Correctness in Stream Processing

Challenges and Opportunities

Caleb Stanford, Konstantinos Kallas, and Rajeev Alur

Stream Processing

Companies

Systems

Stream Processing

"The nature of debugging is therefore post-mortem. Developers are notified of runtime failures or incorrect outputs after many hours of wasted computing cycles on the cloud."

- [Gulzar et. al, Bigdebug, 2016]
- [Vianna et. al, testing in data stream processing applications, 2019]

Challenges

No unified language standard

- Dataflow graph edges: ordered or unordered?
- Stream partitioning: annotated or inferred?
- Complex features:
 - stateful operators, external services, iterative computation

(Contrast with: traditional relational algebra)

Unified semantics is a precursor to all verification tools

Opportunities

Correctness dimensions common to all systems

- 1. Order-aware computation
- 2. Correct distribution (beyond sharding)
- 3. Performance guarantees
- 4. Fault tolerance

Vision

