CTI-LIB: a Coq Library for PL Meta-Theory with Concrete Names

Aaron Stump

Computer Science and Engineering Washington University St. Louis, Missouri, USA

Contributions from Aayush Munjal, Michael Zeller.

Supported by NSF CCF-0448275.

CTI-LIB Goals

- "Contextual Term Interpretations Library".
- Support PL meta-theory in Coq with concrete names.
- Provide generic datatype for terms with binders.
- Provide recursion/induction principles for such terms.
- Define operations like substitution generically.
- Prove theorems like Substitution Lemma generically.
- Drive development by case studies.

Concrete Names vs. de Bruijn Indices

- Pros for concrete names:
 - Languages typically defined using named variables.
 - Tools support named variables.
 - There is a gap if meta-theory done with de Bruijn indices.
 - ▶ De Bruijn indices can be non-intuitive, tedious to work with.
- Cons for concrete names:
 Capture-avoiding substitution not easy to define.

Rest of Talk

- Generic Coq datatype of terms with binders.
- Defining functions by contextual term interpretation (CTI).
- An induction principle for CTIs.
- Alpha-canonical form and substitution.
- Use case study for examples:
 - ▶ Type preservation for a simply typed λ -calculus.
 - ▶ 2 abstractors: CBV λ_f and "transparent" λ_t .
 - Evaluation under λ_t is an additional challenge.

The trm Datatype

- Terms are uses of named variables or applications of operators.
- Names specified by a NAMES module:
 - A type name.
 - Computable isomorphism from name to the natural numbers.
- Operators specified in a SIG module:
 - A type op for operators, with decidable equality.
 - Arity functions: for each op, how many
 - Bound variables
 - ★ "Non-governed" subterms
 - "Governed" subterms
 - Annotation type function: for each op:
 - ★ a Coq Set for annotations
 - decidable equality on those annotations
- Dependent types ensure correct numbers of subterms.

The Coq Definition of trm

```
Module TRM(s:SIG)(n:NAMES).
Export s.
Export n.
Inductive trm : Set :=
 var : name -> trm
 exp : forall o:op,
        anno o ->
        trms (ar_ng o) -> (* not governed *)
        llist name (ar b o) -> (* bound variables *)
        trms (ar qv o) -> (* governed *)
        t.rm
with trms : nat -> Set :=
  trmsn: trms 0
 trmsc : forall n:nat, trm -> trms n -> trms (S n).
```

Aaron Stump CTI-LIB 6 / 17

Example: Simply-Typed Lambda Terms

```
Module ST_SIG <: SIG.
  Inductive op : Set :=
     arrow: op
    base : btp -> op.
End ST SIG.
Module ST := TRM ST SIG NAT NAMES.
Definition tp := ST.trm.
Module LAM SIG <: SIG.
  Inductive op : Set :=
     lam: bool -> op
    | _app : _op.
 Definition anno := fun o:op =>
  match o with
    _lam _ => tp
   | app => unit
   end.
```

Aaron Stump CTI-LIB 7/17

Contextual Term Interpretation

- Define function from trm to A by interpretation.
- So [[t]]: A.
- User provides interpretations of operators.
- Library implements homomorphic extension to terms.
- To handle variables, the interpretation uses a context:
 - $ightharpoonup \Gamma \llbracket t
 rbracket : A.$
 - Γ is a list of pairs of names and elements of A.
 - Interpret free variables as their values in Γ.
 - User provides function for free variables not declared in Γ.
- Interpretation of (binding) operator shows how to grow Γ:

$$\Gamma\llbracket f \ d \ \bar{n} \ \bar{x} \ \bar{g} \rrbracket = \llbracket f \rrbracket \ d \ (\Gamma \llbracket \bar{n} \rrbracket) \ (\lambda \bar{a}. (\Gamma, \bar{x} \mapsto \bar{a}) \llbracket \bar{g} \rrbracket)$$

Example: Computing Free Variables

Interpret generic terms into list name.

Example: Computation of Simple Type

Interpret lambda terms into option tp.

```
\llbracket lam b \rrbracket := \lambda T.\lambda N.\lambda B.
                           do R \leftarrow B (Some T)
                             (Some (arrow T R))
  \llbracket app \rrbracket := \lambda_{-}.\lambda N.\lambda B.
                           do T_0 \leftarrow N_0
                              T_1 \leftarrow N_1
                             if (T_0 = arrow T_1 R)
                              then (Some R)
                              else None
      [x] := None (for undeclared variables x)
```

CTIs in Coq

```
Definition interp_fv_t(A:Type) := name -> A.
Definition interp exp t(A:Type) :=
  forall o:op,
  anno o ->
  illist A (ar ng o) ->
  (illist A (ar b o) -> illist A (ar qv o)) ->
  Α.
Module Type CTI SIG.
  Parameter A: Type.
  Parameter interp fv : interp fv t A.
  Parameter interp_exp : interp_exp_t A.
End CTI SIG.
Module CTI (u:CTI SIG).
  Fixpoint interp(G : ctxt u.A)(t : trm)
             {struct t} : u.A := ...
```

Aaron Stump CTI-LIB 11 / 17

An Induction Principle

For a CTI into A:

For a predicate P : $ctxt A \rightarrow trm \rightarrow A \rightarrow Prop$:

To prove \forall (t: trm) (G: ctxt A), P G t (G[[t]]), it suffices to prove:

- P G x (G[x]), when $x \in dom(G)$
- P G x (G[x]), when $x \notin dom(G)$
- P is preserved from immediate subterms to terms, for any extension of the context.

Alpha-Canonization

Put generic terms t into <u>α-canonical form from d</u>:

Consecutive bindings on paths from the root of *t* bind consecutive variables, starting from the *d*'th.

- To prevent capture: d > i, $\forall x_i \in FV(t)$.
- Implemented as a CTI into nat → trm.
- So acanon G t d : trm.
- Substitution can be carried out during α -canonization:

$$[M/x]_dN := acanon(\cdot, x \mapsto M) N d$$

CTI Substitution Lemma

Theorem

Let M and N be generic terms, and x a name.

Assume $d > i, \forall x_i \in FV(M)$.

Assume $d > i, \forall x_i \in (FV(N) \setminus \{x\}).$

For any CTI with domain A, and any A-context Γ , For any equivalence relation $=_{\Delta}$ on A, we have

$$\Gamma[\![[M/x]_dN]\!] =_A (\Gamma, (x \mapsto \Gamma[\![M]\!]))[\![N]\!]$$

- Proof by CTI induction (230 lines).
- Stronger induction hypothesis required.
- Proof relies on weakening by a context (275 lines).
- (Weakening, contraction, permutation proved for all CTIs).

Simple Type Preservation

- A small-step evaluation function defined as a CTI:
 - Interpret into (bool * nat) → trm.
 - ▶ The bool tells whether or not to reduce β -redexes.
 - Results are α -canonical from the given *nat*.
- Computation of simple type ("CST") defined as a CTI.
- For type preservation:
 - Prove that evaluation preserves bound on free variables (250 lines).
 - Need CTI substitution lemma, specialized to FV.
 - Type preservation proof by CTI induction on CST (225 lines).
 - Need CTI substitution lemma, specialized to CST.
- Overall development for simple types: 900 lines.

Lessons and Issues

- Getting the right definitions astoundingly hard.
 - Exact definition of CTI.
 - Exact form of substitution lemma.
 - Still have some clutter: context invariants.
- Mixing internal and external verification is helpful:
 - Dependent type of terms removes need for option.
 - No lemmas about when we get Some.
 - Programming with dependent types is tricky.
 - Streicher's axiom K needed.
- Small set of concepts helps develop a more complete theory.
- Subtyping not definable by CTI (not recursive in a single term.)
- An issue with the Coq module system?
 - Datatype definitions are generative.
 - Modular development must be linearized.

Conclusion and Future Work

- CTI-LIB: PL meta-theory in Coq with concrete names.
- Generic datatype of terms.
- Central idea: contextual term interpretation.
- Generic lemmas available for any function defined by CTI.
- CTI substitution lemma based on alpha-canonical form.
- Current development around 6kloc Coq.
- Some clean-up required and documenting paper, then release.
- Further case studies to drive development.