a leaf nor
part of a whole inserted subtree. The last three
(REN POS, REN DEP, REN POS DEP) serve to re-
name a POS tag, dependency relation, or both.

2For instance, Watson was designed under the constraint of
a 3 second response time, arising from its intended live use in
the television gameshow, Jeopardy!.

3
http://code.google.com/p/jacana/
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Figure 1: Edits transforming a source sentence (left) to a question (right). Each node consists of: lemma, POS tag
and dependency relation, with root nodes and punctuation not shown. Shown includes deletion (⇥ and strikethrough
on the left), alignment (arrows) and insertion (shaded area). Order of operations is not displayed. The standard TED
model does not capture the alignment between tennis and sport (see Section 2.2).

We begin by uniformly assigning basic edits a
cost of 1.0,4 which brings the cost of a full node in-
sertion or deletion to 3 (all the three fields inserted or
deleted). We allow renaming of POS and/or relation
type iff the lemmas of source and target nodes are
identical.5 When two nodes are identical and thus
do not appear in the edit script, or when two nodes
are renamed due to the same lemma, we say they are
aligned by the tree edit model (see Figure 1).

We used Zhang and Shasha (1989)’s dynamic
programming algorithm to produce an optimal edit
script with the lowest tree edit distance. The ap-
proach explores both trees in a bottom-up, post-
order manner, running in time:
O(|T1| |T2|min(D1, L1)min(D2, L2))

where |Ti| is the number of nodes, Di is the depth,
and Li is the number of leaves, with respect to tree
Ti.

Additionally, we fix the cost of stopword renam-
ing to 2.5, even in the case of identity, regardless
of whether two stopwords have the same POS tags
or relations. Stopwords tend to have fixed POS tags
and dependency relations, which often leads to less
expensive alignments as compared to renaming con-

4This applies separately to each element of the tripartite
structure; e.g., deleting a POS entry, inserting a lemma, etc.

5This is aimed at minimizing node variations introduced by
morphology differences, tagging or parsing errors.

tent terms. In practice this gave stopwords “too
much say” in guiding the overall edit sequence.

The resultant system is fast in practice, processing
10,000 pre-parsed tree pairs per second on a contem-
porary machine.6

2.2 TED for Sentence Ranking

The task of Question Answer Sentence Ranking
(QASR) takes a question and a set of source sen-
tences, returning a list sorted by the probability
likelihood that each sentence contains an appropri-
ate answer. Prior work in this includes that of:
Punyakanok et al. (2004), based on mapping syn-
tactic dependency trees; Wang et al. (2007) utiliz-
ing Quasi-Synchronous Grammar (Smith and Eis-
ner, 2006); Heilman and Smith (2010) using TED;
and Shima et al. (2008), Ding et al. (2008) and Wang
and Manning (2010), who each employed a CRF in
various ways. Wang et al. (2007) made their dataset
public, which we use here for system validation. To
date, models based on TED have shown the best per-
formance for this task.

Our implementation follows Heilman and Smith
(2010), with the addition of 15 new features beyond
their original 33 (see Table 1). Based on results

6In later tasks, feature extraction and decoding will slow
down the system, but the final system was still able to process
200 pairs per second.



set source #ques. #pairs %pos. len.
TRAIN-ALL TREC8-12 1229 53417 12.0 any

TRAIN TREC8-12 94 4718 7.4  40

DEV TREC13 82 1148 19.3  40

TEST TREC13 89 1517 18.7  40

Table 2: Distribution of data, with imbalance towards
negative examples (sentences without an answer).

in DEV, we extract edits in the direction from the
source sentence to the question.

In addition to syntactic features, we incorporated
the following lexical-semantic relations from Word-
Net: hypernym and synonym (nouns and verbs); en-
tailment and causing (verbs); and membersOf, sub-
stancesOf, partsOf, haveMember, haveSubstance,
havePart (nouns). Such relations have been used
in prior approaches to this task (Wang et al., 2007;
Wang and Manning, 2010), but not in conjunction
with the model of Heilman and Smith (2010).

These were made into features in two ways:
WNsearch loosens renaming and alignment within
the TED model from requiring strict lemma equal-
ity to allowing lemmas that shared any of the
above relations, leading to renaming operations such
as REN ...(country, china) and REN ...(sport,
tennis); WNfeature counts how many words be-
tween the sentence and answer sentence have each
of the above relations, separately as 10 independent
features, plus an aggregate count for a total of 11
new features beyond the earlier 48.

These features were then used to train a logistic
regression model using Weka (Hall et al., 2009).

2.3 QA Sentence Ranking Experiment

We trained and tested on the dataset from Wang et
al. (2007), which spans QA pairs from TREC QA
8-13 (see Table 2). Per question, sentences with
non-stopword overlap were first retrieved from the
task collection, which were then compared against
the TREC answer pattern (in the form of Perl regu-
lar expressions). If a sentence matched, then it was
deemed a (noisy) positive example. Finally, TRAIN,
DEV and TEST were manually corrected for errors.
Those authors decided to limit candidate source sen-

System MAP MRR
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
this paper (48 features) 0.6319 0.7270
+WNsearch 0.6371 0.7301
+WNfeature (11 more feat.) 0.6307 0.7477

Table 3: Results on the QA Sentence Ranking task.

tences to be no longer than 40 words.7 Keeping
with prior work, those questions with only positive
or negative examples were removed, leaving 94 of
the original 100 questions for evaluation.

The data was processed by Wang et al. (2007)
with the following tool chain: POS tags via MX-
POST (Ratnaparkhi, 1996); parse trees via MST-
Parser (McDonald et al., 2005) with 12 coarse-
grained dependency relation labels; and named enti-
ties via Identifinder (Bikel et al., 1999). Mean Av-
erage Precision (MAP) and Mean Reciprocal Rank
(MRR) are reported in Table 3. Our implementa-
tion gives state of the art performance, and is fur-
thered improved by our inclusion of semantic fea-
tures drawn from WordNet.8

3 CRF with TED for Answer Extraction

In this section we move from ranking source sen-
tences, to the next QA stage: answer extraction.
Given our competitive TED-based alignment model,
the most obvious solution to extraction would be to
report those spans aligned from a source sentence
to a question’s wh- terms. However, we show that
this approach is better formulated as a (strongly in-
dicative) feature of a larger set of answer extraction
signals.

3.1 Sequence Model
Figure 2 illustrates the task of tagging each token in
a candidate sentence with one of the following la-

7TRAIN-ALL is not used in QASR, but later for answer ex-
traction; TRAIN comes from the first 100 questions of TRAIN-
ALL.

8As the test set is of limited size (94 questions), then while
our MAP/MRR scores are 2.8% ⇠ 5.6% higher than prior
work, this is not statistically significant according to the Paired
Randomization Test (Smucker et al., 2007), and thus should be
considered on par with the current state of the art.
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B-ANS O O O O O

Figure 2: An example of linear-chain CRF for an-
swer sequence tagging.

bels: B-ANSWER (beginning of answer), I-ANSWER
(inside of answer), O (outside of answer).

Besides local POS/NER/DEP features, at each to-
ken we need to inspect the entire input to connect the
answer sentence with the question sentence through
tree edits, drawing features from the question and
the edit script, motivating the use of a linear-chain
CRF model (Lafferty et al., 2001) over HMMs. To
the best of our knowledge this is the first time a
CRF has been used to label answer fragments, de-
spite success in other sequence tagging tasks.

3.2 Feature Design

In this subsection we describe the local and global
features used by the CRF.

Chunking We use the POS/NER/DEP tags directly
just as one would in a chunking task. Specifically,
suppose t represents the current token position and
pos[t] its POS tag, we extract unigram, bigram and
trigram features over the local context, e.g., pos[t�
2], pos[t � 2] : pos[t � 1], and pos[t � 2] : pos[t �
1] : pos[t]. Similar features are extracted for named
entity types (ner[t]), and dependency relation labels
(dep[t]).

Our intuition is these chunking features should al-
low for learning which types of words tend to be
answers. For instance, we expect adverbs to be as-
signed lower feature weights as they are rarely a
part of answer, while prepositions may have differ-
ent feature weights depending on their context. For
instance, of in kind of silly has an adjective on the
right, and is unlikely to be the Beginning of an an-
swer to a TREC-style question, as compared to in
when paired with a question on time, such as seen in
an answer in 90 days, where the preposition is fol-
lowed by a number then a noun.

Feature Description
edit=X type of edit feature. X: DEL,

DEL SUBTREE, DEL LEAF,
REN POS, REN DEP, REN POS DEP

or ALIGN.
X pos=?
X ner=?
X dep=?

Delete features. X is either DEL,
DEL SUBTREE or DEL LEAF. ?

represents the corresponding
POS/NER/DEP of the current token.

Xpos from=?f
Xpos to=?t

Xpos f t=?f ?t
Xner from=?f

Xner to=?t
Xner f t=?f ?t
Xdep from=?f

Xdep to=?t
Xdep f t=?f ?t

Rename features. X is either
REN POS, REN DEP or

REN POS DEP. Suppose word f in
answer is renamed to word t in

question, then ?f and ?t represent
corresponding POS/NER/DEP of f

and t.

align pos=?
align ner=?
align dep=?

Align features. ? represents the
corresponding POS/NER/DEP of the

current token.

Table 4: Features based on edit script for answer se-
quence tagging.

Question-type Chunking features do not capture
the connection between question word and an-
swer types. Thus they have to be combined
with question types. For instance, how many
questions are usually associated with numeric an-
swer types. We encode each major question-
type: who, whom, when, where, how many, how
much, how long, and then for each token, we
combine the question term with its chunking fea-
tures described in (most tokens have different fea-
tures because they have different POS/NER/DEP
types). One feature example of the QA pair
how much/100 dollars for the word 100 would be:
qword=how much|pos[t]=CD|pos[t+1]=NNS. We ex-
pect high weight for this feature since it is a good
pattern for matching question type and answer type.
Similar features also apply to what, which, why and
how questions, even though they do not indicate an
answer type as clearly as how much does.

Some extra features are designed for what/which
questions per required answer types. The question



dependency tree is analyzed and the Lexical Answer
Type (LAT) is extracted. The following are some
examples of LAT for what questions:

• color: what is Crips’ gang color?
• animal: what kind of animal is an agouti?

The extra LAT=? feature is also used with chunking
features for what/which questions.

There is significant prior work in building spe-
cialized templates or classifiers for labeling question
types (Hermjakob, 2001; Li and Roth, 2002; Zhang
and Lee, 2003; Hacioglu and Ward, 2003; Metzler
and Croft, 2005; Blunsom et al., 2006; Moschitti
et al., 2007). We designed our shallow question
type features based on the intuitions of these prior
work, with the goal of having a relatively compact
approach that still extracts useful predictive signal.
One possible drawback, however, is that if an LAT is
not observed during training but shows up in testing,
the sequence tagger would not know which answer
type to associate with the question. In this case it
falls back to the more general qword=? feature and
will most likely pick the type of answers that are
mostly associated with what questions in training.

Edit script Our TED module produces an edit
trace for each word in a candidate sentence: the
word is either deleted, renamed (if there is a word
of the same lemma in the question tree) or strictly
aligned (if there is an identical node in the question
tree). A word in the deleted edit sequence is a cue
that it could be the answer. A word being aligned
suggests it is less likely to be an answer. Thus for
each word we extract features based on its edit type,
shown in Table 4.

These features are also appended with the token’s
POS/NER/DEP information. For instance, a deleted
noun usually carries higher edit feature weights than
an aligned adjective.

Alignment distance We observed that a candidate
answer often appears close to an aligned word (i.e.,
answer tokens tend to be located “nearby” portions
of text that align across the pair), especially in com-
pound noun constructions, restrictive clauses, prepo-
sition phrases, etc. For instance, in the following
pair, the answer Limp Bizkit comes from the leading
compound noun:

• What is the name of Durst ’s group?
• Limp Bizkit lead singer Fred Durst did a lot ...

Past work has designed large numbers of specific
templates aimed at these constructions (Soubbotin,
2001; Ravichandran et al., 2003; Clark et al., 2003;
Sneiders, 2002). Here we use a single general fea-
ture that we expect to pick up much of this signal,
without the significant feature engineering.

Thus we incorporated a simple feature to roughly
model this phenomenon. It is defined as the distance
to the nearest aligned nonstop word in the original
word order. In the above example, the only aligned
nonstop word is Durst. Then this nearest alignment
distance feature for the word Limp is:

nearest dist to align(Limp):5
This is the only integer-valued feature. All other

features are binary-valued. Note this feature does
not specify answer types: an adverb close to an
aligned word can also be wrongly taken as a strong
candidate. Thus we also include a version of the
POS/NER/DEP based feature for each token:

• nearest dist pos(Limp)=NNP
• nearest dist dep(Limp)=NMOD
• nearest dist ner(Limp)=B-PERSON

3.3 Overproduce-and-vote

We make an assumption that each sentence produces
a candidate answer and then vote among all answer
candidates to select the most-voted as the answer to
the original question. Specifically, this overproduce-
and-vote strategy applies voting in two places:

1. If there are overlaps between two answer candi-
dates, a partial vote is performed. For instance,
for a when question, if one answer candidate is
April , 1994 and the other is 1994, then besides
the base vote of 1, both candidates have an ex-
tra partial vote of #overlap/#total words = 1/4. We
call this adjusted vote.

2. If the CRF fails to find an answer, we still try to
“force” an answer out of the tagged sequence,
O’s). thus forced vote. Due to its lower credi-
bility (the sequence tagger does not think it is
an answer), we manually downweight the pre-
diction score by a factor of 0.1 (divide by 10).



During what war d id Nimi tz serve ?
O O:0.921060 Conant
O O:0.991168 had
O O:0.997307 been
O O:0.998570 a
O O:0.998608 photographer
O O:0.999005 f o r
O O:0.877619 Adm
O O:0.988293 .
O O:0.874101 Chester
O O:0.924568 Nimi tz
O O:0.970045 dur ing
B�ANS O:0.464799 World
I�ANS O:0.493715 War
I�ANS O:0.449017 I I
O O:0.915448 .

Figure 3: A sample sequence tagging output that
fails to predict an answer. From line 2 on, the first
column is the reference output and the second col-
umn is the model output with the marginal probabil-
ity for predicated labels. Note that World War II has
much lower probabilities as an O than others.

The modified score for an answer candidate is thus:
total vote = adjusted vote + 0.1 ⇥ forced vote. To
compute forced vote, we make the following obser-
vation. Sometimes the sequence tagger does not tag
an answer in a candidate sentence at all, if there
is not enough probability mass accumulated for B-
ANS. However, a possible answer can still be caught
if it has an “outlier” marginal probability. Figure 3
shows an example. The answer candidate World War
II has a much lower marginal probability as an “O”
but still not low enough to be part of B-ANS/I-ANS.

To catch such an outlier, we use Median Absolute
Deviation (MAD), which is the median of the abso-
lute deviation from the median of a data sequence.
Given a data sequence x, MAD is defined as:

MAD(x) = median(| x� median(x) |)

Compared to mean value and standard deviation,
MAD is more robust against the influence of out-
liers since it does not directly depend on them. We
select those words whose marginal probability is 50
times of MAD away from the median of the whole
sequence as answer candidates. They contribute to
the forced vote. Downweight ratio (0.1) and MAD

System Train Prec.% Rec.% F1%

CRF TRAIN 55.7 43.8 49.1
TRAIN-ALL 67.2 50.6 57.7

CRF
+WNsearch

TRAIN 58.6 46.1 51.6
TRAIN-ALL 66.7 49.4 56.8

CRF forced TRAIN 54.5 53.9 54.2
TRAIN-ALL 60.9 59.6 60.2

CRF forced
+WNsearch

TRAIN 55.2 53.9 54.5
TRAIN-ALL 63.6 62.9 63.3

Table 5: Performance on TEST. “CRF” only takes
votes from candidates tagged by the sequence tag-
ger. “CRF forced” (described in §3.3) further col-
lects answer candidates from sentences that CRF
does not tag an answer by detecting outliers.

ratio (50) were hand-tuned on DEV.9

4 Experiments

4.1 QA Results

The dataset listed in Table 2 was not designed to
include an answer for each positive answer sen-
tence, but only a binary indicator on whether a sen-
tence contains an answer. We used the answer pat-
tern files (in Perl regular expressions) released along
with TREC8-13 to pinpoint the exact answer frag-
ments. Then we manually checked TRAIN, DEV, and
TEST for errors. TRAIN-ALL already came as a noisy
dataset so we did not manually clean it, also due to
its large size.

We trained on only the positive examples of
TRAIN and TRAIN-ALL separately with CRFsuite
(Okazaki, 2007). The reason for training solely with
positive examples is that they only constitute 10% of
all training data and if trained on all, the CRF tagger
was very biased on negative examples and reluctant
to give an answer for most of the questions. The
CRF tagger attempted an answer for about 2/3 of all
questions when training on just positive examples.

DEV was used to help design features. A practi-
cal benefit of our compact approach is that an entire
round of feature extraction, training on TRAIN and
testing on DEV took less than one minute. Table 5

9One might further improve this by leveraging the probabil-
ity of a sentence containing an answer from the QA pair ranker
described in Section 2 or via the conditional probability of the
sequence labels, p(y | x), under the CRF.



reports F1 scores on both the positive and negative
examples of TEST.

Our baseline model, which aligns the question
word with some content word in the answer sen-
tence,10 achieves 31.4% in F1. This model does not
require any training. “CRF” only takes votes from
those sentences with an identified answer. It has the
best precision among all models. “CRF forced” also
detects outliers from sentences not tagged with an
answer. Large amount of training data, even noisy,
is helpful. In general TRAIN-ALL is able to boost the
F1 value by 7 ⇠ 8%. Also, the overgenerate-and-
vote strategy, used by the “forced” approach, greatly
increased recall and achieved the best F1 value.

We also experimented with the two methods uti-
lizing WordNet in Section 2.2 , i.e., WNsearch and
WNfeature. In general, WNsearch helps F1 and
yields the best score (63.3%) for this task. For
WNfeature11 we observed that the CRF model con-
verged to a larger objective likelihood with these
features. However, it did not make a difference in
F1 after overgenerate-and-vote.

Finally, we found it difficult to do a head-to-head
comparison with other QA systems on this task.12

Thus we contribute this dataset to the community,
hoping to solicit direct comparisons in the future.
Also, we believe our chunking and question-type
features capture many intuitions most current QA
systems rely on, while our novel features are based
on TED. We further conduct an ablation test to com-
pare traditional and new QA features.

4.2 Ablation Test

We did an ablation test for each of the four types of
features. Note that the question type features are
used in combination with chunking features (e.g.,
qword=how much|pos[t]=CD|pos[t+1]=NN), while
the chunking feature is defined over POS/NER/DEP

10This only requires minimal modification to the original
TED algorithm: the question word is aligned with a certain
word in the answer tree instead of being inserted. Then the
whole subtree headed by the aligned word counts as the answer.

11These are binary features indicating whether an answer
candidate has a WordNet relation ( c.f. §2.2) with the LAT.
For instance, tennis is a hyponym of the LAT word sport in the
what sport question in Figure 1.

12Reasons include: most available QA systems either retrieve
sentences from the web, have different preprocessing steps, or
even include templates learned from our test set.

CRF Forced CRF Forced
All 49.1 54.2 -above 3 19.4 25.3
-POS 44.7 48.9 -EDIT 44.3 47.5
-NER 44.0 50.8 -ALIGN 47.4 51.1
-DEP 49.4 54.5 -above 2 40.5 42.0

Table 6: F1 based on feature ablation tests.

Figure 4: Impact of adding features based on chunk-
ing and question-type (CHUNKING) and tree edits
(TED), e.g., EDIT and ALIGN.

separately. We tested the CRF model with deletion
of one of the following features each time:

• POS, NER or DEP. These features are all com-
bined with question types.

• The three of the above. Deletion of these fea-
tures also deletes question type feature implic-
itly.

• EDIT. Features extracted from edit script.
• ALIGN. Alignment distance features.
• The two of the above, based on the TED model.

Table 6 shows the F1 scores of ablation test when
trained on TRAIN. NER and EDIT are the two single
most significant features. NER is important because
it closely relates question types with answer entity
types (e.g., qword=who|ner[t]=PERSON). EDIT is
also important because it captures the syntactic asso-
ciation between question tree and answer tree. Tak-
ing out all three POS/NER/DEP features means the
chunking and question type features do not fire any-
more. This has the biggest impact on F1. Note the
feature redundancy here: the question type features
are combined with all three POS/NER/DEP features



thus taking out a single one does not decrease per-
formance much. However, since TED related fea-
tures do not combine question type features, taking
out all three POS/NER/DEP features decreases F1 by
30%. Without TED related features (both EDIT and
ALIGN) F1 also drops more than 10%.

Figure 4 is a bar chart showing how much im-
provement each feature brings. While having a
baseline model with 31.4% in F1, traditional fea-
tures based on POS/DEP/NER and question types
brings a 10% increase with a simple sequence tag-
ging model (second bar labeled “CHUNKING” in
the figure). Furthermore, adding TED based features
to the model boosted F1 by another 10%.

5 Conclusion

Answer extraction is an essential task for any text-
based question-answering system to perform. In this
paper, we have cast answer extraction as a sequence
tagging problem by deploying a fast and compact
CRF model with simple features that capture many
of the intuitions in prior “deep pipeline” approaches.
We introduced novel features based on TED that
boosted F1 score by 10% compared with the use of
more standard features. Besides answer extraction,
our modified design of the TED model is the state
of the art in the task of ranking QA pairs. Finally,
to improve the community’s ability to evaluate QA
components without requiring increasingly imprac-
tical end-to-end implementations, we have proposed
answer extraction as a subtask worth evaluating in
its own right, and contributed a dataset that could
become a potential standard for this purpose. We
believe all these developments will contribute to the
continuing improvement of QA systems in the fu-
ture.
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