Correctness in Stream Processing

Challenges and Opportunities

Caleb Stanford, Konstantinos Kallas, and Rajeev Alur

& Penn

UNIVERSITY 0f PENNSYLVANIA

S

Stream Processing databricks

N
di aws Materialize
0~ KINESIS
Companies
Real-Time "\Z @
Decisions J @Spor K Apache Flink
APACHE
Applications 52) STORM"

Stream Processing

Formal correctness support?

“The nature of debugging is therefore
post-mortem. Developers are notified of runtime
failures or incorrect outputs after many hours of
Apache Flink wasted computing cycles on the cloud.”

APACHE
STORM™ - [Gulzar et. al, Bigdebug, 2016]

‘‘‘‘‘‘‘‘‘‘‘ e - [Vianna et. al, testing in data stream processing applications, 2019]

Challenges

No unified language standard

- Dataflow graph edges: ordered or unordered?
- Stream partitioning: annotated or inferred?

- Complex features:
- stateful operators, external services, iterative computation

(Contrast with: traditional relational algebra)

Unified semantics is a precursor to all verification tools

Opportunities
Correctness dimensions common to all systems

Order-aware computation
Correct distribution (beyond sharding)
Performance guarantees

> W e

Fault tolerance

Vision

[User Application]

|

Distributed
Implementation

|

SELECT * FROM ...

'

Stream
Processing
System

Formal Execution Semantics:

Annotated Dataflow

l

Compiler/Optimizer |«

Distributed
Assumptions
Analysis

Ordering
Requirements
Analysis

I

Performance
Analysis

}- [Formal Analyses]

