
Mechanizing multilevel metatheory with control effects

Yukiyoshi Kameyama
University of Tsukuba
kameyama@acm.org

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

Abstract
We have mechanized the type soundness proof for the first sound
multilevel calculus with control effects. The calculus (an exten-
sion of [3]) lets us write direct-style generators that memoize open
code. Our mechanization overcomes two challenges: first, to intrin-
sically encode an object calculus whose typing judgements involve
non-trivial type functions; second, to represent open code and espe-
cially evaluation contexts containing variable binders. These chal-
lenges and the necessary small-step operational semantics recom-
mend multilevel calculi with effects as a benchmark of mechanized
metatheory.

1. Multilevel calculus with control effects
Our calculus λ�, Figure 1, extends the multilevel calculus λ© [1]
with delimited control operators. It is a call-by-value λ -calculus
with integers, addition, pairs, fixpoint and the conditional, as usual.
Expressions, values and contexts are annotated with a non-negative
integer superscript denoting the level. (We may drop the superscript
if it can be inferred.) Level 0 stands for the present stage, at which
evaluation takes place. Future-stage computations, or “code”, are
built with the operations bracket 〈e(i+1)〉 (the analogue of quasiquo-
tation in Lisp) and escape ∼ei (the analogue of unquote). (These
operations are called next and prev in λ©.) The calculus has the
delimited control operator {e} (pronounced “reset”) and the higher-
order constant出 (pronounced “shift”). Whether an expression is a
value depends on its level [4]. The calculus λ� extends [3] to mul-
tiple future-stage levels.

The operational semantics, Figure 2, is small-step, as needed to
express delimited control. (We elide the standard reductions for the
pair projections, etc.) The captured continuation is built one frame
F i at a time, as the “bubble” created by the application of出 perco-
lates up [2]. The operational semantics and the context formation
rule C j ::= Ci[λx.Di j] pose the first challenge: evaluation may oc-
cur under a future-stage binder λx, and the evaluation context Ci

may contain binders. Therefore, we can build open code values,
which contain free variables bound by the context. By capturing
and removing a part of the context, the control operators could
therefore remove variable binders from the context and thus pro-
duce code with unbound variables. The risk of such errors is why
adding effects to a multilevel calculus is tricky.

Our calculus prevents such scope extrusion errors by restricting
control effects to within the scope of a future-stage binder. Such a
restriction still lets us express the standard benchmark problems of
code generation [3]. To make sure that such a run-time restriction
does not cause the evaluation to get stuck, we impose a type-and-
effect system; Figure 3 shows the crucial parts. Control effects at
each level are tracked with the help of an answer type. A typing
judgment Γ` e : τ ; Ti for a level-i expression e includes the answer-
type sequence Ti of length i + 1. The arrow τ → τ ′/τ0 and code
〈τ/τ0〉 types are annotated with the answer type τ0 describing the

C0[(λx.e)v0] C0[e[x := v0]
]

(βv)

C0[{v0}
]
 C0[v0] ({})

C1[∼〈v1〉
]
 C1[v1] (∼)

C0[{出v0}
]
 C0[{v0(λy.y)}

]
Ci[F i[∼i(出v0)]

]
 Ci[∼i(出(λk.v0(λy.{k〈F i[∼iy]〉i})))

]
Ci[〈∼i+1(出v0)〉

]
 Ci[∼i(出v0)

]
Ci[

λx.∼i(出v0)
]
 Ci[

λx.∼i{出v0}
]

where i≥ 1

Figure 2. Operational semantics: small-step reduction e e′.
Here 〈 〉i and ∼i stand for i levels of brackets and escapes; i ≥ 0.
On the right, y and k are fresh.

Types τ ::= int | τ → τ ′/τ0 | 〈τ/τ0〉 | (τ,τ ′)
Answer-type sequences Ti ::= τ0, . . . ,τi

Judgments Γ ` e : τ ; Ti

Environments Γ ::= [] | Γ, 〈x : τ〉i

Γ, 〈x : τ〉i ` e : τ
′ ; 〈τ ′/τ

′
i 〉
〈i〉, 〈τ ′/τ

′
i 〉
〈i−1〉, . . . , 〈τ ′/τ

′
i 〉
〈1〉,τ ′i

Γ ` (λx.e) : τ → τ
′/τ
′
i ; Ti

Γ ` e : τi ; Ti−1,τi

Γ ` {e} : τi ; Ti−1,τ
′
i

Γ ` e : τ ; Ti,τi+1

Γ ` 〈e〉 : 〈τ/τi+1〉 ; Ti

Γ ` e : 〈τ/τi+1〉 ; Ti

Γ `∼e : τ ; Ti,τi+1

Figure 3. The type system of λ� and selected typing rules. The
notation τ〈i〉 is inductively defined by τ〈1〉 = τ , τ〈i+1〉 = 〈τ〈i〉/τ〈i〉〉.

effect that may occur when applying the function or executing the
code.

The most interesting typing rule, the first one in Figure 3, is for
future-stage abstraction. A level-i λ restricts the scope of control
effects at levels 0 through i−1 (inclusive). This restriction explains
the quite involved answer-type sequence for the body of the λ .

2. Intrinsic encoding into LF
We use intrinsic encoding1 to embed λ� in Twelf. The expressions
of λ� are represented by the LF type family of the signature exp:
tp -> atp -> type. This type family is parameterized by the
λ� type tp and by the answer-type sequence atp, with construc-
tors at0: tp -> atp and at: tp -> atp -> atp. The length
of the answer-type sequence is the level of the expression. Given

1 http://twelf.plparty.org/wiki/Intrinsic_encoding

Variables x,y,z, f ,k

Expressions e ::= n | e+ e | λx.e | fix | ee | (e,e) | fst | snd | ifz e then e else e | 出 | {e} | 〈e〉 | ∼e | x

Values vi ::= n | fix | (vi,vi) | fst | snd | 出 | 〈vi+1〉 | x v0 += λx.e

vi += vi + vi | λx.vi | vivi | ifz vi then vi else vi | {vi} when i≥ 1

vi += ∼vi−1 when i≥ 2

Frames F i ::= �+ e | vi +� | �e | vi� | (�,e) | (vi,�) | ifz� then e else e

F i += ifz vi then� else e | ifz vi then vi else� | {�} when i≥ 1

Delimited contexts Di j ::= Di j[F j] | Di(j+1)[∼�] Dii += �

Di j += Di(j−1)[〈�〉] when j ≥ 1

Contexts C j ::= D0 j | C0[{D0 j}] | Ci[λx.Di j] when i≥ 1

Figure 1. Values and contexts of λ�. We write += to add alternatives to a preceding BNF rule.

below is a sample of exp constructors: addition, bracket ^, escape
~, 出, reset at the present ? and future ?+ levels, present- l and
future-stage l+ abstractions.

+ : exp int A -> exp int A -> exp int A.
^ : exp T1 (at Ta A) -> exp (& T1 Ta) A.
~ : exp (& T1 Ta) A -> exp T1 (at Ta A).
de : exp (arr (arr (arr T Ta Ta) Ta Ta) T Ta) A.

? : exp T (at0 T) -> exp T (at0 _).
?+ : exp T (at T A) -> exp T (at _ A).

l : (arg T1 0 -> exp T2 (at0 T2a)) ->
exp (arr T1 T2 T2a) (at0 _).

l+ : l+-cnt N (& T2 T2a) A -> polyA N AR
-> (arg T1 N -> exp T2 (at T2a A))
-> exp (arr T1 T2 T2a) AR.

Because expressions are annotated with their λ� types, these def-
initions encode not only the syntax of λ� but also its type system
(cf. Figure 3). The notation & T Ta stands for the code type 〈τ/τa〉
and arr T1 T2 Ta is the arrow type with the answer type Ta.

The first challenge is encoding abstractions of λ�. Since the
calculus is call-by-value, bound variables are substituted by values,
which are answer-type polymorphic. It is enough therefore to anno-
tate a bound variable, beside its type, with its level rather than the
full answer-type sequence. The type family arg: tp -> nat ->
type is such a representation for bound variables. The main chal-
lenge comes from the complexity of the typing rule for the future-
stage abstraction, Figure 3. We have to encode the non-trivial type
computations of that rule as part of the l+-expression. One such
computation is determining the answer-type sequence for the ab-
straction’s body, using the inductive function τ〈i〉. We define an
auxiliary family l+-cnt to represent this computation. The type
family polyA N AR indexes the abstraction by a sequence AR of N
fresh answer types.

The second challenge is representing open code and bind-
ing evaluation contexts, both arising from the evaluation under
a future-stage λ . LF worlds and hypothetical reasoning make the
challenge easy to meet. Since we use higher-order abstract syn-
tax for λ� binders, the body of a l+ is a function of the type
arg T1 N -> exp T2 (at T2a A). To evaluate that body, we
hypothesize an LF term {x:arg T (1 _)} standing for the bound
variable, pass that term to the body of the function, and evaluate
the resulting exp. Thus we represent the evaluation context of λ�

as LF evaluation context, and the λ� bindings in that context as
components of the LF world.

The advantage of the intrinsic encoding is that all λ� expres-
sions we can enter in Twelf are well-typed by construction, and

the types are inferred by Twelf. The latter property saves us from
writing our own type checker.

We have mechanized the proofs of the following (meta)theorems
of λ�:

1. values are answer-type polymorphic at level 0;

2. each expression is either a value, a continuation bubble, or
decomposable into an evaluation context and a pre-redex;

3. reductions preserve types (subject reduction);

4. a well-typed non-value can be reduced (progress).

The complete Twelf development along with several exam-
ples is available at http://okmij.org/ftp/Computation/
staging/README.dr.

3. Open questions
We are working on extending λ�, dropping the restriction on con-
trol effects, so to permit moving code past the binders (for example,
moving loop-invariant code out of the for-loop body). The context
captured by a control operator may now include binders. How to
represent such contexts?

We have used the bubble-up operational semantics for control
operators, which builds the captured continuation one frame at
a time. Proving bi-simulation with the CPS-transformed code is
greatly facilitated by the semantics that captures the prefix of the
current continuation in one step. For such a one-fell-swoop capture,
representing contexts inside-out is most appropriate. Alas, it is not
known how to represent binding contexts (contexts with binders) in
the inside-out fashion.

References
[1] Davies, Rowan. 1996. A temporal logic approach to binding-time

analysis. In LICS, 184–195.
[2] Felleisen, Matthias, Daniel P. Friedman, Eugene E. Kohlbecker, and

Bruce F. Duba. 1986. Reasoning with continuations. In Proceedings
of the 1st symposium on logic in computer science, 131–141.

[3] Kameyama, Yukiyoshi, Oleg Kiselyov, and Chung-chieh Shan. 2009.
Shifting the stage: Staging with delimited control. In Proceedings of the
2009 ACM SIGPLAN symposium on partial evaluation and semantics-
based program manipulation, ed. Germán Puebla and Germán Vidal,
111–120. New York: ACM Press.

[4] Taha, Walid, and Michael Florentin Nielsen. 2003. Environment classi-
fiers. In POPL, 26–37.

