
SYMMETRIC EDIT LENSES:

A NEW FOUNDATION FOR BIDIRECTIONAL LANGUAGES

Daniel Wagner

A DISSERTATION in Computer and Information Sciences,
presented to the faculties of the University of Pennsylvania in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

2014

Supervisor of Dissertation: Benjamin C. Pierce
Henry Salvatori Professor
Computer and Information Sciences

Graduate Group Chairperson: Val Tannen
Professor
Computer and Information Sciences

Dissertation Committee
Rajeev Alur (Zisman Family Professor, CIS)
Nate Foster (Assistant Professor, Computer Science, Cornell)
Stephanie Weirich (Associate Professor, CIS)
Chaired by Steve Zdancewic (Associate Professor, CIS)

Acknowledgments

This dissertation is the product of dozens of supportive, encouraging, inspiring peo-
ple. The entire lens team was wonderful to me: Benjamin Pierce, whose long vision
and habit of asking the question that gets straight to the pain point have driven my
research towards the important, difficult problems time and time again; Martin Hof-
mann, who has been a source of unending enthusiasm and deep insight; Nate Foster,
who is to blame for my obsession with lenses in the first place and who has always
been ready to discuss their finer points with me; and the remainder of my committee,
Steve Zdancewic, Stephanie Weirich, and Rajeev Alur, who have offered significant
guidance and technical perspective throughout my efforts.

I have had immeasurable support of a different kind from my family: my wife,
Nicole, who has provided loving, steadfast support and optimism and who has ever
been a source of joy and surprise; my father, Rich, whose focus on the broader per-
spective has informed much of my writing, who has shared with me his love of the
systematic, and who provided many insightful comments on drafts of this disserta-
tion; my mother, Martha, who has always encouraged me and whose faith in me has
been like bedrock; my godfather, Dave Gunderson, who has always been a storyteller
and so enlivened many nights; and my siblings, David, Jonathan, and Rebekah, with
whom I have shared many triumphs and defeats.

William K. Lamb brought me back from the brink of despair; without him, this
dissertation certainly would not exist and maybe neither would I. Officemates Peter-
Michael Osera, Vilhelm Sjöberg, and Brent Yorgey have always been ready for some
brick-walling, grungy TEX and shell hacking, in-jokes, or any of the other camaraderie
that contributes to a successful day. This comes in part, no doubt, from the shared
attitude of the entire Penn PL Club, which has fostered a warm and welcoming place
to work. I have been blessed to have an environment—family, childhood friends,
teachers, professors, classmates, colleagues—that has lifelong fostered wonder and
the joy of exploration.

This dissertation extends the developments of “Symmetric Lenses” and “Edit Lenses” [22, 23], and
was supported by the National Science Foundation under grants 0534592, Linguistic Foundations
for XML View Update, and 1017212, Algebraic Foundations for Collaborative Data Sharing.

ii

ABSTRACT

SYMMETRIC EDIT LENSES:

A NEW FOUNDATION FOR BIDIRECTIONAL LANGUAGES

Daniel Wagner

Benjamin C. Pierce

Lenses are bidirectional transformations between pairs of connected structures ca-

pable of translating an edit on one structure into an edit on the other. Most of the

extensive existing work on lenses has focused on the special case of asymmetric lenses,

where one structures is taken as primary and the other is thought of as a projection or

view. Some symmetric variants exist, where each structure contains information not

present in the other, but these all lack the basic operation of composition. Addition-

ally, existing accounts do not represent edits carefully, making incremental operation

difficult or producing unsatisfactory synchronization candidates. We present a new

symmetric formulation which works with descriptions of changes to structures, rather

than with the structures themselves. We construct a semantic space of edit lenses be-

tween “editable structures”—monoids of edits with a partial monoid action for apply-

ing edits—with natural laws governing their behavior. We present generalizations of

a number of known constructions on asymmetric lenses and settle some longstanding

questions about their properties—in particular, we prove the existence of (symmetric

monoidal) tensor products and sums and the non-existence of full categorical prod-

ucts and sums in a category of lenses. Universal algebra shows how to build iterator

lenses for structured data such as lists and trees, yielding lenses for operations like

mapping, filtering, and concatenation from first principles. More generally, we pro-

vide mapping combinators based on the theory of containers [2]. Finally, we present

a prototype implementation of the core theory and take a first step in addressing the

challenge of translating between user gestures and the internal representation of edits.

iii

Contents

1 Introduction 1

1.1 Asymmetric Lenses . 2

1.2 Alignment . 4

1.3 Symmetry . 8

1.4 Performance . 12

1.5 Syntax . 12

1.6 Contributions . 14

1.7 Notation and Conventions . 15

2 Symmetric Lenses 17

2.1 Fundamental Definitions . 17

2.2 Equivalence . 24

2.3 Basic Constructions . 26

2.4 Products . 36

2.5 Sums and Lists . 44

2.6 Iterators . 58

2.6.1 Lists . 59

2.6.2 Other Datatypes . 64

2.7 Containers . 66

iv

2.8 Asymmetric Lenses as Symmetric Lenses 70

2.9 Conclusion . 80

3 Edit Lenses 81

3.1 Overview . 81

3.2 Edit Lenses . 85

3.3 Edit Lens Combinators . 91

3.4 Containers . 132

3.5 Adding Monoid Laws . 141

3.6 From State-Based to Edit Lenses and Back 148

3.7 Conclusion . 151

4 Prototype Library for Edit Lenses 152

4.1 Introduction . 152

4.2 Usage Example and Functionality . 155

4.3 Implementation Details . 156

4.4 Conclusion . 163

5 Related Work 164

5.1 Graph-based delta lenses . 165

5.1.1 Asymmetric . 168

5.1.2 Symmetric . 170

5.2 Comma category lenses . 173

5.3 Algebraic rephrasing . 176

5.4 Matching lenses . 180

5.5 Annotation-based delta lenses . 181

5.6 Constraint maintainers . 182

v

6 Conclusion 184

6.1 Future Work . 186

6.2 Closing Thought . 189

A Full code 190

A.1 LICENSE . 190

A.2 demos/edit-lenses-demo.cabal . 191

A.3 demos/lens-editor.hs . 191

A.4 demos/no-gtk.hs . 193

A.5 demos/Data/Lens/Edit/String.hs 194

A.6 demos/Data/Module/String.hs . 194

A.7 lib/edit-lenses.cabal . 199

A.8 lib/Data/Container.hs . 200

A.9 lib/Data/Iso.hs . 200

A.10 lib/Data/Module.hs . 201

A.11 lib/Data/Lens/Bidirectional.hs 201

A.12 lib/Data/Lens/Edit.hs . 201

A.13 lib/Data/Lens/Edit/Container.hs 202

A.14 lib/Data/Lens/Edit/List.hs . 203

A.15 lib/Data/Lens/Edit/Primitive.hs 206

A.16 lib/Data/Lens/Edit/Product.hs 208

A.17 lib/Data/Lens/Edit/Stateful.hs 210

A.18 lib/Data/Lens/Edit/Stateless.hs 211

A.19 lib/Data/Lens/Edit/Sum.hs . 211

A.20 lib/Data/Module/Class.hs . 213

A.21 lib/Data/Module/Container.hs . 213

vi

A.22 lib/Data/Module/List.hs . 215

A.23 lib/Data/Module/Primitive.hs . 216

A.24 lib/Data/Module/Product.hs . 216

A.25 lib/Data/Module/Shape.hs . 217

A.26 lib/Data/Module/Sum.hs . 217

vii

List of Tables

1.1 Feature coverage for various approaches to bidirectional programming 2

1.2 Function and lens types . 16

5.1 Feature coverage for various alternatives to edit lenses 164

6.1 Feature coverage for various lens frameworks 185

viii

List of Figures

1.1 A naive implementation of the bidirectional map operation 4

1.2 The lower lens converts a possibly-upper-case letter into a definitely-

lower-case one . 5

1.3 Auxiliary unidirectional functions used in the definition of −? 6

1.4 A school’s staff list, as seen by HR and by the principal’s secretary . 7

1.5 A slightly more complicated synchronization scenario 9

1.6 Asymmetric lens life cycle, and some proposed symmetric variants . . 10

1.7 A whimsical symmetric synchronization scenario 11

1.8 Adding an intermediate structure can improve modularity 12

2.1 Behavior of a symmetric lens . 19

2.2 Synchronizing lists of sums . 22

3.1 A simple (complement-less) edit lens in action. 82

3.2 A lens with complement. 84

3.8 A consistent triple for the partition lens. 115

4.1 A demonstration use of the prototype, using the composers lens . . . 154

4.2 Summary of the module hierarchy in the prototype implementation . 158

5.1 A school’s staff list, as seen by HR and by the principal’s secretary . 179

ix

5.2 An easily fixed misalignment . 180

5.3 With dictionary lenses, changing a key causes information loss 181

x

Chapter 1

Introduction

Recent years have seen increased interest in the area of bidirectional programming.
Broadly speaking, the problem domain involves maintaining a connection between
two different representations of otherwise very similar information. The strong con-
nections between an in-memory representation of a data structure and its serialized
form; a piece of source code and its parsed abstract syntax tree [44]; tool-specific
configuration formats and a common configuration format [35]; a database and some
particular summary of interest; or two distant but partially replicated computers [43]
are all examples of areas where two pieces of data are very similar. We will call each
of the two objects in these pairings repositories. In each case, one would like the two
repositories to stay “in sync”: modifications to one repository should be propagated
and reflected in the other.

At the moment, one common way of tackling this problem is to design, by hand,
two programs that work together. Calling the two repositories X and Y , the first
program translates updates to X into updates to Y , and the second translates in
the other direction, turning updates to Y into updates to X. (Taking the example
of connecting a piece of source code and its abstract syntax tree from above, these
two programs might be a parser and a pretty-printer.) Programming in this style,
however, quickly grows unmanageable. Recent developments in bidirectional trans-
formations have suggested that a language-based approach—that is, the creation of a
language where each program represents two transformations—may be more practical
in many ways. Existing languages have a uniform interface across terms: different
programs are run in the same manner. This means that such bidirectional programs
are easy to extend to accommodate the evolution of the data structures being con-
nected. Moreover, the language itself can provide evidence that the transformations
are correct, for example, by guaranteeing that any transformation that can be con-
structed within the language will restore synchrony on each run, will not discard
too much information, will not disrupt synchrony unnecessarily, or similar behavioral
guarantees.1 Designing a language is also a more modular approach to solving the

1We will use “synchronize” and related words informally to mean simply “maintain a correspon-

1

Alignment Symmetry Performance Syntax
asymmetric delta lenses X X
symmetric delta lenses X X
comma category lenses X
group-based lenses X
matching lenses X X
annotation-based lenses X X
constraint maintainers X X X
symmetric lenses X X
edit lenses X X X X

Table 1.1: Feature coverage for various approaches to bidirectional programming

bidirectional transformation problem, as the design of bidirectional building blocks
can be separated from the process of gluing the blocks together into particular useful
transformations.

The term “lens” is a broad term encompassing a large family of related language-
based approaches to the bidirectional transformation problem. In §1.1, we will intro-
duce one of the earliest language-based approaches, asymmetric lenses, as a way to
ground our ongoing discussion of the features that make bidirectional programming
attractive and practical. We will identify four key challenges in lens design: align-
ment (the ability to represent data evolution precisely, §1.2), symmetry (no more
restrictions on one piece of connected data than on the other, §1.3), performance
(handling data in an incremental way, §1.4), and syntax (the existence of example
transformations, §1.5). Table 1.1 compares extant lens frameworks with respect to
these four key features, with a focus on frameworks which aim at dealing with the
problem of alignment. We will discuss this figure in depth in Chapter 5; for now, it
suffices to observe that the edit lens framework as described in this document is the
first framework to support all four features.

1.1 Asymmetric Lenses
One well-studied approach to bidirectional programming is the framework of asym-
metric, state-based lenses. A thorough review of this work is available elsewhere [17],
so we will give only a brief introduction to the core concepts. Suppose there are two
repositories; one repository stores a piece of data represented by an element of the set

dence between two repositories by propagating edits in both directions”. A full-blown synchronization
tool would also include, at a minimum, some mechanism for dealing with conflicts between discon-
nected edits to the two structures, which is outside the scope of this document. Note, though, that
we will go beyond most existing synchronization tools in allowing the repositories to be structured
differently and to share only a part of their information.

2

S, and the other stores an element of V . Then a lens connecting the two repositories
has three components:

get ∈ S → V

put ∈ V × S → S

create ∈ V → S

In this model, the V repository is a view of or query on the S repository (called a
source): that is, it can be completely reconstructed from the other without additional
outside information. The type of the get component of the lens reflects this assump-
tion. In most cases, a query will keep only some of the information available in the
source; as a result, the opposite reconstruction property—that the source can be com-
pletely reconstructed from the view—usually does not hold. Asymmetric, state-based
lenses handle this situation by allowing their other major function component to have
access to both a modified value from the view repository and an original value from
the source repository to merge the new data into, as reflected in the type of put . As a
technical detail, it is sometimes convenient to demand (and rarely difficult to supply)
a way to generate a value in the source repository with some sane defaults. This is
the create component of the lens.

Lenses have one more piece, which was alluded to above. The structure described
so far already addresses the need to give two transformations (namely get and put),
but does not yet address our desire to prove that these two transformations work well
together. Let us first try to build an intuition for what “works well together” might
mean before we formalize this. Suppose we have a lens `; to simplify things, we will
take `.get to be unassailable2 and phrase all our desires in terms of constraints on
`.put and `.create. It is natural to expect two things from our lens: first, that `.put
changes enough—that whatever change we make to the view is faithfully reflected in
the source so that future calls to `.get give exactly the value we changed the view to—
and second, that `.put does not change too much—that only the parts of the source
that are used to compute the view are modified. Three behavioral laws address this
intuition:

put(get(s), s) = s GetPut
get(put(v, s)) = v PutGet
get(create(v)) = v CreateGet

The PutGet law formalizes the expectation that `.put changes enough; the GetPut
law takes a step toward formalizing the expectation that `.put does not change too
much. In fact, the GetPut law only guarantees that unmodified views result in
unmodified sources, but any change to the view, no matter how tiny, voids all further
guarantees; this has been viewed as a weakness of some previous approaches. It is very

2We will use record notation for lens components, so that `.get is the get component of `.

3

`?.get(t) = map(`.get , t)

`?.create(u) = map(`.create, u)

`?.put(t, u) = zip(`.put ,map(`.create), const(〈〉), t, u)

Figure 1.1: A naive implementation of the bidirectional map operation

hard to come up with a better generic guarantee than this within the asymmetric,
state-based lens framework, but Chapter 3 takes an unexpected step in refining this
behavioral law. The third law, CreateGet, serves a similar purpose to the PutGet
law. Collectively, these behavioral laws are often also called roundtrip laws : another
way to read them is that in a given “round trip” through the lens the repository returns
to exactly the same state it started at. In the remainder, we will write ` ∈ S a↔ V to
assert that ` is an asymmetric, state-based lens—that is, that it is a triple of functions
whose types are as above that satisfy the three behavioral laws discussed. We will
use record notation to refer to the three components; thus `.get is the first field of
the triple, `.put the second, and `.create the third.

In the remaining sections, we use asymmetric lenses as a vehicle to explore the
importance of and challenges involved in supporting good alignment strategies, infor-
mation symmetry, good performance, and a rich syntax.

1.2 Alignment
One very common operation when doing functional (unidirectional) programming is
the map operation, which runs a computation on each element of a list. To give an
idea of how common, as of April 3, 2012, there were 3878 packages on Hackage [50],
the central code repository for Haskell projects, which made a total of 90,040 calls
to map—an average of more than twenty calls per project.3 Most serious attempts
at designing a bidirectional language therefore provide some variant of a mapping
operation. Since it is such a popular operation, it is important to carefully address
the behavior of the bidirectional map (which we will denote by −? to distinguish
it from the unidirectional version), and that turns out to be surprisingly difficult!
To see why, let us implement −? in the most obvious way; then we can discuss the
deficiencies of this approach.

Like map, which is parameterized by a unidirectional function to apply to list
elements, −? will be parameterized by a bidirectional operation. That is, writing
S? for the set of lists with elements drawn from S, when ` ∈ S a↔ V , we will have

3In fact, the program used to calculate these numbers itself makes two calls to map:
ack -cl ’\bmap\b’ | cut -d: -f2 |
ghc -e ’interact $ unlines . map show . scanl (+) 0 . map read . lines’

4

lower .get(c) = the lower case version of c

lower .put(c′, c) =

{
the upper case version of c′ A < c < Z

c′ otherwise
lower .create(c) = c

Figure 1.2: The lower lens converts a possibly-upper-case letter into a definitely-
lower-case one

`? ∈ S? a↔ V ?. Figure 1.1 defines the −? lens, relying on some auxiliary definitions
given in Figure 1.3. The get and create operations are fairly straightforward—direct
analogues of the unidirectional version—but the put operation is more delicate. Since
put takes one value from each repository, the `?.put operation takes two lists, of types
S? and V ?. When these lists are the same length they can just be zipped together,
applying `.put to pairs of elements in the same positions in the two lists. When
they are different lengths, there have been insertions or deletions. Deletions can be
reflected directly by deleting the last few elements of the S? list until the lengths
match. For insertions, we recover elements of S by treating the last few elements of
the V ? list as the insertions and using create to fabricate S elements to insert.

Figure 1.2 defines a lens lower that converts a character to lower case so that we
can demonstrate the behavior of −?.

lower ?.get(UpperCasedQord) = uppercasedqord

lower ?.put(uppercasedword, UpperCasedQord) = UpperCasedWord

lower ?.put(uppercased, UpperCasedWord) = UpperCased

lower ?.put(uppercasedsentence, UpperCasedWord) = UpperCasedSentence

All of these examples behave essentially optimally. However, not all is well; a simple
example of the so-called alignment problem is something like this, where we have an
insertion in the middle of the word to correct the spelling of “upper”:

lower ?.put(uppercasedword, UperCasedWord) = UppeRcaseDword

Because lower ?.put only looks at a lower-cased element’s position when deciding which
mixed-case character to match it up with, we have incorrectly aligned the new view
with the old source this way:

U p e r C a s e d W o r d

u p p e r c a s e d w o r d

5

map(f, t) =

{
〈〉 t = 〈〉
f(x):map(f, t′) t = x:t′

zip(f, g, h, t, u) =


f(x, y):zip(f, g, h, t′, u′) t = x : t′ ∧ u = y : u′

g(t) t = x : t′ ∧ u = 〈〉
h(u) t = 〈〉 ∧ u = y : u′

〈〉 t = u = 〈〉
const(x) = λy. x

Figure 1.3: Auxiliary unidirectional functions used in the definition of −?

A better alignment would look like this:

U p e r C a s e d W o r d

u p p e r c a s e d w o r d

One natural reaction to this infelicity is to think of the diff algorithm [26] or
something similar. This idea has been developed quite far [7]; let us see how. At first
blush, it seems difficult to use the diff algorithm directly. Elements of the source
and view have different types, so it is not clear how to compare them.4 However, the
alignment diagram above may be broken into two stages:

U p e r C a s e d W o r d

u p e r c a s e d w o r d

u p p e r c a s e d w o r d new view (of type V ?)

old view (of type V ?)

old source (of type S?)

In this restructured alignment diagram, the upper alignment (which connects
elements of different types) will always be completely flat, and hence requires no
sophisticated tools to generate. In contrast, the lower alignment contains all the
interesting information, and is the one we hope to compute with diff. Moreover, the
connections in the lower alignment are now between elements of the same type, making
the use of diff much more plausible. One wrinkle is that the data in this example is

4One might be tempted to use diff anyway, or to use a case-insensitive diff. In the general
case, the elements of the source and view lists are very different kinds of objects, so that kind of
trick does not scale well.

6

Teacher name Salary
Sam Rickard 57,000
Jon Jacobs 50,000
Mary Jones 65,000

(a) HR’s view

Teacher name
Sam Rickard
Jon Jacobs
Mary Jones

(b) A secretary’s view

Teacher name
Sam Rickard
Jon Jacobs
Mary Smith

(c) After an update

Sam Rickard Jon Jacobs Mary Jones
57,000 50,000 65,000

Sam Rickard Jon Jacobs Mary Jones

Sam Rickard Jon Jacobs Mary Smith

?

(d) Whether the marked edge should be included or not depends on invisible context

Figure 1.4: A school’s staff list, as seen by HR and by the principal’s secretary

unrealistically simple, and more complicated data often needs more complicated tools
for specifying the cost function that diff uses. Another wrinkle is that in real-world
situations, one often wants to discover alignments with crossings like

D i r G r a p h R e s

d i r g r a p h r e s

r e s d i r g r a p h

which require more sophisticated algorithms than the traditional diff.
Indeed, it is not even clear that it is always possible to correctly guess the align-

ment given just an old and a new copy of the data. Figure 1.4 gives an example of
a particularly tricky situation involving a school’s employee database. Part a shows
the full database, which includes a listing of all the teachers and their salaries. It
transpires that the school secretary finds it useful to have access to this database;
however, the secretary should not be privy to the confidential salary information.
Consequently there is a secretarial view, shown in part b, with salaries redacted, and
we would like to keep the database and view synchronized using a −? lens. Now,
suppose one of two scenarios happens:

7

• Mary Jones gets married and changes her name to Mary Smith.

• Mary Jones retires, and the school hires a replacement who, by coincidence,
shares her first name: Mary Smith.

In both cases, when the secretary updates her document, it will look as it does in
part c. As shown in part d, there are really two feasible alignments, corresponding
to whether the dotted edge should be present or not. In the first scenario above, the
edge should be present: we should align Mary with her former self, and reflect the
change as an update to her name (but keep her old salary). In contrast, in the second
scenario, the edge should not be present: we should not align the new Mary with any
of the teachers that used to teach at the school. Since only the old and new copies of
the secretary’s document are available to a lens, the lens cannot choose correctly. The
context under which the change was made is invisible to the lens, and it has no way
to distinguish between these two scenarios merely by observing what has changed.

Clearly, discovering alignment information is a tricky business. Additionally, many
lens frameworks treat such alignment information as a second-class citizen: it is not
passed, stored, or returned by the lens. Because of this, it is not possible for an outside
tool to provide hints about the alignment; the implementation of alignment discovery
is intermingled with the implementation of alignment usage and propagation inside
each lens’ definition; and alignment information cannot be internally communicated
between lens components. The conclusion we must draw is that designing a well-
behaved −? combinator involves rethinking some or all of the theoretical foundations
of lenses to address the representation, propagation, and use of alignment information.

1.3 Symmetry
Let us turn our attention to a second fundamental challenge in lens design: sym-
metry. The asymmetric lenses discussed above assume that one repository is a view
of the other. In the following, we will discuss two bidirectional scenarios, one that
highlights the need to relax this assumption, and one that identifies a useful feature
of asymmetric lenses that has long been thought incompatible with symmetry.

Continuing the example from 1.2, suppose the school secretary decided to begin
tracking which room each teacher uses. The two lower tables in Figure 1.5 shows
how the two repositories might look after this schema change. As before, the salary
information should be hidden from the secretary for privacy reasons; on the other
hand, in our new scenario the human resources department is not interested in room
assignments. Unfortunately, this slight modification puts our scenario firmly outside
the realm of problems that asymmetric, state-based lens tools can help with: neither
repository can be completely reconstructed just from the information available in the
other.

Since the problem is that neither repository contains all the information, one thing
that can be done is to design a third repository that does contain all the information.

8

Teacher name Salary Room
Sam Rickard 57,000 314
Jon Jacobs 50,000 108b
Mary Jones 65,000 109

Teacher name Salary
Sam Rickard 57,000
Jon Jacobs 50,000
Mary Jones 65,000

Teacher name Room
Sam Rickard 314
Jon Jacobs 108b
Mary Jones 109

π?1,2 π?1,3

Figure 1.5: A slightly more complicated synchronization scenario

One would then design two lenses with that third repository as a common source,
as shown in the remainder of Figure 1.5. The new repository sits at the top, and
contains teacher names, salaries, and room assignments all in one location. The two
repositories we are really interested in sit below, and are derived via two lenses. (We
introduce the notation πi1,...,in for the lens which projects out distinct fields i1, . . . , in of
a tuple. To be really precise, each omitted field would need an additional annotation
giving a value to return from the create operation, but these annotations are elided
to avoid clutter.)

Suppose the secretary updates the room assignments document. The process to
find a corresponding update for the salary document involves two lens operations:
first π?1,3.put to update the common source, then π?1,2.get to regenerate the salary
document from the common source.

This approach is workable, and is fairly comprehensive. However, it is a little
bit awkward in a few ways, the most notable of which is that we are now construct-
ing two lenses. Even in this simple example, we can see that the structure of the
lenses are very similar. All of the arguments which led people to prefer bidirectional
languages over pairs of unidirectional programs in the first place—uniformity, guar-
anteed correctness, maintainability, modularity, etc.—arise here against writing pairs
of bidirectional programs, too. It would be better to develop some theory which
models the two operations together, so that we can write a single program and de-
rive the two synchronization operations of interest. One could continue by designing
a “bi-bidirectional” language—where each term could be interpreted as two lenses
which are intended to be run back-to-back as in this example—but we choose instead
to reconsider the foundations of lens theory and design a framework of symmetric
bidirectional transformations that natively handles symmetric scenarios.

Let us address ourselves to what makes asymmetric lenses asymmetric in the first
place. Figure 1.6a shows the typical life-cycle of an asymmetric lens ` ∈ S

a↔ T ,
ignoring create for the moment. Drawing the types of the get and put operations this

9

s t

s′ t′

get

put

user modificationuser modification

(a) Asymmetric, state-based lenses

s t

s′ t′

get

put

(b) (Partial) isomorphisms

s t

s′ t′

get

put

(c) Constraint maintainers

Figure 1.6: Asymmetric lens life cycle, and some proposed symmetric variants

way highlights their asymmetry, and quickly suggests two ways of symmetrizing the
theory. Parts b and c illustrate these two ways, namely, removing the extra arc in
the type of put , or adding an extra arc to the type of get . Together with some appro-
priate roundtrip laws, the former are known as isomorphisms, and several languages
whose terms represent invertible functions in this way have been designed [10, 44].
They are especially useful as a formalism when the extra information available in the
repositories is unimportant. For example, when parsing text, the exact whitespace
used may not be available in the abstract syntax tree, but often a few simple rules
will produce very similar replacement whitespace; and moreover the whitespace has
aesthetic but not semantic significance. In the example given above, however, the
extra information is important, and cannot be replaced with default data: resetting
room assignments and salaries on each roundtrip would be very undesirable behavior.

The latter (again with some appropriate roundtrip laws) are known as constraint
maintainers [38], and do handle extra information quite explicitly. Constraint main-
tainers would be a good formalism to use when designing a bidirectional transforma-
tion for the school scenario above. They can express the connection between salaries
and room numbers—that is, no connection at all—well, and support a map-like combi-
nator to turn this single-record maintainer into one which handles lists of records like
the ones stored in the repositories. However, constraint maintainers do not support
sequential composition, the ability to run one maintainer after the other, and experi-
ence with asymmetric lenses shows that this is a very common tool when designing

10

Jan

pumpkin.jpg skateboard.jpg

May

pineapple.jpg

[costume,food]

[anthro]

[food]

Figure 1.7: A whimsical symmetric synchronization scenario

bidirectional programs. To see why, we will introduce a bidirectional transformation
which is most naturally modeled using composition.

The whimsical situation shown in Figure 1.7 involves a web server, which must
keep a file system storing pictures of cats synchronized with a user-modifiable web
page (modeled here as a list of cat pictures with descriptive tags).5 One natural
approach to implementing this transformation is pictured in Figure 1.8. First, we
separately implement two constraint maintainers: a flatten maintainer that flattens
trees to lists by extracting the leaves, and a relabel maintainer that describes the
connection between a single leaf in our original tree and a single list entry in our final
list. We would then like to run these maintainers back-to-back; that is, we would like
a sequential composition operator −;− with a typing rule like:

k ∈ A c↔ B ` ∈ B c↔ C

k; ` ∈ A c↔ C

Unfortunately, implementing this combinator is not possible: we must design the
(k; `).get ∈ A × C → C component using the components k.get , k.put , `.get , and
`.put , all of which require a B as input. It is certainly possible to build a constraint
maintainer which has the desired behavior wholesale, but this involves writing both
constraint maintenance functions and proving that they are consistent with each
other—the exact task we set out to avoid by designing a language. Alternately,
one can step a little bit outside the constraint maintainer framework by keeping a
copy of the “intermediate” repository around somewhere and running the constraint
maintainers in sequence on each update. Making this choice, however, leads one to
immediately ask how to model such maintainer chains and what behavioral guarantees
one can expect!

So an ideal model would capture the behavior of “sequencing”, retain a symmetric
presentation, and allow each repository to retain information not available in the
other.

5Pictures used with permission [4, 11, 53].

11

Jan

pumpkin.jpg skateboard.jpg

May

pineapple.jpg

pumpkin.jpg

skateboard.jpg

pineapple.jpg

[costume,food]

[anthro]

[food]

flatten relabel?

Figure 1.8: Adding an intermediate structure can improve modularity

1.4 Performance
Real-world synchronization tools inevitably address a third concern: performance.
Typical repositories are large objects; consequently, there can be significant time or
memory costs associated with processing the data in a repository or transmitting a
repository across a network. For existing file system synchronization tools like rsync,
DropBox, and Unison; collaborative document editing tools like Apache Wave and
Google Docs; and revision control systems like CVS, SVN, darcs, mercurial, and
git [5, 8, 12, 15, 18, 19, 42, 43, 45, 49], network speed is a significant bottleneck.
For these tools, where little computation on the repositories themselves is required,
the relatively simple delta compression technique, which involves noting what has
changed since a previous run of the tool, provides a serious network transmission
performance boost. For bidirectional transformations, where repositories must be
not just copied but transformed, computation time or memory usage may also be
concerns. Extending the use of delta compression to address processing speed and
memory requirements involves, in part, showing that the computations of interest
can be performed solely by inspecting the deltas—that is, without decompressing
and traversing the original repositories. Since it seems likely that a practical tool
will need to avoid incurring high resource usage, a theory that faithfully models a
successful tool should therefore model not just repository states but also repository
edits, edit transformations, and the connection between edits and repository states.

1.5 Syntax
One of the outstanding features of the body of asymmetric, state-based lens work
and its closest variants is the devotion to retaining a large collection of lenses and

12

lens combinators that have the appropriate types and behavior for the given lens
framework. This feature—which we will call a syntax—is well worth emulating, for
several reasons. The simplest stems from the variety of examples given in previous
sections. Even in seemingly simple scenarios, there is often endless variation. Instead
of designing a synchronization tool that addresses one of these scenarios, we set our
sights higher: we wish to design a synchronization-tool-making tool that makes it easy
to address any of the scenarios. Thus we want to find a collection of basic building
blocks and ways of combining those blocks that can be used together to customize
the bidirectional transformation for many different use cases.

Additionally, designing a syntax in parallel with the language semantics is a valu-
able cross-validation technique. On several occasions during the development of the
framework described in this document, we found a desirable transformation which
could not be implemented within the type or behavioral guarantees of our frame-
work. Each time this happens, one then has a valuable opportunity to reevaluate
both the lens framework and the transformation. A particularly good example of
this, which we will discuss in greater depth in Chapter 2, is the transformation which
duplicates information.6 Many lens frameworks rule this transformation illegal (in-
cluding ours), because supporting it involves relaxing the restriction that a single pass
of the synchronization tool produces a synchronized state. Whether one prioritizes
behavioral guarantees like single-pass synchronization or richer syntax like duplica-
tion lenses may be a matter of taste; but the choice would not be readily apparent
without attempting to design the syntax in parallel with the semantics.

Finally, syntax is a proving ground for the practicality of other features. The ulti-
mate goal of a lens theory is to be an integral part of a widely-used tool, and designing
a collection of instantiations is a critical first step on that path. A good lens frame-
work can have the potential to solve alignment, symmetry, or performance problems,
and attempting to design a syntax can quickly realize or dispel that potential.

Experience from the asymmetric, state-based lens work shows that supporting
the majority of synchronization scenarios requires only a handful of lenses. The
most basic lenses simply copy, insert, or delete data. Modular developments make
heavy use of sequential composition for running two lenses one after the other (as
discussed in §1.3). One also often wants operations on sums and products such as
parallel composition, projection, injection, and conditionals. Some support for lists
(especially a mapping operation) and other structured data (typically inductive types
with fold and unfold operations) rounds out a fairly complete set of operations for a
practical framework to support.

6For an example where such a transformation would be useful, imagine the process of turning
wiki markup into an HTML page that includes both a table of contents and a content body. One
might structure this as duplicating the markup, then extracting the section titles from one duplicate
and rendering the other.

13

1.6 Contributions
This document espouses a foundational effort to rebuild the lens formalism with
the above challenges in mind from the beginning. Many previous efforts to address
these challenges have begun with asymmetric, state-based lenses as a base and built
additional capabilities on top. Adding to the existing theory in this way is quite
useful, but a system which attempts to combine these additional features quickly
grows baroque. By starting from first principles, we have a unique opportunity to
address these concerns in the base theory in a new way. We focus on semantics
first (modeling the core behaviors that lenses must allow primitively) and let the
syntax (that is, what transformations are possible with the core building blocks) fall
subordinate. As we hoped, our commitment to this approach has resulted in an
elegant core lens theory which nevertheless has the ability to address each of the four
challenges discussed above.

Chapter 2 develops the machinery needed for a symmetric lens theory in isolation
from the issues of alignment and performance. The key observation is that we can
think of the two transformations in a lens as sharing some state that is independent of
the two repositories. We will show that all the usual lens combinators can be construed
as pairs of stateful transformations. However, there is a price to pay for symmetry:
though the usual transformations are available, they do not have all the same nice
properties one expects from the asymmetric world; for example, lens composition is
not directly associative. As a result, the machinery developed includes a notion of
lens equivalence; most properties (including associativity of composition) then hold,
but only up to lens equivalence.

In Chapter 3, these observations about how to achieve symmetry will be used as
the basis for a system that tackles the alignment and performance problems (while re-
taining symmetry). Because the exact nature of alignment information is so different
between data structures—and even between different transformations on the same
structure—the framework proposed in this chapter will treat such information as al-
most completely abstract. It then becomes the responsibility of each lens definition
to specify what information it expects to receive. We then go on to again implement
many of the usual lens combinators, and show that many of them are capable of
disambiguating between edits that are traditionally the source of serious alignment
headaches. Additionally, we observe that the natural way of implementing these
lenses results in a lens which operates on relatively small descriptions of what has
changed rather than on large repositories, which addresses some of the performance
issues raised above.

We discuss a prototype implementation of the edit lens theory in Chapter 4, which
includes a Haskell library together with a small demo program that uses the library to
synchronize two databases in a simple, text-based file format. This gives us a vehicle
to validate the completeness of the edit lens theory. We will find that instantiating
our theory to a particular data model—in our case, we will follow tradition and use
strings as that model—has challenges of its own involving parsing user actions. We

14

will give some preliminary thoughts on this challenge, and show that an elegant core
library can be developed independent of parsing.

We will explore related bidirectional frameworks in Chapter 5, with a special
focus on work which addresses alignment issues. Edit lenses occupy a unique niche
in the design space: most other approaches are either asymmetric or do not address
the machinery needed to provide key symmetric combinators, and even among the
asymmetric approaches it is uncommon to have an elegant theory that is nevertheless
capable of addressing performance concerns.

Finally, Chapter 6 summarizes the contributions made by our work. We will
review the techniques used to address each of the four challenges raised here, then go
on to suggest a collection of additional challenges which could be the basis for future
research: multi-repository lenses, a syntax based on linear logic, further algebraic
study, application of the theory, and several other miscellaneous extensions. There
are many opportunities for an extended theory of lenses; nevertheless, our work is
already a step in a new and important direction.

1.7 Notation and Conventions
This section is intended to be a reference for the most common notation used in this
dissertation. All non-standard notation will also be introduced and explained inline
before its first use, so this section can safely be skimmed or even completely skipped;
nevertheless it might be useful for the reader who has forgotten what some particular
piece of notation means and would not like to pore through the entire document to
find its first use.

Naming When naming a set, we will make the choices that follow (perhaps append-
ing a subscript or prime) unless there is a compelling local reason to choose another
name:

• S and V for the source and view of asymmetric lenses,

• V , W , X, Y , Z for the kinds of values synchronized by symmetric lenses,

• and C for complement sets.

If we need a set of edits for a named set, its default name is formed by prepending ∂;
for example, ∂X is the set of edits to values of type X. Set members will be named
with lower case letters that match the set name; for example, x ∈ X or s ∈ S. The
lower case version of ∂ is d; for example, dx ∈ ∂X. Lenses are named k, `, m, and n.

Lists We use X? to denote the set of lists with elements drawn from X. A length n
list with xi in the ith position is written 〈x1, . . . , xn〉. A notable special case of this is
〈〉, the empty list. We will also use x:t to denote the list whose first element is x and

15

Notation Meaning
A→ B normal functions from A to B
A ⇀ B partial functions from A to B
S

a↔ V asymmetric, state-based lenses connecting S and V
X

c↔ Y constraint maintainers connecting X and Y
X ↔ Y (Chapter 2) symmetric, state-based lenses connecting X and Y
X ↔ Y (Chapter 3) symmetric, edit-based lenses connecting X and Y

Table 1.2: Function and lens types

whose remaining elements are in t. When there is only one list involved in the nearby
discussion, we will use n to denote the length of that list; otherwise, the notation |x|
gives the length of list x. To avoid clutter, we will write singleton lists 〈x〉 simply as
x when it is clear from context both that x is a list element and that we expect a list,
not an element. If there is a list 〈x1, . . . , xn〉 (with exactly the subscripts 1 through
n), we will also denote this list simply by x with no subscript. We will write x[i 7→ v]
for the list x with index i replaced by element v, that is,

x[i 7→ v] = 〈x1, . . . , xi−1, v, xi+1, . . . , xn〉 .

We will also need to deal with the set of infinite lists, which we denote Xω when
the elements are drawn from X. The infinite list with xi in the ith position is written
〈x1, . . .〉, and the infinite list where there is a single element x in every position is
written xω. As with finite lists, x:t denotes the infinite list whose first element is x
and whose remaining elements are in t.

Miscellaneous notation We will use CamelCasedSmallCaps for the names
of behavioral laws; a monospaced font for data; and a sans serif font for code and
globally-scoped defined values. We name the canonical single-element set and its
single element by the definition Unit = {()}. When defining and using lenses and
similar structures, we will use record notation; for example, `.get is the get component
of lens `. We deal with many variations on functions in this document; Table 1.2
summarizes them.

16

Chapter 2

Symmetric Lenses

In this chapter, we address the problem of symmetry without regard for alignment
or performance issues. We will begin from asymmetric, state-based lenses and build
a theory of symmetric, state-based lenses from them, and show how to recover the
rich asymmetric syntax in symmetric form. In particular, we will show how to im-
plement lens composition—the process of running two bidirectional transformations,
one after the other—long thought to be an operation fundamentally in conflict with
symmetric bidirectional presentations. In order to support this operation with the
usual algebraic properties like associativity, we will need to develop a theory of be-
havioral equivalence. Unlike asymmetric theories, where ordinary equality suffices,
our symmetric lenses have hidden state whose importance should be discounted when
checking whether two lenses compute the same transformation. We will also discuss
a collection of bidirectional operations which correspond to common transformations
of container-based data types as well as inductive data types built up from products,
sums, and type-level recursion. Finally, we will give an account of the connection be-
tween asymmetric and symmetric lenses: asymmetric lenses can be lifted to symmetric
lenses, and symmetric lenses can be represented as a span of asymmetric lenses.

2.1 Fundamental Definitions
Complements The key step toward symmetric lenses is the notion of complements.
The idea dates back to a famous paper in the database literature on the view update
problem [6] and was adapted to lenses in [7] (and, for a slightly different defini-
tion, [37]), and it is quite simple. If we think of the get component of a lens as a
sort of projection function, then we can find another projection from X into some
set C that keeps all the information discarded by get . Equivalently, we can think of
get as returning two results—an element of Y and an element of C—that together
contain all the information needed to reconstitute the original element of X. Now
the put function doesn’t need a whole x ∈ X to recombine with some updated y ∈ Y ;
it can just take the complement c ∈ C generated from x by the get , since this will

17

contain all the information that is missing from y. Moreover, instead of a separate
create function, we can simply pick a distinguished element missing ∈ C and define
create(y) as put(y,missing).

Formally, an asymmetric lens with complementmapping betweenX and Y consists
of a set C, a distinguished element missing ∈ C, and two functions

get ∈ X → Y × C
put ∈ Y × C → X

obeying the following laws for every x ∈ X, y ∈ Y , and c ∈ C:1

get x = (y, c)

put (y, c) = x
(GetPut)

get (put (y, c)) = (b′, c′)

b′ = y
(PutGet)

Note that the type is just “lens from X to Y ”: the set C is an internal component, not
part of the externally visible type. In symbols, Lens(X, Y) = ∃C. {missing : C, get :
X → Y × C, put : Y × C → X}.

Symmetric Lenses Now we can symmetrize. First, instead of having only get
return a complement, we make put return a complement too, and we take this com-
plement as a second argument to get .

get ∈ X × CY → Y × CX
put ∈ Y × CX → X × CY

Intuitively, CX is the “information from X that is discarded by get”, and CY is the
“information from Y that is discarded by put”. Next we observe that we can, without
loss of generality, use the same set C as the complement in both directions. (This
“tweak” is actually critical: it is what allows us to define composition of symmetric
lenses.)

get ∈ X × C → Y × C
put ∈ Y × C → X × C

We can think of the combined complement C as CX ×CY—that is, each complement
contains some “private information from X” and some “private information from Y ”;
by convention, the get function reads the CY part and writes the CX part, while

1We can convert back and forth between the two presentations; in particular, if (get , put , create)
are the components of a traditional lens, then we define a canonical complement by C = {f ∈ Y→X |
∀y. get(f(y)) = y}. We then define the components missing ′, get ′, and put ′ of an asymmetric lens
with complement as missing ′ = create and get ′(x) = (get(x), λy.put(y, x)) and put ′(y, f) = f(y).
Going the other way, if (get , put ,missing) are the components of an asymmetric lens with comple-
ment, we can define a traditional lens by get ′(x) = fst(get(x)) and put ′(y, x) = put(y, snd(get(x)))
and create(y) = put(y,missing).

18

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

dates only here countries only here

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

add an extra structure (the "complement") that
stores the "private information" from both sides

(a) Initial repositories (b) Initial complement

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

each transformation propagates
updates both to the target artifact

and to the complement...

...using the complement
to fill in information not
available in the source

(c) One repository edited (d) Propagating the edit

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Austria

Monteverdi,
unknown

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Austria

Monteverdi, unknown

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

(e) Second repository is edited (f) This change is propagated

Figure 2.1: Behavior of a symmetric lens

the put reads the CX part and writes the CY part. Lastly, now that everything is
symmetric, the get / put distinction is not helpful, so we rename the functions to
putr and putl . This brings us to our core definition.

2.1.1 Definition [Symmetric lens]: A lens ` from X to Y (written ` ∈ X ↔ Y)
has three parts: a set of complements C, a distinguished element missing ∈ C, and
two functions

putr ∈ X × C → Y × C
putl ∈ Y × C → X × C

satisfying the following round-tripping laws:

putr(x, c) = (y, c′)

putl(y, c′) = (x, c′)
(PutRL)

putl(y, c) = (x, c′)

putr(x, c′) = (y, c′)
(PutLR)

19

When several lenses are under discussion, we use record notation to identify their
parts, writing `.C for the complement set of `, etc.

The force of the PutRL and PutLR laws is to establish some “consistent” or
“steady-state” triples (x, y, c), for which puts of x from the left or y from the right
will have no effect—that is, will not change the complement. The conclusion of each
rule has the same variable c′ on both sides of the equation to reflect this. We will use
the equation putr(x, c) = (y, c) to characterize the steady states. In general, a put of a
new x′ from the left entails finding a y′ and a c′ that restore consistency. Additionally,
we often wish this process to involve the complement c from the previous steady state;
as a result, it can be delicate to choose a good value of missing . This value can often
be chosen compositionally; each of our primitive lenses and lens combinators specify
one good choice for missing .

Examples Figure 2.1 illustrates the use of a symmetric lens. The structures in this
example are lists of textual records describing composers. The partially synchronized
records (a) have a name and two dates on the left and a name and a country on
the right. The complement (b) contains all the information that is discarded by
both puts—all the dates from the left-hand structure and all the countries from the
right-hand structure. (It can be viewed as a pair of lists of strings, or equivalently
as a list of pairs of strings; the way we build list lenses later actually corresponds to
the latter.) If we add a new record to the left hand structure (c) and use the putr
operation to propagate it through the lens (d), we copy the shared information (the
new name) directly from left to right, store the private information (the new dates)
in the complement, and use a default string to fill in both the private information
on the right and the corresponding right-hand part of the complement. If we now
update the right-hand structure to fill in the missing information and correct a typo
in one of the other names (e), then a putl operation will propagate the edited country
to the complement, propagate the edited name to the other structure, and use the
complement to restore the dates for all three composers.

Viewed more abstractly, the connection between the information about a single
composer in the two tables is a lens from X×Y to Y ×Z, with complement X×Z—
let’s call this lens e. Its putr component is given (x, y) as input and has (x′, z) in its
complement; it constructs a new complement by replacing x′ by x to form (x, z), and
it constructs its output by pairing the y from its input and the z from its complement
to form (y, z). The putl component does the opposite, replacing the z part of the
complement and retrieving the x part. Then the top-level lens in Figure 2.1—let’s
call it e?—abstractly has type (X × Y)? ↔ (Y × Z)? and can be thought of as the
“lifting” of e from elements to lists.

There are several plausible implementations of e?, with slightly different behaviors
when list elements are added and removed—i.e., when the input and complement
arguments to putr or putl are lists of different lengths. One possibility is to take
e?.C = (e.C)? and maintain the invariant that the complement list in the output

20

is the same length as the input list. When the lists in the input have different
lengths, we can restore the invariant by either truncating the complement list or
padding it with e.missing . For example, taking X = {a, b, c, . . .}, Y = {1, 2, 3, . . .},
Z = {A,B,C, . . .}, and e.missing = (m,M), and writing 〈a, b, c〉 for the sequence
with the three elements a, b, and c, we could have:

putr(〈(a, 1)〉 , 〈(p, P), (q,Q)〉)
= putr(〈(a, 1)〉 , 〈(p, P)〉) (truncating)
= (〈(1, P)〉 , 〈(a, P)〉)

putr(〈(a, 1), (b, 2)〉 , 〈(a, P)〉)
= putr(〈(a, 1), (b, 2)〉 , 〈(a, P), (m,M)〉) (padding)
= (〈(1, P), (2,M)〉 , 〈(a, P), (b,M)〉)

Notice that, after the first putr , the information in the second element of the com-
plement list (q,Q) is lost. The second putr creates a brand new second element for
the list, so the value Q is gone forever; what’s left is the default value M .

Another possibility—arguably better behaved—is to keep an infinite list of com-
plements. Whenever we do a put , we use (and update) a prefix of the complement
list of the same length as the current value being put , but we keep the infinite tail so
that, later, we have values to use when the list being put is longer.

putr(〈(a, 1)〉 , 〈(p, P), (q,Q), (m,M), (m,M), . . .〉)
= (〈(1, P)〉 , 〈(a, P), (q,Q), (m,M), (m,M), . . .〉)

putr(〈(a, 1), (b, 2)〉 , 〈(a, P), (q,Q), (m,M), (m,M), . . .〉)
= (〈(1, P), (2, Q)〉 , 〈(a, P), (b,Q), (m,M), . . .〉)

We call the first form the forgetful list mapping lens and the second the retentive
list mapping lens. We will see, later, that the difference between these two precisely
boils down to a difference in the behavior of the lens-summing operator ⊕ in the
specification e? ' idUnit ⊕ (e⊗ e?) of the list mapping lens.

Figure 2.2 illustrates another use of symmetric lenses. The structures in this ex-
ample are lists of categorized data; each name on the left is either a composer (tagged
inl) or an author (tagged inr), and each name on the right is either a composer or
an actor. The lens under consideration will synchronize just the composers between
the two lists, leaving the authors untouched on the left and the actors untouched on
the right. The synchronized state (a) shows a complement with two lists, each with
holes for the composers. If we re-order the right-hand structure (b), the change in
order will be reflected on the left by swapping the two composers. Adding another
composer on the left (c) involves adding a new hole to each complement; on the left,
the location of the hole is determined by the new list, and on the right it simply shows
up at the end. Similarly, if we remove a composer (d), the final hole on the other side
disappears.

21

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

inr(Clooney)
inl(Schumann)
inr(Hanks)

inl(Beethoven)
inr(Ford)

inl(?)
inr(Kerouac)
inr(Tolstoy)

inl(?)

inr(Clooney)
inl(?)

inr(Hanks)
inl(?)

inr(Ford)

inl(Beethoven)
inr(Kerouac)
inr(Tolstoy)
inl(Schumann)

inl(Beethoven)
inr(Clooney)
inr(Ford)
inr(Hanks)

inl(Schumann)

inl(?)
inr(Kerouac)
inr(Tolstoy)

inl(?)

inl(?)
inr(Clooney)
inr(Ford)
inr(Hanks)

inl(?)

(a) Initial repositories (b) Alphabetizing the right

inl(Beethoven)
inr(Kerouac)
inl(Chopin)
inr(Tolstoy)
inl(Schumann)

inl(Beethoven)
inr(Clooney)
inr(Ford)
inr(Hanks)
inl(Chopin)
inl(Schumann)

inl(?)
inr(Kerouac)

inl(?)
inr(Tolstoy)

inl(?)

inl(?)
inr(Clooney)
inr(Ford)
inr(Hanks)
inl(?)
inl(?)

inr(Kerouac)
inl(Chopin)
inr(Tolstoy)
inl(Schumann)

inl(Chopin)
inr(Clooney)
inr(Ford)
inr(Hanks)

inl(Schumann)

inr(Kerouac)
inl(?)

inr(Tolstoy)
inl(?)

inl(?)
inr(Clooney)
inr(Ford)
inr(Hanks)

inl(?)

(c) Inserting Chopin on the left (d) Deleting Beethoven from the left

Figure 2.2: Synchronizing lists of sums

Abstractly, to achieve this behavior we need to define a lens comp between (X+Y)?

and (X+Z)?. To do this, it is convenient to first define a lens that connects (X+Y)?

and X? × Y ?; call this lens partition. The complement of the partition is a list of
booleans telling whether the corresponding element of the left list is an X or a Y .
The putr function is fairly simple: we separate the (X+Y) list into X and Y lists by
checking the tag of each element, and set the complement to exactly match the tags.
For example:

putr(〈inl a, inl b, inr 1〉 , c) = ((〈a, b〉 , 〈1〉), 〈false, false, true〉)
putr(〈inl a, inr 1, inl b〉 , c) = ((〈a, b〉 , 〈1〉), 〈false, true, false〉)

These examples demonstrate that putr ignores the complement entirely, fabricating
a completely new one from its input. The putl function, on the other hand, relies
entirely on the complement for its ordering information. When there are extra entries
(not accounted for by the complement), it adds them at the end. Consider taking the
output of the second putr above and adding c to the X list and 2 to the Y list:

putl((〈a, b, c〉 , 〈1, 2〉), 〈false, true, false〉) =
(〈inl a, inr 1, inl b, inl c, inr 2〉 ,
〈false, true, false, false, true〉)

The putl fills in as much of the beginning of the list as it can, using the complement to
indicate whether to draw elements from X? or from Y ?. (How the remaining X and
Y elements are interleaved is a free choice, not specified by the lens laws, since this
case only arises when we are not in a round-tripping situation. The strategy shown

22

here, where all new X entries precede all new Y entries, is just one possibility.)
Given partition, we can obtain comp by composing three lenses in sequence: from

(X + Y)? we get to X? × Y ? using partition, then to X? × Z? using a variant of the
lens e discussed above, and finally to (X + Z)? using a “backwards” partition.

Put-Put Laws Studies of asymmetric lenses sometimes consider a fourth behav-
ioral law not discussed above:

put(v′, put(v, s)) = put(v′, s) (PutPut)
This law is somewhat controversial: some reasonable get operations—such as the
mapping operation that applies a transformation to each element of a list—cannot be
paired with a put that satisfies this law, but relying on this law allows one to optimize
chains of successive puts and strongly constrains the operation of put , preventing
some clearly unsatisfactory put implementations. We will explore some of the ways
one might generalize of this law to the realm of symmetric lenses below.

2.1.2 Lemma: The following “put the same thing twice” laws follow from the ones
we have:

putr(x, c) = (y, c′)

putr(x, c′) = (y, c′)
(PutR2)

putl(y, c) = (x, c′)

putl(y, c′) = (x, c′)
(PutL2)

We could consider generalizing these to say that putting an arbitrary pair of
values, one after the other, is the same as doing just the second put into the first
complement:

putr(x, c) = (_ , c′)

putr(x′, c′) = putr(x′, c)
(Strong-PutPutR∗)

putl(y, c) = (_ , c′)

putl(y′, c′) = putl(y′, c)
(Strong-PutPutL∗)

But these laws are very strong—probably too strong to be useful (the ∗ annotations
in their names are a reminder that we do not adopt them). The reason is that they
demand that the effect of every update is completely undoable—not only the effect
on the other repository, but also the effect of the first update on the complement
must be completely forgotten if we make a second update. In particular, neither of
the list-mapping lenses in §2.5 satisfy these laws.

A weaker version of these laws, constraining the output but not the effect on the
complement, may be more interesting:

putr(x, c) = (_ , c′)
putr(x′, c) = (y,_)
putr(x′, c′) = (y′,_)

y = y′
(Weak-PutPutR*)

23

putl(y, c) = (_ , c′)
putl(y′, c) = (x,_)
putl(y′, c′) = (x′,_)

x = x′
(Weak-PutPutL*)

We do not choose to adopt these laws here because they are not satisfied by the
“forgetful” variants of our summing and list mapping lenses. However, the forgetful
variants are mainly interesting because of their close connection to analogous asym-
metric lenses; in practice, the “retentive” variants seem more useful, and these do
satisfy the weak PutPut laws.

Alignment The present chapter does not deal with the important goal of alignment;
we consider only the simple case of lenses that work “positionally”. For example, the
lens e? in the example will always use e to propagate changes between the first element
of x and the first element of y, between the second element of x and the second of
y, and so on. This amounts to assuming that the lists are edited either by editing
individual elements in place or by adding or deleting elements at the end of the list; if
an actual edit inserts an element at the head of one of the lists, positional alignment
will produce surprising (and probably distressing) results. We will incorporate a richer
notion of alignment in Chapter 3.

2.2 Equivalence
Since each lens carries its own complement—and since this need not be the same
as the complement of another lens with the same domain and codomain—we now
need to define what it means for two lenses to be indistinguishable, in the sense that
no user could ever tell the difference between them by observing just the X and Y
parts of their outputs. We will use this relation pervasively in what follows: indeed,
most of the laws we would like our constructions to validate—even things as basic as
associativity of composition—will not hold “on the nose”, but only up to equivalence.

2.2.1 Definition [R-similarity]: Given sets X, Y,Cf , Cg and a relation R ⊂ Cf ×
Cg, we say that functions f ∈ X × Cf → Y × Cf and g ∈ X × Cg → Y × Cg are
R-similar, written f ∼R g, if they take inputs with R-related complements to equal
outputs with R-related complements:

(cf , cg) ∈ R
f(x, cf) = (yf , c

′
f)

g(x, cg) = (yg, c
′
g)

yf = yg ∧ (c′f , c
′
g) ∈ R

2.2.2 Definition [Lens equivalence]: Two lenses k and ` are equivalent (written
k ≡ `) if there is a relation R ⊂ k.C × `.C on their complement sets with

24

1. (k.missing , `.missing) ∈ R

2. k.putr ∼R `.putr

3. k.putl ∼R `.putl .

We writeX ⇐⇒ Y for the set of equivalence classes of lenses fromX to Y . When ` is a
lens, we write [`] for the equivalence class of ` (that is, ` ∈ X ↔ Y iff [`] ∈ X ⇐⇒ Y).
Where no confusion results, we abuse notation and drop these brackets, using ` for
both a lens and its equivalence class.

2.2.3 Lemma: Lens equivalence is an equivalence relation.

Proof: Reflexivity and symmetry are obvious. We briefly sketch transitivity.
Suppose k ≡ ` (as witnessed by Rk`) and ` ≡ m (as witnessed by R`m). We show

that the relation

Rkm = Rk` ◦R`m = {(ck, cm) | ∃c`. ck Rk` c` ∧ c` R`m cm}

witnesses the equivalence k ≡ m. It is clear that

(k.missing ,m.missing) ∈ Rkm,

since we can choose c` = `.missing . Next, we show that k.putr ∼Rkm
m.putr . We

may assume three things:

(ck, cm) ∈ Rkm

k.putr(x, ck) = (yk, c
′
k)

m.putr(x, cm) = (ym, c
′
m)

Since (ck, cm) ∈ Rkm, we can choose c` such that (ck, c`) ∈ Rk` and (c`, cm) ∈ R`m.
Choosing (y`, c

′
`) = `.putr(x, c`), we then conclude that yk = y` and (c′k, c

′
`) ∈ Rk`,

since k.putr ∼Rk`
`.putr . Similarly, we can conclude that y` = ym and (c′`, c

′
m) ∈ R`m

because `.putr ∼R`m
m.putr . Thus yk = ym and because of the existence of c′`, we

know (c′k, c
′
m) ∈ Rkm. But these are exactly the two facts we need to conclude that

k.putr ∼Rkm
m.putr . A similar argument shows that k.putl ∼Rkm

m.putl , and hence
that k ≡ m. �

2.2.4 Definition [Put object]: Given a lens ` ∈ X ↔ Y , define a put object for `
to be a member of X + Y . Define a function apply taking a lens, an element of that

25

lens’ complement set, and a list of put objects as follows (using ML-like syntax):

apply(`, c, (inl x):puts) = let (y, c′) = `.putr(x, c) in

(inr y):apply(`, c′, puts)

apply(`, c, (inr y):puts) = let (x, c′) = `.putl(y, c) in

(inl x):apply(`, c′, puts)

apply(`, c, 〈〉) = 〈〉

2.2.5 Definition [Observational equivalence]: Lenses k, ` ∈ X ↔ Y are obser-
vationally equivalent (written k ≈ `) if, for every sequence of put objects P ∈ (X+Y)?

we have
apply(k, k.missing , P) = apply(`, `.missing , P).

2.2.6 Theorem [Equivalence of equivalence]: k ≈ ` iff k ≡ `.

Proof: (⇐=) Suppose that k ≡ ` via relation R. For all sequences of put objects P ,
and for elements c ∈ k.C and d ∈ k.C such that (c, d) ∈ R, we have apply(k, c, P) =
apply(`, d, P). This follows by induction on the length of P from the definition of
apply . Thus, k ≈ ` follows by specialization to c = k.missing and d = `.missing .

(=⇒) Now suppose k ≈ `. To show k ≡ `, define R ⊆ k.C × `.C by

R = {(c, d) | apply(k, c, P) = apply(`, d, P) for all P}.

By assumption, we have (k.missing , `.missing) ∈ R.
Now suppose that (c, d) ∈ R and that k.putr(x, c) = (y, c′) and `.putr(x, d) =

(y′, d′). Applying the assumption (c, d) ∈ R to the length-one sequence P = 〈inl (x)〉
shows y = y′. To show (c′, d′) ∈ R let P be an arbitrary sequence of put ob-
jects and define P ′ = inl (x):P . The assumption (c, d) ∈ R gives apply(k, c, P ′) =
apply(`, d, P ′), hence in particular apply(k, c′, P) = apply(`, d′, P), thus (c′, d′) ∈ R.
We have thus shown that k.putr ∼R `.putr . Analogously, we show that k.putl ∼R
`.putl , and it follows that k ≡ ` via relation R. �

2.3 Basic Constructions
With the basic definitions in hand, we can start defining lenses. We begin in this
section with several relatively simple constructions.

26

2.3.1 Definition [Identity lens]: Let Unit be a distinguished singleton set and ()
its only element.

idX ∈ X ↔ X

C = Unit
missing = ()
putr(x, ()) = (x, ())
putl(x, ()) = (x, ())

To check that this definition is well formed, we must show that the components
defined in the lower box satisfy the round-trip laws implied by the upper box. The
proof is a straightforward calculation.

2.3.2 Definition [Lens composition]:

k ∈ X ↔ Y ` ∈ Y ↔ Z

k; ` ∈ X ↔ Z

C = k.C × `.C
missing = (k.missing , `.missing)
putr(x, (ck, c`)) = let (y, c′k) = k.putr(x, ck) in

let (z, c′`) = `.putr(y, c`) in
(z, (c′k, c

′
`))

putl(z, (ck, c`)) = let (y, c′`) = `.putl(z, c`) in
let (x, c′k) = k.putl(y, ck) in
(x, (c′k, c

′
`))

Proof of well-formedness: We show that the lens satisfies PutRL; the proof that
it satisfies PutLR is entirely symmetric. Assume that k and ` each satisfy PutRL,
and that (k; `).putr(x, (ck, c`)) = (z, (c′k, c

′
`)). From the definition of (k; `).putr , we can

conclude that there is a y such that k.putr(x, ck) = (y, c′k) and `.putr(y, c`) = (z, c′`).

(k; `).putl(z, (c′k, c
′
`)) = let (y′, c′′`) = `.putl(z, c′`) in (2.3.1)

let (x′, c′′k) = k.putl(y′, c′k) in

(x′, (c′′k, c
′′
`))

= let (x′, c′′k) = k.putl(y, c′k) in (2.3.2)
(x′, (c′′k, c

′
`))

= (x, (c′k, c
′
`)) (2.3.3)

27

Equation 2.3.1 comes from expanding the definition of (k; `).putl ; equation 2.3.2 from
applying PutRL to ` and substituting let-bound variables; and equation 2.3.3 from
applying PutRL to k and again substituting let-bound variables. Moreover, this last
equation is exactly what is demanded from applying PutRL to k; `, so we are done.
�

This definition specifies what it means to compose two lenses. To show that
this definition lifts to equivalence classes of lenses, we need to check the following
congruence property.

2.3.3 Lemma [Composition preserves equivalence]: If k ≡ k′ and ` ≡ `′, then
k; ` ≡ k′; `′.

2.3.4 Definition: The following function on relations is convenient here:

R1 ×R2 = {((c1, c2), (c′1, c
′
2)) | (c1, c

′
1) ∈ R1 ∧ (c2, c

′
2) ∈ R2}

Proof of 2.3.3: If the simulation Rk witnesses k ≡ k′ and R` witnesses ` ≡ `′ then
it is straightforward to verify that R = Rk×R` witnesses k; ` ≡ k′; `′. There are three
things to show.

1. We wish to show the first line:

(k; `).missing R (k′; `′).missing

⇐⇒ (k.missing , `.missing) R (k′.missing , `′.missing)

⇐⇒ k.missing Rk k
′.missing ∧ `.missing R` `

′.missing

But the final line is certainly true, since Rk and R` are simulation relations.

2. We must show that (k; `).putr ∼R (k′; `′).putr . So take ck, c`, ck′ , c`′ such that
(ck, c`) R (ck′ , c`′) and choose an input x. Define the following:

(y, c′k) = k.putr(x, ck)

(z, c′`) = `.putr(y, c`)

(y′, c′k′) = k′.putr(x, ck′)

(z′, c′`′) = `′.putr(y′, c`′)

We can then compute:

(k; `).putr(x, (ck, c`)) = (z, (c′k, c
′
`))

(k′; `′).putr(x, (ck′ , c`′)) = (z′, (c′k′ , c
′
`′))

We need to show that z = z′ and that (c′k, c
′
`) R (c′k′ , c

′
`′). Since ck Rk ck′ , we

can conclude that y = y′ and c′k Rk c
′
k′ ; similarly, since c` R` c`′ and y = y′,

28

we know that z = z′ (discharging one of our two proof burdens) and c′` R` c
′
`′ .

Combining the above facts, we find that (c′k, c
′
`) R (c′k′ , c

′
`′) by definition of R

(discharging the other proof burden).

3. The proof that (k; `).putl ∼R (k′; `′).putl is similar to the putr case. �

2.3.5 Lemma [Associativity of composition]:

j; (k; `) ≡ (j; k); `

(The equivalence is crucial here: j; (k; `) and (j; k); ` are not the same lens because
their complements are structured differently.)

Proof: We define a witnessing simulation relation R by

R= {((c1, (c2, c3)), ((c1, c2), c3)) | c1 ∈ j.C, c2 ∈ k.C, c3 ∈ `.C}.

The verification is then straightforward. �

2.3.6 Lemma [Identity arrows]: The identity lens is a left and right identity for
composition:

idX ; ` ≡ `; idY ≡ `

Proof: For left identity we use the simulation relation R given by ((), c) R c when-
ever c ∈ `.C. The verification is direct.

The proof of the right-identity law `; id ≡ ` is analogous. �

Thus symmetric lenses form a category, lens, with sets as objects and equivalence
classes of lenses as arrows. The identity arrow for a set X is [idX]. Composition is
[k]; [`] = [k; `].

2.3.7 Proposition [Bijective lenses]: Every bijective function gives rise to a lens:

f ∈ X → Y f bijective
bijf ∈ X ↔ Y

C = Unit
missing = ()
putr(x, ()) = (f(x), ())
putl(y, ()) = (f−1(y), ())

(If we were implementing a bidirectional language, we might not want to expose bij in
its syntax, since we would then need to offer programmers some notation for writing
down bijections in such a way that we can verify that they are bijections and derive

29

their inverses. However, even if it doesn’t appear in the surface syntax, we will see
several places where bij is useful in talking about the algebraic theory of symmetric
lenses.)

Proof of well-formedness: We verify that the PutRL law holds for bijection
lenses; the proof that PutLR holds is symmetric. Observe that bijf .putr(x, ()) =
(f(x), ()). We can therefore compute that bijf .putl(f(x), ()) = (f−1(f(x)), ()) =
(x, ()). Thus, after a round-trip, we return to the same x we started from—and the
same complement, (), validating the law. �

In fact, any stateless lens is an instance of a bijection lens:

2.3.8 Lemma: If ` ∈ X ↔ Y and h ∈ `.C → Unit is a bijection, then there exists a
bijection f ∈ X → Y such that ` ≡ bijf .

Proof: We define:
f(x) = fst(`.putr(x, h−1(())))

We must show that f is bijective and that bijf ≡ `. For the former, we exhibit its
inverse in g:

g(y) = fst(`.putl(y, h−1(())))

The round-trip law PutRL guarantees that g(f(x)) = x, and the round-trip law
PutLR guarantees that f(g(y)) = y.

To show the latter, we argue that h witnesses the equivalence. Clearly

h(bijf .missing) = `.missing

because all elements of `.C are equal (and hence (bijf .missing , `.missing) ∈ h). The
definition of f makes it clear that bijf .putr ∼h `.putr ; similarly, the definition of f ’s
inverse g makes it clear that bijf .putl ∼h `.putl . �

2.3.9 Corollary: If `.C is a singleton set {c} and fst(`.putr(x, c)) = x for all x, then
` ≡ id .

This transformation (like several others we will see) respects much of the structure
available in our category. Formally, bij is a functor. Recall that a covariant (respec-
tively, contravariant) functor between categories C and D is a pair of maps—one from
objects of C to objects of D and the other from arrows of C to arrows of D—that
preserve typing, identities, and composition:

• The image of any arrow f : X → Y in C has the type F (f) : F (X) → F (Y)
(respectively, F (f) : F (Y)→ F (X)) in D.

• For every object X in C, we have F (idX) = idF (X) in D.

30

• If f ; g = h in C, then F (f);F (g) = F (h) (respectively, F (g);F (f) = F (h)) in
D.

Covariant functors are simply called functors. When it can be inferred from the arrow
mapping, the object mapping is often elided.

2.3.10 Lemma [Embedding bijections]: The bij operator forms a functor from
the category iso, whose objects are sets and whose arrows are isomorphic functions,
to lens—that is, bijidX

= idX and bijf ; bijg = bijf ;g.

Proof: Showing that bijidX
= idX is a straightforward application of Corollary 2.3.9.

Now consider bijf ; bijg. Since its complement is a singleton set, Lemma 2.3.8 tells us
that bijf ; bijg ≡ bijh, where

h(x) = fst((bijf ; bijg).putr(x, ((), ()))),

which can be reduced to:
h(x) = g(f(x))

Thus bijf ; bijg ≡ bijf ;g as desired. �

Since functors preserve isomorphisms it follows that bijective lenses are isomor-
phisms in the category of lenses. However, not every isomorphism in lens is of that
form. This is because a bijective lens displays no dependency on the complement
at all, whereas an isomorphism in the category of lenses still allows for some limited
interaction with the complement as in the following counterexample.

Define the set Trit = {−1, 0, 1} and the function f ∈ Trit × Trit → Trit which
returns its arguments if they are equal and the third possible value if they are not:

c x f(c, x)
−1 −1 −1
−1 0 1
−1 1 0

0 −1 1
0 0 0
0 1 −1
1 −1 0
1 0 −1
1 1 1

For any particular c, the partial application f(c) is a bijection and an involution.
Thus, we can define the following lens, which is its own inverse but is not equivalent
to any bijective lens:

31

strange ∈ Trit ↔ Trit

C = Unit + Trit
missing = inl ()
putr(x, inl ()) = (x, inr x)
putr(x, inr c) = (f(c, x), inr c)
putl(x, inl ()) = (x, inr x)
putl(x, inr c) = (f(c, x), inr c)

We can show, however, that the putr and putl functions of any invertible lens
induce a bijection between the two repositories for any pair of reachable complements.
More precisely:

2.3.11 Lemma: Suppose we have lenses k ∈ X ↔ Y and ` ∈ Y ↔ X such that
k; ` ≡ idX and `; k ≡ idY . Then there is a relation R ⊂ k.C × `.C satisfying the
following conditions:

(k; `).missing ∈ R (1)

(k; `).putr(x, c) = (x′, c′) c ∈ R
x′ = x ∧ c′ ∈ R

(2)

(k; `).putl(x, c) = (x′, c′) c ∈ R
x′ = x ∧ c′ ∈ R

(3)

(`; k).putr(y, c) = (y′, c′) γ×(c) ∈ R
y′ = y ∧ γ×(c′) ∈ R

(4)

(`; k).putl(y, c) = (y′, c′) γ×(c) ∈ R
y′ = y ∧ γ×(c′) ∈ R

(5)

Here, the function γ× is the symmetry in set, namely γ×((x, y)) = (y, x).

Proof: We get an R1 that satisfies 1-3 from the fact that k; ` ≡ idX , and we get
an R2 that satisfies 1, 4, and 5 from the fact that `; k ≡ idY . Then we can define
R = R1 ∩ R2. There are four conditions to check, but we will consider only one of
them here, as the others are very similar:

(k; `).putr(x, c) = (x′, c′) c ∈ R
c′ ∈ R2

Now c ∈ R means c = (ck, c`) where ck R1 c` and ck R2 c`. We can define

(y, c′k) = k.putr(x, ck)

(x′, c′`) = `.putr(y, c`).

32

Since R1 satisfies 2, we know x′ = x, that is, we know

`.putr(y, c`) = (x, c′`)

k.putr(x, ck) = (y, c′k).

Now the fact that R2 satisfies 4 above tells us that c′k R2 c
′
`, that is, c′ ∈ R2. �

2.3.12 Corollary [Isomorphisms are indexed bijections]: Consider the func-
tions f and g which give the value-only part of a lens’ puts:

f`,c`(x) = fst(`.putr(x, c`))

g`,c`(x) = fst(`.putl(x, c`))

If ck R c` (using the R given by the previous lemma), then fk,ck , f`,c` , gk,ck , and g`,c`
are all bijections.

Proof: For any x ∈ X, we know f`,c`(fk,ck(x)) = x by 2, and for any y ∈ Y , we
know fk,ck(f`,c`(y)) = y by 4. Thus, not only is fk,ck a bijection, we actually have its
inverse: f−1

k,ck
= f`,c` ! Similarly, g−1

k,ck
= g`,c` . �

2.3.13 Definition [Dual of a lens]:

` ∈ X ↔ Y

`op ∈ Y ↔ X

C = `.C
missing = `.missing
putr(y, c) = `.putl(y, c)
putl(x, c) = `.putr(x, c)

Proof of well-formedness: We observe that saying `op satisfies PutRL is an iden-
tical condition to saying ` satisfies PutLR, and likewise having `op satisfy PutLR
is identical to having ` satisfy PutRL. �

It is easy to see that (−)op is involutive—that is, that (`op)op = ` for every `—and
that bijf−1 = bijopf for any bijective f . Recalling that an endofunctor is a functor
whose source and target categories are identical, we can easily show the following
lemma.

2.3.14 Lemma: The (−)op operation can be lifted to a contravariant endofunctor
on the category lens, mapping each arrow [`] to [`op].

33

Proof: We must show three things:

1. The mapping [`] 7→ [`op] is well-defined, that is, that if k ≡ `, then kop ≡ `op .

2. The mapping respects identities, that is, that idop ≡ id .

3. The mapping respects composition, that is, (k; `)op ≡ `op ; kop .

We sketch the proofs in that order.

1. If k ≡ ` is witnessed by R then kop ≡ `op is also witnessed by R;

2. In fact, idop = id ; and

3. The relation (ck, c`) R (c`, ck) whenever ck ∈ k.C and c` ∈ `.C witnesses the
equivalence. �

The existence of (−)op is one of the two canonical constructions that motivate
the name “symmetric lenses” (the other being disconnect , which we discuss below).
Before we formalize this intuition, we review two standard constructions from category
theory.

2.3.15 Definition: The opposite of a category C, denoted Cop , has backwards com-
position compared to C. That is, whenever f ; g = h in C, we have g; f = h in Cop .
This induces the remaining components of Cop :

Objects The objects of Cop are exactly the objects of C.

Arrows The arrows f : X → Y of Cop are the arrows f : Y → X of C.

Identities The identities of Cop are exactly the identities of C.

That is, forming the opposite of a category means formally reversing the “direction” of
each arrow. In general, a category and its opposite can have very different structure.
What we want to show is that the directionality of arrows in lens is not important; we
can formalize this by saying that lens and lensop have the same structure, provided
we can formalize what it means for two categories have the same structure. There
are many ways to define equivalence between categories; a particularly strong one is
to apply the standard categorical notion of isomorphism to cat, the category whose
objects are categories and whose arrows are functors. That is:

2.3.16 Definition: Categories C and D are isomorphic if there are functors F : C →
D and G : D → C for which F ;G is the identity on C and G;F is the identity on D.

2.3.17 Corollary: The category lens is self dual, i.e., isomorphic to lensop . (Note
that this does not mean that each arrow is its own inverse!)

Proof: The arrow part of (−)op is bijective. �

34

The lenses we have discussed so far maintain all the information in the domain
and codomain. It is sometimes useful to discard some information in one direction
of the lens. The terminal lens does this, recording the discarded information in the
complement so that the other direction of the lens can restore it.

2.3.18 Definition [Terminal lens]:

x ∈ X
termx ∈ X ↔ Unit

C = X
missing = x
putr(x′, c) = ((), x′)
putl((), c) = (c, c)

Proof of well-formedness: The PutLR law is trivially true, since

putr(putl((), c)) = putr(c, c) = ((), c)

and in particular since c does not change at all in this round trip. We also observe:

putl(putr(x, c)) = putl((), x) = (x, x)

Since the complement x does not change during the putl and we arrive back at the
value x that we started with, this verifies that PutRL holds as well. �

2.3.19 Proposition [Uniqueness of terminal lens]: Lenses with the same type
as a terminal lens are equivalent to a terminal lens. More precisely, suppose k ∈ X ↔
Unit and k.putl((), k.missing) = (x, c). Then k ≡ termx.

Of course, there may be many (pairwise non-equivalent) terminal lenses of a par-
ticular type; for any two x, y ∈ X with x 6= y, it’s clear that termx 6≡ termy.
Proposition 2.3.19 tells us that there are exactly as many arrows ` : X ⇐⇒ Unit as
there are elements of X.

Proof: The behavior of k is uniquely defined by the given data: putl must return x
the first time and echo the last putr henceforth. Formally, we may define a simulation
relation as follows:

R = {(c, y) | fst(k.putl((), c)) = y}

It’s clear that k.missing R x, since we have chosen x specifically so that

fst(k.putl((), k.missing)) = x.

35

Let us show next that k.putl ∼R termx.putl . Choose arbitrary v ∈ Unit and
choose c and y such that fst(k.putl((), c)) = y. Clearly, v = (), so we can compute:

k.putl(v, c) = k.putl((), c) = (y, c′)

termx.putl(v, y) = termx.putl((), y) = (y, y)

Clearly, y = y, and law PutL2 tells us that k.putl((), c′) = (y, c′), and hence that
c′ R y.

Finally, we must show that k.putr ∼R termx.putr . Again, choose c and y such
that fst(k.putl((), c)) = y and arbitrary z ∈ X.

k.putr(z, c) = ((), c′)

termx.putr(z, y) = ((), z)

It’s clear that () = (), and law PutRL tells us that k.putl((), c′) = (z, c′), and hence
c′ R z. �

2.3.20 Definition [Disconnect lens]:

x ∈ X y ∈ Y
disconnectxy ∈ X ↔ Y

disconnectxy = termx; termop
y

The disconnect lens does not synchronize its two sides at all. The complement,
disconnect .C, is X × Y ; inputs are squirreled away into one side of the complement,
and outputs are retrieved from the other side of the complement.

(Note that we do not need an explicit proof that disconnect is a lens: this follows
from the fact that term is a lens and (−)op and ; construct lenses from lenses.)

2.4 Products
A few additional notions from elementary category theory will be useful for generating
ideas about what sorts of properties to look for and for structuring the discussion of
which of these properties hold and which fail for lenses.

The categorical product of two objects X and Y is an object X × Y and arrows
π1 : X × Y → X and π2 : X × Y → Y such that for any two arrows f : Z → X
and g : Z → Y there is a unique arrow 〈f, g〉 : Z → X × Y—the pairing of f and
g—satisfying 〈f, g〉; π1 = f and 〈f, g〉; π2 = g. It is well known that, if a categorical
product exists at all, it is unique up to isomorphism. If a category C has a product
for each pair of objects, we say that C has products.

36

2.4.1 Theorem [No products]: lens does not have products.

Proof idea: Suppose we have lenses k ∈ Z ⇐⇒ X and ` ∈ Z ⇐⇒ Y . Informally,
the lens k includes a way to take any Z and choose a corresponding X and a way
to take any X and find a corresponding Z. Many common categories with products
include the former, but the latter is somewhat unique to lens categories, so we focus
on the return trip here.

The lenses k and ` together mean we have a way to take any X and choose a
corresponding Z, and we have a (separate) way to take any Y and choose a cor-
responding Z. Assume temporarily that the object part of the product of two ob-
jects is simply the Cartesian product. To complete the product, we must construct
〈k, `〉 ∈ Z ⇐⇒ X × Y , that is, we must find a way to take an X and a Y and choose
a Z that corresponds to both simultaneously. But there may not be any such Z—the
Z that k gives us from X may not be the same as the Z that ` gives us from Y .

To complete the proof, we simply choose X and Y carefully to rule out the possi-
bility of a corresponding Z, regardless of whether we choose X×Y to be the Cartesian
product or to be some other construction.

Proof: Uniqueness of pairing shows that there is exactly one lens from Unit to
Unit × Unit (whatever this may be). Combined with Prop. 2.3.19 this shows that
Unit × Unit is a one-element set. Again by Prop. 2.3.19 this then means that lenses
between Unit × Unit and any other set X are constant which leads to cardinality
clashes once |X| > 1.

In more detail: Assume, for a contradiction, that lens does have products, and
let W be the product of Unit with itself. The two projections are maps into Unit .
By Proposition 2.3.19 there is exactly one lens from Unit to Unit . By uniqueness of
pairing we can then conclude that there is exactly one map from Unit to W . Now
for each w ∈ W the lens (termw)op is such a map, whence W must be a singleton
set, and we can without loss of generality assume W = Unit . But now consider the
pairing of term0 and term1 from {0, 1} to Unit . Their pairing is a lens from {0, 1}
to W = Unit , hence itself of the form termx for some x ∈ {0, 1}. But each of these
violate the naturality laws. �

However, lens does have a similar (but weaker) structure: a tensor product—
i.e., an associative, two-argument functor. For any two objects X and Y , we have
an object X ⊗ Y , and for any two arrows f : A → X and g : B → Y , an arrow
f ⊗ g : A ⊗ B → X ⊗ Y such that (f1; f2) ⊗ (g1; g2) = (f1 ⊗ g1); (f2 ⊗ g2) and
idX ⊗ idY = idX⊗Y . Furthermore, for any three objects X, Y, Z there is a natural
isomorphism αX,Y,Z : (X ⊗ Y) ⊗ Z → X ⊗ (Y ⊗ Z) satisfying certain coherence
conditions (which specify that all ways of re-associating a quadruple are equal).

A categorical product is always a tensor product (by defining f⊗g = 〈π1; f, π2; g〉),
and conversely a tensor product is a categorical product if there are natural transfor-

37

mations π1, π2, diag
π1,X,Y ∈ X ⊗ Y → X
π2,X,Y ∈ X ⊗ Y → Y
diagX ∈ X → X ⊗X

such that (suppressing subscripts to reduce clutter)

(f ⊗ g);π1 = π1; f (2.4.1)
(f ⊗ g);π2 = π2; g (2.4.2)

diag ; (f ⊗ f) = f ; diag (2.4.3)

for all arrows f and g. Moreover, the following diagrams must commute, in the sense
that composite arrows with the same endpoints represent equal arrows:

X ⊗X Xπ2
X π1

X

id id
diag

X ⊗ Y (X ⊗ Y)⊗ (X ⊗ Y)
diag

X ⊗ Y

π1 ⊗ π2id

The former diagram says that the result of applying diag is an element whose com-
ponents are both equal to the original. The latter diagram says that the application
of diag results in independent copies of the original. See Proposition 13 in [3] for a
proof that these conditions are equivalent to the standard presentation of products
in terms of universal properties.

In the category lens, we can build a tensor product and can also build projection
lenses with reasonable behaviors. However, these projections are not quite natural
transformations—laws 2.4.1 and 2.4.2 above hold only with an additional indexing
constraint for particular f and g. More seriously, while it seems we can define some
reasonable natural transformations with the type of diag (that is, arrows satisfying
law 2.4.3), none of them make the additional diagrams commute.

38

2.4.2 Definition [Tensor product lens]:

k ∈ X ↔ Z ` ∈ Y ↔ W

k ⊗ ` ∈ X × Y ↔ Z ×W

C = k.C × `.C
missing = (k.missing , `.missing)
putr((x, y), (ck, c`)) = let (z, c′k) = k.putr(x, ck) in

let (w, c′`) = `.putr(y, c`) in
((z, w), (c′k, c

′
`))

putl((z, w), (ck, c`)) = let (x, c′k) = k.putl(z, ck) in
let (y, c′`) = `.putl(w, c`) in
((x, y), (c′k, c

′
`))

Proof of well-formedness: We will show that PutRL holds; a similar argument
shows that PutLR holds. Suppose

k.putr(x, ck) = (z, c′k)

`.putr(y, c`) = (w, c′`)

so that:
(k ⊗ `).putr((x, y), (ck, c`)) = ((z, w), (c′k, c

′
`))

Applying PutRL to the lenses k and `, we learn that

k.putl(z, c′k) = (x, c′k)

`.putl(w, c′`) = (y, c′`)

so that:
(k ⊗ `).putl((z, w), (c′k, c

′
`)) = ((x, y), (c′k, c

′
`))

But this is exactly what we need to show for rule PutRL. �

Proof of preservation of equivalence: If Rk is a witness that k ≡ k′ and R` is
a witness that ` ≡ `′, then R = Rk ×R` witnesses k ⊗ ` ≡ k′ ⊗ `′.

Since k.missing Rk k
′.missing and `.missing R` `

′.missing , we know that

(k.missing , `.missing) R (k′.missing , `′.missing),

that is:
(k ⊗ `).missing R (k′ ⊗ `′).missing

Choose arbitrary (x, y) ∈ X × Y and related complements (ck, c`) R (ck′ , c`′).

39

Define:

(z, c′k) = k.putr(x, ck)

(z′, c′k′) = k′.putr(x, ck′)

(w, c′`) = `.putr(y, c`)

(w′, c′`′) = `′.putr(y, c`′)

Since ck Rk ck′ and k.putr ∼Rk
k′.putr , we can conclude that z = z′ and c′k Rk c

′
k′ .

Similarly, w = w′ and c′` R` c
′
`′ . But we can compute

(k ⊗ `).putr((x, y), (ck, c`)) = ((w, z), (c′k, c
′
`))

(k′ ⊗ `′).putr((x, y), (ck′ , c`′)) = ((w′, z′), (c′k′ , c
′
`′))

where (w, z) = (w′, z′) and (c′k, c
′
`) R (c′k′ , c

′
`′). Thus, (k ⊗ `).putr ∼R (k′ ⊗ `′).putr .

Showing that (k ⊗ `).putl ∼R (k′ ⊗ `′).putl is similar. �

2.4.3 Lemma [Functoriality of ⊗]: The tensor product operation on lenses in-
duces a bifunctor on the category lens, that is,

idX ⊗ idY ≡ idX×Y , and

(k1; `1)⊗ (k2; `2) ≡ (k1 ⊗ k2); (`1 ⊗ `2).

Proof of functoriality: Corollary 2.3.9 implies the former equivalence. The latter
has an intricate (but uninteresting) witness:

((ck1 , c`1), (ck2 , c`2)) R ((ck1 , ck2), (c`1 , c`2))

That is, one state is related to another precisely when it is a rearrangement of the
component states. It is clear that this relates the missing states of each lens, and the
putr and putl components do identical computations (albeit in a different order), so
they are related by ∼R as necessary. �

2.4.4 Lemma [Product bijection]: For bijections f and g,

bijf ⊗ bijg ≡ bijf×g.

Proof: Write k = bijf ⊗ bijg and ` = bijf×g. The total relation R ∈ (Unit ×Unit)×
Unit is a witness. It’s clear that k.missing R `.missing , so let’s show that the puts
are similar. Since all complements are related, this reduces to showing that equal

40

input values yield equal output values.

k.putr((x, y), ((), ())) = let (x′, c1) = bijf .putr(x, ()) in

let (y′, c2) = bijg.putr(y, ()) in

((x′, y′), (c1, c2))

= ((f(x), g(y)), ((), ()))

`.putr((x, y), ()) = ((f(x), g(y)), ())

The putl direction is similar. �

In fact, the particular tensor product defined above is very well behaved: it induces
a symmetric monoidal category—i.e., a category with a unit object 1 and the following
natural isomorphisms:

αX,Y,Z : (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z)

λX : 1⊗X → X

ρX : X ⊗ 1→ X

γX,Y : X ⊗ Y → Y ⊗X

These are known as the associator, left-unitor, right-unitor, and symmetry, respec-
tively. In addition to the equations implied by these being natural isomorphisms,
they must also satisfy the coherence equations:

α;α = (α⊗ id);α; (id ⊗ α)

ρ⊗ id = α; (id ⊗ λ)

α; γ;α = (γ ⊗ id);α; (id ⊗ γ)

α−1; γ;α−1 = (id ⊗ γ);α−1; (γ ⊗ id)

γ; γ = id

2.4.5 Proposition [lens,⊗ is symmetric monoidal]: In the category set, the
Cartesian product is a bifunctor with Unit as unit, and gives rise to a symmetric
monoidal category. Let α×, λ×, ρ×, γ× be associator, left-unitor, right-unitor, and
symmetry natural isomorphisms. Then the ⊗ bifunctor also gives rise to a symmetric
monoidal category of lenses, with Unit as unit and α⊗ = bij ◦ α×, λ⊗ = bij ◦ λ×,
ρ⊗ = bij◦ρ×, and γ⊗ = bij◦γ× as associator, left-unitor, right-unitor, and symmetry,
respectively.

Knowing that lens is a symmetric monoidal category is useful for several reasons.
First, it tells us that, even though it is not quite a full-blown product, the tensor con-
struction still supports many of the operations traditionally associated with products.
Second, it justifies a convenient intuition where lenses built from multiple tensors are
pictured as graphical “wiring diagrams”, and suggests a possible syntax for lenses that
shuffle product components (which we briefly discuss in §6.1).

41

Proof: We know α⊗, λ⊗, ρ⊗, and γ⊗ are all isomorphisms because every bijection
lens is an isomorphism. Showing that they are natural is a straightforward calcula-
tion.2 The five coherence conditions follow from coherence in set, functoriality of bij,
and Lemma 2.4.4. �

2.4.6 Definition [Projection lenses]: In lens, the projection is parametrized by
an extra element to return when executing a putl with a missing complement.

y ∈ Y
π1y ∈ X × Y ↔ X

π1y = (idX ⊗ termy); ρ
⊗
X

The other projection is defined similarly.

Returning to the example in the introduction, recall that we wish to create a lens
e : X × Y ↔ Y × Z with missing elements m ∈ X and M ∈ Z. We now have the
machinery necessary to construct this lens:

e = π2m ; πop
1M

The extra parameter to the projection (e.g. m or M above) needs to be chosen
with some care. Some sets may have clear neutral elements; for example, a pro-
jection from A × B? → A will likely use the empty list 〈〉 as its neutral element.
Other projections may need additional domain knowledge to choose a good neutral
element—for example, a projection A × Country → A might use the country with
the most customers as its default.

In some cases, the algebraic laws that one wants the projection to satisfy may guide
the choice as well. The extra parameter prevents full naturality from holding, and
therefore prevents this from being a categorical product, but the following “indexed”
version of the naturality law does hold.

2.4.7 Lemma [Naturality of projections]: Suppose k ∈ Xk ↔ Yk and ` ∈ X` ↔
Y` and choose some initial value yi ∈ Y`. Define (xi, ci) = `.putl(yi, `.missing). Then
(k ⊗ `);π1yi ≡ π1xi ; k.

Proof: We show that the following diagram commutes:
2For example, showing that γ⊗ is natural requires showing that for any two lenses k : X ↔ Z

and ` : Y ↔W ,
(k ⊗ `); γ⊗Z,W ≡ γ

⊗
X,Y ; (`⊗ k).

The complements for these two lenses are (k.C×`.C)×Unit and Unit×(`.C×k.C); the isomorphism
that simply rearranges the parts of the complement is a witness to the lenses’ equivalence. The story
is similar for the other naturality properties.

42

Xk ×X`

Xk × Unit

Xk

Yk × Y`

Yk × Unit

Yk

k ⊗ `

idXk
⊗ termxi idYk ⊗ termyi

k ⊗ idUnit

ρXk
ρYk

k

To show that the top square commutes, we invoke functoriality of ⊗ and the
property of identities; all that remains is to show that

`; termyi ≡ termxi

which follows from the uniqueness of terminal lenses and the definition of xi. The
bottom square commutes because ρ is a natural isomorphism. �

The most serious problem, though, is that there is no diagonal. There are, of
course, lenses with the type we need for diag—for example, disconnect . Or, more
usefully, the lens that coalesces the copies of X whenever possible, preferring the left
one when it cannot coalesce (this is essentially the merge lens from [16])

diag ∈ X → X ×X

C = Unit +X
missing = inl ()
putr(x, inl ()) = ((x, x), inl ())
putr(x, inr x′) = ((x, x′), eq(x, x′))
putl((x, x′), c) = (x, eq(x, x′))

where here the eq function tests its arguments for equality:

eq(x, x′) =

{
inl () x = x′

inr x′ x 6= x′

—eq(x, x′) yields inl () if x = x′ and yields x′ if not. This assumes that X possesses
a decidable equality, a reasonable assumption for the applications of lenses that we
know about. However, neither of these proposals satisfy all the required laws.

43

Proof of well-formedness:
PutLR:

putr(putl((x, x′), c)) = putr(x, eq(x, x′))

=

{
putr(x, inl ()) x = x′

putr(x, inr x′) x 6= x′

=

{
((x, x), inl ()) x = x′

((x, x′), inr x′) x 6= x′

= ((x, x′), eq(x, x′))

PutRL:

putl(putr(x, inl ())) = putl((x, x), inl ())

= (x, inl ())

putl(putr(x, inr x′)) = putl((x, x′), eq(x, x′))

= (x, eq(x, x′)) �

2.5 Sums and Lists
Historically, the status of sums has been even more mysterious than that of products.
In particular, the injection arrows from A to A+B and B to A+B do not even make
sense in the asymmetric setting; as functions, they are not surjective, so they cannot
satisfy PutGet.

Before we study the question for lens, let us formally define a sum. A categorical
sum of two objects X and Y is an object X + Y and arrows inl : X → X + Y and
inr : Y → X + Y such that for any two arrows f : X → Z and g : Y → Z there is a
unique arrow [f, g] : X + Y → Z—the choice of f or g—satisfying inl ; [f, g] = f and
inr ; [f, g] = g. As with products, if a sum exists, it is unique up to isomorphism.

Since products and sums are dual, Corollary 2.3.17 and Theorem 2.4.1 imply that
lens does not have sums. But we do have a tensor whose object part is a set-
theoretic sum—in fact, there are at least two interestingly different ones—and we can
define useful associated structures, including a choice operation on lenses. But these
constructions are even farther away from being categorical sums than what we saw
with products.

As with products, a tensor can be extended to a sum by providing three natural
transformations—this time written inl , inr , and codiag ; that is, for each pair of
objects X and Y , there must be arrows

inlX,Y ∈ X → X ⊕ Y
inrX,Y ∈ Y → X ⊕ Y

codiagX ∈ X ⊕X → X

44

such that
inl ; (f ⊕ g) = f ; inl
inr ; (f ⊕ g) = g; inr

(f ⊕ f); codiag = codiag ; f

and making the following diagrams commute:

X ⊕X X
inr

X
inl

X

id idcodiag

X ⊕ Y (X ⊕ Y)⊕ (X ⊕ Y)
codiag

X ⊕ Y

inl ⊕ inrid

These diagrams are identical to the product diagrams, with the exception that the
arrows point in the opposite directions (that is, the sum diagrams are the dual of the
product diagrams).

The two tensors, which we called retentive and forgetful in §2.1, differ in how they
handle the complement when the new value being put is from a different branch of the
sum than the old value that was put . The retentive sum keeps complements for both
sublenses in its own complement and switches between them as needed. The forgetful
sum keeps only one complement, corresponding to whichever branch was last put . If
the next put switches sides, the complement is replaced with missing .

2.5.1 Definition [Retentive tensor sum lens]:

k ∈ X ↔ Z ` ∈ Y ↔ W

k ⊕ ` ∈ X + Y ↔ Z +W

C = k.C × `.C
missing = (k.missing , `.missing)
putr(inl x, (ck, c`)) = let (z, c′k) = k.putr(x, ck) in

(inl z, (c′k, c`))
putr(inr y, (ck, c`)) = let (w, c′`) = `.putr(y, c`) in

(inr w, (ck, c
′
`))

putl(inl z, (ck, c`)) = let (x, c′k) = k.putl(z, ck) in
(inl x, (c′k, c`))

putl(inr w, (ck, c`)) = let (y, c′`) = `.putl(y, c`) in
(inr y, (ck, c

′
`))

45

Proof of well-formedness: We show that PutRL holds; the proof that PutLR
holds is similar. Choose arbitrary ck ∈ k.C and c` ∈ `.C. There are two cases to
consider for the starting value: it will be either inl x for some x ∈ X or inr y for some
y ∈ Y . In the former case, define (z, c′k) = k.putr(x, ck) so that applying PutRL to
k tells us that k.putl(z, c′k) = (x, c′k). But now we can compute:

putl(putr(inl x, (ck, c`))) = putl(inl z, (c′k, c`)) = (inl x, (c′k, c`)).

Thus, the value has round-tripped exactly as inl x, and the complement changed only
after the putr (and not after the putl) – exactly what we needed to show.

The other case is similar: define (w, c′`) = `.putr(y, c`) so that applying PutRL
to ` tells us that `.putl(w, c′`) = (y, c′`). Computation then shows that:

putl(putr(inr y, (ck, c`))) = putl(inr w, (ck, c
′
`)) = (inr y, (ck, c

′
`)). �

Proof of preservation of equivalence: Suppose k ≡ k′ and ` ≡ `′, as witnessed
by relations Rk and R`, respectively. Then R = Rk × R` witnesses the equivalence
k ⊕ ` ≡ k′ ⊕ `′. Since k.missing Rk k

′.missing and `.missing R` `
′.missing , we have

(k ⊕ `).missing R (k′ ⊕ `′).missing .
We now show that (k⊕`).putr ∼R (k′⊕`′).putr . Choose arbitrary v ∈ X+Y, ck ∈

k.C, ck′ ∈ k′.C, c` ∈ `.C, c`′ ∈ `′.C such that (ck, c`) R (ck′ , c`′). By the definition of
R, we can conclude that ck Rk ck′ and that c` R` c`′ . There are two cases to consider:
either v = inl x for some x ∈ X or v = inr y for some y ∈ Y . In the first case, define

(z, c′k) = k.putr(x, ck)

(z′, c′k′) = k′.putr(x, ck′)

Since ck Rk ck′ , we can conclude z = z′ and c′k Rk c
′
k′ . Therefore,

(k ⊕ `).putr(v, (ck, c`)) = (inl z, (c′k, c`))

(k′ ⊕ `′).putr(v, (ck′ , c`′)) = (inl z, (c′k′ , c`′))

where (c′k, c`) R (c′k′ , c`′) as desired. The second case, where v = inr y, is similar.
Showing that (k⊕ `).putl ∼R (k′⊕ `′).putl is symmetric to the argument for putr .

�

2.5.2 Lemma [Functoriality of ⊕]: The tensor sum operation on lenses induces a
bifunctor on lens.

Proof of functoriality: Corollary 2.3.9 gives us idX ⊕ idY ≡ idX+Y with fairly
minor computation. We must also show that composition is preserved. Suppose we
have four lenses:

k ∈ X ↔ Y k′ ∈ X ′ ↔ Y ′

` ∈ Y ↔ Z `′ ∈ Y ′ ↔ Z ′

46

The obvious isomorphism between complements witnesses the equivalence (k; `) ⊕
(k′; `′) ≡ (k ⊕ k′); (`⊕ `′), namely:

((ck, c`), (c
′
k, c
′
`)) R ((ck, c

′
k), (c`, c

′
`))

Define abbreviations a = (k; `)⊕(k′; `′) and b = (k⊕k′); (`⊕`′). Expanding definitions,

a.missing = ((k.missing , `.missing), (k′.missing , `′.missing))

b.missing = ((k.missing , k′.missing), (`.missing , `′.missing))

so a.missing R b.missing . We must also show a.putr ∼R b.putr and a.putl ∼R b.putl .
We will show only the former; the proof of the latter is similar.

Choose arbitrary v ∈ X + X ′, ca ∈ a.C, cb ∈ b.C such that ca R cb. This means
there are ck ∈ k.C, ck′ ∈ k′.C, c` ∈ `.C, c`′ ∈ `′.C such that ca = ((ck, c`), (ck′ , c`′)) and
cb = ((ck, ck′), (c`, c`′)). There are two cases to consider: either v = inl x or v = inr x′.
In the first case, we can define

(y, c′k) = k.putr(x, ck)

(z, c′`) = `.putr(y, c`),

and compute:

a.putr(inl x, ((ck, c`), (ck′ , c`′))) = (inl z, ((c′k, c
′
`), (ck′ , c`′)))

b.putr(inl x, ((ck, ck′), (c`, c`′))) = (inl z, ((c′k, ck′), (c
′
`, c`′)))

Since inl z = inl z and ((c′k, c
′
`), (ck′ , c`′)) R ((c′k, ck′), (c

′
`, c`′)), we have finished the

first case. The second case, where v = inr x′, is nearly identical, and we conclude that
a.putr ∼R b.putr . �

2.5.3 Definition [Forgetful tensor sum]:

k ∈ X ↔ Z ` ∈ Y ↔ W

k ⊕f ` ∈ X + Y ↔ Z +W

C = k.C + `.C
missing = inl k.missing
putr(inl x, inl ck) = let (z, c′k) = k.putr(x, ck) in (inl z, inl c′k)
putr(inl x, inr c`) = let (z, ck) = k.putr(x, k.missing) in (inl z, inl ck)
putr(inr y, inl ck) = let (w, c`) = `.putr(y, `.missing) in (inr w, inr c`)
putr(inr y, inr c`) = let (w, c′`) = k.putr(y, c`) in (inr w, inr c′`)

putl is similar

47

Proof of well-formedness: As for the retentive sum, the round-trip laws for k and
` guarantee that k ⊕f ` round-trips. The only difference is that there are additional
cases to consider when the tag on the value and the tag on the complement do not
match at the beginning of the trip; however, this poses no real difficulty, as the tags
will match after the first put. �

Proof of preservation of equivalence: Let a = k ⊕f ` and b = k′ ⊕f `′. If Rk

witnesses k ≡ k′ and R` witnesses ` ≡ `′ then a ≡ b may be witnessed by

R = {(inl c, inl c′) | c Rk c
′} ∪ {(inr c, inr c′) | c R` c

′}

Since k.missing Rk k
′.missing , we know a.missing R b.missing .

We must still show that a.putr ∼R b.putr and that a.putl ∼R b.putl ; for each
of these proofs, there are cases to consider where the input is tagged inl and cases
where the input is tagged inr. Below, we will consider only the inl case for putr ; the
remaining cases are similar.

Therefore, consider arbitrary x ∈ X, ca ∈ a.C, cb ∈ b.C such that ca R cb. Project
these complements into k.C and k′.C, respectively, as follows:

c′a =

{
ck ca = inl ck
k.missing ca = inr c`

c′b =

{
ck′ cb = inl ck′
k′.missing cb = inr c`′

Since ca R cb, we know they have the same tag, and hence that c′a and c′b follow the
same “branch” in their definition; in either branch, we find that c′a Rk c

′
b, because

ca R cb and k.missing Rk k
′.missing . But now we can compute:

a.putr(x, ca) = let (z, c′k) = k.putr(x, c′a) in (inl z, inl c′k)

b.putr(x, cb) = let (z, c′k′) = k′.putr(x, c′b) in (inl z, inl c′k′)

The desired properties now arise because k.putr ∼Rk
k′.putr and c′a Rk c

′
b. �

Proof of functoriality: There are two things to show:

idX ⊕f idY ≡ idX+Y

(k ⊕f k′); (`⊕f `′) ≡ (k; `)⊕f (k′; `′)

For identity preservation, we use the total relation which has c R () for all c.
Clearly the initial condition (id ⊕f id).missing R id .missing holds; we will also show
that (id ⊕f id).putr ∼R id .putr , eliding the similar proof relating the putl functions.

48

So, choose arbitrary v ∈ X + Y and c ∈ Unit + Unit .

(id ⊕f id).putr(v, c) =


let (x′, c′) = id .putr(x, ())
in (inl x′, inl c′) v = inl x
let (y′, c′) = id .putr(y, ())
in (inr y′, inr c′) v = inr y

=

{
(inl x, inl ()) v = inl x
(inr y, inr ()) v = inr y

=

(
v,

{
inl () v = inl x
inr () v = inr y

})
id .putr(v, c) = (v, ())

Since v = v and the complements are always related, this shows that

(id ⊕f id).putr ∼R id .putr .

For preservation of composition, we use the relation R defined by:

{((inl ck, inl c`), inl (ck, c`)) | ck ∈ k.C, c` ∈ `.C} ∪
{((inr ck, inr c`), inr (ck, c`)) | ck ∈ k′.C, c` ∈ `′.C}

Abbreviating a = (k⊕f k′); (`⊕f `′) and b = (k; `)⊕f (k′; `′), we can quickly see that
a.missing = (inl k.missing , inl `.missing) R inl (k.missing , `.missing) = b.missing .
We will also show that a.putr ∼R b.putr , eliding the similar proof that a.putl ∼R
b.putl .

Choose arbitrary v ∈ X0 + X1, ca ∈ a.C, cb ∈ b.C such that ca R cb. There are
many cases to consider, but two of them are representative of the remainder. In the
first representative case, we have

v = inl x0

ca = (inl ck, inl c`)

cb = inl (ck, c`)

49

Then:

a.putr(v, ca) = let (y0, c
′
k) = k.putr(x0, ck) in

let (z0, c
′
`) = `.putr(y0, c`) in

(inl z0, (inl c
′
k, inl c

′
`))

b.putr(v, cb) = let (z0, (c
′
k, c
′
`)) = (k; `).putr(x0, (ck, c`)) in

(inl z0, inl (c′k, c
′
`))

= let (y0, c
′
k) = k.putr(x0, ck) in

let (z0, c
′
`) = `.putr(y0, c`) in

(inl z0, inl (c′k, c
′
`))

Since z0, c
′
k, c
′
` are computed identically in the two equations, the relation is preserved

in this case.
In the second representative case, we have

v = inl x0

ca = (inr ck′ , inr c`′)

cb = inr (ck′ , c`′)

Then:

a.putr(v, ca) = let (y0, ck) = k.putr(x0, k.missing) in

let (z0, c`) = `.putr(x0, `.missing) in

(inl z0, (inl ck, inl c`))

b.putr(v, cb) = let (z0, c
′) = (k; `).putr(x0, (k; `).missing) in

(inl z0, inl c
′)

= let (y0, ck) = k.putr(x0, k.missing) in

let (z0, c`) = `.putr(y0, `.missing) in

(inl z0, inl (ck, c`))

Again, since z0, ck, c` are computed identically in both equations, the relation is pre-
served. �

2.5.4 Lemma [Sum bijection]: For bijections f and g,

bijf ⊕ bijg ≡ bijf ⊕f bijg ≡ bijf+g

Proof: Write k = bijf⊕bijg, kf = bijf⊕f bijg, and ` = bijf+g. The total relation R ⊂
(Unit×Unit)×Unit is a witness that k ≡ ` and the total relation Rf ⊂ (Unit+Unit)×

50

Unit is a witness that kf ≡ `. It’s clear that k.missing R `.missing and kf .missing Rf

`.missing , so let’s show that the puts are similar. Since all complements are related,
this reduces to showing that equal input values yield equal output values.

k.putr(inl x, ((), ())) = let (z, ck) = bijf .putr(x, ()) in

(inl z, (ck, ()))

= let (z, ck) = (f(x), ()) in

(inl z, (ck, ()))

= (inl f(x), ((), ()))

k.putr(inr y, ((), ())) = (inr g(y), ((), ()))

kf .putr(inl x, c) = let (z, ck) = bijf .putr(x, ()) in

(inl z, inl ck)

= let (z, ck) = (f(x), ()) in

(inl z, inl ck)

= (inl f(x), inl ())

kf .putr(inr y, c) = (inr g(y), inr ())

`.putr(inl x, ()) = ((f + g)(inl x), ())

= (inl f(x), ())

`.putr(inr y, ()) = (inr g(y), ())

The putl direction is similar. �

2.5.5 Proposition [lens,⊕,⊕f are symmetric monoidal]: In set, the disjoint
union gives rise to a symmetric monoidal category with ∅ as unit. Let α+, λ+, ρ+, γ+

be associator, left-unitor, right-unitor, and symmetry natural isomorphisms. Then
the ⊕ and ⊕f bifunctors each give rise to a symmetric monoidal category of lenses
with ∅ as unit and α⊕ = bij ◦ α+, λ⊕ = bij ◦ λ+, ρ⊕ = bij ◦ ρ+, and γ⊕ = bij ◦ γ+ as
associator, left-unitor, right-unitor, and symmetry, respectively.

The types of these natural isomorphisms are:

α⊕X,Y,Z ∈ (X + Y) + Z ↔ X + (Y + Z)

λ⊕X ∈ ∅+X ↔ X

ρ⊕X ∈ X + ∅ ↔ X

γ⊕X,Y ∈ X + Y ↔ Y +X

Proof: We know α⊕, λ⊕, ρ⊕, and γ⊕ are all isomorphisms because every bijection
lens is an isomorphism. Showing that they are natural is a straightforward calculation.
The only subtlety comes in showing that (k ⊕f `); γ⊕ ≡ γ⊕; (` ⊕f k). We must be
careful to include the missing complements in the relation; the following relation will

51

do:

R = {(inl c, inr c) | c ∈ k.C} ∪
{(inr c, inl c) | c ∈ `.C} ∪
{(inl k.missing , inl `.missing)}

The five coherence conditions follow from coherence in set, functoriality of bij,
and Lemma 2.5.4. �

Unlike the product unit, there are no interesting lenses whose domain is the sum’s
unit, so this cannot be used to define the injection lenses; we have to do it by hand.

2.5.6 Definition [Injection lenses]:

x ∈ X
inlx ∈ X ↔ X + Y

C = X × (Unit + Y)
missing = (x, inl ())
putr(x, (x′, inl ())) = (inl x, (x, inl ()))
putr(x, (x′, inr y)) = (inr y, (x, inr y))
putl(inl x, c) = (x, (x, inl ()))
putl(inr y, (x, c)) = (x, (x, inr y))

We also define inr y = inly; γ
⊕
Y,X .

Proof of well-formedness: For PutRL, we consider two cases: either the com-
plement has the form (xc, inl ()) or the form (xc, inr y).

putl(putr(x, (xc, inl ()))) = putl(inl x, (x, inl ()))

= (x, (x, inl ()))

putl(putr(x, (xc, inr y))) = putl(inr y, (x, inr y))

= (x, (x, inr y))

Thus, in each case, the output value is equal to the input value and the complement
is unaffected by the putl , as required by PutRL.

To show PutLR holds, we again consider two cases: either we start with inl x or
inr y.

putr(putl(inl x, (xc, yc))) = putr(x, (x, inl ()))

= (inl x, (x, inl ()))

putr(putl(inr y, (xc, yc))) = putr(xc, (xc, inr y))

= (inr y, (xc, inr y))

52

In both cases, the value output matches the value input and the complement remains
unaffected by putr . �

As with the projection lenses for tensor products, we may ask whether the injection
lenses for tensor sums are natural. If they were, we would expect a diagram like the
following one to commute for all f :

X Y

X + Z Y + Z

f

inlx inly
f ⊕ id

Now, even if we carefully choose x and y to be related by f as we did for the pro-
jection lenses, this diagram may not commute. When running the putr function, the
path along the top always invokes f.putr , whereas the path along the bottom may
sometimes invoke id .putr instead; at that moment, the complements of f (on the top
path) and f ⊕ id (on the bottom path) get out of synch. As we show in the following
proposition this can be used to produce a subsequent observable difference, i.e., not
only at the level of complements.

The situation with the forgetful sum is similar, but offers an additional way to
desynchronize the two complements: when resetting f ’s complement along the bottom
path to missing .

2.5.7 Proposition: The injection lenses are not natural.

Proof: We first define a lens that counts the number of changes it sees in the putr
direction, and allows puts of non-numbers to be overridden in the putl direction:

x ∈ X
countx ∈ X ↔ Unit + N

C = X × Bool × N
missing = (x, true, 0)
putr(x, (x′, b, n)) =

(inl (), (x, b, n)) x = x′ ∧ ¬b
(inr n, (x, b, n)) x = x′ ∧ b
(inr (n+ 1), (x, true, n+ 1)) x 6= x′

putl(inl (), (x, b, n)) = (x, (x, false, n))
putl(inr n, (x, b, n′)) = (x, (x, true, n))

53

We delay the proof that this lens is well-formed temporarily. Contrast the lens
inl b; (count b′ ⊕ idUnit) with count b′ ; inln (where b and b′ are arbitrary Bool values
and n is an arbitrary Unit + N value). Consider the put objects

〈inl true, inr (inr ()), inl false, inr (inl (inl ())), inl true, inl false〉

The first two put objects in the list are simply initializing the lens: we first put true
to the right, getting an inl object out on the right from both lenses, then put back an
inr object, switching sides.

The next put of false to the right is where the problem really arises. For the
count b′ ; inln lens, the counting lens first registers the change from true to false, then
its output gets thrown away. On the other hand, in the inl b; (count b′ ⊕ idUnit) lens,
the false gets thrown away before the counting lens can see it, so the complement in
the counting lens doesn’t get updated.

The remainder of the objects simply manifest this problem by switching the sum
back to the counting side, and getting an output from the counting lenses; one will
give a higher count than the other.

The proof for inr is symmetric. �

Proof of well-formedness: For completeness, we must also show that countx sat-
isfies the lens laws.
PutLR: There are two cases to consider. Both are simple calculations.

putr(putl(inl (), (x, b, n′))) = putr(x, (x, false, n′))

= (inl (), (x, false, n′))

putr(putl(inr n, (x, b, n′))) = putr(x, (x, true, n))

= (inr n, (x, true, n))

PutRL: There are three cases to consider. For the first case, choose distinct x 6= x′.

putl(putr(x, (x′, b, n))) = putl(inr (n+ 1), (x, true, n+ 1))

= (x, (x, true, n+ 1))

In the remaining cases, both the value and the complement round-trip exactly, which
is even more than the PutRL law requires.

putl(putr(x, (x, false, n))) = putl(inl (), (x, false, n))

= (x, (x, false, n))

putl(putr(x, (x, true, n))) = putl(inr n, (x, true, n))

= (x, (x, true, n)) �

As with products, where we have a useful lens of type X ↔ X × X that is
nevertheless not a diagonal lens, we can craft a useful conditional lens of typeX+X ↔

54

X that is nevertheless not a codiagonal lens. In fact, we define a more general lens
union ∈ X + Y ↔ X ∪ Y . Occasionally, a value that is both an X and a Y may
be put to the left across one of these union lenses. In this situation, the lens may
legitimately choose either an inr tag or an inl tag. Below, we propose two lenses that
break this tie in different ways. The union lens uses the most recent unambiguous
put to break the tie. The union ′ lens, on the other hand, looks back to the last tagged
value that was put to the right that was in both sets.

2.5.8 Definition [Union lens]:

unionXY ∈ X + Y ↔ X ∪ Y

C = Bool
missing = false
putr(inl x, c) = (x, false)
putr(inr y, c) = (y, true)
putl(xy, c)

=

{
(inl xy, false) xy /∈ Y ∨ (xy ∈ X ∧ ¬c)
(inr xy, true) xy /∈ X ∨ (xy ∈ Y ∧ c)

Proof of well-formedness:
PutRL:

putl(putr(inl x, c)) = putl(x, false)

= (inl x, false)

putl(putr(inr y, c)) = putl(y, true)

= (inr y, true)

PutLR: There are six cases to consider, corresponding to which of the sets X, Y ,
and X ∩ Y our value is a member of and to whether the complement is true or false.

putr(putl(xy, false)) = putr(inl xy, false)

= (xy, false)

putr(putl(x, false)) = putr(inl x, false)

= (x, false)

putr(putl(y, false)) = putr(inr y, true)

= (y, true)

The cases for when the complement is true are symmetric. �

55

2.5.9 Definition [Another union lens]: Given two sets X and Y , let’s define a
few bijections:

f ∈ X → X \ Y +X ∩ Y
g ∈ Y → X ∩ Y + Y \X
h ∈ X \ Y +X ∩ Y + Y \X → X ∪ Y

f(x) =

{
inl x x /∈ Y
inr x x ∈ Y

g(y) =

{
inl y y ∈ X
inr y y /∈ X

h(inl x) = x

h(inr (inl xy)) = xy

h(inr (inr y)) = y

union ′XY ∈ X + Y ↔ X ∪ Y

union ′XY = bij(f+g);α+;(id+(α+)−1);
(idX ⊕ (unionX∩Y,X∩Y ⊕ idY));
bijh

These definitions are not symmetric in X and Y , because putl prefers to return
an inl value if there have been no tie breakers yet. Because of this preference, neither
union nor union ′ can be used to construct a true codiagonal. However, there are two
useful related constructions, which we discuss below.

2.5.10 Definition [Switch lens]:

switchX ∈ X +X ↔ X

switchX = unionXX

We’ve used union rather than union ′ in this definition, but it actually doesn’t
matter: the two lenses’ tie-breaking methods are equivalent when X = Y :

2.5.11 Lemma:
unionXX ≡ union ′XX

Proof: The relation that equates the states of the two union lenses is a witness:
R = {(b, (((), (b, ())), ())) | b ∈ Bool}. �

56

2.5.12 Definition [Retentive case lens]:

k ∈ X ↔ Z ` ∈ Y ↔ Z

casek,` ∈ X + Y ↔ Z

casek,` = (k ⊕ `); switchX

2.5.13 Definition [Forgetful case lens]:

k ∈ X ↔ Z ` ∈ Y ↔ Z

casefk,` ∈ X + Y ↔ Z

casefk,` = (k ⊕f `); switchX

Lists We can also define a variety of lenses operating on lists. We only consider
mapping here, because in the next section we show how to obtain this and a whole
variety of other functions on lists as instances of a powerful generic theorem, but it
is useful to see one concrete instance first!

Write X? for the set of lists with elements from the set X. Write 〈〉 for the empty
list and x:xs for the list with head x and tail xs. Write Xω for the set of infinite lists
over X. When x ∈ X and ss ∈ Xω, write x:ss ∈ Xω for the infinite list with head x
and tail ss. Write xω ∈ Xω for the infinite list of x’s.

2.5.14 Definition [Retentive list mapping lens]:

` ∈ X ↔ Y

map(`) ∈ X? ↔ Y ?

C = (`.C)ω

missing = (`.missing)ω

putr(x, c) = let 〈x1, . . . , xm〉 = x in
let 〈c1, . . .〉 = c in
let (yi, c

′
i) = `.putr(xi, ci) in

(〈y1, . . . , ym〉 , 〈c′1, . . . , c′m, cm+1, . . .〉)
putl (similar)

The map lens gives us the machinery we need to complete the first example in the
introduction: simply define e? = map(e). Additionally, as we saw in §2.1, there is also
a forgetful variant of the list mapping lens. Indeed, this is the one that corresponds
to the known list mapping operator on asymmetric, state-based lenses [9, 16].

57

2.5.15 Definition [Forgetful list mapping lens]:

` ∈ X ↔ Y

mapf (`) ∈ X? ↔ Y ?

C = `.C?

missing = 〈〉
putr(x, c) = let 〈x1, . . . , xm〉 = x in

let 〈c1, . . . , cn〉 = c in
let 〈cn+1, . . .〉 = (`.missing)ω in
let (yi, c

′
i) = `.putr(xi, ci) in

(〈y1, . . . , ym〉 , 〈c′1, . . . , c′m〉)
putl (similar)

Rather than proving that these two forms of list mapping are lenses, preserve
equivalence, induce functors, and so on, we show that these properties hold for a
generalization of their construction in the next section.

We can make the relationship between the retentive sum and map lenses and the
forgetful sum and map lenses precise; the following two diagrams commute:

Y ?

X?

Unit + Y × Y ?

Unit +X ×X?
bij

idUnit ⊕ (`⊗map(`)) map(`)

bij

Y ?

X?

Unit + Y × Y ?

Unit +X ×X?
bij

idUnit ⊕f (`⊗mapf (`)) mapf (`)

bij

2.6 Iterators
In functional programming, mapping functionals are usually seen as instances of more
general “fold patterns”, or defined by general recursion. In this section, we investigate
to what extent this path can be followed in the world of symmetric lenses.

Allowing general recursive definitions for symmetric lenses may be possible, but in
general, complements change when unfolding a recursive definition; this means that
the structure of the complement of the recursively defined function would itself have

58

to be given by some kind of fixpoint construction. Preliminary investigation suggests
that this is possible, but it would considerably clutter the development—on top of
the general inconvenience of having to deal with partiality.

Therefore, we choose a different path. We identify a “fold” combinator for lists,
reminiscent of the view of lists as initial algebras. We show that several important
lenses on lists—including, of course, the mapping combinator—can be defined with
the help of a fold, and that, due to the self-duality of lenses, folds can be composed
back-to-back to yield general recursive patterns in the style of hylomorphisms [39].

We also discuss iteration patterns on trees and argue that the methodology carries
over to other polynomial inductive datatypes.

2.6.1 Lists

Let fold ∈ Unit + (X×X?)→ X? be the bijection between “unfolded” lists and lists;
fold takes inl () to 〈〉 and inr (x, xs) to x:xs. Note that bijfold ∈ Unit+(X×X?)⇐⇒ X?

is then a bijective arrow in the category lens.

2.6.1.1 Definition [X-list algebra]: An X-list algebra on a set Z is an arrow ` ∈
Unit + (X×Z) ⇐⇒ Z and a weight function w ∈ Z → N such that `.putl(z, c) =
(inr (x, z′), c′) implies w(z′) < w(z). We write T ?X for the functor that sends any lens
k to idUnit ⊕ (idX ⊗ k).

The function w here plays the role of a termination measure. We will be iterating
`.putl , producing a stream of values of type Z, which we would like to guarantee
eventually ends.

2.6.1.2 Theorem [Iteration is well-defined]: For X-list algebra ` on Z, there is
a unique arrow It(`) ∈ X? ⇐⇒ Z such that the following diagram commutes:

T ?X(X?)

T ?X(Z)

X?

Z

bijfold

T ?X(It(`)) It(`)

`

In the terminology of universal algebra, an algebra for a functor F from some category
to itself is simply an object Z and an arrow F (Z)→ Z. An arrow between F -algebras
(Z, f) and (Z ′, f ′) is an arrow u ∈ Z → Z ′ such that f ;u = F (u); f ′. The F -algebras
thus form a category themselves. An initial F -algebra is an initial object in that
category (an initial object has exactly one arrow to each other object, and is unique
up to isomorphism). F -algebras can be used to model a wide variety of inductive
datatypes, including lists and various kinds of trees [51]. Using this terminology,

59

Theorem 2.6.1.2 says that bijfold is an initial object in the subcategory consisting of
those T ?X-algebras for which a weight function w is available.

Before we give the proof, let us consider some concrete instances of the theorem.
First, if k ∈ X ⇐⇒ Y is a lens, then we can form an X-list algebra ` on Y ? by
composing two lenses as follows:

Unit + (X×Y ?) Unit + (Y×Y ?) Y ?
idUnit ⊕ (k ⊗ idY ?) bijfold

A suitable weight function is given by w(ys) = length(ys). The induced lens It(`) ∈
X? ⇐⇒ Y ? is the lens analog of the familiar list mapping function. In fact, substitut-
ing the lens e ∈ X×Y ⇐⇒ Y ×Z (from the introduction) for k in the above diagram,
we find that It(`) is the sneakier variant of the lens e?. (Again, we are ignoring the
important question of alignment here. A hand-written map lens could perform a
more sophisticated alignment analysis to associate “similar” items in a sequence of
puts and recover more appropriate data from the complement; the process described
above results in a simple positional alignment scheme.)

Second, suppose that X = X1+X2 and let Z be X?
1×X?

2 . Writing X+
i for Xi×X?

i ,
we can define isomorphisms

f ∈ (X1 +X2)×X?
1 ×X?

2

→ (X+
1 +X+

2) + (X+
1 ×X+

2 +X+
1 ×X+

2)

g ∈ Unit + ((X+
1 +X+

2) +X+
1 ×X+

2)

→ X?
1 ×X?

2

by distributing the sum and unfolding the list type for f and by factoring the poly-
nomial and folding the list type for g.3

f(inl x1, xs1, 〈〉) = inl (inl (x1, xs1))

f(inl x1, xs1, x2:xs2) = inr (inl ((x1, xs1), (x2, xs2)))

f(inr x2, 〈〉 , xs2) = inl (inr (x2, xs2))

f(inr x2, x1:xs1, xs2) = inr (inr ((x1, xs1), (x2, xs2)))

g(inl ()) = (〈〉 , 〈〉)
g(inr (inl (inl (x1, xs1)))) = (x1 : xs1, 〈〉)
g(inr (inl (inr (x2, xs2)))) = (〈〉 , x2 : xs2)

g(inr (inr ((x1, xs1), (x2, xs2)))) = (x1 : xs1, x2 : xs2)

3The bijections f and g can be written in terms of the associators, symmetries, unfolds, folds, and
so forth that were already introduced, so the lenses bijf and bijg would not have to be defined “out
of whole cloth” as they are here, but these definitions get bogged down in syntax without adding
much value.

60

Then we can createa lens to serve as the basis for a partitioning iterator.

` ∈ Unit + ((X1 +X2)× Z)↔ Z

` = (idUnit ⊕ bijf);
(idUnit ⊕ (idX+

1 +X+
2
⊕ switchX+

1 ×X
+
2

));

bijg

A suitable weight function for ` is given by

w((xs1, xs2)) = length(xs1) + length(xs2).

The lens It(`) ∈ (X1 +X2)? ⇐⇒ X?
1×X?

2 that we obtain from iteration partitions the
input list in one direction and uses a stream of booleans from the state to put them
back in the right order in the other direction. Indeed, It(`) is exactly the partition
lens described in the introductory examples. Composing it with a projection yields
a filter lens. (Alternatively, the filter lens could be obtained directly by iterating a
slightly trickier `.) Consequently, we now have the machinery we need to define comp
from the introduction:

filter = partition; π1〈〉

comp = filter ; filterop

Proof of 2.6.1.2: We define the lens It(`) explicitly.

` ∈ T ?X(Z)↔ Z ∃ suitable w (discussed below)
It(`) ∈ X? ↔ Z

It(`).C = (`.C)ω

It(`).missing = (`.missing)ω

It(`).putr(〈〉 , c:cs) = let (z, c′) = `.putr(inl (), c) in
(z, c′:cs)

It(`).putr(x:xs, c:cs) = let (z, cs′) = It(`).putr(xs, cs) in
let (z′, c′) = `.putr(inr (x, z), c) in
(z′, c′:cs′)

It(`).putl(z, c:cs) = match `.putl(z, c) with
(inl (), c′)→ (〈〉 , c′:cs)
| (inr (x, z′), c′)→

let (xs, cs′) = It(`).putl(z′, cs) in
(x:xs, c′:cs′)

61

Note that the first element of the complement list holds both the complement that is
used when we do a putr of an empty list and the complement that is used for the first
element when we do a putr of a non-empty list. Similarly, the second element of the
complement list holds both the complement that is used at the end of the putr of a
one-element list and the complement that is used for the second element when we do
a putr of a two or more element list.

The recursive definition of It(`).putr is clearly terminating because the first argu-
ment to the recursive call is always a shorter list; the recursive definition of It(`).putl
is terminating because the value of w is always smaller on the arguments to the re-
cursive call. The round-trip laws are readily established by induction on xs and on
w(z), respectively. So this is indeed a lens.

Commutativity of the claimed diagram is a direct consequence of the defining
equations (which have been crafted so as to make commutativity hold).

To show uniqueness, let k ∈ X? ⇐⇒ Z be another lens for which the diagram
commutes—i.e., such that:

T ?X(X?)

T ?X(Z)

X?

Z

bijfold

T ?X(k) k

`

Choose representatives of the equivalence classes k and `—for convenience, call these
representatives k and `. Let R ⊆ k.C × (k.C × `.C) be a simulation relation witness-
ing the commutativity of this diagram (recalling that equality of lens-arrows means
lens-equivalence of representatives). Notice that k.C is the complement of (a repre-
sentative of) the upper path through the diagram, and k.C × `.C is the complement
of (a representative of) the lower path through the diagram. (Strictly speaking, the
complements are Unit × k.C and Unit × Unit × k.C × `.C; using these isomorphic
forms reduces clutter.) Thus, the commutativity of the diagram means:

(k.missing , (k.missing , `.missing)) ∈ R

(d, (d′, c)) ∈ R
k.putr(〈〉 , d) = (z, d1) `.putr(inl (), c) = (z′, c1)

(d1, (d
′, c1)) ∈ R ∧ z = z′

(d, (d′, c)) ∈ R k.putr(x:xs, d) = (z, d1)
k.putr(xs, d′) = (z′, d′1) `.putr(inr (x, z′), c) = (z′′, c1)

(d1, (d
′
1, c1)) ∈ R ∧ z = z′′

(d, (d′, c)) ∈ R
k.putl(z, d) = (〈〉 , d1)

`.putl(z, c) = (inl (), c1) ∧ (d1, (d
′, c1)) ∈ R

62

(d, (d′, c)) ∈ R k.putl(z, d) = (x:xs, d1)

`.putl(z, c) = (inr (x, z′), c1)
∧ k.putl(z′, d′) = (xs, d′1)
∧ (d1, (d

′
1, c1)) ∈ R

The variables c1, z
′, d′1 in the last two rules are existentially quantified.

In order to show that It(`) ≡ k we define a relation S ⊆ It(`).C×k.C inductively
as follows:

(It(`).missing , k.missing) ∈ S

(d, (d′, c)) ∈ R (cs, d′) ∈ S
(c:cs, d) ∈ S

Notice that if (c:cs, d) ∈ S by either one of the rules, then there exists d′ such that
(d, (d′, c)) ∈ R and (cs, d′) ∈ S. In particular, for the first rule, c:cs = It(`).missing
and we choose d′ = k.missing .

It remains to show that S is compatible with putl and putr . So assume that
(c:cs, d) ∈ S, hence (d, (d′, c)) ∈ R and (cs, d′) ∈ S for some d′. We proceed by
induction on length(xs) in the putr cases and by induction on w(z) in the putl cases.
Case for putr of empty list: By definition,

It(`).putr(〈〉 , c:cs) = (z, c′:cs),

where (z, c′) = `.putr(inl (), c). Let (z1, d1) = k.putr(〈〉 , d). Commutativity of the
diagram then tells us that (d1, (d

′, c′)) ∈ R and z1 = z. Since (cs, d′) ∈ S, we can
conclude (c′:cs, d1) ∈ S, as required.
Case for putr of nonempty list: This time, the definition gives us

It(`).putr(x:xs, c:cs) = (z′, c′:cs′),

where
(z, cs′) = It(`).putr(xs, cs)
(z′, c′) = `.putr(inr (x, z), c).

Let
(z1, d1) = k.putr(x:xs, d)
(z2, d2) = k.putr(xs, d′)
(z3, c3) = `.putr(inr (x, z2), c).

Inductively, we get z2 = z and (cs′, d2) ∈ S. Thus, z3 = z′ and c3 = c′. From
commutativity we get z1 = z′ and (d1, (d2, c

′)) ∈ R, so (c′:cs′, d1) ∈ S and we are
done.
Case where It .putl on z returns the empty list: Suppose we have It(`).putl(z, c:cs) =
(〈〉 , c′:cs), where (inl (), c′) = `.putl(z, c). Let k.putr(z, d) = (xs, d1). Commutativity
of the diagram asserts that (d1, (c

′, d′)) ∈ R and xs = 〈〉. Now, since (cs, d′) ∈ S, we
can conclude (c′:cs, d1) ∈ S, as required.

63

Case where It .putl on z returns a non-empty list: Suppose we have

It(`).putl(z, c:cs) = (x:xs, c′:cs′)

(inr (x, z′), c′) = `.putl(z, c)

(xs, cs′) = It(`).putl(z′, cs).

Since `.putl(z, c) returns an inr we are in the situation of the fourth rule above
and we have k.putl(z, d) = (x:xs′, d1) for some xs′ and d1. Furthermore, we have
k.putl(z′, d′) = (xs′, d′1) and (d1, (d

′
1, c1)) ∈ R. The induction hypothesis applied to

z′ in view of w(z′) < w(z) then yields xs′ = xs and also (cs′, d′1) ∈ S. It then follows
(c′:cs′, d1) ∈ S and we are done. �

2.6.1.3 Corollary [Hylomorphism]: Suppose kop is an X-list algebra on W and
` is an X-list algebra on Z. Then there is a lens Hy(k, `) ∈ W ⇐⇒ Z such that the
following diagram commutes:

T ?X(W)

T ?X(Z)

W

Z

k

T ?X(Hy(k, `)) Hy(k, `)

`

Proof: Define Hy(k, `) as the composition It(kop)op ; It(`). �

One can think of Hy(k, `) as a recursive definition of a lens. The lens k tells whether a
recursive call should be made, and if so, produces the argument for the recursive call
and some auxiliary data. The lens ` then describes how the result is to be built from
the result of the recursive call and the auxiliary data. This gives us a lens version
of the hylomorphism pattern from functional programming [39]. Unfortunately, we
were unable to prove or disprove the uniqueness of Hy(k, `).

We have not formally studied the question of whether It(`) is actually an initial
algebra, i.e., whether it can be defined and is unique even in the absence of a weight
function. However, this seems unlikely, because then it would apply to the case
where Z is the set of finite and infinite X lists and ` the obvious bijective lens. The
putl component of It(`) would then have to truncate an infinite list, which would
presumably break the commuting square.

2.6.2 Other Datatypes

Analogs of Theorem 2.6.1.2 and Corollary 2.6.1.3 are available for a number of other
functors, in particular those that are built up from variables by + and ×. All of these
can also be construed as containers (see §2.7), but the iterator and hylomorphism pat-
terns provide more powerful operations for the construction of lenses than the map-
ping operation available for general containers. Moreover, the universal property of

64

the iterator provides a modular proof method, allowing one to deduce equational laws
which can be cumbersome to establish directly because of the definition of equality as
behavioral equivalence. For instance, we can immediately deduce that list mapping is
a functor. Containers, on the other hand, subsume datatypes such as labeled graphs
that are not initial algebras.

Iterators with multiple arguments The list iterator allows us to define a lens
between X? and some other set Z, but Theorem 2.6.1.2 cannot be directly used
to define a lens between X? × Y and Z (think of Y as modeling parameters). In
standard functional programming, a map from X? × Y to Z is tantamount to a map
from X? to Y→Z, so iteration with parameters is subsumed by the parameterless
case. Unfortunately, lens does not seem to have the function spaces required to play
this trick.

Therefore, we introduce the functor T ?X,Y (Z) = Y + X × Z and notice that
T ?X,Y (X? × Y) ' X? × Y . Just as before, an algebra for that functor is a lens
` ∈ T ?X,Y (Z) ↔ Z together with a function w : Z → N such that `.putl(z, c) =
(inr (x, z′), c′) implies w(z′) < w(z).

As an example, let Y = Z = X? and define

` ∈ X? +X ×X? ↔ X?

C = Bool
missing = true

`.putr(inl xs, b) = (xs, true)
`.putr(inr (x, xs), b) = (x:xs, false)

`.putl(〈〉 , b) = (inl 〈〉 , true)
`.putl(x:xs, true) = (inl (x:xs), true)
`.putl(x:xs, false) = (inr (x, xs), false)

Iteration yields a lens X? ×X? ↔ X? that can be seen as a bidirectional version of
list concatenation. The commuting square for the iterator corresponds to the famil-
iar recursive definition of concatenation: concat(〈〉 , ys) = ys and concat(x:xs, ys) =
x:concat(xs, ys). In the bidirectional case considered here the complement will auto-
matically retain enough information to allow splitting in the putl -direction.

We can use a version of Corollary 2.6.1.3 for this data structure to implement tail
recursive constructions. Consider, for instance, the T ?Unit ,X?-algebra k : X? + X? ×
X? ↔ X? ×X? where

k.putl((acc, 〈〉), true) = (inl acc, true)
k.putl((acc, x:xs), true) = (inr (x:acc, xs), true)
k.putl((acc, xs), false) = (inr (acc, xs), false).

65

Together with the T ?Unit ,X?-algebra switchX? : X? + X? ↔ X?, this furnishes a bidi-
rectional version of the familiar tail recursive list reversal that sends (acc, xs) to
xsrevacc.

Trees For set X let Tree(X) be the set of binary X-labeled trees given inductively
by leaf ∈ Tree(X) and x ∈ X, ` ∈ Tree(X), r ∈ Tree(X)⇒ node(x, `, r) ∈ Tree(X).
Consider the endofunctor T TreeX given by T TreeX (Z) = Unit + X × Z × Z. Let c ∈
TTree
X (Tree(X))↔ Tree(X) denote the obvious bijective lens.
An X-tree algebra is a lens ` ∈ TTree

X (Z)↔ Z and a function w ∈ Z → N with the
property that if `.putl(z, c) = (inr (x, zl, zr), c

′) then w(zl) < w(z) and w(zr) < w(z).
The bijective lens c is then the initial object in the category of X-tree algebras; that
is, every X-tree algebra on Z defines a unique lens in Tree(X)↔ Z.

Consider, for example, the concatenation lens concat : X? × X? ↔ X?. Let
concat ′ : Unit +X×X?×X? ↔ X? be the lens obtained from concat by precomposing
with the fold-isomorphism and the terminal lens term〈〉. Intuitively, this lens sends
inl () to 〈〉 and x, xs, xs′ to x:xs@xs′, using the complement to undo this operation
properly. This lens forms an example of a tree algebra (with number of nodes as
weight functions) and thus iteration furnishes a lens Tree(X) ↔ X? which does a
pre-order traversal, keeping enough information in the complement to rebuild a tree
from a modified traversal.

The hylomorphism pattern can also be applied to trees, yielding the ability to
define symmetric lenses by divide-and-conquer, i.e., by dispatching one call to two
parallel recursive calls whose results are then appropriately merged.

2.7 Containers
The previous section suggests a construction for a variety of operations on datatypes
built from polynomial functors. Narrowing the focus to the very common “map”
operation, we can generalize still further, to any kind of container functor [1], i.e.
a normal functor in the terminology of Hasegawa [20] or an analytic functor in the
terminology of Joyal [33]. (These structures are also related to the shapely types of
Jay and Cockett [27].)

2.7.1 Definition [Container]: A container consists of a set I together with an I-
indexed family of sets B ∈ I → Set .

Each container (I, B) gives rise to an endofunctor FI,B on set whose object part
is defined by FI,B(X) =

∑
i∈I B(i) → X. For example, if I = N and B(n) =

{0, 1, . . . , n−1}, then FI,B(X) is X? (up to isomorphism). Or, if I = Tree(Unit)
is the set of binary trees with trivial labels and B(i) is the set of nodes of i, then
FI,B(X) is the set of binary trees labeled with elements of X. In general, we can
think of I as a set of shapes and, for each shape i ∈ I, we can think of B(i) as the

66

set of “positions” in shape i. So an element (i, f) ∈ FI,B(X) consists of a shape i and
a function f assigning an element f(p) ∈ X to each position p ∈ B(i).

The arrow part of FI,B maps a function u ∈ X → Y to a function FI,B(u) ∈
FI,B(X)→ FI,B(Y) given by (i, f) 7→ (i, f ;u).

Now, we would like to find a way to view a container as a functor on the category
of lenses. In order to do this, we need a little extra structure.

2.7.2 Definition: A container with ordered shapes is a pair (I, B) satisfying these
conditions:

1. I is a partial order with binary meets. We say i is a subshape of j whenever
i ≤ j.

2. B is a functor from (I,≤) viewed as a category (with one object for each element
and an arrow from i to j iff i ≤ j) into set. When B and i are understood, we
simply write b|i′ for B(i ≤ i′)(b) if b ∈ B(i) and i ≤ i′.

3. If i and i′ are both subshapes of a common shape j and we have positions
b ∈ B(i) and b′∈B(i′) with b|j = b′|j, then there must be a unique b0∈B(i∧i′)
such that b = b0|i and b′ = b0|i′. Thus such b and b′ are really the same position.
In other words, every diagram of the following form is a pullback:

B(i ∧ i′)

B(i′)

B(i)

B(j)

B(i ∧ i′ ≤ i)

B(i ∧ i′ ≤ i′) B(i ≤ j)

B(i′ ≤ j)

If i ≤ j, we can apply the instance of the pullback diagram where i = i′ and hence
i ∧ i′ = i and deduce that B(i ≤ j) ∈ B(i)→ B(j) is always injective.

For example, in the case of trees, we can define t ≤ t′ if every path from the root
in t is also a path from the root in t′. The arrow part of B then embeds positions of
a smaller tree canonically into positions of a bigger tree. The meet of two trees is the
greatest common subtree starting from the root.

67

2.7.3 Definition [Container mapping lens]:

` ∈ X ↔ Y

FI,B(`) ∈ FI,B(X)↔ FI,B(Y)

C =
{t ∈

∏
i∈I B(i)→ `.(C) |

∀i, i′. i ≤ i′ ⊃ ∀b∈B(i). t(i′)(b|i′) = t(i)(b)}
missing(i)(b) = `.missing
putr((i, f), t) =
let f ′(b) = fst(`.putr(f(b), t(i)(b))) in
let t′(j)(b) =
if ∃b0 ∈ B(i ∧ j). b0|j = b
then snd(`.putr(f(b0|i), t(j)(b)))
else t(j)(b)

in

((i, f ′), t′)
putl (similar)

(Experts will note that C is the limit of the contravariant functor i 7→ (B(i)→ `.(C)).
Alternatively, we can construe C as the function space D → `.(C) where D is the
colimit of the functor B. Concretely, D is given by

∑
i∈I B(i) modulo the equivalence

relation ∼ generated by (i, b) ∼ (i′, b′) whenever i ≤ i′ and b′ = B(i ≤ i′)(b).)

Proof of well-formedness: To show that this definition is a lens, we should begin
by checking that it is well typed—i.e., that the t′ we build in putr really lies in the
complement (the argument for putl will be symmetric). So suppose that j ≤ j′ and
b∈B(j). There are two cases to consider:

1. b = b0|j for some (unique) b0∈B(i∧j). Then b|j′ = b0|j′ so we are in the “then”
branch in both t′(j′)(b|j′) and t′(j)(b), and the results are equal by the fact that
t ∈ C.

2. b is not of the form b0|j for some (unique) b0∈B(i∧j). We claim that then b|j′
is not of the form b1|j′ for any b1∈B(i∧j′), so that we are in the “else” branch
in both applications of t′. Since t ∈ C, this will conclude the proof of this
case. To see the claim, assume for a contradiction that b|j′ = b1|j′ for some
b1∈B(i∧j′). Applying the pullback property to the situation i∧j ≤ j ≤ j′ and
i∧j ≤ i∧j′ ≤ j′ yields a unique b0∈B(i∧j) such that b = b0|j and b1 = b0|(i∧j′),
contradicting the assumption.

It now remains to verify the lens laws. We will check PutRL; the PutLR law can
be checked similarly. Suppose that

FI,B(`).putr((i, f), t) = ((i, fr), tr)

FI,B(`).putl((i, fr), tr) = ((i, frl), trl)

68

We must check that frl = f and trl = tr.
Let us check that frl = f . Choose arbitrary b ∈ B(i). Then

frl(b) = fst(`.putl(fr(b), tr(i)(b))).

Inspecting the definition of tr, we find that tr(i)(b) = snd(`.putr(f(b), t(i)(b))), and
from the definition of fr, we find that fr(b) = fst(`.putr(f(b), t(i)(b))). Together,
these two facts imply that

frl(b) = fst(`.putl(`.putr(f(b), t(i)(b))))

Applying PutRL to `, this reduces to frl(b) = f(b), as desired.
Finally, we must show that trl = tr. Choose arbitrary j ∈ I and b ∈ B(j). There

are two cases: either we have b0|j = b or not.

• Suppose b0|j = b. Then we find that

trl(j)(b) = snd(`.putl(fr(b0|i), tr(j)(b)))

Now, inspecting the definitions of fr and tr, we find that this amounts to saying

trl(j)(b) = snd(`.putl(`.putr(f(b0|i), t(j)(b))))

Furthermore, we have tr(j)(b) = snd(`.putr(f(b0|i), t(j)(b))), so the PutRL law
applied to ` tells us that trl(j)(b) = tr(j)(b), as desired.

• Otherwise, there is no b0 with that property. Then we find that trl(j)(b) =
tr(j)(b) immediately from the definition of trl. �

Proof of preservation of equivalence: If R witnesses k ≡ `, then we relate func-
tions that yield related outputs for each possible input:

RI,B = {(tk, t`) | ∀i, b. tk(i)(b) R t`(i)(b)}

For any i and b, we can show

FI,B(k).missing(i)(b) = k.missing

k.missing R `.missing

`.missing = FI,B(`).missing(i)(b)

so the missing elements are related by RI,B. Now suppose the following relationships
hold:

tk RI,B t`

FI,B(k).putr((i, f), tk) = ((i, fk), t
′
k)

FI,B(`).putr((i, f), t`) = ((i, f`), t
′
`)

69

We must show that fk = f` and that t′k RI,B t′`. The former follows directly; for
any b, we have fk(b) = f`(b) because tk(i)(b) R t`(i)(b). For the latter, consider an
arbitrary j and b. There are two cases. If b0|j = b for some b0 ∈ B(i ∧ j), then
t′k(j)(b) R t′`(j)(b) because k and ` preserve R-states; otherwise, t′k(j)(b) R t′`(j)(b)
because t′k(j)(b) = tk(j)(b) and t′`(j)(b) = t`(j)(b). �

Proof of functoriality: The complete relation (which has only one element) wit-
nesses the equivalence FI,B(idX) ≡ idFI,B(X). The relation

{(t, (tl, tr)) | ∀i, b. t(i)(b) = (tl(i)(b), tr(i)(b))}

witnesses the equivalence FI,B(k; `) ≡ FI,B(k);FI,B(`). �

For the case of lists, this mapping lens coincides with the retentive map that we
obtained from the iterator in §2.6. In general, two pieces of data synchronized by one
of these mapping lenses will have exactly the same shape; any shape change to one
of the sides will be precisely mirrored in the other side. For example, the tree version
of this lens will transport the deletion of a node by deleting the node in the same
position on the other side. We believe it should also be possible to define a forgetful
version where the complement is just FI,B(`.C).

The notion of combinatorial species provides an alternative to the container frame-
work. One of their attractions is that there are species corresponding to containers
whose B(i) → X family is quotiented by some equivalence relation; we can obtain
multisets in this way, for example. However, we have not explored this generalization
in the case of lenses, because it is then not clear how to match up positions.

2.8 Asymmetric Lenses as Symmetric Lenses
The final step in our investigation is to formalize the connection between symmetric
lenses and the more familiar asymmetric ones, and to show how known constructions
on asymmetric lenses correspond to the constructions we have considered.

Write X a↔ Y for the set of asymmetric lenses from X to Y (using the first
presentation of asymmetric lenses from §2.1, with get , put , and create components).

2.8.1 Definition [Symmetrization]: Every asymmetric lens can be embedded in
a symmetric one.

` ∈ X a↔ Y

`sym ∈ X ↔ Y

C = {f ∈ Y → X | ∀y ∈ Y. `.get(f(y)) = y}
missing = `.create
putr(x, f) = (`.get(x), fx)
putl(y, f) = let x = f(y) in (x, fx)

70

(Here, fx(y) means `.put(y, x).) Viewing X as the source of an asymmetric lens (and
therefore as having “more information” than Y), we can understand the definition of
the complement here as being a value from X stored as a closure over that value. The
presentation is complicated slightly by the need to accommodate the situation where
a complete X does not yet exist—i.e. when defining missing—in which case we can
use create to fabricate an X value out of a Y value if necessary.

Proof of well-formedness: The CreateGet law guarantees that `.create ∈ C
and the PutGet law guarantees that fx ∈ C for all x ∈ X, so we need merely check
the round-trip laws.
PutRL:

putl(putr(x, c)) = putl(`.get(x), fx)

= let x′ = fx(`.get(x)) in (x′, fx′)

= let x′ = `.put(`.get(x), x) in (x′, fx′)

= (x, fx)

PutLR:

putr(putl(y, f)) = putr(let x = f(y) in (x, fx))

= putr(f(y), ff(y))

= (`.get(f(y)), ff(y))

= (y, ff(y)) �

2.8.2 Definition [Asymmetric lenses]: Here are several useful asymmetric lenses
(based on string lenses from [9]).

copyX ∈ X
a↔ X

get(x) = x
put(x, x′) = x
create(x) = x

v ∈ X
aconstv ∈ X

a↔ Unit

get(x) = ()
put((), x) = x
create(()) = v

k ∈ X a↔ Y ` ∈ Y a↔ Z

k; ` ∈ X a↔ Z

get(x) = `.get(k.get(x))
put(z, x) = k.put(`.put(z, k.get(x)), x)
create(z) = k.create(`.create(z))

71

k ∈ X a↔ Y ` ∈ Z a↔ W

k · ` ∈ X × Z a↔ Y ×W

get(x, z) = (k.get(x), `.get(z))
put((y, w), (x, z)) = (k.put(y, x), `.put(w, z))
create((y, w)) = (k.create(y), `.create(w))

k ∈ X a↔ Y ` ∈ Z a↔ W

k|` ∈ X + Z
a↔ Y ∪W

get(inl x) = k.get(x)
get(inr z) = `.get(z)

put(yw, inl x) =

{
inl k.put(yw, x) yw ∈ Y
inr `.create(yw) yw ∈ W \ Y

put(yw, inr z) =

{
inr `.put(yw, z) yw ∈ W
inl k.create(yw) yw ∈ Y \W

create(yw) =

{
inl k.create(yw) yw ∈ Y
inr `.create(yw) yw ∈ W \ Y

` ∈ X a↔ Y

`? ∈ X? a↔ Y ?

get(〈x1, . . . , xn〉) = 〈`.get(x1), . . . , `.get(xn)〉
put(〈y1, . . . , ym〉 , 〈x1, . . . , xn〉)

= 〈x′1, . . . , x′m〉

where x′i =

{
`.put(yi, xi) i ≤ min(m,n)
`.create(yi) n+ 1 ≤ i

create(〈y1, . . . , yn〉) = 〈`.create(y1), . . . , `.create(yn)〉

2.8.3 Theorem: The symmetric embeddings of these lenses correspond nicely to
definitions from earlier in this chapter:

copysym
X ≡ idX (2.8.1)

(k; `)sym ≡ ksym ; `sym (2.8.2)
aconst symx ≡ termx (2.8.3)
(k · `)sym ≡ ksym ⊗ `sym (2.8.4)
(k|`)sym ≡ (ksym ⊕f `sym); union (2.8.5)
(`?)sym ≡ mapf (`sym) (2.8.6)

72

The first two show that (−)sym is a functor.

Proof: Throughout the proofs, we will use a to refer to the left-hand side of the
equivalence, and b to refer to the right-hand side.

1. Defining f to be the identity function f(x) = x, the singleton relation f R
() witnesses the equivalence. Since a.missing(x) = x, we have a.missing R
b.missing . Furthermore:

a.putr(x, f) = (x, x′ 7→ copyX .put(x′, x))

= (x, x′ 7→ x′)

= (x, f)

b.putr(x, ()) = (x, ())

a.putl(x, f) = (f(x), x′ 7→ copyX .put(x′, x))

= (x, f)

b.putl(x, ()) = (x, ())

This establishes that a.putr ∼R b.putr and that a.putl ∼R b.putl .

2. The relation
R = {(fk`, (fk, f`)) | fk` = f`; fk}

witnesses the equivalence. The fact that a.missing R b.missing is immediate
from the definitions.

Now, to show that a.putr ∼R b.putr , suppose fk` R (fk, f`). We first compute
a.putr(x, fk`).

a.putr(x, fk`) = ((k; `).get(x), z 7→ (k; `).put(z, x))

= (`.get(k.get(x)),

z 7→ k.put(`.put(z, k.get(x)), x))

= (xa, f
′
k`)

And now b.putr(x, (fk, f`)):

ksym .putr(x, fk) = (k.get(x), y 7→ k.put(y, x))

`sym .putr(k.get(x), f`) = (`.get(k.get(x)),

z 7→ `.put(z, k.get(x)))

b.putr(x, (fk, f`)) = (xb, (f
′
k, f

′
`))

73

It’s now clear that

f ′k(f
′
`(z)) = f ′k(`.put(z, k.get(x)))

= k.put(`.put(z, k.get(x)), x)

= f ′k`(z)

and that xa = xb, so a.putr ∼R b.putr .

Finally, to show that a.putl ∼R b.putl , suppose again that fk` R (fk, f`).

a.putl(z, fk`) = let x = fk`(z) in

(x, z′ 7→ (k; `).put(z′, x))

= let x = fk`(z) in

(x, z′ 7→ k.put(`.put(z′, k.get(x)), x))

Similarly,

`sym .putl(z, f`) = let y = f`(z) in

(y, z′ 7→ `.put(z′, y))

ksym .putl(f`(z), fk) = let x = fk(f`(z)) in

(x, y′ 7→ k.put(y′, x))

b.putl(z, (fk, f`)) = (fk(f`(z)),

(y′ 7→ k.put(y′, fk(f`(z))),

z′ 7→ `.put(z′, f`(z))))

Now, we want to show that the first parts of the outputs are equal, that is, that
fkl(z) = fk(f`(z)), which is immediate from fkl R (fk, f`), and that the second
parts of the outputs are related:

f ′k(f
′
`(z
′)) = f ′k(`.put(z, f`(z)))

= k.put(`.put(z, f`(z)), fk(f`(z)))

Observing that

k.get(fk(f`(z))) = f`(z) because fk ∈ ksym .C
fk(f`(z)) = fk`(z) because fk` R (fk, f`),

that last line becomes

f ′k(f
′
`(z
′)) = k.put(`.put(z, k.get(fk`(z))), fk`(z))

= f ′k`(z
′)

74

so the second parts of the outputs are related after all, and a.putl ∼R b.putl .

3. The relation
R = {(() 7→ c, c) | c ∈ X}

witnesses the equivalence. Since a.missing = () 7→ x and b.missing = x, we see
a.missing R b.missing .

To show that a.putr ∼R b.putr , choose arbitrary x, c ∈ X and define fc(()) = c:

a.putr(x, fc) = ((), () 7→ x)

b.putr(x, c) = ((), x)

These clearly satisfy () = () and (() 7→ x) R x, so we can conclude that
a.putr ∼R b.putr .

To show that a.putl ∼R b.putl , choose arbitrary c ∈ X and define fc(()) = c as
before. Then:

a.putl((), fc) = (fc(()), u 7→ aconstx.put(u, fc(()))

= (c, u 7→ c)

= (c, () 7→ c)

b.putl((), c) = (c, c)

These again clearly satisfy c = c and (() 7→ c) R c, so b.putl ∼R b.putl .

4. The relation

R = {(fk`, (fk, f`)) | ∀y, w.fk`(y, w) = (fk(y), f`(w))}

witnesses the equivalence. We can compute

a.missing = (y, w) 7→ (k.create(y), `.create(w))

b.missing = (y 7→ k.create(y), w 7→ `.create(w)),

so clearly a.missing R b.missing .

Let us show that a.putr ∼R b.putr . Choose (x, z) ∈ X × Z and arbitrary
fk`, fk, f` (we will not need the assumption that fk` R (fk, f`)). Then:

a.putr((x, z), fk`) = ((k.get(x), `.get(z)),

(y, w) 7→ (k.put(y, x), `.put(w, z)))

b.putr((x, z), (fk, f`)) = ((k.get(x), `.get(z)),

(y 7→ k.put(y, x), w 7→ `.put(w, z))

75

It’s clear that the first elements of these tuples are equal, and the second ele-
ments are just as clearly related by R, so it is indeed true that a.putr ∼R b.putr .

Similarly, choose (y, w) ∈ Y ×W and suppose fk` R (fk, f`) – which in particular
means that fk`(y, w) = (fk(y), f`(w)). Then we can define a few things:

(va, fa) = a.putl((y, w), fk`)

= let (x, z) = fk`(y, w) in

((x, z), (y′, w′) 7→ (k.put(y′, x), `.put(w′, z))

= let (x, z) = (fk(y), f`(w)) in

((x, z), (y′, w′) 7→ (k.put(y′, x), `.put(w′, z))

= ((fk(y), f`(w)),

(y′, w′) 7→ (k.put(y′, fk(y)), `.put(w′, f`(w))))

(vb, fb) = b.putl((y, w), (fk, f`))

= let x = fk(y) in

let z = f`(w) in

((x, z), (y′ 7→ k.put(y′, x), w′ 7→ `.put(w′, z)))

= ((fk(y), f`(w)),

(y′ 7→ k.put(y′, fk(y)), w′ 7→ `.put(w′, f`(w))))

So va = vb and fa R fb – that is, a.putl ∼R b.putl .

5. Suppose k ∈ X a↔ Y and ` ∈ Z a↔ W . Define the following functions:

g ∈ ((Y → X) + (W → Z))× (Y ∪W)→ X + Z

g(inl fk, yw) =

{
inl fk(yw) yw ∈ Y
inr `.create(yw) yw ∈ W \ Y

g(inr f`, yw) =

{
inr f`(yw) yw ∈ W
inl k.create(yw) yw ∈ Y \W

tag ∈ (Y → X) + (W → Z)→ Bool

tag(inl fk) = false

tag(inr f`) = true

76

Then we can define the relation

R = {(g(f), (f, tag(f))) | f ∈ (ksym ⊕f `sym).C}.

It is tedious but straightforward to verify that this witnesses the equivalence.

6. (`∗)sym .C comprises functions f : Y ∗ → X∗ such that whenever f([y1, . . . , yn]) =
[x1, . . . , xm] we can conclude m = n and `.get(xi) = yi.

The complement mapf (`sym).C on the other hand comprises lists of functions
[f1, . . . , fn] where fi : Y → X and `.get(fi(y)) = y. Relate two such com-
plements f and [f1, . . . , fn] if f([y1, . . . , ym]) = [x1, . . . , xm] implies xi = fi(yi)
when i ≤ n and xi = `.create(yi) otherwise.

Clearly, the two “missings” are thus related and it is also easy to see that putr is
respected. As for the putl direction consider that f and [f1, . . . , fn] are related
and that ys = [y1, . . . , ym] is do be putl -ed. Let [x1, . . . , xk] be the result in
the (f ∗)sym direction. It follows k = m and [x1, . . . , xm] = f([y1, . . . , ym]). If
[x′1, . . . , x

′
m] is the result in the mapf (`sym) direction then x′i = fi(yi) if i ≤ n

and x′i = `.create(yi) otherwise. Now xi = x′i follows by relatedness.

The new (`∗)sym complement then is λys.(`∗).put(ys, xs). The new mapf (`sym)
complement is [g1, . . . , gm] where gi(y) = `.put(xi, y). These are clearly related
again. �

We suspect that there might be an asymmetric fold construction similar to our
iteration lens above satisfying an equivalence like

fold(`)sym ≡ It(`sym),

but have not explored this carefully.
The (−)sym functor is not full—that is, there are some symmetric lenses which are

not the image of any asymmetric lens. Injection lenses, for example, have no analog in
the category of asymmetric lenses, nor do either of the example lenses presented in the
introduction. However, we can characterize symmetric lenses in terms of asymmetric
ones in a slightly more elaborate way.

2.8.4 Theorem [Lenses are spans]: Given any arrow ` of lens, there are asym-
metric lenses k1, k2 such that

(ksym1)op ; ksym2 ≡ `.

This suggests that the category lens could be constructed from spans in alens. A
full account of the machinery necessary to realize this approach is given by Johnson
and Rosebrugh [31]. It is quite involved for two reasons: first, composition of spans is
typically given via a pullback construction, but pullbacks in the appropriate category

77

do not always exist, and second, one must develop a span-based analog for our lens
equivalence to retain associativity of composition.

To see this, we need to know how to “asymmetrize” a symmetric lens.

2.8.5 Definition [Asymmetrization]: We can view a symmetric lens as a pair of
asymmetric lenses joined “tail to tail” whose common domain is consistent triples.
For any lens ` ∈ X ↔ Y , define

S` = {(x, y, c) ∈ X × Y × `.C | `.putr(x, c) = (y, c)}.

Now define:

` ∈ X ↔ Y

`asymr ∈ S`
a↔ X

get((x, y, c)) = x
put(x′, (x, y, c)) = let (y′, c′) = `.putr(x′, c)

in (x′, y′, c′)
create(x) = let (y, c) = `.putr(x, `.missing)

in (x, y, c)

` ∈ X ↔ Y

`asyml ∈ S`
a↔ Y

get((x, y, c)) = y
put(y′, (x, y, c)) = let (x′, c′) = `.putl(y′, c)

in (x′, y′, c′)
create(y) = let (x, c) = `.putl(y, `.missing)

in (x, y, c)

Proof of well-formedness: We show only that `asymr is well-formed; the proof for
`asyml is similar.
GetPut:

put(get((x, y, c)), (x, y, c)) = put(x, (x, y, c))

= let (y′, c′) = `.putr(x, c)

in (x, y′, c′)

= (x, y, c)

The final equality is justified because (x, y, c) is a consistent triple.

78

PutGet:

get(put(x′, (x, y, c))) = let (y′, c′) = `.putr(x′, c)

in get((x′, y′, c′))

= x′

CreateGet:

get(create(x)) = let (y, c) = `.putr(x, `.missing)

in get((x, y, c))

= x

In addition to the three round-trip laws, we must show that put and create yield
consistent triples. But this is clear: the PutR2 law is exactly what we need. �

Proof of 2.8.4: Given arrow [`], choose k1 = `asymr and k2 = `asyml . Writing `r for
((`asymr)sym)op and `l for (`asyml)sym , we then need to show that `r; `l ≡ `. Define two
functions:

fc(x) = let (y, c′) = `.putr(x, c) in (x, y, c′)

gc(y) = let (x, c′) = `.putl(y, c) in (x, y, c′)

Then the relation R = {((fc, gc), c) | c ∈ C} witnesses the equivalence. We can check
the definitions to discover that

`r.missing = `asymr .create = f`.missing

`l.missing = `asyml .create = g`.missing

and hence that (`r; `l).missing R `.missing .
We also need to show that (`r; `l).putr and `.putr are well-behaved with respect

to R. Suppose `.putr(x, c) = (y, c′); then we need to show that

(`r; `l).putr(x, (fc, gc)) = (y, (fc′ , gc′)).

79

First we compute `r.putr(x, fc):

`r.putr(x, fc) = ((`asymr)sym)op .putr(x, fc)

= (`asymr)sym .putl(x, fc)

= let t = fc(x) in (t, x′ 7→ `asymr .put(x′, t))

= let (y, c′) = `.putr(x, c) in

((x, y, c′), x′ 7→ `asymr .put(x′, (x, y, c′)))

= ((x, y, c′), x′ 7→ `asymr .put(x′, (x, y, c′)))

= ((x, y, c′), fc′)

We then compute `l.putr((x, y, c′), gc):

`l.putr((x, y, c′), gc) = (`asyml)sym .putr((x, y, c′), gc)

= (`asyml .get((x, y, c′)),

y′ 7→ `asyml .put(y′, (x, y, c′)))

= (y, y′ 7→ `asyml .put(y′, (x, y, c′)))

= (y, gc′)

We conclude from this that (`r; `l).putr(x, (fc, gc)) = (y, (fc′ , gc′)) as desired.
The argument that (`r; `l).putl and `.putl are well-behaved with respect to R is

almost identical. �

2.9 Conclusion
We have proposed the first notion of symmetric bidirectional transformations that
supports composition. Composability opens up the study of symmetric bidirectional
transformations from a category-theoretic perspective. The category of symmetric
lenses is self-dual and has the category of bijections and that of asymmetric lenses
each as full subcategories. We have surveyed the structure of this category and found
it to admit tensor product structures that are the Cartesian product and disjoint
union on objects. We have also investigated data types both inductively and as
“containers” and found the category of symmetric lenses to support powerful mapping
and folding constructs. In the next chapter, we will extend this approach to address
performance—significantly reducing the amount of information a lens must process—
and alignment—giving precise details about the correspondence between old and new
copies of a complex repository.

80

Chapter 3

Edit Lenses

3.1 Overview
Before diving into the technicalities of edit lenses, let’s take a brief tour of the main
ideas via some examples. Figure 3.1 demonstrates a simple use of edit lenses to
synchronize two repositories. In part (a), we see the initial repositories, which are in a
synchronized state. On the left, the repository is a list of records describing composers’
birth and death years; on the right, a list of records describing the same composers’
countries of origin. In part (b), the user interacting with the left-hand repository
decides to add a new composer, Monteverdi, at the end of the list. This change is
described by the edit script ins(3); mod(3, (“Monteverdi”, “1567-1643”)). The script
says to first insert a dummy record at index three, thenmodify this record by replacing
the left field with “Monteverdi” and replacing the right field with “1567-1643”. (One
could of course imagine other edit languages where the insertion would be done in
one step. We represent it this way because this is closer to how our generic “container
mapping” combinator in §3.4 will do things.) The lens connecting the two repositories
now converts this edit script into a corresponding edit script that adds Monteverdi
to the right-hand repository, shown in part (c): ins(3); mod(3, (“Monteverdi”, 1)).
Note that the translated mod command overwrites the name component but leaves
the country component with its default value, “?country?”. This is the best it can
do, since the edit was in the left-hand repository, which doesn’t mention countries.
Later, an eagle-eyed editor notices the missing country information and fills it in, at
the same time correcting a spelling error in Schumann’s name, as shown in (d). In
part (e), we see that the lens discards the country information when translating the
edit from right to left, but propagates the spelling correction.

Of course, a particular new repository state can potentially be achieved by many
different edits, and these edits may be translated differently. Consider part (f) of
Figure 3.1, where the left-hand repository ends up with a row for Monteverdi at the
beginning of the list, instead of at the end. Two edit scripts that achieve this effect are
shown. The upper script deletes the old Monteverdi record and inserts a brand new

81

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

(a) initial repositories

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Shumann, Germany

ins(3);
mod(3, (“Monteverdi”, “1567-1643”))

(b) a new composer is added to one repository

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

ins(3);
mod(3, (“Monteverdi”, 1))

(c) the lens adds the new composer to the other repository

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

mod(3, (1, "Italy"));
mod(2, ("Schumann", 1))

(d) the curator makes some corrections

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

1;
mod(2, ("Schumann", 1))

some text(e) the lens transports a small edit

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, ?country?
Schubert, Austria
Schumann, Germany

del(3); ins(1);
mod(1, (“Monteverdi”, “1567-1643”))

del(3); ins(1);
mod(1, (“Monteverdi”, 1))

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, Italy
Schubert, Austria
Schumann, Germany

reorder(3,1,2) reorder(3,1,2)

(f) two different edits with the same effect on the left

Figure 3.1: A simple (complement-less) edit lens in action.

82

one (which happens to have the same data) at the top; the lower script rearranges
the order of the list. The translation of the upper edit leaves Monteverdi with a
default country, while the lower edit is translated to a rearrangement, preserving all
the information associated with Monteverdi.

We do not address the question of where these edits come from or who decides,
in cases like part (f), which of several possible edits is intended. As argued in [7],
answers to these questions will tend to be intertwined with the specifics of particular
editing and/or diffing tools and will tend to be messy, heuristic, and domain-specific—
unpromising material for a foundational theory. Rather, our aim is to construct a
theory that shows how edits, however generated, can be translated between reposito-
ries of different shapes.

Abstractly, the lens we are discussing maps between structures of the form (X ×
Y)? and ones of the form (X×Z)?, where X is the set of composer names, Y the set of
date strings, and Z the set of countries. We want to build it compositionally—that is,
the whole lens should have the form `?, where −? is a “list mapping” lens combinator
and ` is a lens for translating edits to a single record—i.e., ` is a lens from X × Y to
X×Z. Moreover, ` itself should be built as the product `1× `2 of a lens `1 ∈ X → X
that translates composer edits verbatim, while `2 is a “disconnect” lens that maps
every edit on either side to a trivial identity edit on the other side.

In analogous fashion, the edit languages for the top-level structures will be con-
structed compositionally. The set of edits for structures of the form (X×Y)?, written
∂((X × Y)?), will be defined together with the list constructor −?. Its elements will
have the form ins(i) where i is a position, del(i), reorder(i1, . . . , in) where i1, . . . , in
is a permutation on positions (compactly represented, e.g. as a branching program),
and mod(p, dv), where dv ∈ ∂(X × Y) is an edit for X × Y structures. Pair edits
dv ∈ ∂(X × Y) have the form ∂X × ∂Y , where ∂X is the set of edits to composers
and ∂Y is the set of edits to dates. Finally, both ∂X and ∂Y are sets of primitive
“overwrite edits” that completely replace one string with another, together with an
identity edit 1 that does nothing at all; so ∂X can be just {()}+X (with 1 = inl(()))
and similarly for Y and Z.

Our lens `? will consist of two components—one for transporting edits from the
left side to the right, written (`?).V ∈ ∂(X × Y)? → ∂(X × Z)?,1 and another for
transporting edits from right to left, written (`?).W ∈ ∂(X × Z)? → ∂(X × Y)?.

We sometimes need lenses to have a little more structure than this simple example
suggests. To see why, consider defining a partitioning lens p between the sets ∂((X +
Y)?) and ∂(X?× Y ?). Figure 3.2 demonstrates the behavior of this lens. In part (a),
we show the original repositories: on the left, a single list that intermingles authors
and composers (with inl/inr tags showing which is which), and on the right a pair of
homogeneous (untagged) lists, one for authors and one for composers. Now consider

1The symbolV is pronounced “put an edit through the lens from left to right”, or just “put right”.
It is the edit-analog of the putr function of the state-based symmetric lenses in Chapter 2 and the
put function of the state-based asymmetric lenses in [9, 16].

83

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Tolstoy

inl, inr, inr, inl

(a) the initial repositories: a tagged list of composers and authors on the left;
a pair of lists on the right; a complement storing just the tags

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Salinger
Tolstoy

inl, inr, inr, inl

(1, (ins(2); mod(2, “Salinger”)))

(b) an element is added to one of the partitions

inl(Schumann)
inr(Kerouac)
inr(Salinger)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Salinger
Tolstoy

inl, inr, inr, inr, inl

ins(3); mod(3, inr(“Salinger”))

(c) the complement tells how to translate the index

Figure 3.2: A lens with complement.

84

an edit, as in (b), that inserts a new element somewhere in the author list on the
right. It is clear that we should transport this into an insertion on the left repository,
but where, exactly, should we insert it? If the W function is given just an insertion
edit for the homogeneous author list and nothing else, there is no way it can translate
this edit into a sensible position in the combined list on the left, since it doesn’t know
how the lists of authors and composers are interleaved on the left.

As in Chapter 2, the solution is to store a small list, called a complement, off to
the side, recording the tags (inl or inr) from the original, intermingled list, and pass
this list as an extra argument to translation. We then enrich the types of the edit
translation functions to accept a complement and return a new complement, so that

p.V ∈ ∂((X + Y)?)× C → ∂(X? × Y ?)× C

and
p.W ∈ ∂(X? × Y ?)× C → ∂((X + Y)?)× C.

Part (c) demonstrates the use (and update) of the complement when translating the
insertion.

Note that the complement stores just the inl/inr tags, not the actual names of the
authors and composers in the left-hand list. In general, the information stored in
C will be much smaller than the information in the repositories; indeed, our earlier
example illustrates the common case in which C is the trivial single-element set Unit .
The translation functions manipulate just the complements and the edits, which we
also expect will be small compared to the size of the repositories in most cases.

3.2 Edit Lenses
A key design decision in our formulation of edit lenses is to separate the description
of edits from the action of applying an edit to a state. This separation is captured
by the standard mathematical notions of monoid and monoid action.

3.2.1 Definition: A monoid is a triple 〈M, ·M ,1M〉 of a setM , an associative binary
operation ·M ∈ M ×M → M , and a unit element 1M ∈ M — that is, with ·M and
1M such that

x ·M (y ·M z) = (x ·M y) ·M z

1M ·M x = x = x ·M 1M .

When no confusion results, we use M to denote both the set and the monoid, drop
subscripts from · and 1, and write mn for m · n.

The unit element represents a “change nothing” edit. Multiplication of edits cor-
responds to packaging up multiple edits into a single one representing their combined
effects (this might be useful, for example, for offline editing).

85

Modeling edits as monoid elements gives us great flexibility in concrete represen-
tations. The simplest edit language is a free monoid whose elements are just words
over some set of primitive edits and whose multiplication is concatenation. However,
it may be useful to put more structure on edits, either (a) to allow more compact
representations or (b) to capture the intuition that edits to different parts of a struc-
ture do not interfere with each other and can thus be applied in any order. We will
see an example of (b) in §3.5. For a simple example of (a), recall from §3.1 that, for
every set X, we can form an overwrite monoid where the edits are just the elements
of X together with a fresh unit element—i.e., edits can be represented as elements of
the disjoint union Unit + X. Combining two edits in this monoid simply drops the
second (unless the first is the unit):

inl(()) · e = e inr(x) · e = inr(x)

These equations allow this edit language to represent an arbitrarily long sequence of
updates using a single element of X (and, en passant, to recover state-based lenses
as a special case of edit lenses). The monoid framework can also accommodate more
abstract notions of edit. For example, the set of all total (respectively, partial) func-
tions from a set X to itself forms a monoid, where the multiplication operation is
function composition (and the unit is the identity function). This is essentially the
form of edits considered by Stevens [48]. We mostly focus on the simple case where
edit languages are free monoids. §3.5 considers how additional laws can be added to
the product and sum lens constructions (laws for lists and general containers are left
for future work).

3.2.2 Definition: Given monoids M and N , a monoid homomorphism is a function
h ∈M → N that satisfies two laws:

h(1M) = 1N
h(m ·M m′) = h(m) ·N h(m′)

Monoid homomorphisms are structure-preserving maps, and we will see many special-
izations of this definition below. An example of a homomorphism in the case where
the two monoidsM and N are both free monoids is any operation that acts pointwise
on the elements of the lists. Having defined monoids, which model descriptions of
edits, we will now model the operation that performs an edit on a particular object.

3.2.3 Definition: Given a monoid M and a set X, a monoid action of M on X is a
monoid homomorphism fromM to the monoid of partial functions X ⇀ X. Unrolling
this definition, this means an action is a partial function � ∈ M → (X ⇀ X), or
equivalently, � ∈M ×X ⇀ X, satisfying two laws:

1� x = x

(m · n)� x = m� (n� x)

86

We use X ⇀ Y for the space of partial functions with domain X and codomain Y .
If f ∈ X ⇀ Y , we will write f(x)↓ to mean that f is defined at x. As with monoid
multiplication, we often elide the monoid action symbol, writing mx for m � x. In
standard mathematical terminology, a monoid action in our sense might instead be
called a “partial monoid action”, but since we always work with partial actions we
find it convenient to drop the qualifier.

A bit of discussion of partiality is in order. Multiplication of edits is a total
operation: given two descriptions of edits, we can always find a description of the
composite actions of doing both in sequence. On the other hand, applying an edit to
a particular state may sometimes fail. This means we need to work with expressions
and equations involving partial operations. As usual, any term that contains an
undefined application of an operation to operands is undefined—there is no way of
“catching” undefinedness. An equation between possibly undefined terms (e.g., as in
the definition above) means that if either side is defined then so is the other, and
their values are equal (Kleene equality).

Why deal with failure explicitly, rather than keeping edit application total and
simply defining our monoid actions so that applying an edit in a state where it is
not appropriate yields the same state again (or perhaps some other state)? One
reason is that it seems natural to directly address the fact that some edits are not
applicable in some states, and to have a canonical outcome in all such cases. A
more technical reason is that, when we work with monoids with nontrivial equations,
making inapplicable edits behave like the identity is actually wrong.2

However, although the framework allows for the possibility of edits failing, we
still want to know that the edits produced by our lenses will never actually fail when
applied to repository states arising in practice. This requirement, corresponding to
the totality property of previous presentations of lenses [16], is formalized in Theorem
3.2.9. In general, we adopt the design principle that partiality should be kept to a
minimum; this simplifies the definitions.

It is convenient to bundle a particular choice of monoid and monoid action, plus
an initial element, into a single structure:

3.2.4 Definition: A module is a tuple 〈X, initX , ∂X, �X〉 comprising a set X, an
element initX ∈ X, a monoid ∂X, and a monoid action �X of ∂X on X.

2Here is a slightly contrived example. Suppose that the set of states is natural numbers and that
edits have the form (x 7→ y), where the intended interpretation is that, if the current state is x,
then the edit yields state y. It is reasonable to impose the equation (y 7→ z) · (x 7→ y) = (x 7→ z),
allowing us to represent sequences of edits in a compact form. But now consider what happens when
we apply the edit (5 7→ 7) · (3 7→ 5) to the state 5. The second monoid action law demands that
((5 7→ 7) · (3 7→ 5))�5 = (5 7→ 7)� ((3 7→ 5)�5), which, by the equation we imposed, is the same as
(3 7→ 7)� 5 = (5 7→ 7)� ((3 7→ 5)� 5). But the left-hand side is equal to 5 (since the edit (3 7→ 7)
does not apply to the state 5), while the right-hand side is equal to 7 (since the first edit, (3 7→ 5),
is inapplicable to the state 5, so it behaves like the identity and returns 5 from which (5 7→ 7) takes
us to 7), so the action law is violated.

87

If X is a module, we refer to its first component by either |X| or just X, and to its
last component by � or simple juxtaposition.

We will use modules to represent the structures connected by lenses. Before
coming to the definition of lenses, however, we need one last ingredient: the notion of
a stateful homomorphism between monoids. As we saw in §3.1, there are situations
where the information in an edit may be insufficient to determine how it should be
translated—we may need to know something more about how the two structures
correspond. The exact nature of the extra information needed varies according to the
lens. To give lenses a place to store such auxiliary information, we follow Chapter 2
and allow the edit-transforming components of a lens (the V and W functions) to
take a complement as an extra input and return an updated complement as an extra
output.

3.2.5 Definition: Given a monoid M and a complement set C, one can define the
stateful monoid StateC(M) whose elements are functions C →M ×C. The unit and
multiplication are given by

1(c) = (1, c)
(m · n)(c) = let (m′, c′) = m(c)

(n′, c′′) = n(c′)

in (m′ · n′, c′′)

Functional programmers will recognize this monoid’s multiplication as a lifting of the
underlying monoid’s multiplication into the state monad (and likewise the unit is a
lifting of the underlying unit).

3.2.6 Definition: Given monoids M and N and a complement set C, a stateful
monoid homomorphism from M to N over C is a monoid homomorphism h ∈ M →
StateC(N). In the following, we will typically treat h as if it were a two-argument
function; so, unrolling the definition of homomorphism, h satisfies two laws:

h(1M , c) = (1N , c)

h(m, c) = (n, c′) h(m′, c′) = (n′, c′′)

h(m′ ·m, c) = (n′ · n, c′′)

The intended usage of an edit lens is as follows. There are two users, one holding
an element of X the other one an element of Y . Initially, they hold initX and initY ,
respectively, and the lens is initialized with complement `.missing . The users then
perform actions and propagate them across the lens. An action consists of producing
an edit dx (or dy), applying it to one’s current repository x (resp. y), putting the edit
through the lens to obtain an edit dy (resp. dx), and asking the user on the other
side to apply dy (dx) to their repository. In the process, the internal state c of the
lens is updated to reflect the new correspondence between the two repositories.

88

We further assume there is some consistency relation K between X, Y , and C,
which describes the “synchronized states” of the repositories and complement. This
gives us a natural way to state the totality requirement discussed above: if we start in
a consistent state, make a successful edit (one that does not fail at the initiating side),
and put it through the lens, the resulting edit is guaranteed (a) to be applicable on
the receiving side and (b) to lead again to a consistent state. We make no guarantees
about edits that fail at the initiating side: these should not be put through the lens.

3.2.7 Definition: A symmetric edit lens between modules X and Y consists of a
complement set C, a distinguished element missing ∈ C, two stateful monoid homo-
morphisms

V ∈ ∂X × C → ∂Y × C
W ∈ ∂Y × C → ∂X × C

and a ternary consistency relation K ⊆ |X| × C × |Y | such that

• (initX ,missing , initY) ∈ K;

• if (x, c, y) ∈ K and dx x is defined and V(dx, c) = (dy, c′), then dy y is also
defined and (dx x, c′, dy y) ∈ K;

• if (x, c, y) ∈ K and dy y is defined and W(dy, c) = (dx, c′), then dx x is also
defined and (dx x, c′, dy y) ∈ K.3

Since symmetric edit lenses are the main topic of this chapter, we will generally write
“edit lens” or just “lens” for these, deploying additional adjectives to talk about other
variants such as the state-based symmetric lenses of Chapter 2. Similarly, we will
co-opt the notation of the previous chapter, reusing many component names, ↔ for
the type of edit lenses, ≡ for lens equivalence, and so on. When it is important to
differentiate, we will use a subscript s for state-based concepts, as in ↔

s
or ≡s.

The intuition about K’s role in guaranteeing totality can be formalized as follows.

3.2.8 Definition: Let ` ∈ X ↔ Y be a lens. A dialogue is a sequence of edits—a
word in (∂X + ∂Y)?. The partial function

`.run ∈ (∂X + ∂Y)? ⇀ X × `.C × Y

is defined by:

`.run(〈〉) = (initX , `.missing , initY)

3One might consider a more general format with “creation” operations creater ∈ X → Y ×C and
symmetrically createl . This format actually arises as a special case of the one above by choosing the
edit monoids to include operations of the form set(x) for x ∈ X, with action set(x) � x′ = x. One
can then define creater(x, c) =V(set(x), c).

89

`.run(w) = (x0, c, y0) `.V(dx1, c) = (dy1, c1)

`.run(inl(dx1):w) = (dx1 x0, c1, dy1 y0)

`.run(w) = (x0, c, y0) `.W(dy1, c) = (dx1, c1)

`.run(inr(dy1):w) = (dx1 x0, c1, dy1 y0)

3.2.9 Theorem: Let w be a dialogue and suppose that `.run(w) = (x, c, y)—in
particular, all the edits in w succeed. Let dx ∈ ∂X be an edit with dx x defined. If
(dy, c′) = `.V(dx, c) then dy y is also defined. An analogous statement holds for W.

Proof: By induction on w we can easily show that (x, c, y) ∈ `.K. The claim then
follows from the axioms for lenses. �

Beyond its role in guaranteeing totality, the consistency relation in a lens plays
two important roles. First, it is a sanity check on the behavior of V and W. Sec-
ond, if we project away the middle component, we can present it to programmers as
documentation of the synchronized states of the two repositories—i.e., as a partial
specification of V and W.

One technical issue arising from the definition of edit lenses is that the hidden
complements cause many important laws—like associativity of composition—to hold
only up to behavioral equivalence. This phenomenon was also observed in §2.2 for
the case of symmetric state-based lenses, and the appropriate behavioral equivalence
for edit lenses is a natural refinement of the one used there (taking the consistency
relations into account).

3.2.10 Definition [Lens equivalence]: Two lenses k, ` : X ↔ Y are equivalent
(written k ≡ `) if, for all dialogues w,

• k.run(w) is defined iff `.run(w) is defined;

• if k.run(w) = (x, c, y) and `.run(w) = (x′, d, y′), then x = x′ and y = y′; and

• if k.run(w) = (x, c, y) and `.run(w) = (x′, d, y′) and dx x is defined and
`.V(dx, c) = (dy,_) and k.V(dx, d) = (dy′,_) then dy = dy′, and the analo-
gous property for W.

(Note that the second clause is actually implied by the third.)
Since the complements of the two lenses in question may not even have the same

type, it does not make sense to require that they be equal. Instead, the equivalence
hides the complements, relying on the observable effects of the lens actions. However,
by finding a relationship between the complements, we can prove lens equivalence
with a bisimulation-style proof principle:

3.2.11 Theorem: Lenses k, ` : X ↔ Y are equivalent iff there exists a relation
S ⊆ X × k.C × `.C × Y such that

90

• (initX , k.missing , `.missing , initY) ∈ S;

• if (x, c, d, y) ∈ S and dx x is defined, then if (dy1, c
′) = k.V(dx, c) and

(dy2, d
′) = `.V(dx, d), then dy1 = dy2 and (dx x, c′, d′, dy1 y) ∈ S; and

• analogously for W.

Proof: For the “if” direction we prove by induction on dialogues that if k.run(w) is
defined then so is `.run(w) and vice versa and if k.run(w) = (x, c, y) and `.run(w) =
(x′, d, y′) then x = x′ and y = y′ and (x, c, d, y) ∈ S. For the converse we de-
fine (x, c, d, y) ∈ S iff there exists a dialogue w such that k.run(w) = (x, c, y) and
`.run(w) = (x, d, y) �

3.2.12 Theorem: Lens equivalence is an equivalence relation.

Proof: Reflexivity: the set {(x, c, c, y) | (x, c, y) ∈ `.K} witnesses the equivalence
` ≡ ` for any `.

Symmetry: if the set S witnesses the equivalence k ≡ `, then the set {(x, d, c, y) |
(x, c, d, y) ∈ S} witnesses the equivalence ` ≡ k.

Transitivity: if S witnesses j ≡ k and T witnesses k ≡ `, then

{(x, c, e, y) | ∃d.(x, c, d, y) ∈ S ∧ (x, d, e, y) ∈ T}

witnesses j ≡ `. The verification is straightforward. �

3.3 Edit Lens Combinators
We have proposed a semantic space of edit lenses and justified its design. But the
proof of the pudding is in the syntax—in whether we can actually build primitive
lenses and lens combinators that live in this semantic space and that do useful things.

Generic Constructions As a first baby step, here is an identity lens that connects
identical structures and maps edits by passing them through unchanged.

3.3.1 Definition [Identity]:

idX ∈ X ↔ X

C = Unit
K = {(x, (), x) | x ∈ X}
V(dx, ()) = (dx, ())
W(dx, ()) = (dx, ())

91

Here and below, we elide the definition of the missing component when C = Unit =
{()}, since it can only be one thing.

3.3.2 Lemma: id .V and id .W are stateful homomorphisms, and the relation id .K
is preserved.

Proof: Showing that V is a homomorphism involves showing that id .V(1, ()) =
(1, ()), which is direct, and that if id .V(dx, c) = (dy, c′) and id .V(dx′, c′) = (dy′, c′′),
then id .V(dx′dx, c) = (dy′dy, c′′). Since c = c′ = c′′ = (), it follows directly that
dy = dx and dy′ = dx′, so the final claim is true. A similar argument shows that W
is a homomorphism.

To show that K is preserved, choose a consistent triple (x, (), x) and observe that
V(dx, ()) = (dx, ()) results in another consistent triple (dx x, (), dx x). A similar
argument for W applies. �

Now for a more interesting case: Given lenses k and ` connecting X to Y and Y
to Z, we can build a composite lens k; ` that connects X directly to Z. Note how
the complement of the composite lens includes a complement from each of the com-
ponents, and how these complements are threaded through theV andW operations.

3.3.3 Definition [Composition]:

k ∈ X ↔ Y ` ∈ Y ↔ Z

k; ` ∈ X ↔ Z

C = k.C × `.C
missing = (k.missing , `.missing)
K = {(x, (ck, c`), z) |

∃y. (x, ck, y) ∈ k.K
∧(y, c`, z) ∈ `.K }

V(dx, (ck, c`)) = let (dy, c′k) = k.V(dx, ck) in
let (dz, c′`) = `.V(dy, c`) in
(dz, (c′k, c′`))

W(dz, (ck, c`)) = let (dy, c′`) = `.W(dz, c`) in
let (dx, c′k) = k.W(dy, ck) in
(dx, (c′k, c′`))

3.3.4 Lemma: Given that k and ` are lenses, this construction defines a lens:

• V and W are stateful monoid homomorphisms,

• relation K is preserved, and

• it respects lens equivalence: if k ≡ k′ and ` ≡ `′, then k; ` ≡ k′; `′.

92

Proof:
V is a stateful monoid homomorphism. Since k.V and `.V are homomorphisms,

we know that

k.V(1, ck) = (1, ck)
`.V(1, c`) = (1, c`)

and hence that
V(1, (ck, c`)) = (1, (ck, c`)).

Choosing arbitrary dx, dx′, ck, c`, we can define

(dy, c′k) = k.V(dx, ck)
(dy′, c′′k) = k.V(dx′, c′k)
(dz, c′`) = `.V(dy, c`)

(dz′, c′′`) = `.V(dy′, c′`)

and observe that since k.V and `.V are homomorphisms, we then know:

k.V(dx′dx, ck) = (dy′dy, c′′k)
`.V(dy′dy, c`) = (dz′dz, c′′`)

We can now calculate

(k; `).V(dx, (ck, c`)) = (dz, (c′k, c
′
`))

(k; `).V(dx′, (c′k, c
′
`)) = (dz′, (c′′k, c

′′
`))

(k; `).V(dx′dx, (ck, c`)) = (dz′dz, (c′′k, c
′′
`))

as necessary.
W is a stateful monoid homomorphism. The argument is very similar to the above.
The relation K is respected. The triple (initX , (k.missing , `.missing), initZ) is in

K because we can choose y = initY and observe that (initX , k.missing , initY) ∈ k.K
and (initY , `.missing , initZ) ∈ `.K.

Next, consider consistent triple (x, (ck, c`), z) and some particular y for which
(x, ck, y) ∈ k.K and (y, c`, z) ∈ `.K. (Such a y is guaranteed to exist by the definition
of K.) Take dx for which dx x is defined and define:

(dy, c′k) = k.V(dx, ck)
(dz, c′`) = `.V(dy, c`)

By consistency of k, we know dy y is defined, and hence by consistency of ` we also
know dz z is defined. Furthermore, (dx x, ck, dy y) ∈ k.K and (dy y, c`, dz z) ∈ `.K,
and hence dy y is a witness to the fact that (dx x, (ck, c`), dz z) ∈ (k; `).K, as needed.

93

A similar argument shows that W respects the consistency relation.
The combinator respects lens equivalence. Suppose for simplicity that k and

k′ are identical (the general case then follows by symmetry and transitivity of ≡).
Using Theorem 3.6.2 assume furthermore that ` ≡ `′ : X ↔ Y by virtue of relation
S ⊆ X × C × C ′ × Y assuming that C and C ′ are the complements of `, `′. We note
D the complement of k ∈ Y ↔ Z.

Define simulation relation T ⊆ X × (C ×D)× (C ′ ×D)× Z by

T = {(x, (c, d), (c′, d), z) | ∃y.(x, c, c′, y) ∈ S ∧ (y, d, z) ∈ k.K}

Suppose that (x, c, c′, y) ∈ S and (y, d, z) ∈ k.K thus (x, (c, d), (c′, d), z) ∈ T and dx ∈
∂X such that dx x is defined. Let (dy, c1) = `.V(dx, c) and (dy′, c′1) = `′.V(dx, c′)
and further (dz, d1) = k.V(dy, d) and (dz′, d′1) = k.V(dy′, d).

We should prove dz = dz′ and d1 = d′1 and (dx x, (c1, d1), (c′1, d1), dz z) ∈ T . From
(x, c, c′, y) ∈ S we get dy = dy′ and (dx x, c1, c

′
1, dy y) ∈ S and dz = dz′ and d1 = d′1.

From (y, d, z) ∈ k.K we then get (dy y, d1, dz z) ∈ k.K and thus all that is required.
�

The following theorem establishes the properties necessary to show that there is a
category with modules as objects and equivalence classes of lenses as arrows. In what
follows, we will sometimes note how the properties of our lens constructions can be
restated in terms of standard categorical jargon, but these observations are intended
just as sanity checks; nothing depends on them, and they can safely be ignored.

3.3.5 Theorem:

• idX ; ` ≡ `; idY ≡ `

• (k; `);m ≡ k; (`;m)

Proof: The two relations given below witness idX ; ` ≡ ` and `; idY ≡ ` respectively.

{(x, (c, ()), c, y) | (x, c, y) ∈ `.K}

{(x, c, (c, ()), y) | (x, c, y) ∈ `.K}

The relation that re-associates the complements is a witness that (k; `);m ≡
k; (`;m):

R = {(w, ((ck, c`), cm), (ck, (c`, cm)), z)

| ck ∈ k.C, c` ∈ `.C, cm ∈ m.C}

Suppose we have an element of this relation and an edit dw for which dw w is defined;

94

then define:

(dx, c′k) = k.V(dw, ck)
(dy, c′`) = `.V(dx, c`)

(dz, c′m) = m.V(dy, cm)

We can compute that:

((k; `);m).V(dw, ((ck, c`), cm)) = (dz, ((c′k, c
′
`), c

′
m))

(k; (`;m)).V(dw, (ck, (c`, cm))) = (dz, (c′k, (c
′
`, c
′
m)))

Thus, the two lenses output the same edit dz and transition to related complements,
as required. �

Another simple lens combinator is dualization: for each lens ` ∈ X ↔ Y , we can
construct its dual, `op ∈ Y ↔ X, by swapping V and W.

3.3.6 Definition [Dual]:

` ∈ X ↔ Y

`op ∈ Y ↔ X

C = `.C
missing = `.missing
K = {(y, c, x) | (x, c, y) ∈ `.K}
V(dy, c) = `.W(dy, c)
W(dx, c) = `.V(dx, c)

3.3.7 Lemma: Given that ` is a lens, `op is a lens: V and W are stateful monoid
homomorphisms, the consistency relation is preserved, and if k ≡ ` then kop ≡ `op .

Proof: V and W are homomorphisms because `.W and `.V are, respectively. The
preservation of K is a direct consequence of ` preserving `.K. If S is a bisimulation
relation witnessing k ≡ `, then Sop = {(y, c, d, x) | (x, c, d, y) ∈ S} is a bisimulation
relation witnessing kop ≡ `op . �

The name op is justified by the following theorem, which establishes that (−)op is
an involutive contravariant functor and hence that the category of lenses is self-dual.

3.3.8 Theorem:

• (`op)op ≡ `

• idX ≡ idop
X

95

• kop ; `op ≡ (`; k)op

Proof: In fact, (`op)op = ` and idX = idop
X .

To show that kop ; `op ≡ (`; k)op , consider the relation:

S = {(z, (ck, c`), (c`, ck), x) | (z, (ck, c`), x) ∈ (kop ; `op).K}

It is clear that the initial complements and initial x, y values are in this relation
by simply unraveling the definitions of composition and dual. So suppose we have
consistent z, ck, c`, x and choose an edit dz for which dz z is defined. We can see
that (z, (c`, ck), x) ∈ (`; k)op .K, again by simply unrolling definitions to compare the
consistency relations for the compositions. Define

(dy, c′`) = `.W(dz, c`)
(dx, c′k) = k.W(dy, ck)

Then we can calculate that:

(dx, (c′k, c
′
`)) = (kop ; `op).V(dz, (ck, c`))

(dx, (c′`, c
′
k)) = (`; k)op .V(dz, (c`, ck))

The output edits are equal, as required. Since both compositions preserve their
respective consistency relations, we also know that dx x is defined and

(dz z, (c′k, c
′
`), dx x) ∈ (kop ; `op).K.

So we have reached another consistent quadruple. �

3.3.9 Definition [Disconnect]:

disconnectXY ∈ X ↔ Y

C = Unit
K = X × Unit × Y
V(dx, ()) = (1, ())
W(dy, ()) = (1, ())

3.3.10 Lemma: This lens is well-defined: V and W are homomorphisms, and K is
preserved.

Proof: First we show that V is a stateful monoid homomorphism. There are two
things to show; first, that:

V(1, c) = (1, c)

96

Since c = (), this follows immediately. Secondly, that if

V(dx, c) = (dy, c′) ∧ V(dx′, c′) = (dy′, c′′)

then
V(dx′dx, c) = (dy′dy, c′′).

Since c = c′ = c′′ = () and dy = dy′ = dy′dy = 1, this is trivially true. The argument
showing that W is a homomorphism is similar.

Since K is the complete relation, there are no proof obligations to show that it is
preserved except that 1 x is defined for all x—which follows from the definition of a
module. �

For the next definition, observe that the set Unit gives rise to a trivial monoid
structure and, for any given set X and element x ∈ X, a trivial module with initial
element x, which we write Unitx∈X . When context clearly calls for a module, we will
abbreviate Unit ()∈Unit to simply Unit .

Now, for each module X, there is a terminal lens that connects X to the trivial
Unit module by throwing away all edits.

3.3.11 Definition [Terminal]:

termX ∈ X ↔ Unit

C = Unit
K = X × Unit × Unit
V(dx, ()) = (1, ())
W(1, ()) = (1, ())

3.3.12 Lemma: This is a good lens: V and W are homomorphisms, and K is
preserved.

Proof: Immediate, by observing termX = disconnectXUnit . �

3.3.13 Lemma: The disconnect and term lenses are closely related by the two equa-
tions termX ≡ disconnectXUnit and disconnectXY ≡ termX ; termop

Y .

Proof: The former equivalence is actually an equality: termX = disconnectXUnit

can be verified by inspecting the two definitions. The complete relation {((), ())} is
a witness to the equivalence disconnectXY ≡ termX ; termop

Y . �

The disconnect lens that we saw in §3.1 can be built from term. The term lens is also
unique (up to equivalence): the implementation ofV is forced by the size of its range
monoid Unit , and the implementation of W is forced by the homomorphism laws.

There is a trivial lens between any two isomorphic modules.

97

3.3.14 Definition: A module homomorphism (f, h) between modules X and Y is a
function f ∈ X → Y and a monoid homomorphism h ∈ ∂X → ∂Y such that:

f(initX) = initY f(dx x) = h(dx) f(x)

There is an identity (λx. x, λdx. dx) for every module, and the point-wise composition
of module homomorphisms is also a homomorphism, so modules form a category. If
module homomorphisms (e, g) ∈ X → Y and (f, h) ∈ Y → X satisfy (e, g); (f, h) =
idX and (f, h); (e, g) = idY , then (e, g) is an isomorphism and (f, h) is inverse to
(e, g).

3.3.15 Definition [Isomorphism]:

(f, h) ∈ X → Y (f, h) is inverse to (f−1, h−1)

bij(f,h) ∈ X ↔ Y

C = Unit
K = {(x, (), f(x)) | x ∈ X}
V(dx, ()) = (h(dx), ())
W(dy, ()) = (h−1(dy), ())

The fact that this always defines a lens, plus a couple of other easy facts, amounts
to saying that there is a functor from the category of module isomorphisms to the
category of edit lenses.

3.3.16 Lemma: This is a good lens: V andW are stateful monoid homomorphisms,
and K is preserved.

Proof: V and W are stateful monoid homomorphisms because h and h−1 are ho-
momorphisms (and the state is trivial).

The definition of module homomorphisms give exactly the facts needed to show
that K is preserved. In particular, we must show that (initX , (), initY) ∈ K, but the
definition of a module homomorphism tells us that initY = f(initX) as necessary.
Moreover, whenever dx x is defined, the equation f(dx x) = h(dx)f(x) from the def-
inition of module homomorphism tells us what we need to know about V. Similarly,
the equation f−1(dy y) = h−1(dy)f−1(y) tells us what we need to know about W
whenever dy y is defined. �

3.3.17 Theorem:

• bij(id ,id) ≡ id

• Given isomorphisms (e, g) ∈ X → Y and (f, h) ∈ Y → Z,

bij(e,g); bij(f,h) ≡ bij(e,g);(f,h).

98

• If (f, h) is inverse to (f−1, h−1), then

bijop(f,h) ≡ bij(f−1,h−1).

• If (f, h) is inverse to (f−1, h−1), then

bij(f,h); bij(f−1,h−1) ≡ id .

Proof:

• We know bij(id ,id) ≡ id because bij(id ,id) = id .

• It is easy to verify that the following relation satisfies the conditions of Theo-
rem 3.2.11:

{(x, ((), ()), (), f(e(x))) | x ∈ X}

• In fact, the equivalence is an equality, because (h−1)−1 = h.

• By the first and second equivalences in the theorem,

bij(f,h); bij(f−1,h−1) ≡ bij(f,h);(f−1,h−1) = bij(id ,id) ≡ id . �

Generators for free monoids For writing practical lenses, we want not only
generic combinators like the ones presented above, but also more specific lenses for
structured data such as products, sums, and lists. We show in the rest of this section
how to define simple versions of these constructors whose associated edit monoids are
freely generated. §3.4 shows how to generalize the list mapping lens to other forms
of containers, and §3.5 discusses edit languages with nontrivial laws.

Given a set G of generators, one commonly-used monoid is the free monoid : the
set of lists G? together with sequence concatenation as the binary operation and 〈〉
as the identity. Defining homomorphisms from this monoid to another is often most
conveniently done by specifying the homomorphism’s behavior on each generator.
Given a function fg ∈ G → M on generators4, the monoid homomorphism f ∈
G? →M is defined by f(〈〉) = 1 and f(g:gs) = fg(g)f(gs). Since this is generic over
the codomain monoid, we can specialize this to give specifications of monoid actions
and stateful monoid homomorphisms. As before, we will often treat the specification
function as if it were a function of two arguments rather than a function whose
codomain space contains functions.

4We use a different typeface in the subscript of fg so that it is clear that it is not intended to
be an index; thus the notation fg is for the gth element of a family of functions, while fg is for a
particular function which we are thinking of as specifying a homomorphism.

99

Tensor Product Given modules X and Y , a primitive edit to a pair in |X| × |Y |
is either an edit to the X part or an edit to the Y part.

G⊗X,Y = {left(dx) | dx ∈ ∂X} ∪ {right(dy) | dy ∈ ∂Y }

We can turn these generators into a module by specifying a monoid action for the
free monoid (G⊗X,Y)?:

left(dx)�g (x, y) = (dx x, y)

right(dy)�g (x, y) = (x, dy y)

The full module is then given by

X ⊗ Y =
〈
|X| × |Y |, (initX , initY), (G⊗X,Y)?,�

〉
.

Now we can build a lens that “runs two sub-lenses in parallel” on the components of
a product module. The V and W functions are defined via stateful monoid homo-
morphism specifications.

3.3.18 Definition [Tensor Product]:

k ∈ X ↔ Z ` ∈ Y ↔ W

k ⊗ ` ∈ X ⊗ Y ↔ Z ⊗W

C = k.C × `.C
missing = (k.missing , `.missing)
K = { ((x, z), (ck, c`), (y, w)) |

(x, ck, y) ∈ k.K
∧ (z, c`, w) ∈ `.K }

Vg(left(dx), (ck, c`)) = let (dz, c′k) = k.V(dx, ck) in
(left(dz), (c′k, c`))

Vg(right(dy), (ck, c`)) = let (dw, c′`) = `.V(dy, c`) in
(right(dw), (ck, c

′
`))

Wg similarly

100

3.3.19 Theorem:

• k ⊗ ` is indeed a lens.

• If k ≡ k′ and ` ≡ `′, then k ⊗ ` ≡ k′ ⊗ `′.

• id ⊗ id ≡ id .

• (k ⊗ `); (k′ ⊗ `′) ≡ (k; k′)⊗ (`; `′).

• ((k ⊗ `) ⊗m); bijassoc ≡ k ⊗ (` ⊗m), where assoc is the isomorphism between
(X ⊗ Y)⊗ Z and X ⊗ (Y ⊗ Z) for all X, Y, Z.

• (k ⊗ `); bijswap ≡ ` ⊗ k, where swap is the isomorphism between X × Y and
Y ×X.

Proof: For the first statement (being a good lens), first note that preservation of
monoid multiplication is immediate since ∂(X ⊗ Y) is free. It remains to show that
the consistency relation of k ⊗ ` is preserved and guarantees definedness. This is
direct from the definition and the assumption that k and ` are lenses.

The remaining statements are direct consequences of the definitions, together with
Theorem 3.2.11; for example, the third equivalence can be witnessed by the simulation
relation

{((x, y), ((c, d), (c′, d′)), ((c, c′), (d, d′)), (x′′, y′′)) |
∃(x′, y′). (x, c, x′) ∈ k.K ∧ (x′, c′, x′′) ∈ k′.K

∧ (y, d, y′) ∈ `.K ∧ (y′, d′, y′′) ∈ `′.K}. �

This theorem asserts that ⊗ is a symmetric, associative bifunctor. Thus, the
category of edit lenses with tensor product is almost a symmetric monoidal category;
the only missing ingredient being an isomorphism between X and X ⊗ Unit . With
the present definition of tensor product such an isomorphism is available if ∂X is a
free monoid, in which case we can map a free generator dx to left(dx) and extend
homomorphically. In order for dx 7→ 〈left(dx)〉 to be a homomorphism of modules in
general, we would need equations 〈left(dx)〉·〈left(dx′)〉 = 〈left(dx dx′)〉 and 〈left(1)〉 =
〈〉. See §3.5 for more detail on this alteration.

As in Chapter 2, the tensor construction is not quite a full categorical product,
because duplicating information does not give rise to a well-behaved lens—there is
no lens with type X ↔ X ⊗X that satisfies all the equivalences a lens programmer
would want.

Sum We now present one way (not the only one—see footnote 5) of constructing
a sum module and a sum lens. Given sets of edits ∂X and ∂Y , we can describe the

101

k ∈ X ↔ Y ` ∈ Z ↔ W

k ⊕ ` ∈ X ⊕ Z ↔ Y ⊕W

C = k.C + `.C

missing = inl(k.missing)

K = {(inl(x), inl(c), inl(y)) | (x, c, y) ∈ k.K}
∪ {(inr(z), inr(c), inr(w)) | (z, c, w) ∈ `.K}

ck = k.missing
c` = `.missing
Vg(switchLL(dx), inl(c)) = let (dy, c′) = k.V(dx, ck) in (switchLL(dy), inl(c′))
Vg(switchRL(dx), inr(c)) = let (dy, c′) = k.V(dx, ck) in (switchRL(dy), inl(c′))
Vg(switchLR(dz), inl(c)) = let (dw, c′) = `.V(dz, c`) in (switchLR(dw), inr(c′))
Vg(switchRR(dz), inr(c)) = let (dw, c′) = `.V(dz, c`) in (switchRR(dw), inr(c′))
Vg(stayL(dx), inl(c)) = let (dy, c′) = k.V(dx, c) in (stayL(dy), inl(c′))
Vg(stayR(dz), inr(c)) = let (dw, c′) = `.V(dz, c) in (stayR(dw), inr(c′))
Vg(e, c) = (fail, c) in all other cases

Wg is analogous

Figure 3.3: The sum lens

generators for the free monoid of edits to a sum by:

G⊕X,Y = {switchiL(dx) | i ∈ {L,R}, dx ∈ ∂X}
∪ {switchiR(dy) | i ∈ {L,R}, dy ∈ ∂Y }
∪ {stayL(dx) | dx ∈ ∂X} ∪ {stayR(dy) | dy ∈ ∂Y }
∪ {fail}

The idea is that edits to a sum can either change just the content or change the tag
(and therefore necessarily also the content, which is superseded by the given new
content). That is, we want the “atoms” of the edit language to express the operations
of editing content and switching sides. This gives us the switchLR, switchRL, and stay
edits. For present purposes, we could leave it at this and define the monoid of edits
to be the free monoid over just these generators. However, in §3.5 we will introduce
a more compact representation that allows multiple edits to be combined into one,
and this representation will give rise to the other two switch operations; for example,
switchLL represents a switchLR followed by a switchRL. To avoid having two similar
but subtly different definitions, we include these edits here in the basic generators as
well. Finally, we introduce an always-failing edit to represent sequences of edits that
are internally inconsistent—e.g., a switch to the left side followed by an attempt to
apply an edit which stays on the right side. These intuitions are formalized in the

102

application function:

switchLL(dx)�g inl(x) = inl(dx initX)

switchLR(dy)�g inl(x) = inr(dy initY)

switchRL(dx)�g inr(y) = inl(dx initX)

switchRR(dy)�g inr(y) = inr(dy initY)

stayL(dx)�g inl(x) = inl(dx x)

stayR(dy)�g inr(y) = inr(dy y)

e�g v undefined in all other cases

We then define the sum of modules X and Y as

X
�−⊕ Y =

〈
|X|+ |Y |, inl(initX), (G⊕X,Y)?,�

〉
.

There is a free choice of initial element for this module; one could also quite naturally
choose inr(initY). We use �−⊕ to emphasize that this is the left-biased sum, and define
a similar module, denoted −�⊕, whose only difference is that initX−�⊕Y = inr(initY). We
will use the left-biased sum almost exclusively in the remainder, writing simply ⊕
instead of �−⊕. This consideration extends to the lens definition below, where the tag
of the missing state must match the tag of the module’s init , and we will use the
same notational convention to differentiate between the two lenses when necessary.

We now wish to give a lens combinator k⊕ ` that runs lens k on the parts of edits
that apply to inl values and ` on the parts of edits that apply to inr values.5

3.3.20 Definition [Sum]: Figure 3.3 defines the sum of two lenses.

3.3.21 Theorem: When k and ` are lenses, so is k ⊕ `.

Proof: The homomorphism laws are again trivial. We must show that the consis-
tency relation K is maintained. We have

(initX⊕Z ,missing , initY⊕W)

= (inl(initX), inl(k.missing), inl(initY)) ∈ K,

since (initX , k.init , initY) ∈ k.K. So it remains to show that that V and W preserve
this relation. We need only consider the case where we begin with an arbitrary

5In Chapter 2, there is some discussion regarding “forgetful” and “retentive” sum lenses, with
the distinction revolving around what to do with the complement when an edit switches between
sides of the sum. For state-based lenses, lenses on recursive structures like lists were given in terms
of lenses on the non-recursive structure, and the retentive sum lens gave rise to a retentive list
mapping lens whereas the forgetful sum lens gave rise to a forgetful list mapping lens. The poor
alignment strategies given in that chapter were mediated somewhat by the retentive map’s ability to
use complements from previous versions of a list, making retentive sums somewhat more attractive
than forgetful ones. In this presentation, however, the mapping lens has much better alignment
information, so we eschew the more complicated retentive lenses in favor of simpler forgetful versions.

103

consistent triple (inl(x), inl(c), inl(y)) ∈ K and dv ∈ X ⊕ Z for which dv inl(x) is
defined. (The cases where the triple is of the form (inr(x), inr(c), inr(y)) ∈ K are
similar, swapping k and ` in some places; the cases where we are considering a dv ∈
Y ⊕W are similar, but use W instead of V everywhere.) Since dv inl(x) is defined,
there are three forms of dv to consider: switchLL(dx), switchLR(dz), and stayL(dx).

Case dv = switchLL(dx): We define (dy, c′) = k.putr(dx, k.missing) and (x′, y′) =
(dx initX , dy initY). Since k is a lens, we know (initX , k.missing , initY) ∈ k.K and
therefore that (x′, c′, y′) ∈ k.K. This means (inl(x′), inl(c′), inl(y′)) ∈ K. Since we now
know the three equations

(k ⊕ `).V(dv, inl(c)) = (switchLL(dy), inl(c′))

dv inl(x) = inl(x′)

switchLL(dy) inl(y) = inl(y′),

this shows that K is preserved in this case.
Case dv = switchLR(dz): Nearly identical to the previous one, but using the fact
that `.K is preserved instead of k.K.
Case dv = stayL(dx): We define (dy, c′) = k.V(dx, c) and use similar reasoning to
the above cases to observe that then (inl(dx x), inl(c′), inl(dy y)) ∈ K is both what we
want to show and true because k.K is preserved by k.V. �

3.3.22 Theorem:

• If k ≡ k′ and ` ≡ `′, then k ⊕ ` ≡ k′ ⊕ `′.

• id ⊕ id ≡ id .

• (k ⊕ `); (k′ ⊕ `′) ≡ (k; k′)⊕ (`; `′).

•
(
k

�−⊕ `
)
; bijswap ≡ bijswap ; (`

−�⊕ k), where swap is the obvious family of module
isomorphisms between X �−⊕ Y and Y −�⊕X.

Proof:

• If k ≡ k′ and ` ≡ `′, then k ⊕ ` ≡ k′ ⊕ `′.
Suppose sets Sk and S` witness the two given equivalences. Then we can con-
struct a witness S for the desired equivalence as follows:

S ′k = {(x, ck, ck′ , y) | (x, ck, ck′ , y) ∈ Sk
∧ (x, ck, y) ∈ k.K ∧ (x, ck′ , y) ∈ k′.K}

S ′` = {(z, c`, c`′ , w) | (z, c`, c`′ , w) ∈ S`
∧ (z, c`, w) ∈ `.K ∧ (z, c`′ , w) ∈ `′.K}

S = {(inl(x), inl(ck), inl(ck′), inl(y)) | (x, ck, ck′ , y) ∈ S ′k}
∪{(inr(z), inr(c`), inr(c`′), inr(w)) | (z, c`, c`′ , w) ∈ S ′`}

104

It is clear that

(initX⊕Y , (k ⊕ `).missing , (k′ ⊕ `′).missing , initZ⊕W)

= (inl(initX), inl(k.init), inl(k′.init), inl(initZ))

∈ S

because (initX , k.init , k′.init , initZ) ∈ Sk and (initX , k.init , initZ) ∈ k.K and
(initX , k

′.init , initZ) ∈ k′.K.

To show that S is preserved by V and W, it is sufficient to consider only the
generator edits (since V and W are homomorphisms). We show here that Vg

preserves S when starting from (inl(x), inl(ck), inl(ck′), inl(y)); the arguments for
Wg and for starting quadruples with inrs are nearly identical. Choose arbitrary
dv for which dv inl(x) is defined. There are three cases to consider.

1. If dv = switchLL(dx) and dx initX is defined, define:

(dyk, c′k) = k.V(dx, k.missing)

(dyk′ , c′k′) = k′.V(dx, k′.missing)

x′ = dx initX

y′ = dyk initY

Since (initX , k.missing , k′.missing , initY) ∈ Sk, we can conclude that that
dyk = dyk′ , that dyk initY is defined, and that (x′, c′k, c

′
k′ , y

′) ∈ Sk. But
now we can calculate that:

(k ⊕ `).V(dv, inl(ck)) = (switchLL(dyk), inl(c′k))
(k′ ⊕ `′).V(dv, inl(ck′) = (switchLL(dyk′), inl(c′k′))

Then the facts we must show (that switchLL(dyk) = switchLL(dyk′) and
that (inl(x′), inl(c′k), inl(c

′
k′), inl(y

′)) ∈ S) follow immediately.

2. If dv = switchLR(dz) and dz initZ is defined, the argument is similar to
above, but using ` and S` and inr everywhere instead of k and Sk and inl.

3. If dv = stayL(dx) and dx x is defined, define:

(dyk, c′k) = k.V(dx, ck)
(dyk′ , c′k′) = k′.V(dx, ck′)

x′ = dx x
y′k = dyk y
y′k′ = dyk′ y

Since k preserves k.K, we can conclude that y′k is defined and (x′, c′k, y
′
k) ∈

105

k.K; since k′ preserves k′.K, we can conclude that y′k′ is defined and
(x′, c′k′ , y

′
k′) ∈ k′.K; since k and k′ preserve Sk, we can conclude that

dyk = dyk′ (hence y′k = y′k′) and (x′, c′k, c
′
k′ , y

′
k) ∈ Sk. We may now compute

(k ⊕ `).V(dx, inl(ck)) = (stayL(dyk), inl(c′k))
(k′ ⊕ `′).V(dx, inl(ck′)) = (stayL(dyk′), inl(c′k′))

and observe that the above facts are exactly what we need to show that
y′ = stayL(dyk) inl(y) is defined and the two necessary conclusions:

stayL(dyk) = stayL(dyk′)
(x′, c′k, c

′
k′ , y

′) ∈ S

• id ⊕ id ≡ id

We will use the witnessing relation that relates all consistent complements:

S = {(x, c, d, y) | (x, c, y) ∈ (id ⊕ id).K ∧ (x, d, y) ∈ id .K}

Naming the module in question X ⊕ Y , it is clear that

(initX , (id ⊕ id).missing , id .missing , initY) ∈ S

because id ⊕ id and id are both lenses. It remains to show that V and W
preserve S. We will show the argument for V applied to generators (because
the monoid is free); the argument for W is symmetric.

Hence we may assume we have consistent triples (x, c, y) ∈ (id ⊕ id).K and
(x, d, y) ∈ id .K and an edit generator dx for which dx x↓. Both id ⊕ id and
id are lenses, so we know that applying their V operations to dx will produce
an edit that restores consistency; this means that we need only check that they
output the same consistency-restoring edit. Since id .V(dx, d) = (dx, ()), we
must show (id ⊕ id).V(dx, c) = (dx, c′) for some c′. This property is clearly
true by inspecting the cases in the definition of the ⊕ combinator; one need only
observe that Vg outputs fail only in cases where dx x is visibly not defined, a
contradiction to our assumption that it is.

• (k ⊕ `); (k′ ⊕ `′) ≡ (k; k′)⊕ (`; `′)

We will refer to (k⊕ `); (k′⊕ `′) and (k; k′)⊕ (`; `′) as a and b, respectively. The
key insight is that the two sum lenses being composed always agree about which
side of the sum they are on. This insight is embodied in the split function:

split(inl((c, c′))) = (inl(c), inl(c′))

split(inr((c, c′))) = (inr(c), inr(c′))

106

Our witness relation uses this function.

S = {(x, split(c), c, z) | (x, c, z) ∈ b.K}

Supposing we have the types

k ∈ Xk ↔ Yk k′ ∈ Yk ↔ Zk

` ∈ X` ↔ Y` `′ ∈ Y` ↔ Z`

we will first show that (initXk⊕X`
, a.missing , b.missing , initZk⊕Z`

) ∈ S. It suf-
fices to show that a.missing = split(b.missing), since b.K is a correct consis-
tency relation. But b.missing = inl((k.missing , k′.missing)) and a.missing =
(inl(k.missing), inl(`.missing)), so the necessary equation holds.

We must also show that V and W preserve the relation S. We will show the
V cases for stayL and switchLR; the remaining cases are very similar or mere
induction. Since we may assume the supplied edit applies cleanly, we know
that we have (inl(x), inl((ck, ck′)), inl(z)) ∈ b.K. A simple calculation assures
us that consequently (inl(x), (inl(ck), inl(ck′)), inl(z)) ∈ a.K. We will use the
abbreviations

ca = (inl(ck), inl(ck′)) cb = inl((ck, ck′))

in the following, noting that ca = split(cb).

Case stayL(dx): Defining

(dy, c′k) = k.V(dx, ck) c′a = (inl(c′k), inl(c
′
k′))

(dz, c′k′) = k′.V(dy, ck′) c′b = inl((c′k, c
′
k′))

we may now compute:

a.V(stayL(dx), ca) = (stayL(dz), c′a)

b.V(stayL(dx), cb) = (stayL(dz), c′b)

Since k; k′ is a lens, and we know (from the assumption that stayL(dx) inl(x)↓)
that dx x↓, we can conclude that dz z↓ (one of two facts we must show to
decide that S is preserved in this case). Setting

x′ = inl(dx x) z′ = inl(dz z)

we can conclude from (dx x, (c′k, c
′
k′), dz z) ∈ (k; k′).K that (x′, c′b, z

′) ∈ b.K,
hence that (x′, c′a, c

′
b, z
′) = (x′, split(c′b), c

′
b, z
′) ∈ S, the second necessary fact.

107

Case switchLR(dx): Defining some abbreviations,

(dy, c′`) = `.V(dx, `.missing) c′a = (inr(c′`), inr(c
′
`′))

(dz, c′`′) = `′.V(dy, `′.missing) c′b = inr((c′`, c
′
`′))

we can then compute:

a.V(switchLR(dx), ca) = (switchLR(dz), c′a)

b.V(switchLR(dx), cb) = (switchLR(dz), c′b)

We would like to show that switchLR(dz) inl(z)↓, that is, that dz initZ`
↓. On the

other hand, we know that switchLR(dx) inl(x)↓, that is, that dx initX`
↓. Since

`; `′ is a lens, it translates an applicable edit to a consistent state to an applicable
edit that restores consistency, and (initX`

, (`; `′).missing , initZ`
) ∈ (`; `′).K is a

consistent state. Hence we can conclude dz initZ`
is defined as necessary, and

furthermore that (dx initX`
, (c′`, c

′
`′), dz initZ`

) ∈ (`; `′).K. From this we can
conclude the second fact that we need, namely that

(inr(dx initX`
), c′a, c

′
b, inr(dz initZ`

)) ∈ S.

•
(
k

�−⊕ `
)
; bijswap ≡ bijswap ; (`

−�⊕ k)

As in previous proofs, we will name the two lenses in question a =
(
k
�−⊕`
)
; bijswap

and b = bijswap ; (`
−�⊕ k). We give the witnessing relation

S = {(x, c, swap(c), y) | (x, c, y) ∈ a.K},

eliding () values for the bij complements to avoid clutter. It is worth noting
here that comparing the definitions of the �−⊕ and −�⊕ combinators reveals that
(x, c, y) ∈ a.K if and only if (x, swap(c), y) ∈ b.K, so

S = {(x, swap(c), c, y) | (x, c, y) ∈ b.K}.

Supposing that the types are k ∈ Xk ↔ Yk and ` ∈ X` ↔ Y`, we first observe
that(

initXk
�−⊕X`

, a.missing , b.missing , initY`
−�⊕Yk

)
= (inl(initXk

), inl(k.missing), inr(k.missing), inr(initYk))

= (inl(initXk
), inl(k.missing), swap(inl(k.missing)), swap(inl(initYk)))

∈ S

because (initXk
, k.missing , initYk) ∈ k.K. It only remains to show that S is

preserved by V and W applied to applicable edits. The reasoning needed in
showing that V preserves S when applied to switchLR edits is representative of

108

the reasoning needed in the other cases, so we satisfy ourselves with the proof
of that case.

So we assume that we have some (x, ca, cb, y) ∈ S for which switchLR(dx) x↓.
From our two characterizations of S, we can conclude that (x, ca, y) ∈ a.K, that
(x, cb, y) ∈ b.K, and that ca = swap(cb). From the definedness assumption, we
conclude that x = inl(xk) for some xk ∈ Xk and that dx initX`

↓. Moreover,
from (x, ca, y) ∈ a.K and x = inl(xk) we can conclude y = inr(yk) for some
yk ∈ Yk. Defining (dy, c`) = `.V(dx, `.missing), we may compute:

a.V(switchLR(dx), ca) = (switchRL(dy), inr(c`))

b.V(switchLR(dx), cb) = (switchRL(dy), inl(c`))

Since ` is a lens, we know dy initY`↓; together with the fact that y = inr(yk) from
above, this means switchRL(dy) y↓ and in fact switchRL(dy) y = inl(dy initY`).
Indeed, (dx initX`

, c`, dy initY`) ∈ `.K, so

(switchLR(dx) x, inr(c`), inl(c`), switchRL(dy) y) ∈ S

which concludes the proof. �

This theorem does not attempt to show that ⊕ is associative, that is, to connect
(k ⊕ `) ⊕ m and k ⊕ (` ⊕ m) in any way. This is because the edits of the modules
(X ⊕ Y)⊕Z and X ⊕ (Y ⊕Z) as we have defined them are fundamentally different.
For example, the former has an operation switchLR(1) which takes any X or Y value
and turns it into initZ ; this operation is not matched by any edit operation in the
latter. Investigation into an associative sum module (and associative sum lens) is left
for future work.

List module Next, let us consider lists. Given a module X, we define the basic
edits for lists over |X| to include in-place modifications, insertions, deletions, and
reorderings:

Glist
X = {mod(p, dx) | p ∈ N+, dx ∈ ∂X}
∪ {ins(i) | i ∈ N} ∪ {del(i) | i ∈ N}
∪ {reorder(f) | ∀i ∈ N.f(i) permutes {1, . . . , i}}
∪ {fail}

For compatibility with the generalization to arbitrary containers in §3.4, we slightly
change the behavior of these operations from what we saw in §3.1. Insertions and
deletions are now always performed at the end of the list; to insert in the middle of
the list, you first insert at the end, then reorder the list. The argument i to ins(i)

109

` ∈ X ↔ Y

`? ∈ X? ↔ Y ?

C = `.C?

missing = 〈〉
K = {(x, c, y) | |x| = |c| = |y| ∧

∀1≤p≤|x|. (xp, cp, yp) ∈ `.K}
Vg(mod(p, dx), c) = let (dy, c′p) = `.V(dx, cp) in

(mod(p, dy), c[p 7→ c′p]))
when p ≤ n

Vg(mod(p, dx), c) = (fail, c) when p > n
Vg(fail, c) = (fail, c)
Vg(dx, c) = (dx, dx c) in all other cases
W similar

Figure 3.4: The list mapping lens

and del(i) now specifies how many elements to insert or delete.

mod(p, dx)�g x = x[p 7→ dx xp]
ins(i)�g x = x · 〈initX , . . . , initX〉︸ ︷︷ ︸

i times

del(i)�g x = 〈x1, . . . , xn−i〉
reorder(f)�g x =

〈
xf(n)(1), . . . , xf(n)(n)

〉
fail�g x undefined

We take mod(p, dx)�g x to be undefined when p > |x|, and similarly take del(i)�g x
to be undefined when i > |x|. The list module is then X? =

〈
|X|?, 〈〉 , (Glist

X)?,�
〉
.

Mapping lens The list mapping lens `? uses ` to translate mod edits from X
to Y and vice versa. Other kinds of edits (ins, del, and reorder) are carried across
unchanged. When translating non-modification edits, we update the complement in
a way almost identical to the way the two repositories are updated; to reflect this
similarity, we use edit application from the Unit?`.missing∈`.C module to define the new
complement.

3.3.23 Definition [Map]: Figure 3.4 defines the list mapping lens.

3.3.24 Lemma: The mapping lens is well-behaved:

• If ` is a lens, then `? is a lens.

110

• If k ≡ ` then k? ≡ `?.

• id? ≡ id

• k?; `? ≡ (k; `)?

Proof:

• Because the lens is defined by specification over a free monoid, nothing needs
to be verified for the monoid homomorphism laws. However, we must still
verify that the initial repositories are consistent and that consistent triples are
mapped to consistent triples. Since initX = map(`).missing = initY = 〈〉,
it is clear that the consistency condition is satisfied: these lists all have the
same length, and the pointwise-consistent constraint is degenerate. To prove
that consistent triples are mapped to consistent triples, we argue that because
the generating functionVg preserves consistency, the resulting functionV also
preserves consistency.
To show that Vg maintains consistency, choose an arbitrary consistent triple
(x, c, y) and applicable basic edit dx; these two conditions mean that |x| = |c| =
|y|, that (xp, cp, yp) ∈ `.K for all p, and that dx�gx is defined. We now consider
each of the cases for dx.
If dx = mod(p, dvx), then we know that 1 ≤ p ≤ |x| and x′p = dv�xp is defined
(because dx �g x is). Defining (dvy, c′p) = `.V(dvx, cp) and y′p = dvy � yp, we
observe that since ` is a lens, we must have (x′p, c

′
p, y
′
p) ∈ `.K. Hence we know

that (x[p 7→ x′p], c[p 7→ c′p], y[p 7→ y′p]) ∈ map(`).K, and, by definition of �g,
that:

(mod(p, dvx)�g x, c[p 7→ c′p],mod(p, dvy)�g y) ∈ map(`).K

This is what we needed to show for this case.
If dx = ins(i), then we need merely show that the additional elements in each list
are synchronized. Since ` is a lens, we know that (initX , `.missing , initY) ∈ `.K,
so this is trivially true.
Suppose dx = del(i) (and hence i ≤ |x|), and let n = |x| − i. We observe that
|dx�gx| = |dx�g c| = |dx�g y| = n. Moreover, the pointwise-consistent part of
the condition is clearly satisfied: we must show that ∀1 ≤ p ≤ n. (xp, cp, yp) ∈
`.K, but we know the stronger condition that ∀1 ≤ p ≤ |x|. (xp, cp, yp) ∈ `.K.
Suppose dx = reorder(f), and let n = |x|. Since the lengths of the three
lists x, c, and y are all n, the effect of dx on each is to apply the permutation
f(n). Permutations do not affect length or pointwise properties, so the resulting
permuted lists are also in map(`).K, as desired.
Finally, we need not consider the case where dx = fail because this contradicts
the assumption that dx�g x is defined.
The argument that W maintains consistency is similar.

111

• Suppose S is a witness that k ≡ `. Define S ′ by the rule:

∀i.(xi, ci, di, yi) ∈ S
(〈x1, . . . , xn〉 , 〈c1, . . . , cn〉 , 〈d1, . . . , dn〉 , 〈y1, . . . , yn〉) ∈ S ′

Then S ′ is a witness that k? ≡ `?. The initial quadruple

(initX? , k?.init , `?.init , initY ?) = (〈〉 , 〈〉 , 〈〉 , 〈〉)

is in S ′ because the head of the inference rule is degenerate. The verification that
defined edits preserve the S ′ relation is long, but straightforward. In the mod
case, we rely on the analogous preservation of S for individual points, and in all
other cases the pointwise property of the inference rule is preserved because the
same pointwise operation is applied to each of the four lists in question (and
because (initX , k.init , `.init , initY) ∈ S).

• Let f be the function that takes a list and returns a list of equal length, all of
whose elements are (). Then the relation

R = {(x, f(x), (), x) | x ∈ X}

witnesses the equivalence id?X ≡ idX .

• Define the function unzip as follows:

unzip(〈(x1, y1), (x2, y2), . . . , (xn, yn)〉)
= (〈x1, x2, . . . , xn〉 , 〈y1, y2, . . . , yn〉)

Then the requisite simulation relation is:

R = {(x, unzip(d), d, y) | (x, d, y) ∈ (k; `)?.K}

The interesting property to verify is that if (x, c, d, y) ∈ R and dx x is defined,
then (k?; `?).V and (k; `)?.V produce the same edit dy in related states. As in
the other proofs here, we can show this property for the restricted set of edits
which contain only one atomic edit by case analysis; the stateful homomorphism
property of V then guarantees the same property for the set of all edits.

Suppose dx = mod(p, dx′) and dp = (sk, s`). Then by definition of unzip, we
will have c = (ck, c`) and (ck)p = sk and (c`)p = s`. Hence we will be running
k.V followed by `.V with complements sk and s` respectively in both cases,
and will receive related outputs as required.

Otherwise, dx is an insertion, deletion, or rearrangement, and both k?; `? and
(k; `)? will merely apply the appropriate insertion, deletion, or rearrangement
to the tuple of lists and list of tuples, respectively. �

112

partition ∈ (X ⊕ Y)? ↔ X? ⊗ Y ?

C = {L,R}?
missing = 〈〉
K = {(z,maptagof(z), (lefts(z), rights(z))) | z ∈ (|X|+ |Y |)?}

Wg(left(mod(p, dx)), c) = (mod(p′, stayL(dx)), c), where (1)

p′ = iso(c)−1(inl(p))
Wg(left(reorder(f)), c) = (reorder(f ′), c), where (2)

g(inr(p)) = inr(p) f ′(n 6= |c|) = λp. p
g(inl(p)) = inl(f(nL)(p)) f ′(|c|) = h; g;h−1

(nL + 1, nR + 1) = count(|c|+ 1, c) h = iso(c)
Wg(left(ins(i)), c) = (ins(i), ins(i) c) (3)

Wg(left(del(0)), c) = (〈〉 , c) (4)

Wg(left(del(i)), c) = (d′′ del′(p), c′′), where (5)

h = iso(c) (nL + 1, nR + 1) = count(|c|+ 1, c)
p = h−1(inl(nL)) (d′′, c′′) =Wg(d

′, c′)
c′ = del′(p) c d′ = left(del(i−1))

when 1 ≤ i ≤ nL
Wg(left(del(i)), c) = (fail, c) otherwise (6)

Wg(left(fail), c) = (fail, c) (7)

Wg(right(dy), c) similar

Figure 3.5: Part of the partition lens (see also Figure 3.6)

Partition lens Figures 3.5, 3.6, and 3.7 give the definition of a list partitioning lens
that (as we saw in §3.1) separates a list of tagged elements into those tagged inl and
those tagged inr. Additionally, as with the mapping lens, we consider the complement
to belong to a module; this time, to the module Unit?L∈{L,R}.

These figures may be a bit intimidating at first, but there is nothing very deep
going on—just some everyday functional programming over lists. To illustrate how
it all works, let’s consider a few example invocations of the partition lens. Each
of them begins with the consistent triple illustrated in Figure 3.8. Note that only
the middle part—the complement—is actually available to the partition lens as it
runs: its other input is just an edit. In the following explanation, we will break the
convention of referring to the repositories as “left” and “right”, preferring the terms
“sum repository” and “product repository”, to avoid confusion with the left and right
sides of the contained sums and products.

As a warm-up, consider a simple edit: changing Dvorak’s name to Dvořák (with

113

partition ∈ (X ⊕ Y)? ↔ X? ⊗ Y ?

Vg(mod(p, dv), c) = (left(fail), c) when p > |c| (8)

Vg(mod(p, 〈〉), c) = (〈〉 , c) when 1 ≤ p ≤ |c| (9)

Vg(mod(p, dv:dvs), c) = (d′ d, c′′), where (10)

1 < n (d, c′) =Vg(mod(p, dvs), c)
1 ≤ p ≤ |c| (d′, c′′) =Vg(mod(p, dv), c′)

Vg(mod(p, switchjk(dv)), c) = (d2d1d0, c[p 7→ k]), where (11)

(pL, pR) = count(p, c) d0 = mapλd. tag(j,d)(del
′(pj))

d2 = tag(k,mod(pk, dv)) d1 = mapλd. tag(k,d)(ins
′(pk))

Vg(mod(p, stayj(dv)), c) = (tag(j,mod(pj, dv)), c), where (12)

(pL, pR) = count(p, c)
Vg(mod(p, fail), c) = (left(fail), c) (13)

Vg(ins(i), c) = (left(ins(i)), ins(i) c) (14)

Vg(del(i), c) = (d1d0, del(i) c), where (15)

c′ = reverse(c) d0 = left(del(nL−1))
(nL, nR) = count(i+1, c′) d1 = right(del(nR−1))

Vg(reorder(f), c) = (dLdR, c
′), where (16)

h = iso(c) c′ = reorder(f) c
h′ = iso(c′) (nL + 1, nR + 1) = count(|c|+ 1, c)
h′′ = h′−1; f(|c|);h fk(n 6= nk) = λp. p
dL = left(reorder(fL)) fL(nL) = inl;h′′; out
dR = right(reorder(fR)) fR(nR) = inr;h′′; out

Vg(fail, c) = (left(fail), c) (17)

Figure 3.6: Part of the partition lens (see also Figure 3.5)

correct diacritics) in the sum repository. The edit describing this has the form

mod(5, stayL(dn)),

where dn describes the string edit to the name. To translate this edit, we first
need to translate the index 5 to an index into the list of composers in the product
repository (line 12 in Figure 3.6). We can do this by simply counting how many
composers appear up to and including Dvorak, that is, how many L values appear in
the complement list up to index 5—in this case, 3. We then wrap this index up, along
with the dn edit, in a new edit of the form left(mod(3, dn)); the complement need not
change because we have not changed the structure of the lists. This pattern—count
to translate the index, then re-tag the edit appropriately—can be generalized to all
modifications that stay on the same side of the sum; the count and tag functions

114

tagof(inl(x)) = L

tagof(inr(y)) = R

lefts(〈〉) = 〈〉
lefts(inl(x):w) = x:lefts(w)

lefts(inr(y):w) = lefts(w)

tag(L, dx) = left(dx)

tag(R, dy) = right(dy)

count(p, 〈〉) = (1, 1)

mapf (〈〉) = 〈〉
mapf (c:w) = f(c):mapf (w)

rights(〈〉) = 〈〉
rights(inl(x):w) = rights(w)

rights(inr(y):w) = y:rights(w)

out(inl(x)) = x

out(inr(y)) = y

count(1, w) = (1, 1)

count(p, c:w) = let (nL, nR) = count(p− 1, w)

in

{
(nL + 1, nR) c = L
(nL, nR + 1) c = R

cyclep(n)(m) =


p p < m = n
m+ 1 p ≤ m < n
m otherwise

reverse(〈c1, . . . , cn〉) = 〈cn, cn−1, . . . , c1〉
del′(p) =

〈
del(1), reorder(cyclep)

〉
ins′(p) =

〈
reorder(λn. cyclep(n)−1), ins(1)

〉
iso(c) = λp. let (nL, nR) = count(p, c) in{

inl(nL) cp = L
inr(nR) cp = R

Figure 3.7: Supplementary functions for partition

inl(Schumann)
inl(Beethoven)

inr(Kant)
inr(Frege)
inl(Dvorak)

Schumann
Beethoven
Dvorak

Kant
Frege

L L R R L

Figure 3.8: A consistent triple for the partition lens.

115

defined in Figure 3.7 implement these two steps.
The V translation of other in-place modifications, insertions, and deletions and

theW translation of in-place modifications, insertions, and deletions to either list are
built from the same primitives, using count to translate indices and re-tagging edits
with tag. In a few cases, we use some edit “macros”: since insertions and deletions
always happen at the end of a list, we write del′ and ins′ for edits that do some shuffling
to ensure that the inserted or deleted element moves to the appropriate position.

Perhaps the most interesting of these is an in-place modification to the sum repos-
itory that switches sides of a sum (line 11). For example, suppose we want to replace
Beethoven with Plato. The edit to do this has the form mod(2, switchLR(dn))—that
is, at position 2, switch from an inl to an inr. Here, the translated edit must do four
things: delete Beethoven from the left list, insert a new element into the right list,
re-tag dn so that it changes the new element to Plato, and finally fix up the com-
plement to match the new interleaving. As before, we can use count to translate the
position 2 in the interleaved list into a position in the left list in the product repos-
itory. But then we hit a minor snag: deletions only occur at the end of a list. The
solution is to first reorder the list, so that Beethoven appears at the end, then delete
one element. Figure 3.7 defines the cycle function, which constructs permutations to
do this reordering. The function cyclep(n) permutes lists of size n by moving position
p to the end of the list, and shifting all the other elements after p down one to fill in
the resulting hole. For example, cycle2(5) looks like this:

p 1 2 3 4 5
cycle2(5)(p) 1 3 4 5 2

So, we can delete position p by first reordering with reorder(cyclep), then deleting
one element with del(1). The del′(p) macro encapsulates this pattern; there is a
similar pattern for inserting a new element at position p encapsulated by ins′(p).
Finally, since position 2 in the interleaved list corresponds to positions 2 and 1 in
the left and right non-interleaved lists, respectively, the final edit can be written as
right(mod(1, dn)) right(ins′(1)) left(del′(2)). To fix up the complement, we can simply
set the flag at position p to match the new tag: in our case, position 2 is now an inr,
so we should set c2 = R.

The most delicate cases involve translating reorderings. Consider an edit to the
product repository that swaps Schumann and Dvorak. One way to write this edit is
in terms of a function that swaps indices one and three for lists of size at least three
(and does nothing on lists of size smaller than three):

f(n)(p) =

{
4− p n ≥ 3 ∧ p ∈ {1, 3}
p n < 3 ∨ p /∈ {1, 3}

The edit itself is then left(reorder(f)). Our job is now to compute some f ′ for which
reorder(f ′) swaps inl(Schumann) and inl(Dvorak) in the sum repository (line 2). There
is one wrinkle: f and f ′ are parameterized by the length of the lists they permute.

116

Translating f naively would therefore seem to require a way for f ′ to guess the
number of composers in lists whose lengths do not match that of the complement.
Fortunately, f ′ need only behave correctly for exactly those lists that are consistent
with the current complement, for which our “guess” about how many composers there
are is guaranteed to be accurate. So we need only construct a single permutation (and
use, say, the identity permutation for all inconsistent list lengths). We use the count
function to construct this permutation6. It is convenient to derive an isomorphism
between positions in the sum repository and positions tagged by which list they are
indexing into in the product repository; the iso function shows how to use count to
do this. In our example, the resulting isomorphism looks like this:

sum 1 2 3 4 5
product inl(1) inl(2) inr(1) inr(2) inl(3)

We can use f(3) as a permutation on the inl elements, defining:

g(p) =

{
inr(p′) p = inr(p′)
inl(f(3)(p′)) p = inl(p′)

Then, to find out where position p in the sum repository should come from, we can
simply translate p into an index into the product repository using iso, apply g to find
out where that index came from, and translate back into the sum repository using
iso−1. Expanding the table above with these translations yields:

sum 1 2 3 4 5
iso inl(1) inl(2) inr(1) inr(2) inl(3)
iso; g inl(3) inl(2) inr(1) inr(2) inl(1)

iso; g; iso−1 5 2 3 4 1

This swaps indices 1 and 5, so our final f ′ looks like:

f ′(n)(p) =

{
6− p n = 5 ∧ p ∈ {1, 5}
p n 6= 5 ∨ p /∈ {1, 5}

Translating a reordering of the sum repository follows a similar path (line 16):
restrict the reordering to lists consistent with the current complement, then compose
the permutation with isomorphisms between the indices in the two repositories. There
is one subtlety here: a reordering of the list in the sum repository may shuffle which
positions are inl’s and which are inr’s. As a result, we must take care to construct two
separate position isomorphisms: one for “before” the reordering, and one for “after”.

6The base cases for count are unusual, but very convenient for our purposes. The intuition for
count(p, c) is to imagine inserting an L (respectively, R) before index p in list c; then we output how
many Ls (resp. Rs) there are up to this newly inserted item.

117

3.3.25 Lemma:

mod(p, dv:dvs)z = mod(p, dv)mod(p, dvs)z

Proof: Let n = |z|. Either p > n or not. If it is, then both sides are undefined;
otherwise:

mod(p, dv:dvs)z = z[p 7→ (dv:dvs)zp]
= z[p 7→ dv(dvs zp)]
= mod(p, dv)(z[p 7→ dvs zp])
= mod(p, dv)mod(p, dvs)z

�

3.3.26 Lemma: If 1 ≤ p ≤ n, then:

del′(p)� v = 〈v1, . . . , vp−1, vp+1, . . . , vn〉

Proof: The only tricky part of this proof is evaluating cyclep(n):

del′(p)� v =
〈
del(1), reorder(cyclep)

〉
� v

= 〈del(1)〉 �
〈
vcyclep(n)(1), . . . , vcyclep(n)(n)

〉
= 〈del(1)〉 � 〈v1, . . . , vp−1, vp+1, . . . , vn−1, vp〉
= 〈v1, . . . , vp−1, vp+1, . . . , vn−1〉

If p = n, then neither of the first two conditions in the definition of cycle will ever be
true, so cyclep(n)(m) = m, making the evaluation given in these equations a special
case where the interval from p+ 1 to n− 1 is empty and vp = vn. On the other hand,
when p < n, the value of cyclep(n) is exactly in the form given here. �

3.3.27 Lemma: When 1 ≤ p ≤ n+ 1:

ins′(p)� 〈v1, . . . , vn〉 = 〈v1, . . . , vp−1, init , vp, . . . , vn〉

Proof: Set vn+1 = init so that:

ins′(p)� v1 · · · vn = reorder(λn. cyclep(n)−1)ins(1)� 〈v1, . . . , vn〉
= reorder(λn. cyclep(n)−1)� 〈v1, . . . , vn, init〉
= reorder(λn. cyclep(n)−1)� 〈v1, . . . , vn+1〉

=
〈
vcyclep(n+1)−1(1), . . . , vcyclep(n+1)−1(n+1)

〉
= 〈v1, . . . , vp−1, vn+1, vp, . . . , vn〉
= 〈v1, . . . , vp−1, init , vp, . . . , vn〉

118

As with Lemma 3.3.26, the only tricky part is arguing that this evaluation of cyclep
is correct, and the argument is similar to the one given there, but in reverse. �

3.3.28 Lemma: The lefts and rights functions are list homomorphisms, that is,

lefts(vw) = lefts(v)lefts(w),

and similarly for rights.

Proof: We will show the proof for lefts. We argue by induction on v. In the base
case, v = 〈〉, and:

lefts(vw) = lefts(w)

= 〈〉 lefts(w)

= lefts(〈〉)lefts(w)

= lefts(v)lefts(w)

Otherwise, v = v1:v′, we know from the induction hypothesis that lefts(v′w) =
lefts(v′)lefts(w), and by case analysis either v1 = inl(x) or v1 = inr(y). In the for-
mer case:

lefts(vw) = lefts(inl(x):v′w)

= x:lefts(v′w)

= x:lefts(v′)lefts(w)

= lefts(inl(x):v′)lefts(w)

= lefts(v)lefts(w)

In the latter:

lefts(vw) = lefts(inr(y):v′w)

= lefts(v′w)

= lefts(v′)lefts(w)

= lefts(inr(y):v′)lefts(w)

= lefts(v)lefts(w)

�

3.3.29 Lemma: The isomorphism produced by iso is coherent in the following sense.
Choose arbitrary v ∈ (X + Y)? and let c = maptagof(v) be the list of tags of v. If
iso(c)(p) = inl(p′) then inl(lefts(v)p′) = vp and likewise if iso(c)(p) = inr(p′) then
inr(rights(v)p′) = vp.

119

Proof: Suppose there are nL copies of L and nR copies of R in 〈c1, . . . , cp−1〉 and
p ≤ n+1. Then it is easy to show (by induction on c) that count(p, 〈c1, . . . , cn〉) = (1+
nL, 1+nR). Inspecting the definition of iso, it is therefore clear that iso(c)(p) = inl(p′)
exactly when cp = L and there are p′ copies of L in 〈c1, . . . , cp〉. This implies there are
exactly p′ elements tagged inl in 〈v1, . . . , vp〉 (and that vp itself is tagged inl), hence
that inl(lefts(v)p′) = vp.

The argument that iso is coherent with rights is similar. �

3.3.30 Corollary: If c = maptagof(v) and 1 ≤ p ≤ |v|, then

tagof(vp) = tagof(iso(c)(p)).

3.3.31 Lemma: Suppose iso(c)(m) = inl(n) (respectively, inr(n)) and iso(c)(m′) =
inl(n′) (resp. inr(n′)). Then m < m′ if and only if n < n′.

Proof: As shown in the proof of Lemma 3.3.29, we have iso(c)(m) = inl(n) exactly
when cm = L and there are n copies of L in 〈c1, . . . , cm〉. A similar statement relates
m′ and n′. Since 〈c1, . . . , cm〉 and 〈c1, . . . , cm′〉 share a common prefix, if one has more
copies of L than the other then it must be longer—that is, n′ > n implies m′ > m. On
the other hand, since cm = cm′ = L, if one is longer than the other than it definitely
has more copies of L—that is, m′ > m implies n′ > n. �

3.3.32 Theorem: The partition operation defined in Figures 3.5, 3.6, and 3.7 is
indeed a symmetric edit lens.

Proof: According to Definition 3.2.7, we must show three things. First, partition.V
and partition.W must be stateful monoid homomorphisms; since the edit monoid for
the list module is freely generated and the two functions in question are defined by
specification, this is immediate. Second, the initial state

(init (X⊕Y)? , 〈〉 , initX?⊗Y ?)

must be an element of K; this is easily verified from the definitions of the initial
elements of the list and product modules. And third, the V and W operations must
preserve consistent states; this is where some work is required. We show thatVg and
Wg respect K; since V and W are defined by specification from these, the fact that
they respect K follows by induction on the number of atomic edits they are handed.

For the two parts of the proof that follow, choose some (z, c, (x, y)) ∈ K. We will
define n = |z|, nL = |x|, and nR = |y| in the following. By the definition of K, we
know

c = maptagof(z)

x = lefts(z)

y = rights(z).

120

In many of the cases below, the definition of Vg or Wg has its own bindings for nL
and nR using the idiom

(nL + 1, nR + 1) = count(|c|+ 1, c).

At first blush, these definitions conflict with the convention we are establishing here.
However, Lemma 3.3.29 tells us that these are in fact coincident definitions; so we
will not remark on them further in the cases where they occur.

First we show thatWg respects K. We will give the proofs for atomic edits of the
form left(dx); the proofs for edits of the form right(dy) are similar. Choose dx ∈ Glist

X

such that dx x is defined. We define (dz, c′) = Wg(left(dx), c) and must show that
dz z is defined and that (dz z, c′, (dx x, y)) ∈ K. We proceed by induction on the
size of dx.

Case 1: In this case, we have the following equalities:

dx = mod(p, dv)

dz = mod(p′, stayL(dv))

c′ = c

p′ = iso(c)−1(inl(p))

By Lemma 3.3.29, zp′ = inl(lefts(z)p) = inl(xp). This gives us enough to know that
dz z is defined and in fact that

dz z = z[p′ 7→ stayL(dv) zp′]

= z[p′ 7→ stayL(dv) inl(xp)]

= z[p′ 7→ inl(dv xp)]

Since none of the tags of z changes during this operation, this makes the computation
of lefts, rights, and maptagof easy:

maptagof(dz z) = maptagof(z)

= c

= c′

rights(dz z) = rights(z)

= y

lefts(dz z) = lefts(z)[p 7→ dv xp]
= x[p 7→ dv xp]
= dx x

These three computations establish that (dz z, c′, (dx x, y)) ∈ K, as desired.

121

Case 2: We have a slew of equalities in hand to begin with. We have some chosen f
and three main equalities:

dx = reorder(f)

dz = reorder(f ′)

c′ = c

These depend on the additional definitions:

g(inr(p)) = inr(p) f ′(n 6= |c|) = λp. p

g(inl(p)) = inl(f(nL)(p)) f ′(|c|) = h; g;h−1

h = iso(c)

We first observe that reorder(f ′) does not affect tags at all. To be precise, for
1 ≤ p ≤ n, we have:

tagof((reorder(f ′) z)p) = tagof(z(h;g;h−1)(p)) (3.3.1)
= tagof((h; g;h−1;h)(p)) (3.3.2)
= tagof((h; g)(p)) (3.3.3)
= tagof(h(p)) (3.3.4)
= tagof(zp) (3.3.5)

Equation 3.3.1 follows from the definition of f ′ and edit application. Equation 3.3.2 is
an application of Corollary 3.3.30; we can then simplify significantly in equations 3.3.3
and 3.3.4 because h is an isomorphism and g does not modify tags, as is evident from
its definition. A second application of Corollary 3.3.30, this time “in reverse”, gives
us the final equation 3.3.5. We conclude that

maptagof(dz z) = maptagof(z) = c = c′,

part of what we need to show that (dz z, c′, (dx x, y)) ∈ K. (It also means that h is
the appropriate isomorphism to use when applying Lemma 3.3.29 to dz z.)

Let us now turn our attention to showing that dz z and dx x have the appropriate
relationship. We reason as follows:

inl(lefts(dz z)p) = (dz z)h−1(inl(p)) (3.3.6)
= z(h−1;h;g;h−1)(inl(p)) (3.3.7)
= z(g;h−1)(inl(p)) (3.3.8)
= zh−1(f(nL)(p)) (3.3.9)
= inl(lefts(z)f(nL)(p)) (3.3.10)

Equation 3.3.6 is an application of Lemma 3.3.29. The next three equations, 3.3.7

122

through 3.3.9, are mere computations that invoke the definitions of dz, edit applica-
tion, and g. The final equation 3.3.10 follows from the previous by Lemma 3.3.29. A
similar argument to the above, differing only in line 3.3.9 where the definition of g is
used, shows that

inr(rights(dz z)p) = inr(rights(z)p).

We can therefore conclude that lefts(dz z) = dx lefts(z) = dx x and that
rights(dz z) = rights(z) = y, that is, that (dz z, c′, (dx x, y)) ∈ K as desired.

Case 3: We know dx = ins(i) and dz = ins(i) and c′ = ins(i) c. We compute:

maptagof(dz z) = maptagof(z 〈initX⊕Y , . . . , initX⊕Y 〉︸ ︷︷ ︸
i times

)

= maptagof(z)maptagof(〈initX⊕Y , . . . , initX⊕Y 〉︸ ︷︷ ︸
i times

)

= c 〈L, . . . , L〉︸ ︷︷ ︸
i times

= ins(i) c

= c′

There’s a slight left-bias here; in the right- version of this proof, we find that Wg

would have to produce a c′ with many replicated Rs instead of Ls, and so would not
have quite as compact a syntax for this output.

lefts(dz z) = lefts(z 〈initX⊕Y , . . . , initX⊕Y 〉︸ ︷︷ ︸
i times

)

= lefts(z)lefts(〈initX⊕Y , . . . , initX⊕Y 〉︸ ︷︷ ︸
i times

)

= x 〈initX , . . . , initX〉︸ ︷︷ ︸
i times

= ins(i) x

= dx x

Again, the left-bias means the right- version of this proof relies on Wg being slightly
more complicated for the right- analog. In particular, Wg would need to output an
edit which did the insertion above followed by a series of modifications that turned
the i final copies of inl(initX) into i copies of inr(initY).

A similar computation to the previous one shows that rights(dz z) = rights(z) = y.
This concludes the proof of this case, since our three computations have shown that
(dz z, c′, (dx x, y)) ∈ K.

Case 4: We have dx = del(0) and dz = 〈〉 and c′ = c. Since dz z = z, dx x = x,

123

and c′ = c, we are in the happy situation of having assumed exactly what we need to
prove, namely that (dz z, c′, (dx x, y)) = (z, c, (x, y)) ∈ K.

Case 5: To fit in with the surrounding conventions in the proof, we will rename a
few of the bindings of this case. To be specific, we have

dx = del(i)

dz = d′d

(d′, c′) =Wg(d
′′, c′′)

d′′ = left(del(i− 1))

c′′ = d c

d = del′(iso(c)−1(inl(nL)))

and we know that 1 ≤ i ≤ nL. Our strategy is to show that (d z, c′′, (del(1) x, y)) ∈ K;
the induction hypothesis then tells us that (d′ (d z), c′, d′′ (del(1) x, y)) ∈ K. This
means that ((d′d) z, c′, (del(i) x, y)) ∈ K, which concludes this case. In the remainder
of this case, let m = iso(c)−1(inl(nL)) so that d = del′(m).

Let us begin by showing that maptagof(d z) = d c. Then Lemma 3.3.26 tells us
two things:

d z = 〈z1, . . . , zm−1, zm+1, . . . , zn〉
d c = 〈c1, . . . , cm−1, cm+1, . . . , cn〉

The desired equality then follows from the fact that map is a list homomorphism and
that maptagof(z) = c.

We must also show that lefts(d z) = del(1) x. By Lemma 3.3.29, zm = inl(xnL
),

and by Lemma 3.3.31, zm′ is an inr for all m′ > m. Since lefts is a list homomorphism,
we can conclude that

lefts(d z) = lefts(〈z1, . . . , zm−1, zm+1, . . . , zn〉)
= lefts(〈z1, . . . , zm−1〉) lefts(〈zm+1, . . . , zn〉)
= lefts(〈z1, . . . , zm−1〉)
= del(1) (lefts(〈z1, . . . , zm−1〉) lefts(〈inl(xnL

)〉))
= del(1) (lefts(〈z1, . . . , zm−1〉) lefts(〈inl(xnL

)〉) lefts(〈zm+1, . . . , zn〉))
= del(1) (lefts(z))

= del(1) x

as desired.
Next, we show that rights(d z) = y. By Lemma 3.3.29, we know zm = inl(xnL

).
Since rights is a list homomorphism and rights(inl(v)) = 〈〉 for any v, we then can

124

compute that:

rights(d z) = rights(〈z1, . . . , zm−1, zm+1, . . . , zn〉)
= rights(〈z1, . . . , zm−1〉) rights(〈zm+1, . . . , zn〉)
= rights(〈z1, . . . , zm−1〉) rights(〈inl(xnL

)〉) rights(〈zm+1, . . . , zn〉)
= rights(〈z1, . . . , zm−1, zm, zm+1, . . . , zn〉)
= rights(z)

= y

The previous three paragraphs establish that (d z, c′′, (del(1) x, y)) ∈ K. Since
d′′ = left(del(i − 1)) is a smaller edit than left(dx) = left(del(i)), we can apply the
induction hypothesis to conclude that (d′ (d z), c′, d′′ (del(1) x, y)) ∈ K. Since edit
application is a monoid action, we know d′ (d z) = (d′d) z. By definition of the edit
application, we know d′′ (del(1) x, y) = (del(i− 1) (del(1) x), y) = (del(i) x, y). These
last two equalities directly mean that (dz z, c′, (dx x, y)) ∈ K, which completes this
case.

Case 6: We know dx = del(i) and, since the previous cases did not apply, i > nL+1.
Hence we know dx x is not defined, a contradiction to our assumption that it is.

Case 7: Since dx = fail, the assumption that dx successfully applies is immediately
contradicted, so there is nothing to prove in this case.

We now show that Vg respects K. We are given some dz ∈ Glist
X⊕Y such that dz z

is defined. We can define (dz′, c′) = Vg(dz, c); then we must show that dz′(x, y) is
defined and that (dz z, c′, dz′(x, y)) ∈ K. We proceed by induction on the size of dz.

Case 8: dv ∈ X ⊕ Y and dz = mod(p, dv) and p > |c|.
Since |z| = |c|, we conclude that dz z is undefined, a contradiction.

Case 9: dz = mod(p, 〈〉) and 1 ≤ p ≤ |c|.
We calculate:

dz′ = 〈〉
c′ = c

dz z = z

dz′(x, y) = (x, y)

So (dz z, c′, dz′(x, y)) ∈ K by assumption: (z, c, (x, y)) ∈ K.

125

Case 10: We have all of the following:

dv ∈ G⊕X,Y (3.3.11)

dvs ∈ ∂(X ⊕ Y) (3.3.12)
dz = mod(p, dv:dvs) (3.3.13)

1 ≤ p ≤ |c| (3.3.14)
1 < n (3.3.15)

(d, c′′) =Vg(mod(p, dvs), c) (3.3.16)
(d′, c′) =Vg(mod(p, dv), c′′) (3.3.17)

dz′ = d′ d (3.3.18)

By Lemma 3.3.25 and the assumption that mod(p, dv:dvs)z is defined, we know
mod(p, dv)(mod(p, dvs)z) is defined, and hence mod(p, dvs)z is defined. The induc-
tion hypothesis for equation 3.3.16 therefore tells us that d (x, y) is defined and that

(mod(p, dvs)z, c′′, d (x, y)) ∈ K.

Again appealing to the induction hypothesis, this time for equation 3.3.17, we also
know that d′ (d (x, y)) is defined and

(mod(p, dv)(mod(p, dvs)z), c′, d′ (d (x, y))) ∈ K.

By one final appeal to Lemma 3.3.25, we therefore conclude that

(dz z, c′, dz′(x, y)) ∈ K

as desired.

Case 11: We have:

dz = mod(p, switchjk(dv))

1 ≤ p ≤ |c|
dv ∈ ∂X when k = L

dv ∈ ∂Y when k = R

dz′ = d2d1d0

c′ = c[p 7→ k]

d0 = mapλd. tag(j,d)(del
′(pj))

d1 = mapλd. tag(k,d)(ins
′(pk))

d2 = tag(k,mod(pk, dv))

(pL, pR) = count(p, c)

126

Let us consider the case when j = k = L, whose argument is representative of the
other cases.

Since dz z is defined, we know that zp = inl(v) for some v ∈ X. Taking v′ =
dv initX , we can now compute:

maptagof(dz z) = maptagof(z[p 7→ inl(v′)])

= maptagof(〈z1, . . . , zp−1〉) 〈k〉 maptagof(〈zp+1, . . . , zn〉)
= 〈c1, . . . , cp−1, k, cp+1, . . . , cn〉
= c[p 7→ k]

= c′

The second line follows from the first because map is a list homomorphism. Hence
Vg maintains consistency of c in this case; it remains to show that Vg maintains
consistency of the output. We calculate the effects of dz and dz′, starting with dz′:

dz′ (x, y) = d2d1d0(x, y)

= d2d1(mapλd.tag(j,d)(del
′(pj)))(x, y)

= d2d1(mapleft(del
′(pL)))(x, y)

= d2d1(del′(pL)x, y)

= d2(mapλd.tag(k,d)(ins
′(pk)))(del

′(pL)x, y)

= d2(mapleft(ins
′(pL)))(del′(pL)x, y)

= d2(ins′(pL)del′(pL)x, y)

= tag(k,mod((, p)k, dv))(ins′(pL)del′(pL)x, y)

= (mod(pL, dv)ins′(pL)del′(pL)x, y)

We can use Lemmas 3.3.26 and 3.3.27 to simplify:

dz′ (x, y) = (mod(pL, dv)ins′(pL)del′(pL) 〈x1, . . . , xnL
〉 , y)

= (mod(pL, dv)ins′(pL) 〈x1, . . . , xpL−1, xpL+1, . . . , xnL
〉 , y)

= (mod(pL, dv) 〈x1, . . . , xpL−1, initX , xpL+1, . . . , xnL
〉 , y)

= (〈x1, . . . , xpL−1, v
′, xpL+1, . . . , xnL

〉 , y)

= (x[pL 7→ v′], y)

We now make some observations about the effects of dz, making crucial use of

127

Lemma 3.3.28:

rights(dz z) = rights(〈z1, . . . , zp−1, inl(v
′), zp+1, . . . , zn〉)

= rights(〈z1, . . . , zp−1〉)rights(inl(v′))rights(〈zp+1, . . . , zn〉)
= rights(〈z1, . . . , zp−1〉)rights(inl(v))rights(〈zp+1, . . . , zn〉)
= rights(〈z1, . . . , zp−1〉)rights(zp)rights(〈zp+1, . . . , zn〉)
= rights(〈z1, . . . , zp−1, zp, zp+1, . . . , zn〉)
= rights(z)

= y

We now observe that Lemma 3.3.29 implies that lefts(〈z1, . . . , zp−1〉) = 〈x1, . . . , xpL−1〉
and likewise that lefts(〈zp+1, . . . , zn〉) = 〈xpL+1, . . . , xnL

〉.

lefts(dz z) = lefts(z[p 7→ inl(v′)])

= lefts(〈z1, . . . , zp−1〉)lefts(inl(v′))lefts(〈zp+1, . . . , zn〉)
= 〈x1, . . . , xpL−1, v

′, xpL+1, . . . , xnL
〉

= x[pL 7→ v′]

Taken together, these last three computations show that

dz′ (x, y) = (lefts(dz z), rights(dz z))

which is just what we needed.

Case 12: Let us consider specifically the case where j = L; the argument for j = R
is very similar. Then we have

dz = mod(p, stayL(dv))

dz′ = left(mod(pL, dv))

(pL, pR) = count(p, c)

Moreover, since dz z is defined, we know that there is some v ∈ X for which dv v is
defined such that zp = inl(v) and, by appeal to Lemma 3.3.29, we know in particular
that v = lefts(z)pL = xpL . Hence dz′ (x, y) is defined.

We now observe that mod(p, stayL(dv)) does not change any tags or any non-
inl values, so maptagof(dz z) = maptagof(z) = c and rights(dz z) = rights(z) = y.
Furthermore:

lefts(dz z) = lefts(mod(p, stayL(dv)) z[p 7→ inl(xpL)])

= lefts(z[p 7→ inl(dv xpL)])

= x[pL 7→ dv xpL]

= mod(pL, dv) x

128

That is, dz z and dz′ (x, y) = (mod(pL, dv) x, y) are synchronized as desired.

Case 13: When dz = mod(p, fail) there is nothing to prove, because the assumption
that the edit application is defined is immediately contradicted.

Case 14:

dz = ins(i)

dz′ = left(ins(i))

c′ = ins(i) c

We calculate:

dz z = z 〈initX⊕Y , . . . , initX⊕Y 〉︸ ︷︷ ︸
i times

= z 〈inl(initX), . . . , inl(initX)〉︸ ︷︷ ︸
i times

dz′(x, y) = (x 〈initX , . . . , initX〉︸ ︷︷ ︸
i times

, y)

c′ = c 〈L, . . . , L〉︸ ︷︷ ︸
i times

Now, since map is a list homomorphism, we have:

maptagof(dz z) = maptagof(z)maptagof

〈inl(initX), . . . , inl(initX)〉︸ ︷︷ ︸
i times


= c 〈L, . . . , L〉︸ ︷︷ ︸

i times

= c′

Likewise, by Lemma 3.3.28:

lefts(dz z) = lefts(z)lefts

〈inl(initX), . . . , inl(initX)〉︸ ︷︷ ︸
i times


= x 〈initX , . . . , initX〉︸ ︷︷ ︸

i times

rights(dz z) = rights(z)rights

〈inl(initX), . . . , inl(initX)〉︸ ︷︷ ︸
i times


= y

129

These latter two computations amount to showing that

dz′(x, y) = (lefts(dz z), right(dz z))

which, together with the observation above that maptagof(dz z) = c′, shows that Vg

preserves consistency in this case.

Case 15:

dz = del(i)

dz′ = right(del(nL − 1))left(del(nR − 1))

(nL, nR) = count(i+ 1, reverse(c))

(Take careful notice of the definition of nL and nR here: it differs from the convention
established at the beginning of the proof! We will use these local definitions for the
remainder of this case.)

The interesting thing to prove is that lefts(del(i) z) = del(nL − 1)lefts(z) (and
similarly for rights). We proceed by an inner induction on i.

When i = 0, we have lefts(del(0) z) = lefts(z) and

(nL, nR) = count(1, reverse(c)) = (1, 1)

so that del(nL − 1)lefts(z) = del(0)lefts(z) = lefts(z).
Suppose i > 0. Define the abbreviation cr = reverse(c). Then the induction

hypothesis says that

lefts(del(i− 1) z) = del(fst(count(i, cr))− 1)lefts(z).

Now, either cri = L or cri = R. If the former, then zn−i+1 = inl(x) for some x and:

del(nL − 1)lefts(z) = del(fst(count(i+ 1, cr))− 1)lefts(z)

= del(1 + fst(count(i, cr))− 1)lefts(z)

= del(1)del(fst(count(i, cr))− 1)lefts(z)

= del(1)lefts(del(i− 1) z)

= del(1)lefts(〈z1, . . . , zn−i, inl(x)〉)
= del(1)(lefts(〈z1, . . . , zn−i〉)x)

= lefts(〈z1, . . . , zn−i〉)
= lefts(del(i) z)

130

Otherwise, zn−i+1 = inr(y) for some y and:

del(nL − 1)lefts(z) = del(fst(count(i+ 1, cr))− 1)lefts(z)

= del(fst(count(i, cr))− 1)lefts(z)

= lefts(del(i− 1) z)

= lefts(〈z1, . . . , zn−i, inr(y)〉)
= lefts(〈z1, . . . , zn−i〉)
= lefts(del(i) z)

as desired.
A similar argument shows that:

rights(del(i) z) = del(nR − 1)rights(z)

Case 16: The main idea of the proof for this case is to observe that c contains
enough information to deduce the length of x, y, and z, and in particular which
index the various reorder edits will be specialized to during edit application. We can
focus on these indices. (We will see that the somewhat strange-looking clause defining
fk(n 6= nk) = λp. p is never used – the lens could use any automorphism on {1, . . . , n}
in place of the identity there.)

Because the application of dz and dz′ are always defined, we need only show that
the new complement and the output edits are consistent with the input edits. We
begin by showing the new complement is consistent with dz z.

maptagof(dz z) = maptagof(
〈
zf(n)(1), . . . , zf(n)(n)

〉
) (3.3.19)

=
〈
maptagof(z)f(n)(1), . . . ,maptagof(z)f(n)(n)

〉
(3.3.20)

=
〈
cf(n)(1), . . . , cf(n)(n)

〉
(3.3.21)

= reorder(f) c (3.3.22)

Equation 3.3.19 follows by definition of edit application in the list module (and
because |z| = |c| = n); equation 3.3.20 is a special property of map; equation 3.3.21
by definition of c; and equation 3.3.22 by the definition of reorder’s edit application.

We will now show that lefts(dz z) = reorder(fL) x. A similar argument to the
following also shows that rights(dz z) = reorder(fR) y, and these two facts together
will conclude the proof (since dz′ (x, y) = (reorder(fL) x, reorder(fR) y)). By the

131

above fact about c′ and Lemma 3.3.29:

inl(lefts(dz z)i) = (dz z)iso−1(c′)(inl(i)) (3.3.23)
= (dz z)h′−1(inl(i)) (3.3.24)
= zf(n)(h′−1(inl(i))) (3.3.25)
= inl(lefts(z)out(iso(c)(f(n)(h′−1(inl(i)))))) (3.3.26)
= inl(lefts(z)out(h(f(n)(h′−1(inl(i)))))) (3.3.27)
= inl(lefts(z)(inl;h′−1;f(n);h;out)(i)) (3.3.28)
= inl(lefts(z)(inl;h′′;out)(i)) (3.3.29)
= inl(lefts(z)fL(nL)(i)) (3.3.30)

lefts(dz z)i = lefts(z)fL(nL)(i) (3.3.31)

Equation 3.3.23 is a straightforward application of Lemma 3.3.29; equation 3.3.24
folds the definition of h′; and equation 3.3.25 applies edit dz. Equation 3.3.26 ap-
plies Lemma 3.3.29 again, but with the knowledge that the tag of the previous line
is inl (because that is the left-hand side of the equality we have already proved).
Equations 3.3.27, 3.3.28, 3.3.29, and 3.3.30 just rewrite the equation by folding the
definitions of h, h′′, and fL and rewriting explicit function application as the appli-
cation of a function composition. The final equation 3.3.31 holds by injectivity of
inl.

Now, since x = lefts(z) and |x| = nL, we can conclude that lefts(dz z) =
reorder(fL) x as desired.

Case 17: As in Case 13, there is nothing to prove, as the assumption that the edit
application is defined is immediately contradicted. �

3.4 Containers
The list mapping lens from the previous section can be generalized to a much larger
set of structures, called containers, that also includes trees, labeled graphs, etc. We
will also provide a general construction for “reorganization lenses” between different
container types (over the same type of entries). Together with composition and ten-
sor product, this will provide a set of building blocks for constructing many useful
lenses. The reorganization lenses also furnish further examples of lenses with nontriv-
ial complements. (Only a small part of §3.5 depends on this material; it can safely
be skimmed on a first reading.)

Containers were first proposed by Abbott, Altenkirch, and Ghani [2]. The idea is
that a container type specifies a set I of shapes and, for each shape i, a set of positions
P (i). A container with entries in X and belonging to such a container type comprises
a shape i and a function f : P (i)→ X. For example, lists are containers whose shapes
are the natural numbers and for which P (i) = {0, . . . , i−1}, whereas binary trees are

132

containers whose shapes are prefix-closed subsets of {0, 1}? (access paths) and where
P (i) = i itself. Even labeled graphs can be modeled using unlabeled graphs as shapes.
One can further generalize the framework to allow the types of entries to depend on
their position, but for the sake of simplicity we will not do so here.

In the present context, containers are useful because they allow for the definition
of a rich edit language, allowing the insertion and deletion of positions, modification
of particular entries, and reorganizations such as tree rotations. We can then define
lenses for containers that propagate these general edit operations.

In the case of the state-based symmetric lenses of Chapter 2, it has been observed
that lens iterators akin to “fold left” for inductive data structures also permit the
definition of powerful (state-based) lenses. In the edit-based framework iterators are
less convenient because it is unclear how edits in an arbitrary module should be
propagated to, say, list edits in such a way that the rich edit structure available for
lists is meaningfully exploited. (Of course, it is possible to propagate everything to a
“rebuild from scratch” edit, thus aping the state-based case.)

In the following we slightly deviate from the presentation of containers from §2.7
and [2] in that we do not allow the set of positions to vary with the shapes. We
rather have a universal set of positions P and a predicate live that delineates a subset
of P for each shape i. We can then obtain a container type in the original sense by
putting P (i) = {p | p ∈ live(i)}. Conversely, given a container type in the sense of
[2], we can define P = {(i, p) | p ∈ P (i)} and live(i) = {(i, p) | p ∈ P}. Furthermore,
as we already did in Chapter 2, we require a partially-ordered set of shapes I and
ask that live be monotone. Formulating this in the original setting would require
a coherent family of transition functions P (i) → P (i′) when i ≤ i′, which is more
cumbersome. Another advantage of the present formulation of container types is that
it lends itself more easily to an implementation in a programming language without
dependent types.

3.4.1 Definition: A container type is a triple 〈I, P, live〉 comprising

• a module I of shapes whose underlying set is partially ordered (but whose action
need not be monotone);

• a set P of positions ; and

• a liveness predicate in the form of a monotone function live ∈ I → P(P) which
tells for each shape which positions belong to it.

If T = 〈I, P, live〉 is a container type and X is a set, we can form the set T (X) of
containers of type T with entries from X by setting T (X) =

∑
i∈I live(i)→ X. Thus

a container of type T and entries from X comprises a shape i and, for every position
that is live at i—i.e. every element of live(i)—an entry taken from X.

Our aim is now to explain how the mapping X 7→ T (X) lifts to a functor on the
category of lenses—i.e., for each module X, how to construct a module T (X) whose

133

underlying set of states is the set of containers T (|X|), and for each lens ` ∈ X ↔ Y ,
how to construct a “container mapping lens” T (`) ∈ T (X)↔ T (Y). We will see that
this mapping is well defined on equivalence classes of lenses and respect identities and
composition. We begin by defining a module structure on containers.

3.4.2 Definition: Let T = 〈I, P, live〉 be a container type. An edit di ∈ ∂I is an
insertion if di i ≥ i whenever defined. It is a deletion if di i ≤ i whenever defined.
It is a rearrangement if |live(di i)| = |live(i)| (same cardinality) whenever defined.
We only employ edits from these three categories as ingredients of container edits;
any other edits in the module will remain unused. This division of container edits
into “pure” insertions, deletions, and rearrangements facilitates the later definition of
lenses operating on such edits.

3.4.3 Definition: If 〈I, P, live〉 is a container type, di ∈ ∂I, and f ∈ I → P → P ,
then we say f is consistent with di if, whenever di i is defined, f(i) restricted to
live(di i) is a bijection to live(i).

A typical insertion could be the addition of a node to a binary tree, a typical deletion
the removal of some node, and a typical rearrangement the rotation of a binary tree
about some node.

3.4.4 Definition [Container edits]: Given container T and module X we define
edits for T (|X|) as follows (we give some intuition after Definition 3.4.5):

{fail}
∪ {mod(p, dx) | p ∈ P, dx ∈ ∂X}
∪ {ins(di) | di an insertion}
∪ {del(di) | di a deletion}
∪ {rearr(di, f) | f consistent with di}

In the last case, often either di will only be defined for very few i or f will have a
generic definition, so the representation of a rearrangement edit does not have to be
large.

3.4.5 Definition [Edit application]: The application of an edit to a container
(i, f) is defined as follows:

fail (i, f) is always undefined
mod(p, dx) (i, f) = (i, f [p 7→ dx f(p)]) when p ∈ live(i)
ins(di) (i, f) = (di i, f ′)

where f ′(p) = if p ∈ live(i) then f(p) else initX

del(di) (i, f) = (di i, f�live(di i))
rearr(di, f) (i, g) = (di i, g′)

where g′(p) = g(f(i)(p))

134

The mod(p, dx) edit modifies the contents of position p according to dx. If that
position is absent the edit fails. The shape of the resulting container is unchanged.
The ins(di) edit alters the shape by di, growing the set of positions in the process
(since di i ≥ i). The new positions are filled with initX . The del(di) edit works
similarly, but the set of positions may shrink; the contents of deleted positions are
discarded. (The notation f�S stands for the restriction of f to domain S.) The fail
edit never applies and will be returned pro forma by some container lenses if the
input edit does not match the current complement.

The rearr(di, f) edit, finally, changes the shape of a container but neither adds
nor removes entries. As already mentioned, a typical example is the left-rotation
of a binary tree about the root. This rotation applies whenever the root has two
grandchildren to the left and a child to the right. For this example, one may worry
about the size of f , since it affects many positions; however, it can be serialized to
a small, three line if-then-else. We do not, at this point, provide edits that copy the
contents of some position into other positions; their investigation is left for future
work.

We define the monoid ∂T (X) as the free monoid generated by the basic edits
defined above. In §3.5 we discuss the possibility of imposing equational laws, in
particular with a view to compact normal forms of container edits.

Setting initT (X) = (init I , λp.initX) when T = 〈I, P, live〉 completes the definition
of the module T (X).

3.4.6 Example: For any module X we can construe the list module X? as a par-
ticular container type 〈I, P, live〉 where I = N with ∂I generated by i ∈ Z with
i� n = max(i+ n, 0). Furthermore, P = N and live(n) = {0, . . . , n− 1}.

Then all list edits arise as specific container edits, however, the generic formulation
of container edits also includes some esoteric edits, such as ins(10·(−10)) which brings
a list to minimum length 10 by appending default elements if needed.

In Figure 3.9 we define the mapping lens turning T (−) into an endofunctor on
the category of lenses. We note that this is only the second lens to have a nontrivial
complement (after partition).

Given that this definition looks complex at first we state and prove explicitly that
it is indeed a lens.

3.4.7 Theorem: If T = 〈I, P, live〉 is a container and ` is a lens so is T (`). Moreover,
T (−) respects lens equivalence and preserves the identity lens and composition of
lenses (up to equivalence), and thus defines a functor on the category of lenses.

Proof: We begin by unraveling the definition. The complement of the T (`) lens
is itself a container of `-complements; thus, even if ` has a trivial complement the
complement in T (`) can be nontrivial. The consistency relation requires that the
shapes of the left and right states agree with the shape of the complement and that
matching entries are consistent in the sense of `.

135

` ∈ X ↔ Y T = 〈I, P, live〉 a container type
T (`) ∈ T (X)↔ T (Y)

C = T (`.C)

missing = (init I , λp. `.missing)

Vg(mod(p, dx), (i, f)) = (mod(p, dy), (i, f ′))
when p ∈ live(i) and where
f ′ = f [p 7→c′], (dy, c′) = `.V(dx, f(p))

Vg(mod(p, dx), (i, f)) = (fail, (i, f)) if p 6∈ live(i)
Vg(ins(di), (i, g)) = (ins(di),

(di i, g[p 7→`.missing]))
when di i is defined

Vg(del(di), (i, g)) = (del(di), (di i, g�live(di i)))
when di i is defined

Vg(rearr(di, h), (i, g)) = (rearr(di, h),
(di i, λp.g(h(i)(p))))
when di i is defined

Vg(dz, c) = (fail, c) in all other cases
Wg(−,−) = analogous
K = {((i, f), (i, g), (i, f ′)) | i ∈ I

∧ (f(p), g(p), f ′(p)) ∈ `.K}

Figure 3.9: Generic container-mapping lens

A mod(p, dx) edit is transported by sending dx through ` using the appropriate
`-complements contained in the complement (i, f) of the mapping lens. When no
such `-complement is available, the lens returns fail. If ((i, f), (j, g), (i′, f ′)) ∈ K and
mod(p, dx)(i, f)↓, then p ∈ live(i), hence p ∈ live(j) and p ∈ live(i′). So the result of
propagating mod(p, dx) will be mod(p, dy) where (dy, c′) = `.V(dx, g(p)). Now since
(f(p), g(p), f ′(p)) ∈ `.K, we know that dy f ′(p)↓ and (dx f(p), c′, dy f ′(p)) ∈ `.K. It
follows that mod(p, dy) (i′, f ′)↓ and the new triple is again in K.

As success or failure of the other edit operations only depends on the shape, it is
clear that success is preserved by the mapping lens when starting from a consistent
triple. We must argue, though, that the resulting triples remain consistent. We show
how this argument works using rearr(di, h) as an example. The resulting triple is
((di i, f ◦ h(i)), (di i, g ◦ h(i)), (di i, f ′ ◦ h(i))). Now, since h(i) ∈ live(di i) ' live(i)
must be a bijection it follows immediately that this triple is in K.

Compatibility of V,W with monoid multiplication is trivial here since the edit
monoid for containers is freely generated.

Let T (k);T (`) be the composition of two mapping lenses. The complement of this

136

lens is T (k.C)×T (`.C). On the other hand, the complement of T (k; `) is T (k.C×`.C).
An appropriate simulation relation is defined by

{(((i, gk), (i, g`)), (i, gk;`)) | ∀p.gk;`(p) = (gk(p), g`(p))}.

We omit the straightforward verification. We also have to show that T (−) is well-
defined on equivalence classes, so assume that ` ≡ k ∈ X ↔ Y and let S ⊆ X×`.C×
k.C × Y be a witnessing simulation relation, cf. Thm. 3.2.11.

The following relation T (S) then witnesses T (`) ≡ T (k).

T (S) = {(i, f), (i, g), (i, g′), (i, f ′)

| i∈I ∧ ∀p.(f(p), g(p), g′(p), f ′(p)) ∈ S}

We omit the straightforward verification. �

We can also define a restructuring lens between containers of different container
type but with the same type of entries, i.e. between T (X) and T ′(X) where T =
〈I, P, live〉 and T ′ = 〈I ′, P ′, live′〉. For this to be possible, we need a lens ` between I
and I ′ and for any triple (i, c, i′) ∈ `.K a bijection fi,c,i′ ∈ live′(i′) ' live(i). The
complement of this lens consists of those triples (i, c, i′), and thus “knows” at any time
which bijection links the positions at either end.

One typical instance of this kind of lens is list reversal; another is a lens between
trees and lists which ensures that the list entries agree with the tree entries according
to some fixed order, e.g. in-order or breadth first. Although the live positions of the
containers to be synchronized are in bijective correspondence, there is—e.g. in the
case of list reversal—no fixed edit that, say, a “modify the second position” edit is
mapped to. Indeed, the restructuring lens we are about to construct can be seen as
a kind of state-indexed isomorphism, but the full scaffolding of edit lenses is needed
to make such a notion precise. Before proceeding to the details, let us take a quick
tour of this lens’ behavior by examining the special case of maintaining a tree and its
in-order traversal as a list.

To model a list, we take I = N; P = N; live(i) = {p | p < i}; and for trees, I ′
comprises prefix closed subsets of {0, 1}?; P ′ = {0, 1}?; live′(i′) = i′. The monoid ∂I
has increment and decrement operations; the monoid ∂I ′ has operations for adding
and removing nodes in leaf positions and also for rotating tree shapes. We illustrate
the propagation of an ins(di) edit—which is one of the more complex cases.

be 0 da

be ma

na

0

ε

1

11

da 1
ma 2
na 3

The lens ` ∈ I ↔ I ′ does not know anything about the
intended application; it has a trivial complement Unit and
merely maintains the constraint that the list shape and the
tree shape have the same number of positions. It has some
freedom how it translates list edits; e.g., it might add and
remove tree nodes at the left.

137

be 0 da

be ma

na

0

ε

1

11

da 1
ma 2
na 3
?
?

4
5

?00 ?01

The family of bijections fi,c,i′ models the in-order
correspondence; thus, for example if i = 4 and i′ =
{〈〉 , 〈0〉 , 〈1〉 , 〈1, 1〉} the bijection would be as shown
above. (For illustration we also indicate possible X-
contents of the positions.) Formally, we have fi,c,i′ =
{(0, 〈0〉), (1, 〈〉), (2, 〈1〉), (3, 〈1, 1〉)}.

Now suppose that di i = i + 2 and that di′ (the
result of di propagated through `) installs two children at the leftmost node. In our
in-order application we then have fdi i,c′,di′ i′ = {(0, 〈0, 0〉), (1, 〈0〉), (2, 〈0, 1〉), (3, 〈〉),
(4, 〈1〉), (5, 〈1, 1〉)} and after applying both ins(di) and ins(di′) we are in the as-yet-
inconsistent situation depicted above.

be 0 na

da ?

?

0

ε

1

11

da 1
ma 2
na 3
?
?

4
5

be00 ma01

Since the newly inserted elements in the list come
at the end, we can restore consistency by moving the
newly inserted tree elements to positions that come at
the end of the in-order walk. This can be done essen-
tially automatically just using the in-order walk posi-
tion bijections: to decide where a position p in the old
tree should reappear in the new tree, we can simply fol-
low the position through its journey of being flattened
and unflattened using fi,c,i′ and f−1

di i,c′,di′ i′ , respectively. Thus to restore consistency
we apply rearr(1, fi) where fi(i′) = {(〈0, 0〉 , 〈0〉), (〈0〉 , 〈〉), (〈0, 1〉 , 〈1〉), (〈〉 , 〈1, 1〉),
(〈1〉 , 〈0, 0〉), (〈1, 1〉 , 〈0, 1〉)}. We could also have chosen fi(i

′) = {. . . , (〈1〉 , 〈0, 1〉),
(〈1, 1〉 , 〈0, 1〉)}; since in any case the new positions are uninitialized, this free choice
has little impact. Of course fi(i′′) for i′′ 6= i′ is also completely unconstrained. After
applying rearr(1, fi) we end up with the desired consistent state.

With this intuition in hand, we are ready to see the details of the restructuring
lens. As discussed above, we must have containers T and T ′, an edit lens ` between
their shapes, and a family of bijections between live sets. We also require that ` maps
insertions to insertions, deletions to deletions, and rearrangements to rearrangements.
(This is well-defined on equivalence classes of lenses.) Given these data, we define
the restructuring lens in Figure 3.10, with a few supplementary definitions below.
The additional families of bijections fi, fd, fr must be chosen in such a way that the
container edits in which they appear are well-formed (this is possible since di′ is an
insertion, deletion, or restructuring as appropriate) and such that the following three
constraints are satisfied: in each case i, i′, etc., refer to the current values from above
and p ∈ live′(di′ i′) is an arbitrary position.

fi(di′ i′)(p) = f−1
i,c,i′(fdi i,c′,di′ i′(p))

when fdi i,c′,di′ i′(p) ∈ live(i)

fd(i
′)(p) = f−1

i,c,i′(fdi i,c′,di′ i′(p))

fr(i
′)(p) = f−1

i,c,i′(g(i)(fdi i,c′,di′ i′(p)))

138

T = 〈I, P, live〉 a container type
T ′ = 〈I ′, P ′, live′〉 a container type

` ∈ I ↔ I ′

[T, T ′](`) ∈ T (X)↔ T ′(X)

C = `.K

missing = (init I , `.missing , init I′)

K = {((i, f), (i, c, i′), (i′, f ′))
| (i, c, i′) ∈ `.K ∧ ∀p∈live′(i′).f(fi,c,i′(p)) = f ′(p)}

Vg(fail, x) = (fail, x)
Vg(mod(p, dx), (i, c, i′)) = (mod(f−1

i,c,i′(p), dx), (i, c, i′))

when p ∈ live(i)
Vg(ins(di), (i, c, i′)) = (rearr(1, fi)ins(di′), (di i, c′, di′ i′))
Vg(del(di), (i, c, i′)) = (del(di′)rearr(1, fd), (di i, c′, di′ i′))
Vg(rearr(di, g), (i, c, i′)) = (rearr(di′, fr), (di i, c′, di′ i′))

see below for fi, fd, fr
in the last three clauses: (di′, c′) = `.V(di, c)
Vg(dc, (i, c, i′)) = fail in all other cases
Wg(−,−) = analogous

Figure 3.10: Container restructuring lens

These conditions do not completely determine fi, fd, and fr. In each case, these
families are completely unconstrained on shapes other than di′ i′. The propagated
edits are supposed to be applied to a container of the current shape i′, so the arbitrary
decisions about other shapes do not really matter; nevertheless it would be nice if
we could be a bit more uniform. This is indeed possible in the case where ` is an
isomorphism lens, but we refrain from formulating details.

As discussed in the example above, the bijection fi contains a little more choice,
namely the behavior on the T ′ positions in f−1

di i,c′,di′ i′(live(di i)\ live(i)). Fortunately,
they all contain initX so that the choice does not affect the resulting state after
application of the edit, and the alignment is decided not by fi but by the family of
bijections fi,c′,i′ that parameterize the lens.

3.4.8 Theorem: The restructuring lens is indeed a lens.

Proof: As the edit monoid is free, we only need to show that successful edits to
consistent states get transported to successful edits resulting in consistent states.
Thus suppose that (i, c, i′) ∈ `.K and f(fi,c,i′(p)) = f ′(p) holds for all p ∈ live′(i′) so
that ((i, f), (i, c, i′), (i′, f ′)) are consistent. We will show below that V is correct; the
proof about W is very similar. In the cases below where there is an edit named di,

139

we will write (di′, c′) = `.V(di, c) and abbreviate the bijections fi,c,i′ and fdi i,c′,di′ i′

to fpre and fpost, respectively.
Case fail is obvious.
Case mod(p, dx): the complement does not change and the edit dx is applied to

the same elements.
Case ins(di). The resulting new repository states are (di i, f1) and (di′ i′, f ′1):

f1(p) = if p ∈ live(i) then f(p) else initX

f ′1(p) = if fi(di′ i′)(p) ∈ live(i′) then f ′(fi(di′ i′)(p)) else initX

Also, the bijection fi(di′ i′) ∈ live′(di′ i′) ' live′(di′ i′) satisfies

fpost(p) ∈ live(i)⇒ fi(di′ i′)(p) = f−1
pre(fpost(p)).

This assumption lets us conclude that fpost(p) ∈ live(i) if and only if fi(di′ i′)(p) ∈
live′(i′). In the forward direction, we argue:

fpost(p) ∈ live(i) assumption
f−1
pre(fpost(p)) ∈ live′(i′) fpre ∈ live(i) ' live′(i′)

fi(di′ i′)(p) ∈ live′(i′) assumed condition of fi

In the backward direction, define q = fi(di′ i′)(p). Then:

fi(di′ i′)(p) ∈ live′(i′) assumption
q ∈ live′(i′) definition of q

fpre(q) ∈ live(i) fpre ∈ live(i) ' live′(i′)

fpost(f
−1
post(fpre(q))) ∈ live(i) fpost is a bijection

f−1
pre(fpost(f

−1
post(fpre(q)))) = q fpost and fpre are bijections

fi(di′ i′)(f−1
post(fpre(q))) = q assumed condition of fi
f−1
post(fpre(q)) = p fi(di′ i′) is a bijection and

definition of q
fpost(p) ∈ live(i) fpre(q) ∈ live(i)

To conclude the case, we must show that arbitrary p ∈ live′(di′ i′) have f ′1(p) =
f1(fpost(p)). We consider two cases: either fpost(p) ∈ live(i) or not. If so then
f1(fpost(p)) = f(fpost(p)) = f ′(f−1

pre(fpost(p))) = f ′1(p) where the first equation uses
the above characterization of f1; the second one uses consistency of f and f ′, and the
third one uses the characterizations of f ′1 and fi (noting that fpost(p) ∈ live(i) implies
fi(di′ i′)(p) ∈ live′(i′)). In the other case, fpost(p) /∈ live(i), so fi(di′ i′)(p) /∈ live′(i′).
Then f ′1(p) = initX , but f1(fpost(p)) = initX , too, by the characterization of f1.

Case del(di). Ignoring domain restrictions, the new repository states are (di i, f)

140

and (di′ i′, fd(i′); f ′). For these to be consistent, we must show that f(fpost(p)) =
f ′(fd(i

′)(p)) whenever p ∈ live′(di′ i′). Since di is a deletion, we know di i ⊂ i, so
that fpost ∈ live(di i) ' live′(di′ i′) implies fpost(p) ∈ live(i). Hence we can equate:

f(fpost(p)) = f ′(f−1
pre(fpost(p))) consistency of f and f ′

= f ′(fd(i
′)(p)) assumed condition of fd

Case rearr(di, g). The new repository states that we must show are consistent
are (di i, g(i); f) and (di′ i′, fr(i′); f ′). Consider arbitrary p ∈ live′(di′ i′). Since
fpost; g(i) ∈ live′(di′ i′) ' live(i), we know g(i)(fpost(p)) ∈ live(i); this justifies the first
equation below.

f(g(i)(fpost(p))) = f ′(f−1
pre(g(i)(fpost(p)))) consistency of f and f ′

= f ′(fr(i
′)(p)) condition of fr �

Using the container lens combinators, the partition lens and lens mediating be-
tween “built-in” lists and “list containers” we can then plumb together a variety of
useful lenses, e.g. one that partitions the entries of an X + Y labeled tree into inls
and inrs and then presents the two resulting containers again as trees over X and Y .
If one wants one can then use a mapping lens to change the representation of the Y ’s
in some way.

3.5 Adding Monoid Laws
The edit languages accompanying the constructions in the previous two sections were
all freely generated. This was a good place to begin as it is relatively easy to un-
derstand, but, as discussed in §3.2, there are good reasons for investigating richer
languages. This section takes a first step in this direction by showing how to equip
the product and sum combinators with more interesting edits.

Given modules X and Y , there is a standard definition of module product moti-
vated by the intuition that an edit to an |X| × |Y | value is a pair of an edit to the
|X| part and an edit to the |Y | part. The monoid multiplication goes pointwise, and
one can define an edit application that goes pointwise as well.

X ⊗ Y = 〈|X| × |Y |, (initX , initY), ∂X ⊗ ∂Y,�X⊗Y 〉
1M⊗N = (1M ,1N)

(m,n) ·M⊗N (m′, n′) = (mm′, n n′)

(dx, dy)�X⊗Y (x, y) = (dx x, dy y)

3.5.1 Lemma: These definitions give rise to a module—that is, ·M⊗N is associative
with identity 1M⊗N and �X⊗Y satisfies the monoid action laws.

141

Proof: To show that ·M⊗N is associative, using the fact that ·M and ·N are associa-
tive:

v1 · (v2 · v3) = (m1, n1) · ((m2, n2) · (m3, n3))

= (m1, n1) · (m2 ·m3, n2 · n3)

= (m1 · (m2 ·m3), n1 · (n2 · n3))

= ((m1 ·m2) ·m3, (n1 · n2) · n3)

= (m1 ·m2, n1 · n2) · (m3, n3)

= ((m1, n1) · (m2, n2)) · (m3, n3)

= (v1 · v2) · v3

To show that 1M⊗N is an identity for ·M⊗N , assuming 1M and 1N are the respective
identities for ·M and ·N :

(1,1) · (m,n) = (1 ·m,1 · n)

= (m,n)

= (m · 1, n · 1)

= (m,n) · (1,1)

To show the monoid action laws are satisfied by �M⊗N , assuming these laws are
satisfied by �M and �N :

(1,1)� (x, y) = (1� x,1� y)

= (x, y)

((m,n) · (m′, n′))� (x, y) = (m ·m′, n · n′)� (x, y)

= ((m ·m′)� x, (n · n′)� y)

= (m�m′ � x, n� n′ � y)

= (m,n)� (m′ � x, n′ � y)

= (m,n)� (m′, n′)� (x, y)

�

One might wonder whether the standard definition has any connection to the
definition we give earlier. One way to bridge the gap is to add equational laws
to the free monoid.7 The equations below demand that left and right be monoid

7To make this formal, treat the equations as a relation between words in the free monoid; take
the reflexive, symmetric, transitive, congruence closure of this relation; and quotient by the resulting
equivalence relation.

142

homomorphisms, and that they commute:

〈left(1)〉 = 〈〉
〈left(dx), left(dx′)〉 = 〈left(dx dx′)〉

〈right(1)〉 = 〈〉
〈right(dy), right(dy′)〉 = 〈right(dy dy′)〉
〈left(dx), right(dy)〉 = 〈right(dy), left(dx)〉

It is not hard to show that the free monoid subject to the above equations is isomor-
phic to the natural monoid product.

However, it is not obvious that the definitions relying on the free monoid product
remain well defined after imposing the above equations. In particular, we must check
that any monoid homomorphisms we defined respect these laws. For homomorphisms
f specified via specification of fg, it is enough to prove that, for each equational law
g = g′, the specification respects the law—i.e., f(g) = f(g′).

For example, to check that we can create a well-defined tensor product module
that includes the above equations, we must show that �g respects the equations. For
the commutativity equation, we must show

left(dx)�g right(dy)�g (x, y) = right(dy)�g left(dx)�g (x, y).

Simple calculation shows that both sides are equal to (dx x, dy y), so this law is
respected; the rest follow similar lines.

Most importantly, we must check that the V and W functions are still monoid
homomorphisms; indeed, this check makes these equations interesting as a specifica-
tion: in addition to the usual round-tripping laws we expect of state-based lenses,
each non-trivial equation in a monoid presentation represents a behavioral limitation
on lenses operating on that monoid. Take again the commutativity law:

left(dx) right(dy) = right(dy) left(dx)

The force of this law is that lenses operating on a monoid including this equation must
ignore the interleaving of left and right edits: those two edits are treated independently
by the lens.

3.5.2 Lemma: Suppose k and ` are lenses. For each of the equations above, if that
equation is in force in the modules on both sides of the k ⊗ ` lens, then the V and
W functions defined above for this lens respect that equation.

Proof: We will show that V treats left as a monoid homomorphism and lets left
and right commute; the proofs that V treats right as a monoid homomorphism and
that Wg respects all these laws are similar.

143

To show that V respects the law 〈left(1)〉 = 〈〉:

V(〈left(1)〉 , (ck, c`)) = let (dz, c′k) = k.V(1, ck) in

(〈left(dz)〉 , (c′k, c`))
= (〈left(1)〉 , (ck, c`)) (3.5.1)
= (〈〉 , (ck, c`)) (3.5.2)
=V(〈〉 , (ck, c`)) (3.5.3)

Equation 3.5.1 follows because k is a lens and hence k.V is a stateful monoid ho-
momorphism. Equation 3.5.2 follows by assumption, and equation 3.5.3 follows by
definition of V.

Next we will show that V respects the law 〈left(dx), left(dx′)〉 = 〈left(dxdx′)〉. It
will be convenient to name a few things. Pick a state ck and define:

(dy′, c′k) = k.V(dx′, ck)
(dy, c′′k) = k.V(dx, c′k)

Since k is a lens and hence in particular k.V is a stateful monoid homomorphism, we
can conclude that:

k.V(dxdx′, ck) = (dydy′, c′′k)

We may now compute:

V(〈left(dx), left(dx′)〉 , (ck, c`))
= let (dy′, (c′k, c′`)) =Vg(left(dx′), (ck, c`)) in

let (dy′′, (c′′k, c′′`)) =Vg(left(dx), (c′k, c
′
`)) in

(〈dy′′, dy′〉 , (c′′k, c′′`))
= let (dy′′, (c′′k, c′′`)) =Vg(left(dx), (c′k, c`)) in

(〈dy′′, left(dy′)〉 , (c′′k, c′′`))
= (〈left(dy), left(dy′)〉 , (c′′k, c`))
= (〈left(dydy′)〉 , (c′′k, c`))
=Vg(left(dxdx′), (ck, c`))
=V(〈left(dxdx′)〉 , (ck, c`))

The final equation to preserve is 〈left(dx), right(dy)〉 = 〈right(dy), left(dx)〉. As
before, we choose a ck and c` and name a few intermediate computations:

(dx′, c′k) = k.V(dx, ck)
(dy′, c′`) = `.V(dy, c`)

144

Now we may compute:

V(〈left(dx), right(dy)〉 , (ck, c`))
= let (dy′, (c′k, c′`)) =Vg(right(dy), (ck, c`)) in

let (dx′, (c′′k, c′′`)) =Vg(left(dx), (c′k, c
′
`)) in

(〈dx′, dy′〉 , (c′′k, c′′`))
= let (dx′, (c′′k, c′′`)) =Vg(left(dx), (ck, c

′
`)) in

(〈dx′, right(dy′)〉 , (c′′k, c′′`))
= (〈left(dx′), right(dy′)〉 , (c′k, c′`))
= (〈right(dy′), left(dx′)〉 , (c′k, c′`))
=V(〈right(dy), left(dx)〉 , (ck, c`))

The final line follows from the previous one by an argument almost identical (but
reversed) to the argument showing that the second-to-last line follows from the first.
�

Adding the first four equations lets us create a projection lens out of smaller parts
by observing that there are some new isomorphisms available.

3.5.3 Definition [Projection lenses]: Let f and g be the obvious isomorphisms
connecting X ⊗ Unit to X and Unit ⊗ Y to Y .8

π1 = (idX ⊗ termY); bijf

π2 = (termX ⊗ idY); bijg

We conjecture that these additional laws introduce enough isomorphisms that the
tensor product gives rise to a symmetric monoidal category—that is, that tuples may
be reordered and reassociated freely, provided the lens program acting on them is
reordered and reassociated accordingly—but we have not explored this possibility
fully.

We can perform a similar process for sum edits. We add the following equations:

〈switchjk(m), switchij(m
′)〉 = 〈switchik(m)〉

〈switchij(m), stayi(m
′)〉 = 〈switchij(m)〉〈

stayj(m), switchij(m
′)
〉

= 〈switchij(mm′)〉
〈stayi(m), stayi(m

′)〉 = 〈stayi(mm′)〉
〈d, d′〉 = 〈fail〉 in all other cases

This explains why we did not originally choose to have just two combinators, switchL
and switchR, which would be interpreted as “switch to the left (respectively, right)

8Unlike the analogous state-based lenses from Chapter 2, these projections are not parameterized
by an element of the set that is being projected away. Never fear: this element is still available, as
the init value of the appropriate module.

145

side and reinitialize, no matter which side we are currently on”. The idea of the
above equations is that they allow us to collapse any sequence of edits down into a
single one; if we only allowed ourselves switchL and switchR forms, this would not be
possible. In particular, we need to represent the fact that a stayL edit followed by a
switchi edit fails when applied to a value tagged with inr.

As with products, we must check that the remaining definitions are well-formed.

3.5.4 Lemma: In the module defined above for sums, � respects the above equa-
tions.

Proof: We will give proofs for the first four equations with i, j, and k instantiated to
L (proofs for other instantiations are nearly identical). The final equation is respected
because every pair of atomic edits not listed in the first four equations results in an
edit that cannot be successfully applied to any value (just like the fail edit itself).

For each of the four equations (instantiated to L everywhere) e = e′, both e�inr(y)
and e′ � inr(y) are undefined, so we focus on e� inl(x) and e′ � inl(x).

〈switchLL(m), switchLL(m′)〉 � inl(x) = 〈switchLL(m)〉 � inl(m′ � init)

= inl(m� init)

= 〈switchLL(m)〉 � inl(x)

〈switchLL(m), stayL(m′)〉 � inl(x) = 〈switchLL(m)〉 � inl(m′ � x)

= inl(m� init)

= 〈switchLL(m)〉 � inl(x)

〈stayL(m), switchLL(m′)〉 � inl(x) = 〈stayL(m)〉 � inl(m′ � init)

= inl(m�m′ � init)

= inl(mm′ � init)

= 〈switchLL(mm′)〉 � inl(x)

〈stayL(m), stayL(m′)〉 � inl(x) = 〈stayL(m)〉 � inl(m′ � x)

= inl(m�m′ � x)

= inl(mm′ � x)

= 〈stayL(mm′)〉 � inl(x) �

3.5.5 Lemma: If k and ` are lenses, then (k ⊕ `).Vg and (k ⊕ `).Wg respect the
above equations.

Proof: We will show only that Vg respects the equations; the argument for Wg is
similar. Choose arbitrary sum edits e1, e2 and initial complement c0 ∈ C and define:

e12 = e2e1

(f1, c1) =V(e1, c0)

(f2, c2) =V(e2, c1)

(f12, c12) =V(e2e1, c0)

146

We must show that f12 = f2f1 and c12 = c2. We will go by case analysis on e1

and e2; however we can first rule out a few broad categories of such cases. When
V(e1, c) = (fail, failed) fails, there is very little to prove; we know thatV(e2, failed) =
(f2, failed) for some f2, and hence that f2f1 = fail. Furthermore, it is not hard to
see by inspecting the cases where V(e1, c) fails that V(e12, c) will also fail for any
e2. Hence f12 = fail = f2f1 and c12 = failed = c2. Similarly, when e2 results in a
failure, any combined edit e12 will also result in failure. As a final broad category,
when the lens has already failed (that is, when c0 = failed), we observe that the
lens preserves the “constructor” of the edit. Since the monoid multiplication inspects
only the constructor, the required equation f2f1 = f12 will hold, and we will have
c12 = failed = c2.

In the following, we therefore assume that no failure occurs. A few definitions will
be convenient:

s(L, dx) = k.V(dx, k.missing) t(L, x) = inl(x) u(inl(x)) = L

s(R, dx) = `.V(dx, `.missing) t(R, y) = inr(y) u(inr(y)) = R

u(failed) = failed

The cases now proceed as follows:

Case e1 = switchhi(dx′), e2 = switchij(dx): We have e2e1 = switchhj(dx). Since we
consider only non-failing cases, we know u(c0) = h—that is to say, the complement
and the edit are consistent, and we are translating a “sensible” edit. We know two
things: first, f1 = switchhi(dy′) for some dy′, and second, u(c1) = i. From there, we
can define (dy, c) = s(j, dx), so that (f2f1, c2) = (switchhj(dy), t(j, c)). Moreover, sim-
ple calculation (again observing that u(c0) = h and hence that e12 is a sensible edit to
apply, according to the complement) shows that also (f12, c12) = (switchhj(dy), t(j, c)),
which is equal to the previous tuple, as desired.

Case e1 = stayi(dx), e2 = switchij(dx′): Since we know no failure occurs, we must
have u(c0) = i. Therefore, e2 is a sensible edit to apply, and so

V(e2, c0) = (switchij(dy′), t(j, c))

where (dy′, c) = s(j, dx′). Furthermore, e1 is a sensible edit to apply, so we know
u(c1) = i, and hence that (f2, c2) = (switchij(dy′), t(j, c)). Furthermore, since f1 =
stayi(dy) for some dy, we know f2f1 = f2. But since e12 = e2,

(f12, c12) =V(e12, c0)

=V(e2, c0)

=V(e2, c1)

= (f2, c2)

= (f2f1, c2)

147

as desired.
Case e1 = switchij(dx′), e2 = stayj(dx): Again, we observe that we must have u(c0) =
i. Therefore we simply appeal to the homomorphism laws for k.V (when j = L) or
`.V (when j = R). For example, when j = L and hence c0 = inl(c), we can define:

(dy′, c′) = k.V(dx′, k.missing)

(dy, c′′) = k.V(dx, c′)
(dy′′, c′′′) = k.V(dxdx′, k.missing)

Then, by computation:

(f1, c1) = (switchil(dy′), inl(c′))
(f2, c2) = (stayL(dy), inl(c′′))

(f12, c12) = (switchil(dy′′), inl(c′′′))
f2f1 = switchil(dydy′)

Finally, appealing to k.V’s homomorphism law, we conclude dy′′ = dydy′ and c′′′ =
c′′, and hence that (f2f1, c2) = (f12, c12).
Case e1 = stayi(dx′), e2 = stayi(dx): Much like the previous case, since u(c0) = i, we
appeal directly to the homomorphism law for the underlying V operations; the only
difference from the previous case is that we begin with a complement that may not
be k.missing or `.missing . �

Unfortunately, the partition lens as given does not respect the above equations. It
seems possible to enforce them by also imposing equations on list edits that coalesce
adjacent reorder operations. We leave this to future work.

In a similar vein, we can impose equations on container edits—indeed, we need
them, since we would like lists to form a special case of containers so that, possibly
after restructuring, we can partition and reassemble containers, too. These equations
would in particular allow us to coalesce adjacent reorderings and to reorder insertions
and deletions with other edits so that insertions and deletions always come first. This
would also give rise to a compact normal form of container edits. Again, we leave
this to future work.

3.6 From State-Based to Edit Lenses and Back
Recall from Chapter 2 that a state-based symmetric lens ` between sets X and Y
comprises a set of complements C, a distinguished element missing ∈ C, and two
functions

putr ∈ X × C → Y × C
putl ∈ Y × C → X × C

148

satisfying some round-tripping laws. Now, for any set X we have the monoid OX

whose elements (edits) are lists of overwriting elements of X modulo the equality
xx = x. An action of OX on X is defined by 〈〉x = x and 〈x,w〉 y = x where
x ∈ X,w ∈ X?. Note that this is well defined as x(xy) = x = xy. If, in addition,
we have a distinguished element x ∈ X, we thus obtain a module denoted Xx where
|Xx| = X and initX = x and ∂Xx = OX .

We are now ready to give the definition of the lifting operation that turns any
symmetric, state-based lens between inhabited types into a symmetric edit lens.9

` ∈ X ↔
s
Y x ∈ X

`.putr(x, `.missing) = (y, c0)

∂x` ∈ Xx ↔ Yy

C = `.C
missing = c0

K = {(x, c, y) | `.putr(x, c) = (y, c)}
Vg = `.putr
Wg = `.putl

∂x` is a symmetric edit lens and the passage from ` to ∂x` is compatible with the
equivalences on symmetric lenses and symmetric edit lenses. The equations forV and
W are well-defined because the round-trip law for symmetric lenses guarantees that
putting the same value twice in a row results in the same output both times (hence
if edits will be coalesced in Xx, they will be translated to edits that get coalesced in
Yy), and the consistency relation is likewise preserved because the roundtrip laws for
symmetric lenses guarantee that any given putr or putl results in a “stable state”.

3.6.1 Theorem: If k and ` are state-based lenses and k ≡ `, then ∂xk ≡ ∂x`.

Proof: Suppose S is a witness that k ≡ `. Then we define ∂xS as follows:

∂xS = {(x, ck, c`, y) | (ck, c`) ∈ S ∧ x ∈ X ∧ y ∈ Y }

Let us write (yk, c0k) = k.putr(x, k.missing) and (y`, c0`) = `.putr(x, `.missing).
Since (k.missing , `.missing) ∈ S, we know yk = y` and (c0k, c0`) ∈ S. The former
equality tells us that at least the two lenses have the same type—that is, Yyk = Yy`
as modules—while the latter inclusion lets us observe that

(initXx , (∂xk).missing , (∂x`).missing , initYy) = (x, k.missing , `.missing , y) ∈ ∂xS

where we abbreviate yk and y` by the name y.
9The unique state-based lens between uninhabited types can be lifted to the unique edit lens

between degenerate modules.

149

It remains to show that ∂xS is preserved by V and W (definedness is not in
question since the modules in question have no partial edits); these arguments are very
similar, so we focus on the one for V. We have x0 ∈ X, y0 ∈ Y, (ck, c`) ∈ S, dx ∈ Xx.
We must show that computingV with these values produces values that form a tuple
in ∂xS. We proceed by induction on dx.

In case dx = 〈〉, we are done: after computing V, we still have x0, y0, ck, and c`.
Otherwise, dx = x1:dx′ and the induction hypothesis tells us that if the two equations

(∂xk).V(dx′, ck) = (dyk, c′k)
(∂x`).V(dx′, c`) = (dy`, c′`)

hold then (c′k, c
′
`) ∈ S and dyk = dy`. We can then conclude that if k.putr(x1, c

′
k) =

(yk, c
′′
k) and `.putr(x1, c

′
`) = (y`, c

′′
`) then yk = y` and (c′′k, c

′′
`) ∈ S because S is a

witness that k ≡ `. We now compute with these definitions that (∂xk).V(dx, ck) =
(yk:dyk, c′′k) and (∂x`).V(dx, c`) = (y`:dy`, c′′`). But we have already seen that yk:dyk =
y`:dy` and (c′′k, c

′′
`) ∈ S, so we are done. �

Let X be a module. A differ for X is a binary operation dif ∈ |X| × |X| → ∂X
satisfying dif (x, x′)x = x′ and dif (x, x) = 1. (The edit dif (x, x′) is permitted to
be partial everywhere except x.) Thus, a differ finds, for given states x, x′, an edit
operation dx such that dx x = x′ and dx is “reasonable” at least in the sense that if
x = x′ then the produced edit is minimal, namely 1. For example, the module Xx for
set X and x ∈ X admits the canonical differ given by dif (x, x′) = x′ if x 6= x′ and
dif (x, x) = 1, otherwise.

Given an edit lens ` between modules X and Y , both equipped with differs, we
define a symmetric lens |`|. The passage ` 7→ |`| is compatible with lens equivalence.

` ∈ X ↔ Y

|`| ∈ |X| ↔
s
|Y |

C = |X| × `.C × |Y |
missing = (initX , `.missing , initY)
putr(x, (x0, c, y0)) = (dy y0, (x, c

′, dy y0))
where (dy, c′) = `.V(dif (x0, x), c)

putl(y, (x0, c, y0)) analogous

3.6.2 Theorem: Let X, Y be sets with distinguished elements x and y and equip
the associated modules Xx and Yy with their canonical differs. The constructions |−|
and ∂x then establish a one-to-one correspondence between equivalence classes of edit
lenses between Xx and Yy, on the one hand, and state-based lenses between X and
Y for which x and y are already consistent, on the other.

150

Proof: Let ` be a state-based lens between sets X and Y and let x ∈ X, y ∈ Y
satisfy `.putr(x, `.missing) = (y, `.missing). To show that |∂x`| ≡ ` we use the
simulation R = {((x, c, y), c) | `.putr(x, c) = (y, c)}. Conversely, if ` ∈ Xx ↔ Yy then
` ≡ ∂initX |`|. To see this, we use the simulation S = {(x, c, (x, c, y), y) | x ∈ X, y ∈
Y, c ∈ `.C}. We omit the verification of both simulations. �

The theorem’s condition that (x, `.missing , y) already be a consistent triple may
look strong at first, but one can simply take an arbitrary lens and “step” it once by x
(producing a new lens whose missing component is given by putr) to produce a lens
with essentially the same behavior but a stable missing component. We conjecture
that this “isomorphism” between state-based and certain edit lenses is also compatible
with various lens constructors, in particular tensor product and sum.

3.7 Conclusion
Recall from Chapter 1 that there are four high-level challenges in the design of bidi-
rectional programming languages: alignment, symmetry, performance, and syntax.
The tools from Chapter 2—existentially quantified complement sets and an equiv-
alence relation to quotient out uninteresting differences between them—enabled a
symmetric system that nevertheless supports a range of useful transformations. This
chapter’s approach retains those tools while tackling the remaining two challenge ar-
eas of alignment and performance. We identified an abstract model for edits and edit
transformations—monoids and monoid homomorphisms, respectively—and investi-
gated instantiations of these models to the standard basic data types and operations.
In our investigation, we showed that the natural instantiations (in particular our list
and container edit monoids) enable rich alignment information to be provided to, pro-
cessed by, and received from our transformations. Moreover, our lens transformations
traverse edits and complements, but not repositories. Because our instantiations of
edit monoids contain significantly less data than the repositories (and complements
are typically trivial or at most represent the spine of the data), traversals of these data
should require less processing power, memory, and transmission bandwidth. View-
ing edits as a compression scheme for updated repositories, we have shown that edit
lenses can compute on the compressed data directly without decompressing; this is
a significant proof burden for other compression techniques. We have shown that
these techniques for alignment representation and processing efficiency are applicable
within the realm of symmetric lenses and compatible with most of the transformations
needed for a comprehensive syntax of edit lenses.

151

Chapter 4

Prototype Library for Edit Lenses

4.1 Introduction
Having developed the theory of lenses and instantiating the framework with a syntax,
we now give an exposition on preliminary efforts to instantiate the syntax as a concrete
program. Our work on a prototype has two main purposes. The edit lens framework
is predicated on a relatively abstract, algebraic data model, whereas long-term data
storage on computers typically employs a fairly low-level model based on strings.
When only the data is important, these two realms are usually connected by defining
a parser that processes strings and produces a more structured representation, as well
as a formatter that produces a string representation of a given structure. For edit
lenses, however, not only the data is important; one also wants access to the edits
made to the data. So the primary goal is to investigate what extensions are needed
to describe the connection between edits to strings and edits to structured data.
A secondary goal is to validate that the fundamental edit lens design is complete;
producing a few example transformations gives an opportunity for any unforeseen
infelicities to manifest. In the pursuit of these goals, we discuss two artifacts: first,
a core library which closely models the edit lens theory given in Chapter 3; and
second, a demonstration program that synchronizes two simple, text-based databases
according to a predetermined lens. Creating the demonstration program involved
building a text-editing GUI, connecting the lens to the GUI, and validating and
extracting edits from user actions. All of these tasks fall outside the realm of the
existing edit lens theory.

We have chosen to implement our demo in Haskell, a language which encourages
high abstraction levels, supports rapid prototyping, and has good library support. Be-
cause one of our primary goals was experimentation, we wanted to retain a lightweight
approach throughout; in particular we chose not to begin with a mechanization of
the theory in a dependently-typed language. While avoiding the need for proofs sig-
nificantly reduced the implementation effort, several implementation details would
have been more naturally expressed in a dependent language: instances of container

152

types are dependent pairs of a shape and a function whose domain is that shape, and
module types are essentially dependent functions which take a value and produce the
type of the module with that value as its init field. We also investigated extend-
ing Boomerang [9], an existing asymmetric, state-based string lens implementation.
Boomerang is very complete, and consequently would have required many tangen-
tial coding efforts; to avoid distractions, we chose to take a less feature-complete
route. However, we retained Boomerang’s choice of string-based data model since, as
discussed above, this closely matches real-world scenarios.

Several Haskell packages offer implementations of asymmetric, state-based lenses,
typically with the goal of providing an improved alternative syntax for Haskell’s built-
in mechanisms for updating complicated data structures. The largest one, lens [34],
has found wide use in a variety of applications, and is intended to be a one-stop library
for modifying data, includes an enormous array of utilities, including many useful
operations which do not at first glance appear related to asymmetric, state-based
lenses. It has been developed by a large team of volunteers over several years, resulting
in tens of thousands of lines of code. In contrast, the demonstration discussed here
was developed by a single researcher over the course of several months, so its goals
and scope are necessarily more focused. In particular, we do not try to match the
breadth of lens and lens combinators provided by lens, though our lenses do offer
additional capabilities for parsing, serialization, and edit discovery.

Indeed, supporting edit discovery is our primary challenge. We will discuss this
problem in detail below; in short, it is an edit-based analog to the problem of parsing.
With edit lenses, there are always two domains of discourse: the collection of reposi-
tories and the collection of edits. Repositories store ordinary data, and the problem
of connecting strings with structured data is well-studied under the umbrella of pars-
ing. (Turning structured data into a string—often called serialization—is typically a
significantly simpler task.) However, standard parsing techniques—even incremental
techniques purportedly designed for making it easy to maintain a correct parse tree in
the presence of ongoing updates—do not adequately describe the connection between
string modifications and edits in the sense described in Chapter 3. One could avoid
the situation entirely by designing a structured editor. Historically, though, struc-
tured editors have failed to take—perhaps because their strictures are too confining
for day-to-day editing tasks—so we chose to avoid this route. Below, we propose
heuristics that seem to behave acceptably in a number of standard cases. Though
they are somewhat tailored to the file format under consideration here and reflect
some unusual user actions as edits with slightly different meanings, they nevertheless
enable an editor with none of the restrictions traditionally associated with structured
editors.

153

(a) An initial pair of databases in two
text editing panes.

(b) Inserting Mozart on the right in-
troduces default data on the left.

(c) Deleting Haydn from one side is
reflected to the other automatically.

(d) A default country is used for the
new row on the right.

(e) Correcting Haydn’s country has
no effect on the birth year list. . .

(f) . . . but correcting the spelling of
Haydn in either list corrects both.

(g) More bizarre edits, like this dele-
tion that spans records. . .

(h) . . . reset the alignment, but only
for the affected records.

Figure 4.1: A demonstration use of the prototype, using the composers lens

154

4.2 Usage Example and Functionality
In order to ground the discussion, we give here a quick overview of the capabilities
of the program we have built. When started, the program presents a GUI contain-
ing two text-editing panes in which the user can freely type. The two texts in the
panes are connected by a lens, so that when the text in one pane has been suitably
modified, the text in the other pane spontaneously changes to maintain synchrony.
The particular lens we will demonstrate below is a variant of the lens in Figure 1.5,
but instead of connecting teachers, salaries, and room assignments, we will connect
composers, birth years, and birth countries. In one repository, we will have a list of
newline-terminated records, where each record has a composer’s name and birth year
separated by a comma. In the other, each record has a composer’s name and birth
country separated by a semicolon. Figure 4.1a gives a pair of example synchronized
repositories entered into our program’s text panes. In the abstract notation of Chap-
ter 3, the lens connecting the two panes might be written as (id ⊗ disconnect)?. The
concrete lens used here must include a bit more information—for example, instruc-
tions to change the comma separating parts of the record into a semicolon, or a check
that dates consist of exactly four digits—but we will skip discussing these surface
syntax issues for now. In any case, the typical chain of events begins with the user
making an edit to one of the repositories. This user action is processed to produce
alignment information between the old and new repositories, which is handed to the
underlying edit lens’ V or W function; the computed edit is then used to produce a
“user” action which is automatically applied to the other repository.

The remainder of Figure 4.1 demonstrates how the text panes would evolve under
a few plausible edits to the repositories. Part b shows what happens when the user
adds an extra line to the text pane on the right. As the right-hand repository now
has an extra record for Mozart, the lens produces an insertion that adds a record for
Mozart to the repository on the left, using a default birth year. Since the insertion is
inferred by watching the typing commands performed by the user, the alignment for
insertions of this kind can be exact: even if the user were to duplicate a record from
elsewhere in the database, no confusion would arise, and a new record would appear
with default data in the correct location in the other repository. Similarly, when the
user deletes a line—in this case, the record for Haydn—on the right, the program
maintains synchrony by deleting the record for Haydn from the left pane, as shown in
part c. The left pane may also be edited by the user, as demonstrated in part d, where
Haydn (temporarily misspelled as “Hayn”) has been re-inserted into the repository on
the left, resulting in a computed insertion containing a default country on the right. In
addition to the wholesale insertion and deletion of records, the user may modify parts
of a single record, and the program will correctly maintain alignment of the edited
records. Part e shows that modifications to data that appears in only one repository
has no effect on the other, while in part f the user has corrected the name “Hayn” to
“Haydn” in the right repository, and this is correctly reflected as an update to the left
repository without losing Haydn’s birth year. Because we have access to the actions

155

performed by the user, we need not guess about whether the old “Hayn” record should
be aligned with the new “Haydn” record in this case. On the other hand, there are
certainly edits where the user intention is still not entirely clear; parts g and h show
the user constructing a new record on the right that contains bits and pieces of several
old records (by performing a deletion that crosses record boundaries). As pictured,
our heuristics choose to treat this as a deletion of all the old records that contributed
and the insertion of a completely fresh record, so a default birth year is used for the
new record in the left repository.

The user gesture of parts g and h just discussed begins to hint at some of the
oddities that can arise when attempting to translate between edits to a serialized
structure and edits to the abstract structure, which we will discuss in §4.3.

4.3 Implementation Details
In this section, we will begin with a brief overview of the architecture of the program,
with an eye toward guiding the interested reader towards the appropriate part of the
full source in Appendix A. The explanatory material in this part will therefore be
quite brief. We will then discuss the heuristics used to convert user actions into edits
in some detail. After describing the current transformation, we will consider some
advantages and disadvantages of this approach as well as possible ways forward with
this challenging area of the implementation.

The program code broadly recapitulates the development of edit lenses in Chap-
ter 3, though behavioral equivalence does not make an appearance, since its primary
use is in proofs. A typeclass for monoids already exists in the base libraries of Haskell;
an extension of this typeclass to a class for modules, along with facilities for build-
ing modules in terms of free monoids, is given in Data.Module.Class (§A.20). We
chose to implement lenses as a typeclass as well; thus, to create a new lens, one
typically declares a new type with a single constructor.1 One can view this as giv-
ing a way to overload the names dputr and dputl—the way we write V and W in
the implementation—for many lenses. This typeclass, along with facilities for defin-
ing V and W by monoid presentation, is available from Data.Lens.Edit.Stateful
(§A.17). The Stateful part of the name alludes to the existence of a comple-
ment; Data.Lens.Edit.Stateless (§A.18) contains an experimental typeclass for
edit lenses which do not need a complement, and many of the lens types we define
below will implement both the Stateful and Stateless versions of the Lens type-
class. These modules together cover the theoretical framework of edit lenses, but give
no syntax.

1Another approach would be to write lenses as a record; using a typeclass makes associating
a complement type with the lens slightly less intrusive. Yet another way would be to give an
explicit type representing the abstract syntax tree of edit lenses given in this work; one advantage
of typeclasses over algebraic types is that they are open, meaning programmers can add to the
collection of lenses without modifying the core library.

156

The basic lenses (id , composition, −op , and disconnect) are implemented in the
Data.Lens.Edit.Primitive (§A.15) module. The Unit edit module is implemented
in Data.Module.Primitive (§A.23). The modules for tensor products and sums are
given in Data.Module.Product (§A.24) and Data.Module.Sum (§A.26) (and are built
on the product and sum types from Haskell’s base library), and the lenses are given in
Data.Lens.Edit.Product (§A.16) and Data.Lens.Edit.Sum (§A.19). Similarly, the
module for list editing is given in Data.Module.List (§A.22) (and is built on the list
type from Haskell’s base library), while the map and partition lenses are implemented
in Data.Lens.Edit.List (§A.14). There is no generic container type in Haskell’s
base library, so this is given in Data.Container (§A.8), together with the module
for editing list shapes from Example 3.4.6 in Data.Module.Shape (§A.25), a module
for editing containers in Data.Module.Container (§A.21), and the mapping lens in
Data.Lens.Edit.Container (§A.13).

This completes the recapitulation of edit lenses; the program itself then includes
a handful of modules that go beyond the theory. Data.Module.String (§A.6) con-
tains the most interesting extended functionality. It includes the StringModule type-
class which adds methods for parsing, serializing, and checking validity of repository
strings—all fairly routine operations—as well as a method for translating string ed-
its to Module edits. This typeclass is then instantiated for a handful of types, and
some utilities are given for defining base modules with a particular init value. These
utilities are wrapped up in Data.Lens.Edit.String (§A.5), which offers some com-
binators for creating triples containing a value with a StringModule instance for each
repository and a value with a Lens instance connecting the Modules associated with
those StringModules. Finally, the top-level program lies in lens-editor.hs (§A.3),
which defines a particular string lens, constructs a GUI with two text panes, allocates
a reference cell for the complement, and connects the text panes’ editing events to
invocations of the appropriate StringModule methods. This discussion is summarized
in Figure 4.2.

Given this overview, let us discuss in more detail the process of turning the user’s
edit actions into Module-based edits. The GUI glue code observes user actions and
abstracts them into the Edit type:

data Edit = Insert Int String | Delete Int Int

Here, one should think of Insert n s as being an insertion of string s before index
n (with index 0 being the first character), and Delete m n as deleting the range
which begins before index m and ends after index n. In the typical case, an insertion
contains just a single character corresponding to the key most recently tapped by the
user, and the range described by a deletion is just one character wide, containing the
character near the cursor when the user tapped the backspace or delete key. Often
this granularity is too fine; for example, when modifying a year from 1234 to 1357,
the intermediate states 123, 12, 1, 13, and 135 are not (intended to be) valid years.
To accommodate this, the GUI waits until the repository string is in a valid format,

157

Data.Container a generic container type, with a typeclass for container shapes

Data.Iso a data type for isomorphisms (primarily used internally)

Data.Lens.Bidirectional a typeclass for bidirectional transformations, used to
unify the source- and target-type structure of isomorphisms and the two kinds
of lenses

Data.Lens.Edit convenience module: re-exports some submodules

.Stateful Lens typeclass for standard edit lenses

.Stateless Lens typeclass for edit lenses with no complement

.Primitive base lenses

.Product ⊗ lens combinator

.Sum ⊕ lens combinator

.List map and partition lenses

.Container container-mapping lens

.String lens combinators that also construct StringModules

Data.Module convenience module: re-exports some submodules

.Class Module typeclass, with instance for free monoid-based modules

.Primitive Unit module

.Product ⊗ module

.Sum ⊕ module

.List −? module

.Shape a module for editing the shape of lists construed as containers

.Container container-based module

.String StringModule typeclass and instances for the several modules

Main set up and execute a StringModule-powered GUI

Figure 4.2: Summary of the module hierarchy in the prototype implementation

158

batching together edit actions.2 The conglomerated [Edit] list, which represents an
action that transforms a valid repository into another valid repository, is then handed
off as one of the arguments to the string module’s edit parser.

The full type of the edit parser itself is specified in the StringModule typeclass.
We sketch the typeclass here, along with its superclass, Module.

class (Default (V dX), Monoid dX) ⇒ Module dX where
type V dX
apply :: dX → V dX →Maybe (V dX)

class Module (M m) ⇒ StringModule m where
type M m
edit :: m → V (M m) → [Edit] → M m
−− etc.

Recall that a module has two types, namely the type of repository values X and the
type of edits ∂X; the declaration of the Module typeclass reflects these two types as
V dX and dX, respectively (mnemonic: V dX are the values associated with edits
dX). Thus the type of the edit parsing function, named edit, may be read: given
some string-module specific information, a particular repository value, and a sequence
of abstracted user actions, produce an edit for the associated module. This is the key
method we wish to implement; and, since it is a typeclass method, we may implement
it separately for each module. Note that values of type String together with edits of
type [Edit] do not form a module,3 hence it does not make sense to impose the same
restrictions on this function as we do on edit lens put functions.

For our basic string modules—the ones we use with id and disconnect lenses—we
have a free choice of repository value type and edit type, so there the implementation
is easy: we can choose the values to be Strings and the edits to be values of type
[Edit], and let the edit function simply return the string edits it is provided. However,
the tensor product and list modules do not share this simplicity. The product module
is simpler than the list module, but has most of the important complications, so we
focus there.

First we must choose a serialization. The natural choice is to serialize pairs via
concatenation: when value a is represented by string sa and value b is represented
by string sb, we will represent the pair (a,b) by the string sa ++ sb. For exam-
ple, the comma-separated composer and date pairs in our example are actually the
serialization of nested pairs (String,((),String)), where the extra () value is a place-
holder for the comma separator. The Haskell value ("Beethoven",((),"1770")) would
be serialized this way:

2One could also consider batching together edit actions indefinitely until the user explicitly re-
quests a run of the lens. Implementing a mode like this would be straightforward.

3Conglomerated string edits often take the string from a parsing state to a non-parsing one and
back. Representing this in our module framework would involve a prefix of the edit to have undefined
edit application; but then no suffix can recover from a failed edit.

159

Beethoven () 1770
B e e t h o v e n , 1 7 7 0

Notionally, there are invisible boundaries in the text before and after the comma,
delimiting the portions of the text that correspond to the three parts of the structured
value. A natural idea for a heuristic is to try to track these boundaries as text is
inserted and deleted and partition the string edits according to where they occur in
relation to the chunk boundaries. For a simple example of where this heuristic works
well, consider the edit which inserts "Ludwig van " and changes 1770 to 1760:

original Beethoven , 1770
Delete 12 13 Beethoven , 170
Insert 12 "6" Beethoven , 1760
Insert 0 "Ludwig van " Ludwig van Beethoven , 1760

It seems clear that the right way to split this up is to group together (and re-index) the
edit [Delete 2 3, Insert 2 "6"] to the date, give an empty edit [] for the separator,
and separate the final edit [Insert 0 "Ludwig van "] to the composer.

There are several tricky cases to consider, which we discuss in turn below: inser-
tions may happen at the boundary, deletions may span a boundary, deletions may
cause candidate boundaries to coincide, and the boundary may jump if an insertion
or deletion significantly changes the parse tree. We will tackle the first two problems
by nondeterministically guessing the right way to move the boundary at such edits;
the third problem by choosing an arbitrary tie-breaking rule; and the fourth problem
by having a backup plan of doing a complete re-parse (and consequently losing all
alignment information).

Consider the difference between the following two insertions:

original Beethoven , 1770
Insert 9 "x" Beethovenx , 1770

original Beethoven , 1770
Insert 10 "x" Beethoven , x1770

Hidden in the above illustration, we have made a subtle decision in our interpretation
of the two insertions. In the former insertion, index 9 is between Beethoven and the
separating comma, directly on the boundary, and after the insertion we have moved
the boundary to the right to accommodate the new character; in the latter insertion,
index 10 is between the separating comma and 1770, again on the boundary, but
this time after the insertion we do not move the boundary to accommodate the new
character, preferring instead to put the new character after the boundary. In both
cases, the decision is made this way because we know the middle chunk must contain
exactly the string "," so that if we wish the three chunks to successfully parse we must
put the boundaries as we did. So our parsing routine must inform our movement of
boundaries during insertions; but in general the string that results from an insertion

160

may not parse (for example, "x1770" is not a valid date). The solution is to track
multiple candidate boundary locations; once we have processed all edits and the string
is back in a parsing state, we then inspect where the boundary ended up. If this
corresponds to any of our candidates, we then guess that the appropriate candidate
faithfully tracks the motion of the boundary through all the edits. Extending the
above example, this might proceed as follows:

Beethoven , 1770

Beethovena b, 1770

Beethovenab , 1770 Beethoven ab, 1770Insert 9 "ab"

matches parse

original

done

For this insertion, we guess all reasonable new boundary positions, track them through
whatever additional edits there are (in this case, none), then prune away all the can-
didate boundary positions that do not match the actual parse of the final repository.
This offers a very convenient way to handle a second problem, namely, that deletions
may include a chunk boundary: we choose to simply prune any candidate boundaries
which would lie entirely inside a deletion. On the other hand, this nondeterminism
also opens us up to another kind of problem. Consider what happens if we subse-
quently delete the just-inserted "b":

Beethoven , 1770

Beethovena b, 1770

Beethovenab , 1770 Beethoven ab, 1770

Beethovena , 1770 Beethoven a, 1770

Insert 9 "ab"

matches parse

Delete 10 11

original

done

We can choose between different boundary locations by examining where the parser
tells us chunk boundaries actually fall; but it is not clear that one path or the other
from the starting boundary locations to a particular choice of final boundary locations
is more canonical. (Choosing one path or the other, in this case, corresponds to
choosing whether to pass the temporary insertion of a "b" to the composer lens or
the separator lens to handle.) When there are many paths, our current heuristic
arbitrarily chooses one and discards the rest.

161

A final subtlety is that insertions and deletions can make the boundary jump to
a completely fresh place unrelated to the previous boundary location.4 To see why,
we will briefly consider a slight variation on the running example we have been using
so far. In this variation, we will have only two fields; the first field is terminated by
a comma, and the second field has no commas at all, so that if there are multiple
commas the final one appears before the boundary. For example, "foo,bar,baz" is a
repository in this format representing the pair ("foo,bar,", "baz"). Now deleting a
terminator with an edit like Delete 11 12 shows how boundaries can jump:

original foo,bar, baz
Delete 11 12 foo, barbaz

Our existing heuristics would only generate candidate boundaries near the dele-
tion point. Insertions can be similarly problematic; for example, re-inserting the
deleted "," would cause the boundary to jump back, even though no boundary
was near the insertion point. In case none of our boundary candidates match the
actual final boundary location, we bail: instead of passing on alignment informa-
tion derived from the user’s actions, we pass on an edit which completely over-
writes the repository. So for the above scenario, we would generate and pass on
the edits [Delete 0 12, Insert 0 "foo,"] to the edit processor for the first field and
[Delete 0 3, Insert 0 "barbaz"] for the second field.

When editing lists rather than pairs, we use essentially the same repertoire of
tricks, with the exception that in case the correct boundary locations are not all
among the candidates we resort to using the diff algorithm rather than emitting a
complete rewrite edit. As noted in the source, there are many obvious opportunities
for improvement here.

Overall, the process described above succeeded in transforming string edits into
structured edits correctly reasonably often during our limited experiments, but it
is unsatisfactory in many ways. It is not clear that its effectiveness would scale
well with the complexity of the format being parsed. Our example was particularly
simple, so perhaps there are hidden difficulties that a larger-scale example would
expose. Additionally, the current implementation does not make a serious attempt
to realize the performance advantage that edit lenses are intended to enable. Entire
repository strings are reparsed on every key stroke, and the edit translation functions
walk at least the spine of the repository and in some cases do considerably more.
Thirdly, the string modules are built up compositionally, like modules and lenses are.
This is convenient from the perspective of an implementor, but one of the lessons of
matching lenses [7] is that a global analysis and optimization of changes can often
make better decisions than a compositional one. A final consideration is that the
heuristics here do not adequately reflect all user actions, and in particular copy-and-
paste operations on lists do not get translated to reordering edits; however, unlike

4In certain pathological cases, it seems possible to cause the boundary to jump not just far from
its previous location, but also far from the insertion or deletion point.

162

the previous considerations, it seems that the heuristics could be extended with some
engineering effort to handle this transformation.

A really satisfactory transformation between user actions and module edits seems
to be a ripe area for serious research. It may be possible to draw some inspiration from
the incremental parsing literature, though the problem being explored here seems to
be slightly richer. Incremental parsers are very good at improving the efficiency of
parsing when the string under consideration has not changed much; however, they
do not make a serious attempt to track provenance or alignment. In particular, if
there is editing information available, typical incremental parsers will use this to
find the smallest region that needs to be reparsed but otherwise ignore all the rich
semantic content available in the edit, and it is not clear how to recover this valuable
alignment information just by looking at the (efficiently-produced) parse trees. It
does seem possible to align the chunks of the parse tree that were not re-parsed; but
an ideal algorithm would also be able to give some information about the connection
between the newly parsed chunk of the tree and the old tree.

4.4 Conclusion
The full source code of the prototype is given in Appendix A. It includes an elegant
core library, which is an indication that the theoretical foundations discussed in this
dissertation can be realized as code, and an associated program which extends the
foundations and shows one way to extract alignment information from observations
of the actions taken by the user to modify the repository. This observation process
turned out to be surprisingly difficult; for the techniques discussed here to be practical,
they will need to be refined to improve their robustness and to investigate their
performance characteristics. Satisfactory progress may require a general theory for
lifting parsing techniques to the domain of edits. Nevertheless, the framework built
here could be used as the basis for further studies on performance, the usability
of the syntax (by generating additional example lenses), and the general practical
applicability of edit lenses. Applications such as file synchronization, text editing,
database engines, client-server applications, system configuration, or software model
transformations may all be able to reuse parts of the library given here.

163

Chapter 5

Related Work

Recent years have seen a large body of work on bidirectional transformations in
general, and frameworks based on the language-based approach embodied by lenses
in particular. A great deal of the work is motivated by the apparent difficulty of the
alignment problem discussed in §1.2. Table 5.1 gives a summary of the most closely
related work in the area. The first four columns indicate whether the approach
addresses alignment, symmetry, performance, and syntax concerns, while the final
columns gives a pointer to a section with more in-depth discussion of the approach.

Asymmetric delta lenses and group-based lenses are extensions of asymmetric,
state-based lenses which replace all or most of the repository data that a lens consumes
or produces with edit information, instead. Symmetric delta lenses extend asymmet-
ric delta lenses with some significant additional machinery for handling complement
information, very similarly to the way our symmetric lenses generalize asymmetric,
state-based lenses. The two variants of delta lenses are predicated on a model of edits
which includes information about the repositories themselves; this makes it difficult
to guarantee that the lenses are not traversing the repositories and causing perfor-
mance problems. Additionally, the body of work on symmetric delta lenses does not

Align. Symm. Perf. Synt. Disc.
asymmetric delta lenses X X §5.1.1
symmetric delta lenses X X §5.1.2
comma category lenses X §5.2
group-based lenses X §5.3
matching lenses X X §5.4
annotation-based lenses X X §5.5
constraint maintainers X X X §5.6
symmetric lenses X X Chap. 2
edit lenses X X X X Chap. 3

Table 5.1: Feature coverage for various alternatives to edit lenses

164

yet include a collection of lenses which satisfy the proposed behavioral laws, and in
particular, the need for behavioral equivalence to redress the loss of equational rea-
soning is not explored. The group-based lenses seem to have the potential to address
performance issues, but it is difficult to know for sure without an instantiation of the
lens framework to particular lenses.

Matching lenses and annotation-based lenses take a complementary approach:
rather than specifying how edits should behave and trying to instantiate those be-
havioral expectations with edit sets, as the previous group of approaches did, match-
ing and annotation-based lenses begin with a particular representation of alignment
information and build a specialized lens framework around that representation. As
a result, these two approaches are both instantiated with a significant collection of
syntax. There is no attempt to generalize to symmetric settings here, though, and the
alignment information involved is provided in addition to the repository states, so per-
formance issues remain. Finally, constraint maintainers have a very complete syntax,
and address alignment by treating alignment information as simply more repository
data. This has the advantage of being a very intuitive model, but little considera-
tion is given to the extra properties one would want from a repository consisting of
alignment information. Finally, it is worth noting that this is one of the only symmet-
ric approaches with a significant body of syntax; however, sequential composition, a
valuable tool for modular bidirectional programming, is not supported.

5.1 Graph-based delta lenses
There is a closely related line of work focused on designing edit-based lenses which
begins with much the same motivation our work does [13, 14, 21, 41]. They arrive
at a slightly different point in the design space compared to us, with a primary
difference being their treatment of edits. For them, edits are typed—with edit type
x → x′ classifying edits that can be applied to value x and result in value x′—and
edit application is total. Before we investigate their definitions of asymmetric and
symmetric delta lens, let us review their model of edits in detail. We will begin with
a few standard definitions to put some notation in place. Whenever possible, we will
pun notation between graphs and categories; after all, a graph with suitable extra
structure is a category.

5.1.1 Definition: A graph G is a quadruple 〈G0, G1, dom, cod〉 consisting of a set
of nodes G0, a set of edges G1, and two functions dom, cod ∈ G1 → G0 giving the
domain and codomain of each edge. We will write e : v → v′ as shorthand for the
assertion that e ∈ G1, that dom(e) = v, and that cod(e) = v′. If the directionality
of the edge is uninteresting, we will write e : v v′ to mean either e : v → v′ or
e : v′ → v.

Below, we will use graphs to model edits: nodes of the graph will correspond
to repository states, and an edge dx : x → x′ will correspond to an edit dx which,

165

when applied to state x, results in state x′. As in our development, it is natural
to impose a little bit of structure on edges, such as the existence of a “do-nothing”
edit and the ability to combine two edits into one. We introduce these restrictions
separately so that we may talk about lenses between edit models with only some of
this structure. We will also introduce a constraint that says that no matter which
two repository states you choose, there is some edit between them, which may be an
important practical consideration but does not seem to affect the theory significantly
one way or another. For the discussion of symmetric delta lenses, we will also want
to consider edits which can be “undone”.

5.1.2 Definition: Given function f ∈ X → Y , we say x and x′ are equivalent under
f , denoted x ≈f x′, when f(x) = f(x′).

It is easy to see that ≈f is an equivalence relation for any f .

5.1.3 Definition: A graph G is reflexive if it comes equipped with a function idG ∈
G0 → G1 which chooses a distinguished self loop idG,v : v → v for each node v. By
abuse of notation, we will write id v instead of idG,v when there can be no confusion
about which graph is meant.

5.1.4 Definition: A graph G is connected if for each v, v′ ∈ G0 there exists an edge
e : v → v′.

5.1.5 Definition: A reflexive graph G is involutive if it comes equipped with a func-
tion ˘ ∈ G1 → G1 which associates with each edge e : v → v′ an opposing edge
ĕ : v′ → v. It is required to be an involution (so that ĕ ˘ = e) and to respect the
reflexive structure of the graph (so that id v˘ = id v).

The delta lens frameworks discussed here are based on two edit models: their
asymmetric lenses are based on a connected category model of edits, and their sym-
metric lenses are based on a connected involutive graph model of edits.

In both cases, there is an underlying graph, and in particular this means that
each edit must uniquely identify the state that it can be applied to along with the
state it produces. At least naively, this requirement seems to be in conflict with our
goal of representing edits with objects significantly smaller than the repository states.
Many of our edit modules exploit the ability to reuse edits as modifications to many
different repository states. Nevertheless, totality of edit application is a nice feature.

The connection between edit modules and edit graphs can be made precise as
follows. To pass from a module X to a graph Gr(X), let Gr(X)0 = |X| be the
set of nodes and Gr(X)1 = {m : x → y | mx = y} be the set of edges (so that
dom(m : x → y) = x and cod(m : x → y) = y, hence (m : x → y) : x → y). The
graph can be made reflexive by defining idx = 1 : x → x; if we further define the
composition (m : x → y); (m′ : y → z) = m′m : x → z, the monoid action laws
guarantee that we can regard the graph as a category. Now let us see how to pass

166

from a category G to a moduleMod(G). (An arbitrary reflexive graph may be turned
into a category: for the arrows between nodes v and v′, use the set of paths from v
to v′ that do not have any id edges1; for the composition, use path concatenation;
and for the identities, use empty paths.) Let the values |Mod(G)| = G0 be the
set of nodes, and edits ∂Mod(G) = G?

1/∼; be the set of paths quotiented by the
congruence relation that identifies factorable paths 〈f ; g〉 with the factoring 〈g, f〉. In
other words, the edits of Mod(G) are sequences of edges 〈g1, . . . , gn〉 which are not
well-typed: cod(gi+1) 6= dom(gi) for each i. (One can further identify all lists of length
more than one—that is, lists that have an internal typing error—with a single fail edit.
The result is still a module, but the lens lifting we perform below would not result
in a lens: the monoid homomorphism laws may require some ill-typed compositions
in the source to be translated to well-typed compositions in the view.) The empty
list serves as the identity. Edit application is generated by the equation dx�g x = x′

when dx : x→ x′ (and undefined otherwise). One may choose any object to play the
role of init (so that there are as many ways to turn a category into a module as there
are objects in the category). Passing from a category to a module and back adjoins
a fresh identity edit to each object, but otherwise leaves the category unchanged.
On the other hand, passing from a module to a category and back may produce a
significantly more verbose edit language, even after accounting for the many ways to
represent internal failure: each edit m in the source module induces a collection of
edits {〈m : x→ y〉 | mx = y} in the target module.

The involutive graph model of edits demands the existence of undo edits, some-
thing we did not consider carefully in the edit lens framework above. A suitable
module-based analog of the typed involution would be to require each module to in-
clude an untyped involution ˘ such that (dx˘ dx)� x = x whenever dx� x is defined.
(Thus dx˘ dx is a restricted identity: not necessarily equal to 1, but behaves like
it for some subset of the values being edited.) Many of the modules and module
combinators we have defined above can be equipped with this structure. A notable
few that cannot include edit operations which actually delete information, such as
the sum module’s switch edits and the list module’s del edits. These edits would need
to be enriched or restricted to include the information being deleted; for example,
one could modify the action associated with del edits to only succeed when the list
elements being deleted were init (so that edits which wish to delete an element must
first modify it to being init with mod edits), and one could enrich the switch edits
with an edit that returns the value to a tagged init before switching sides of the sum.
Thus in general it seems that requiring an “undo” ability can require mildly larger
edit operations.

With these considerations about edits in mind, let us discuss how to generalize
asymmetric, state-based lenses first to asymmetric delta lenses and then to symmetric
delta lenses.

1Equivalently, the set of paths quotiented by the smallest congruence relation containing the
equation that ensures that id edges are the unit for composition: 〈id〉 = 〈〉.

167

5.1.1 Asymmetric

Now, let us take the edit model above and see how to enrich asymmetric lenses to take
edit information rather than states. As with the state-based version, we will assume
that there is strictly more information in the source category S than in the view
category V . This means that in the get direction, it seems natural to assume that
each source edit ds : s→ s′ uniquely determines a view edit dv : v → v′ by “throwing
away” the extra information. It is also quite natural to require this get transformation
to respect the category structure in S: that is, we should expect get(id) = id and
get(ds; ds′) = get(ds); get(ds′). Together, these say that get is a functor from S to
V .

As with all asymmetric frameworks, the put direction is a bit more delicate, be-
cause it needs to restore missing information. Suppose we have a view edit dv : v → v′

and wish to produce a source edit. It seems natural to wish that the source edit we
produce respects typing in the sense that if we produce ds : s → s′, then s is in the
preimage of v and s′ is in the preimage of v′. But this is still very unconstrained;
in particular, since there really is a particular s0 which is currently in synch with v,
we really want to produce an edit ds whose domain is s0—that is, there is simply
not enough information available in a view edit to produce a reasonable translation
function put . So we cannot translate directly from a view edit to a source edit; how-
ever, the key insight of this line of work is that we can translate from a view edit to a
family of source edits indexed by the source that is currently synchronized with the
view.

In detail, given an object mapping get0 ∈ S0 → V0, we can construct the preimage
category S/get0 as follows. The objects of S/get0 are the equivalence classes of objects
of S under ≈get0 . The arrows f : [si]→ [so] are the functions which take an element
s ∈ [si] and produce an arrow f(s) : s → s′ for some s′ ∈ [so]. The identity arrow
is the one which associates to each s the arrow id s; the composition is defined by
(f ; g)(s) = f(s); g(cod(f(s))). When get is a graph morphism, we will write S/get as
shorthand for S/get0. With this category in hand, we are ready to define asymmetric
delta lenses.

5.1.6 Definition: A graph morphism f ∈ S → V between graphs S and V is a pair
〈f0, f1〉 of mappings f0 ∈ S0 → V0 and f1 ∈ S1 → V1 such that f1(e) : f0(dom(e)) →
f0(cod(e)).

5.1.7 Definition: A semifunctor f ∈ S → V between reflexive graphs is a graph
morphism for which f1(id s) = id f0(s).

5.1.8 Definition: An asymmetric delta lens ` ∈ S
∆↔
a
V between connected cate-

gories S and V is a pair 〈get , put〉 of graph morphisms get ∈ S → V and put ∈ V →
S/get . The lens is well behaved (respectively, very well behaved) if get and put are
semifunctors (resp. functors) and satisfy the behavioral law:

168

get(put(dv)(s)) = dv (ADPutGet)

We will abbreviate “well behaved asymmetric delta lens” to “wbad lens” and “very
well behaved asymmetric delta lens” to “vwbad lens”.

The suggested behavioral law enforces the intuition given above that all of the
information available in the view edits is available in source edits, too. It turns out
that the obvious definitions for identity and composition lenses satisfy the behavioral
law and induce a category whose objects are connected categories and arrows are
vwbad lenses. As in our discussion above relating edit lenses to symmetric lenses,
one can connect wbad lenses to asymmetric state-based lenses by adjoining an op-
eration to compute the difference between two states. The paper goes on to show
that vwbad lenses only violate the controversial PutPut law if their differencing
operation violates a similar DiffDiff law—that is, failure is never due to incorrect
edit propagation, only incorrect edit discovery.

One can construct an edit lens out of a vwbad lens as follows. The complement
set will be source objects adjoined with a fresh fail value, so that the partial edit
application can be extended to a total one with explicit failure:

ds�t inl s = inl ds� s ds� s↓
ds�t s = inr fail otherwise

Then the lens construction goes as follows.

` ∈ S ∆↔
a
V ` is a vwbad lens s ∈ S0

symms(`) ∈Mod(S)
∆↔Mod(V)

C = S0] {fail}
missing = inl s
K = {(s, inl s, `.get0(s)) | s ∈ S0}
Vg(ds, s) = (`.get1(ds), ds�t s)
Wg(dv, inl s) = let ds = `.put1(dv)(s) in (ds, ds�t inl s)

when dom(dv) = `.get0(s)
Wg(dv, s) = (1, inr fail) otherwise

The proof that this is well-defined and forms a lens is tedious but straightforward.
It relies critically on `.get and `.put respecting arrow composition and on the object
part of the roundtrip law, but not that `.get and `.put respect identities (because we
introduce a fresh identity) or that they roundtrip on arrows (as our formalism does
not have an analogous law). We conjecture that a construction similar to the one
used to decompose symmetric lenses into a pair of asymmetric, state-based lenses can
be used to decompose edit lenses into a pair of vwbad lenses.

169

Later work proposes a concrete edit model and a collection of wbad lenses and
combinators [41]. In addition to the above definition of wbad lenses, they give a
proposal for a framework of horizontal delta lenses which are more convenient to
implement but whose behavioral guarantees are less intuitive. Horizontal delta lenses
are nevertheless suitably constrained so that they can be converted into wbad lenses as
necessary. Their data model is based on containers, with edits containing (in part) an
injective relation between the positions of the old and new pieces of data. In addition
to many constructions similar to ours, they also discuss fold and unfold operations for
containers that are built from fixpoints of regular higher-order functors. These give
rise to significant complications in handling the full range of edits; they discuss how
to handle insertions and deletions of nodes, but do not discuss reordering. Unlike our
development, all repositories are homogeneous containers; in particular, their tensor
product analog restricts the contained values in the two parts of the tuple to have
identical types.

5.1.2 Symmetric

Diskin et al. also spend some effort considering what machinery is needed to sup-
port transformations between domains that each have missing information—that is,
symmetric transformations [14]. As we observed in our symmetric lens develop-
ment, passing from asymmetric to symmetric lenses is cleanest if one introduces a
complement—some extra information about how the values in the two repositories
correspond. Their development similarly allows for extra information, with a little
bit of extra notational complexity arising from the pervasive use of typing: edits are
typed via a category, as discussed above, and complements are also typed, as we dis-
cuss now. Because complements are typed, we will need a notion of when the types
of an edit and a complement match. We give two such notions below: one for com-
plements that match before an edit is applied, and one for complements that match
after.

5.1.9 Definition: Given graphs G and H, we define the domain- and codomain-
coincident edge pairings as follows:

G×dom H = {(eg, eh) | eg : v → v′ ∈ G1 ∧ eh : v v′′ ∈ H1}
G×cod H = {(eg, eh) | eg : v → v′ ∈ G1 ∧ eh : v′ v′′ ∈ H1}

5.1.10 Definition: A symmetric delta lens ` connecting connected categories X and
Y , written ` ∈ X ∆↔

s
Y , consists of:

• a bipartite graph R whose two parts are X0 and Y0 (the edges of R are called
correspondence relations),

• a function fPpg ∈ X ×dom R→ Y1 ×R1, and

170

• a function bPpg ∈ Y ×dom R→ X1 ×R1.

We will write fPpg1 and fPpg2 (and similarly for bPpg) for the Y1 and R parts of
fPpg’s output, respectively.

The preconditions for fPpg above stating that the edit and correspondence rela-
tions are domain-coincident is somewhat similar to our precondition requiring an edit
which applies cleanly. The bipartite graph R plays a similar role to our consistency
relations: if there is an edge r : x y, then we can think of r as being a (typed)
complement that is consistent with states x and y.

A major contribution of this line of research is an exploration of behavioral guar-
antees that reasonable symmetric delta lenses might offer. The obvious laws are too
strong; but the insight of this development is that if we take the obvious laws and re-
place equalities by a slightly coarser equivalence relation, we get laws that are much
more plausible. The core of the problem is that equality on X edits distinguishes
between edits that modify information not available in Y ; we would prefer a relation
that compares only the parts of the edit that affect the shared information. At first
it seems difficult to define “shared information” formally, but lenses are exactly trans-
formations that define what information is shared; so the relation is parameterized
by a lens.

5.1.11 Definition: Given symmetric delta lens ` ∈ X ∆↔
s
Y and a correspondence

relation r : x y for `, we define equivalence relations on edits to x and y, respec-
tively:

∼`/r = ≈λdx. `.fPpg1(dx,r)

`/r∼ = ≈λdy. `.bPpg1(dy,r)

When the lens is understood from context, we will write dx ∼r dx′ instead of dx ∼`/r
dx′ (and similarly for dy r∼ dy′).

Armed with this notation, they propose several possible restrictions that one could
place on symmetric delta lenses. The first two restrictions are analogous to ones
discussed in our work above. Like our demand that applicable edits get translated to
applicable edits that restore consistency, rule SDWellTyped below demands that
the edits and correspondence relations involved in an invocation of fPpg form a well-
typed square. They also demand that the propagation functions preserve the self-loop
structure of the edit graphs via the SDId rule.

fPpg(dx, r) = (dy, r′)
r : dom(dx) dom(dy)
r′ : cod(dx) cod(dy)

(SDWellTyped)

r : x y

fPpg(idx, r) = (idy, r)
(SDId)

171

The edit graphs have another kind of structure given by the ˘ undo operation.
One might hope that this structure is preserved in a similar way; for example, a rule
like SDFUndo-Strong* seems reasonable at first blush.

fPpg(dx, r) = (dy, r′)
fPpg(dx ,̆ r′) = (dy ,̆ r)

(SDFUndo-Strong*)

Unfortunately, this rule is very restrictive. Suppose the Y side of the lens were to
store some information not available in the X side, and propagating dx produces
a dy that deletes some of that information. Then this information could not be
restored from the information in dx .̆2 One way to weaken this law to something
more plausible would be to demand that we output something that behaves like dy˘
on the shared information; that is, by weakening the equality in the conclusion to our
coarser equivalence relation from above:

fPpg(dx, r) = (dy, r′)
fPpg1(dx ,̆ r′) r′∼ dy˘

(SDFUndo)

The fourth and final behavioral law proposed demands that the edit propagation
functions be near inverses: that is, if we propagate dx to dy, then the corresponding
edit determined by the other propagation function should be dx. As stated, this
law is again too strong, because some of the modifications described by dx are to
unshared data, and hence are not available in dy during re-propagation. As before,
we can make the rule more reasonable by weakening from equality to equivalence:

bPpg1(fPpg1(dx, r), r) ∼r dx (SDInvertible)

This behavioral law is called a roundtrip law in their development, but that name
is a little misleading, as the update to the y value and the updated correspondence
relation are discarded before applying the bPpg function. (It is as if two separate
people happened to take flights that crossed paths in the middle, rather than a single
person taking a round trip.) We will instead call this law a triple-trip law—for the
two trips evident in the law plus one trip hidden by the equivalence relation.

The line of research goes on to describe other theoretical frameworks with in-
terfaces closer to what an end-user programmer might want to implement that can
give rise to symmetric delta lenses. In particular, they describe a framework they
call consistency maintainers [14] which include explicit alignment and consistency-
restoration phases as well as explore conditions under which a triple-graph grammar
can be used to produce a law-abiding lens [21]. No concrete instantiations are given
for any of the three frameworks. We have found that undertaking this endeavor is
a valuable crucible in which to test prospective frameworks, as the design of a lens
language makes a mismatch between behavioral laws and actual behavior much more
clear. (Just as a good framework helps to spot potential implementation bugs, an

2One could imagine storing just enough information in the correspondence relations to allow
undoing one operation. Perhaps this could be made to work, but it is unlikely this would scale well
in situations where there are composite edits (and hence composite undos).

172

implementation helps point out potential framework bugs.) In particular, sequential
composition—in our experience, a crucial tool for building practical lenses—is not
considered, and the ensuing need for a notion of lens equivalence is not addressed.

The proposed SDInvertible and SDFUndo laws seem on the surface to be
quite natural restrictions. Our development does not have analogous laws, and it
seems that including them would necessitate a stronger equational theory for many
of the modules proposed above. Exploring the consequences of these laws could be
an interesting avenue for future work on edit lenses.

5.2 Comma category lenses
Johnson, Rosebrugh, and Wood independently developed a lens framework with a
very similar flavor to asymmetric delta lenses [28–30, 32]. Like the asymmetric delta
lens framework, the comma category lens (henceforth C-lens) framework is based on
a category whose objects are meant to model states and whose arrows are meant
to model edits. However, for C-lenses, the category’s arrows are not intended to
span all possible edits, as we will see, but only those edits which model “insertions”.
Handling edits which model deletions and support composition requires significant
extra machinery. Before defining what a C-lens is, we will review the definition of
a comma category; the put of a C-lens will map objects in the comma category
representing an edit to a view tagged with the source the original view came from to
objects in the source category representing an updated source.

5.2.1 Definition: Given a functor get ∈ S → V , we can form the comma category
get ↓ idV as follows:

• Objects are pairs (s, dv : get(s)→ v) of an object s of S and an arrow dv of V .

• Arrows are pairs (ds, dv) of an arrow ds : s→ s′ from S and an arrow dv : v → v′

from V that forms a commuting square:

get(s) get(s′)

v v′

get(ds)

dv

dvdom dvcod

• The identity arrows are pairs (id , id) of appropriate identities from S and V ,
and composition corresponds to diagram pasting, so that (ds, dv); (ds′, dv′) =
(ds; ds′, dv; dv′).

We are now ready for the main definition, which establishes the behavioral laws
that C-lenses must satisfy.

173

5.2.2 Definition: A C-lens ` ∈ S
C↔ V between categories S and V is a pair

〈get , put〉 of functors get ∈ S → V and put ∈ V → get ↓ idV satisfying the be-
havioral laws:

get

put


get(s) get(s′)

v v′

get(ds)

dv

dvdom dvcod



 = dv (CPutGet)

put


get(s) get(s′)

get(s) get(s′)

get(ds)

get(ds)

get(id) get(id)

 = ds (CGetPut)

put


get(s) get(s′)

v v′

get(ds)

dv

dvdom dvcod

 = p : t→ t′

put


get(t) get(t′)

w w′

get(p)

dw

dwdom dwcod

 = p′ : u→ u′

put


get(s) get(s′)

w w′

get(ds)

dw

dvdom; dwdom dvcod; dwcod

 = p′

(CPutPut)

It is perhaps unusual from a user interface point of view to have an operation that
expects a commuting diagram. In comparison, our design’s edit translation function
accepts an edit and produces an edit, which may seem more natural to some. This
kind of operation is also supported by C-lenses; for example, to translate a view edit

174

dv : get(s)→ v, we may construct a commuting diagram as follows:

put


get(s) get(s)

get(s) v

get(id)

dv

id dv


If the object part of put produces a new state s′ = put(dv : get(s)→ v), then calling
put with the commuting diagram as above produces an arrow ds in S with the type
put(id : get(s) → get(s)) → put(dv : get(s) → v), that is, ds : s → s′. Thus the
interface provided by C-lenses is rich enough to, among other things, turn an arrow
dv : get(s)→ v into a suitably updated source s′ and recover the edit ds which turns
s into s′, just as in our development.

The three behavioral laws may seem daunting at first, but the bulk of their char-
acter can be understood by considering their implications on the behavior of get
and put on objects (which is induced by functoriality). For example, on objects,
CPutGet says get(put(dv : get(s) → v)) = v, that is, if we update the view to v,
then the resulting updated source corresponds via get to v. This is somewhat like
our behavioral law which requires translated edits to move from consistent triples to
consistent triples. On objects, CGetPut says put(id : get(s) → get(s)) = s, that
is, if we do not change the view, the source also does not change, much like our be-
havioral law requiring the identity edit to be translated to the identity edit. Finally,
CPutPut, when restricted to objects, is about translating two edits at once: the
computation put(dv; dv′ : get(s) → v′′) should have the same result as computing
put(dv : get(s) → v′) (producing a source state s′ for which get(s′) = v′) and then
put(dv′ : get(s′) → v′′). This is quite similar in flavor to our law requiring that edit
translations respect the edit monoid’s binary operator structure. The latter two laws,
while having a very strong functorial flavor—they prescribe the behavior of put on
identity and composition edits—are independent of the requirement that put be a
functor. The distinction is that the functor laws prescribe the behavior when the
horizontal arrows are identities or compositions, while the behavioral laws prescribe
the behavior when the vertical arrows are identities or compositions.

A major result of the work is that these behavioral laws have a hidden consequence:
in a certain strong sense, the edits output by put are minimal. Specifically, if ds is
in the image of put , then it is very special: any arrow ds′′ whose image factors in V
as get(ds′′) = get(ds); dv′ also factors (uniquely) in S as ds′′ = ds; ds′ for some ds′
such that get(ds′) = dv′. The existence of such unique factorizations in S greatly
restricts the edit categories you may choose; the examples given in their work all
involve data structures with a suitable notion of “insertion”; the only edits in the edit
categories then consist of insertions. It is possible to recover edits which represent
deletions and modifications, and to still support edit composition [29]. One can

175

define an auxiliary operation—built out of two lenses—which rather than taking an
edit, operates on spans of edits. Span composition involves taking a pullback in the
category of edits. Supporting this properly involves defining an equivalence relation
on spans and showing that the lenses in question respect the equivalence relation.3
The behavioral properties of the auxiliary operation which manipulates spans of edits
are not explored in detail. Exploring which edit lenses, if any, satisfy an analogous
factorization property would be an interesting area for future work.

Johnson and Rosebrugh advocate the development of lenses “from whole cloth”:
defining the entire transformation up front, then proving that it satisfies the necessary
behavioral properties. As a result, they do not explore the possibility of lens combi-
nators and basic lens building blocks as we do. This could be a significant limitation
for non-experts who want to use a lens-based system.

5.3 Algebraic rephrasing
There is a line of work on algebraic foundations for delta lenses that arrives at a model
very similar to the edit lens framework described above [48]. They consider, as we
do, edit monoids together with edit translation morphisms and (total) edit applica-
tion actions. One significant difference is that they consider generalizing asymmetric
rather than symmetric lenses, adopting correspondingly modified behavioral laws. In
particular, in their setting, a delta lens is a lens-like split short exact sequence. Below
we discuss each of these restrictions in right-to-left order. We begin with two standard
definitions to establish some notation.

5.3.1 Definition: The image of a function f ∈ X → Y is the set of elements
im(f) ⊂ Y that f can output:

im(f) = {f(x) | x ∈ X}

5.3.2 Definition: The kernel of a monoid homomorphism f , denoted ker(f), is the
preimage of 1:

ker(f) = {x | f(x) = 1}

5.3.3 Definition: An exact sequence is a sequence 〈f1, . . . , fn〉 of monoid morphisms
with compatible domains and codomains, that is,

X0 X1 X2 · · · Xn−2 Xn−1 Xn

f1 f2 f3 fn−2 fn−2 fn

3There is a strong parallel here to the need for an equivalence relation when discussing symmetric,
state-based lenses. Symmetric lenses are spans of asymmetric lenses, and supporting composition
properly requires an equivalence relation. Symmetric edits are spans of asymmetric insertion edits,
and supporting composition properly requires an equivalence relation. Both of these are essentially
because pullbacks are only unique up to isomorphism.

176

and such that im(fi) = ker(fi+1) for each i.

5.3.4 Definition: An exact sequence is short if it has four morphisms and starts
and ends at ∂Unit :

∂Unit K ∂S ∂V ∂Unit
i k f s

We will say around to mean the third element of a sequence, as in, “〈i, k, f, s〉 is a
short exact sequence around f .”.

Before we define what split and lens-like mean, let us consider when an edit
translation homomorphism f ∈ ∂S → ∂V may be extended to a short exact sequence.
The homomorphism s ∈ ∂V → ∂Unit must be the constantly-1 function (there are
no other functions with that type), so that its kernel is ker(s) = ∂V . Hence the
restriction im(f) = ker(s) that arises from extending the sequence to the right says
that f must be surjective. On the other hand, the sequence may always be extended
to the left by choosing K to be the submonoid ker(f) and k to be the inclusion
function. (The homomorphism i is completely determined by the homomorphism
laws once we have chosen a monoid K: it must map the sole input element 1∂Unit

to 1K .) Other choices for K are possible—for example, by adding a fresh generator
to K that k maps to any non-trivial element of ∂S—but we will not be interested in
this ability below.

In lens terms, one should think of f as being an edit-lens analog of the asymmetric
lens framework’s get function. Giving a short exact sequence amounts to identifying
an edit translation function f ∈ ∂S → ∂V that is compatible with the monoid
structure on edits and such that each V -edit has at least one analogous S-edit.

5.3.5 Definition: A short exact sequence around f ∈ ∂S → ∂V is said to split if
there is a homomorphism g ∈ ∂V → ∂S such that g; f = id∂V .

We are guaranteed that there is a function g by the fact that f is surjective, but
not guaranteed that any such function is a monoid homomorphism. If we do have such
a homomorphism g that splits the sequence, then in lens terms we should consider
that g to be an edit-lens analog of the put function. Then g; f = id∂V says that all the
information available in V -edits are also available in S-edits, an analogous restriction
to the one on state-based lenses that says that all the information available in the
view repository is available in the source repository.

The final condition placed on this variant of delta lenses is that they be lens-like.
Thus far, all the conditions have been purely in terms of edits; this final pair of
properties connect the world of edits and the world of states. This is similar to the
edit lens law that requires V and W to respect a consistency relation on states.

5.3.6 Definition: A monoid action � ∈ ∂X × |X| → |X| is transitive if for all
x, x′ ∈ |X| there is dx ∈ ∂X such that dx�x = x′. We will say a module is transitive
when its action is.

177

5.3.7 Definition: A short exact sequence around f ∈ ∂S → ∂V split by g is lens-
like if it comes equipped with transitive, total modules for ∂S and ∂V such that two
conditions hold:

ds initS = ds′ initS

f(ds) initV = f(ds′) initV
(LL1)

dv f(ds) initV = f(ds) initV

g(dv) ds initS = ds initS
(LL2)

Rule LL1 amounts to saying that f is (part of) a module homomorphism (not
just a monoid homomorphism). Rule LL2 is a bit more subtle, but is motivated by
this rephrasing of the state-based asymmetric lens framework’s GetPut law:

get(s) = v

put(v, s) = s
(GetPutAlt)

Rule GetPutAlt says, roughly, “If the view v has not changed since the last synchro-
nization, then the source s should not change, either.”. Similarly, LL2 says, roughly,
“If the edit we are about to translate does not change the view f(ds) initV , then the
edit we output should not change the source ds initS.”.

That work goes on to explore the properties of this kind of delta lens. One
can take a lens-like sequence around f ∈ ∂S → ∂V equipped with an operation to
compute differences, denoted dif ∈ |S| × |V | → ∂V and satisfying an obvious sanity
condition, and produce an asymmetric, state-based lens. Additionally, there is a close
relationship between demanding the existence of inverse edits—that is, working with
edit groups rather than edit monoids—and the PutPut asymmetric lens law:

put(v, put(v′, s)) = put(v, s) (PutPut)

They show that one can define suitably restricted submonoids ∂V ⊂ V → V and
∂S ⊂ S → S and lift PutPut-abiding asymmetric lenses into a lens-like sequence on
groups. Furthermore, the two translations agree with each other: converting a lens to
a lens-like sequence and back is the identity transformation, regardless of the choice
of dif operation in the latter transformation.

The primary difference between their work and ours is that they consider only
asymmetric situations. However, they also consider many fundamentally different
restrictions than the current development does, even after accounting for the different
setting. For example, they propose a law requiring that when g splits a sequence
around f we additionally have g; f = id . Since f is surjective, this is the same as
demanding f ; g; f = f , akin to Diskin’s proposed triple-trip law discussed above.
As mentioned in that discussion, it is not a law that we have considered carefully;
but it seems we may be able to achieve something similar in many of the lenses we
defined by introducing appropriate equalities to our edit monoids for structured data.
The paper also spends some time discussing the ramifications of demanding an edit
group rather than an edit monoid. We have not explored this restriction deeply, but

178

Teacher name Salary
Sam Rickard 57,000
Jon Jacobs 50,000
Mary Jones 65,000

(a) HR’s view

Teacher name
Sam Rickard
Jon Jacobs
Mary Jones

(b) A secretary’s view

Figure 5.1: A school’s staff list, as seen by HR and by the principal’s secretary

some cursory investigations suggest that including enough information to undo each
operation may be at odds with the size benefits promised above. Another restriction
they have throughout their development is that their edit application actions are
invariably total. We believe that partiality of these actions is an important real-world
consideration. Treating it carefully allows us to distinguish between error conditions
and edits which successfully do nothing, and to give a guarantee that our lenses do
not spuriously turn a succesful nothing into an error condition.

They also treat backwards-compatibility with asymmetric, state-based lenses very
seriously, which gives rise to their lens-like restrictions. Their rule LL1 stating that
the get direction is a module homomorphism can be seen as saying that edit trans-
lation is consistent with state translation. Our demand that the edit translations
preserve a consistency relation can be seen as a generalization of this. On the other
hand, their rule LL2—necessary to ensure that their delta lenses behave like state-
based lenses regardless of dif operation—seems quite strong. The goal appears to
be to preserve the state-based behavior that changing nothing on one side changes
nothing on the other; however, it is our view that demanding that the distinguished
do-nothing edit from one module be translated to the distinguished do-nothing edit
from the other module already captures this intuition. There are edits which appear
to do nothing to a given view but which nevertheless have semantic content, and
should therefore be allowed to be distinguished by a lens. Consider the example of
Figure 1.4 again, reproduced here as Figure 5.1. An edit which deletes the last ele-
ment of the secretary’s view, then inserts a fresh element with value “Mary Jones”,
apparently does nothing to the current view. Nevertheless, it seems quite natural4
for the translation of this edit to reset the salary associated with “Mary Jones” to a
default value; a rule like LL2 would prevent lenses from having this kind of nuanced
behavior.

Finally, our development includes significantly more effort instantiating the lens
framework to particular lenses and lens combinators. We believe that this is good
evidence that our behavioral restrictions are relaxed enough to accomodate important
use cases; nevertheless, they were strict enough to prevent many genuinely undesirable
behaviors in early proposals for these combinators (not documented here).

4Possibly even desirable—an obviously incorrect value is often preferable to a plausible incorrect
value.

179

Teacher name Salary Room
Sam Rickard 57,000 314
Jon Jacobs 50,000 108b
Mary Jones 65,000 109

Teacher name Room
Sam Rickard 314
Jon Jacobs 108b
Mary Jones 109

Teacher name Room
Jon Jacobs 108b
Mary Jones 111
Sam Rickard 314

Teacher name Salary Room
Jon Jacobs 57,000 108b
Mary Jones 50,000 111
Sam Rickard 65,000 314

get

user modification

put

Figure 5.2: An easily fixed misalignment

5.4 Matching lenses
Dictionary lenses [9] and their sequel, matching lenses [7], are also motivated by the
alignment problems discussed above. We will consider a variation of our motivating
example from Chapter 1 which showcases a particularly annoying example of bad
alignment—annoying both because it is a common scenario and because it seems
especially clear how to get the right answer. Figure 5.2 shows again the bad behavior
of positional alignment. Gray annotations mark changes with respect to a previous
version of a given repository. The salary column of the updated source repository is
marked in red because it has been misaligned with the updated view: the names have
been shuffled, but the salaries have not.

The observation of dictionary lenses is that the teacher names in the view repos-
itory act somewhat like a key: the reordering that the user did can be recovered by
comparing the order of names before and after the modification. Experience with lens
programming shows that the existence of a key is fairly common, so merely giving
the programmer the ability to specify which parts of the data correspond to keys can
improve the put behavior in a wide range of applications. However, there is an un-
fortunate behavioral regression: with positional alignment, changing a key is handled
gracefully, but with a dictionary lens, a changed key results in a loss of any associated
information. Figure 5.3 gives an example of a dictionary lens resetting a salary that
a plain lens would preserve. The observation here is that simple key equality is too
strict. Matching lenses relax this restriction; they parameterize lenses by an align-
ment strategy—which can do arbitrary computation—that computes how chunks of
the old and new copies of the repository correspond. Several heuristics that satisfy
the interface of an alignment strategy are given, for example, for computing the least-
cost alignment according to some function that computes the cost of a single-chunk
change.

Matching lenses give a concrete way to separate alignment discovery from update

180

Teacher name Salary Room
Sam Rickard 57,000 314
Jon Jacobs 50,000 108b
Mary Jones 65,000 109

Teacher name Room
Sam Rickard 314
Jon Jacobs 108b
Mary Jones 109

Teacher name Room
Sam Richards 314
Jon Jacobs 108b
Mary Smith 109

Teacher name Salary Room
Sam Richards 57,000 314
Jon Jacobs 50,000 108b
Mary Smith 0 109

get

user modification

put

Figure 5.3: With dictionary lenses, changing a key causes information loss

propagation, and propose several promising discovery heuristics. There is also an
implementation available for a string-based data model.

The basic model of matching lenses formalizes a framework for container mapping
and restructuring lenses: the structure of the source and view containers need not
be identical, but there must be an identical set of positions (and the connection
between the positions in the source and the positions in the view must be the trivial
one—that is, no reordering). They show how to extend the basic model to allow
the contained values to have different types, to allow reordering, and to allow the
contained values to themselves be containers. The framework of the basic model of
matching lenses is already complicated; by the time it is extended in this way, the
machinery is quite baroque. By comparison, the basic formalism of edit lenses can
be summarized quite compactly, and is nevertheless flexible enough to accommodate
all the extensions proposed. Additionally, edit lenses support a more flexible array of
container operations, and in particular may be used to define lenses between structures
with differing numbers of holes.

5.5 Annotation-based delta lenses
A weakness of our approach is that the lack of categorical products indicates that
we cannot duplicate information during our transformations. For some applications,
this is a critical feature, and allowing this requires different fundamentals. Work
on annotation-based delta lenses addresses this need [24, 25, 40]. Their foundations
are fundamentally symmetric; however, the way they propose using it is essentially
asymmetric. Besides that, there are two key differences between their development
and ours. First, their data model is ordered, node-labeled trees, and rather than
separating edits from the data, they merge them: edits are represented by annotating
the trees with insertion, deletion, and modification markings. Reordering is not con-

181

sidered at all; furthermore, annotated trees are always at least as big as the real tree
they represent, so the performance issues associated with the size of a repository are
not addressed. Additionally, their behavioral laws govern how lenses treat annotated
values. There is an erasure process to turn annotated trees into plain ones (by per-
forming the respective insertions, deletions, and modifications), but no exploration of
the interaction between erasure and the lens’ behavioral laws. The second key differ-
ence is that allowing duplication requires them to significantly relax the behavioral
laws: for example, if only one copy of some duplicated information is modified, one
wishes a roundtrip of the transformations to modify the other copy analogously. The
weakened laws allow this, but also allow many other apparently undesirable behaviors
like ignoring all changes indiscriminately.

5.6 Constraint maintainers
Constraint maintainers are an early exploration of a symmetric framework for bidi-
rectional transformations [38]. The framework is a very natural one, as mentioned
in §1.3: given a relation R ⊂ X × Y , a constraint maintainer is a pair of functions
. ∈ X × Y → Y and / ∈ X × Y → X for which x R (x . y) and (x / y) R y. One
may optionally also require that related values remain unchanged, that is:

x R y

x . y = y

x R y

x / y = x
Some discussion of generalizing these behavioral laws to a Principle of Least Change
is given; in any case, those maintainers which satisfy the property above can be lifted
to symmetric lenses as follows.

〈/, .〉 a maintainer for R ⊂ X × Y
x R y

cmaint(R, /, ., x, y) ∈ X ↔ Y

C = R
missing = (x, y)
putr(x, (x′, y)) = (x . y, (x, x . y))
putl(y, (x, y′)) = (x / y, (x / y, y))

The work on constraint maintainers is especially commendable for its wide cover-
age of bidirectional transformations. Many transformations on concrete data types
not considered in other bodies of work—particularly arithmetic and set theoretic
operations—are discussed and implemented here. Nevertheless, general maintainer
composition is shown to be uncomputable. A restricted composition in the case where
one of the two maintainers corresponds to an asymmetric lens is given, and there is
a proposal to use maintainer chains when this is insufficient, but the properties of

182

these chains are not considered. There is some exploration of how to deal with align-
ment issues; the main idea they propose is to lift relations on values to relations on
the edit sequences used to build values. One can then define constraint maintainers
which inspect such edit sequences. However, little consideration is given to desirable
behavioral laws with respect to these more fine-grained structures; furthermore, the
incremental capability we expose from our edit lenses to allow for small updates is
not explored.

183

Chapter 6

Conclusion

Our work has identified several areas for improvement in the foundations of exist-
ing bidirectional transformation tools. The development of symmetric lenses enables
both repositories associated with a lens to store locally interesting information. Con-
sidering stateful, rather than pure, transformations enables the lens to store this local
information on the side; though a theory of behavioral equivalence is needed to re-
store equational reasoning in the presence of this state. This is an improvement on
the asymmetric lens framework’s need for a canonical, centralized repository, but the
behavior of many of the actual lenses proposed in Chapter 2 fall short in several ways.
Most significantly, they employ a somewhat naïve strategy for divining the connection
between original and updated repositories. This manifests itself as lenses which follow
the letter of the law—produce synchronized repositories—but mangle the meaning of
the repositories during synchronization by inappropriately mixing and matching data.

Edit lenses address this problem by elevating the status of the data describing how
original and updated repositories are connected. Treating edits as first-class means
that the lenses need not guess about alignment information, and consequently the
true meaning of the repositories is much more likely to be faithfully retained. Indeed,
as a side effect, promoting edits in this way allows the creation of stronger laws, so
that the letter of the law and the spirit of the law are no longer quite so far from each
other. We have also shown that the theory can support the incremental operation that
is a prerequisite to a performant implementation. Careful edit language design results
in the ability to compose lenses that need not refer to the repositories themselves nor
to large complements during transformation of the edits.

Related approaches to this problem are summarized in Table 6.1, which expands
Table 5.1 with short reminders of how each approach accomplishes each goal or why
it falls short; the edit lens framework is the first approach to address all of the is-
sues raised above. Asymmetric delta lenses seem like a promising approach for their
ability to handle alignment well, but the formalism does not accomodate small ed-
its well even if syntax could be designed that could operate on them. Symmetric
delta lenses extend these to the symmetric setting, but the reasoning principles that
require behavioral equivalence discussed in conjunction with our symmetric lenses

184

Alignment Symmetry Performance Syntax

asymm. δ explicit
alignments not a goal edits include

repositories
via alternate
framework

symm. δ edits yes, but equiv.
not explored

edits include
repositories

alternate
frameworks not
instantiated

comma
category

inclusion
morphisms no edits include

repositories
bespoke
examples

group-
based edits no possibly, but

unexplored not a goal

matching mapping from
holes to holes no

repository and
alignment
information

both processed

variants of
most AS-lens
combinators

annotated

insertion,
deletion,

modification
markers

no

alignment
information
includes
repository

includes diag ∈
X ↔ X ×X

const.
maint.

uninterpreted
edits

yes; does not
require equiv.

no; all edits
relative to init

many
primitives, but
no composition

symm.
state very bad yes; requires

equivalence no mostly domain
agnostic

edit lenses edits yes; requires
equivalence

small edits
support

incremental
operation

most standard
lenses, and

container map

Table 6.1: Feature coverage for various lens frameworks, including the two proposed
by our work (green means satisfies the objective, red indicates some shortcomings)

185

are not considered, and the framework itself is not yet instantiated with a syntax.
C-lenses provide a nice approach for giving strong behavioral guarantees, but each
instantiation must be proven correct by an expert. The algebraic study of asymmetric
lenses exposes many surprising features of edits, but does not address many of the
issues needed to create a practical system. Matching lenses and annotation-based
lenses are very natural extensions of asymmetric, state-based lenses, but are also con-
servative, retaining the basic repository-passing architecture while adding alignment
information as a separate input. The more radical changes proposed in edit lenses al-
low for symmetric operation and eliminate the need to pass repositories to the lenses.
Notably, annotation-based lenses extend a variant of the asymmetric, state-based
lenses that allows for the construction of a lens that duplicates information, making
it the only approach that makes a serious attempt to handle alignment problems
while enabling this lens. Finally, constraint maintainers tackle many practical issues,
but do not fully explore the power of edits and lack the ability to perform sequential
composition, a key piece of syntax.

Though the issues that edit lenses handle are important ones, future work could
further strengthen the practicality of bidirectional transformation frameworks by tack-
ling a few additional foundational issues. The following section surveys a few of the
most pressing needs.

6.1 Future Work
Hyperlenses The lens framework focuses itself on the problem of synchronizing
two repositories at a time. Consequently, current lenses do not generalize smoothly
to more than two pieces of data, but many real-world scenarios involve synchronizing
many (potentially quite small and loosely related) repositories. One example (which
we are not the first to propose [36]) would be a multi-directional spreadsheet, where
we treat each cell as a repository. Some cells are computed from others; these compu-
tations are the transformations that one might like to bidirectionalize. There seem to
be a variety of additional challenges associated with generalizing from bi-directional
to many-directional updating, chief among them being a significantly larger update
space to search through on each synchronization action. We have explored a few
restricted settings—for example, where no repository is connected to another in two
different ways, or where all repositories are numbers and all connections are linear
functions—that seem to admit partial solutions, but none are really satisfactory [52].
There seem to be deep connections to the literature on constraint propagation and
(in the special case of spreadsheets) computer algebra systems.

Parsing Though our formalism discusses the consumption, transformation, and
application of edits without resorting to inspecting repositories, it does not address
the need for generating edits. On the one hand, one could simply use exactly the data
model proposed by our modules, so that the programmer must interface with the data

186

by supplying edits of exactly the form proposed here. On the other hand, this may be
inconvenient, and in many likely practical scenarios involves punting a hard problem
from the theory to the user of the theory. A more desirable route may be to extend
the theory to explicitly handle the generation of edits. Previous lens frameworks not
based on edits achieved a universal interface by grounding their constructions in a
string-based data model. Chapter 4 takes one step in this direction, but the ad-hoc
approach suggested there ignores performance issues and gives no real behavioral
guarantees. An extension to the existing theory which addresses the problem of
parsing in the presence of edits would be quite valuable.

Additional Syntax We have noted several places where one could wish for a more
expressive collection of lens constructions. In particular, we were not able to re-
capitulate the symmetric lens’ development of fold and unfold lens combinators for
recursive types, in part because it is not clear how to build edit modules for recursive
types in a compositional way. (Edits to “roll” and “unroll” one layer of the recursion
are not enough: as with lists, one wants a way to shuffle data between depths and
across pairs and sums; this is the part that seems tricky.) Even restricting our view
to containers, it would be interesting to investigate edit modules for more container
shapes, especially graphs—the basis of the data model usually used in model-driven
development—and relations—the data model usually used in databases. More spec-
ulatively, it is well-known that symmetric monoidal categories are closely connected
to wiring diagrams [47] and to first-order linear lambda calculus [46]. Perhaps this
correspondence could be exploited to design a lambda-calculus-like syntax or dia-
grammatic language for symmetric or edit lenses. The linear lambda calculus has
judgments of the form x1:A1, . . . , xn:An ` t : A0, where A0, . . . , An are sets or possi-
bly syntactic type expressions and where t is a linear term made up from basic lenses,
lens combinators, and the variables x1, . . . , xn. This could be taken as denoting a
symmetric lens A1 ⊗ · · · ⊗ An ↔ A0. For example, here is such a term for the lens
concat ′ from §2.6.2:

z:Unit ⊕ A⊗ A? ⊗ A? ` match z with
| inl () 7→ termop

〈〉
| inr (a, al, ar) 7→ concat(a:al, ar)

The interpretation of such a term in the category of lenses then takes care of the
appropriate insertion of bijective lenses for regrouping and swapping tensor products.

Algebraic Properties A number of algebraic oddities have cropped up during
our development which it would be nice, as a matter of polish, to settle one way or
another. The status of sums (and in particular injection lenses) has been somewhat
in question for some time, so it is nice that in the symmetric lens case we have settled
this question by elucidating the symmetric monoidal structure available. On the other
hand, this makes the lack of associativity for tensor sum in the edit lens category all

187

the more surprising; it may be interesting to pursue an associative tensor sum (or
prove it impossible). Similarly, we have shown that our tensor product has many of
the properties we expect of a symmetric monoidal category structure, but not quite
all. We conjecture that adding appropriate monoid laws would resolve this problem;
and in any case adding appropriate monoid laws in all the modules discussed is its
own serious undertaking worth consideration. Finally, it has been suggested by a
reviewer of one of our papers that, although we cannot have a categorical product
or sum in the category of lenses, it may be worth considering placing a partial order
on lenses. Perhaps this would enable a variant of the categorical product where the
usual defining equations of a product are replaced by inequalities.

Application Further implementation effort could be aimed at a variety of purposes.
One might be interested in verifying whether the performance promises of edit lenses
could be realized by running experiments. For example, one might imagine compar-
ing the size of typical repository edits to the size of the repositories as the repository
grows; comparing the runtime of edit translation to the runtime of a more tradi-
tionally designed lens; or analyzing any of half a dozen other metrics. Alternately,
one could focus on breadth rather than depth, implementing a variety of transfor-
mations, to find out whether the syntax developed here is expressive enough. There
are also many practical tools that may benefit from edit lenses: file synchronizers
keeping two file systems synchronized, text editors keeping parse trees synchronized,
database backends keeping queries synchronized with data, log summarizers keep-
ing summaries and log files synchronized, software model transformations keeping
architectural diagrams and code synchronized, perhaps even mobile phone applica-
tions keeping a client’s display and server data synchronized may all benefit from
bidirectional techniques.

Miscellaneous Extensions Besides the broad categories discussed above, there
are a handful of other curiosities suggested throughout the development which we
gather here. During the development of iterator symmetric lenses, it was observed
that correctness of the lens depends on the existence of an appropriate weight function
guaranteeing termination. We anticipate that this function will be simple in the ma-
jority of cases; automatically discovering it for a broad class of lenses seems plausible
and would remove a significant annoyance from the lens programmer. Next, in the
passage from asymmetric, state-based lenses to symmetric lenses, we gave a theorem
connecting various asymmetric lens constructions to symmetric lens constructions,
but have not explored the extension of this connection to edit lenses. Future work
could investigate whether the edit lens tensor product, for example, corresponds in
some way to the lifting of the symmetric lens tensor product. One similarly wonders
whether there is an edit lens analog of the theorem showing how to split a symmetric
lens into two asymmetric lenses. On a slightly different line of inquiry, one may wonder
just how canonical our choices of edit structure and lens laws are. Several related lines

188

of work have proposed more intricate structures—for example, a popular choice is to
require that edits have some way of being undone, either with an inverse or something
weaker—and stronger laws—for example, requiring that V and W produce minimal
edits by adding a triple-trip law—without instantiating their frameworks. Perhaps
enforcing stronger requirements would suggest ways to improve the behavior of the
existing constructions, and on the other hand perhaps the constructions would reveal
that some of the requirements are too strong.

Another idea suggested by related work is to consider typed edits. In our devel-
opment of edit lenses, we allow partial edits so that we may represent edits that work
on some, but not all, repositories in a uniform way. We then go to great lengths to
assure that the partiality is purely formal: we have a theorem showing that lenses
never introduce partiality where none was before. In contrast, the symmetric delta
lens approach has no such problem—each edit is applicable to one and only one
repository—but pays the price of having to duplicate the modifications which can
apply to many repositories [14]. Perhaps it would be possible to find a middle ground
by designing a typed edit language, in which edits may apply to many repositories
(that share a type), but where the types are specific enough that all edits are total.
For example, for list edits, one might consider having one type for each possible length
of list. Then one would have, for example, deletion edges del : m → n when m < n;
such an edge must store marginally more information than our edit module did (the
domain and codomain length rather than a single number telling their difference),
but the set of repositories to which it applies is much more clearly delimited.

6.2 Closing Thought
Though there are many opportunities for further improvements, edit lenses are part
of a growing ecosystem of bidirectional techniques. In this arena, our develop-
ment expands what is known about incrementalizing and symmetrizing bidirectional
transformations—an important step in the development of practical tools for the
common task of maintaining replicated data.

189

Appendix A

Full code

A.1 LICENSE
Copyright (c)2011, Daniel Wagner

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of Daniel Wagner nor the names of other
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

! This software is provided by the copyright holders and contributors
! "as is" and any express or implied warranties, including, but not
! limited to, the implied warranties of merchantability and fitness for
! a particular purpose are disclaimed. In no event shall the copyright
! owner or contributors be liable for any direct, indirect, incidental,
! special, exemplary, or consequential damages (including, but not
! limited to, procurement of substitute goods or services; loss of use,
! data, or profits; or business interruption) however caused and on any
! theory of liability, whether in contract, strict liability, or tort
! (including negligence or otherwise) arising in any way out of the use
! of this software, even if advised of the possibility of such damage.

190

A.2 demos/edit-lenses-demo.cabal
name: edit-lenses-demo
version: 0.1
synopsis: Programs demoing the use of symmetric, stateful edit lenses
Description: Some simple demo programs showing ways to use the

edit-lenses package.
license: BSD3
license-file: LICENSE
author: Daniel Wagner
maintainer: daniel@wagner-home.com
category: Data
build-type: Simple
cabal-version: >=1.8

flag gtk
description: Build demos that require a GUI.
default: False

executable lens-editor
if flag(gtk)

build-depends:
base >= 3.0 && < 5,
containers >= 0.4,
data-default >= 0.3,
Diff >= 0.1 && < 0.2,
edit-lenses >= 0.2,
gtk >= 0.12,
regex-pcre >= 0.94

extensions: GeneralizedNewtypeDeriving
other-modules: Data.Lens.Edit.String Data.Module.String
main-is: lens-editor.hs

else
build-depends: base >= 3.0 && < 5
main-is: no-gtk.hs

A.3 demos/lens-editor.hs

{−# LANGUAGE GeneralizedNewtypeDeriving #−}

import Control.Concurrent
import Control.Monad
import Data.IORef
import Data.Lens.Edit
import Data.Lens.Edit.Stateful
import Data.Lens.Edit.String
import Data.Maybe
import Data.Module hiding (Delete, Insert)
import Data.Module.String
import Graphics.UI.Gtk

191

newtype DATE = DATE () deriving Default
newtype COUNTRY = COUNTRY () deriving Default
newtype COMMA = COMMA () deriving Default
newtype SEMICOLON = SEMICOLON () deriving Default
newtype NEWLINE = NEWLINE () deriving Default

instance Show DATE where show DATE {} = "0000"
instance Show COUNTRY where show COUNTRY {} = "Unknown"
instance Show COMMA where show COMMA {} = ","
instance Show SEMICOLON where show SEMICOLON {} = ";"
instance Show NEWLINE where show NEWLINE {} = "\n"

commaToSemicolon
= skipNonEmpty COMMA {} ","
op (skipNonEmpty SEMICOLON {} ";")

composerName = copyEmpty "[^,;\n]∗"
composerYear = skipNonEmpty DATE {} "\\d\\d\\d\\d"
composerCountry = op (skipNonEmpty COUNTRY {} "[A−Z][^\n]∗")
newline = copyNonEmpty NEWLINE {} "\n"
(leftM, lens , rightM) = star (composerName # commaToSemicolon #

composerYear # composerCountry # newline)

initView string = do
buffer ← textBufferNew Nothing
view ← textViewNewWithBuffer buffer
good ← newIORef (def, [])
del ← newIORef (Delete 0 0)
sigm ← newEmptyMVar
font ← fontDescriptionNew
fontDescriptionSetSize font 48
widgetModifyFont view (Just font)
readIORef good >>= textBufferInsertAtCursor buffer . pprint string . fst
return (buffer, view, good, del , sigm)

changeEvent cref sigm this that goodThis goodThat dput stringThis stringThat e = do
c ← readIORef cref
(oldThis, es) ← readIORef goodThis
(oldThat, _) ← readIORef goodThat
newThisS ← get this textBufferText
sigs ← readMVar sigm
mapM_ signalBlock sigs
case parse stringThis newThisS of

Nothing → writeIORef goodThis (oldThis, e:es)
Just newThis → do

let eThis = edit stringThis oldThis (e:es)
(eThat, c’) = dput lens (edit stringThis oldThis (e:es), c)
Just newThat = apply eThat oldThat

putStrLn $ "Edit received: " ++ show eThis
putStrLn $ "Lens computes: " ++ show eThat
writeIORef cref c’

192

writeIORef goodThis (newThis, [])
writeIORef goodThat (newThat, [])
set that [textBufferText := pprint stringThat newThat]

mapM_ signalUnblock sigs

changeEventL cref (buf1, _, good1, _, _) (buf2, _, good2, _, sigm2)
= changeEvent cref sigm2 buf1 buf2 good1 good2 dputr leftM rightM

changeEventR cref (buf1, _, good1, _, sigm1) (buf2, _, good2, _, _)
= changeEvent cref sigm1 buf2 buf1 good2 good1 dputl rightM leftM

insertEdit p s = get p textIterOffset >>= \n → return (Insert (n − length s) s)
deleteEdit p p’ = liftM2 Delete (get p textIterOffset) (get p’ textIterOffset)

main = do
initGUI
window ← windowNew
hbox ← hBoxNew False 2
cref ← newIORef (missing lens)
v1@(buf1, view1, good1, del1, sigm1) ← initView leftM
v2@(buf2, view2, good2, del2, sigm2) ← initView rightM

window ‘on‘ objectDestroy $ mainQuit
−− abbreviations to save horizontal space
let ins = bufferInsertText; del = deleteRange
sig1i ← buf1 ‘ after ‘ ins $ \p s → insertEdit p s >>= changeEventL cref v1 v2
sig1w ← buf1 ‘on‘ del $ \p p’ → deleteEdit p p’ >>= writeIORef del1
sig1r ← buf1 ‘ after ‘ del $ \p p’ → readIORef del1 >>= changeEventL cref v1 v2
sig2i ← buf2 ‘ after ‘ ins $ \p s → insertEdit p s >>= changeEventR cref v1 v2
sig2w ← buf2 ‘on‘ del $ \p p’ → deleteEdit p p’ >>= writeIORef del2
sig2r ← buf2 ‘ after ‘ del $ \p p’ → readIORef del2 >>= changeEventR cref v1 v2
putMVar sigm1 [sig1i, sig1w, sig1r]
putMVar sigm2 [sig2i, sig2w, sig2r]

set window [containerChild := hbox
, windowDefaultWidth := 600
, windowDefaultHeight := 200
]

set hbox [containerChild := view1
, containerChild := view2
]

widgetShowAll window
mainGUI

A.4 demos/no-gtk.hs

main = putStrLn "This executable was disabled at compile time to avoid a dependency \
\on Gtk+. To\nenable, add \"−−flags=gtk\" to cabal’s configure or install command."

193

A.5 demos/Data/Lens/Edit/String.hs

module Data.Lens.Edit.String where

import Data.Lens.Edit.Container
import Data.Lens.Edit.Primitive
import Data.Lens.Edit.Product
import Data.Module.String

−− to shorten some type declarations
type Match’ = NewDefaultMatch
type Edit’ = NewDefaultModule

copyEmpty :: String → (Match, Id [Edit], Match)
copyEmpty s = (Match s, Id, Match s)

copyNonEmpty :: v → String → (Match’ v, Id (Edit’ v), Match’ v)
copyNonEmpty v s = (NewDefaultMatch s, Id, NewDefaultMatch s)

skipEmpty :: String → (Match, Disconnect [Edit] [Edit], Match)
skipEmpty s = (Match s, Disconnect, Match "")

skipNonEmpty :: v → String → (Match’ v, Disconnect (Edit’ v) [Edit], Match)
skipNonEmpty v s = (NewDefaultMatch s, Disconnect, Match "")

(#) :: (a, k, b) → (c, l , d) → ((a, c), CompactProduct k l, (b, d))
(#) (a, k, b) (c, l , d) = ((a, c), CompactProduct k l, (b, d))

op :: (a, l , b) → (b, Op l, a)
op (a, l , b) = (b, Op l, a)

star :: (a, l , b) → (Asterisk a, Map Int l, Asterisk b)
star (a, l , b) = (Asterisk a, Map l, Asterisk b)

A.6 demos/Data/Module/String.hs

{−# LANGUAGE FlexibleContexts, FlexibleInstances, GeneralizedNewtypeDeriving #−}
{−# LANGUAGE ScopedTypeVariables, TypeFamilies #−}
module Data.Module.String where

import Control.Applicative
import Control.Arrow
import Control.Monad
import Data.Algorithm.Diff
import Data.Default
import Data.List
import Data.Maybe
import Data.Module.Class
import Data.Module.Container (ContainerAtom)
import Data.Module.Product

194

import Data.Module.Shape
import Data.Monoid
import Text.Regex.PCRE
import qualified Data.Map as M
import qualified Data.Module.Container as C

class Module (M m) ⇒ StringModule m where
type M m
valid :: m → String −− returns a regex telling what strings are valid
parse :: m → String →Maybe (V (M m))
pprint :: m → V (M m) → String
edit :: m → V (M m) → [Edit] → M m

data Edit = Insert Int String | Delete Int Int deriving (Show, Read)

instance PartialEdit Edit where
type Vg Edit = String
applyg (Insert n s ’) s = Just (take n s ++ s’ ++ drop n s)
applyg (Delete n n’) s = Just (take n s ++ drop n’ s)

newtype Match = Match String deriving (Eq, Ord, Show, Read)
maybeMatch re s = guard (s =~ re ≡(0 :: Int, length s)) >> return s
instance StringModule Match where

type M Match = [Edit]
valid (Match re) = re
parse = maybeMatch . valid
pprint = const id
edit = const (const id)

instance (StringModule dX, StringModule dY) ⇒ StringModule (dX, dY) where
type M (dX, dY) = (M dX, M dY)
valid (mx, my) = valid mx ++ valid my
parse (mx, my) s = do

let (m , n) = s =~ valid mx
(m’, n’) = drop n s =~ valid my

guard ([m, m’, n + n’] ≡ [0, 0, length s])
vx ← parse mx (take n s)
vy ← parse my (drop n s)
return (vx, vy)

pprint (mx, my) (vx, vy) = pprint mx vx ++ pprint my vy
edit = editProd

editProd (mx, my) (vx, vy) es = edit mx vx ∗∗∗ edit my vy $ case splitMap of
Nothing → (replace sx sx’, replace sy sy’)
Just ms → (exs, eys)
where
die = error "The impossible happened! \

\A [Edit] didn’t successfully apply to a String in editProd."
sx = pprint mx vx
sy = pprint my vy
sn = fromMaybe die (apply es (sx ++ sy))

195

oldSplit = length sx
newSplit = snd (sn =~ valid mx :: (Int, Int))
(sx ’, sy’) = splitAt newSplit sn
easySplits = trackEdits [oldSplit] es
splitMap = M.lookup newSplit easySplits
−− this is dangerous, only use the variables it binds when splitMap is
−− definitely a Just!
(exs, eys) = splitEdits (fromJust splitMap) oldSplit es
replace s s ’ = [Insert 0 s ’, Delete 0 (length s)]

trackEdit :: Edit → (Int, M.Map Int (M.Map Int Int)) → (Int, M.Map Int (M.Map Int Int))
trackEdit (Insert n s) (i , m) = (i + 1, m’) where

(smaller , larger ’) = M.split n m
len = length s
larger = M.mapKeysMonotonic (+ len) larger’
exact = case M.lookup n m of

Nothing → M.empty
Just im → M.fromList [(n + i’, M.insert i i ’ im) | i ’ ← [0 .. len]]

m’ = smaller ‘M.union‘ larger ‘M.union‘ exact
trackEdit (Delete n n’) (i , m)

| n > n’ = trackEdit (Delete n’ n) (i , m)
| n ≡ n’ = (i + 1, m)
| n < n’ = (i + 1, m’) where
(smaller , notSmaller) = M.split (n +1) m
(deleted, larger ’) = M.split (n’−1) notSmaller
len = n’ − n
larger = M.mapKeysMonotonic (subtract len) larger’
m’ = smaller ‘M.union‘ larger
−− NOTE: this arbitrarily prefers the edits on the left−hand side of the
−− deletion boundary over the edits on the right−hand side of the deletion
−− boundary when a chunk boundary happens to fall on a position that
−− matches the deletion boundary

−− input: the locations of chunk boundaries, plus some edits
−− returns:
−− The inner Map Int Int tells ,
−− for each index into the edits , whether to split the resulting edit and where.
−− The outer Map tells,
−− for each position , if a chunk boundary ends up landing there, how to split the edits .
trackEdits :: [Int] → [Edit] → M.Map Int (M.Map Int Int)
trackEdits bounds = snd . foldr trackEdit (0, M.fromList (zip bounds (repeat M.empty)))

splitEdits :: M.Map Int Int → Int → [Edit] → ([Edit], [Edit])
splitEdits m split = snd . foldr splitEdit ((0, split), ([], [])) where

splitEdit :: Edit → ((Int, Int), ([Edit], [Edit])) → ((Int, Int), ([Edit], [Edit]))
splitEdit e@(Delete n n’) ((i , split), (els , ers))

| n > n’ = splitEdit (Delete n’ n) ((i , split), (els , ers))
| n’ ≤ split = ((i+1, split−n’+n), (e:els , ers))
| n ≥ split = ((i+1, split), (els , Delete (n−split) (n’−split) : ers))
| otherwise = error "The impossible happened! \

\A deletion crossed a chunk boundary."

196

splitEdit e@(Insert n s) ((i , split), (els , ers)) = case M.lookup i m of
Nothing

| n < split → ((i+1, split+length s), (e:els , ers))
| n > split → ((i+1, split), (els , Insert (n−split) s : ers))
| otherwise → error

"The impossible happened! An insertion crossed a \
\chunk boundary without being in the splitting map."

Just n’ → ((i+1, split+n’),
(consInsert n (take n’ s) els ,
consInsert 0 (drop n’ s) ers))

consInsert n "" es = es
consInsert n s es = Insert n s : es

data Asterisk m = Asterisk m
instance StringModule m ⇒ StringModule (Asterisk m) where

type M (Asterisk m) = [ContainerAtom Int (M m)]
valid (Asterisk m) = "(" ++ valid m ++ ")∗"
pprint (Asterisk m) = containerToList >=> pprint m
edit (Asterisk m) = editList m . containerToList
parse (Asterisk m) = liftM listToContainer . parseList m

parseList m = splitList (valid m) >=> mapM (parse m)
splitList re "" = return []
splitList re s = do

−− pattern match failure means the regex didn’t match at the beginning,
−− and results in a failed parse overall
("", sMatch, rest) ← return (s =~ re)
liftM (sMatch:) (splitList re rest)

−− Heuristic: if we can track where ∗all∗ the old splits went, then go ahead
−− and do that. Nice! Otherwise, use diff to compare the entire old list with
−− the entire new list .
−−
−− There’s a lot of room for improvement: we could take the regions between
−− successfully tracked splits and the regions with unsuccessfully tracked
−− splits and run the diff only on the unsuccessful regions , for example.
−− Additionally, note that when we are tracking splits , we assume that no
−− splits are inserted or deleted . A more sophisticated heuristic might try to
−− relax this assumption somehow (though the only way I could think of to relax
−− it would result in an exponential−time algorithm).

editList m vs es = fromMaybe diffy exact where
exact = editListExact m vs oldss newss es 0
diffy = editListDiff m oldss newss
oldss = map (pprint m) vs
newss = fromJust (splitList (valid m) =<< apply es (concat oldss)) :: [String]

editListExact m (v:vs) (olds : oldss) (news:newss) es i = case splitMap of
Nothing → Nothing
Just ms → liftM (modifyHere++) (editListExact m vs oldss newss erest (i+1))
where

197

oldSplit = length olds
newSplit = length news
easySplits = trackEdits [oldSplit] es
splitMap = M.lookup newSplit easySplits
−− this is dangerous, only use the variables it binds when splitMap is
−− definitely a Just!
(e, erest) = splitEdits (fromJust splitMap) oldSplit es
modifyHere = [C.Modify i (edit m v e) | not (null e)]

editListExact m [] [] [] [] i = Just []
editListExact _ _ _ _ _ _ = Nothing

editListDiff m oldss newss = result where
diff = getDiff oldss newss
tags = map fst diff
count place = length . filter (≡place) $ tags
(countS, countF) = (count S, count F)
match place B = [True]
match place place’ = [False | place ≡ place ’]
reordered place = map fst

. uncurry (++)

. partition snd

. zip [0..]
$ tags >>= match place

needsReorder place = any (≡B) (dropWhile (place /=) tags)
moveInsertions _ i = fromJust (findIndex (≡i) (reordered S))
moveDeletions _ i = reordered F !! i
create s = edit m def [Insert 0 s , Delete 0 . length . pprint m $ def]
result

= [C.Rearrange (Sum 0) moveInsertions | needsReorder S]
++ zipWith C.Modify

[count B .. count B + count S − 1]
[create news | (S, news) ← diff]

++ [C.Insert . Sum $ countS | countS > 0]
++ [C.Delete . Sum . negate $ countF | countF > 0]
++ [C.Rearrange (Sum 0) moveDeletions | needsReorder F]

−− a few utilities for defining string modules whose default value is not ""
newtype NewDefault v = NewDefault String deriving (Eq, Ord)
instance Show (NewDefault v) where show (NewDefault s) = show s
instance Read (NewDefault v) where readsPrec n s = first NewDefault <$> readsPrec n s
instance (Default v, Show v) ⇒ Default (NewDefault v) where

def = NewDefault (show (def :: v))

newtype NewDefaultModule v = NewDefaultModule [Edit] deriving (Show, Read, Monoid)
instance (Default v, Show v) ⇒ Module (NewDefaultModule v) where

type V (NewDefaultModule v) = NewDefault v
apply (NewDefaultModule es) (NewDefault v) = liftM NewDefault (apply es v)

newtype NewDefaultMatch v = NewDefaultMatch String deriving (Eq, Ord, Show, Read)

instance (Default v, Show v) ⇒ StringModule (NewDefaultMatch v) where
type M (NewDefaultMatch v) = NewDefaultModule v

198

valid (NewDefaultMatch re) = re
parse m = liftM NewDefault . maybeMatch (valid m)
pprint m (NewDefault s) = s
edit = const (const NewDefaultModule)

A.7 lib/edit-lenses.cabal
name: edit-lenses
version: 0.2
synopsis: Symmetric, stateful edit lenses
Description: An implementation of the ideas of the paper /Edit Lenses/,

available at <http://dmwit.com/papers/201107EL.pdf>.
-- Homepage: http://dmwit.com/edit-lenses
license: BSD3
license-file: LICENSE
author: Daniel Wagner
maintainer: daniel@wagner-home.com
category: Data
build-type: Simple
cabal-version: >=1.8

library
exposed-modules:

Data.Container,
Data.Iso,
Data.Module,
Data.Module.Class,
Data.Module.List,
Data.Module.Primitive,
Data.Module.Sum,
Data.Module.Product,
Data.Module.Container,
Data.Module.Shape,
Data.Lens.Bidirectional,
Data.Lens.Edit,
Data.Lens.Edit.Container,
Data.Lens.Edit.List,
Data.Lens.Edit.Stateless,
Data.Lens.Edit.Stateful,
Data.Lens.Edit.Sum,
Data.Lens.Edit.Primitive,
Data.Lens.Edit.Product

build-depends:
base >= 3.0 && < 5,
containers >= 0.3,
data-default >= 0.3,
lattices >= 1.2,
mtl >= 2.0

extensions:
FlexibleContexts,
FlexibleInstances,

199

GeneralizedNewtypeDeriving,
ScopedTypeVariables,
TypeFamilies,
TypeOperators

if impl(ghc)
-- The meaning of the TypeFamilies extension changed between GHC 7.0 and
-- GHC 7.2: superclass equality constraints were not possible prior to 7.2.
-- Since there’s no way to depend on a version of GHC, this is the next
-- best thing: depend on a version of base that’s quite new.
base >= 4.4

A.8 lib/Data/Container.hs

{−# LANGUAGE FlexibleContexts, TypeFamilies #−}
module Data.Container where

import Algebra.PartialOrd
import Data.Default
import Data.Module.Class
import Data.Set

type family ShapeModule shape

class (V (ShapeModule shape) ~ shape
, Module (ShapeModule shape)
, PartialOrd shape
, Ord (P shape)
)
⇒ ContainerType shape where
type P shape −− _p_ositions
live :: shape → Set (P shape) −− monotone

data Container shape element = Container
{ currentShape :: shape
, containedValues :: P shape → element −− only need be defined for "live" shapes
}

instance (Default shape, Default element) ⇒ Default (Container shape element) where
def = Container def (const def)

replace p e c = c { containedValues = \p’ → if p ≡ p’ then e else containedValues c p’ }

A.9 lib/Data/Iso.hs

module Data.Iso where

data Iso a b = Iso (a → b) (b → a)
instance Show (Iso a b) where show (Iso f g) = "Iso <fn> <fn>"

200

A.10 lib/Data/Module.hs

{−# LANGUAGE TypeFamilies, GeneralizedNewtypeDeriving, FlexibleContexts #−}
module Data.Module

(module Data.Default
, module Data.Module.Class
, module Data.Module.List
, module Data.Module.Primitive
, module Data.Module.Product
, module Data.Module.Shape
, module Data.Module.Sum
, module Data.Monoid
) where

import Data.Default
import Data.Module.Class
import Data.Module.List
import Data.Module.Primitive
import Data.Module.Product
import Data.Module.Shape
import Data.Module.Sum
import Data.Monoid hiding (Sum(..))

A.11 lib/Data/Lens/Bidirectional.hs

{−# LANGUAGE TypeFamilies #−}

module Data.Lens.Bidirectional where

class Bidirectional l where
type L l
type R l

A.12 lib/Data/Lens/Edit.hs

module Data.Lens.Edit
(module Data.Lens.Bidirectional
, module Data.Lens.Edit.Container
, module Data.Lens.Edit.Primitive
, module Data.Lens.Edit.Product
, module Data.Lens.Edit.Sum
) where

import Data.Lens.Bidirectional
import Data.Lens.Edit.Container
import Data.Lens.Edit.Primitive
import Data.Lens.Edit.Product
import Data.Lens.Edit.Sum

201

A.13 lib/Data/Lens/Edit/Container.hs

{−# LANGUAGE FlexibleContexts, TypeFamilies, TypeOperators #−}
module Data.Lens.Edit.Container where

import Data.Container
import Data.Default
import Data.Iso
import Data.Lens.Bidirectional
import Data.Lens.Edit.Stateful (C) −− needed for GHC 7.2
import Data.Module.Class
import Data.Module.Container
import qualified Data.Lens.Edit.Stateful as F −− state_f_ul
import qualified Data.Lens.Edit.Stateless as L −− state_l_ess
import qualified Data.Set as S

data Map shape l = Map l deriving (Eq, Ord, Show, Read)

instance Bidirectional l ⇒ Bidirectional (Map shape l) where
type L (Map shape l) = [ContainerAtom shape (L l)]
type R (Map shape l) = [ContainerAtom shape (R l)]

instance (ContainerType shape, F.Lens l) ⇒ F.Lens (Map shape l) where
type C (Map shape l) = Container shape (F.C l)
missing (Map l) = Container def (const (F.missing l))
dputr (Map l) = F.foldState (dputMapF F.dputr l)
dputl (Map l) = F.foldState (dputMapF F.dputl l)

instance (ContainerType shape, L.Lens l) ⇒ L.Lens (Map shape l) where
dputr (Map l) = map (dputMapL L.dputr l)
dputl (Map l) = map (dputMapL L.dputl l)

dputMapF dput l FailContainer c = ([FailContainer], c)
dputMapF dput l (Modify p dx) c

| S.member p (live (currentShape c)) = ([Modify p dy], replace p c’ c)
| otherwise = ([FailContainer], c)
where (dy, c’) = dput l (dx, containedValues c p)

dputMapF dput l (Insert ds) c = case apply ds (currentShape c) of
Nothing → ([FailContainer], c)
Just s → ([Insert ds], expand s (F.missing l) c)

dputMapF dput l (Delete ds) c = case apply ds (currentShape c) of
Nothing → ([FailContainer], c)
Just s → ([Delete ds], setShape s c)

dputMapF dput l (Rearrange ds f) c = case apply ds (currentShape c) of
Nothing → ([FailContainer], c)
Just s → ([Rearrange ds f], reorder f s c)

dputMapL dput l (FailContainer) = FailContainer
dputMapL dput l (Modify p dx) = Modify p (dput l dx)
dputMapL dput l (Insert ds) = Insert ds
dputMapL dput l (Delete ds) = Delete ds

202

dputMapL dput l (Rearrange ds f) = Rearrange ds f

A.14 lib/Data/Lens/Edit/List.hs

{−# LANGUAGE NoMonomorphismRestriction, TypeFamilies #−}

module Data.Lens.Edit.List where

import Data.Lens.Bidirectional
import Data.Lens.Edit.Stateful (C) −− needed for GHC 7.2
import Data.List
import Data.Module.Class
import Data.Module.List
import Data.Module.Product
import Data.Module.Sum
import Data.Monoid
import qualified Data.Lens.Edit.Stateful as F −− state_f_ul
import qualified Data.Lens.Edit.Stateless as L −− state_l_ess

data Map l = Map l deriving (Eq, Ord, Show, Read)

instance Bidirectional l ⇒ Bidirectional (Map l) where
type L (Map l) = [ListAtom (L l)]
type R (Map l) = [ListAtom (R l)]

instance F.Lens l ⇒ F.Lens (Map l) where
type C (Map l) = [C l]
missing _ = []
dputr (Map l) = F.foldState (dputMapF l F.dputr)
dputl (Map l) = F.foldState (dputMapF l F.dputl)

dputMapF l dput e cs = case e of
FailList → ([FailList], cs)
Modify p dx → case split3 p cs of

Just (b, c, e) → let (dy, c ’) = dput l (dx, c)
in ([Modify p dy], b ++ [c’] ++ e)

Nothing → ([FailList], cs)
Insert i → ([Insert i], cs ++ genericReplicate i (F.missing l))
Delete i → ([Delete i], zipWith const cs (genericDrop i cs))
Rearrange p → ([Rearrange p], applyPermutation p cs)

instance L.Lens l ⇒ L.Lens (Map l) where
dputr (Map l) = map (dputMapL (L.dputr l))
dputl (Map l) = map (dputMapL (L.dputl l))

dputMapL dput e = case e of
{−
Modify p dx → Modify p (dput dx)
_ → unsafeCoerce e
−}
FailList → FailList

203

Modify p dx → Modify p (dput dx)
Insert i → Insert i
Delete i → Delete i
Rearrange p → Rearrange p

data Partition dX dY = Partition deriving (Eq, Ord, Show, Read)
instance Bidirectional (Partition dX dY) where

type L (Partition dX dY) = [ListAtom [SumAtom dX dY]]
type R (Partition dX dY) = [ProductAtom [ListAtom dX] [ListAtom dY]]

instance (Monoid dX, Monoid dY) ⇒ F.Lens (Partition dX dY) where
type C (Partition dX dY) = [Tag]
missing _ = []
dputr _ = F.foldState dputrPartition
dputl _ = F.foldState dputlPartition

dputrPartition (Modify p dvs) c
| 1 ≤ p && p ≤n = F.foldState (dputrPartitionMod p n) (dvs, c)
| otherwise = (failPartition , c)
where n = genericLength c

dputrPartition (Insert i) c = ([Left [Insert i]], c ++ genericReplicate i L)
dputrPartition (Delete i) c = ([d1, d0], del i c) where

del i c = zipWith const c (genericDrop i c)
(nL, nR) = count (i+1) (reverse c)
d0 = Left [Delete (nL−1)]
d1 = Right [Delete (nR−1)]

dputrPartition (Rearrange p) c = ([dL, dR], c ’) where
n = genericLength c
(nL, nR) = count (n+1) c
c’ = applyPermutation p c
dL = Left [Rearrange (Simple iL)]
dR = Right [Rearrange (Simple iR)]
iL = map (out . h . Left) [1.. nL−1]
iR = map (out . h . Right) [1..nR−1]
out = either id id
h = iso c . complexPermutation p n . isoInv c’

dputrPartition FailList c = (failPartition , c)

dputrPartitionMod p n e c = case e of
FailSum → (failPartition , c)
StayL dv → ([Left [Modify pL dv]], c)
StayR dv → ([Right [Modify pR dv]], c)
SwitchLL dv → ([Left [Modify pL dv], Left (ins pL n), Left (del pL n)], set L)
SwitchLR dv → ([Right [Modify pR dv], Right (ins pR n), Left (del pL n)], set R)
SwitchRL dv → ([Left [Modify pL dv], Left (ins pL n), Right (del pR n)], set L)
SwitchRR dv → ([Right [Modify pR dv], Right (ins pR n), Right (del pR n)], set R)
where
(pL, pR) = count p c
set v = case split3 p c of

Just (b, _, e) → b ++ [v] ++ e
Nothing → c

204

dputlPartition (Left dvs) c = F.foldState (dputlPartition’ L StayL SwitchLL onL) (dvs, c)
dputlPartition (Right dvs) c = F.foldState (dputlPartition’ R StayR SwitchLR onR) (dvs, c)

dputlPartition’ j stayj switchLj onj e c = case e of
Modify p dx

| 1 ≤ p && p ≤n → ([Modify p’ [stayj dx]], c)
| otherwise → ([FailList], c)
where
n = genericLength c
p’ = isoInv c (tag j p)

Insert i → (switches ++ insert, c ++ genericReplicate i j) where
n = genericLength c
switches = [Modify p [switchLj mempty] | p ← [n+1 .. n+i]]
insert = [Insert i]

Delete i → F.foldState dputlPartitionDelete (genericReplicate i j, c)
Rearrange p → ([Rearrange (Simple is)], c) where

nj = sum [1 | k ← c, j ≡ k]
g = onj (complexPermutation p nj)
f = isoInv c . g . iso c
is = map f [1..length c]

FailList → ([FailList], c)

dputlPartitionDelete j c = (del p n, c ’) where
n = genericLength c
nj = sum [1 | k ← c, j ≡ k]
p = isoInv c (tag j nj)
c’ = case split3 p c of

Just (b, _, e) → b ++ e

failPartition = [Left [FailList], Right [FailList]]

count p [] = (1,1)
count 1 cs = (1,1)
count p (c:cs) = (nL + isL, nR + isR) where

(nL, nR) = count (p−1) cs
(isL, isR) = case c of L → (1,0); R → (0,1)

iso c p = case genericIndex c (p−1) of
L → Left (fst (count p c))
R → Right (snd (count p c))

label = go (1,1) where
go (l , r) [] = []
go (l , r) (L:xs) = Left l : go (l+1,r) xs
go (l , r) (R:xs) = Right r : go (l , r+1) xs

isoInv c p = case findIndex (p≡) (label c) of
Nothing → error $ "went out of bounds while trying to compute index "

++ show p
++ " in complement "

205

++ show c
Just i → toInteger i+1

ins p n = [Rearrange (Simple ([1 .. p−1] ++ [n+1] ++ [p+1 .. n])), Insert 1]
del p n = [Delete 1, Rearrange (Simple ([1 .. p−1] ++ [p+1 .. n] ++ [p]))]

tag L = Left
tag R = Right

onL f = either (Left . f) Right
onR f = either Left (Right . f)

A.15 lib/Data/Lens/Edit/Primitive.hs

{−# LANGUAGE TypeFamilies #−}
module Data.Lens.Edit.Primitive where

import Control.Arrow (first)
import Data.Lens.Bidirectional
import Data.Lens.Edit.Stateful (C) −− needed for GHC 7.2
import Data.Iso
import Data.Monoid
import qualified Data.Lens.Edit.Stateful as F −− state_f_ul
import qualified Data.Lens.Edit.Stateless as L −− state_l_ess

data Id dX = Id deriving (Eq, Ord, Show, Read)
instance Bidirectional (Id dX) where

type L (Id dX) = dX
type R (Id dX) = dX

instance F.Lens (Id dX) where
type C (Id dX) = ()
missing = const ()
dputr = const id
dputl = const id

instance L.Lens (Id dX) where
dputr = const id
dputl = const id

data Compose k l = Compose k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l , R k ~ L l) ⇒ Bidirectional (Compose k l) where

type L (Compose k l) = L k
type R (Compose k l) = R l

instance (F.Lens k, F.Lens l, R k ~ L l) ⇒ F.Lens (Compose k l) where
type C (Compose k l) = (F.C k, F.C l)
missing (Compose k l) = (F.missing k, F.missing l)
dputr (Compose k l) (dx, (ck, cl)) =

let (dy, ck’) = F.dputr k (dx, ck)
(dz, cl ’) = F.dputr l (dy, cl)

206

in (dz, (ck ’, cl ’))
dputl (Compose k l) (dz, (ck, cl)) =

let (dy, cl ’) = F.dputl l (dz, cl)
(dx, ck’) = F.dputl k (dy, ck)

in (dx, (ck ’, cl ’))

instance (L.Lens k, L.Lens l, R k ~ L l) ⇒ L.Lens (Compose k l) where
dputr (Compose k l) = L.dputr l . L.dputr k
dputl (Compose k l) = L.dputl k . L.dputl l

data ComposeFL k l = ComposeFL k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l , R k ~ L l) ⇒

Bidirectional (ComposeFL k l) where
type L (ComposeFL k l) = L k
type R (ComposeFL k l) = R l

instance (F.Lens k, L.Lens l, R k ~ L l) ⇒ F.Lens (ComposeFL k l) where
type C (ComposeFL k l) = F.C k
missing (ComposeFL k l) = F.missing k
dputr (ComposeFL k l) = first (L.dputr l) . F.dputr k
dputl (ComposeFL k l) = F.dputl k . first (L.dputl l)

data ComposeLF k l = ComposeLF k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l , R k ~ L l) ⇒

Bidirectional (ComposeLF k l) where
type L (ComposeLF k l) = L k
type R (ComposeLF k l) = R l

instance (L.Lens k, F.Lens l, R k ~ L l) ⇒ F.Lens (ComposeLF k l) where
type C (ComposeLF k l) = F.C l
missing (ComposeLF k l) = F.missing l
dputr (ComposeLF k l) = F.dputr l . first (L.dputr k)
dputl (ComposeLF k l) = first (L.dputl k) . F.dputl l

data Op l = Op l deriving (Eq, Ord, Show, Read)
unOp (Op l) = l
instance Bidirectional l ⇒ Bidirectional (Op l) where

type L (Op l) = R l
type R (Op l) = L l

instance F.Lens l ⇒ F.Lens (Op l) where
type C (Op l) = F.C l
missing = F.missing . unOp
dputr = F.dputl . unOp
dputl = F.dputr . unOp

instance L.Lens l ⇒ L.Lens (Op l) where
dputr = L.dputl . unOp
dputl = L.dputr . unOp

data Disconnect dX dY = Disconnect deriving (Eq, Ord, Show, Read)

207

instance Bidirectional (Disconnect dX dY) where
type L (Disconnect dX dY) = dX
type R (Disconnect dX dY) = dY

instance (Monoid dX, Monoid dY) ⇒ F.Lens (Disconnect dX dY) where
type C (Disconnect dX dY) = ()
missing = const ()
dputr _ (_, c) = (mempty, c)
dputl _ (_, c) = (mempty, c)

instance (Monoid dX, Monoid dY) ⇒ L.Lens (Disconnect dX dY) where
dputr = const (const mempty)
dputl = const (const mempty)

instance Bidirectional (Iso dX dY) where
type L (Iso dX dY) = dX
type R (Iso dX dY) = dY

instance F.Lens (Iso dX dY) where
type C (Iso dX dY) = ()
missing = const ()
dputr (Iso f g) (dx, c) = (f dx, c)
dputl (Iso f g) (dy, c) = (g dy, c)

instance L.Lens (Iso dX dY) where
dputr (Iso f g) = f
dputl (Iso f g) = g

A.16 lib/Data/Lens/Edit/Product.hs

{−# LANGUAGE TypeFamilies #−}
module Data.Lens.Edit.Product where

import Control.Arrow
import Data.Lens.Bidirectional
import Data.Lens.Edit.Stateful (C) −− needed for GHC 7.2
import Data.Module.Product
import qualified Data.Lens.Edit.Stateful as F −− state_f_ul
import qualified Data.Lens.Edit.Stateless as L −− state_l_ess

swizzleFF ((a, b), (c, d)) = ((a, c), (b, d))
data CompactProduct k l = CompactProduct k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (CompactProduct k l) where

type L (CompactProduct k l) = (L k, L l)
type R (CompactProduct k l) = (R k, R l)

instance (F.Lens k, F.Lens l) ⇒ F.Lens (CompactProduct k l) where
type C (CompactProduct k l) = (F.C k, F.C l)
missing (CompactProduct k l) = (F.missing k, F.missing l)
dputr (CompactProduct k l) = swizzleFF . (F.dputr k ∗∗∗ F.dputr l) . swizzleFF
dputl (CompactProduct k l) = swizzleFF . (F.dputl k ∗∗∗ F.dputl l) . swizzleFF

208

instance (L.Lens k, L.Lens l) ⇒ L.Lens (CompactProduct k l) where
dputr (CompactProduct k l) = L.dputr k ∗∗∗ L.dputr l
dputl (CompactProduct k l) = L.dputl k ∗∗∗ L.dputl l

swizzleFL ((a, b), c) = ((a, c), b)
data CompactProductFL k l = CompactProductFL k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (CompactProductFL k l) where

type L (CompactProductFL k l) = (L k, L l)
type R (CompactProductFL k l) = (R k, R l)

instance (F.Lens k, L.Lens l) ⇒ F.Lens (CompactProductFL k l) where
type C (CompactProductFL k l) = F.C k
missing (CompactProductFL k l) = F.missing k
dputr (CompactProductFL k l) = swizzleFL . (F.dputr k ∗∗∗ L.dputr l) . swizzleFL
dputl (CompactProductFL k l) = swizzleFL . (F.dputl k ∗∗∗ L.dputl l) . swizzleFL

swizzleLF ((a, b), c) = (a, (b, c))
unswizzleLF (a, (b, c)) = ((a, b), c)
data CompactProductLF k l = CompactProductLF k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (CompactProductLF k l) where

type L (CompactProductLF k l) = (L k, L l)
type R (CompactProductLF k l) = (R k, R l)

instance (L.Lens k, F.Lens l) ⇒ F.Lens (CompactProductLF k l) where
type C (CompactProductLF k l) = F.C l
missing (CompactProductLF k l) = F.missing l
dputr (CompactProductLF k l) = unswizzleLF . (L.dputr k ∗∗∗ F.dputr l) . swizzleLF
dputl (CompactProductLF k l) = unswizzleLF . (L.dputl k ∗∗∗ F.dputl l) . swizzleLF

data Product k l = Product k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (Product k l) where

type L (Product k l) = [ProductAtom (L k) (L l)]
type R (Product k l) = [ProductAtom (R k) (R l)]

instance (F.Lens k, F.Lens l) ⇒ F.Lens (Product k l) where
type C (Product k l) = (F.C k, F.C l)
missing (Product k l) = (F.missing k, F.missing l)
dputr (Product k l) = F.foldState (dputProductF (F.dputr k) (F.dputr l))
dputl (Product k l) = F.foldState (dputProductF (F.dputl k) (F.dputl l))

dputProductF dputk dputl (Left dx) (ck, cl)
= let (dz, ck’) = dputk (dx, ck) in ([Left dz], (ck ’, cl))

dputProductF dputk dputl (Right dy) (ck, cl)
= let (dw, cl ’) = dputl (dy, cl) in ([Right dw], (ck, cl ’))

instance (L.Lens k, L.Lens l) ⇒ L.Lens (Product k l) where
dputr (Product k l) = map (either (Left . L.dputr k) (Right . L.dputr l))
dputl (Product k l) = map (either (Left . L.dputl k) (Right . L.dputl l))

data ProductFL k l = ProductFL k l deriving (Eq, Ord, Show, Read)

209

instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (ProductFL k l) where
type L (ProductFL k l) = [ProductAtom (L k) (L l)]
type R (ProductFL k l) = [ProductAtom (R k) (R l)]

instance (F.Lens k, L.Lens l) ⇒ F.Lens (ProductFL k l) where
type C (ProductFL k l) = F.C k
missing (ProductFL k l) = F.missing k
dputr (ProductFL k l) = F.foldState (dputProductFL (F.dputr k) (L.dputr l))
dputl (ProductFL k l) = F.foldState (dputProductFL (F.dputl k) (L.dputl l))

dputProductFL dputk dputl (Left dx) ck = let (dz, ck’) = dputk (dx, ck) in ([Left dz], ck’)
dputProductFL dputk dputl (Right dy) ck = ([Right (dputl dy)], ck)

data ProductLF k l = ProductLF k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (ProductLF k l) where

type L (ProductLF k l) = [ProductAtom (L k) (L l)]
type R (ProductLF k l) = [ProductAtom (R k) (R l)]

instance (L.Lens k, F.Lens l) ⇒ F.Lens (ProductLF k l) where
type C (ProductLF k l) = F.C l
missing (ProductLF k l) = F.missing l
dputr (ProductLF k l) = F.foldState (dputProductLF (L.dputr k) (F.dputr l))
dputl (ProductLF k l) = F.foldState (dputProductLF (L.dputl k) (F.dputl l))

dputProductLF dputk dputl (Left dx) cl = ([Left (dputk dx)], cl)
dputProductLF dputk dputl (Right dy) cl = let (dw, cl’) = dputl (dy, cl) in ([Right dw], cl’)

A.17 lib/Data/Lens/Edit/Stateful.hs

{−# LANGUAGE TypeFamilies #−}
module Data.Lens.Edit.Stateful where

import Data.Lens.Bidirectional
import Data.Monoid

class Bidirectional l ⇒ Lens l where
type C l
missing :: l → C l
dputr :: l → (L l , C l) → (R l, C l)
dputl :: l → (R l, C l) → (L l , C l)

−− Morally, we have
−− foldMap :: Monoid b ⇒ (a → State c b) → ([a] → State c b)
−− which does just what we want. Unfortunately, this requires an
−− instance (Monad m, Monoid a) ⇒ Monoid (m a)
−− and an unhealthy amount of type munging to get in and out of State, curry
−− arguments, etc. Since the instance above is most conveniently available
−− from the "reducers" package, which has a dependency redwood, and the
−− above−mentioned type−munging obfuscates the beautiful definition anyway, we
−− instead re−implement foldMap manually. It’s not quite as beautiful
−− conceptually, but it makes for much easier reading.

210

foldState :: Monoid dY ⇒ (dX → c → (dY, c)) → ([dX], c) → (dY, c)
foldState f ([] , c) = (mempty, c)
foldState f (e:es , c) = (mappend e1 e2, c’’) where

(e2, c’) = foldState f (es , c)
(e1, c ’’) = f e c’

A.18 lib/Data/Lens/Edit/Stateless.hs

{−# LANGUAGE TypeFamilies #−}
module Data.Lens.Edit.Stateless where

import Data.Lens.Bidirectional

class Bidirectional l ⇒ Lens l where
dputr :: l → L l → R l
dputl :: l → R l → L l

A.19 lib/Data/Lens/Edit/Sum.hs

{−# LANGUAGE TypeFamilies #−}
module Data.Lens.Edit.Sum where

import Data.Lens.Bidirectional
import Data.Lens.Edit.Stateful (C) −− needed for GHC 7.2
import qualified Data.Lens.Edit.Stateful as F −− state_f_ul
import qualified Data.Lens.Edit.Stateless as L −− state_l_ess
import qualified Data.Module.Sum as M −− _m_odule

data CompactSum k l = CompactSum k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (CompactSum k l) where

type L (CompactSum k l) = M.Sum (L k) (L l)
type R (CompactSum k l) = M.Sum (R k) (R l)

instance (F.Lens k, F.Lens l) ⇒ F.Lens (CompactSum k l) where
type C (CompactSum k l) = (F.C k, F.C l)
missing (CompactSum k l) = (F.missing k, F.missing l)
dputr (CompactSum k l) (M.Sum f dx dz, (ck, cl))

= (M.Sum (M.retype f) dy dw, (ck’, cl’))
where
(dy, ck’) = F.dputr k (dx, M.bool f ck (F.missing k))
(dw, cl ’) = F.dputr l (dz, M.bool f cl (F.missing l))

dputl (CompactSum k l) (M.Sum f dy dw, (ck, cl))
= (M.Sum (M.retype f) dx dz, (ck’, cl ’))
where
(dx, ck’) = F.dputl k (dy, M.bool f ck (F.missing k))
(dz, cl ’) = F.dputl l (dw, M.bool f cl (F.missing l))

instance (L.Lens k, L.Lens l) ⇒ L.Lens (CompactSum k l) where
dputr (CompactSum k l) (M.Sum f dx dz)

211

= M.Sum (M.retype f) (L.dputr k dx) (L.dputr l dz)
dputl (CompactSum k l) (M.Sum f dy dw)

= M.Sum (M.retype f) (L.dputl k dy) (L.dputl l dw)

data SumFL k l = SumFL k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (SumFL k l) where

type L (SumFL k l) = M.Sum (L k) (L l)
type R (SumFL k l) = M.Sum (R k) (R l)

instance (F.Lens k, L.Lens l) ⇒ F.Lens (SumFL k l) where
type C (SumFL k l) = F.C k
missing (SumFL k l) = F.missing k
dputr (SumFL k l) (M.Sum f dx dz, ck) =

let (dy, ck’) = F.dputr k (dx, M.bool f ck (F.missing k))
in (M.Sum (M.retype f) dy (L.dputr l dz), ck’)

dputl (SumFL k l) (M.Sum f dy dw, ck) =
let (dx, ck’) = F.dputl k (dy, M.bool f ck (F.missing k))
in (M.Sum (M.retype f) dx (L.dputl l dw), ck’)

data CompactSumLF k l = CompactSumLF k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (CompactSumLF k l) where

type L (CompactSumLF k l) = M.Sum (L k) (L l)
type R (CompactSumLF k l) = M.Sum (R k) (R l)

instance (L.Lens k, F.Lens l) ⇒ F.Lens (CompactSumLF k l) where
type C (CompactSumLF k l) = F.C l
missing (CompactSumLF k l) = F.missing l
dputr (CompactSumLF k l) (M.Sum f dx dz, cl) =

let (dw, cl ’) = F.dputr l (dz, M.bool f cl (F.missing l))
in (M.Sum (M.retype f) (L.dputr k dx) dw, cl’)

dputl (CompactSumLF k l) (M.Sum f dy dw, cl) =
let (dz, cl ’) = F.dputl l (dw, M.bool f cl (F.missing l))
in (M.Sum (M.retype f) (L.dputl k dy) dz, cl’)

data Sum k l = Sum k l deriving (Eq, Ord, Show, Read)
instance (Bidirectional k, Bidirectional l) ⇒ Bidirectional (Sum k l) where

type L (Sum k l) = [M.SumAtom (L k) (L l)]
type R (Sum k l) = [M.SumAtom (R k) (R l)]

instance (F.Lens k, F.Lens l) ⇒ F.Lens (Sum k l) where
type C (Sum k l) = Either (C k) (C l)
missing (Sum k l) = Left (F.missing k)
dputr (Sum k l) = F.foldState (dputSum (F.dputr k) (F.dputr l) k l)
dputl (Sum k l) = F.foldState (dputSum (F.dputl k) (F.dputl l) k l)

dputSum dputk dputl k l dv cv = case (dv, cv) of
(M.SwitchLL dx, Left c) → switchll $ dputk (dx, ck)
(M.SwitchLR dz, Left c) → switchlr $ dputl (dz, cl)
(M.SwitchRL dx, Right c) → switchrl $ dputk (dx, ck)
(M.SwitchRR dz, Right c) → switchrr $ dputl (dz, cl)
(M.StayL dx, Left c) → stayl $ dputk (dx, c)

212

(M.StayR dz, Right c) → stayr $ dputl (dz, c)
(_, c) → ([M.FailSum], c)
where
ck = F.missing k
cl = F.missing l
switchll (dy, c) = ([M.SwitchLL dy], Left c)
switchlr (dw, c) = ([M.SwitchLR dw], Right c)
switchrl (dy, c) = ([M.SwitchRL dy], Left c)
switchrr (dw, c) = ([M.SwitchRR dw], Right c)
stayl (dy, c) = ([M.StayL dy], Left c)
stayr (dw, c) = ([M.StayR dw], Right c)

A.20 lib/Data/Module/Class.hs

{−# LANGUAGE TypeFamilies, FlexibleContexts #−}
module Data.Module.Class where

import Data.Default
import Data.Maybe
import Data.Monoid

class (Default (V dX), Monoid dX) ⇒ Module dX where
type V dX
apply :: dX → V dX →Maybe (V dX)

applyDef :: Module dX ⇒ dX →Maybe (V dX)
applyDef dx = apply dx def

applyTotal :: Module dX ⇒ dX → V dX → V dX
applyTotal dx x = fromJust (apply dx x)

applyDefTotal :: Module dX ⇒ dX → V dX
applyDefTotal dx = applyTotal dx def

class Default (Vg dX) ⇒ PartialEdit dX where
type Vg dX
applyg :: dX → Vg dX →Maybe (Vg dX)

instance PartialEdit dX ⇒ Module [dX] where
type V [dX] = Vg dX
apply [] v = Just v
apply (dx:dxs) v = apply dxs v >>= applyg dx

A.21 lib/Data/Module/Container.hs

{−# LANGUAGE TypeFamilies #−}
module Data.Module.Container where

import Control.Applicative
import Data.Container

213

import Data.Default
import Data.Module.Class
import qualified Data.Set as S

data ContainerAtom shape dX
= FailContainer
| Modify (P shape) dX
| Insert (ShapeModule shape) −− a non−decreasing edit to the shape
| Delete (ShapeModule shape) −− a non−increasing edit to the shape
−− a shape edit which doesn’t change the number of positions, and a
−− function translating positions in the new structure to their
−− corresponding position in the old structure
| Rearrange (ShapeModule shape) (shape → P shape → P shape)

instance (Show (P shape), Show (ShapeModule shape), Show dX)
⇒ Show (ContainerAtom shape dX) where
showsPrec d FailContainer = showString "FailContainer"
showsPrec d (Modify pos dx)

= showParen (d > 10)
$ showString "Modify "
. showsPrec 11 pos
. showString " "
. showsPrec 11 dx

showsPrec d (Insert ds)
= showParen (d > 10)
$ showString "Insert "
. showsPrec 11 ds

showsPrec d (Delete ds)
= showParen (d > 10)
$ showString "Delete "
. showsPrec 11 ds

showsPrec d (Rearrange ds f)
= showParen (d > 10)
$ showString "Rearrange "
. showsPrec 11 ds
. showString " <fn>"

instance (ContainerType shape, Module dX) ⇒ PartialEdit (ContainerAtom shape dX) where
type Vg (ContainerAtom shape dX) = Container shape (V dX)
applyg (FailContainer) _ = Nothing
applyg (Modify p dx) c = (\x → replace p x c) <$> apply dx (containedValues c p)
applyg (Insert ds) c = (\s → expand s def c) <$> apply ds (currentShape c)
applyg (Delete ds) c = (\s → setShape s c) <$> apply ds (currentShape c)
applyg (Rearrange ds f) c = (\s → reorder f s c) <$> apply ds (currentShape c)

expand shape’ x (Container shape values) = Container shape’ $ \p →
if S.member p (live shape)
then values p
else x

setShape shape c = c { currentShape = shape }

214

reorder f shape’ (Container shape values) = Container shape’ (values . f shape)

A.22 lib/Data/Module/List.hs

{−# LANGUAGE TypeFamilies #−}
module Data.Module.List where

import Control.Monad
import Data.Default
import Data.List
import Data.Module.Class

−− in the Simple variant, the elements of the list tell which index the
−− corresponding element in the output list should come from, e.g.
−− applyPermutation (Simple is) [1..length is] = is
data Permutation = Simple [Integer] | Complex (Integer → Integer → Integer)

applyPermutation :: Permutation → [a] → [a]
applyPermutation (Complex f) xs = result where

result = [genericIndex xs (f n i − 1) | i ← [1.. n]]
n = genericLength xs

applyPermutation (Simple is) xs
| length xs < length is = xs
| otherwise = map (\i → genericIndex xs (i−1)) is ++ drop (length is) xs

complexPermutation :: Permutation → Integer → Integer → Integer
complexPermutation (Simple is) = \n i → case () of

_ | n < len → i
| i > len → i
| i > n → error

$ "asked a premutation for the origin of position " ++ show i
++ ", but the permutation is of a list of length only " ++ show n

| otherwise → genericIndex is (i−1)
where len = genericLength is

complexPermutation (Complex f) = f

simplePermutation :: Permutation → Integer → [Integer]
simplePermutation (Simple is) n = is
simplePermutation (Complex f) n = [f n i | i ← [1 .. n]]

instance Show Permutation where
showsPrec d (Complex f) = showString "<fn>"
showsPrec d (Simple ns)

= showString "["
. showString (intercalate ", " (zipWith arrow ns [1..]))
. showString "]"
where arrow n i = show n ++ "→ " ++ show i

data ListAtom dX
= FailList
| Modify Integer dX

215

| Insert Integer
| Delete Integer
| Rearrange Permutation
deriving Show

split3 :: Integer → [a] → Maybe ([a], a, [a])
split3 i xs | i < 1 = Nothing
split3 i xs = case genericSplitAt (i−1) xs of

(b, x:e) → Just (b, x, e)
_ → Nothing

instance Module dX ⇒ PartialEdit (ListAtom dX) where
type Vg (ListAtom dX) = [V dX]
applyg (Modify p dx) xs = do

(b, x, e) ← split3 p xs
x’ ← apply dx x
return (b ++ [x’] ++ e)

applyg (Insert i) xs = return (xs ++ genericReplicate i def)
applyg (Delete i) xs = do

guard (0 ≤ i && i ≤ genericLength xs)
return (zipWith const xs (genericDrop i xs))

applyg (Rearrange perm) xs = return (applyPermutation perm xs)
applyg _ _ = Nothing

A.23 lib/Data/Module/Primitive.hs

{−# LANGUAGE GeneralizedNewtypeDeriving, TypeFamilies #−}
module Data.Module.Primitive where

import Data.Default
import Data.Module.Class
import Data.Monoid

newtype Unit x = Unit () deriving Monoid

instance Default x ⇒ Module (Unit x) where
type V (Unit x) = x
apply _ = Just

instance Default x ⇒ Module (First x) where
type V (First x) = x
apply (First Nothing) x = Just x
apply (First (Just x’)) x = Just x’

A.24 lib/Data/Module/Product.hs

{−# LANGUAGE TypeFamilies, TypeSynonymInstances #−}
module Data.Module.Product where

import Control.Monad

216

import Data.Module.Class

instance (Module dX, Module dY) ⇒ Module (dX, dY) where
type V (dX, dY) = (V dX, V dY)
apply (dx, dy) (x, y) = liftM2 (,) (apply dx x) (apply dy y)

type ProductAtom = Either

instance (Module dX, Module dY) ⇒ PartialEdit (ProductAtom dX dY) where
type Vg (ProductAtom dX dY) = (V dX, V dY)
applyg (Left dx) (x, y) = liftM2 (,) (apply dx x) (return y)
applyg (Right dy) (x, y) = liftM2 (,) (return x) (apply dy y)

A.25 lib/Data/Module/Shape.hs

{−# LANGUAGE FlexibleInstances, TypeFamilies #−}
module Data.Module.Shape where

import Algebra.PartialOrd
import Data.Monoid
import Data.Module.Class
import Data.Container
import qualified Data.Set as S

instance Module (Sum Int) where
type V (Sum Int) = Int
apply (Sum di) i = Just (max 0 (di + i))
−− Okay, doesn’t quite obey the laws, what with overflow and all .

type instance ShapeModule Int = Sum Int
instance PartialOrd Int where leq = (≤)
instance ContainerType Int where

type P Int = Int
live i = S.fromAscList [0.. i−1]

listToContainer :: [a] → Container Int a
containerToList :: Container Int a → [a]
listToContainer as = Container (length as) (as!!)
containerToList c = [containedValues c i | i ← [0.. currentShape c−1]]

A.26 lib/Data/Module/Sum.hs

{−# LANGUAGE GeneralizedNewtypeDeriving, TypeFamilies #−}
module Data.Module.Sum where

import Data.Default
import Data.Module.Class
import Data.Monoid hiding (Sum(..))

instance Default x ⇒ Default (Either x y) where
def = Left def

217

data Tag = L | R deriving (Eq, Ord, Bounded, Enum, Show, Read)
newtype Retag x y = Retag (Maybe (Endo Tag)) deriving Monoid

retype (Retag f) = Retag f
bool (Retag Nothing) nothing just = nothing
bool _ nothing just = just

instance Eq (Retag x y) where
Retag Nothing ≡Retag Nothing = True
Retag (Just f) ≡ Retag (Just f’) = map (appEndo f) [L, R] ≡map (appEndo f’) [L, R]
_ ≡ _ = False

instance (Default x, Default y) ⇒ Module (Retag x y) where
type V (Retag x y) = Either x y
apply (Retag Nothing) v = Just v
apply (Retag (Just (Endo f))) v = Just $ case v of

Left x → redef (f L)
Right y → redef (f R)
where
redef L = Left def
redef R = Right def

data Sum dX dY = Sum (Retag (V dX) (V dY)) dX dY
instance (Monoid dX, Monoid dY) ⇒ Monoid (Sum dX dY) where

mempty = Sum mempty mempty mempty
mappend (Sum f dx dy) (Sum f’ dx’ dy’) =

Sum (mappend f f’) (annihilate dx dx’) (annihilate dy dy’) where
annihilate :: Monoid d ⇒ d → d → d
annihilate d d’ = bool f d (mappend d d’)

instance (Module dX, Module dY) ⇒ Module (Sum dX dY) where
type V (Sum dX dY) = Either (V dX) (V dY)
apply (Sum f dx dy) v = apply f v >>= either

(fmap Left . apply dx)
(fmap Right . apply dy)

data SumAtom dX dY
= FailSum
| SwitchLL dX
| SwitchLR dY
| SwitchRL dX
| SwitchRR dY
| StayL dX
| StayR dY
deriving (Eq, Ord, Show, Read)

instance (Module dX, Module dY) ⇒ PartialEdit (SumAtom dX dY) where
type Vg (SumAtom dX dY) = Either (V dX) (V dY)
applyg (SwitchLL dx) (Left x) = fmap Left (apply dx x)
applyg (SwitchLR dy) (Left x) = fmap Right (apply dy def)

218

applyg (SwitchRL dx) (Right y) = fmap Left (apply dx def)
applyg (SwitchRR dy) (Right y) = fmap Right (apply dy y)
applyg (StayL dx) (Left x) = fmap Left (apply dx x)
applyg (StayR dy) (Right y) = fmap Right (apply dy y)
applyg _ _ = Nothing

219

Bibliography

[1] M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. In Foun-
dations of Software Science and Computation Structures, pages 23–38. Springer,
2003.

[2] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: constructing
strictly positive types. Theor. Comput. Sci., 342(1):3–27, 2005.

[3] Samson Abramsky and Nikos Tzevelekos. Introduction to categories and cate-
gorical logic. In Bob Coecke, editor, New Structures for Physics. Springer, 2010.

[4] Pets Adviser. Cat in Pumpkin Hat, 2012. URL http://www.flickr.com/
photos/petsadviser-pix/8126559828/. Online; accessed 18-December-2013.

[5] Apache Wave. URL http://incubator.apache.org/wave/. Online; accessed
18-June-2014.

[6] François Bancilhon and Nicolas Spyratos. Update semantics of relational views.
ACM Transactions on Database Systems, 6(4):557–575, December 1981.

[7] Davi M. J. Barbosa, Julien Cretin, Nate Foster, Michael Greenberg, and Ben-
jamin C. Pierce. Matching lenses: Alignment and view update. In ACM SIG-
PLAN International Conference on Functional Programming (ICFP), Baltimore,
Maryland, September 2010.

[8] Brian Berliner et al. CVS II: Parallelizing software development. In Proceedings
of the USENIX Winter 1990 Technical Conference, volume 341, page 352, 1990.

[9] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz,
and Alan Schmitt. Boomerang: Resourceful lenses for string data. In
ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), San Francisco, California, January 2008.

[10] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual syntax for
XML languages. Information Systems, 2007. To appear. Extended abstract in
Database Programming Languages (DBPL) 2005.

220

http://www.flickr.com/photos/petsadviser-pix/8126559828/
http://www.flickr.com/photos/petsadviser-pix/8126559828/
http://incubator.apache.org/wave/

[11] ChrisGampat. Cat thinks it’s the next Tony Hawk, 2009. URL http:
//www.flickr.com/photos/chrisgampat/3827798021/. Online; accessed 18-
December-2013.

[12] CollabNet. Apache Subversion. URL http://subversion.apache.org/. On-
line; accessed 18-December-2013.

[13] Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta-based bidirectional
model transformations: the asymmetric case. Journal of Object Technology, 10:
6:1–25, 2011.

[14] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig, Frank Her-
mann, and Fernando Orejas. From state- to delta-based bidirectional model
transformations: The symmetric case. Technical Report GSDLAB-TR 2011-05-
03, University of Waterloo, May 2011.

[15] Dropbox. URL https://www.dropbox.com/. Online; accessed 18-December-
2013.

[16] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bi-directional tree transformations: A
linguistic approach to the view update problem. ACM Transactions on Program-
ming Languages and Systems, 29(3):17, May 2007. ISSN 0164-0925. Extended
abstract in Principles of Programming Languages (POPL), 2005.

[17] John Nathan Foster. Bidirectional Programming Languages. PhD thesis, Uni-
versity of Pennsylvania, December 2009.

[18] Git. URL http://git-scm.com/. Online; accessed 19-December-2013.

[19] Google Docs. URL https://drive.google.com/. Online; accessed 18-June-
2014.

[20] R. Hasegawa. Two applications of analytic functors. Theoretical Computer Sci-
ence, 272(1-2):113–175, 2002.

[21] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki, Zinovy
Diskin, and Yingfei Xiong. Correctness of model synchronization based on triple
graph grammars. In Model Driven Engineering Languages and Systems, pages
668–682. Springer, 2011.

[22] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Symmetric lenses. In
ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), Austin, Texas, January 2011.

221

http://www.flickr.com/photos/chrisgampat/3827798021/
http://www.flickr.com/photos/chrisgampat/3827798021/
http://subversion.apache.org/
https://www.dropbox.com/
http://git-scm.com/
https://drive.google.com/

[23] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Edit lenses. In
ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), Philadelphia, Pennsylvania, January 2012.

[24] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor
for developing structured documents based on bidirectional transformations. In
Partial Evaluation and Program Manipulation (PEPM), pages 178–189, 2004.
Extended version in Higher Order and Symbolic Computation, Volume 21, Issue
1-2, June 2008.

[25] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor for
developing structured documents based on bidirectional transformations. Higher-
Order and Symbolic Computation, 21(1–2), June 2008. Short version in PEPM
’04.

[26] James Wayne Hunt and M Douglas McIlroy. An algorithm for differential file
comparison. Bell Laboratories, 1976.

[27] C. Barry Jay and J. Robin B. Cockett. Shapely types and shape polymorphism.
In Donald Sannella, editor, ESOP, volume 788 of Lecture Notes in Computer
Science, pages 302–316. Springer, 1994. ISBN 3-540-57880-3.

[28] Michael Johnson and Robert Rosebrugh. View updatability based on the models
of a formal specification. In FME 2001: Formal Methods for Increasing Software
Productivity, pages 534–549. Springer, 2001.

[29] Michael Johnson and Robert Rosebrugh. Lens put-put laws: monotonic and
mixed. Electronic Communications of the EASST, 49, 2012.

[30] Michael Johnson and Robert Rosebrugh. Delta lenses and opfibrations. Elec-
tronic Communications of the EASST, 57, 2013.

[31] Michael Johnson and Robert Rosebrugh. Spans of lenses. In Proceedings of
the 17th International Conference on Extending Database Technology (EDBT),
Athens, Greece, March 2014.

[32] Michael Johnson, Robert Rosebrugh, and Richard Wood. Lenses, fibrations, and
universal translations. Mathematical Structures in Computer Science, 22:25–42,
2012.

[33] A. Joyal. Foncteurs analytiques et especes de structures. Combinatoire énuméra-
tive, pages 126–159, 1986.

[34] Edward Kmett. Lens: Lenses, Folds, and Traversals, July 2014. URL https:
//github.com/ekmett/lens/.

222

https://github.com/ekmett/lens/
https://github.com/ekmett/lens/

[35] David Lutterkort. Augeas: A Linux configuration API, February 2007. Available
from http://augeas.net/.

[36] Nuno Macedo, Hugo Pacheco, Alcino Cunha, João P. Fernandes, Jácome Cunha,
Jorge Mendes, and José N. Oliveira. Towards the bidirectionalization of spread-
sheet formulas. 2012.

[37] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectional-
ization transformation based on automatic derivation of view complement func-
tions. In ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 47–58. ACM Press New York, NY, USA, 2007.

[38] Lambert Meertens. Designing constraint maintainers for user interaction, 1998.
Manuscript.

[39] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Functional Programming Languages and
Computer Architecture, pages 124–144. Springer, 1991.

[40] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach to
bi-directional updating. In ASIAN Symposium on Programming Languages and
Systems (APLAS), pages 2–20, November 2004.

[41] Hugo Pacheco, Alcino Cunha, and Zhenjiang Hu. Delta lenses over inductive
types. In First International Workshop on Bidirectional Transformations (BX),
2012.

[42] David Soria Parra, Arne Babenhauserheide, and Steve Losh. Mercurial SCM.
URL http://mercurial.selenic.com/. Online; accessed 19-December-2013.

[43] Benjamin C Pierce and Jérôme Vouillon. What’s in Unison? A Formal Specifi-
cation and Reference Implementation of a File Synchronizer. Technical report,
University of Pennsylvania, 2004.

[44] Tillmann Rendel and Klaus Ostermann. Invertible syntax descriptions: unifying
parsing and pretty printing. In ACM Sigplan Notices, volume 45, pages 1–12.
ACM, 2010.

[45] David Roundy. Darcs – FrontPage. URL http://darcs.net/. Online; accessed
19-December-2013.

[46] Robert AG Seely. Linear logic, *-autonomous categories and cofree coalgebras.
Citeseer, 1987.

[47] Peter Selinger. A survey of graphical languages for monoidal categories. In New
Structures for Physics, pages 289–355. Springer, 2011.

223

http://mercurial.selenic.com/
http://darcs.net/

[48] Perdita Stevens. Towards an algebraic theory of bidirectional transformations.
In Graph Transformations: 4th International Conference, ICGT 2008, Leicester,
United Kingdom, September 7-13, 2008, Proceedings, page 1. Springer, 2008.

[49] Andrew Tridgell and Paul Mackerras. The rsync algorithm. Technical Report
TR-CS-96-05, Australian National University, 1996.

[50] Various. HackageDB: introduction, April 2012. URL http://hackage.haskell.
org/packages/hackage.html.

[51] Varmo Vene. Categorical Programming with Inductive and Coinductive Types.
PhD thesis, Universitatis Tartuensis, 2000.

[52] Daniel Wagner. Generalizing Lenses, 2013. URL http://dmwit.com/papers/
201308GL.pdf. Thesis Proposal.

[53] zeevveez. Cat Smells Pineapple, 2010. URL http://www.flickr.com/photos/
zeevveez/4906820567/. Online; accessed 18-December-2013.

224

http://hackage.haskell.org/packages/hackage.html
http://hackage.haskell.org/packages/hackage.html
http://dmwit.com/papers/201308GL.pdf
http://dmwit.com/papers/201308GL.pdf
http://www.flickr.com/photos/zeevveez/4906820567/
http://www.flickr.com/photos/zeevveez/4906820567/

	Introduction
	Asymmetric Lenses
	Alignment
	Symmetry
	Performance
	Syntax
	Contributions
	Notation and Conventions

	Symmetric Lenses
	Fundamental Definitions
	Equivalence
	Basic Constructions
	Products
	Sums and Lists
	Iterators
	Lists
	Other Datatypes

	Containers
	Asymmetric Lenses as Symmetric Lenses
	Conclusion

	Edit Lenses
	Overview
	Edit Lenses
	Edit Lens Combinators
	Containers
	Adding Monoid Laws
	From State-Based to Edit Lenses and Back
	Conclusion

	Prototype Library for Edit Lenses
	Introduction
	Usage Example and Functionality
	Implementation Details
	Conclusion

	Related Work
	Graph-based delta lenses
	Asymmetric
	Symmetric

	Comma category lenses
	Algebraic rephrasing
	Matching lenses
	Annotation-based delta lenses
	Constraint maintainers

	Conclusion
	Future Work
	Closing Thought

	Full code
	LICENSE
	demos/edit-lenses-demo.cabal
	demos/lens-editor.hs
	demos/no-gtk.hs
	demos/Data/Lens/Edit/String.hs
	demos/Data/Module/String.hs
	lib/edit-lenses.cabal
	lib/Data/Container.hs
	lib/Data/Iso.hs
	lib/Data/Module.hs
	lib/Data/Lens/Bidirectional.hs
	lib/Data/Lens/Edit.hs
	lib/Data/Lens/Edit/Container.hs
	lib/Data/Lens/Edit/List.hs
	lib/Data/Lens/Edit/Primitive.hs
	lib/Data/Lens/Edit/Product.hs
	lib/Data/Lens/Edit/Stateful.hs
	lib/Data/Lens/Edit/Stateless.hs
	lib/Data/Lens/Edit/Sum.hs
	lib/Data/Module/Class.hs
	lib/Data/Module/Container.hs
	lib/Data/Module/List.hs
	lib/Data/Module/Primitive.hs
	lib/Data/Module/Product.hs
	lib/Data/Module/Shape.hs
	lib/Data/Module/Sum.hs

