CTI-LIB: a Coq Library for PL Meta-Theory with
Concrete Names

Aaron Stump

Computer Science and Engineering
Washington University
St. Louis, Missouri, USA

Contributions from Aayush Munjal, Michael Zeller.

Supported by NSF CCF-0448275.

Aaron Stump CTI-LIB 1/17



CTI-LIB Goals

“Contextual Term Interpretations Library”.

Support PL meta-theory in Coq with concrete names.

Provide generic datatype for terms with binders.

Provide recursion/induction principles for such terms.

Define operations like substitution generically.
Prove theorems like Substitution Lemma generically.
Drive development by case studies.

Aaron Stump CTI-LIB

2117



Concrete Names vs. de Bruijn Indices

@ Pros for concrete names:

Languages typically defined using named variables.

Tools support named variables.

There is a gap if meta-theory done with de Bruijn indices.
De Bruijn indices can be non-intuitive, tedious to work with.

v vy VvYyYy

@ Cons for concrete names:
Capture-avoiding substitution not easy to define.

Aaron Stump CTI-LIB 3/17



Rest of Talk

@ Generic Coq datatype of terms with binders.
@ Defining functions by contextual term interpretation (CTI).
@ An induction principle for CTls.

@ Alpha-canonical form and substitution.
@ Use case study for examples:

» Type preservation for a simply typed A-calculus.
» 2 abstractors: CBV ); and “transparent” X;.
» Evaluation under ), is an additional challenge.

Aaron Stump CTI-LIB 4/17



The trm Datatype

@ Terms are uses of named variables or applications of operators.
@ Names specified by a NAMESnodule:

» A type name.

» Computable isomorphism from name to the natural numbers.
@ Operators specified in a SIG module:

» A type op for operators, with decidable equality.
» Arity functions: for each op, how many

* Bound variables
* “Non-governed” subterms
* “Governed” subterms

» Annotation type function: for each op:

* a Coq Set for annotations
* decidable equality on those annotations

@ Dependent types ensure correct numbers of subterms.

Aaron Stump CTI-LIB 5/17



The Coq Definition of trm

Module TRM(s:SIG)(n:NAMES).

Export s.
Export n.

Inductive trm : Set =
var : name -> trm
| exp : forall o:op,
anno o ->
trms (ar_ng o) -> (* not governed *)
llist name (ar_b o) -> (* bound variables *)
trms (ar_gv o) -> (* governed *)
trm
with trms : nat -> Set :=
trmsn : trms O
| trmsc : forall n:nat, trm -> trms n -> trms (S n).

Aaron Stump CTI-LIB 6/17



Example: Simply-Typed Lambda Terms

Module ST_SIG <: SIG.
Inductive _op : Set =
_arrow : _op

| _base : btp -> _op.

End ST_SIG.

Module ST := TRM ST_SIG NAT_NAMES.
Definition tp := ST.trm.

Module LAM_SIG <: SIG.
Inductive _op : Set =
_lam : bool -> _op
| _app : _op.
Definition anno := fun o:.op =>
match o with
lam _ =>1tp
| _app => unit
end.

Aaron Stump CTI-LIB

7117



Contextual Term Interpretation

@ Define function from trm to A by interpretation.

@ So [t] : A

@ User provides interpretations of operators.

@ Library implements homomorphic extension to terms.
@ To handle variables, the interpretation uses a context:
ey - A.

I is a list of pairs of names and elements of A.

Interpret free variables as their values in I".
User provides function for free variables not declared in .

vVvyVvYy

Interpretation of (binding) operator shows how to grow I':

rfdnxg]=[f]d(r[n]) (\a.(T,x — a&)[g])

Aaron Stump CTI-LIB 8/17



Example: Computing Free Variables

Interpret generic terms into list name.

[f] := Xd.AN.AB.
(UN) U (U(B nil))
[x] := [x] (for undeclared variables x)

Aaron Stump CTI-LIB

9/17



Example: Computation of Simple Type

Interpret lambda terms into option tp.

AT .AN.AB.
doR — B (SomeT)
(Some (arrow T R))
[app] = A_AN.AB.
do Tg < Np
T1 <« Np
if (To =arrow T; R)
then (Some R)
else None
[x] := None (for undeclared variables x)

[lam b]

Aaron Stump CTI-LIB

10/17



CTis in Coq
Definition interp_fv_t(A:Type) := name -> A.

Definition interp_exp_t(A:Type) :=
forall o:op,
anno o ->
illist A (ar_ng o) ->
(illist A (ar_b o) -> illist A (ar_gv 0)) ->
A.

Module Type CTI_SIG.
Parameter A:Type.
Parameter interp_fv : interp_fv_t A.

Parameter interp_exp : interp_exp_t A.
End CTI_SIG.

Module CTI (u:CTI_SIG).
Fixpoint interp(G : ctxt u.A)(t : trm)
{struct t} : uA = ..

Aaron Stump CTI-LIB 11/17



An Induction Principle

For a CTl into A:
For a predicate P : ctxtA — trm — A — Prop:

To prove V (t : trm) (G : ctxt A),P G t (G[t]), it suffices to prove:
@ P G x (G[x]), when x € dom(G)
@ P G x (G[x]), when x ¢ dom(G)

@ P is preserved from immediate subterms to terms, for any
extension of the context.

Aaron Stump CTI-LIB 12/17



Alpha-Canonization

@ Put generic terms t into a-canonical form from d:

Consecutive bindings on paths from the root of t bind consecutive
variables, starting from the d’th.

@ To prevent capture: d > i, Vx; € FV(t).

@ Implemented as a CTI into nat — trm.

@ Soacanon Gtd : trm.

@ Substitution can be carried out during a-canonization:

[M/x]¢gN := acanon (-,x — M)Nd

Aaron Stump CTI-LIB 13/17



CTI Substitution Lemma

Theorem

Let M and N be generic terms, and x a name.
Assume d > i,Vx; € FV(M).

Assume d >i,Vx; € (FV(N) \ {x}).

For any CTI with domain A, and any A-context I,
For any equivalence relation =5 on A, we have

MIM/x]aN] =a (T, (x — T[M]))IN]

@ Proof by CTI induction (230 lines).
@ Stronger induction hypothesis required.
@ Proof relies on weakening by a context (275 lines).

@ (Weakening, contraction, permutation proved for all CTIs).

Aaron Stump CTI-LIB

14117




Simple Type Preservation

@ A small-step evaluation function defined as a CTI:
> Interpret into (bool x nat) — trm.
» The bool tells whether or not to reduce S3-redexes.
» Results are a-canonical from the given nat.

@ Computation of simple type (“CST”) defined as a CTI.
@ For type preservation:

Prove that evaluation preserves bound on free variables (250 lines).
Need CTI substitution lemma, specialized to FV.

Type preservation proof by CTI induction on CST (225 lines).

Need CTI substitution lemma, specialized to CST.

\{

vvVvy

@ Overall development for simple types: 900 lines.

Aaron Stump CTI-LIB 15/17



Lessons and Issues

@ Getting the right definitions astoundingly hard.

» Exact definition of CTI.
» Exact form of substitution lemma.
» Still have some clutter: context invariants.

@ Mixing internal and external verification is helpful:

» Dependent type of terms removes need for option.
No lemmas about when we get Some.
Programming with dependent types is tricky.
Streicher’s axiom K needed.

@ Small set of concepts helps develop a more complete theory.
@ Subtyping not definable by CTI (not recursive in a single term.)

@ An issue with the Cog module system?

» Datatype definitions are generative.
» Modular development must be linearized.

vV vy

Aaron Stump CTI-LIB 16/17



Conclusion and Future Work

CTI-LIB: PL meta-theory in Coq with concrete names.

Generic datatype of terms.

Central idea: contextual term interpretation.

Generic lemmas available for any function defined by CTI.

CTI substitution lemma based on alpha-canonical form.
Current development around 6kloc Coq.

Some clean-up required and documenting paper, then release.
Further case studies to drive development.

Aaron Stump CTI-LIB 17/17



