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Stream Processing

Formal correctness support?

“The nature of debugging is therefore
post-mortem. Developers are notified of runtime
failures or incorrect outputs after many hours of
Apache Flink  wasted computing cycles on the cloud.”

APACHE
STORM™ - [Gulzar et. al, Bigdebug, 2016]

‘‘‘‘‘‘‘‘‘‘‘ e - [Vianna et. al, testing in data stream processing applications, 2019]



Challenges

No unified language standard

- Dataflow graph edges: ordered or unordered?
- Stream partitioning: annotated or inferred?

- Complex features:
- stateful operators, external services, iterative computation

(Contrast with: traditional relational algebra)

Unified semantics is a precursor to all verification tools



Opportunities
Correctness dimensions common to all systems

Order-aware computation
Correct distribution (beyond sharding)
Performance guarantees
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Fault tolerance
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