
Ott

Stephanie Weirich

Ott evangelist

University of Pennsylvania

Abstract
This talk discusses the experience of using Ott for programming
language design.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory, Verification, Standardization

I plan to use Ott in every new paper that I write, in some form.
The tool has become an important part of my design process, and I
have come to rely on it. The purpose of this (part of) the talk is to
explain why.

Ott is a tool for specifying the concrete and abstract syntax of
programming languages and systems of inference rules that specify
the semantics. From this specification, Ott can generate definitions
in LaTeX for typesetting, OCaml for implementation, and Coq,
Isabelle/HOL or HOL4 for formal mathematics. The input language
to Ott is concise and resembles an email that you might send to your
coauthors.

However, this talk is not about the mechanical formalization
of programming languagemetatheory. Ott provides a range of
uses and, although I have used Coq to prove properties about
language specifications generated by Ott, this is not my main mode
of use. Instead, the majority of the benefit that I get from Ott is the
mechanical formalization of programming languagespecifications.

By specifying the semantics of a programming language (or a
simple toy calculi) in an Ott file, then language design becomes
a tool-assisted activity instead of pure mathematics. The Ott file
can be part of a version repository, so several (geographically dis-
tributed) coauthors can work on the design simultaneously, using
the most up-to-date definitions. The LaTeX output means that not
all coauthors need to understand the Ott input language. Rules are
organized and consistently named, so the language specification is
concentrated in the Ott files, not scattered and duplicated across a
number of tex files.

The process of specifying a language using Ott provides a
lightweight form of consistency checking. Definitions in the se-
mantics must parse, ruling out typos and unintentional ambiguity.
Notations and metaproductions give flexibility to the specification,
while still leaving traces in the Ott input so they cannot be com-
pletely informal. Further consistency checking comes from proof
assistant code generation—then not only must the definitions parse,
they also must typecheck. These consistency checks aid collabora-
tion as much as the final presentation of the material for publication.

The primary advantage that Ott gives is flexibility in the design
process. With this flexibility, I can search a much larger space of
potential designs more effectively. Part of this flexibility is due to
flexible grammars: Syntactic changes are often one line changes to
the Ott file. (And, I hate to admit it, but changing the syntax of an
object language can often lead new insight into its design.)

However, part of the flexibility is due to the consistency checks.
Just as typed languages (such as ML and Haskell) are easier to
refactor because the type checker helps to identify all of the places
in the source code that changes are needed, Ott can identify all of
the ramifications of specificational changes. This makes it difficult

Or Nott

Scott Owens Peter Sewell Francesco Zappa Nardelli

Ott developers

University of Cambridge INRIA

Abstract
We reflect on the limitations of Ott, and on what other (New Ott?)
tool support a working semanticist might want in an ideal world.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory, Verification, Standardization

We developed Otta to provide tool support ‘for the working
semanticist’, and it has been used, by ourselves and others, in a
fair number of substantial projects. However, there are still many
challenges for the future: areas where existing tools (including Ott)
are lacking. This (part of the) talk raises a few of them.

Parsing and Pretty-Printing Ott takes a user specification of an
arbitrary context-free grammar (with subgrammars and list forms)
and builds a parser, to use for parsing semantic rules and exam-
ples. The flexibility that this affords, letting the user freely de-
fine whatever (potentially ambiguous) object language and formula
grammar they need, and without heavy quoting and antiquoting to
move between them, is very useful. However, Ott does not build
a standalone and production-quality parser that could be used in a
full-scale language implementation; nor does it build a standalone
pretty-printer for abstract syntax terms.

Semantics without Syntax Ott shines in cases where the seman-
tics of the object language is expressed principally in terms of a
free syntax, e.g. for structured operational semantics and type sys-
tems. Outside that domain, e.g. when one deals with the sequential
semantics of machine code (with little syntax but much bit manip-
ulation) or with axiomatic relaxed-memory concurrency semantics
(expressed with first-order axioms about relations over events), it
gives little or no benefit. Instead, one needs good libraries for finite
sets, lists, and so on.

The Ott Type System Considered as a type system, Ott
grammars can make use of mutually recursive labelled sums-of-
products, with subtyping arising from subgrammar declarations
(e.g. for avaluesubgrammar of someexpressions). This serves sur-
prisingly well, but when one wants to start defining functions one
quickly also wants top-level parametric polymorphism and perhaps
also type classes.

Binding One of the starting points for the Ott development
(which began in late 2004), was the realisation that dealing with
rich forms of binding becomes important when one goes beyond
small calculi; it introduced a broad class of binding specifications.
Implementing that (up to alpha conversion) in full generality re-
mains a challenge, and is perhaps too much to aim for — but Ott
can now generate the Locally Nameless representation in relatively
simple cases (with further proof infrastructure provided by Aydemir
and Weirich’s LNgen tool). The Nominal Isabelle system now has
direct support for a moderately large subset of Ott-like binding
specifications.

However, while dealing with binding is certainly essential for
some applications, we find many in which it is not an important

a Sewell, Zappa Nardelli, Owens, Peskine, Ridge, Sarkar, andStrnǐsa, JFP
20(1), 2010; Invited submission from ICFP 2007

1



to miss unintended consequences of such changes. As the system
evolves, I do not reprove all of the properties that I think it should
have, but I do appreciate the opportunity to reexamine all of the
parts of the specification that might invalidate those properties.

Certainly, this process does not provide as much confidence in
the correctness of the design as mechanical proofs of metatheory,
but it requires much less effort and can be extended to a mechanical
proof at a later date. Although the LaTeX output may not be as
beautiful (or concise) as in a hand-crafted paper, the real benefits
for collaboration and exploration are worth the trouble, and in the
end, lead to better designs.

Conclusion In shared conclusion, we would like to note that while mechanising proofs ishighly worthwhile, mechanising definitions is
even more important, and is a substantial challenge in itself.

issue. For example, in our OCamllight semantics we could use the
fully concrete representation except for a very modest De Bruijn
encoding for type variable binders, and in current work on proces-
sor semantics there is no binding whatsoever.

Executable Semantics The last part of the POPLmark chal-
lenge focussed on making a semantics executable in some form.
We would like to re-emphasise its importance: in our view, two
primary uses of a semantic definition should be (a) exploring its
consequences on examples, at design-time, and (b) testing confor-
mance between it and an implementation (until the day when full
compiler verification becomes routine).

Tighter Prover Integration Ott can be used as a stand-alone
tool (doing some checking and producing LaTeX) or as a front-end
to a prover. In principle, though, many of the ideas could and should
be integrated into prover user interfaces, preferably abstracting
from the details of the individual provers as much as possible. This
would obviously be a big engineering challenge.

2


