Native XML Processing in
Object Oriented Languages

Calling XMHell from PurgatOOry

T he Essence of XML

“So the Essence of XML is this: the problem it solves
Is not hard, and it does not solve the problem well.”

[Siméon, Wadler — POPL'03]

Alan Schmitt Calling XMHell from PurgatOOQOry 2

The road to XML is paved with good intentions. ..

» XML data is pervasive
— need powerful tools to manipulate it

» XML has a rich data model
— integrate it with the OO data model

» This talk is about the practical integration of the XML and OO
data models
» T his talk is not about

= XML standards
o Schema, Relax NG, ...

= non-O0O XML manipulation languages
o XQuery, XDuce, CDuce, ...

Alan Schmitt Calling XMHell from PurgatOOQOry 3

Native XML manipulation in OO languages

» The evolution of XML integration
From Strings to Regular Types

» Practical aspects of XML manipulation
Generation X: XJ, Xact, and Xtatic

» Future challenges
Xen and the Art of Language Design?

Alan Schmitt Calling XMHell from PurgatOOQOry

The Evolution of

XML manipulation

A simple XML address book

<addrbk>

<entry>
<name>Pat</name>
<tel>314-1593</tel>
<email>Pat@pat.com</email>

</entry>

<entry>
<name>Jo</name>
<tel>271-8282</tel>
<email>Jo@jo.com</email>

</entry>

</addrbk>

Alan Schmitt Calling XMHell from PurgatOOQOry

A simple XML address book

<addrbk>

<entry>
<name>Pat</>
<tel>314-1593</>
<email>Pat@pat.com< />

</entry>

<entry>
<name>Jo</>
<tel>271-8282</>
<email>Jo@jo.com< />

</entry>

</addrbk>

Alan Schmitt

Calling XMHell from PurgatOOQOry

The Stone Age
Strings

Strings

"<addrbk>

<entry>
<name>Pat</>
<tel>314-1593</>
<email>Pat@pat.com< />

</entry>

<entry>
<name>Jo</>
<tel>271-8282</>
<email>Jo@jo.com< />

</entry>

</addrbk>"

» Used widely. ..

>

>

Cdal

Java servlets

.. with difficulties

Tedious to write and maintain

Output might not be well formed

Alan Schmitt Calling XMHell from PurgatOOQOry 9

The Bronze Age
Concrete Data Structures

Concrete Data Structures

» DOM (Document Object Model) like JDOM
= Provide a generic, standardized AST for XML values

= Provide an API to manipulate it

» Advantages
= Many parsers and pretty printers available

— @Generates well formed XML

» Annoyances
= Little or no check of validity
= Low-level API

= Very concrete representation
< White space may be significant and cannot be ignored

Alan Schmitt Calling XMHell from PurgatOOry

11

Address book in DOM

Element
name = "addrbk"
children =
— Text
data= " \n"
—Element
name = "entry"
children =
— Element
name = "name"
children =
= Text
— Text data = "Pat"
data= " "
— Element
name = '"tel"
children =
= Text
— Element data= "314-1593"
name = "email"
children =
—Element Text
name = ‘"entry" data = "Pat@pat.com™

Alan Schmitt Calling XMHell from PurgatOOry

The Middle Ages
Data Binding

Data Binding

XML language bindings are ""software mechanisms that transform
XML data into values that programmers can access and manipulate
from within their language of choice.”

[Simeoni et. al. — IEEEE Internet Computing, 2003]

» Most XML documents follow a restricted model
» Many description systems: DTD, XML-Schema, Relax. ..

» Translate (“bind”) XML types S to classes [S] and XML values
d satisfying S to objects [d]s of class [5]

» Address book type:

Addrbk =<addrbk>Entry x </>
Entry =<entry>

<name>pcdata</>, <tel>pcdata</>, <email>pcdata</>

</entry>

Alan Schmitt Calling XMHell from PurgatOOry 14

Binding Structure

» Reflect XML structure in

type Addrbk =
<addrbk> Entry*x </>

type Entry =
<entry>
<name>pcdata</>,
<tel>pcdata</>,
<email>pcdata</>
</entry>

the OO type system.

class Addrbk {
List entries; }

class Entry {

Name name ;
Tel tel ;
Email email;

class Name { String value;
class Tel { String value;
class Email { String value;

Alan Schmitt Calling XMHell from PurgatOOry

}
}
}

15

Binding Values

» Reflect XML Values as objects

<addrbk> Addrbk ab = new Addrbk(
new List(
<entry> new Entry(
<name>Pat</> new Name(" Pat”),
<tel>314-1593</> new Tel("314-1593"),
<email>Pat@pat.com</> new Email (" Pat@pat.com”)
</entry>)
new List(
<entry> new Entry(
<name>Jo</> new Name(" Jo"),
<tel>271-8282</> new Tel("271-8282"),
<email>Jo®@jo.com</> new Email (" Jo®@jo.com")
</entry>),

EmptyList))
</addrbk>)

Alan Schmitt Calling XMHell from PurgatOOry 16

Data Binding

Advantages

» Cleaner representation, easier to navigate

» Automatic generators (Castor, JAXB, Relaxer)

» Some statically checked constraints (OO type system)
Annoyances

» Application (or schema) specific

» Errors reported at the level of the host language

» Some features are tricky to reflect
= Union (no union of classes)

= Distributivity laws

<acq> (<friend/> | <work/>) </acq> =

(<acq> <friend/> </acq>) | (<acq> <work/> </acq>)

Alan Schmitt Calling XMHell from PurgatOOry 17

Enlightenment
The rise of Regular Types

& i

Regular Types [Hosoya, Vouillon, Pierce — ICFP'00]

Do not reflect XML structure, add it as types!

» Regular expressions. ..

T=() | Tl,TQ | T1|T2 | T+

» ...containing trees...

T=() | Tl,TQ | T1|T2 | T | <1>T</1>
» ...and recursive definitions (vertical recursion)

T:() | Tl,TQ | T1|T2 | T * | <1>T</1> | X
E= {type X =T}

type Folder = <folder>Name, (Folder|File) %« </>
type File = <file>Name, Content</>
type Name = <name>pcdata</>

type Content = <content>pcdata</>

Technical note: This defines more than regular tree languages

— restrict the position of variables inside an element
Alan Schmitt Calling XMHell from PurgatOOry 19

Regular Types as a language

» Types correspond to a language (a set of sequences of trees)

» Intuitive denotation of regular types

[O]

[T, T3]
[73]72]

[T+]
[<1>T</1>]
[X]

=1{0}
= {tl,tg | tl € [[Tl]], t2 € [[TQ]}
= [T1] v [12]

= {t1,...,tn, | n =0, Vke[l.n].tx e [T]}
= {<1>t</1> | te [T]}
= |T] if (type X =T)e E

» Typing is set membership t: 71T <= te[T]

Alan Schmitt

Calling XMHell from PurgatOOry

Types and Values

type Addrbk =<addrbk>(Friend | Colleague) % </addrbk>
type Friend =<entry> <acq><friend/></>, <name>pcdata</>, <tel>pcdata</>,
(<email>pcdata</>)?, <addr>pcdata</> </entry>
type Colleague =<entry> <acq><work/></> <name>pcdata</>,<tel>pcdata</>,

<email>pcdata</>, <dept>pcdata</> </entry>

<addrbk>
<entry><acq><friend/></>, <name>Pat</>, <tel>314-1593< />,
<addr>42, Wallaby Way</> </entry>
<entry><acq><work/></>, <name>Jo</>, <tel>271-8282</>,
<email>Jo@jo.com</>, <dept>CIS</> </entry>

< /addrbk>

Alan Schmitt Calling XMHell from PurgatOOry 21

Practical Aspects

of XML Manipulation

» Creation, exploration, and modification of XML values.
» Subtyping; interaction of regular types with OO types.

» Compilation and run-time representation.

Alan Schmitt Calling XMHell from PurgatOOry

23

Generation X

XJ Bordawekar, Burke, Harren, Raghavachari, Sharkar, Shmueli

» IBM Research, Thomas J. Watson Research Center

Xobe Kempa, Linnemann

» Universitat zu Lubeck

Xact Christensen, Kirkegaard, Mgller, Schwartzbach
» BRICS

Xtatic Gapeyev, Levin, Pierce, Schmitt, Sumii

» University of Pennsylvania

Alan Schmitt Calling XMHell from PurgatOOry

24

An overview. ..

XJ Xobe Xact Xtatic
LLanguage Java Java Java C#
. Pattern
Exploration XPath XPath XPath Matching
Mutation Imperative | Declarative | Declarative | Declarative
XML in
Objects Yes Yes Yes Yes
Objects Objects
in XML No No No as Labels
Subtyping Nominal Structural ? Structural
Type : : . .
Checking Dynamic Static Static Static
XML at , :
Runtime DOM DOM LLazy List lLLazy List

Alan Schmitt

Calling XMHell from PurgatOOry

» Creation, exploration, and modification of XML values.
» Subtyping; interaction of regular types with OO types.

» Compilation and run-time representation.

Alan Schmitt Calling XMHell from PurgatOOry

26

Creating XML

Most languages embed XML concrete syntax with some escaping
mechanism (pcdata, variables):

[[Friend]] pat = [[<entry> <acq><friend/></>, <name>‘Pat‘</>,
<tel>‘314-1593‘< />, <addr> ‘42, Wallaby Way‘</>
</entry>]]

[[Addrbk]] ad = [[<addrbk>pat</>]]

Alan Schmitt Calling XMHell from PurgatOOry

27

Creating XML: the Xact way

! gt

» XML templates: XML with named holes

» XML templates may be plugged into holes

plug(g, A) =

plug(g, A A A Y=

[Schwartzbach — http://www.brics.dk/"ck/jao002003/]

Alan Schmitt Calling XMHell from PurgatOOry 28

Exploring trees using XPath

Where does my friend Pat live? 42, Wallaby Way

The XPath way: Giving directions and returning all results

//entrylacq/friend] [name/text() = "Pat"]/addr/text()

1.

o & W DN

Find all entry children anywhere

Consider those that have a <acq><friend/></> child
Consider those that also have a <name>Pat</> child
Look at what is in the <addr>--- </> child

Return the text there

<addrbk>
<entry><acq><friend/></>, <name>Pat</>, <tel>314-1593</>,
<addr>42, Wallaby Way</> </entry>
<entry><acq><work/></>, <name>Jo</>, <tel>271-8282</>,
<email>Jo@jo.com< />, <dept>CIS</> </entry>

</addrbk>

Alan Schmitt Calling XMHell from PurgatOOry

29

EXxploring trees using Patterns

Where does my friend Pat live? 42, Wallaby Way

The pattern matching way: giving a map [Hosoya, Pierce —
POPL'01]

<addrbk>any,
<entry><acq><friend/></>, <name>Pat</>, any,
<addr>pcdata x</> </entry>
any

</addrbk>

<addrbk>

<entry><acq><friend/></>, <name>Pat</>, <tel>314-1593</>,
<addr>42, Wallaby Way</> </entry>
<entry><acq><work/></> <name>Jo</>, <tel>271-8282</>,
<email>Jo@jo.com< />, <dept>CIS</> </entry>
</addrbk>

Alan Schmitt Calling XMHell from PurgatOOry 30

Modifying XML in XJ

» Imperative assignment

= Closer to OO style
» Substructure extraction using XPath
» Modification pointed by an XPath expression

‘/addrbk/entry[name/text() = "Pat"]/addr/text()‘ = "4, Privet Drive"

Alan Schmitt Calling XMHell from PurgatOOry

31

Modifying XML in Xact

» Declarative approach (XML data is immutable)

= Sharing of substructures, Concurrency, Static Analysis

» Extraction of substructures using XPath

= T0O select a subtree

» Named holes may be created in a template

= T0O select the context of a subtree

—

Alan Schmitt Calling XMHell from PurgatOOry

32

Modifying XML in Xtatic

o D

» Declarative approach

» XML fragment extraction using pattern matching, followed by
simple recombination

match (person) {
case [[<entry>Acq k, Name n, Tel t, any</entry>]1]:

res = [[<entry>k, n, t</> 11;

Alan Schmitt Calling XMHell from PurgatOOry

33

» Creation, exploration, and modification of XML values.
» Subtyping; interaction of regular types with OO types.

» Compilation and run-time representation.

Alan Schmitt Calling XMHell from PurgatOOry

34

A type is a type is a type... Subtyping

T he essence of subtyping:

If an operation is guaranteed to be safe on a value of the supertype,
then it is safe on a value of the subtype.

Alan Schmitt Calling XMHell from PurgatOOry 35

Subtyping for OO types

In the OO world, there already are two forms of subtyping:

Structural (OCaml):

» Subtyping of two classes depends on the presence and type
of their fields and methods

» Independent of class hierarchy

» Rich (and complex)

Nominal (Java, C#):
» Subtyping is declared (inheritance)

» Class hierarchy checked to satisfy structural subtyping
= Nominal subtyping implies structural subtyping

» Simplifies type checking

Alan Schmitt Calling XMHell from PurgatOOry 36

Subtyping for Regular Types

As in the OO world, two forms of subtyping can be considered:

Structural T+ =g 1T’
(A sequence of 1 or more T's is a sequence of 0 or more T's)

Nominal Km =g Distance
(A distance in km is a distance)

type Distance = <distance> Value, (<km/>|<miles/>) </>
type Km = <distance> Value, <km/></>

type Value = <val>int</>

Alan Schmitt Calling XMHell from PurgatOOry 37

Structural subtyping for Regular Types

» Each Regular Type is a language

» Subtyping is simply language inclusion
TcsT < [T]c|1]
= Intuitive: t e [T] and T'c=s 1" implies t € [1"]
= Immediately satisfies many properties
o Distributivity of union over sequences and trees

[<acq> (<friend/> | <work/>) </acq>] =

[(<acqg> <friend/> </acq>) | (<acq> <work/> </acq>)]

» Associativity of sequence concatenation

Alan Schmitt Calling XMHell from PurgatOOry 38

Nominal Subtyping of Regular Types

Several approaches to nominal subtyping
» Purely nominal: every type declared has a name

» Structural horizontally, Nominal vertically

= Language inclusion of regular expressions of labels
TI() | Tl,TQ | T1|T2 | T * | [,

= Declare subtyping of elements by their label in L

= In Schema, labels are pairs (element, type name)
» Allows finer distinctions (Mars Climate Orbiter):
miles # km — <height :: miles>int</> # <height :: km>int</>
» Subtyping is faster
» Must still be structural: Ty 1T/ = T g T

» Need to explicitly state all subtyping relations

Alan Schmitt Calling XMHell from PurgatOOry 39

£

Mixing XML and Objects

» Sequences are objects of class XML

= May be used in collections

Object\

\ Char
/C String XML

D1 D2

R-Types

» Most languages follow this approach

Alan Schmitt

Calling XMHell from PurgatOOry

40

Labels as Objects in Xtatic

» Labels are objects, Label types are classes

T = () | QEJTIQ | TIH|75 | T * | <:(C):>1ﬂ<yh>

» XML tags are singleton classes, subclass of Tag:
<addrbk> - - - </> = <(Tagaddrbk)> <. </>

» Characters are singleton classes, subclass of Char:
‘Pat‘ = <(Charp)/><(Char,)/><(Chary)/>

= Pattern matching used for string regular expressions
regtype url_protocols [[‘http‘ | ‘ftp‘ | ‘https‘ 1]

regtype url [[url protocols , ‘://¢ , (url_char *) 1]

case [[url u, any rest]] :

res = [[res , u</>]]; p = rest;

Alan Schmitt Calling XMHell from PurgatOOry 41

The Class Struggle

P RS Sk AP R P SRR AL O R
LG 5] ‘-’---’“ 4’:‘ i A R%-‘ #i ui WN&» o "w{.{'dﬁr":’ea;f.xi‘ AR Ot . R RERY S g

Object\
Char Tag
C String XML AN
/ \ / Tag
Char, Char, Tag . =~ “entr

R-Types

Alan Schmitt Calling XMHell from PurgatOOry

42

Mixing Structural and Nominal Subtyping

» Structural subtyping for sequences

» Nominal subtyping for labels

= Use the class hierarchy

Miles tf¢ Km = <height><(Miles)/></> -5 <height><(Km)/></>

but

Miles £=¢ Int = <height><(Miles)/></> C£s <height><(Int)/></>

» Interesting theoretical construction [Gapeyev, Pierce —
Ecoop’'03]

Alan Schmitt Calling XMHell from PurgatOOry

43

» Creation, exploration, and modification of XML values.
» Subtyping; interaction of regular types with OO types.

» Compilation and run-time representation.

Alan Schmitt Calling XMHell from PurgatOOry

44

Source to source translations

All these XML manipulation languages. ..
» Are language extensions
» Provide access to all language features
» Provide access to all libraries

= either
» Write a full Java / C# compiler

» Write a source to source compiler

= Translation of regular types and values

= Type checking

= Run-time representation

Alan Schmitt Calling XMHell from PurgatOOry

45

The Holy Grail

Faithful Data Binding (regular types as OO types)
» Translation || of types and values to target language

» Exact correspondence for typing and subtyping:
Viegt T = [v] : [T] and T Cepe T! — [T] = [T7]

» Uses existing typing/introspection infrastructure

» May still require type checking for the extension
= Precise error localization and reporting

= Type inference
but not there vyet. ..

» May be impossible with structural subtyping

Alan Schmitt Calling XMHell from PurgatOOry

46

Heterogeneous vs Homogeneous translation

Heterogeneous Fitting square pegs into round holes
» Approximates faithful data-binding
» Add coercions to regain lost subtyping relations
» Complex to design
>

Efficiency?

Homogeneous Where did my type go?
» Simpler compilation: forget about regular types
» But...first need to typecheck them

» What to do when types are needed?

=~ Method overloading — name mangling
= Separate compilation — store types
= Introspection (reflection) — type stamps

Alan Schmitt Calling XMHell from PurgatOOry 47

Type Checking

XJ [Haren et al — IBM RC23007]
» Usual type checking (regular types in the language)

» XPath expressions typed with XAEL [Fokoué — Unpublished]

» Imperative XML modifications typed dynamically

Xact [Kirkegaard, Mgller, Schwartzbach — BRICS RS-03-19]

» Static validation on demand

= Symbolic evaluation of XML transformations
= Based on control flow graphs

» Guarantees satisfaction of a given DTD

Xtatic [Gapeyev, Pierce — Ecoop’'03]

» Usual type-checking (regular types in the language)
= Based on Xduce [Hosoya, Vouillon, Pierce — ICFP'00]

» Inference of types of bound variables in patterns

Alan Schmitt Calling XMHell from PurgatOOry

48

Xtatic: Type Inference in Patterns

static [[Phbk 1] mkPhbk ([[Addrbk 1] addr) {
[[PhPersx 1] res = [[1];

[[<addrbk> (Friend|Colleague)* pers</> 1] = addr;
bool cont = true;
while (cont) {
match (pers) {
case [[<entry>Acq k, Name n, Tel t, any</entry>, any rest]1]:
res = [[res, <entry>k, n, t</> 1];
pers = rest;

case [[1]:

cont = false;

I

return [[<addrbk>res</> 1]; }

Alan Schmitt Calling XMHell from PurgatOOry

49

Run-time representations

» XJ and Xobe use a DOM representation
= Mutable doubly linked tree
= Useful for XJ (imperative modification of XML)

» Xact and Xtatic use a custom representation

= Immutable singly linked tree

o Sharing of substructures
© Lazy concatenation for efficiency

> Xact: [Christensen, Kirkegaard, Mgller — BRICS RS-03-29]

> Xtatic: [Levin — ICFP’'03], [Gapeyev, Levin, Pierce, Schmitt
— MS-CIS-03-43]

Alan Schmitt Calling XMHell from PurgatOOry 50

To Infinity and Beyond

Boolean object types

» Needed for precise type inference of bound variables
case [[<(Ax)/> | <(Bx)/>]]:...

x should have type A | B

» Integrates nicely with an homogeneous compilation framework:
only need to extend the typechecker.

» Current work extends FJ [Igarashi, Pierce, Wadler —
OOPSLA'99] with union [Nagira, Igarashi — JSSST'03]

Alan Schmitt Calling XMHell from PurgatOOry 52

Filters

» Regular extension of pattern-matching clauses [Hosoya —
PlanX'04]

» A clause is a pattern and an expression
» Example: transform every entry of an address book

static [[Phbk 1] mkPhbk ([[Addrbk 1] addr) {

filter addr {
<addrbk>
(<entry>Acq k, Name n, Tel t, any</entry> {<entry>k, n, t</>})*
</addrbk>

}

}

» Similar to Cduce map or transform [Benzaken, Castagna, Frisch
— ICFP'03]

» Integrates language features (loops) into pattern matching

Alan Schmitt Calling XMHell from PurgatOOry 53

Strategies of Pattern Matching

» Greedy [Frisch, Cardelli — PlanX'04]
= Most common approach, simple to implement

= Approximation of longest match

» Lazy
= Very useful in practice (Find the first URL)
= Recovered by stateful loops and first match policy
while (cont) {
match (curr) {
case [[url u, any rest]]: curr = rest; ...
case [[one_char c, any rest]1]: curr = rest; ...

case [[]]: cont = false

}

> Interesting typing questions (Type of pcdata without any
URL7?)

Alan Schmitt Calling XMHell from PurgatOOry

54

Strategies of Pattern Matching

» Multi
— Return all results

= May bridge the gap between XPath and pattern matching

» Deep

= Apply a transformation anywhere in the tree
o Extension of filters with vertical recursion

= Avoids boilerplate code

= Challenging design and typing issues

Alan Schmitt Calling XMHell from PurgatOOry

55

Deeper Integration with OO

Types
» Mixing nominal and structural systems

» Integration of structural regular subtyping with languages that
have structural OO subtyping (OCaml: CamlDuce?)

Sequences as objects

» XJ: sequences are Java lists

= sequence.size()

» Scala: For-Comprehensions
= List to list transformation
> for {val p <- persons; p.age > 20} yield p.name

= Defined using map, filter, and flatMap
— not restricted to lists

Alan Schmitt Calling XMHell from PurgatOOry

Xen and the Art of Language Design?

[Meijer, Schulte, Bierman — XML'03]
» Aims at a tight integration of OO, XML, and SQL (for C#)

» Includes Streams, Tuples, Union, Join Patterns (asynchronous
programming)

» Map, Filter, and Fold on streams

» More details on the type system?

= Aim at a seamless integration
< No distinction between old and new types

= What kind of subtyping integration?
o Challenging issue

Alan Schmitt Calling XMHell from PurgatOOry

57

Take-home points

» Regular types are an expressive data model for XML

» Type systems and subtyping integration are crucial for a tight
coupling of the two data models

» We need a better understanding of the relationship between
nominal and structural subtyping

Alan Schmitt Calling XMHell from PurgatOOry

58

Do vyou want to know more?

Xobe http://www.ifis.mu-luebeck.de/projects/X0BE/X0OBE.html (in
German)

XJ http://www.google.com/search?hl=en&q=xj%20xml
Xact http://www.brics.dk/"amoeller/Xact/

Xtatic http://www.cis.upenn.edu/ bcpierce/xtatic/

Alan Schmitt Calling XMHell from PurgatOOry

59

