
Programming with Intersection Types
and Bounded Polymorphism

Benjamin C. Pierce
December 20, 1991

CMU-CS-91-205

Submitted in partial ful®llment of the requirements
for the degree of Doctor of Philosophy

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored in part by the Avionics Laborato ry, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force, Wrig ht-Patterson AFB, OH 45433-6543 under Contract F33615-
90-C-1465, Arpa Order No. 7597; in part by the Of®ce of Naval Research under Contract N00013-84-K-0415; in part by
the National Science Foundation under Contract CCR-8922109; and in part by Siemens.

The views and conclusions contained in this document are tho se of the author and should not be interpreted as
representing the of®cial policies, either expressed or implied, of the U.S. Government.

Keywords: Lambda calculus and related systems, language theory, programming, type struc-
ture, data types and structures, polymorphism, subtyping, bounded quanti®cation, intersection
types.

Abstract

Intersection types and bounded quanti®cation are complementary mechanisms for extend-
ing the expressive power of statically typed programming la nguages. They begin with a
common framework: a simple, typed language with higher-ord er functions and a notion of
subtyping. Intersection types extend this framework by giv ing every pair of types � and

� a greatest lower bound, � � � , corresponding intuitively to the intersection of the sets of
values described by � and � . Bounded quanti®cation extends the basic framework along a
different axis by adding polymorphic functions that operat e uniformly on all the subtypes of
a given type. This thesis uni®es and extends prior work on int ersection types and bounded
quanti®cation, previously studied only in isolation, by in vestigating theoretical and practical
aspects of a typed � -calculus incorporating both.

The practical utility of this calculus, called F� , is established by examples showing, for
instance, that it allows a rich form of ªcoherent overloadin gº and supports an analog of
abstract interpretation during typechecking; for example , the addition function is given a
type showing that it maps pairs of positive inputs to a positi ve result, pairs of zero inputs
to a zero result, etc. More familiar programming examples ar e presented in terms of an
extension of Forsythe (an Algol-like language with interse ction types), demonstrating how
parametric polymorphism can be used to simplify and general ize Forsythe's design. We
discuss the novel programming and debugging styles that ari se in F� .

We prove the correctness of a simple semi-decision procedure for the subtype relation
and the partial correctness of an algorithm for synthesizin g minimal types of F� terms. Our
main tool in this analysis is a notion of ªcanonical types,º w hich allow proofs to be factored
so that intersections are handled separately from the other type constructors.

A pair of negative results illustrates some subtle complexi ties of F� . First, the subtype
relation of F� is shown to be undecidable; in fact, even the subtype relatio n of pure second-
order bounded quanti®cation is undecidable, a surprising r esult in its own right. Second,
the failure of an important technical property of the subtyp e relation Ð the existence of
least upper bounds Ð indicates that typed semantic models of F� will be more dif®cult to
construct and analyze than the known typed models of interse ction types. We propose, for
future study, some simpler fragments of F� that share most of its essential features, while
recovering decidability and least upper bounds.

We study the semantics of F� from several points of view. An untyped model based on
partial equivalence relations demonstrates the consistency of the typing rules and provides
a simple interpretation for programs, where ª � is a subtype of � º is read as ª � is a subset
of � .º More re®ned models can be obtained using a translation fro m F� into the pure
polymorphic � -calculus; in these models, ª � is a subtype of � º is interpreted by an explicit
coercion function from � to � . The nonexistence of least upper bounds shows up here in the
failure of known techniques for proving the coherence of the translation semantics. Finally,
an equational theory of equivalences between F� terms is presented and its soundness for
both styles of model is veri®ed.

To Angela, Bern, Dave, and Susan

Contents

1 Introduction 7
1.1 Motivation � 7

1.1.1 Programming languages � 7
1.1.2 Types � 8
1.1.3 Typed � -calculi � 9
1.1.4 Subtyping � 9

1.2 Claims � 12
1.3 Outline of Results � 12

2 Background 14
2.1 Notational Preliminaries � 14
2.2 Simply Typed � -Calculus with Subtyping � 16
2.3 Intersection Types � 19
2.4 Semantic Frameworks for Intersection Types � 22

2.4.1 Untyped Semantics � 22
2.4.2 Typed Semantics � 23
2.4.3 Operational semantics � 27
2.4.4 Discussion � 28

2.5 Expressiveness of the Intersection Type Discipline � � � � � � � � � � � � � � � � � � � 29
2.6 Bounded Polymorphism � 30

3 The F� Calculus 35
3.1 Explicit Alternation: The for Construct � 36
3.2 Syntax, Subtyping, and Typing � 37
3.3 Linear Notation for Derivations � 38
3.4 Discussion � 40

3.4.1 Topvs.
�

� 40
3.4.2 Encoding Primitive Subtyping � 41

3.5 Alternative Formulations � 42
3.5.1 Unbounded Quanti®ers � 42
3.5.2 Additional Subtyping Rules � 42
3.5.3 Bounded Existential Types � 43

4 Typechecking 44
4.1 Basic Properties � 44
4.2 Subtyping � 48

4.2.1 Canonical Types � 48

1

CONTENTS 2

4.2.2 Canonical Subtyping � 51
4.2.3 Weakening and Narrowing � 52
4.2.4 Subtyping Derivation Normalization Rules � � � � � � � � � � � � � � � � � � � 55
4.2.5 Termination of the Normalization Rules � 58
4.2.6 Shapes of Normal-Form Subtyping Derivations � � � � � � � � � � � � � � � � 60
4.2.7 Equivalence of Ordinary and Canonical Subtyping � � � � � � � � � � � � � � � 61
4.2.8 Subtyping Algorithm � 64

4.3 Typechecking � 67
4.3.1 Finite Bases for Applications � 68
4.3.2 Type Synthesis � 72
4.3.3 Conservativity � 75

5 Semantics 77
5.1 Untyped Semantics � 77

5.1.1 Total Combinatory Algebras � 78
5.1.2 Partial Equivalence Relations � 79
5.1.3 PER Interpretation of F�

� 80
5.2 Nonexistence of Least Upper Bounds � 84
5.3 Translation Semantics � 89

5.3.1 Target Calculus � 89
5.3.2 Ordinary Derivations � 91
5.3.3 Algorithmic Derivations � 93

5.4 Coherence (Preliminary Results) � 94
5.5 Equational Theory � 94

5.5.1 De®nitions � 95
5.5.2 Basic Properties � 96
5.5.3 Soundness for the Untyped Semantics � 100
5.5.4 Soundness for the Translation Semantics � 103

6 Undecidability of Subtyping 109
6.1 A Flawed Decidability Argument for F � 110
6.2 Nontermination of the F � Subtyping Algorithm � 111
6.3 A Deterministic Fragment of F � 112
6.4 Eager Substitution � 114
6.5 Rowing Machines � 117
6.6 Encoding Rowing Machines as Subtyping Problems � � � � � � � � � � � � � � � � � � 119
6.7 Two-counter Machines � 122
6.8 Encoding Two-counter Machines as Rowing Machines � � � � � � � � � � � � � � � � � 123
6.9 Undecidability of F � Typechecking � 126
6.10 Undecidability of F �

� 127
6.11 Related Systems � 128
6.12 Discussion � 128

7 Examples 130
7.1 Conventions � 130
7.2 Examples from the Forsythe Report � 132
7.3 Procedures With Optional Arguments � 136
7.4 User-de®ned Coherent Overloading � 137

CONTENTS 3

7.5 Modeling Abstract Interpretation � 138
7.5.1 Booleans � 138
7.5.2 Lists � 140
7.5.3 Natural Numbers � 142

7.6 Modelling Strictness Analysis � 143
7.7 Re®ning Pure Encodings of Inductive Types � 145

7.7.1 Church Arithmetic � 145
7.7.2 Booleans � 149

7.8 Observations on Programming with F �

� 150
7.9 An Experiment with a Simpler Formulation of F�

� 152

8 Evaluation and Future Work 155
8.1 Alternative Formulations � 156
8.2 Foundations � 157

8.2.1 Semantics � 158
8.2.2 Coherence � 158

8.3 Extensions � 160
8.3.1 Records � 160
8.3.2 Recursive Types � 161
8.3.3 Union Types � 161
8.3.4 Type Reconstruction � 161

8.4 Implementation � 161

A Summary of Major De®nitions 163
A.1 F �

� 163
A.1.1 Subtyping � 163
A.1.2 Typing � 163
A.1.3 Syntax-Directed Subtyping � 164
A.1.4 Type Synthesis � 164

A.2 F � 165
A.2.1 Subtyping � 165
A.2.2 Typing � 165

A.3 �

�

� 165
A.3.1 Subtyping � 165
A.3.2 Typing � 166

B Glossary of Notation 167

Bibliography 168

Acknowledgements

A dissertation is supposed to be the ultimate individual pro ject. But if it were written in a vacuum,
the result would not be remotely worth the trouble. If this do cument is the product of my efforts
these two years, then it is just the harvest of the kindness and generosity of the countless people
who have helped, taught, supported, and loved me for these pa st two years and the previous
twenty six.

I'm especially grateful to my parents, Alexandra and Roger P ierce, and my grandparents,
Louise and Ralph Young, for introducing me to the life of the m ind; to my early mentors at
Stanford, Brian Reid, Terry Winograd, and Forest Baskett, for opening the doors to computer
science; and to my colleagues and teachers at CMU for creating the friendly and stimulating
environment I've enjoyed here.

While writing my thesis, I have had the good fortune to work wi th four of the ®nest computer
scientists I know. The vision, creativity, and energy of Luc a Cardelli, Nico Habermann, Bob
Harper, and John Reynolds will be an example to me for the rest of my life.

I've also learned a great deal from Peter Lee, Frank Pfenning, David Garlan, Nevin Heintze,
Spiro Michaylov, QingMing Ma, Tim Freeman, and the rest of th e Gandalf and Ergo groups.

Sharon Burks helped chart a safe course through more perils than I care to think about.
During the ®nal months of research and writing, Juliet Langm an kept me more-or-less sane

and made this an unexpectedly happy time. She and all my other dear friends, especially Penny
Anderson, Violetta Cavalli-Sforza, Susan Finger, Nevin He intze, Angela Hickman, Bernadette
Kowalski, Kim McCall, Spiro Michaylov, Jessica Pierce, and Dave Plaut, have meant more to me
than I could begin to say.

Pittsburgh, PA
December 20, 1991

5

Chapter 1

Introduction

This thesis describes an experiment in the foundations of pr ogramming languages. Our aim is to
study the interaction of two powerful linguistic primitive s, bounded quanti®cation and intersec-
tion types, both of which have attracted signi®cant attenti on recently in the research community.
The result of the study is a new typed � -calculus, an elegant ªcore programming languageº
combining the power of second-order polymorphism with the ® ne-grained expressiveness of
intersection types.

1.1 Motivation

The activity of programming Ð the formalization of ideas and their expression in forms suitable
for interpretation by computers Ð is characterized by a cert ain cognitive mode, a state of mind
simultaneously creative and analytical. Like writing, it b egins with a rough idea, an intuition,
picture, sketch, or analogy, which is gradually re®ned and c lari®ed, details added, and internal
consistency established. In both writing and programming, formalization is by far the most
dif®cult part, since it often involves rede®ning the origin al idea over and over as its rami®cations
are better understood. Then (or concurrently) the detailed , formalized mental picture is written
out in some concrete, external form.

1.1.1 Programming languages

In programming, the original mental picture is of some compu tational behavior: a task to be
performed or a value to be calculated by some machine, real or imaginary, operating according to
a well-understood set of formal rules. A programming languageis a concrete, formal notation for
effectively describing such computational behaviors.

Natural languages like English are clearly not programming languages according to this de®-
nition: they are neither formal, since a great deal of ªspeak ing Englishº involves the shared social
and physical context of speakers and listeners, nor are they, in our sense, effective. Speci®cation
languages like Larch and Z, though they are perfectly formal , are also not programming lan-
guages because the connection between descriptions and behaviors is not effective: like the rules
of classical harmony in music composition, they constrain a class of behaviors, but, in themselves,
do not provide any method for constructing an element of this class.

On the other hand, our de®nition does admit all the forms of co nventional programming
languages: machine and assembly codes; imperative languages (Fortran, Algol, Ada); functional
languages (Haskell, Miranda); mixed functional and impera tive languages (Lisp, Scheme, ML);

7

1.1. MOTIVATION 8

object-oriented languages (Simula, Smalltalk); and macro languages (TeX, Lotus 123). Logic pro-
gramming languages (Prolog) are also admitted, since their declarative style of presentation is
completely formal and the connection between description a nd behavior is effective; similar argu-
ments can be made for process-control languages; simulation languages; languages for statistical
calculations; and the many declarative languages used in the AI community. Also included are
languages whose notion of behavior is more abstract (Turing machines, � -calculi, recursive func-
tion theory, term rewriting systems, cellular automata) an d languages that include behavioral
primitives like nondeterminacy, randomness, concurrency , and oracles for undecidable problems.

Depending on the discussion at hand, it may be useful to loose n the requirements of effective-
ness or precision so that notations like pseudo-code or the fragments of English used in recipes
and tax forms are also admitted. Likewise, the very simple la nguages used to describe regular
expressions, typesetting styles in display-oriented edit ors, and the behavior of microwave ovens
can either be taken as programming languages or relegated to some broader category.

1.1.2 Types

The appropriateness of a programming language for a given ta sk can signi®cantly affect both
aspects Ð formalization and expression Ð of programming. Th e process of translation from
an internal, mental description of a desired behavior into a concrete program implementing this
behavior is much smoother if the conceptual primitives of th e mental picture are re¯ected by
analogous constructs in the programming language. Ideally , the concrete language provides
such a clear and useful set of conceptual structures that this translation step is almost trivial.
Conversely, and more importantly, the formal concepts embo died in a programming language
tend to become a part of the internal conceptual language tha t programmers use to develop and
re®ne their ideas.

The notion of type plays a crucial role in facilitating this translation of ide as from abstract
conceptual structures to concrete realizations and vice versa.

Essentially all programming languages havesome notion Ðat least informally Ð of acollection
of conceptual categories, or types, appropriate to the intended domain of discourse. Machine l an-
guages deal with registers, words, memory pages, and device interrupts. Typesetting languages
manipulate characters, words, boxes and glue, paragraphs, and pages. Functional languages use
numbers, records, lists, and higher-order functions. The m ore coherent, clean, and simple the
system of types, the better. Ideally, the type system becomes an organizing principle for the entire
language, guiding its design, application, and even implem entation.

Statically typedprogramming languages take the point of view that the type sy stem should
be made simple enough and given a suf®ciently rigorous found ation that it becomes possible to
detect certain kinds of category errors in programs automat ically. Though this requirement often
restricts the expressiveness of the type system, it has a number of practical bene®ts. The most
obvious is that a compiler for a statically typed language ca n, in principle, guarantee the absence
of these type errors. Since many of the errors made by programmers are of exactly this sort,
compilers with static typecheckers are valuable tools for p inpointing mistakes early in the process
of developing a program. More subtly, it has often been obser ved that for certain languages and
programming tasks there is such a close correspondencebetween the type structures provided (and
checked) by the language and the appropriate conceptual structures for imagining the behavior
of the program that once all type errors have been removed, th e program is usually completely
correct Ð not only with regard to simple category errors, but even with regard to properties of
its behavior that lie completely outside the apparent purvi ew of the type system. In a sense, each

1.1. MOTIVATION 9

type contains very few programs, one of which is the intended one. Other well-known bene®ts of
static type systems include the fact that they can support th e generation of smaller and faster object
code by giving compilers better information about possible optimizations; that they sometimes
suggest an appropriate architecture for the compiler itsel f; and that they can form part of the
ªdocumentationº of a program, allowing it to be understood m ore easily by other programmers.

1.1.3 Typed
�

-calculi

One valuable tool in the study of statically typed programmi ng languages is a class of formal
systems known as typed � -calculi. These calculi are programming languages in their own right ,
since they can be described and reasoned about mathematically, they incorporate notions of
behavior, and they admit an effective translation from prog rams to the behaviors they describe.
But they are languages of a much simpler order than those used in the day-to-day work of
most programmers. They omit all niceties of punctuation and syntax, sacri®ce readability for
compactness, provide only the most impoverished collectio ns of built-in types and operations (or
sometimes none at all), and usually include only a tiny colle ction of basic conceptual structures
instead of the rich and varied facilities offered by most ful l-¯edged languages. In short, they are
intended as objects of study rather than vehicles for expression of complex ideas. Nevertheless,
experience has shown that new ideas in language design Ð in pa rticular, the behavior and
interactions of various kinds of type structures Ð can be stu died very productively in these
isolated settings and the results transferred to larger lan guages constructed on the basis of the
same ideas. Of course, signi®cant attention must still be paid to the numerous engineering issues
involved in full-scale language design; but the core type sy stem will retain its essential properties.

Of course, some care must be used in generalizing from proper ties of � -calculi to larger
programming languages with ªsimilarº type systems, since t his process is only sound when the
core conceptual structures of the small and large languages are truly analogous. One important
situation where the correspondence is sometimes misstated is the case where the � -calculus and
the larger programming language have different notions of e valuation. For example, the core
type system of the Standard ML language, which uses a call-by -value evaluation regime, where
arguments are fully evaluated before being passed to functi ons, is often analyzed in terms of a

� -calculus with normal-order evaluation, where arguments a re passed to functions unevaluated.
For simple fragments of the full SML language, this mismatch turns out to be harmless; but the
addition of computational effects such as updateable cells , exceptions, or unbounded recursion
leads to unsoundness of the naive type system for the full lan guage [68] (this point is also discussed
in recent unpublished manuscripts of Robert Harper).

1.1.4 Subtyping

During the past decade, researchers in static type systems have been particularly successful in
developing formal accounts of the notion of subtyping. In 1984, Cardelli [23] suggested that the
basic concepts of object-oriented programming [8, 54, 67] could be understood type-theoretically
using the following rough correspondence:

1.1. MOTIVATION 10

Object-oriented languages Typed lambda-calculi
Classes Record types
Objects Records
Subclass Subtype
Methods Functions
Message passing Function call

Some parts of this picture have been ®lled in during the inter vening years [33, 133, 134, 113, 29,
101, 32, 71, 11, 130, 82, 26, 112, 18, 124, 39, 63, 83, 24, 135, 115, 133, 21, 22, 114, 25, 96, 111, 64, etc.]:

Object-oriented languages Typed lambda-calculi
Classes Record types
Objects Records
Subclass Subtype
Methods Functions
Message passing Function call
Object modi®cation Functional record update
Method inheritance Cascaded record construction
self Recursive records
SelfType Recursive record types

Accounting for other aspects of object-oriented programmi ng in this framework Ð method inher-
itance, in particular Ð remains the subject of active resear ch. But whatever the ultimate success
of this research program, the basic framework has proven to b e a fruitful source of innovations in
language design.

Informally, a type � is a subtypeof a type � if any element of � may sensibly be considered as
an element of � . In the simplest case, this just means that every element of � is an element of � ,
as when � is ªmonkeyº and � is ªmammal.º In general, though, this need not be the case. On
many computers, integers are represented in a completely di fferent format from ¯oating-point
numbers, so, although we may abstractly think of the integer s as being a subset of the ¯oating-
point numbers, the truth is that every integer may be coercedto an equivalent ¯oating-point
number. A more accurate formulation of the notion of subtype , then, is that � is a subtype of � if
every element of � contains suf®cient information that it can be coerced to an appropriate element
of � .

Hiding in the word ªappropriateº is another important obser vation: when we speak of a
coercion from one type to another, we do not intend that this b e any mapping whatsoever; it
must preserve the identity of the original values, as much as possible, in their new forms. The
coercion from integers to ¯oating point numbers must take ea ch integer to ªthe same numberº in
the ¯oating-point representation.

This discussion can be formalized as a general architecture for constructing typed � -calculi
with subtyping. We begin with a collection of types(� , � , . . .), a collection of expressionsor terms
(� ,

�

, . . .), and some formal rules describing the circumstances under which we may validly assert
that a term � has a type � . To handle subtyping, we introduce an order structure on the collection
of types Ð a relation � � � . Again, this relation is presented as a collection of rules d escribing
the circumstances under which we may validly assert that a ty pe � is a subtype of � . To make
a connection between the two systems of rules, we add to the ty ping rules a rule of subsumption
formalizing the intuitive notion that when � � � every term that may validly be considered an
element of � may also be considered an element of � .

1.1. MOTIVATION 11

This skeletal framework can be extended in many ways, depend ing on the de®nitions of
the sets of types and terms and the typing and subtyping relat ions. Two instances that are of
special importance here are the ®rst-order (simply typed)� -calculus with intersection typesÐ called

�

� (ªlambda-meetº) here Ð and the second-order (polymorphic)� -calculus with bounded quanti®cation
Ð usually called � � (ªF-subº).

The idea of intersection typesis extremely simple and natural, though its rami®cations in
programming are only beginning to be understood. Essential ly, it consists of enriching the
collection of types with a new type � � � for every pair of types � and � (including the case where �

and � themselves contain intersections). This new type is though t of as containing all the elements
of � that are also elements of � ; using our more general notion of subtyping, every element o f

� � � contains enough information to coerce it either to an elemen t of � or to an element of � .
Furthermore, � � � should be the ªbestº such type, in the sense that it is a supert ype of every other
type whose elements contain suf®cient information to coerce them to either � or � . In terms of the
order structure, this is precisely the greatest lower bound of � and � .

The most intriguing and potentially useful property of inte rsection types is their ability
to express an essentially unbounded (though of course ®nite) amount of information about
the components of a program. For example, the addition funct ion � can be given the type
Int � Int � Int � Real� Real� Real, capturing both the general fact that the sum of two real numb ers
is always a real and the more specialized fact that the sum of t wo integers is always an integer.
A compiler for a language with intersection types might even provide two different object-code
sequences for the two versions of � , one using a ¯oating point addition instruction and one usin g
integer addition. For each instance of � in a program, the compiler can decide whether both
arguments are integers and generate the more ef®cient object code sequence in this case. This
kind of ®nitary polymorphismor coherent overloadingis so expressive, that (in a sense that can be
made theoretically precise; c.f. Section 2.5) the set of allvalid typings for a program amounts to a
complete characterization of the program's behavior.

Intersection types can also be viewed as a natural type-theoretic analog of multiple inheritance.
If � � � is read as ª � is a subclass of � ,º then � � � is a name for a class with all the common
properties of � and � . Of course, this analogy, like the subtype � subclass analogy, is not exact. In
particular, it says nothing about the complex mechanisms su pporting code reuse in object-oriented
programming languages with multiple inheritance. But it is intuitively appealing and, like the
rest of Cardelli's analogy, can perhaps be made more precise in a suf®ciently enriched calculus
based on intersection types. We shall return to this point in Chapter 8.

Bounded quanti®cationis an extension of the simpler notion of ordinary second-ord er quan-
ti®cation, or polymorphism. This was introduced in the earl y 1970's by Girard and Reynolds to
capture the intuitive concept of a function that takes a type as a parameter. For instance, the ªpoly-
morphic reverseº function, which accepts a type � and returns the monomorphicreverse function
that reverses lists whose elements are all of type � , has the quanti®ed type � � � List � � 	 � List � � 	 .
Cardelli and Wegner integrated this mechanism with the noti on of subtyping by allowing a quan-
ti®ed type to give a boundfor its parameter; for example, � �

�
 � � � � �

� List � � 	 � List � � 	 takes, as its
®rst parameter, an arbitrary subtype of the type Studentand returns a function on lists of this type.
This form of universalor parametric polymorphismis both broader (since the number of possible
instantiations of a polymorphic type is in®nite) and more ri gid (since all instances must have
the same basic shape) than the ®nitary polymorphism provide d by intersection types. Its main
practical advantage is compile-time ef®ciency: it allows p olymorphic expressions to be written,
typechecked, and compiled just once.

1.2. CLAIMS 12

1.2 Claims

This thesis is a detailed investigation of a typed � -calculus combining intersection types and
bounded quanti®cation.

Since intersection types and polymorphism can each be formu lated in different ways with
varying degrees of expressiveness and technical dif®culty, there is actually not just a single calculus
combining the two notionsbut a wholespace of such calculi; o ur ®rst task is selecting one ormore of
these as our object of study. We chose to focus on just one in order to study it in the greatest possible
depth. This calculus, called F� , was formed by combining the most expressive formulations o f
intersection types and bounded quanti®cation, so that any p ositive results obtained for it would
apply to as many as possible of the other calculi combining in tersections and polymorphism.
(This choice is discussed in greater depth in Section 3.5.)

Our major claims are as follows:
� Bounded quanti®cation and intersection types ®t together v ery naturally. The syntax of

our calculus combining them is elegant and relatively simpl e. The two different kinds of
polymorphism Ð ®nitary and parametric Ð complement each oth er, leading to a variety of
novel and useful programming idioms.

� Natural algorithms exist for subtyping and typechecking; t hese can (with some work) be
proved partially correct. However, the subtype relation of F� turns out to be undecidable.
This comes as a surprise, since the undecidability result also applies to the pure calculus of
bounded quanti®cation, which was generally thought to be de cidable.

� Untyped semantic models of F� , where subtyping is interpreted as simple inclusion, are
unproblematic. Appealing typed models, where subtyping is interpreted by actual coercion
functions, can also be sketched, but we encounter dif®culties with the details.

� Our negative results Ð the undecidability of subtyping and t he dif®culty of constructing
typed models Ð indicate that in some ways F� is too powerful. Future investigations in
this area might pro®tably concentrate on weaker fragments f or which the same positive
results can be proven more easily and for which comparable ne gative results do not hold,
provided that such fragments retain most of F� 's expressive power. We propose some likely
candidates in Chapter 8.

1.3 Outline of Results

The development of the technical chapters may be easier to follow for readers with some back-
ground in � -calculus [5, 77], type systems [33, 120], and, for Section 2.4, basic category the-
ory [3, 7, 90, 106].

Chapter 2 is a self-contained introduction to the major prec ursors of the F� calculus: the
simply typed � -calculus with subtyping, the ®rst-order calculus of inter section types, and the
second-order calculus of bounded quanti®cation. Besides introducing the notation and conceptual
background needed for later development, this chapter give s a conceptual and terminological
framework in which the semantics of these languages can be understood. Although it presents no
novel results, this framework may contribute to the organiz ation and clari®cation of terminology
for these systems in the literature.

The F� calculus itself is introduced in Chapter 3 and some basic design issues arising in its for-
mulation are discussed. In particular, we introduce a new la nguage construct, the for expression,

1.3. OUTLINE OF RESULTS 13

which controls the search behavior of the typechecker and th e introduction of intersection types.
This construct generalizes similar ideas from Reynolds' Fo rsythe language and provides a cleaner
separation of mechanism than earlier formulations.

Chapter 4 undertakes a thorough proof-theoretic investiga tion of the properties of F� . We
begin by analyzing the subtype relation using ªcanonical ty pes,º a well-behaved fragment with
suf®cient expressive power to capture the essential aspects of the whole language. Using an
extension of Curien and Ghelli's method of proof normalizat ion by rewriting [50, 63], we show
that every canonical derivation can be transformed into a de rivation in a restricted normal form.
This fact is used to prove the soundness and semi-completeness of a straightforward algorithm
for checking the subtype relation for arbitrary types. This algorithm forms a major component of
a type synthesis procedure for F� expressions, which is shown to be sound and semi-complete, in
the sense that whenever it terminates it computes a minimal t ype. The de®nition of this algorithm
can be thought of as de®ning a class of normal-form typing der ivations similar to the normal-form
subtyping derivations that arise in the subtyping algorith m; the existence of these normal forms
yields a simple proof of the conservativity of F� over ®rst-order intersection types.

Chapter 5 offers a preliminary semantic investigation of F� . First, a simple untyped model
is de®ned using partial equivalence relations and the sound ness of the typing rules is proved.
We next present the major obstacle to a full account of the typ ed semantics of F� : the fact that
there are pairs of F� types with no least upper bound. This result implies that sta ndard methods
for constructing models of intersection types and proving t hem coherent cannot be extended
straightforwardly to F� . Nevertheless, we can give a partial account of the typed int erpretation of
F� as a programming language by exhibiting a translation from F� typing derivations into a cal-
culus with a number well-studied typed models: the ordinary polymorphic � -calculus extended
with surjective tuples. This translation extends work on th e semantics of �

� by Breazu-Tannen,
Coquand, Gunter, and Scedrov [10] by interpreting intersec tion types as ªcoherent tuplesº in the
target language. An alternative explanation of the semanti cs ofF� is given by an equational theory
of equivalences between F� terms; this theory is shown to be a sound description of the ea rlier
untyped and translation semantics (assuming in the latter c ase that the translation is coherent).

Next (Chapter 6), we consider the completeness of the typechecking algorithm and discover,
unfortunately, that the typechecking problem for F� turns is undecidable. Indeed, we prove a
stronger result: the subtyping problem (ªgiven a set of assu mptions

�

and two types � and � , is
it the case that � is a subtype of � under

�

?º) is already undecidable in � � , the pure calculus of
second-order bounded quanti®cation. This result is of sign i®cant independent interest, since � �

subtyping has long been thought to be decidable and numerous theoretical studies and language
designs have been based on it. However, we argue that both � � and F� are ªdecidable in practice,º
in the sense that the natural type synthesis algorithms term inate for every case of conceivable
practical importance. Moreover, it is easy to show that some large and useful fragments of these
calculi are decidable.

The last technical chapter, Chapter 7, presents a collection of programming examples in F�

including many new examples of programming with intersecti on types and type-theoretic formu-
lations of simple abstract interpretation and strictness a nalysis. We close with some observations
on programming with the for construct and techniques for debugging programs written in this
style.

Chapter 8 presents a critical evaluation of our results and o utlines a program for further study.

Chapter 2

Background

This chapter sets the stage for theF� calculus by establishing notational conventions and revie wing
its two immediate ancestors. We ®rst de®ne a common core calculus, a simply typed � -calculus
with subtyping, and then discuss two extensions of this core , a ®rst-order calculus with intersection
types and a second-order calculus with bounded quanti®cati on.

� � (simple types + subtyping)

�

� (. . . + intersections) � � (. . . + bounded quanti®cation)

�

�

�

��

�

�

�

� �

Each section includes additional notation and terminology for the mechanisms it introduces;
these are carried over or trivially extended in later sectio ns.

2.1 Notational Preliminaries

2.1.1. De®nition: A ®nite sequence with elements � 1 through � � is written � � 1 � � � � � . Concatenation
of ®nite sequences is written � 1 	

� 2 or � 1

� 2. Single elements are adjoined to the right or left of
sequences with a comma: � � �

� � � or � � �

� � � . The length of a ®nite sequence� is written len� � 	 .
Sequences are sometimes written in a ªcomprehensionº notation: � � . . .� . For example, if

� �

�

�

�

�

 �

�

�

�

�

�

� , then the comprehension � � 2 � 1 � � 2 �

�

and � 1
�

�

� stands for the ®nite
sequence �

�

�

� .

2.1.2. De®nition: It is sometimes convenient to ignore the ordering of a ®nite s equence and
treat it as a ®nite set. Conversely, we say that a ®nite sequence � enumeratesa ®nite set � if

� � � � �

�

� � .

2.1.3. Notation: Throughout the thesis, the metavariables � and � range over type variables; � ,
� , � , � ,

�

, and � range over types; � ,
�

, � , � , � , and � range over ®nite sequences of types;�

and
�

range over terms; and � and � range over term variables. (See Appendix B for a complete
glossary of metavariables.)

2.1.4. De®nition: A context
�

is a ®nite sequence of typing and/or subtyping assumptions f or a
set of variables and/or type variables, with no variable lis ted twice. The empty context is written

� � . More explicit de®nitions of the contexts of particular cal culi are given below.

14

2.1. NOTATIONAL PRELIMINARIES 15

2.1.5. De®nition: A subtyping statementis a phrase of the form
� �

� � � , where � and � are types.
A typing statementis a phrase of the form

� �

�

�

� , where � is a term and � is a type. The bodyof
a statement is the portion to the right of the turnstile.

2.1.6. De®nition: A derivationof a subtyping or typing statement � is a proof tree, valid according
to some collection of inference rules, whose root is � . We write � :: � to indicate that � is a
derivation of � .

2.1.7. Notation: The metavariable � ranges over both subtyping and typing statements; �

and � range over derivations of subtyping statements; � and � range over derivations of typing
statements.

2.1.8. Convention: When two or more systems of inference rules are being considered simultane-
ously, the turnstile symbol will often be annotated with a su perscript indicating which calculus a
derivation belongs to; for example, derivations in the pure F� calculus are marked

�

�

.

2.1.9. Convention: Types, terms, contexts, statements, and derivations that differ only in the
names of bound variables are considered identical.

It is formally clearer to think of variables not as names but, as suggested by deBruijn [56],
as pointers into the surrounding context. This point of view is notationally too inconvenient to
adopt explicitly in what follows, but will be a signi®cant ai d in understanding the behavior of the
rules that manipulate variables.

2.1.10. De®nition: When � and � � are identical phrases (types, terms, contexts, ®nite sequences
of types, statements, derivations, etc.) up to renaming of b ound variables, we write �

�

�
�
. If

�
� contains free metavariables, then �

�

�
� denotes pattern matching; for example

ªif �

�

�

1 �

�

2, then. . . º
means

ªif � has the form �

1 �

�

2 for some �

1 and �

2, then. . . º

2.1.11. De®nition: The number of nodes in a derivation � is written size� � 	 .

2.1.12. De®nition: The capture-avoiding substitution of � for � in
�

is written � � � � �

�

. The
capture-avoiding substitution of � for � in � or � is written �

�

� � �

� or �

�

� � � � . The capture-
avoiding substitution of � for � in the range of

�

is written �

�

� � �

�

.

2.1.13. Notation: The functional application of one phrase to another is norma lly denoted by
juxtaposition: � 1 � 2. When � 1 or � 2 is a long or complex expression, the application is sometime s
emphasized with an explicit marker: � 1 	

� 2. Similarly, type applications, usually written � �

�

� ,
sometimes appear as �

	

�

�

� to improve readability.

2.1.14. Notation: Sessions with the prototype typechecker for F� are set in a typewriter font using
only ascii symbols. The mathematical symbols used in the � -calculus notation are transliterated
as follows:

2.2. SIMPLY TYPED � -CALCULUS WITH SUBTYPING 16

Ascii TEX
s, t � � �

A, B � � �

-> �

/\ � � �

T 	

\x:s. e
 � : � �

\\a<s. e � � � � �

All a<s. t � � � � � �

< �

plus, times � , �

Lines of input to the running typechecker are pre®xed with a > character and followed by the
system's response:

> f = \x:Int. x;
f : Int -> Int

2.1.15. Convention: The type constructors � and � are assumed to bind more tightly than � ,
allowing most parentheses to be dropped. Also, � associates to the right and � obeys the usual
ªdot ruleº where the body � of a quanti®ed type � �

� � �
� is taken to extend to the right as far as

possible.
For example, the type expression

�

�
�

�

� �

� �

1 �

�

2 � � �

�

�

� �
� � �

�

� �
�

�
�

� �

�

� � �

is written

�
� � �

� �

1 �

�

2 �

� � � �
� �

� � � �
�

�

�
�

2.1.16. Remark: The word algorithm is used throughout the thesis in the sense of ªrecursively
de®ned procedure,º with no intended connotation of totalit y. When a given algorithm is known
to terminate for all inputs, we call it a decision procedure.

2.2 Simply Typed ! -Calculus with Subtyping

TheF" calculus may be viewed as a ªleast upper boundº of two calculi : a ®rst-order � -calculus with
intersection types (�

") and a second-order � -calculus with bounded quanti®cation (#

�

). These,
in turn, are both extensions of the simply typed � -calculus enriched with a subtyping relation
(�

�

). The latter system was proposed by Cardelli [20, 23] as a ªcore calculus of subtypingº in a
foundational framework for object-oriented programming l anguages.

2.2.1. De®nition: The types of �

�

consist of a set ofprimitive types(ranged over by the metavariable
$) closed under the function spacetype constructor � :

� ::= $ %

� 1 � � 2

2.2.2. De®nition: The terms of �

�

consist of a countable set of variables (ranged over by &), to-
gether with all the phrases that can be built from these by fun ctional abstraction and application:

' ::= &

%

� & :�
�

' % '

1
'

2

2.2.3. Remark: The presence of thedomain-type annotation� in the syntax of � -abstractions marks
a fundamental design choice, which we shall maintain throug hout the thesis: all of the calculi we
consider are explicitly typedsystems (as opposed totype assignmentsystems). This requires that a

2.2. SIMPLY TYPED � -CALCULUS WITH SUBTYPING 17

programmer exert ®rm control over the typechecker 's behavi or, making programs more verbose
but rendering typechecking decidable in many cases where ty pe inference would be undecidable.
Section 2.4 discusses these issues in more detail.

2.2.4. De®nition: A �

�

context is a sequence of typing assumptions
�

::= � �

%

� �

& : �

with no variable mentioned twice. The function dom
�

�

�

denotes the set of variables de®ned by
�

;
the rangeof

�

is the collection of right-hand sides of bindings in
�

.
�

�

&

�

denotes the type of & in
�

, if it has one.

2.2.5. De®nition: The set of free variables of a term ' is written FV
�

'

�

.

2.2.6. De®nition: A term ' is closedwith respect to a context
�

if FV
�

'

� �

dom
�

�

�

. A typing
statement

� �

' �

� is closed if ' is closed with respect to
�

.

2.2.7. Convention: In the following, we assume that all statements under discus sion are closed.
In particular, we allow only closed statements in instances of inference rules.

The typing relation of �

�

is formalized as a collection of inference rules for derivin g typing
statements of the form

� �

' �

� (ªunder assumptions
�

, expression ' has type � º), where
�

contains a typing assumption for each of the freevariables o f ' . The rules for variables, abstractions,
and applications are exactly the same as in the ordinary simp ly typed � -calculus [37]. In addition,
we introduce a rule of subsumptionstating that whenever a term ' has a type

�
and

�
is a subtype

of another type � , the type of ' may be promoted to � .

2.2.8. De®nition: The �

�

typing relation
� �

' �

� is the least three-place relation closed under
the following rules:

� �

&

�

�

�

&

�

(VAR)
� �

& : � 1
�

' �

� 2
� �

� & :� 1 �

' �

� 1 � � 2
(ARROW-I)

� �

'

1
�

� 1 � � 2
� �

'

2
�

� 1
� �

'

1
'

2
�

� 2
(ARROW-E)

� �

' �

� 1
� �

� 1 �

� 2
� �

' �

� 2
(SUB)

2.2.9. Remark: This de®nition may be viewed in two different ways:
1. as a three-place relation constructed as the limit of a sequence beginning with the empty

relation and successively enriching it according to the rul es VAR, ARROW-I, A RROW-E, and
SUB, or

2. as a simple logic whose derivable judgements are those appearing as conclusions of valid
derivation trees built from these rules.

We adopt both views, interchangeably, in what follows. For e xample, the consequent in the
sentence

If
� �

' �

� , then
� � �

�

�

may be read as asserting the existence of a valid derivation with conclusion
� � �

�

�

, as well as
the presence of the tuple 	

� � � �

�

in the graph of the typing relation.

2.2.10. Remark: By analogy with types, we might expect the de®nition of �

�

terms to include a
collection of constants. These can be added to the calculus,but they are not strictly necessary:

2.2. SIMPLY TYPED � -CALCULUS WITH SUBTYPING 18

we can write programs involving ªbuilt-in valuesº like numb ers and arithmetic operators simply
by considering these as variables and providing a pervasive contextÐ call it

� �

Ð assigning them
appropriate types. When contexts are extended in Section 2.6 to allow assumptions for type
variables, primitive types can also be dropped, although no t every conceivable ordering on the
primitive types can be encoded as a pervasive context (c.f. 2.6.6 and 3.4.2.5).

It remains to de®ne the subtype relation. Intuitively, a sub typing statement
� �

�

�

�

corresponds to the assertion that � is a re®nementof � , in the sense that every element of � contains
enough information to meaningfully be regarded as an elemen t of � . In some models this means
simply that

�
is a subset of � ; more generally, it implies the existence of a distinguishe d coercion

function from
� to � .

These considerations immediately entail that the subtype r elation should be both re¯exive and
transitive Ð i.e., that it should be a preorder. We assume tha t the subtype relation on primitive
types is given in advance by some preorder

�

� . This relation is extended to the smallest preorder
closed under the following subtyping rule for function type s: � 1 �

� 2 is a subtype of � 1 � � 2 iff
� 1 is a subtype of

� 1 and
� 2 is a subtype of � 2. Notice that, as usual, this relation is covariantin

the right-hand side and contravariantin the left-hand side of the � constructor: a collection of
functions can be re®ned either by narrowing the range into wh ich their results must fall or by
enlarging the domain over which they must behave properly.

2.2.11. Remark: A key feature of this notion of subtyping is that it is structural: the ordering of
two arrow types is completely determined by their left- and r ight-hand sides. In logical terms, the
only extended theories we consider are those whose non-logical rules are restricted to statements
about primitive types. This feature is retained in the other calculi we consider in the thesis.

In fact, the subtype relation of �

�

is not only structural, but compositional: the ordering on
arrow types may be computed as a function of the ordering of th eir left- and right-hand sides.
The introduction of intersection types in the next section w ill invalidate this stronger property.

2.2.12. De®nition: The �

�

subtyping relation
� �

�

�

� is the least three-place relation closed
under the following rules:

� �

�

�

� (SUB-REFL)
� �

� 1 �

� 2
� �

� 2 �

� 3
� �

� 1 �

� 3
(SUB-TRANS)

� �

$

1 �

�

$

2
� �

$

1 �

$

2
(SUB-PRIM)

� �

� 1 �

� 1
� �

� 2 �

� 2
� �

� 1 �
� 2 �

� 1 � � 2
(SUB-ARROW)

2.2.13. Remark:The context
�

plays no part in these rules and could be dropped without chan ging
the system. We include it here for notational compatibility with later systems, in which contexts
will also contain subtyping assumptions about type variabl es.

2.2.14. Notation: When
� �

�

�

� , we call � a supertypeof
�

.

2.2.15. Notation: When
� �

�

�

� and
� �

�

�

�
, we say that

�
and � are equivalentunder

�

,
written

� �

� �
� .

2.2.16. Notation: We write
� �

�

�

� to denythe derivability of the statement
� �

�

�

� .

2.2.17. Convention: When necessary to prevent confusion with other calculi, tur nstiles in �

�

derivations are written
�

� �

.

2.3. INTERSECTION TYPES 19

2.3 Intersection Types

Intersection types in the pure � -calculus were developed in the late 1970s by Coppo and Dezani-
Ciancaglini [40], and independently by SallÂe [46, 127] and Pottinger [110]. Since then, they
have been studied extensively by members of the group at the u niversity of Turin and many
others [6, 35, 41, 42, 43, 44, 45, 57, 58, 75, 76, 121, 123, 125,126, 131, 132]. The original motivation
for their introduction was the desire for a type-assignment system in the spirit of Curry [52], but
with two additional properties:

1. The typing of a term should be invariant under � -conversion. (Under Curry's system,
� -reduction preserves types but � -expansion, in general, does not.)

2. Every term possessing a normal form should be given a meaningful typing.
Various extensions of the original intersection type disci pline have also been explored. These
include the notion of in®nite intersections [88], the dual n otion of union types [4, 73, 105, 107], and
the relationship between intersection types and models of p olymorphism [81, 104, 136]. Some
related extensions to ML-style type inference systems are represented by the notions of re®nement
types [60, 72, 107] and soft typing [36, 59].

Reynolds provided the ®rst demonstration that intersectio n types can be used as the basis for
practical programming languages [118, 121]. A primary goal of this thesis is to extend Reynolds'
work by studying the interaction of intersection types with other important type-theoretic prin-
ciples, primarily parametric polymorphism, and to develop a larger suite of interesting examples
illustrating their utility in programming.

2.3.1. De®nition: The ®rst-order calculus of intersection types, �

" , is formed from �

�

by adding
intersections to the language of types:

� ::= $ %

� 1 � � 2
%

� �

� 1 � �
� � �

2.3.2. De®nition: For presenting examples, our formulation of the �

" type system in terms of
� -ary intersections is somewhat cumbersome. We therefore introduce the following abbreviations:

�
� �

def
�

�

�

�

�

� �

� def
�

�
�

�
�

Of course, the whole system could equally well be formulated in terms of a binary constructor �

and a nullary constructor
�

. However, for the theoretical analysis of the system (and it s extension,
F"), the � -ary formulation leads to shorter and clearer proofs of its p roperties.

2.3.3. Remark: The notations
� �

� ,
�

& � , and
�

� � have all been used to denote the intersection
of � and � ; the universal type (usually corresponding to a nullary int ersection) has been written
as both � and ns (ªnonsenseº). To emphasize the order-theoretic intuition that the intersection of

�
and � is their greatest lower bound (or ªformal meetº) in the subty pe preorder Ð and to de-

emphasize the common intuition that �
� � denotes the set-theoretic intersection of the denotations

of
�

and � Ð we use the � symbol for binary and � -ary intersections. The phrase
�

� � (or � �

�

�

� �)
is pronounced ª

�
meet � ,º ª

�
intersect � ,º or ª

�
and � .º For the nullary intersection, we use the

symbol
�

(ªtopº) by analogy with the binary case.

Two new subtyping rules capture the order-theoretic proper ties of the � operator:

for all �

� � �

�

�

� 	

� �

�

�

�
�

� 1 � �
� � �

(SUB-INTER-G)

2.3. INTERSECTION TYPES 20

� �

� �

� 1 � � � � �

�

� 	 (SUB-INTER-LB)

(Complete sets of inference rules for �

" and the other major systems introduced in the thesis
appear in Appendix A. Here we discuss just the extensions to �

�

that are required to form
�

" .) Note that the premise of the ®rst rule actually stands for � different premises, one for each
�

�

� 1 � �

�

� ; similarly, the second rule stands for � different rules, one for each value of � .
One additional subtyping rule captures the relation betwee n intersections and function spaces,

allowing the two constructors to ªdistributeº when an inter section appears on the right-hand side
of an arrow:

� �

� �

� � � 1 � � � � � � �

�

� �

� �

� 1 � � � � � (SUB-DIST-IA)

(This inclusion is actually an equivalence, since the the other direction may be proved from the
rules for meets and arrows.)

This rule, though intuitively reasonable, will have a stron g effect on both syntactic andsemantic
properties of the language. For example, it implies that

�

�

�
�

�

for any
�
.

The typing rules must also be extended slightly. As for any ty pe constructor, we expect to ®nd
a pair of an introduction rule, by which terms can be shown to p ossess intersection types, and
an elimination rule, by which this fact may later be exploite d. The introduction rule allows an
intersection type to be derived for a term whenever each of th e elements of the intersection can
be derived for it separately:

for all �

� � �

' �

� 	

� �

' �

� �

� 1 � �
� � �

(INTER-I)

The corresponding elimination rule would allow us to infer, on the basis of a derivation of a
statement like

� �

' �

� �

� 1 � �
� � � , that ' possesses every� 	 individually. But this follows already

from the rule SUB-INTER-G and the rule of subsumption; we need not add the eliminatio n rule
explicitly to the calculus.

The nullary case of this rule is worth particular notice, sin ce it allows the type
�

to be derived
for everyterm of the calculus, including terms whose evaluation intu itively encounters a run time
error

> 5 true;
it : T

or fails to terminate:

> (\x:T. x x) (\x:T. x x);
it : T

Thesystem as we havedescribed it so far supports the use of intersection types in programming
only to a limited degree. Suppose, for example, that the prim itive subtype relation has Int

�

Real
and the addition function in the pervasive context is overlo aded to operate on both integers and
reals:

�
�

� �

�

� Int � Int � Int � Real� Real� Real
�

Expressions involving addition of integers and reals will b e given type Int if possible, otherwise
type Real:

> plus 0 0;
it : Int

> plus pi pi;
it : Real

2.3. INTERSECTION TYPES 21

> plus 0 pi;
it : Real

(Note that the typechecker attempts to simplify the type it d erives for each term, so that, for
example, the type of plus 0 0 is printed as Int instead of as Int/\Real .)

But using just the constructs introduced so far, there is no w ay of writing our own functions
that behave in this way. For example, the doubling function � & :?

� &

�

& cannot be given the type
Int � Int � Real� Real, since replacing the ? with either Int or Real(or even Int � Real) gives a typing
that is too restrictive:

> double1 = \x:Int. plus x x;
double1 : Int -> Int

> double2 = \x:Real. plus x x;
double2 : Real -> Real

> double3 = \x:Int/\Real. plus x x;
double3 : Int -> Int

This led Reynolds [121] to introduce a generalized form of � -abstraction allowing explicit
programmer-controlled generation of alternative typings for terms:

' ::= . . . %

� & : � 1 � �
� �

�

'

The typing rule for this form allows the typechecker to make a choice of any of the
�

's as the type
of & in the body:

� �

& :�
	

�

' �

� 	

� �

� & : � 1 � � �
�

�

' �

�
	 � � 	

(ARROW-I')

This rule can be used together with I NTER-I to generate a set of up to � alternative typings for
the body and then form their intersection as the type of the wh ole � -abstraction:

> double = \x:Int,Real. plus x x;
double : Int->Int /\ Real->Real

One peculiar property of the generalized � is that adding extra alternatives to the set of possible
domain types for & can only improve the typing of the whole expression. If some a lternative results
in a ªtypechecking failure,º the best type for the body under this assumption will be equivalent
to

�

(typically via the S UB-DIST-IA rule), and may therefore be dropped from the ®nal type of t he
expression without changing its equivalence class in the subtype ordering:
> double = \x:Int,Real,Char. plus x x;
double : Int->(Int/\Real) /\ Real->/\[Real] /\ Char->T

i.e. Int->Int /\ Real->Real

Another point worth noting is that, in �

�

, the embedding of the primitive subtype relation
�

�

into the full relation
�

preserves both greatest lower bounds and least upper bounds. In �

" , this
is true only for least upper bounds; that is:

� In both �

�

and �

" , if $ � is a least upper bound of $

1 and $

2 in the
�

� relation, then it is also
a least upper bound in

�

.
� In �

�

, if $
� is a greatest lower bound of $

1 and $

2 in the
�

� relation, then it is also a greatest
lower bound in

�

.
� In �

" , if $ � is a greatest lower bound of $

1 and $

2 in the
�

� relation, then it is not a greatest
lower bound in

�

; in particular, it is strictly greater than $

1 �

$

2.

2.3.4. Convention: When necessary to prevent confusion with other calculi, tur nstiles in �

"

derivations are written
�

� �

.

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 22

2.4 Semantic Frameworks for Intersection Types

Work in the semantics of typed programming languages and � -calculi may roughly be divided
into two philosophical camps. One, sometimes called Curry-style semantics, takes the semantics
of an expression to be the semantics of the pure � -term found by erasing any type annotations
it may contain. The other, sometimes called Church-stylesemantics, views the expressions of a
typed calculus as a linear shorthand for fully typed forms in which every phrase and subphrase
is annotated with its typing; it is these fully explicit form s, i.e., the typing derivationsof the
calculus, to which a semantic interpretation is given. In ge neral, Curry-style systems correspond
to the left-hand side of the following diagram, while Church -style presentations correspond to
the right-hand side:

untyped model typed model

pure � -terms typing derivations

source expressions
�

�

�

�

�

�

erasure

�

[[�]]

�

�

�

�

� �

type reconstruction

�

[[
� �

'
�

�]]

These two perspectives have also been called theepistemologicaland the ontologicalviews
of types [87], since one is primarily concerned with knowledge, the other with being; extrinsicand
intrinsic have also been suggested. Both views yield sensible and useful interpretations of systems
with intersection types, and of F" in particular.

2.4.1. Remark: The distinction between typed and untyped models is not a cle ar as it might
appear from this sketch. For example, one of the mysteries of the polymorphic � -calculus is that
every known typed model is based on an underlying untyped mod el [Reynolds, personal com-
munication, 1991]. Even so, the difference between typed and untyped semantic interpretations
of terms is quite distinct.

2.4.1 Untyped Semantics

Curry-style type systems are often called type assignment systems. Terms in these systems typically
contain no type annotations at all, in which case the erasure step is trivial. The interpretationof
a term � is some element � of an untyped model � , given by a semantic function [[Ð]], which
is de®ned by induction on the structure of terms. Typing is a m atter of predication: a typing
statement involving a term � is an assertion about [[�]].

According to this point of view, the interpretation of a type
�

is a predicate, a set of elements
of � for which the assertion expressed by

�

is true. For example, the interpretation of
�

� � is

[[
�

� �]] �

� �

�

�

% for all � � [[
�

]], � �

� � [[�]] �
�

A typechecker, in this context, can be thought of as proving t heorems about programs Ð
theorems that show, on the basis of a set of typing rules that are known to be sound descriptions

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 23

of the semantics of terms, that the interpretations of terms behave in certain ways. A type inference
procedureis a deterministic procedure for discovering a principal theorem Ð a theorem of which
all other theorems about the behavior of the program are coro llaries. (The term ªtype inferenceº
is occasionally used in an even more general sense, to describe algorithms that determine whether
a term is typeable, without actually synthesizing any particular type or set o f types for it ([85, for
example]).

untyped model

pure � -terms

source expressions
�

�

�

�

�

�

�

�

�

erasure

�

[[�]]

typeability �

type inference

When
�

and � are regarded as predicates, the assertion that
�

�

� simply means [[
�
]]

�

[[�]]; the
syntactic term subtypecoincides with the semantic term subset. Similarly, the natural interpretation
of �

� � is the logical conjunction of the predicates � and � , i.e., the intersection of the subsets of �

denoted by
�

and � ,

[[
�

� �]] � [[
�

]]
�

[[�]]
�

and [[
�

]] �

� .

2.4.2 Typed Semantics

In Church-style type systems, commonly referred to as typed � -calculi, the picture is somewhat
more complicated. Typing, here, has behavioral force: it is not a descriptionof semantics, but an
integral part of semantics. The interpretation function [[Ð]] is de®ned b y induction on typing
derivations, not on the underlying terms. In cases where a ty ping derivation contains a sub-
sidiary subtyping derivation, the latter is mapped into a fu nction between semantic domains Ð
a derivation whose conclusion is

�

�

� is mapped into a coercion functionfrom [[
�

]] to [[�]]. This
function will sometimes be just an identity injection, as in the untyped case, but in general it may
transform its inputs in some substantial way. For example, t he coercion from [[Int]] to [[Real]] may
involve a change of representation, and the coercion from a r ecord with many ®elds to one with
fewer ®elds may involve actually dropping the extra ®elds.

The typed interpretation of an expression ' of the source calculus involves the intermediate
step of constructing a typing derivation of

� �

'
�

� for some
�

and � . In other words, a bare
source expressionunderdeterminesits semantic interpretation: its image in the semantic doma in
depends on ªmore than meets the eye.º Indeed, even when

�

and � are ®xed, there may be a

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 24

number of different derivations of the statement
� �

' �

� , and these might, in general, lead to
different interpretations.

For practical programming languages, there must be some effective means of calculating a
type � and a valid derivation � ::

� �

' �

� , whenever possible, for any given source expression '

and context
�

. An algorithm that performs this task is a type reconstruction procedure.
For certain calculi (e.g., languages based on system# with partial type reconstruction[9, 102,

109]), it is possible to pick out a subset of the source expressions, the fully typed terms, with the
special property that each fully typed term has at most one ty ping derivation for a particular
choice of

�

, and for which the type reconstruction problem is therefore particularly simple. Type
reconstruction for these terms might better be called typechecking, since this connotes a simpler sort
of algorithm than ªreconstruction.º For such a calculus, ou r general picture of typed semantics
may be re®ned as follows:

typed model

typing derivations

source expressions
�

�

�

�

� �

type reconstruction

�

[[
� �

'
�

�]]

fully typed terms�

�

�

�

�

�

� �

�

�

�

�

�

�

typechecking

None of the languages considered in this thesis have a notion of fully typed terms, however, so
the left-hand side of this diagram is the one that is importan t here.

Higher-order polymorphic � -calculi sometimes blur the syntactic distinction between ordi-
nary applications and type applications [47, 48]. In such si tuations, type reconstruction can be
generalized to a notion of argument synthesis[109]. On the other hand, some second-order calculi
with subtyping, such as #

�

and F" , require fully explicit type abstractions and application s, but
allow the types of terms to be implicitly promoted to superty pes at any point. In these cases,
coercion reconstructionmay be a more appropriate term.

Just as some typings are more informative than others (for example, Int � Int � Int �

Real� Real� Realis a better type than Int � Int � Int for the
�

operator, and this is better, in turn,
than

�

), there may be some interpretations of (possible typings of) a source expression that are
more useful than others. In general, more informative typin gs yield more useful interpretations,
so it is desirable that the type reconstruction procedure ca lculate as good a typing as possible for
each source expression. In the best case, a calculus may havethe property that there is a ªleastº
or principal typing for every typable source expression. Best of all is th e case where an effective
procedure exists for computing this typing.

All of the calculi studied in this thesis have the principal t yping property. Both �

" and �

�

have decidable principal typings. (Indeed, the type assign ment system corresponding to our
explicitly typed �

�

has decidable principal typings.) Principal typings for #

�

, unfortunately, fail
to be decidable (c.f. Chapter 6), but a slightly weaker prope rty does hold: whenever the type
synthesis procedure described in Section 2.6 terminates, it yields a principal typing; in fact, for

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 25

every source expression with any � � typing, the procedure is guaranteed to terminate and yield
a principal typing. This property is not meaningful in F� , since there, as in �

� , every source
expression has some typing. But the cases where the natural type synthesis procedure diverges
seem extremely unlikely to arise in practice.

For the sake of precision in what follows, we pause to sketch a framework for the category-
theoretic semantics of a ®rst-order typed � -calculus with subtyping, as suggested by Reynolds [121,
123]. (For the present discussion, we drop the context � from subtyping derivations to emphasize
that we are working with a ®rst-order calculus. To deal rigor ously with the more general case,
where � might depend on � , we would need a category-theoretic model for second-order bounded
quanti®cation. The structure of such models is not well unde rstood.)

� The semantics of derivations is based on a categoryK and a subcategoryS sharing all of K 's
objects. The objects ofK and S correspond to the types of the source calculus. We require
that K be Cartesian closed and that there be a functor � �

�

	
 S op � S � S that is a restriction of
� � �

�

 K op � K � K, the exponentiation functor. S, the subcategory of coercions, must include
morphisms corresponding to the primitive coercions, must b e closed under all the coercion
constructors needed to interpret compound subtyping deriv ations, and must possess certain
limits (discussed below), including at least products. Mor eover, a limit in S should also be
a limit of the same diagram in K. In other words, we require that every S-diagram of the
appropriate form have a K-limit.

� Each type � of the source calculus is interpreted as (denotes) an object [[�]] of K.
� A subtyping derivation � :: � � � is interpreted as a S-morphism [[�]]
 [[�]] � [[�]].
� A context � � � 1: � 1 � �

� � : � � is interpreted as the S-product [[� 1]] � � � � � [[� �]].
� A typing derivation � :: � � �

� is interpreted as a K-morphism [[�]]
 [[�]] � [[�]].

The fact that information must be added to the source text of a program to ®nd its behavior
should be invisible to the programmer, in the sense that, whe never the same source expression
may lead to different proofs of the same typing statement and thus to different interpretations, it is
critical that these interpretations should behave identic ally. That is, the source expression should
completely determine the observable behavior of all its pos sible interpretations: ªWhat you see is
what you get.º A language that violates this requirement may still be perfectly well de®ned, but it
will be impossible for programmers to predict the behavior o f their programs, except, perhaps, by
according to the details of some particular algorithm for co mputing principal typings. (Algol-68
and PL/I have both been criticized on this score.)

This idea of invariant behavior under alternative interpre tations was introduced by
Reynolds [117] for the speci®c case of the coercions associated with primitive operators like � .
Breazu-Tannen, Coquand, Gunter, and Scedrov later considered the problem in a more general
setting [10] and coined the term coherenceto describe it.

An important special case of the coherence of the interpretation of typing is the coherence of
the interpretation of subtyping: for every pair of subtypin g derivations � and � with the same
conclusion, it must be the case that [[�]] � [[�]]. (The appropriate notion of ª=º depends on the
model.) If this requirement fails, we can easily use rule S UB to construct an incoherent pair of
typing derivations.

If we consider the subtype preorder as a category, then the coherence condition for subtyping
says precisely that the interpretation function is a functo r.

The desire for a coherent semantics leaves very little choice in the interpretation of intersection
types. For the sake of simplicity, consider just the binary i ntersection of two types � and � . Then
the following observations follow directly:

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 26

1. Since rule SUB-INTER-LB stipulates that � � � � � and � � � � � , there must be coercion
functions proj1
 [[� � �]] � [[�]] and proj2
 [[� � �]] � [[�]] in S.

2. For every type � such that � � � and � � � , the composite coercions proj1 ; [[� � �]] and
proj2 ; [[� � �]] must be equal in order to achieve coherence Ð i.e., the S-diagram

[[� � �]]

[[�]] [[�]]

[[�]]

�

�

�

�

�

proj1 �

�

�

� �

proj2

�

�

�

� �

[[� � �]]
�

�

�

�

�

[[� � �]]

must commute. (Here ª;º denotes composition in diagrammati c order.)

3. For every type � such that � � � and � � � , rule SUB-INTER-G implies that there must be a
coercion from � to � � � . Call this coercion � � . To achieve coherence, the coercions [[� � �]]
and [[� � �]] that map directly from � to � and � must ªfactor throughº � � Ð that is, the
S-diagram

[[� � �]]

[[�]] [[�]]

[[�]]

�

�

�

�

�

�

proj1
�

�

�

�

� �

proj2

	

�
�

�

[[� � �]]

�

�

�

�

�

�

�

�

�

�

�

�

[[� � �]]

must commute.
In order that the interpretation of subtyping derivations b e well-de®ned, this coercion � �

should be determined by the coercions [[� � �]] and [[� � �]].
Taken together, theseconsiderations lead us to a straightforward de®nition of the interpretation

of � � � as a categoricallimit . (Note that we are not forcedby the above considerations to interpret
� � � as a limit: any S-object that makes all the appropriate diagrams commute wou ld do. But the
limit is a particularly natural choice.)

2.4.2.1. De®nition: The interpretation [[� � �]] and the associated coercionsproj1 and proj2 are given
as the limit, in S, of the diagram

[[�]] [[�]]

. . . [[� 1]] [[� 2]] [[� 3]] [[� 4]] [[� 5]] . . .

�

�

�

�

�

	

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

� �

where � 1, � 2, etc. are all the common supertypes of � and � . (N.b. To avoid cluttering the picture,
the � s have been drawn as though they were mutually unrelated. Of c ourse, the coercions between
them must also be included in the limit diagram.)

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 27

If � and � happen to have a leastupper bound � � � in the subtype ordering (again omitting
subtype relations between the � s),

� �

� � �

�

�

�

� �

�

�

�

�

�

. . . � 1 � 2 � 3 � 4 � 5 . . .

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

� �

�

�

�

�

�

�

�

� �

then Ð because, to achieve coherence, all the composite arrows must commute Ð the diagram
de®ning [[� � �]] may be summarized by a much simpler diagram with the same li mit:

[[�]] [[�]]

[[� � �]]

�

�

�

� �

�

�

�

�

�

The limit of this diagram is precisely the categorical pullbackof [[�]] and [[�]] with respect to the
coercions [[� � � � �]] and [[� � � � �]].

The ®rst-order calculus of intersection types, �

� , can indeed be shown to possess a least upper
bound for every ®nite collection of types (under certain ass umptions about the primitive subtype
relation), so we can use the latter interpretation of inters ections, appropriately generalized to �

elements. TheS-limits needed to make this construction well de®ned are gua ranteed to exist if
we require that S have limits of all ®nite diagrams.

2.4.3 Operational semantics

A similar sort of distinction may be drawn between typed and u ntyped styles of operational
semantics:

values (canonical terms) values (canonical derivations)

pure � -terms typing derivations

source expressions
�

�

�

�

�

�

�

�

�

erasure

�

�

�

�

�

�

�

�

� �

type reconstruction

�

2.4. SEMANTIC FRAMEWORKS FOR INTERSECTION TYPES 28

An untyped operational semantics ®rst strips a source expression � of any type annotations,
yielding a pure � -term � , which is then evaluated according to some collection of red uction rules
to produce a value � (typically also a � -term, though some formulations make use of auxiliary
notions like closures). A typed operational semantics, on t he other hand, begins from a typing
derivation � � �
 � . This derivation itself is then transformed according to so me collection of
evaluation rules to produce a derivation in a restricted canonical form. (Again, auxiliary notions
like the closure of a derivation may also be needed.)

The notion of an operational semantics of typing derivation s is somewhat unfamiliar, even
though typed operational semantics have often been given fo r typed languages. The reason
for this is that these semantics have usually been presented as operating on typed terms, not
derivations. (Curien and Ghelli's rewriting systems on � � typing derivations [50, 51, 63] might be
viewed as an exception.) This works because the calculi involved (explicitly typed presentations
of system � for example) are degenerate in a certain sense: there is a one-to-one correspondence
between valid typing statements and their typing derivatio ns. We might say, in such cases, that
the type systems involved are unitary.

2.4.4 Discussion

The key distinctions between the two views of typing can be su mmarized as follows:

TYPE ASSIGNMENT SYSTEMS TYPED CALCULI

Curry-style
extrinsic
epistemological

Church-style
intrinsic
ontological

ªtype annotations are directives to the
typecheckerº

ªtype annotations are part of the
programº

untyped models typed models
type inference typechecking

type reconstruction
argument synthesis
coercion reconstruction

subset interpretation of subtyping coercion interpretation of subtyping
intersection = intersection intersection = coherent overloading

2.4.4.1. Remark: In comparing Church-style and Curry-style semantics, we ha ve been cautious
in our usage of a number of terms that are sometimes employed t o distinguish the two. In some
neighborhoods of the programming language community where clear and rigorous meanings
have been agreed on for these terms, they function as useful shorthands. But the ®eld as a whole
has seen them put to so many, often subtly different, uses that they can cause confusion among
broader audiences.

The phrasesimplicitly typed and explicitly typed calculusÐ referring to the presence or absence
of concrete-syntax annotations such as type abstractions,type applications, and our for construct
Ð are particularly confusing, since Church-style systems t end to include such annotations and
Curry-style systems tend to omit them. In the context of the a bove discussion, it can be seen
that the other pairings also make perfect sense: a type assignment system may be formulated so
that type annotations in source expressions limit the possi ble typing derivations involving them;
conversely, a typed semantics may be given to a language where the entire burden of discovering
typing derivations is placed on the typechecker. Indeed, Ha rper and Mitchell [69] have promoted

2.5. EXPRESSIVENESS OF THE INTERSECTION TYPE DISCIPLINE 29

a view of ML, the quintessential implicitly typed polymorph ic language, as a typed � -calculus in
the style of Church. Thus, the distinction between explicit and implicit typing should be viewed
as a syntactic question (ªwhat are the subjects of the type inference rulesº) and an algorithmic
question (ªhow much and what kind of help must the programmer give to the typecheckerº), but
not as a semantic question.

We have also been careful to use the phrase ªtype inferenceº only in the context of systems with
untyped semantic models. When the same term is used for typed systems, its historical association
with Curry-style presentations tends to lead to confusion. We prefer ªtype reconstructionº for the
typed case.

2.4.4.2. Remark: Intersection types are also sometimes called conjunctive types, but this termi-
nology has fallen into disfavor because it suggests a false analogy with the ªandº connective of
intuitionistic logic. The well-known Curry-Howard isomor phism establishes a fruitful intuitive
correspondence between the type constructors of � -calculi and the connectives of intuitionis-
tic logic: functional types correspond to logical implicat ion, polymorphic types to polymorphic
quanti®ers, product types to logical conjunction, disjoin t sum types to disjunction, and so on.
Roughly speaking, a term of a given type can be viewed as evidence(in the sense of a constructive
proof) of the truth of the corresponding logical propositio n. The difference between the product
type �

�

� and the intersection � � � is that an element of �

�

� consists of two pieces of evidence,
one establishing � and the other establishing � , whereas an element of � � � consists of a single
piece of evidence that establishesboth � and � . (To be completely faithful to the explicitly typed
perspective, we should go a step further and say that an element of the intersection type contains
a piece of evidence that can becoercedto evidence for � and, perhaps via a different coercion, to
evidence for � .)

2.5 Expressiveness of the Intersection Type Discipline

The expressive power of intersection types is clearly illus trated by the fact that they can be used
to type many pure � -terms that have no typed counterparts in � � . For example, it is easy to show
that there the term � �

�

� � has no simple typing (i.e., there are no � and � such that �

� �

� � :�

�

� �

�).
But in �

� it has many types Ð for example,

> \x:A/\A->B. x x;
it : (A/\A->B) -> B

for any A and B.
This particular � -term can also be typed in thepure polymorphic � -calculus (for example, by the

typed term � � :
� � �

�

�

�

� �

�

� �

� �

�

�

�

� �

�), but it is known that there are strongly normalizing terms
that cannot be given polymorphic typings [65]. By contrast, various formulations of intersection
types can be used to exactly characterize the set of stronglynormalizing terms and two similar
important sets of pure terms (see [35] for a more complete discussion, sketches of proofs, and
pointers to full proofs).

2.5.1. Remark: The classical results about the intersection type discipli ne have been proved for a
type assignment system, not an explicitly typed calculus. S trictly speaking, they cannot be taken
as having any immediate bearing on the explicitly typed calc uli we consider here. For example,
it does not make sense to talk about ªtyping terms of the pure � -calculusº in an explicitly typed
calculus whose semantic models are also typed, since there is no straightforward way to relate the
semantics of a typed term to the semantics of its erasure. Nevertheless, these results do provide

2.6. BOUNDED POLYMORPHISM 30

a good intuitive gauge of the expressive power we may expect f rom intersection types in typed
calculi.

2.5.2. De®nition:
1. The type assignment system �

� � � �

�

is the implicitly typed analog of �

� .

2. The type assignment system �

� is the implicitly typed analog of a version of �

� where
the � relation and the rule SUB are dropped in favor of an explicit I NTER-E rule and the �

constructor is restricted to the binary case.

2.5.3. De®nition:
1. A type � is tail-properif � � � 1 � � 2 �

� � �

� � � � � for some � � 0.

2. Thepositiveand negative occurrencesof a subphrase � in a type � are de®ned inductively as
follows:

� if � � � , then � occurs positively in � ;
� if � occurs positively (resp. negatively) in � 1, then it occurs negatively (positively) in

� 1 � � 2; if it occurs positively (negatively) in � 2, then it occurs positively (negatively) in
� 1 � � 2;

� if � occurs positively (negatively) in � � , then it occurs positively (negatively) in � � � 1 � �

� �

�

.

3. A type is properif it contains only negative occurrences of � , anti-properif it contains only
positive occurrences of � , and strictly properif it contains no occurrences at all of � .

4. A context is proper (anti-proper, etc.) if its range conta ins only proper types.

2.5.4. Theorem: Let � be a pure � -term. Then � is normalizable iff there is an anti-proper �

� � � �

�

context � and a proper type � such that � �

� � � �

�

�

� .

2.5.5. Theorem: Let � be a pure � -term. Then � is head-normalizable iff there is some �

� � � �

�

context � and a tail-proper type � such that � �

� � � �

�

�

� .

2.5.6. Theorem: Let � be a pure � -term. Then � is strongly normalizing iff there is a context �

in �

� and a strictly proper type � such that � �

�

�

� .

2.5.7. Remark: An easy corollary of these theorems is that the full type infe rence problem for the
type assignment presentation of intersection types is unde cidable.

2.5.8. Remark: The classical intersection type discipline can be formulat ed without the subtype
relation, distributivity law, or nullary intersections, w hile retaining much of the expressive power
of the full-blown systems with these features. This leads on e to wonder whether a simpler
formulation would also suf®ce for the uses of intersection t ypes in a programming language
setting, although, for the sake of generality in this thesis we have chosen to deal with the richer,
more complex formulation. This point is discussed in more de tail in Section 3.4.1.

2.6 Bounded Polymorphism

The notion of bounded quanti®cationwas introduced by Cardelli and Wegner [33] in the lan-
guage Fun. Based on informal ideas by Cardelli and formalize d using techniques developed by
Mitchell [94], Fun integrated Girard-Reynolds polymorphi sm [66, 116] with Cardelli's ®rst-order
calculus of subtyping [20, 23].

2.6. BOUNDED POLYMORPHISM 31

Fun and its relatives have been studied extensively by progr amming language theorists and
designers. Cardelli and Wegner's survey paper gives the ®rst programming examples using
bounded quanti®cation; more are developed in Cardelli's st udy of power kinds [24]. Curien and
Ghelli [50, 63] address a number of syntactic properties of � � . Semantic aspects of closely related
systems have been studied by Bruce and Longo [12], Martini [9 1], Breazu-Tannen, Coquand,
Gunter, and Scedrov [10], Cardone [34], Cardelli and Longo [29], Cardelli, Martini, Mitchell, and
Scedrov [30], Curien and Ghelli [50, 51], and Bruce and Mitch ell [14]. � � has been extended to
include record types and richer notions of inheritance by Ca rdelli and Mitchell [32], Bruce [11],
Cardelli [26], and Canning, Cook, Hill, Olthoff, and Mitche ll [18]. Bounded quanti®cation also
plays a key role in Cardelli's programming language Quest [2 5, 29] and in the Abel language
developed at HP Labs [17, 18, 19, 39].

The original Fun was simpli®ed and slightly generalized by B ruce and Longo [12], and again
by Curien and Ghelli [50]. Curien and Ghelli's formulation, called minimal Bounded Funor � �

(ª � -subº), is the one considered here.
Like other second-order � -calculi, the terms of � � include the variables, abstractions, and

applications of � � , plus the type abstractions and type applications of the second-order � -calculus
Ð slightly re®ned to take account of the subtype relation: ea ch type abstraction gives a bound
for the type variable it introduces and each type applicatio n must satisfy the constraint that the
argument type is a subtype of the bound of the polymorphic fun ction being applied. Also, like
that of �

� , the � � subtype ordering includes a maximal element. (Since the two are not exactly
the same (c.f. 3.4.1), the maximal�

� type is called here by its conventional name, Top, instead of
� .)

� ::= Top �

�

� � 1 � � 2 �

� �

�

� 1 �

� 2

� ::= � � � � :�

�

� � � 1 � 2 � �

�

�

�

�

� � � � �

�

To accomodate the subtyping assumptions introduced by type abstractions, we enrich the
notion of ªcontextº to include bindings for both term variab les (as before) and type variables:

2.6.1. De®nition: A contextis a ®nite sequence of distinct type variables with associated bounds
and term variables with associated types:

� ::= � � � � �

�

�

� � � � � : �

The function dom
�

�

�

gives the set of type and term variables de®ned by � . �

� � �

denotes the bound
of

�

in � if it has one; �

�

�

�

denotes the type of � in � if it has one.

2.6.2. De®nition: The set of free type variablesof a type � or a term � is written FTV
�

�

�

or FTV
�

�

�

.
The set of free type variables of a context � is the union of the sets of free type variables of the
elements of the range of � . The set ofall type variables in a type � is written TV

�

�

�

.

2.6.3. De®nition: A type � is closedwith respect to a context � if FTV
�

�

� �

dom
�

�

�

. A term � is
closed with respect to � if FTV

�

�

� �

FV
�

�

� �

dom
�

�

�

. A context � is closed if
1. � � � � , or

2. � � � 1 �

�

�

� , with � 1 closed and � closed with respect to � 1, or

3. � � � 1 � � : � , with � 1 closed and � closed with respect to � 1.
A subtyping statement � � � � � is closed if � is closed and � and � are closed with respect to � ;
a typing statement � � �

� is closed if � is closed and � and � are closed with respect to �

2.6.4. Convention: (c.f. 2.2.7) In the following, we assume that all statements under discussion
are closed. In particular, we allow only closed statements i n instances of inference rules.

2.6. BOUNDED POLYMORPHISM 32

Type abstractions have almost the same typing rule as in other second-order � -calculi; they
are checked by moving their stated bound for the type variabl e they introduce into the context
and checking the body of the abstraction under the enriched s et of assumptions:

� �

�

�

� 1 � �
 � 2

� � �

�

�

� 1 �

�

� �

�

� 1 �

� 2
(ALL-I)

Type applications check that the type being passed as a parameter is indeed a subtype of the
bound of the corresponding quanti®er:

� � �

� �

�

� 1 �

� 2 � � � � � 1

� � � � �

�

 � � �

�

� � 2
(ALL-E)

The subtype relation of � � is also extended with several rules. First, we stipulate tha t Topis a
maximal element of the subtype order:

� � � � Top (SUB-TOP)

(One of the main uses ofTopÐ in fact, the original reason it was introduced by Cardelli a nd Wegner
Ð is to recover ordinary unbounded quanti®cation as a specia l case of bounded quanti®cation:
� �

�

� becomes
� �

� Top
�

� .)
Type variables are subtypes of the bounds given for them in th e prevailing context:

� �

�

� �

� � �

(SUB-TVAR)

Like arrow types, subtyping of quanti®ed types is contravar iant in their bounds and covariant
in their bodies:

� � � 1 � � 1 � �

�

�

� 1 � � 2 � � 2

� �

� �

�

� 1 �

� 2 �

� �

�

� 1 �

� 2
(SUB-ALL)

This rule deserves a closer look, since it causes considerable dif®culties (c.f. Chapter 6 in
particular). Intuitively, it reads as follows:

A type � �

� �

�

� 1 �

� 2 describes a collection of polymorphic values (functions fr om
types to values), each mapping subtypes of � 1 to instances of � 2. If � 1 is a subtype
of � 1, then the domain of � is smaller than that of � �

� �

�

� 1 �

� 2, so � is a stronger
constraint and describes a smaller collection of polymorph ic values. Moreover, if, for
each type � that is an acceptable argument to the functions in both colle ctions (i.e., one
that satis®es the more stringent requirement � � � 1), the � -instance of � 2 is a subtype
of the � -instance of � 2, then � is a ªpointwise strongerº constraint and again describes
a smaller collection of polymorphic values.

Thus, quanti®ed types may be thought of as a kind of function s paces. We sometimes abuse this
analogy and speak of the body and bound of a quanti®ed type as i ts ªleft-handº and ªright-handº
sides.

2.6.5. Convention: When necessary to prevent confusion, turnstiles in �
� derivations are written

�

�

.

2.6.6. Remark: (c.f. 2.2.10) Since contexts now include assumptions aboutfree type variables,
we can drop the separate notion of ªprimitive types.º For eac h primitive type of � � , we add a

2.6. BOUNDED POLYMORPHISM 33

variable with the same name to the pervasive context � � . The bounds given to these variables
encode the subtype relation � � . For example, the primitive subtype relation

� � � � � � �

� 	 �
 �

�

�

� �

�

�

�

is represented by the pervasive context

� � �

� 	 �
 �

� Top�

� � �

�

� 	 �
 �

�

� � � �

�

� 	 �
 �

�

Note, however, that this encoding sacri®ces a degree of ¯exibility: it will only work for ªtree-
shapedº order structures where each primitive type has at mo st one immediate parent; for exam-
ple, the preorders

� � � � � � �

� 	 �
 �

� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� � 	 � � � � � � � � � � � � � � � � � � �

�

�

cannot be encoded in this way. Luckily, some of this lost ¯exi bility is regained in F� , which allows
cycle-free directed graphs like the one on the left to be encoded as well.

2.6.7. Remark: The encoding of primitive types as type variables also resul ts in a modest gain in
expressiveness over their formulation in � � and �

� : in both of these calculi, the only things that
can be supertypes of primitive types are other primitive typ es (and, in �

� , intersections involving
only primitive types). Here, the upper bound given in � � for a variable may be any � � type whose
free variables are all de®ned to the left of the variable being introduced.

This extra freedom might be used, for example, to express the fact that natural numbers can
be viewed as iterators (c.f. Section 7.7.1), in terms of an implicit coercion from a primitive type
Nat to the appropriate polymorphic type:

� �

� �

	 �

�

�

� �

�

� �

�

� �

�

�

�

�

2.6.8. De®nition: We use the following abbreviations in examples:
� �

�

�

def
�

� �

� Top
�

�

� �

1
� �

1 � �

�

�

� �

�

�

�

def
�

� �

1
� �

1 � � �

� �

�

� �

�

�

�

�

The rules de®ning � � do not directly constitute an algorithm for checking the sub type relation,
since they are not syntax-directed. In particular, the rule TRANS cannot effectively be applied
backwards, since this would involve ªguessingº an appropri ate value for the intermediate type

� 2. Curien and Ghelli (as well as Cardelli and others) use the fo llowing reformulation:

2.6.9. De®nition: � �

�

(ª � º for ªnormal formº) is the least relation closed under the fo llowing
rules:

� � � � Top (NTOP)

� �

�

�

�

(NREFL)

2.6. BOUNDED POLYMORPHISM 34

� � �

� � �

� �

� �

�

� �

(NVAR)

� � � 1 � � 1 � � � 2 � � 2

� � � 1 � � 2 � � 1 � � 2
(NA RROW)

� � � 1 � � 1 � �

�

�

� 1 � � 2 � � 2

� �

� �

�

� 1 �

� 2 �

� �

�

� 1 �

� 2
(NA LL)

The re¯exivity rule here is restricted to type variables. Tr ansitivity is eliminated, except for
instances of the form

� �

�

� �

� � �

� � �

� � �

� �

� �

�

� � �

which are packaged together as instances of the new rule NVAR.

2.6.10. De®nition: The rules de®ning � �

�

may be read as an algorithm (i.e., a recursively de®ned
procedure) for checking the subtype relation:

check
�

� � � � �

�

�

1. if � � Top
then true

2. else if� � � 1 � � 2 and � � � 1 � � 2

then check
�

� � � 1 � � 1
�

and check
�

� � � 2 � � 2
�

3. else if� �

� �

�

� 1 �

� 2 and � �

� �

�

� 1 �

� 2

then check
�

� � � 1 � � 1
�

and check
�

� �

�

�

� 1 � � 2 � � 2
�

4. else if� �

�

and � �

�

then true
5. else if� �

�

then check
�

� � �

� � �

� �)
� . else

false.
We write �

�

�

to refer either to the algorithm or to the inference system, d epending on context.

2.6.11. Lemma:[Curien and Ghelli] The relations �
� and �

�

�

coincide: � � � � � is derivable in
� � iff it is derivable in � �

�

.

The algorithm �
�

�

may be thought of as incrementally attempting to build a norm al form
derivation of a statement � , starting from the root and recursively building subderiva tions for the
premises. By Lemma 2.6.11, if there is any derivation whatsoever of a statement � , there is one in
normal form; the algorithm is guaranteed to recapitulate th is derivation and halt in ®nite time.

2.6.12. Fact: [Curien and Ghelli] � � � � � is derivable in �
�

�

iff the algorithm �
�

�

halts and
returns true when given this statement as input.

Unfortunately, the algorithm is not a decision procedure for the subtype relation. Indeed,
the main result of Chapter 6 is that this relation is undecida ble. We shall see, however, that the
convergence of the algorithm in practice is perfectly acceptable (c.f. 6.12).

Chapter 3

The F � Calculus

This chapter introduces F� , an explicitly typed second-order lambda calculus with bou nded
quanti®cation and intersection types. F� can roughly be characterized as the union of the concrete
syntax and typing rules for the systems �

� and �
� :

�
�

�

�

� �

F�

�

�

�

�

�

�

�

�

� �

�

�

�

� �

�

�

�

�

�

To achieve a compact and symmetric calculus, however, a few small modi®cations and extensions
are needed:

� Since � � allows primitive types to be encoded as elements of the perva sive context, we drop
the primitive types of � � and �

� and the rule SUB-PRIM .
� Since � and Top both function as maximal elements of their respective subty pe orderings,

we drop Top and let � take over its job. Section 3.4 discusses this design decision in more
detail.

� Since
�

behaves like a kind of function space constructor, we add a ne w law SUB-DIST-IQ,
analogous to SUB-DIST-IA, which allows intersections to be distributed over quan ti®ers on
the right-hand side.

� We use the ordinary form of � -abstraction from � � rather than the generalized one intro-
duced by Reynolds for �

� . The notion of deriving alternative typings for subphrases under
different sets of assumptions is captured by a new syntactic form, for.

The for construct is described in detail in Section 3.1. Section 3.2then summarizes the concrete
syntax, subtyping rules, and typing rules of F� . Section 3.3 introduces a linear shorthand for F�

derivations. Section 3.4 discusses the major design choices in the formulation of F� .

35

3.1. EXPLICIT ALTERNATION: THE FORCONSTRUCT 36

3.1 Explicit Alternation: The for Construct

The notions of type variables and type substitution inherit ed from � � can be used to de®ne an
elegant generalization of the alternation inherent in � � 's generalized � -abstraction construct. We
extend the concrete syntax of terms with a for form

� ::= . . . � for � in � 1 � �

� 	

�

�

whose typing rule allows a choice of any of the � 's as a replacement for � in the body:

 � �

� � � �

� � �

 �

for � in � 1 � �

� 	

�

� � �

(FOR)

This rule, like the generalized arrow introduction rule A RROW-I' of � � , can be used together
with I NTER-I to generate a set of up to � alternative typings for the body and then form their
intersection as the type of the whole for expression:

> double = for A in Int,Real. \x:A. plus x x;
double : Int->Int /\ Real->Real

Indeed, � � 's generalized � -abstraction may be reintroduced as a simple syntactic abbreviation:

3.1.1. Notation: � � :� 1 � �

�
	

�

�

def
� for � in � 1 � �

�
	

�

� � : �

�

� � where � is fresh.

Besides separating the mechanisms of functional abstraction and alternation, the introduction
of the for construct extends the expressive power of the language by providing a namefor the
ªcurrent choiceº being made by the type checker:

> for A in Int,Real.
> \\B<A. \f:A->B. \x:A.
> f (double x);
it : All B<Int. (Int->B)->Int->B /\ All B<Real. (Real->B)-> Real->B

Indeed, the ®ner control over alternation allowed by the exp licit for construct may be used
to improve the ef®ciency of typechecking even for ®rst-orde r languages with intersections, like
Forsythe. For example, Forsythe's generalized � -abstraction allows the de®nition of polynomial
functions like the following:

> poly =
> \w:Int,Real. \x:Int,Real. \y:Int,Real. \z:Int,Real.
> plus (double x) (plus (plus w y) z);
poly : Int->Int->Int->Int->Int /\ Real->Real->Real->Rea l->Real

But the behavior of the typechecker on this program is unnece ssarily inef®cient. It is easy to see,
from the types of plus and double , that when all the arguments to poly have type Int , the result
type will be Int , and that otherwise the result type will be Real . So if we chooseReal for the
type of any of the four parameters, we might as well choose Real for the others too. We can
realize a substantial gain in typechecking ef®ciency by making this observation explicit with a for
expression:

> poly =
> for A in Int,Real.
> \w:A. \x:A. \y:A. \z:A.
> plus (double x) (plus (plus w y) z);
poly : Int->Int->Int->Int->Int /\ Real->Real->Real->Rea l->Real

The second version of poly requires that the body be checked only twice, as compared to sixteen
times for the ®rst version.

3.2. SYNTAX, SUBTYPING, AND TYPING 37

3.2 Syntax, Subtyping, and Typing

We now give a precise de®nition of the F� calculus, which forms the main object of study for the
remainder of the thesis. Since all of its components have already been discussed in detail, we
present just the bare facts here. (These de®nitions are alsosummarized in Appendix A for easy
reference.)

3.2.1. De®nition: The set of F� types is de®ned by the following abstract grammar:
� ::= �

�

�

1 �

�

2

�

�

�

�

�

1 �

�

2

� � �

�

1 � �

�

	 �

3.2.2. De®nition: The set of F� terms is de®ned by the following abstract grammar:
� ::= �

� � � :�

�

�

�

�

1
�

2

� � �

�

�

�

�

�

�

�

�

�

� for � in �

1 � �

�

	

�

�

3.2.3. De®nition: The three-place F� subtype relation

 �

� �

� is the least relation closed under
the following rules:

 �

�

�

� (SUB-REFL)

 �

�

1 �

�

2

 �

�

2 �

�

3

 �

�

1 �

�

3
(SUB-TRANS)

 �

� �

 �

� � (SUB-TVAR)

 �

�

1 � � 1

 �

� 2 �

�

2

 �

� 1 �

� 2 �

�

1 �

�

2
(SUB-ARROW)

 �

�

1 � � 1

�

�

�

�

1
�

� 2 �

�

2

 �

�

�

�

� 1 �

� 2 �

�

�

�

�

1 �

�

2
(SUB-ALL)

for all 	

�

 �

� �

�

 �

� � � �

�

1 � �

�

	 �

(SUB-INTER-G)

 �

� �

�

1 � �

�

	 �
�

�

 (SUB-INTER-LB)

 �

� � �

�

�

1 � �

�

�

�

	 �
� �

�

� �

�

1 � �

�

	 �
(SUB-DIST-IA)

 �

�

�

�

�

�

�

�

�

1 � �

�

�

�

�

�

�

	
�

�

�

�

�

�

�

�

�

�

1 � �

�

	
�

(SUB-DIST-IQ)

3.2.4. De®nition: The three-placeF� typing relation

 �

� � � is the least relation closed under the
following rules:

 �

�

�

 �

� � (VAR)

�

� : �

1
�

� � �

2

 �

� � :�

1 �

� � �

1 �

�

2
(ARROW-I)

 �

�

1
� �

1 �

�

2

 �

�

2
� �

1

 �

�

1
�

2
� �

2
(ARROW-E)

3.3. LINEAR NOTATION FOR DERIVATIONS 38

�

�

�

�

1
�

� � �

2

 �

� �

�

�

1 �

� �

�

�

�

�

1 �

�

2
(ALL-I)

 �

� �

�

�

�

�

1 �

�

2

 �

�

�

�

1

 �

�

�

�

�

�

�

�

� � �

�

2
(ALL-E)

 � �

� � � �

� � �

 �

for � in � 1 � �

� 	

�

� � �

(FOR)

for all 	

�

 �

� � �

 �

� �

� �

�

1 � �

�

	 �

(INTER-I)

 �

� � �

1

 �

�

1 �

�

2

 �

� � �

2
(SUB)

3.2.5. Convention: When necessary to prevent confusion, turnstiles in F� derivations are written
�

�

.

3.3 Linear Notation for Derivations

It is convenient to have a linear notation for typing and subt yping derivations, so that operations
on proofs such as cut-elimination transformations can be ex pressed as textual rules rather than as
pictures. Our notation is a modi®ed version of Curien and Ghe lli's [50].

3.3.1. De®nition: The sets ofsubtyping derivation abbreviations� and typing derivation abbreviations
� are de®ned by the following abstract grammar:

� ::= id
�

�

1 ; �

2

�

� �

�

�

1 �

�

2

�

�

�

�

�

1 �

�

2

� �

�

1 � �

�

	 �

� proj

� dist-ia
� dist-iq

� ::=
� �

� � � : �

�

�

�

�

1
�

2

� � �

�

�

�

�

�

�

�

�

�

� for � in � 1 � �

� 	

�

�

� �

�

1 � �

�

	 �

�

� � �

3.3.2. De®nition: The translation function
�

Ð � 	 , which maps derivation trees to their abbreviated
forms, is de®ned as follows. (Recall that � ::
 is read as ª � is a derivation whose conclusion is the
judgement
 .º)

3.3. LINEAR NOTATION FOR DERIVATIONS 39

�

(SUB-REFL)

 �

�

�

� �

	

� id

�

�

1 ::

 �

�

1 �

�

2
�

2 ::

 �

�

2 �

�

3

 �

�

1 �

�

3
(SUB-TRANS)

�

	

�

�

	

1 ; �

	

2

�

(SUB-TVAR)

 �

� �

 �

� �

�

	

�

� �

�

�

1 ::

 �

�

1 � � 1
�

2 ::

 �

� 2 �

�

2

 �

� 1 �

� 2 �

�

1 �

�

2
(SUB-ARROW)

�

	

�

�

	1 �

�

	2

�

�

1 ::

 �

�

1 � � 1
�

2 ::

�

�

�

�

1
�

� 2 �

�

2

 �

�

�

�

� 1 �

� 2 �

�

�

�

�

1 �

�

2
(SUB-ALL)

�

	

�

�

�

�

�

	1 �

�

	2

�

for all 	

� �

 ::

 �

� �

�

 �

� � � �

�

1 � �

�

	 �

(SUB-INTER-G)
�

	

�

�

�

	1 � �

�

	

	

�

�

(SUB-INTER-LB)

 �

�

�

�

1 � �

�

	 �
�

�

�

	

� proj

�

(SUB-DIST-IA)

 �

� � �

�

�

1 � �

�

�

�

	
�

� �

�

� �

�

1 � �

�

	
�

�

	

� dist-ia

�

(SUB-DIST-IQ)

 �

� �

�

�

�

�

�

�

1 � �

�

�

�

�

�

�

	 �
�

�

�

�

�

�

� �

�

1 � �

�

	 �

�

	

� dist-iq

�

(VAR)

 �

�

�

 �

� �

�

	

�

� �

�

� ::

�

� :�

1
�

�
�

�

2

 �

� � :�

1 �

� � �

1 �

�

2
(ARROW-I)

�

	

�

� � :�

1 �

�

	

�

�

1 ::

 �

�

1
� �

1 �

�

2
�

2 ::

 �

�

2
� �

1

 �

�

1
�

2
� �

2
(ARROW-E)

�

	

�

�

	1
�

	2

�

� ::

�

�

�

�

1
�

� � �

2

 �

� �

�

�

1 �

�
�

�

�

1 �

�

2
(ALL-I)

�

	

�

� �

�

�

1 �

�

	

�

� ::

 �

� �

�

�

�

�

1 �

�

2
� ::

 �

�

�

�

1

 �

�

�

�

�

�

�

�

� � �

�

2
(ALL-E)

�

	

�

�

	

�

�

	

�

�

�

 ::

 � �

�

� � �

� � �

 �

for � in � 1 � �

�
	

�

� � �

(FOR)
�

	

� for � in � 1 � �

�
	

�

�

	

�

for all 	

� �

 ::

 �

� � �

 �

� �

� �

�

1 � �

�

	 �

(INTER-I)
�

	

�

�

�

	

� �

�

	

	

�

�

� ::

 �

� �

�

� ::

 �

� �

�

 �

� � �

(SUB)
�

	

�

�

	

� �

	

3.4. DISCUSSION 40

For example, the subtyping derivation

(SUB-TVAR)

 � �

Int � Real

(SUB-REFL)

 �

�

�

� Int
�

� � �

(SUB-INTER-G)

 �

�

�

� Int
�

Int �

�

 �

�

�

� Int
�

�

�

Int � �

�

�

(SUB-ARROW)

 � �

�

�

� Real
�

�

�

Int �

�

�

� Int
�

�

�

�

(SUB-ALL)

is abbreviated by the linear shorthand
�

�

�

� � � �

�

id
�

� �

�

3.3.3. Remark: Strictly speaking, our linear abbreviations should contai n suf®cient information
that they uniquely determine proof trees; in other words,

�

Ð �

	

should be injective. Clearly, we
could decorate our linear abbreviations with additional in formation and extend

�

Ð � 	 to a bijection.
For example, each abbreviation could include an explicit in dication of the judgement it derives.
However, this would make the abbreviations much larger and l ess readable, eliminating most of
the bene®t of introducing them in the ®rst place. We therefor e use the present abbreviatory forms
as if they contained suf®cient information to unique determine d erivation trees, relying on the
reader to imagine the necessary annotations.

Again, when we need to be explicit about the conclusion of a de rivation written in linear form,
we use the notation � ::
 .

3.4 Discussion

We pause now to discuss the design choices that arise in the formulation of F� and explore some
of its properties.

3.4.1 Topvs. �

In forming F� from � � and � � , we ®nd, pleasantly, that most of their features are quite or thogonal:
for a given feature, either it is found already in � � or else it exists in either � � or � � in a form that
interacts smoothly with all the features of the other. The on e exception is the maximal types

�

and Top. In the best case, we might hope that these would coincide in F� , but this, unfortunately,
is not the case.

The difference arises from the INTER-I rule of �
� , which, in its nullary form, states that any

term whatsoever has type
�

. � � has no such rule: the only way a term � can be assigned type
Top is by the rules SUB and SUB-TOP, which require that the term already have some type � with

� �

� . In other words,
� Topis the type of all well-typedterms;
�

�

is the type of all terms.
Order-theoretically, the two types are equivalent (each is a subtype of the other), since each is
explicitly axiomatized as a maximal type.

For the sake of conceptual parsimony, we drop Tophere and retain
�

, since
�

can perform the
same jobs asTop(in particular, it allows unbounded quanti®cation to be rec overed from bounded
quanti®cation), while requiring no extra typing or subtypi ng rules beyond those de®ning the
behavior of general � -ary intersections.

The alternative system with both
�

and Top, though messier and probably not much more
expressive thanF� , makes reasonable syntactic sense and does not seem much harder to typecheck.

3.4. DISCUSSION 41

More interesting, though, would be the system with Top instead of
�

, where intersections are
restricted to two or more elements: this language would have much of the practical expressiveness
of F� while avoiding the unfamiliar notion of a ªtype of all terms, even ill-behaved ones.º This
system supports the notion of typechecking failure, which in F� is simply equated with

�

.

3.4.2 Encoding Primitive Subtyping

As in � � , both term and type constants are absent from F� , and programs involving them are
expressed as terms with free variables whose typing and subt yping behavior are declared in a
pervasive context

 �

.
The presence of intersection types allows a greater variety of primitive subtype relations to be

encoded in this way than was possible in � � . For example, the relation

� � � � � � �

� � � � 	

�
 �

�

�

� �

�

�

�

�

� �

is represented by the pervasive context

 � � � � � � 	

�

�

�

� � �

�

� � � � 	

�

� � � �

�

� � � � 	

�

�
 �

�

� � � � � � � �

�

Primitive subtype order structures that are not partially o rdered, such as
� � � � � � � � � � 	 � � 	 � � � � � � � 	 �

�

�

are still not expressible, though.
The encodability of primitive subtype relations can be stat ed formally as follows:

3.4.2.1. De®nition: A topological sortof a ®nite collection of primitive types � is a bijective mapping
index�

�

�

�

�

1
� �

� � � � such that � � � � implies index�

�

� � � index�

�

� � .

3.4.2.2. De®nition: Let � be a collection of primitive types topologically sorted by index� . Let
�

�

index�

1
�

�

	 � . Then � is encodedby the following F� context:

 �

� . . . �

� � � �

�

� � � � �
�

� . . .

3.4.2.3. Remark:Note that every ®nite partial order can be topologically sor ted.

3.4.2.4. Lemma:Let

be an � � context and assume that the primitive subtype relation � � can be
topologically sorted by some function index� . If

 �

!

�

� �

� , then

�

�

 �

�

� �

� .
Proof: By induction on the structure of the given derivation. All of the �

� rules translate directly
into F� rules, except for SUB-PRIM ; an instance of this rule with conclusion

 �

� � � is translated
into the following F� derivation:

(SUB-TVAR)

�

�

 �

�

� � � �

�

� � � �
�

�

(SUB-INTER-LB)

�

�

 �

�

� �

�

� � � �
�

�

� �

 �

�

 �

�

� � �

�

(SUB-TRANS)

"

3.4.2.5. Lemma:Let

by a � � context and assume that the primitive subtype relation � � can be
topologically sorted by some function index� . Then

 �

!

�

�
�

� only if

 �

�

 �

�

�
�

� .
(In fact, the derivation-normalization results of the foll owing chapter can be used to show the

converse, so

 �

!

�

� � � iff

 �

�

 �

�

� � � .)

3.5. ALTERNATIVE FORMULATIONS 42

3.5 Alternative Formulations

The formulation of F� presented in Section 3.2 represents a natural combination of the most elegant
formulations of pure bounded quanti®cation and ®rst-order intersection types. However, a few
alternative formulations are worthy of mention.

3.5.1 Unbounded Quanti®ers

Probably the most important alternative is a system based on pure unbounded quanti®cation,
with the same formulation of intersection types. It would ap pear, at ®rst sight, that this system
is much less expressive than the one with bounded quanti®ers. While this is certainly true of the
quanti®cation-only fragments, when intersection types ar e added it becomes possible to ªencodeº
bounded quanti®cation by reading a bounded quanti®er as an abbreviation for an unbounded
one with a slightly modi®ed body:

�

�

�

�

�

�

def
�

�

�

�

�

�

�

� � � �

�

Intuitively, the type
�

�

�

�

�

� takes an argument that is forced, in advance, to fall beneath � .
On the other hand,

�

�

�

�

�

�

� � � �

� takes an argument that may be any type whatsoever, but at
each point where this type is used it squeezes it down to below � using a

�

. (This abbreviation
was suggested by John Mitchell.)

According to a typed view of the semantics of quanti®cation a nd intersections, where ª �

� º
signals the existence of a coercion into � rather than simply a proof that something already given
falls within � , this transformation makes little sense. In the simpler, un typed view, however, it is
fairly appealing.

This is not, however, an encodingof bounded quanti®cation in a full sense. For example, it
does not validate the SUB-ALL rule. The derivable F� statement

 �

�

�

� Real
�

�

�

� �

�

�

� Int
�

�

�

�

translates to the non-derivable statement

 �

�

�

�

�

�

�

Real�
�

�

�

�

Real� �

�

�

�

�

�

�

Int �

�

�

�

�

Int �

�

It is somewhat surprising, in view of this weakness, that man y programming examples using
bounded quanti®cation still behave as expected under the tr anslation. This point is explored at
more length in Section 7.9.

3.5.2 Additional Subtyping Rules

It is also possible to strengthen F� in various ways, the most obvious being the addition of rules
allowing quanti®ers to be introduced and eliminated indepe ndent of the syntactic forms � �

�

�

�

�

and �

� �
� :

 �

� �

�

1

 �

�

�

�

�

1 �

�

2 �

�

� � � �

�

(SUB-ALL-E)

�

�

�

�

1
� �

� �

2

 � �

�

�

�

�

�

1 �

�

2
(I-A LL-I)

The resulting system is almost certainly too strong to form a suitable foundation for a program-
ming language. For example, the problem of typechecking for the quanti®cation-only fragment

3.5. ALTERNATIVE FORMULATIONS 43

of this calculus is not known to be decidable; it is similar to the full type inference problem
for polymorphic lambda-calculus, which is also open, but kn own to be of at least exponential
complexity [74].

3.5.3 Bounded Existential Types

Another natural extension of F� would be to allow bounded existential types in addition to it s
bounded universal types. Bounded existentials are discussed by Cardelli and Wegner [33], who
use them to obtain a notion of partially abstract typebased on Mitchell and Plotkin's correspondence
between abstract types (modules or packages) and existential types [97].

This extension seems straightforward. However, since boun ded existential types can be
encoded as bounded polymorphic types using the abbreviatio n

�

�

�

�

�

�

def
�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

we can forgo their extra complication for the purposes of the present study.

Chapter 4

Typechecking

This chapter develops the proof theory of the F� calculus, leading up to the de®nition and cor-
rectness proof of an algorithm for synthesizing minimal typ es of F� terms. The major results we
establish are as follows:

� We give an alternative formulation of the subtype relation i n terms of ªcanonical types,º
where intersections appear only on the left of arrows and qua nti®ers. This formulation is
equivalent to the original, in the sense that there is some canonical type in the equivalence
class of each ordinary type. More formally, the ª¯atteningº map from ordinary to canonical
types both preserves and re¯ects derivability of subtyping statements.

� A proof-normalization argument based on the one used by Curi en and Ghelli [50] shows
that every derivable canonical subtyping statement has a ªn ormal formº derivation with a
particular, restricted shape.

� The existence of normal-form canonical derivations is used to prove the semi-completeness
of a syntax-directed algorithm for checking the subtype rel ation.

� The soundness of a syntax-directed type synthesis algorithm for F� terms is established by
showing that there exist ®nite bases for the collections of arrow types and quanti®ed types
lying above a given type. This argument also shows that the su broutine for checking the
subtype relation is the only source of possible nonterminat ion in the typechecking algorithm.

� The shapes of the typing derivations discovered by this algo rithm are used to prove that F�

is a conservative extension of the ®rst-order intersection calculus
�

� . Because of the different
behavior of Topand � , however, � � cannot similarly be embedded in F� .

4.1 Basic Properties

We begin by establishing some basic proof-theoretic proper ties of the subtype relation � � � 	

and the typing relation � � � �
 .
First, we state several useful derived rules of inference.

4.1.1. Lemma:
� � � � �
 1 � �

� �
 � � � � � �
 1 � �

 � � (D-D IST-IA)

� �

� � �

�

�

�

 1 � �

� �

�

�

�

 � � � � �

�

�

�

�
 1 � �

 � � (D-D IST-IQ)

Proof: Straightforward. �

44

4.1. BASIC PROPERTIES 45

4.1.2. Lemma:
� �

�

 � 1 � �

 �

� � �

 � � 1 � � � � �

�

� � (D-A BSORB)

� and � � enumerate the same ®nite set
� �

�

�

�

�

(D-REINDEX)

for all
 � there is some � � such that � � � � 	
 �

� � � � 1 � �

� � � 	 �
 1 � �

 � �

(D-A LL-SOME)

Proof: Straightforward. �

4.1.3. Lemma: [Permutation] If � � is a permutation of � and both � and � � are closed, then
1. � � � 	
 iff � � � � 	

2. � � �
�

 iff � � � �
�

 .

Proof: By induction on derivations. �

4.1.4. Convention: Lemma 4.1.3 justi®es a notational simpli®cation: two closed contexts � and �

�

that differ only in the order of their bindings will be consid ered identicalfrom here on, so that, for
example, a derivation of � � � 	
 is taken to bea derivation of � � � � 	
 .

Whenever a subtyping statement can be derived from a given co ntext, it can also be derived
from any larger context. In logic, this property is called weakening.

4.1.5. Lemma: [Weakening] If � 1 	

� 2 is closed and � 1 � � 	
 , then � 1 	

� 2 � � 	
 .

Proof: By induction on the structure of a derivation of � 1 � � 	
 . At each stage of the induction,
we proceed by a case analysis on the rule used in the last step of the derivation.

CaseSUB-REFL: �

Immediate by SUB-REFL.

CaseSUB-TRANS:

By the induction hypothesis and S UB-TRANS.

CaseSUB-TVAR: �
 �

 � 1 �

� �

Since � 1 �

� � �

�

� 1 	

� 2 �

�

� � , SUB-TVAR immediately gives � 1 	

� 2 � � 	 � 1 �

� � .

CaseSUB-ARROW: �
 � 1 � � 2

 1 �
 2

By the induction hypothesis and S UB-ARROW.

CaseSUB-ALL : �
 � �

�

� 1 �

� 2

 � �

�

 1 �

 2

By assumption, � 1 �
 1 	 � 1 and � 1 	

�

�

 1 � � 2 	
 2. We may also assume that � �
� dom�

� 1 	

� 2 � .
Then � 1 	

� 2 	

�

�

 1 is closed, and, by the induction hypothesis, � 1 	

� 2 �
 1 	 � 1 and (using
Convention 4.1.4) � 1 	

� 2 	

�

�

 1 � � 2 	
 2. By SUB-ALL , � 1 	

� 2 � � �

�

� 1 �

� 2 	 � �

�

 1 �

 2.

CaseSUB-INTER-G:

�
 1 � �

 � �

By the induction hypothesis and S UB-INTER-G.

CaseSUB-INTER-LB: �

� � 1 � �

� � �

 � �

Immediate.

CaseSUB-DIST-IA : �

� �

�

�
 1 � �

�

�

�
 � �

 �

�

�

�
 1 � �

 � �

Immediate.

4.1. BASIC PROPERTIES 46

CaseSUB-DIST-IQ: �
 � � �

�

� �

�

 1 � �

� �

�

� �

�

 � �

 � �

�

� �

�

 �
 1 � �

 � �

Immediate. �

A different kind of weakening lemma will also be needed. Rath er than adding a new variable
to the context, this one states that a derivable subtyping statement remains derivable when the
bounds of some of the existing type variables are replaced by ªnarrowerº bounds.

4.1.6. Lemma: [Narrowing] Let � and �

� be closed contexts such that, for each � � � dom�

� � ,
� � � � �

�

� � � 	 �

�

� � � . Then � � � 	
 implies � � � � 	
 .

Proof: By induction on a derivation of � � � 	
 . Proceed by cases on the ®nal rule.

CasesSUB-REFL, SUB-TRANS, SUB-ARROW, SUB-INTER-G, SUB-INTER-LB, SUB-DIST-IA, and SUB-
DIST-IQ:

Either immediate or by straightforward use of the induction hypothesis.

CaseSUB-TVAR: �
 �

 �

�

� �

By SUB-TVAR, �

�

� � 	 �

� �

� � . By assumption, �

�

� �

� �

� � 	 �

�

� � . By SUB-TRANS, �

�

� � 	

�

�

� � .

CaseSUB-ALL : �
 � �

�

� 1 �

� 2

 � �

�

 1 �

 2

By assumption, � �
 1 	 � 1 and �

	

�

�

 1 � � 2 	
 2. By the induction hypothesis, �

�

�
 1 	 � 1.
By assumption and weakening (Lemma 4.1.5), �

�

	

�

�

 1 � �
�

�

� � � 	 �

�

� � � for each � �
� dom�

� � .
By SUB-REFL, �

�

	

�

�

 1 �

�

�

�

	

�

�

 1 �

�

� � 	

�

�

	

�

�

 1 �

�

� � . The induction hypothesis then gives
� �

	

�

�

 1 � � 2 	
 2. By SUB-ALL , � � � � �

�

� 1 �

� 2 	 � �

�

 1 �

 2. �

Using narrowing, we can show that the equivalence relation i nduced by the subtype relation
is a congruence:

4.1.7. Lemma:
� �
 1 �

�1 � �
 2 �

�2

� �
 1 �
 2 �

�1 �

�2
(D-CONG-ARROW)

� �
 1 �

�1 �

	

�

�

�1 �
 2 �

�2

� � � �

�

 1 �

 2 � � �

�

 �1 �

 �2
(D-CONG-ALL)

for all �

	

� �
 � �
 �

�

� � �
 1 � �

 � � � �

�1 � �

�

�

�

(D-CONG-INTER)

Proof: Easy except for D-CONG-ALL , which requires Lemma 4.1.6. �

4.1.8. Lemma: [Subtyping Substitution]
If

� 1 	

�

� �

	

� 2 � � 	

� 1 � � 	

�

	

then

� 1 	 �

� � � � � 2 �

�

� � � � � 	

�

� � � �

�

Proof: By induction on a derivation of � 1 	

�

� �

	

� 2 � � 	
 .

CasesSUB-REFL, SUB-TRANS, SUB-ARROW, SUB-INTER-G, SUB-INTER-LB, SUB-DIST-IA, and SUB-
DIST-IQ:

Either immediate or by straightforward use of the induction hypothesis.

CaseSUB-TVAR: �
 �

�

� 1 	

�

� �

	

� 2 �

�

� �

4.1. BASIC PROPERTIES 47

Subcase: �
 �

By assumption,
� 1 � � 	

�

�

By weakening (4.1.5),
� 1 	 �

� � � � � 2 � � 	

�

	

that is,
� 1 	 �

� � � � � 2 �

�

� � � � � 	

�

� � � �

�

	

as required.

Subcase: � �
 �

By SUB-TVAR ,
� 1 	 �

� � � � � 2 � � 	

�

� 1 	 �

� � � � � 2 �

�

� �

	

that is,
� 1 	 �

� � � � � 2 �

�

� � � � � 	

�

� � � �

�

� 1 	

�

�
�

	

� 2 �

�

� �

�

CaseSUB-ALL : �
 � �

�

� 1 �

� 2

 � �

�

 1 �

 2

By assumption,
� 1 	

�

�
�

	

� 2 �
 1 	 � 1

� 1 	

�

� �

	

� 2 	

� 	
 1 � � 2
�

 2 �

By the induction hypothesis,
� 1 	 �

� � � � � 2 �

�

� � � �
 1 	

�

� � � � � 1

� 1 	 �

� � � � � 2 	

�

�

�

� � � �
 1 �

�

� � � � � 2 	

�

� � � �
 2 �

By SUB-ALL and the de®nition of substitution,
� 1 	 �

� � � � � 2 �

�

� � � �

�

� �

�

� 1 �

� 2 � 	

�

� � � �

�

� �

�

 1 �

 2 �

�

�

We would also like to show that whenever a variable � or � in dom�

� � is unused in a statement
� � � 	
 or � � �

�

 , we may drop it from � without affecting derivability. Because the

rule SUB-TRANS allows subtyping derivations that can contain internal use s of arbitrary types, we
cannot prove this property for type variables with the machi nery we have developed so far (it is
an easy corollary of Theorem 4.2.8.12). But for term variables it is straightforward:

4.1.9. Lemma: [Term variable strengthening]
1. If �

	

� : � � � 	
 , then � � � 	
 .

2. If �

	

� : � � �
�

 and � �
� FV �

� � , then � � �
�

 .

Proof: By induction on derivations. �

4.1.10. Lemma:[Term substitution in terms] If �

	

� :� � �
�

 and � � �
�

� , then � �

�

� � � � �
�

 .

Proof: By induction on a derivation of �

	

� :� � �
�

 , using weakening (4.1.5) for the ARROW-I
and A LL-I cases and term strengthening (4.1.9) for the ALL-E and SUB cases. �

4.1.11. Lemma:[Type substitution in terms] If � 1 	

�

�

�

	

� 2 � �
�

 , then � 1 	 �

� � � � � 2 �

�

� � � � �
�

�

� � � �
 .

Proof: By induction on a derivation of � 1 	

�

�

�

	

� 2 � �
�

 , using the subtyping substitution
lemma (4.1.8) for the ALL-E and SUB cases. �

4.2. SUBTYPING 48

4.2 Subtyping

In this section, we give a straightforward semi-decision pr ocedure for the F� subtype relation.
This relation can be shown to be undecidable (see Chapter 6),so a semi-decision procedure is the
best we can hope for; however, the same algorithm forms a decision procedure for several useful
fragments of F� (see Section 6.12).

We present the algorithm as an alternative collection of syn tax-directed rules and then show
that the relation de®ned by these rules coincides with F� . It is technically convenient to make
this argument using an intermediate representation called canonical types(roughly analogous to
conjunctive-normal-form formulas in logic):

� We identify the set of canonical types (Section 4.2.1) and de®nea canonical subtyping relation
(marked �

�

) over this set (Section 4.2.2).
� We show (Sections 4.2.3 and 4.2.4) that derivations of canonical subtyping statements can be

transformed into normal formderivations of a certain restricted shape (Section 4.2.6).
� We give a ¯attening transformation

�

mapping F� types into canonical types (Section 4.2.7)
and show that

� � � 	
 iff � � �

�

� � 	
 �

�

� Finally, we de®ne a syntax-directed subtyping relation on o rdinary types (marked �

!) and
show (Section 4.2.8) that it coincides with canonical subtyping after ¯attening:

�

�

�

�

�

�

	

� iff � �

!
� 	

4.2.1 Canonical Types

We might naively hope to develop an algorithm for checking F� subtyping simply by extending
the � � subtyping algorithm � �

�

(2.6.10) to include a case for intersections. Including cases1 to 5
as before, the complete algorithm would then be:

check�

� � � 	
 � �

1. if

 Top
then true

2. else if�
 � 1 � � 2 and

 1 �
 2

then check�

� �
 1 	 � 1 �

and check�

� � � 2 	
 2 �

3. else if�
 � �

�

� 1 �

� 2 and

 � �

�

 1 �

 2

then check�

� �
 1 	 � 1 �

and check�

�

	

�

�

 1 � � 2 	
 2 �

4. else if�
 � and

 �

then true
5. else if�
 �

then check�

� � �

�

� � 	
)
6. else if�

� � 1 � �

� � � and

�
 1 � �

 � �

then for each
 �

choose some� �

such that check�

� � � � 	
 � �

� . else
false.

4.2. SUBTYPING 49

That is, to check whether � � 1 � �

� � � is a subtype of �
 1 � �

 � � , check that for each
 � there is some � �

such that � � 	
 � . (The selection of � � is expressed here as a nondeterministic choice; in practice,
this is implemented using backtracking.)

But this rule, though clearly sound (by Lemma 4.1.2), is not c omplete, since there are many
cases where a meet lies above or below a type that does not havethe form of a meet. For example,

�

�

� � � 	 � � �

�

�

� � � � � 	 �

�

These two cases can be handled by splitting the proposed rule into two,
6a. else if

 �
 1 � �

 � �

then for each
 �

check�

� � � 	
 � �

6b. else if�
 � � 1 � �

� � �

then choose some� �

such that check�

� � � � 	
 � ,
but we must be careful to apply 6abefore 6bin order to respond correctly to the input

�

�

�

	

�

�

� �

� �

	

� � 	

� �

	

� �

�

Unfortunately, the real problem is more subtle than this: in the presence of the distributivity
axioms SUB-DIST-IA and SUB-DIST-IQ, steps 2 and 3 of the � �

�

algorithm are also incomplete. For
example,

�

�

�

	

�

�

� � � � � 	 � � �

	

is derivable (using SUB-DIST-IA and SUB-TRANS, with intermediate type �), although

�

�

�

	

�

�

� � � 	 �

�

To get things under control, we need to deal with the distribu tivity laws before doing anything
else. We take the inverses of these laws (i.e., the other halfof the equivalences D-DIST-IA and
D-D IST-IQ given in 4.1.1) as rewrite rules

� � �
 1 � �

 � � � �

�

 � � �
 1 � �

� �
 � �

� �

�

�

�

�
 1 � �

 � � � �

�

� � �

�

�

�

 1 � �

� �

�

�

�

 � �

	

and apply them to a given F� type as many times as possible to obtain an equivalent type wi th no
intersections on the right-hand sides of arrows or quanti®e rs. For example, the type

� � 1 	

� 2 � �

� � 3 	

�

� �

�

� 4 �

� � 5 	

� 6 � � �

becomes

�

� � 1 	

� 2 � � � 3 	

�

� � 1 	

� 2 � � � �

�

� 4 �

� 5 	

� � 1 	

� 2 � � � �

�

� 4 �

� 6 � �

�

Since this type contains no meets on the right-hand sides of arrows or quanti®ers, there is no way
to use it (or any subphrase of it) in an instance of either of th e distributivity rules.

Once the distributivity rules are eliminated, there remain just four subtyping rules in De®-
nition 3.2.3 that can be used to prove subtyping statements w here both sides of the conclusion
are meets: SUB-REFL, SUB-TRANS, SUB-INTER-G, and SUB-INTER-LB. The re¯exivity and transitivity
rules can be eliminated by a normalization argument that sho ws how to transform any derivation
into one that applies transitivity and re¯exivity only to va riables (Sections 4.2.4 to 4.2.6). This
leaves just SUB-INTER-G and SUB-INTER-LB, the behavior of which is completely captured by our
rules 6aand 6b.

4.2. SUBTYPING 50

For the proof-theoretic analysis in the following sections , it is convenient to work with types
in an even more restricted form, where every type has a single as its outermost constructor
and as the outermost constructor on the left-hand sides of ar rows and quanti®ers, and where no
immediate component of a is another . Our example, in this form, is:

 � � � 1 	

� 2 � � � 3 	

 � � 1 	

� 2 � � � �

�

 � � 4 �

�

� 5 	

 � � 1 	

� 2 � � � �

�

 � � 4 �

�

� 6 �

�

This transformation effectively separates the set of types into two syntactic sorts: those whose
outermost constructor is (called ªcomposite canonical typesº) and those whose outer most
constructor is � , � , or a variable (called ªindividual canonical typesº). This separation is useful
because our proposed rule 6 now captures all of the valid subtyping statements involving pairs
of composite canonical types, while the original rules 2±5 are valid and complete for pairs of
individual canonical types.

4.2.1.1. De®nition: The sets of composite canonical types� and individual canonical types� are
de®ned by the following abstract grammar:

� ::=
� � 1 � �

�
�

�

� ::= � � � � � � � �

�

�

�

�

4.2.1.2. Convention: The metavariables � and � range over composite canonical types; � and �

range over individual canonical types; � and � range over both sorts of canonical types.

4.2.1.3. Notation: It will often be convenient in the remainder of this chapter t o treat a composite
canonical type � � 1 � �

� � � as a ®nite set whose elements are the individual canonical types � 1

through � � . The following notational conventions support this point o f view:

�
�

�

def
� �

� � 1 � �

� � � and �
 � � for some �

 � �

�

� � � � � � �

def
� � �

�

� 1 �

� �

�

�

� � � �

	

where �
 � � 1 � �

� � �

� � �

def
�

� � 1 � �

� �

	

� 1 � �

� � �

	

where �

� � 1 � �

� � � and �

� � 1 � �

� � �

�

4.2.1.4. Remark: Our canonical types are not as sparse as one could imagine. For example, we
could try to de®ne a notion of fully canonical typessuch that each � -equivalence class of types
contains exactly one fully canonical type. For present purp oses, though, the canonical types we
have de®ned are re®ned enough.

The idea of canonical types comes from a proof by Reynolds [personal communication, 1988] of
the soundness and completeness of a decision procedure for the subtype relation of Forsythe [121].
(Related formulations of intersection types are studied in [41, 43, 44, 126, 131, 132].) In fact, the
entire type system of Forsythe can be reformulated in terms o f canonical types, making this
proof trivial. Such is not the case here, unfortunately, bec ause the operation of substituting a
canonical type for a variable in another canonical type yiel ds a non-canonical type. We could, of
course, change the de®nition of substitution so that it re-canonicalized its result, but it would be
unfortunate to place such a complicated mechanism in such a basic piece of technical machinery.
Also, an implementation based directly on canonical types w ould be less ef®cient than the one
described in Section 4.2.8, which uses a data structure based on ordinary types. We therefore take
the original system unchanged and make the translation to ca nonical form explicitly for purposes
of analysis.

4.2. SUBTYPING 51

4.2.2 Canonical Subtyping

We now de®ne the canonical subtype relation formally.

4.2.2.1. De®nition: A canonical context� is a context whose range contains only canonical types.

4.2.2.2. De®nition: The subtype relation on canonical types is de®ned as follows:

� �

� � � �

� � � � 	 � �

� � � � 1 � �

� � � 	 � � 1 � �

� � �

(CSUB-AE)

� � � 	 � (CSUB-REFL)

� � � 1 	 � 2 � � � 2 	 � 3

� � � 1 	 � 3
(CSUB-TRANS)

� � �

�

� � 	

� � �

� � � 	 �

(CSUB-TVAR)

� � � 1 	 � 1 � � � 2 	 � 2

� � � 1 � � 2 	 � 1 � � 2
(CSUB-ARROW)

� � � 1 	 � 1 �

	

�

�

� 1 � � 2 	 � 2

� � � �

�

� 1 �

� 2 	 � �

�

� 1 �

� 2
(CSUB-ALL)

4.2.2.3. Remark:Note that individual and composite canonical types cannot b e mixed in canonical
subtyping statements: we have statements of the form � � � 	 � and � � � 	 � , but never

� � � 	 � or � � � 	 � .

4.2.2.4. Notation: The turnstile symbol is sometimes decorated �

�

to distinguish canonical subtyp-
ing derivations from derivations in other calculi.

4.2.2.5. Remark: Anticipating the requirements of the normal-form derivati ons to be de®ned in
the following section, we have slightly generalized the typ e variable rule, in effect embedding an
instance of CSUB-TRANS and an instance of CSUB-AE in each instance of CSUB-TVAR.

Again, it is convenient to have a linear notation for canonic al subtyping derivations.

4.2.2.6. De®nition: The set ofcanonical subtyping derivation abbreviationsis de®ned by the following
abstract grammar:

�

::= AE � � 1 � �

� � �

� id
�

�

;
�

� ::= id
� � 1 ; � 2

� � �

�

�

�

�

�

� �

� � �

�

�

�

�

4.2.2.7. Notation: The metavariables
�

and � range over derivations of subtyping statements
between composite canonical types; � and � range over derivations of subtyping statements
between individual canonical types; 	 and
 range over both sorts of derivations.

As in Section 3.3, we can de®ne a mapping from canonical derivation trees to linear abbrevi-
ations, which, though not injective, could easily be extend ed to an injective map at some cost in

4.2. SUBTYPING 52

readability. Again, we will prefer readability over rigor a nd impose on the reader's imagination
to supply the evident annotations on our linear abbreviatio ns.

4.2.2.8. De®nition: The translation function � Ð � � from canonical derivation trees to their abbre-
viated forms is de®ned as follows.

�

� �

� � � �

� � :: � � � � 	 � �

� � � � 1 � �

� � � 	 � � 1 � �

� � �

(CSUB-AE)�

�

� AE � �

�

1 � �

� �

�

�

�

(CSUB-REFL)

� � � 	 �

�

�

� id

�

	 1 :: � � � 1 	 � 2 	 2 :: � � � 2 	 � 3

� � � 1 	 � 3
(CSUB-TRANS)�

�

� 	

�

1 ; 	

�

2

�

�

:: � � �

�

� � 	

� � �

� � � 	 �

(CSUB-TVAR)�

�

� �
�

�

�

�

�

�

�

1 :: � � � 1 	 � 1 � 2 :: � � � 2 	 � 2

� � � 1 � � 2 	 � 1 � � 2
(CSUB-ARROW)�

�

�

�

�

1 � �

�

2

�

�

1 :: � � � 1 	 � 1 � 2 :: �

	

� 	 � 1 � � 2 	 � 2

� � � �

�

� 1 �

� 2 	 � �

�

� 1 �

� 2
(CSUB-ALL) �

�

� � �

�

�

�

1 �

�

�

2

4.2.2.9. Lemma:[Canonical context permutation] If �

� is a permutation of � and both �

� and �

are closed, and if 	 :: � � � 	 � , then there is a subtyping derivation 	 � , identical to 	 except for the
ordering of contexts, such that 	

� :: � � � 	 � .
If � �

� FTV �

� � and 	 :: � 1 	

�

�

�

	

�

�

�

	

� 2 � � 	 � , then there is a subtyping derivation 	
� ,

identical to 	 except for the ordering of contexts, such that 	

� :: � 1 	

�

�

�

	

�

�

�

	

� 2 � � 	 � .

Proof: By induction on the structure of 	 . �

4.2.2.10. Convention: As for ordinary subtyping (c.f. Convention 4.1.4), this lem ma justi®es the
convention that closed canonical contexts differing only i n the ordering of their bindings are
regarded as identical.

4.2.3 Weakening and Narrowing

The proof transformations used to normalize canonical subt yping derivations rely on analogues
of the weakening and narrowing lemmas proved in Section 4.1. These properties need to be
formulated here as explicit operations on subtyping deriva tions.

By analogy with extending a context, our linear notation for weakening is ª 	

	

�

�

� .º If 	 is
a derivation term whose conclusion is � � � 	 � , then 	

	

�

�

� is a derivation with conclusion
�

	

�

�

� � � 	 � .

4.2.3.1. Remark:For the same of explicitness in what follows, this de®nition is more concrete than
the de®nition of weakening for ordinary types (4.1.5), whic h allowed many variables to be added
at once.

4.2. SUBTYPING 53

4.2.3.2. De®nition: The weakeningof a derivation 	 with a new binding �

�

� , written 	

	

�

�

� , is
de®ned as follows:

� AE � � 1 � �

� � � �

	

�

�

� � AE �

�

� 1 	

�

�

� �

� �

�

� �

	

�

�

� � �

id
	

�

�

� � id
�

	 1 ; 	 2 �

	

�

�

� �

�

	 1 	

�

�

� � ; �

	 2 	

�

�

� �

�

� �

�

�

� �

	

�

�

� � � �

�

�

	

�

�

� �

�

�

1 � � 2 �

	

�

�

� �

�

�

1 	

�

�

� � �

�

� 2 	

�

�

� �

�

� �

�

�

1 �

� 2 �

	

�

�

� � � �

�

�

�

1 	

�

�

� �

�

�

� 2 	

�

�

� �

�

4.2.3.3. Remark: Since weakening only changes contexts, this operation is an identity on our
abbreviated linear forms, where contexts are always elided .

4.2.3.4. Lemma:[Weakening for canonical subtyping] If

	 :: � � � 	 �

	

then

	

	

�

�

� :: �

	

�

�

� � � 	 �

�

Proof: By induction on the structure of 	 .

CasesCSUB-AE, CSUB-TRANS, CSUB-REFL, CSUB-ARROW:

Either immediate or by straightforward use of the induction hypothesis.

CaseCSUB-TVAR: �
 �

�

� �
 � � �
 �

	
 � �

�

�

�

�

:: � � �

�

� � 	

� � �

By the induction hypothesis,
�

	

�

�

� :: �

	

�

�

� � �

�

� � 	

� � �

	

that is,
�

	

�

�

� :: �

	

�

�

� �

�

�

	

�

�

� �

�

� � 	

� � �

�

By CSUB-TVAR,
�

�

�

�

	

�

�

� � :: �

	

�

�

� � � 	 �

	

that is,
�

� �

�

�

� �

	

�

�

� :: �

	

�

�

� � � 	 �

�

CaseCSUB-ALL : �
 � �

�

� 1 �

� 2 �
 � �

�

� 1 �

� 2

	
 � �

�

�

1 �

� 2
�

1 :: � � � 1 	 � 1 � 2 :: �

	

�

�

� 1 � � 2 	 � 2

(Also, since � is bound, we may assume that � �
 � .) By the induction hypothesis,
�

1 	

�

�

� :: �

	

�

�

� � � 1 	 � 1

and
� 2 	

�

�

� :: �

	

�

�

�

	

�

�

� 1 � � 2 	 � 2 �

By CSUB-ALL ,
�

� �

�

�

�

1 	

�

�

� �

�

�

� 2 	

�

�

� � � :: �

	

�

�

� � � �

�

� 1 �

� 2 	 � �

�

� 1 �

� 2 	

that is,
� �

� �

�

�

1 �

� 2 �

	

�

�

� � :: �

	

�

�

� � � �

�

� 1 �

� 2 	 � �

�

� 1 �

� 2 �

�

4.2. SUBTYPING 54

As for ordinary types, the narrowing transformation allows the context in the conclusion of a
derivation to be modi®ed by replacing the bound of a variable by a subtype of the current bound.
For example,

� 1
�

�

	

� 2
�

 � � 1 �

	

� 3
�

 � � 1 � � � � 1 � � � 3 	 � � 1 � � � 1

can be narrowed to

� 1
�

�

	

� 2
�

 � � 1 �

	

� 3
�

 � � 2 � � � � 1 � � � 3 	 � � 1 � � � 1 �

Note, however, that the structure of the old derivation must be altered in order for the result of
narrowing to be valid: wherever the assumption � 3

�

� 1 was used in the original, we must use the
new assumption � 3

�

 � � 2 � plus the fact that � 2
�

 � � 1 � . To take this into account, we use the linear
notation 	 � � @�

�

� � , where 	 is a subtyping derivation, � is a variable in dom�

� � , � is its new
bound, and � is a derivation establishing that the new bound is a subtype o f the existing one.

4.2.3.5. De®nition: Let 	 and � be subtyping derivations such that

	 :: �

	

�

�

� � � 	 �

� :: � � � 	 �

�

The narrowing of 	 with the binding �

�

� (justi®ed by �) is written 	 � � @�

�

� � and de®ned as
follows:

� AE � � 1 � �

� � � � � � @�

�

� � � AE �

�

� 1 � � @�

�

� � �

� �

�

� � � � @�

�

� � � �

id � � @�

�

� � � id
�

	 1 ; 	 2 � � � @�

�

� � �

�

	 1 � � @�

�

� � � ; �

	 2 � � @�

�

� � �

�

� �

�

�

� � � � @�

�

� � where � �
 � � � �

�

�

� � @�

�

� � �

�

�
�

�

�

� � � � @�

�

� � � �
�

� �

�

	

�

�

� � ; �

�

� � @�

�

� � � �

�

�

1 � � 2 � � � @�

�

� � �

�

�

1 � � @�

�

� � � �

�

� 2 � � @�

�

� � �

�

� �

�

�

1 �

� 2 � � � @�

�

� � � � �

�

�

�

1 � � @�

�

� � �

�

�

� 2 �

�

�

	

�

�

� 1 � @�

�

� � �

where
�

1 	

�

�

� :: � � � 1 	 � 1 �

4.2.3.6. Lemma:[Narrowing for canonical subtyping] If

	 :: �

	

�

�

� � � 	 �

� :: � � � 	 �

	

then

�

	 � � @�

�

� � � :: �

	

�

�

� � � 	 �

�

Proof: By induction on 	 .

CasesCSUB-AE, CSUB-REFL, CSUB-TRANS, CSUB-ARROW:

Either immediate or by straightforward induction.

CaseCSUB-TVAR: �
 �

�

� �
 � � �
 �

By the induction hypothesis and CS UB-TVAR.

CaseCSUB-TVAR: �
 � �
 �

	
 �
�

�

�

�

�

:: �

	

�

�

� � � 	

� � �

By the induction hypothesis,
�

�

� � @�

�

� � � :: �

	

�

�

� � � 	

� � �

�

By weakening (4.2.3.4),
�

�

	

�

�

� � :: �

	

�

�

� � � 	 �

�

4.2. SUBTYPING 55

By CSUB-TRANS,
� �

�

	

�

�

� � ; �

�

� � @�

�

� � � � :: �

	

�

�

� � � 	 � � �

�

By CSUB-TVAR,
� �

� �

�

	

�

�

� � ; �

�

� � @�

�

� � � � :: �

	

�

�

� � � 	 �

	

that is,
�

� �

�

�

� � � � @�

�

� � :: �

	

�

�

� � � 	 �

�

CaseCSUB-ALL : �
 � �

�

� 1 �

� 2 �
 � �

�

� 1 �

� 2

	
 � �

�

�

1 �

� 2
�

1 :: �

	

�

�

� � � 1 	 � 1 � 2 :: �

	

�

�

�

	

�

�

� 1 � � 2 	 � 2

By the induction hypothesis on the ®rst subderivation,
�

�

1 � � @�

�

� � � :: �

	

�

�

� � � 1 	 � 1 �

By weakening (4.2.3.4) on the second main hypothesis,
�

�

	

�

�

� 1 � :: �

	

�

�

� 1 � � 	 �

�

By the induction hypothesis on the second subderivation,
� 2 �

�

�

	

�

�

� 1 � @�

�

� � :: �

	

�

�

� 1 	

�

�

� � � 2 	 � 2 �

By CSUB-ALL ,
�

� �

�

�

�

1 � � @�

�

� � �

�

�

� 2 �

�

�

	

�

�

� 1 � @�

�

� � � � :: �

	

�

�

� � � �

�

� 1 �

� 2 	 � �

�

� 1 �

� 2 	

that is,
�

� �

�

�

1 �

� 2 � � � @�

�

� � :: �

	

�

�

� � � �

�

� 1 �

� 2 	 � �

�

� 1 �

� 2 �

�

4.2.4 Subtyping Derivation Normalization Rules

To construct an algorithm for checking the canonical subtyp e relation, we need a notion of normal
formderivations (similar to the one described in Section 2.6 for �

� subtyping) and an effective pro-
cedure for transforming arbitrary derivations into this fo rm. Themain task of this normalization pro-
cedureis to push instances of CSUB-TRANS toward the leaves of the derivation, until they eventually
disappear into instances of the CSUB-TVAR rule. For example, if �
 � 1

�

�

	

� 2
�

� � 1 �

	

� 3
�

� � 2 � ,

then the derivation
� � � 3 	 � 2 � � � 2 	 � 1

� � � 3 	 � 1
(CSUB-TRANS)

becomes the following normal-form derivation:

� � � 1 	 � 1
(CSUB-REFL)

� �

� � 1 � 	

� � 1 �

(CSUB-AE)

� � � 2 	 � 1
(CSUB-TVAR)

� �

� � 2 � 	

� � 1 �

(CSUB-AE)

� � � 3 	 � 1 �

(CSUB-TVAR)

The normalization procedure is presented as a collection of rewrite rules on subtyping deriva-
tions. These rules are separated into two groups to simplify the presentation of a rewriting strategy
later on (Section 4.2.5) and the proof that this strategy always terminates.

We ®rst list the abbreviated linear forms of the rules, then j ustify them by discussing how they
operate on proof trees.

4.2. SUBTYPING 56

4.2.4.1. De®nition: The one-step, outermost simpli®cation relationon subtyping derivations, � � �1, is
de®ned by the following rewrite rules:

I. Re¯exivity simpli®cation
1

�

id :: � � � 1 � � 2 	 � 1 � � 2

� � �1 id � id
2

�

id :: � � � �

�

� 1 �

� 2 	 � �

�

� 1 �

� 2

� � �1 � �

� id
�

id
3

�

id :: � � � � 1 � �

� � � 	 � � 1 � �

� � �

� � �1 AE � id
� �

id �

II. Cut simpli®cation
1

�

id ; 	

� �

�1 	

2
�

	 ; id
� �

�1 	

3
�

AE � � 1 � �

� � � ; AE � � 1 � �

� � � where each � � :: � � � � � 	 � �

� �
�1 AE �

�

� � 1 ; � 1 �

� �

�

� � � ; � � � �

4
�

� �

� AE � � � � ; �

� � �1 �
�

� AE � � ; � � �

5
�

�
�

� id � ; �

� � �1 �
�

� AE � � � �

6
�

�

� � ; � � �

� � �1 �

� ;
�

� �

�

� ; � �

7
�

�

� �

�

�

�

� � ; �

� �

�

�

�

� � where � :: � � � 3 	 � 2

� �

�1 � �

�

�

� ;
�

�

�

�

� � � @�

�

� 3 � ; � �

Rules I.1, I.2, and I.3 together restrict the form of instances of re¯exivity in normal form
derivations to re¯exivity between variables.

Rules II.1 and II.2 eliminate instances of transitivity wit h an instance of re¯exivity as one of
their immediate subderivations.

Rule II.3 simpli®es instances of transitivity whose subder ivations are both instances of
CSUB-AE by pushing the application of transitivity toward the le aves of the derivation. Simi-
larly, rule II.4 simpli®es instances of transitivity whose left-hand subderivation ends with the rule
CSUB-TVAR by pushing the application of transitivity deeper, toward t he leaves of the derivation.
(Rule II.5 handles the simpler situation where the premise o f CSUB-TVAR is an instance of CSUB-ID,
in which case no new instance of transitivity need be created .) Rule II.6 simpli®es instances of
transitivity whose subderivations are both instances of CS UB-ARROW by pushing the applications
of transitivity toward the leaves of the derivation.

Rule II.7 Ð the keystone of the de®nition Ð simpli®es instanc es of transitivity whose sub-
derivations are both instances of CSUB-ALL . Pictorially, it rewrites the derivation

�

� � � 2 	 � 1

�

�

	

�

�

� 2 � � 1 	 � 2

� � � �

�

� 1 �

� 1 	 � �

�

� 2 �

� 2

�

� � � 3 	 � 2

�

�

	

�

�

� 3 � � 2 	 � 3

� � � �

�

� 2 �

� 2 	 � �

�

� 3 �

� 3

� � � �

�

� 1 �

� 1 	 � �

�

� 3 �

� 3

4.2. SUBTYPING 57

as
�

� � � 3 	 � 2

�

� � � 2 	 � 1

� � � 3 	 � 1

� � � @�

�

� 3 �

�

	

�

�

� 3 � � 1 	 � 2

�

�

	

�

�

� 3 � � 2 	 � 3

�

	

�

�

� 3 � � 1 	 � 3

� � � �

�

� 1 �

� 1 	 � �

�

� 3 �

� 3 �

4.2.4.2. De®nition: Let � � 1 be the compatible closure of � �

�1, that is:
if 	 � � �1 	 � , then 	 � � 1 	 �

if � � � � 1 �

�

�

, then AE � � 1 � �

� �

� �

� � � � � 1 AE � � 1 � �

�

�

�

� �

� � �

if 	 � � 1 	 � , then �

	 ;
 � � � 1 �

	 � ;
 �

if
 � � 1
 � , then �

	 ;
 � � � 1 �

	 ;
 � �

if
�

� � 1
�

� , then � �

�

�

� � � 1 � �

�

�

�

�

if
�

� � 1
�

� , then �

� �

�

�

�

� � � � 1 �

� �

�

�

�

�

� �

if � � � 1 �

� , then �

� �

�

�

�

� � � � 1 �

� �

�

�

�

�

�

�

if
�

� � 1
�

� , then �

�

� � � � � 1 �

�

� � � �

if � � � 1 �

� , then �

�

� � � � � 1 �

�

� �

�

�

�

4.2.4.3. Remark:A redexin a subtyping derivation 	 is a subderivation
 that matches the left-hand
side of one of the simpli®cation rules. The corresponding ri ght-hand side,

� , is the contractumof

 . When 	 � � 1 	 � by replacing
 with
 � , we say that 	 reducesto 	 � in one step.

4.2.4.4. De®nition: A normal-formsubtyping derivation is one that contains no redices. Simil arly,
a I-normal-formsubtyping derivation is one that contains no I-redices (ins tances of the left hand
sides of any of the rules in group I).

4.2.4.5. De®nition: Let � �

�

be the re¯exive and transitive closure of � � 1.

Having shown already that weakening and narrowing preserve validity, it is a simple matter
to check that the rewriting rules do too.

4.2.4.6. Lemma: [Replacement] If 	 is a valid subtyping derivation and 	

� is formed from 	 by
replacing some subderivation
 by a valid derivation

� with the same conclusion as
 , then 	
� is

valid and has the same conclusion as 	 .

Proof: Immediate, since none of the CSUB rules place any requirements on the shape of the
derivations of their hypotheses. �

4.2.4.7. Remark: In type assignment systems (c.f. 2.4), a typing statement � � �
�

 is often
thought of as a kind of sentence, where � is the subjectand
 is the predicate. When � � �

�

�

�

according to some system of rewrite rules (usually read ª � evaluates to � � º) we speak of ªreducing
the subject.º If the type assignment system in question has the property that whenever � � �

�

is derivable and � � �

�

� � the statement � � � � �
 is also derivable, we say that the typing relation
is closed under subject reduction, or that the system in question has the subject reduction property.

The same terminology can conveniently be applied to statements of the form 	 :: � � � 	 �

if we think of � � � 	 � as a kind of predicate Ð true of valid subtyping derivations w ith this
conclusion Ð and derivation simpli®cation as a kind of evalu ation.

4.2.4.8. Lemma:[Subject reduction for the simpli®cation rules] If 	 is a valid subtyping derivation
such that 	 :: � � � 	 � and 	 � �

�

 , then
 :: � � � 	 � .

Proof: First, note that all of the rewrite rules map valid subtyping derivations to valid derivations
with the same conclusions (except for rule II.7 the argument is straightforward; the case for II.7

4.2. SUBTYPING 58

follows from the narrowing lemma for canonical types (4.2.3 .6)). This observation extends to � � 1

by the replacement lemma (4.2.4.6) and to � �

�

by induction. �

4.2.5 Termination of the Normalization Rules

Now we must show that every canonical subtyping derivation c an be rewritten into one in normal
form. The crux of the argument will be that whenever an instan ce of transitivity is reduced, the
size of the intermediate type Ð or cut typeÐ is decreased in any new instances of transitivity in
the result. The argument is slightly delicate, because both rule II.3 and the narrowing operation in
rule II.7 can create copies of subderivations that may themselves contain redices. This is handled
by reducing redices with the largest cut types ®rst.

The argument is also slightly complicated by the fact that ru le II.4 creates a new instance of
transitivity whose intermediate type is exactly the same as that of the original. In this case, we
argue that the resulting derivation is simpler because an in stance of transitivity has been pushed
toward the leaves of the derivation.

4.2.5.1. De®nition: A subtyping derivation of the form 	 ;
 is called a compound derivation.

4.2.5.2. De®nition: The cut typeof a compound derivation �

	 :: � � � 1 	 � 2 � ; �

 :: � � � 2 	 � 3 � ,
written cut-type�

	 ;
 � , is � 2.

4.2.5.3. De®nition: The cut sizeof a compound derivation 	 ;
 is

cut-size�

	 ;
 � � size� cut-type�

	 ;
 � �

�

4.2.5.4. De®nition: The complexityof a compound derivation 	 , written complexity�

	 � , is the pair
�

cut-size�

	 �

	

size�

	 � � , ordered lexicographically.

4.2.5.5. De®nition: A II-redex 	 is an innermostredex of complexity � if no proper subderivation
of 	 is a II-redex of complexity � .

4.2.5.6. De®nition: The rewriting strategyfor normalizing subtyping derivations comprises the
following steps:

1. Perform I-reductions in any order until a I-normal form isreached.

2. If there are any remaining II-redexes, let� be the largest complexity of any remaining II-redex.
Choose an innermost redex of complexity� , reduce it, and return to step 2.

Since each I-reduction decreases the size of the types in theconclusions of any new I-redices it
creates, the I-rules are clearly strongly normalizing. Mor eover, none of the II-rules can create new
I-redices when applied to I-normal forms, so we need worry no further about the I-rules.

Progress in normalizing the II-redices of a derivation 	 is measured as follows:

4.2.5.7. De®nition: The total complexityof a derivation 	 , written total �

	 � , is the pair
�

�

	

�

� ,
where � is the maximum complexity of any compound subderivation of 	 and � is the number of
compound subderivations of this size, ordered lexicograph ically.

4.2.5.8. Lemma:For any derivation 	 , the weakening (

	

�

�

�) contains no II-redices not already
present in 	 .

Proof: Immediate from the de®nition of weakening (4.2.3.2). �

4.2.5.9. Lemma: Let 	 :: �

	

�

�

� � � 	 � � and � :: � � � 	 � . Then the cut type of every new
II-redex in the narrowing 	 � � @�

�

� � is � .

Proof: By induction on the structure of 	 .

4.2. SUBTYPING 59

Case: 	
 AE � � 1 � �

� � �

By the induction hypothesis and CS UB-AE.

Case: 	
 id
Immediate.

Case: 	
 	 1 ; 	 2

Can't happen.

Case: 	
 � �

�

�

�

Subcase: � �� �

By the induction hypothesis and CS UB-TVAR.

Subcase: � � �

By the de®nition of narrowing (4.2.3.5),
�

�
�

�

�

� � � � @�

�

� � � �
�

� �

�

	

�

�

� � ; �

�

� � @�

�

� � � �

�

By the induction hypothesis, the cut type of every new II-red ex in
�

� � @�

�

� � is � . By
Lemma 4.2.5.8, there are no new redices in �

�

	

�

�

� � . The cut type of the new redex
� �

�

	

�

�

� � ; �

�

� � @�

�

� � � � is � .

Case: 	

�

� �

By the induction hypothesis and CS UB-ARROW.

Case: 	
 � �

�

�

�

�

By the de®nition of narrowing (4.2.3.5),
�

� �

�

�

�

� � � � @�

�

� � � � �

�

�

�

� � @�

�

� � �

�

�

� �

�

�

	

�

�

� 1 � @�

�

� � �

	

where
�

:: �

	

�

�

� � � 1 	 � 1. By the induction hypothesis, every new II-redex in
�

� � @�

�

� �

has cut type � . By Lemma 4.2.5.8, �

�

	

�

�

� 1 � :: �

	

�

�

� 1 � � 	 � has no new redices. By the
induction hypothesis, every new II-redex in � 2 �

�

�

	

�

�

� 1 � @�

�

� � has cut type � . �

4.2.5.10. Lemma:Let � be a derivation and �

	 ;
 � an innermost II-redex of maximum complexity
in � . Then total �

� � � total �

�

�

� , where �

� is the result of replacing �

	 ;
 � by its contractum, � .

Proof: By cases on the rule used to reduce	 ;
 to � .

CaseII.1: 	
 id �

This reduction removes one II-redex of maximum complexity f rom � .

CaseII.2:

 id �
 	

Similar.

CaseII.3: 	
 AE � � 1 � �

� � �

 AE � � 1 � �

� � � � � :: � � � � � 	 � � �
 AE �

�

� � 1 ; � 1 �

� �

�

� � � ; � � � �

This reduction removes one redex of maximum complexity with cut-size � size�

� � 1 � �

� � � � and
creates � new redices of cut sizes size�

� � 1 � , . . . , size�

� �
�

� , all of which are strictly smaller. In
addition, some redices in the � � 's may be copied, but these must also have smaller cut size
because	 ;
 is an innermost redex of maximal complexity.

CaseII.4: 	
 �
�

� AE � � � �

 � �
 �
�

� AE � � ; � � �

This reduction removes one redex of maximum complexity and c reates one new one with
exactly the same cut type. However, the size of the new redex i s size�

� ; � � � size�

	 ;
 � , so its
complexity is smaller. The complexities of other redices in � are unchanged.

CaseII.5: 	
 �
�

� id �

 � �
 �
�

� AE � � � �

This reduction removes one redex of maximum complexity and c reates no new redices.

4.2. SUBTYPING 60

CaseII.6: 	 ;

�

�

� � � ; �

� � � �

�

�

� ;
�

� �

�

� ; � �

where
�

::� � � 2 	 � 1

� ::� � � 3 	 � 2

� ::� � � 1 	 � 2

� ::� � � 2 	 � 3 �

This reduction removes one redex of maximal complexity with cut type � 2 � � 2 and creates
two new redices, one with cut type � 2 and one with cut type � 2.

CaseII.7: 	 ;

�

� �

�

�

�

� � ; �

� �

�

�

�

� �

�
 � �

�

�

� ;
�

�

�

� �

� � � @�

�

� 3 � � ; � �

where
�

::� � � 2 	 � 1

� ::� � � 3 	 � 2

� ::�

	

�

�

� 2 � � 1 	 � 2

� ::�

	

�

�

� 3 � � 2 	 � 3 �

The cut type of �

	 ;
 � is � �

�

� 2 �

� 2. The new II-redices in � are:
�

�

� ;
�

� , with cut type � 2;
�

�

� � � 1@�

�

� 3 � ; � � , with cut type � 2; and
� new redices in � � � @�

�

� 3 � , with cut type � 2 (by Lemma 4.2.5.9).

Thus, rewriting �

	 ;
 � as � removes one redex of maximal complexity with cut type � �

�

� 2 �

� 2

and creates some new redices with strictly smaller cut types � 2 and � 2. �

Since steps 1 and 2 of our rewriting stretegy each terminate, and since step 2 introduces no
new I-redices, we are assured that every derivation is event ually rewritten by this strategy to one
in I/II-normal form:

4.2.5.11. Theorem:The given rewriting strategy is normalizing.

4.2.5.12. Corollary: If there is any derivation of a canonical subtyping statemen t � � � 	 � , then
there is one in normal form.

4.2.6 Shapes of Normal-Form Subtyping Derivations

4.2.6.1. Lemma:If id :: � � � 	 � is a normal-form subtyping derivation, then �
 �
 � for some
variable � .

Proof: By the form of the I-rules (4.2.4.1). �

4.2.6.2. Lemma:If � is a normal-form subtyping derivation, then � �

�

	 ;
 � .

Proof: By induction on the size of � , with a case analysis on the possible forms of 	 and
 . In
each case, either the induction hypothesis or one of the II-rules guarantees that a well-formed
derivation of the form 	 ;
 is not in normal form:

4.2. SUBTYPING 61

	
 Reason
id any II.1

	 1 ; 	 2 any induction hypothesis
any id II.2
any
 1 ;
 2 induction hypothesis
AE � � 1 � �

� � � AE � � 1 � �

� � � II.3
� �

�

	 1 ; 	 2 � � induction hypothesis
� �

� AE � � � � � II.4
� �

� id � � II.5
�

� � � �

�

� � ill formed
�

� � � � � II.6
�

� � � �

�

�

�

� ill formed
� �

�

�

�

� � �

�

� � ill formed
� �

�

�

�

� � � � ill formed
� �

�

�

�

� � �

�

�

�

� II.7 �

4.2.6.3. Lemma:[Syntax-directedness of canonical subtyping]
1. If � � � 	 � , then for every � � � there is some � � � such that � � � 	 � .

2. If � � � 1 � � 2 	 � , then �
 � 1 � � 2 with � � � 1 	 � 1 and � � � 2 	 � 2.

3. If � � � �

�

� 1 �

� 2 	 � , then �
 � �

�

� 1 �

� 2 with � � � 1 	 � 1 and �

	

�

�

� 1 � � 2 	 � 2.

4. If � � � 	 � , then either �
 � or else � � �

�

� � 	

� � � .
Moreover, when the given derivation is in normal form, the de rivations promised in each clause
are proper subderivations of the original.

Proof: In each case, we are given a derivation of � � � 	 � . By Corollary 4.2.5.12, there exists
a normal-form derivation of the same statement. By Lemmas 4.2.6.1 and 4.2.6.2, this normal
derivation does not end with an instance of CS UB-REFL (except CSUB-REFL applied to variables)
or CSUB-TRANS. The desired result follows by inspection of the remainder o f the CSUB rules. �

4.2.6.4. Corollary: If � � � 	 � , then either �
 � or else �
 � for some � with � � �

�

� � 	

� � � .

4.2.7 Equivalence of Ordinary and Canonical Subtyping

Our next task is to establish that the subtyping relations on ordinary types and on the correspond-
ing canonical types are equivalent in an appropriate sense. We accomplish this by de®ning a
¯attening mapping

�

from ordinary types to canonical types with the following pr operties:
1. Flattening preserves subtyping: if � �

�

� 	
 , then �

�

�

�

�

�

	

�

.

2. Flattening yields a type equivalent to the original: � �

�

�

�

�

The second observation (plus narrowing and the fact that the identity injection from the set of
canonical types into the set of ordinary types preserves subtyping Ð if � �

�

� 	 � , then � �

�

� 	 �)
implies the converse of the ®rst: if the translation of a stat ement is provable in the canonical
system then the original statement is also provable. Thus, the ¯attening mapping also re¯ects
subtyping.

4.2. SUBTYPING 62

4.2.7.1. De®nition: The ¯attening mapping
�

from ordinary types to composite canonical types is
de®ned as follows:

�

�

� � � �

�

� �
 �

�

� � �

�

� � � � �

�

�

�

� �

�

�

�

 �

�

� � � �

�

�

�

�

� � � �

�

�

�
 1 � �

 � �

�

�

�

�

 �

�

This mapping is extended pointwise to contexts:

�

�

�

�

�

�

�

�

	

�

�

 �

�

� �

�

	

�

�

�

�

�

	

� :
 �

�

� �

�

	

� :

�

4.2.7.2. Lemma:[
�

preserves subtyping] If � �

�

� 	
 then �

�

�

�

�

�

	

�

.

Proof: By induction on a derivation of � �

�

� 	
 . Proceed by cases on the ®nal step of the
derivation.

CaseSUB-REFL: �

By CSUB-REFL.

CaseSUB-TRANS:

By the induction hypothesis and CS UB-TRANS.

CaseSUB-TVAR: �
 �

 �

�

� �

By the de®nition of canonical subtyping, �

�

�

� � �

�

 �

�

�

� �

� � 1 � �

�
�

� . The desired result is
checked by constructing the following derivation:

(CSUB-TVAR)

(CSUB-AE)
�

�

�

�

� 1 	 � 1

�

�

�

�

�

� �

� � 	

� � 1 �

� � �

�

� 	 � 1
� � �

�

�

�

�

� � 	 � �

�

�

�

�

�

� �

� � 	

� �
�

�

(CSUB-AE)

� � �

�

� 	 � �

(CSUB-TVAR)

�

�

�

�

� � � 	

� � 1 � �

�
�

�

(CSUB-AE)

CaseSUB-ARROW: �
 � 1 � � 2

 1 �
 2

� �
 1 	 � 1 � � � 2 	
 2

By the induction hypothesis, �

�

�

�

�1 	 �

�1 and �

�

�

�

�

�2 	

�2. By the syntax-directedness
of canonical subtyping (Lemma 4.2.6.3(2)), for every � � �

�2 there is some � � � �

�2 such
that �

�

�

�

� � 	 � � ; in each case, CSUB-ARROW gives �

�

�

�

�

�1 � � � 	

�1 � � � . By CSUB-AE,
�

�

�

�

� �

�1 � � � �
�

�

�2 � 	

�

�1 � � � �
�

�2 � , as required.

CaseSUB-ALL : �
 � �

�

� 1 �

� 2

 � �

�

 1 �

 2

Similar.

CaseSUB-INTER-G:

�
 1 � �

 � � � � � 	
 � for each
 �

For each
 � , the induction hypothesis gives �

�

�

�

�

�

	

�

�

. By the syntax-directedness of
canonical subtyping (Lemma 4.2.6.3(1)), for each � � �

�

�

�

there is some � � �
�

�

�

such that
�

�

�

�

� � � 	 � � � . Combining these derivations for all the
 � 's, we have �

�

�

�

�

�

	

�

�

�

�

by
CSUB-AE.

4.2. SUBTYPING 63

CaseSUB-INTER-LB:

 � � �
 � � 1 � �

� � �

Let � �

�

 � � � 1 � �

� � � � . Then the derivation

�

�

�

�

�

�

� 1 	 �

�

� 1 � � �

�

�

�

�

�

�

� �

	 �

�

� �

�

�

�

�

�

�

�

�

�

	 �

�

�

(CSUB-AE)

establishes the desired result.

CaseSUB-DIST-IA : �
 � �

�

�
 1 � �

�

�

�
 � �

 �

�

� �
 1 � �

 � �

By the de®nition of ¯attening, �

�

�

. The result follows by CSUB-REFL.

CaseSUB-DIST-IQ: �
 � � �

�

�

�

�

 1 � �

� �

�

�

�

�

 � �

 � �

�

�

�

�

 �
 1 � �

 � �

Similar. �

Next, we remark that subtyping on canonical types is preserv ed when canonical types are read
as ordinary types.

4.2.7.3. Lemma:If � �

�

� 	 � , then � �

�

� 	 � .

Proof: By induction on the structure of a canonical subtyping deriv ation. �

The last fact needed to establish the equivalence of subtyping on ordinary and canonical types
is that the ¯attening transformation always yields a type eq uivalent to the original.

4.2.7.4. Lemma: � �

�

�

�
 for all F� types
 and contexts � .

Proof: By induction on the structure of
 .

Case:

 �

By SUB-INTER-LB and SUB-INTER-G.

Case:

 1 �
 2

By the de®nition of ¯attening (4.2.7.1),

�

 �

�1 � � � � �

�2 � . By derived rule D-D IST-IA
(4.1.1), � �

�

�

�

�1 �

� � � �
�

�2 � � , i.e., � �

�

�

�1 �

�2. By the induction hypothesis,
� �

�1 �
 1 and � �

�2 �
 2. The desired result follows by D-C ONG-ARROW (4.1.7) and
SUB-TRANS.

Case:

 � �

�

 1 �

 2

Similar.

Case:

�
 1 � �

�

�

By the induction hypothesis, � �

�

�

�
 � for each � . By D-CONG-INTER (4.1.7), � � �

�1 � �

�

�

� �

�
 1 � �

 � � . The result then follows by D-A BSORB(4.1.2) and SUB-TRANS. �

Combining this with the previous lemma, we can show that the t ranslation from ordinary to
canonical types re¯ects subtyping in F� .

4.2.7.5. Lemma:[
�

re¯ects subtyping] If �

�

�

�

�

�

	

�

, then � �

�

� 	
 .

Proof: By Lemma 4.2.7.3,�

�

�

�

�

�

	

�

. By Lemma 4.2.7.4,� �

�

�

�

� � 	 �

�

�

� � for each �
� dom�

�

�

� .
By narrowing (4.2.3.6), � �

�

�

�

	

�

. By Lemma 4.2.7.4 again,� �

�

� 	 �

�

and � �

�

�

	
 . By two
applications of SUB-TRANS, � �

�

� 	
 . �

Lemmas 4.2.7.2 and 4.2.7.5 together show that the subtype relations on ordinary and canonical
types correspond appropriately:

4.2.7.6. Theorem:[Equivalence of ordinary and canonical subtyping]

� �

�

� 	
 iff �

�

�

�

�

�

	

�

�

4.2. SUBTYPING 64

4.2.8 Subtyping Algorithm

The de®nition of canonical subtyping leads directly to one a lgorithm for deciding the subtype
relation on F� types: to check whether � � � 	
 , ¯atten � , � , and
 andcheck whether �

�

�

�

�

�

	

�

.
In this section we describe an alternative algorithm that op erates directly on F� types, effectively
performing the ¯attening translation on the ¯y.

Given � , � , and
 , the new algorithm ®rst performs a complete analysis of the s tructure of
 .
Whenever
 has the form
 1 �
 2 or � �

�

 1 �

 2, it pushes the left-hand side Ð
 1 or �

�

 1 Ð onto a
queue of pending left-hand sides and proceeds recursively w ith the analysis of
 2. When
 has the
form of an intersection, it calls itself recursively on each of the elements. When
 has ®nally been
reduced to a type variable, the algorithm begins analyzing � , matching left-hand sides of arrow
and polymorphic types against the queue of pending left-han d sides from
 . In the base case,
when both � and
 have been reduced to variables, the algorithm ®rst checks whether they are
identical; if so, and if the queue of pending left-hand sides is empty, the algorithm immediately
returns true. Otherwise, the variable � is replaced by its upper bound from � and the analysis
continues as before.

The algorithm presented here generalizes one described by Reynolds for deciding the subtype
relation of Forsythe [personal communication, 1988].

4.2.8.1. De®nition: Let � be a ®nite sequence of elements of the set

�

 �
 a type � �

�

�

�

 � � a type variable and
 a type �

�

De®ne the type � �
 as follows:

� � �
 �

� �

	

� � �
 � � �

�

� �
 �

� �

�

�

	

� � �
 � � �

�

�

�

�

� �
 �

�

From the de®nitions of
�

and � �
 , the following facts are immediate:

4.2.8.2. Lemma:
1. �

� �

�

�
 1 � �

 � � � �

�

�

�

�

�

� �
 � �

�

�

2. �

� �

�

 1 �
 2 � �

�

�

�

� �

	

 1 � �
 2 � �

�

�

3. �

� �

�

� �

�

 1 �

 2 � �

�

�

�

� �

	

�

�

 1 � �
 2 �

�

�

4.2.8.3. Remark:Note that every type
 has either the form � � � or the form � �

�
 1 � �

 � � for a
unique � .

4.2.8.4. De®nition: The four-place algorithmic subtyping relation � �

!
� 	 � �
 is the least

relation closed under the following rules:

for all �

	

� � � 	 � �
 �

� � � 	 � �

�
 1 � �

 � �

(ASUBR-INTER)

for some �

	

� � � � 	 � � �

� �

� � 1 � �

� � � 	 � � �

(ASUBL-INTER)

� �
 1 	 � � � � 1 � � � 2 	 � 2 � �

� � � 1 � � 2 	 �
 1 	

� 2 � � �

(ASUBL-A RROW)

� �
 1 	 � � � � 1 �

	

�

�

 1 � � 2 	 � 2 � �

� � � �

�

� 1 �

� 2 	 � �

�

 1 	

� 2 � � �

(ASUBL-A LL)

4.2. SUBTYPING 65

� � � 	 � � � � (ASUBL-REFL)

� � �

�

� � 	 � � �

� � � 	 � � �

(ASUBL-TVAR)

4.2.8.5. Notation: We sometimes decorate the turnstile symbol �

! to distinguish algorithmic
derivations from derivations in other calculi.

4.2.8.6. De®nition: We write D IST
�

� � � � � � �

1 � �

� � �

� �

(or just D IST
�

when the appropriate subscript is
clear) for the following compound derivation:

DIST
�

� � � � �

�

� �

1 � �

�

�

� �

� �

�

(SUB-REFL)

� �

�

 � � � �
 1 � �

� � �
 � � 	 � � � �
 1 � �

 � �

DIST
�

� � � � 	
 � � � � �

1 � �

	
 � � � � �

�

�

�

(SUB-DIST-IA)

� �

�

� � �

�

�

�

�
 1 �

� �

� �

�

�

�

�
 � � �

	 � �

� �
�

�
 1 � �

�
�

�

�

�

� � � 	 �

DIST
�

� �
�

� �

�

� �

1 � �

�

�

� �

�
�

� �

�

� �

� �

�

�
 1 � �

�

�

�
 � �

	 � �

�

�
�

�

�
 1 � �

�

� �

(SUB-ARROW)

� �

�

� � �

�

�

�

�
 1 �

� �

� �

�

�

�

�
 � � � 	 � �

�

�

�

�

�
 1 � �

 � � �

(SUB-TRANS)

DIST
�

� �
�

� �

�

�

	

�

� �

�

� �

1 � �

�

�

�

	

�

� �

�

� �

�

�

�

(SUB-DIST-IQ)

� �

�

� � �

�

�

�

�

�

�

�
 1 �

� �

� �

�

�

�

�

�

�

�

�

� �

	 � �

�

�

�

� � � �
 1 � �

� � �
 � �

� � � 	 �

DIST
�

� � �

�
�

	

�
�

� � � � �

1 � �

� � � �

�
�

� �

�

� �

�

�

�

� �

�

�
 1 � �

�

�

�

�

�

	 � �

�

�

�

�

� � �

�
 1 � �

 � � �

(SUB-ALL)

� �

�

� � �

�

�

�

�

�

�

�
 1 �

� �

� �

�

�

�

�

�

�

�
 � � � 	 � �

�

�

�

�

�

�

�

�
 1 � �

 � � �

(SUB-TRANS)

4.2.8.7. De®nition: Let 	 :: � �

!
� 	
 be an algorithmic subtyping derivation. Then 	

�

:: � �

�

� 	

is the following ordinary derivation:
�

for all �

	

	 � :: � �

!
� 	 � �
 �

� �

!
� 	 � �

�
 1 � �

�

�

(ASUBR-INTER) �

�

�

	

�

1 � � �

	

�

�

� �

�

� 	 � � �
 1 � �

� �
 � �

(SUB-INTER-G) DIST
�

:: � �

�

� � �
 1 � �

� �
 � �

	 � �

�
 1 � �

�

�

� �

�

� 	 � �

�
 1 � �

 � �

�

for some �

	

	
� :: � �

!
�

�
	 � � �

� �

!

� � 1 � �

� � � 	 � � �

(ASUBL-INTER) �

�

�

� �

�

� � 1 � �

� � � 	 � �

(SUB-INTER-LB)
	

�

�

� �

�

� � 1 � �

� � � 	 � � �

4.2. SUBTYPING 66

�

	 1 :: � �

!

 1 	 � � � � 1 	 2 :: � �

!
� 2 	 � � �

� �

!
� 1 � � 2 	 �
 1 	

� � � �

(ASUBL-ARROW) �

�

�

	

�

1 	

�

2

� �

�

� 1 � � 2 	 �
 1 	

� � � �

(SUB-ARROW)

�

	 1 :: � �

!

 1 	 � � � � 1 	 2 :: �

	

�

�

 1 �

!
� 2 	 � � �

� �

!
� �

�

� 1 �

� 2 	 � �

�

 1 	

� � � �

(ASUBL-ALL) �

�

�

	

�

1 	

�

2

� �

�

� �

�

� 1 �

� 2 	 � �

�

 1 	

� � � �

(SUB-ALL)

�

� �

!
� 	 � � � �

(ASUBL-REFL) �

�

�

� �

�

� 	 � � � �

(SUB-REFL)

�

	 1 :: � �

!
�

�

� � 	 � � �

� �

!
� 	 � � �

(ASUBL-TVAR) �

�

�

� �

�

� 	 �

�

� �

(SUB-TVAR)
	

�

1

� �

�

� 	 � � �

(SUB-TRANS)

4.2.8.8. Theorem:[Soundness of the algorithm] If � �

!
� 	 � �
 then � �

�

� 	 � �
 .

Proof: By the well-formedness of the translation in De®nition 4.2. 8.7. �

We must now check that the relation de®ned by these rules coincides with the subtype relation
on canonical types, from which it follows, by Theorem 4.2.7. 6, that the algorithm gives a semi-
decision procedure for the F� subtype relation.

4.2.8.9. Lemma:[Completeness of the algorithm with respect to canonical su btyping] If �

�

�

�

�

�

	

�

� �
 �

� , then � �

!
� 	 � �
 .

Proof: By induction on the size of a normal-form derivation of �

�

�

�

�

�

	

�

� �
 �

� , with a sub-
induction on the form of
 and, when

 � , a sub-sub-induction on the form of � . Proceed by
cases on the form of
 and � .

Case:

�
 1 � �

�

� �

�

�

�

�

�

	

�

� �

�
 1 � �

�

� �

�

By Lemma 4.2.8.2(1),�

�

�

�

�

�

	

�

�

�

� �
 � �

� . By the syntax-directedness of canonical subtyping
(4.2.6.3(1)), for every �

�

�

�

�

� �
 � �

� there is some �
�

�

�

and a subderivation of the original
whose conclusion is �

�

�

�

� 	 � . In particular, for each � and every � �

�

� �
 � �

� there is
some �

�
�

�

such that �

�

�

�

� 	 � . By CSUB-AE, �

�

�

�

�

�

	

�

� �
 � �

� . This derivation is no
larger than the original and
 � is smaller than
 , so, by the main or sub-induction hypothesis,

� �

!
� 	 � �
 � . Then by rule ASUBR-INTER, � �

!
� 	 �
 1 � �

 � � .

Case:

 � �
 � � 1 � �

� � � �

�

�

�

 � � 1 � �

� � �

�

	

�

� � � �

�

Since �

� � � �

�

� � � is a singleton, the syntax-directedness of canonical subtyping (4.2.6.3(1))
implies that for some �

�
�

�

we have �

�

�

�

� 	 � as a subderivation of the original. Since
�

�

�

�

�

�

�

, there is some � � such that � � �

�

�

. CSUB-AE then gives �

�

�

�

�

�

�

	

�

� � � �

� . This
derivation is no larger than the original and � � is strictly smaller than � , so by either the main
or the sub-sub-induction hypothesis, � �

!
�

�
	 � � � . By rule ASUBL-INTER, � �

!
� 	 � � � .

4.3. TYPECHECKING 67

Case:

 � �
 � 1 � � 2 �

�

�

�

�

� 1 � � 2 �

�

	

�

� � � �

�

Since �

� � � �

�

 � � � is a singleton, the syntax-directedness of canonical subtyping (4.2.6.3(1))
implies that for some � 1 � � 2 � �

�

we have �

�

�

�

� 1 � � 2 	 � as a subderivation. By syntax-
directedness again (4.2.6.3(2)),� must have the form � 1 � � 2, with �

�

�

�

� 1 	 � 1 and �

�

�

�

� 2 	 � 2

as subderivations. By De®nition 4.2.8.1, �
 �
 1 	

� 2 � , where � 1

�1 and � � 2 �

�

� 2 � � �

� .
Since � 2 � � 2 �

, we have �

�

�

�

� 2 �

	

�

� 2 � � �

� by CSUB-AE. This derivation is no larger
than the original, and � is strictly smaller, so by either the main or the sub-sub-ind uction
hypothesis, � �

!
� 2 	 � 2 � � . Also, by the main induction hypothesis, � �

!

 1 	 � � � � 1. By rule

ASUBL-A RROW, � �

!
� 1 � � 2 	
 1 �

�

� 2 �
 2 � , i.e., � �

!
� 1 � � 2 	 �
 1 	

� 2 � �
 2.

Case:

 � �
 � �

�

� 1 �

� 2

Similar.

Case:

 � �
 � �

�

�

�

�

�

	

�

� � � �

�

Since �

�

� � � and �

� � � �

�

� � � are both singletons, the syntax-directedness of canonical
subtyping (4.2.6.3(1)) gives �

�

�

�

� 	 � as a subderivation. By syntax-directedness again
(4.2.6.3(4)), either�
 � or �

�

�

�

�

�

�

� � 	

� � � . In the ®rst case, rule ASUBL-REFLgives the desired
result immediately. In the second case, the main induction h ypothesis gives � �

!
�

�

� � 	 � � � ,
from which rule AS UBL-TVAR again yields � �

!
� 	 � � � . �

4.2.8.10. Theorem: [Completeness of the algorithm with respect to ordinary sub typing] If � �

�

� 	 � �
 then � �

!
� 	 � �
 .

Proof: By the equivalence of ordinary and canonical subtyping (The orem 4.2.7.6) and the com-
pleteness of the algorithm with respect to canonical subtyp ing (Lemma 4.2.8.9). �

4.2.8.11. De®nition: The more convenient three-place relation � �

!
� 	
 may be de®ned as

� �

!
� 	
 iff � �

!
� 	 � � �

	

where

 � � � and either �

� � 1 � �

�
�

� or �
 � .

4.2.8.12. Theorem:[Equivalence of ordinary and syntax-directed subtyping]

� �

�

� 	
 iff � �

!
� 	

�

4.3 Typechecking

We now present an algorithm for synthesizing types for F� terms. Given a term � and a context �

(where � is closed in �), the algorithm constructs a minimal type � for � under � Ð that is, a type
� such that � � �

�
� , and such that any other type that can be derived for � from these rules is a

supertype of � .
The algorithm can be explained by separating the typing rule s of De®nition 3.2.3 into two sets:

the structural or syntax-directedrules (VAR, ARROW-E, ALL-I, A LL-E, and FOR), whose applicability
depends on the form of � , and the non-structural rules (I NTER-I and SUB), which can be applied
without regard to the form of � . The non-structural rules are then removed from the system a nd
their possible effects accounted for by modifying the struc tural rules V AR, ARROW-E, ALL-E, and
FOR appropriately.

The main novel source of dif®culty here is the application ru les ARROW-E and ALL-E. An
application �

� 1 � 2 � in the original system has everytype
 2 such that � 1 can be shown to have some

4.3. TYPECHECKING 68

type
 1 �
 2 and � 2 can be shown to have type
 1, where the rule SUB may be used on both sides to
promote the types of � 1 and � 2 to supertypes with appropriate shapes. For example, if

� 1 �

�

� 1 � � 2 �

�

�

� �

�

� 3 �

� 4 �

�

�

� 5 � � 6 �

�

�

� 7 � � 8 �

� 2 � � 1
�

�

� �

�

� 3 �

� 4 �

�

� 5 	

then

�

� 1 � 2 �

has both types � 2 and � 6, and hence (by INTER-I) also type � 2
�

� 6.
To deal with this ¯exibility deterministically, we observe that the set of supertypes of �

� 1 � � 2 �

�

�

� �

�

� 3 �

� 4 �

�

�

� 5 � � 6 �

�

�

� 7 � � 8 � that have the appropriate shape to appear as the type of � 1 in
an instance of ARROW-E can be characterized ®nitely:

arrowbasis� �

� 1 � � 2 �

�

�

� �

�

� 3 �

� 4 �

�

�

� 5 � � 6 �

�

�

� 7 � � 8 � �

� � � 1 � � 2 	

� 5 � � 6 	

� 7 � � 8 �

�

It is then a simple matter to characterize the possible types for �

� 1 � 2 � by checking whether the
minimal type of � 2 is a subtype of each domain type in the ®nite arrow basis of the minimal type
of � 1. Type applications are handled similarly.

4.3.1 Finite Bases for Applications

4.3.1.1. De®nition: The functions arrowbasis� and allbasis� are de®ned as follows:
arrowbasis� �

� � � arrowbasis� �

�

�

� � �

arrowbasis� �

 1 �
 2 � � �
 1 �
 2 �

arrowbasis� �

� �

�

 1 �

 2 � � � �

arrowbasis� �

 �
 1 � �

 � � � � arrowbasis� �

 1 �

� � � � �

arrowbasis� �

 � �

allbasis�

�

� � � allbasis�

�

�

�

� � �

allbasis�

�

 1 �
 2 � � � �

allbasis�

�

� �

�

 1 �

 2 � � � � �

�

 1 �

 2 �

allbasis�

�

�
 1 � �

 � � � � allbasis�

�

 1 �

� � � � �

allbasis�

�

 � �

�

4.3.1.2. Remark: To check that these de®nitions are proper, note that a closedcontext cannot
contain cyclic chains of variable references where � 0 � FTV �

�

�

� 1 � � , � 1 � FTV �

�

�

� 2 � � , . . . , � �
�

FTV �

�

�

� 0 � � .

The next two lemmas verify that arrowbasis� and allbasis� compute ®nite bases for the sets of
arrow types and polymorphic types above a given type.

4.3.1.3. Lemma:[Finite � basis computed by arrowbasis�]
1. � �

�

� 	

� arrowbasis� �

� � � .

2. If � �

�

� 	
 1 �
 2, then � �

�

� arrowbasis� �

� � � 	
 1 �
 2.

Proof:
1. By induction on the de®nition of arrowbasis� .

2. By the completeness of the subtyping algorithm (4.2.8.10), � �

�

� 	
 1 �
 2 implies � �

!

� 	 �
 1 	

� � � �
 2. We show, by induction on derivations, that � �

!
� 	 �
 1 	

� � � �
 �

implies � �

�

� arrowbasis� �

� � � 	 �
 1 	

� � � �
 � , from which the desired result follows as a
special case, since
 1 �
 2 can always be written in the form �
 1 	

� � � �
 � , where the outermost
constructor of

� is
�

or a variable.
Proceed by cases on the ®nal step of a derivation of� �

!
� 	 �
 1 	

� � � �
 �

�

4.3. TYPECHECKING 69

CaseASUBR-INTER:
 �
 �
 � 1 � �

 � � �

By assumption,
� �

!
� 	 �
 1 	

� � � �
 � �

for each � ; by the induction hypothesis,
� �

�

� arrowbasis� �

� � � 	 �
 1 	

� � � �
 � �

�

By derived rule D-C ONG-INTER (4.1.7),
� �

�

 �

� arrowbasis� �

� � �

� �

� arrowbasis� �

� � � � 	 �

�

�
 1 	

� � � �
 � 1 �

� �

�

�
 1 	

� � � �
 � � � �

�

By D-A BSORBand D-REINDEX (4.1.2) and SUB-TRANS,
� �

�

� arrowbasis� �

� � � 	 �

�

�
 1 	

� � � �
 � 1 �

� �

�

�
 1 	

� � � �
 � � � �

�

By len�

�
 1 	

� � � � applications of SUB-DIST-IA and SUB-DIST-IQ (as appropriate) and
SUB-TRANS,

� �

�

� arrowbasis� �

� � � 	 �
 1 	

� � � �

�
 � 1 � �

 � � �

�

CaseASUBL-INTER: �

� � 1 � �

� � �
 �
 �

By assumption, � �

!
�

�
	 �
 1 	

�
�

� � � for some � . By the induction hypothesis,
� �

�

� arrowbasis� �

�
�

� � 	 �
 1 	

�
�

� � �

�

Since arrowbasis� �

�
�

� � arrowbasis� �

� � , SUB-REFL, D-A LL-SOME (4.1.2), and SUB-TRANS

give
� �

�

� arrowbasis� �

� � � 	 �
 1 	

� � � � �

�

CaseASUBL-A RROW: �
 � 1 � � 2
 �
 �

By the de®nition of arrowbasis� and the equivalence of ordinary and syntax-directed
subtyping (4.2.8.12).

CaseASUBL-A LL: �
 � �

�

� 1 �

� 2
 �
 �

Can't happen (�
 1 	

�
�

� has the wrong form).

CaseASUBL-REFL: �
 �
 �
 � �
 1 	

� � �
 � �

Can't happen.

CaseASUBL-TVAR: �
 �
 �
 � � �

!
�

�

� � 	 �
 1 	

� � � � �

By the induction hypothesis,
� �

�

� arrowbasis�

�

�

� � � � 	 �
 1 	

� � � � �

�

By the de®nition of arrowbasis� ,
� �

�

� arrowbasis�

� � � 	 �
 1 	

� � � � �

�

�

4.3.1.4. Lemma:[Finite � basis computed by allbasis�]
1. � � � 	

� allbasis�

�

� � � .

2. If � � � 	

�

� �

�

 1 �

 2 � , then � �

� allbasis�

�

� � � 	

�

� �

�

 1 �

 2 � .

Proof: Similar. �

The crucial step in the correctness proof for the type synthe sis algorithm is showing that
application and type application are correctly characteri zed by the sets computed by arrowbasis
and allbasis.

4.3. TYPECHECKING 70

4.3.1.5. Lemma:[Application]
If �

 � � 1 �

�

1 � �

� � �

�

� �

�
 �

�

� � � � � 	 � � �

� �

�

	
 1 �
 2

� � � 	
 1 	

then

� � � 	
 2 �

Proof: By the equivalence of ordinary and canonical subtyping (4.2 .7.6),

�

�

�

�

�

�

�

�

	

�

 1 �
 2 �

�

�

�

�

�

�

�

	

�1

�
 �

�

�
� �

�

�

�

�

�

	 �
�

�

�

�

By the de®nition of
�

(4.2.7.1),

�

�

�

�

�

�

�

� � �

�

� � � �
�

�

�

�

� � 	

�

�1 � � � �
�

�2 �

�

By the syntax-directedness of canonical subtyping (4.2.6.3(1)),

for all � �

�2
there is some � and some � �

�

� � such that
�

�

�

�

� �

�

� � 	

�1 � � .

By syntax-directedness again (4.2.6.3(2)),

for all � �

�2
there is some � and some � �

�

� � such that
�

�

�

�

�1 	 � �

� and
�

�

�

�

� 	 � ,

that is,

for all �
�

�2
there is some � such that

�

�

�

�

�1 	 � � � and
there is some � �

� �

� such that
�

�

�

�

� 	 � .

By CSUB-TRANS,

for all �
�

�2
there is some � such that

�

�

�

�

�

�

	 � �

� and
there is some � �

� �

� such that
�

�

�

�

� 	 � .

By CSUB-AE,

�

�

�

�

�

�

�

� � � �

�

�

�

� and �

�

�

�

�

�

	 �
�

�

� � 	

�2 	

that is,

�

�

�

�

�

� �

�

	

�2 �

4.3. TYPECHECKING 71

By the equivalence of ordinary and canonical subtyping (4.2 .7.6),

� �

�

 � 	
 2 �

�

4.3.1.6. Lemma:[Type application]
If

�

 �

�

� �

�

� 1 �

�

1 �

� �

�

� �

�

� �

�

�

� � �

�
 �

�

� � � �

�

� � � � � 	 � � �

� �

�

	

�

� �

�

 1 �

 2 �

� � � 	
 1 	

then

� � � 	

�

� � � �
 2 �

Proof: By the equivalence of ordinary and canonical subtyping (The orem 4.2.7.6),

�

�

�

�

�

�

�

�

	

�

� �

�

 1 �

 2 �

�

�

�

�

�

�

�

	

�1
�
 �

�

� � � �

�

� � �

�

�

�

�

�

	 � �

�

�

�

By the de®nition of
�

,

�

�

�

�

�

�

�

 � � �

�

� �

�

�

� � � �

�

�

�

� � 	 � � �

�

�1 �

� � � �

�2 �

�

By the syntax-directedness of canonical subtyping (4.2.6.3(1)),

for all �
�

�2
there is some � and some � �

�

�

� such that
�

�

�

�

�

� �

�

� � �

�

� � 	

�

� �

�

�1 �

� � .

By syntax-directedness again (4.2.6.3(3)),

for all �
�

�2
there is some � and some � �

�

�

� such that
�

�

�

�

�1 	 � �

� and
�

�

	

�

�

�1 � � 	 � ,

that is,

for all �
�

�2
there is some � such that

�

�

�

�

�1 	 � � � and
there is some � �

�

�

� such that
�

�

	

�

�

�1 � � 	 � .

By CSUB-TRANS,

for all �
�

�2
there is some � such that

�

�

�

�

�

�

	 � � � and
there is some �

�

�

� � such that
�

�

	

�

�

�1 � � 	 � .

4.3. TYPECHECKING 72

By CSUB-AE,

� �

	

�

�

 �1 �

�

�

�

�

 � � � � �

�

� and � � �

�

� � 	 � � � � � 	
 �2 	

that is,

� �

	

�

�

 �1 �

�

�

 �

�

� � � � �

�

� � 	 � � � � �

�

	
 �2 �

By the equivalence of ordinary and canonical subtyping (4.2 .7.6),

�

	

�

�

 1 �

�

 �

�

� � � � � 	 � � � 	
 2 �

Then by the substitution property (4.1.8),

� �

�

�

� � � �

�

 �

�

� � � � � 	 � � � � 	

�

� � � �
 2 	

that is,

� �

�

� 	

�

� � � �
 2 �

�

4.3.2 Type Synthesis

4.3.2.1. De®nition: The three-placetype synthesis relation� �

!
�

�

 is the least relation closed under

the following rules:
� � �

�
�

�

� � (A-VAR)

�

	

� :
 1 � �
�

 2

� �

�

� :
 1 �

�
�

 1 �
 2
(A-A RROW-I)

� � � 1 � � 1 � � � 2 � � 2

� � � 1 � 2 � �

�

� �

�

� � �

�

� � � arrowbasis� �

� 1 � and � � � 2 	 � � �

(A-A RROW-E)

�

	

�

�

 1 � �
�

 2

� � � �

�

 1 �

�
�

� �

�

 1 �

 2
(A-A LL-I)

� � �
�

� 1

� � � �
 �
�

�

�

 � � �

�

� �

�

� �

�

� �

�

�

� �
� allbasis�

�

� 1 � and � �
 	 � � �

(A-A LL-E)

for all �

	

� �

�

�
�

� � � �
�

�

� � for � in � 1 � �

�
�

�

�
�

�
 1 � �

�

�

(A-FOR)

4.3.2.2. Notation: Again, turnstiles in type synthesis derivations are someti mes marked �

! to
distinguish them from derivations in other calculi.

4.3.2.3. Lemma: [Syntax-directedness of the type synthesis rules] For given � and � , there is at
most one rule that can be used to establish � �

!
�

�

 for some
 . Moreover, the existence of such

a derivation can be established from the form of � and the results of applying the type synthesis
procedure to proper subphrases of � plus a ®nite number of applications of the subroutine for
checking the subtyping relation. In particular:

1. If � �

!
�

�
� , then �
 �

�

� � .

2. If � �

! �

� :
 1 �

�
�

� , then �

 1 �
 2, where �

	

� :
 1 �

!
�

�

 2 as a subderivation.

3. If � �

!
� 1 � 2 � � , then �
 �

�

� �

�

� � �

�

� � � arrowbasis� �

� 1 � and � � � 2 	 � � � , where � �

!
� 1 � � 1

and � �

!
� 2 �

� 2 as subderivations.

4. If � �

!
� �

�

 1 �

�
�

� , then �
 � �

�

 1 �

 2, where �

	

�

�

 1 �

!
�

�

 2 as a subderivation.

4.3. TYPECHECKING 73

5. If � �

!
� �
 � � � , then �
 �

�

 � � �

�

� �

�

� �

�

� �

�

�

� � � allbasis�

�

� 1 � and � �
 	 � � � , where
� �

!
� � � 1 as a subderivation.

6. If � �

! for � in � 1 � �

� �

�

� � � , then �
 �
 1 � �

 � � , where � �

!
�

� � � � � � �
 � , for each i, as a
subderivation.

Proof: By inspection. �

4.3.2.4. Remark:The syntax-directedness of algorithmic derivations permi ts us to skip introduc-
ing a linear shorthand, as we did for ordinary and canonical d erivations, since terms themselves
are essentially the shorthand we need.

4.3.2.5. De®nition: Let 	 :: � �

!
� �
 be a typing derivation from the algorithmic rules (4.3.2.1) .

Then 	

�

:: � �

�

� �
 is the following derivation from the ordinary typing rules:
�

� �

!
� � �

�

� �

(A-VAR)
�

�

�

� �

�

�
�

�

�

� �

(VAR)

�

	 1 :: �

	

� :
 1 �

!
�

�

 2

� �

!
�

�

� :
 1 �

� �
�

 1 �
 2
(A-ARROW-I) �

�

�

	

�

1

� �

�

�

�

� :
 1 �

� �
�

 1 �
 2
(ARROW-I)

�

	 1 :: � �

!
� 1 �

� 1 	 2 :: � �

!
� 2 �

� 2

� �

!
�

� 1 � 2 �
�

�

�

� �

�

� � �

�

� �
� arrowbasis� �

� 1 � and
 � :: � � � 2 	 � � �

(A-ARROW-E) �

�

�

� � �

	

�

1 4.3.1.3 ::� �

�

� 1 	 � � �

�

�

� �

�

� 1 �
� � �

�

�

(SUB)
	

�

2

�

�

� �

�

� 2 �
� �

(SUB)

� �

�

�

� 1 � 2 �
�

�

�

(ARROW-E)
� � �

� �

�

�

� 1 � 2 �
�

�

�

� �

�

� � �

�

� �
� arrowbasis� �

� 1 � and � � � 2 	 � � �

(INTER-I)

�

	 1 :: �

	

�

�

 1 �

!
� �
 2

� �

!
�

� �

�

 1 �

� �
�

� �

�

 1 �

 2
(A-ALL-I) �

�

�

	

�

1

� �

�

�

� �

�

 1 �

� �
�

� �

�

 1 �

 2
(ALL-I)

�

	 1 :: � �

!
� � � 1

� �

!
� �
 �

�
�

�

 � � �

�

� �

�

� �

�

� �

�

�

� �
� allbasis�

�

� 1 � and
 � :: � �
 	 � � �

(A-ALL-E) �

�

�

� � �

	

�

1 4.3.1.4 ::� �

�

� 1 	 � �

�

�
�

�

�

�

� �

�

�
�

� �

�

� �

�

�

�

(SUB)

�

�

� �

�

� �
 �
�

�

 � � �

�

�

(ALL-E)
� � �

� �

�

� �
 �
�

�

�

 � � �

�

� �

�

� �

�

� �

�

�

� �
� allbasis�

�

� 1 � and � �
 	 � � �

(INTER-I)

�

for all �

	

	 � :: � �

!
�

� � � � � �
�

 �

� �

!
� for � in � 1 � �

� �

�

� � � �
 1 � �

 � �

(A-FOR) �

�

�

� � �

	

�

�

:: � �

�

�

� � � � � �
�

 �

� �

�

� for � in � 1 � �

�
�

�

� �
�

�

(FOR)
� � �

� �

�

� for � in � 1 � �

� �

�

� �
�

�
 1 � �

 � �

(INTER-I)

4.3.2.6. Theorem:If � :: � �

!
�

�

 , then �

�

:: � �

�

�
�

 .
Proof: By induction on the structure of � . �

4.3.2.7. Theorem:[Minimal typing] If � �

!
�

�
� and � �

�

�
�

 , then � � � 	
 .
Proof: By induction on a derivation of � �

�

�
�

 . Proceed by cases on the ®nal rule.

4.3. TYPECHECKING 74

CaseVAR: �
 �

 �

�

� �

Immediate by A-V AR.

CaseARROW-I: �

�

� :
 1 �

� � �

	

� :
 1 �

�

� � �
 2

 1 �
 2

By the syntax-directedness of the type synthesis rules (4.3.2.3), the last rule in the derivation
of � �

!
� � � must be A-A RROW-I, so

�

	

� :
 1 � �

�

� � 2

�

 1 � � 2 �

By the induction hypothesis, � �

�

� 2 	
 2. By SUB-REFL and SUB-ARROW,
� �

�

 1 � � 2 	
 1 �
 2 �

CaseARROW-E: �
 � 1 � 2 � �

�

� 1 �
 1 �
 2 � �

�

� 2 �
 1

 2

By the syntax-directedness of the type synthesis rules (4.3.2.3),
� �

!
� 1 � � 1

� �

!
� 2 �

� 2

�

�

�

�
�

�

�
�

�

�

�
�

� arrowbasis� �

� 1 � and � �

!
� 2 	 �

�
�

�

By the equivalence of ordinary and syntax-directed subtypi ng (4.2.8.12),
�

�

�

� �

�

� � �

�

� �
� arrowbasis� �

� 1 � and � �

�

� 2 	 � � �

�

By the induction hypothesis,
� �

�

� 1 	
 1 �
 2

� �

�

� 2 	
 1 �

Sincearrowbasis� �

� 1 � is a ®nite basis for the arrow types above � 1 (4.3.1.3),
� �

�

� arrowbasis� �

� 1 � � 	
 1 �
 2 �

By the application lemma (4.3.1.5),
� �

�

�

�

� �

�

� � �

�

� �
� arrowbasis� �

� 1 � and � �

�

� 2 	 � � � 	
 2 �

CaseALL-I: �
 � �

�

 1 �

� � �

	

�

�

 1 �

�

� �
�

 2

 � �

�

 1 �

 2

By the syntax-directedness of the type synthesis rules (4.3.2.3),
�

	

�

�

 1 �

!
�

� �
� 2

�
 � �

�

 1 �

� 2 �

By the induction hypothesis,
�

	

�

�

 1 �

�

� 2 	
 2 �

By SUB-REFL and SUB-ALL ,
� �

�

�

� �

�

 1 �

� 2 � 	

�

� �

�

 1 �

 2 �

�

CaseALL-E: �
 � � �
 � � � �

�

� �
�

� �

�

 1 �

 2 � �

�

 � 	
 1

�

 � � � �
 2

By the syntax-directedness of the type synthesis rules (4.3.2.3),
� �

!
�

�

�
� 1

�

�

�

 � � � �

�

� �

�

� �

�

� �

�

�

� �
� allbasis�

�

� 1 � and � �

!

 � 	 � � �

�

By the equivalence of ordinary and syntax-directed subtypi ng (4.2.8.12),
�
 �

�

�

� � �

�

� �

�

� �

�

� �

�

�

� � � allbasis�

�

� 1 � and � �

�

�

	 � � �

�

By the induction hypothesis,
� �

�

� 1 	 � �

�

 1 �

 2 �

Sinceallbasis�

�

� 1 � is a ®nite basis for the polymorphic types above � 1 (4.3.1.4),
� �

�

� allbasis�

�

� 1 � � 	 � �

�

 1 �

 2 �

By the type application lemma (4.3.1.6),
� �

�

 �

�

�

� � �

�

� �

�

� �

�

� �

�

�

� � � allbasis�

�

� 1 � and � �

�

	 � � � 	

�

�

� � �
 2 �

4.3. TYPECHECKING 75

CaseFOR: �
 for � in � 1 � �

� �

�

� � � �

�

�

� � � � � � �
 �

 �

By the syntax-directedness of the type synthesis rules (4.3.2.3),
for all

� 	

� �

!
�

� � � � � � � � �

�
 � � 1 � �

� � �

�

By the induction hypothesis,
� �

�

� � 	
 �

�

By SUB-INTER-LB and SUB-TRANS,
� �

�

 � � 1 � �

� � � 	
 �

�

CaseINTER-I : for all �

	

� �

�

� �
 �

 �
 1 � �

 � �

By the induction hypothesis,
for all �

	

� �

�

� 	
 �

�

By SUB-INTER-G,
� �

�

� 	

�
 1 � �

 � �

�

CaseSUB: � �

�

�
�

 1 � �

�

 1 	
 2

 2

By the induction hypothesis,
� �

�

� 	
 1 �

By SUB-TRANS,
� �

�

� 	
 2 �

�

4.3.3 Conservativity

F� was described as essentially the union of the two simpler cal culi
�

� and � � . We can gauge
the accuracy of this characterization by checking whether t he features of the component calculi
operate ªorthogonally,º so that each component system can be thought of as a restriction of F� Ð
i.e., by asking whether F� is a conservative extension of

�

� and of � � .

4.3.3.1. De®nition: Let
�

and
�

be two calculi and
�

� Ð � �

�

�

�

an injective mapping from
�

statements to
�

statements.
�

� Ð � is said to be anembeddingof
�

into
�

if, for every
�

statement � ,
� is derivable in

�

iff
�

�

� � is derivable in
�

.

Typically,
�

� Ð � is just an identity injection. For instance, this is the case for the embedding of
�

� into F� .

4.3.3.2. De®nition: If the identity injection is an embedding of
�

into
�

, then
�

is said to be a
conservative extensionof

�

.

4.3.3.3. Theorem:Let � and
 be
�

� types, � an
�

� context, and � an
�

� expression. Assume that
the primitive subtype relation of

�

� is encoded as a context� � (c.f. 3.4.2.2). Then:
1. �

�

	

� �

�

� 	
 iff � �

�

�

� 	
 .

2. � �

	

� �

�

�
�

 iff � �

�

�

�
�

 .

Proof:
1. (� �) Lemma 3.4.2.4.

(� �) If � �

	

� �

�

� 	
 , then by the completeness of the subtyping algorithm, � �

	

� �

!
� 	
 .

By the syntax-directedness of the subtyping algorithm and t he fact that � ,
 , and � contain
no quanti®ed types, this derivation will not contain any ins tances of ASUBL-A LL, the rule
that deals with quanti®ed types. It may be therefore be rewri tten as a derivation from the

�

� rules by a translation similar to the one in the proof of Theor em 4.2.8.8, dropping the

4.3. TYPECHECKING 76

bindings � � and translating instances of ASUBL-REFL as instances of SUB-REFL and instances
of ASUBL-TVAR as derivations of the following form:

(SUB-TRANS)

(SUB-INTER-G)

� � � � with � 	 � � .
� 	 � �

� �

�

�

� 	 �

(SUB-PRIM)

� �

�

�

� 	 � � � � � � 	 � � �

(induction hypothesis)

� �

�

�

 � � � � � � 	 � � � 	 � � �

� �

�

�

� 	 � � �

�

2. (� �) Lemma 3.4.2.5.
(� �) If �

	

� � �

�

� �
 , then by the completeness of the subtyping algorithm, �

	

� � �

!
� �
 .

By the syntax-directedness of the subtyping algorithm and t he fact that � ,
 , and � contain
no type abstractions, type applications, or quanti®ed type s, this derivation will not contain
any instances of A-A LL-I or A-A LL-E. It may be therefore be rewritten straightforwardly as a
derivation from the

�

� rules, using the previous case to handle the translation of subtyping
derivations. �

The mapping from the other subsystem, � � , into F� must take the type Top into � , and it is
here that it fails to be an embedding (as we might expect from t he discussion in Section 3.4):

4.3.3.4. Example:The subtyping statement

� Top 	 � �

� Top
�

Top

is derivable in F� (reading Topas �), but not in � � .

4.3.3.5. Conjecture: SinceTop must be mapped to a maximal type by any embedding function
from � � to F� and � is the only such type (up to equivalence), there is probably no embedding of

� � into F� .

4.3.3.6. Conjecture: By replacing Topwith � in � � and adding appropriate distributivity laws to
the subtyping relation and a � -introduction rule to the typing relation, we can construct a system
that can be embedded into F� (indeed, such that F� extends it conservatively), but this system is
only a technical curiosity: it has most of the problematic fe atures of F� (the distributivity laws in
particular) but is much less expressive.

Chapter 5

Semantics

This chapter surveys a collection of preliminary results co ncerning the semantics of F� .
Section 5.1 gives a simple untyped semantics for F� based on Bruce and Longo's partial

equivalence relation model for �
� [12].

Section 5.2 discusses a negative technical result Ð the nonexistence of syntactic least upper
bounds Ð with some serious implications for the dif®culty of constructing a typed model for F�

in which the subtype relation is interpreted by semantic coe rcion functions.
The remainder of the chapter presents two different partial accounts of the typed semantics

of F� . Section 5.3 de®nes a semantics forF� by translating F� typing derivations into the pure
second-order

�

-calculus with surjective pairing, system � � . This style of presentation avoids some
of the subtleties involved in giving a direct denotational s emantics for F� , since � � itself has many
well-studied models, but it still yields a useful soundness theorem relating the semantics to the F�

type system: valid F� typing derivations are translated to well-typed (and hence well-behaved)
�

� terms. We then (Section 5.5) de®ne an equational theory of provable equivalences between
terms of pure F� . The equational theory is shown to be sound for both the untyp ed semantics and
the translation semantics (the latter in the sense that provably equal F� terms are translated into
equal terms in the target calculus, assuming that the transl ation is coherent).

5.1 Untyped Semantics

One of the simplest styles of semantics for typed
�

-calculi is based on partial equivalence relations
(PERs). A model in this style is essentially untyped (c.f. Section 2.4.1): terms are interpreted
by erasing all type information and interpreting the result ing pure

�

-term as an element of the
model. A type, in this setting, is just a subset of the model al ong with an appropriate notion of
equivalence of elements. Coercions between types are interpreted by inclusion of PERs.

The PER model given here for F� is based on Bruce and Longo's model for � � [12]. However,
the full generality of Bruce and Longo's construction, invo lving the category of � -sets, is not
required here.

The usual interpretation of a quanti®ed type � �

�

 in a second-order PER model is the PER-
indexed intersection of all possible instances of
 . Bruce and Longo showed how to extend this
de®nition to interpret a bounded quanti®er � �

�

�

�

 as the intersection of all the instances of

 where � is interpreted as a sub-PER of the interpretation of � . This intuition also serves for
intersection types: �
 1 � �

 � � is interpreted as the intersection of the PERs interpreting each of
the
 � 's.

77

5.1. UNTYPED SEMANTICS 78

We need to make one signi®cant departure here from PER modelsof � � : instead of allowing
the elements of our PERs to be drawn from the carrier of an arbi trary partial combinatory algebra

�

, we require that
�

be atotal combinatory algebra. This restriction is needed to validat e nullary
instances of the distributive law S UB-DIST-IA, which have the form � � � 	 � � � . To see why, let

�
 � . The empty intersection � is interpreted by the everywhere-de®ned PER, i.e., [[�]] relates
every � to itself. To validate the distributivity law, it must there fore be the case that [[� � �]]
relates every element to itself. But this will only be true if the application of any element to any
other element is de®ned. This observation is due to QingMing Ma [personal communication,
1991].

The notation and fundamental de®nitions used in this sectio n are based on papers of Bruce
and Longo [12], Freyd, Mulry, Rosolini, and Scott [61], and o thers. A good basic reference for PER
models of second-order

�

-calculi is [95]; also see [13] for more general discussion of second-order
models and [5, 77] for general discussion of combinatory mod els.

5.1.1 Total Combinatory Algebras

5.1.1.1. De®nition: A total combinatory algebrais a tuple
�

�

�

�

	 � 	

�

	

� � comprising
� a set � of elements,
� an application function

�

with type � �

�

� � � � ,
� distinguished elements �

	

�
�

� ,
such that, for all
 1 	

 2 	

 3 �
� ,

�

�

 1 �

 2 �
 1

�

�

 1 �

 2 �

 3 �

�

 1 �

 3 �

�

�

 2 �

 3 �

�

5.1.1.2. Remark:Throughout this section, we work with a®xed, butunspeci®ed , total combinatory
algebra

�

. (For example, Scott's � � or � � [128] model [128].)

5.1.1.3. De®nition: The set of pure
�

-termsis de®ned by the following abstract grammar:
�

::= � �

�

�

�

�

�

�

1

�

2

5.1.1.4. De®nition: The set of combinator termsis de®ned by the following abstract grammar:
�

::= � �

�

1
�

2 � � � �

5.1.1.5. De®nition: The bracket abstractionof a combinator term
�

with respect to a variable � ,
written

� �

�

�

�

, is de®ned as follows:
� �

�

�

�

� �

�

when � �
� FV �

�

�

�

�

�

�

� � � � �

� �

�

�

�

1
�

2 � �

�

� �

�

�

�

1 �

�

� �

�

�

�

2 � when �
� FV �

�

1
�

2 �

5.1.1.6. De®nition: The combinator translationof a pure
�

-term
�

, written �

�

� , is de®ned as
follows:

� � � � �

�

�

�

�

�

� �

� �

�

�

�

�

�

�

�

1

�

2 � � �

�

1 � �

�

2 �

5.1.1.7. De®nition: An environment� is a ®nite function from type variables to PERs (de®ned be-
low) and term variables to elements of � . When � �

� dom�

� � , we write � � � �
 � for the environment

5.1. UNTYPED SEMANTICS 79

that maps � to
 and agrees with � everywhere else; � � � � � � is de®ned similarly. We write � � � for
the environment like � except that �

�

� � is unde®ned; � � � similarly. We say that �

� extends� when
dom�

� � � dom�

� � � and � and � � agree ondom�

� � .

5.1.1.8. De®nition: Let
�

be a combinatory term and � an environment such that FV �

�

� � dom�

� � .
Then the interpretationof

�

under � , written [[
�

]] � , is de®ned as follows:

[[�]] � � �

�

� �

[[
�

1
�

2]] � � [[
�

1]] �

�

[[
�

2]] �

[[�]] � � �

[[�]] � � �

5.1.1.9. Lemma:If �

� extends � and FV �

�

� � dom�

� � , then [[
�

]] � � [[
�

]] �

� .

Proof: Straightforward induction on
�

. �

5.1.1.10. Lemma:[[
�

�

�

�

�

]] �

�

� � [[
�

]]
�

� � �

� �

.

Proof: By induction on the form of
�

.

Case: � �
� FV �

�

�

[[
� �

�

�

�

]] �

�

� � [[�

�

]] �

�

�

� �

�

[[
�

]] �

�

�

� [[
�

]] �

� [[
�

]]
�

� � �

� �

by Lemma 5.1.1.9
�

Case:
�

 �

[[
� �

�

�

�

]] �

�

� � [[� � �]] �

�

�

� �

�

�

�

�

�

�

� �

�

�

� � � � � � �

�

� �

� [[
�

]]
�

� � �

� �

�

Case:
�

�

1
�

2 � � FV �

�

1
�

2 �

[[
�

�

�

�

�

]] �

�

� � [[�

�

�

�

�

�

�

1 �

�

�

�

�

�

�

2 �]] �

�

�

� �

�

[[
�

�

�

�

�

1]] �

�

[[
�

�

�

�

�

2]] �

�

�

�

� [[
�

�

�

�

�

1]] �

�

� �

�

� [[
�

�

�

�

�

2]] �

�

� �

�

� [[
�

1]] �

� � �

� �

�

�

� [[
�

2]] �

� � �

� �

� by the induction hypothesis
�

� [[
�

1
�

2]] �

� � �

� �

�

�

�

5.1.2 Partial Equivalence Relations

5.1.2.1. De®nition: A partial equivalence relation(PER) on
�

is a symmetric and transitive relation
� on � . We write �

�

� �

� when � relates � and � . The domainof � , written dom�

� � , is the set
�

�

�

�

�

� �

�

� . Note that �

�

� �

� implies �
� dom�

� � .

5.1.2.2. De®nition: Let � and � be relations. Then � � � is the relation de®ned by

�

�

� � � �

� iff for all �

	 �

� �

	

�

�

� �

�

implies �

�

�

�

� �

�

� � �

5.1.2.3. Lemma: � � � is a PER when � and � are PERs.

Proof: (Symmetry) Let �

�

� � � �

� . Then

for all � and
� 	

�

�

� �

�

implies �

�

�

�

� �

�

� � 	

5.1. UNTYPED SEMANTICS 80

which by the symmetry of � and � implies that

for all � and � � � � � � � implies � � � � � � 	 � � �

that is, � � �
 � � 	 .
(Transitivity) Let 	 � �
 � � � and � � �
 � � � . Then

for all � , � , and � � � � � � � implies 	 � � � � � � � � � and � � � � � implies � � � � � � � � � �

� for all � , � , and � � � � � � � and � � � � � � implies 	 � � � � � � � � and � � � � � � � � � �

� for all � , � , and � � � � � � � and � � � � � � implies 	 � � � � � � � �

� for all � and � � � � � � � and � � � � � � implies 	 � � � � � � � �

� for all � and � � � � � � � implies 	

�

� � � � �

�

� �

that is, 	 � �
 � � � . �

5.1.2.4. De®nition: � is a subrelationof � , written � � � , iff 	 � � � � implies 	 � � � � for all
	 � � � � .

5.1.2.5. De®nition: Let � � � � � � � be a set of relations indexed by a set � . Then �

� � �

� � is the relation
de®ned by

	 � �

� � �

� � � � iff for every � � 	 � � � � � �

5.1.2.6. Lemma: �

�
�

�

� � is a PER when all the � � 's are PERs.

Proof: Straightforward. �

5.1.3 PER Interpretation of F�

5.1.3.1. De®nition: The erasureof an F� term � , written erase � � , is the pure � -term de®ned as
follows:

erase � � � �

erase � � : � � � � � � � erase � �

erase � 1 � 2 � � erase � 1 � erase � 2 �

erase ! " # � � � � erase � �

erase � $ % � � erase � �

erase for " in & 1 � � & ' � � � � erase � �

5.1.3.2. De®nition: Let (be an environment and � an expression such thatFV � � � dom (� . Then
the interpretationof � under (, written [[�]]) , is [[* erase � � *]]) .

5.1.3.3. Remark: Since this style of semantics interprets the erasures of terms rather than inter-
preting typing derivations, it is coherent in a trivial sens e.

5.1.3.4. Lemma:[[� � : � � +]])
� [[� , � � * erase � � *]]) .

Proof: Straightforward. �

5.1.3.5. De®nition: Let (be an environment and a type expression such that FTV � � dom (� .
The interpretationof under (, written [[]]) , is the PER de®ned as follows:

[["]])
� (" �

[[1
 2]]) � [[1]])
 [[2]])

[[! "
#

 1 � 2]]) � � - . [[/ 1]] 0

[[2]]) 1 2 3

- 4 where � is a PER
[[5 $ 1 � � ' %]]) �

� 1
#

�

#

'

[[�]])

5.1.3.6. De®nition: An environment (satis®esa context 6 , written (* � 6 , if dom (� � dom 6 � and

5.1. UNTYPED SEMANTICS 81

1. 6 � � � , or

2. 6 � 6 1 � � : , where (

�

� satis®es6 1 and (� � � dom [[]]
) � �

� , or

3. 6 � 6 1 � " # , where (

�

" satis®es6 1 and (" � � [[]]
) � 2

.

5.1.3.7. Lemma:If (+ extends (and FV � � dom (� , then [[]]) � [[]]
) �

.

Proof: Straightforward. �

5.1.3.8. Lemma:(Soundness of subtyping) If 6 � & � and (* � 6 , then [[&]]) � [[]]) .

Proof: By induction on the structure of a derivation of 6 � & � .

CaseSUB-REFL: & �

Immediate.

CaseSUB-TRANS: 6 � & � � 6 � � �

By the induction hypothesis.

CaseSUB-TVAR: & � " � 6 " �

Immediate from 5.1.3.6.

CaseSUB-ARROW: & � & 1
 & 2 � 1
 2 6 � 1 � & 1 6 � & 2 � 2

	 � [[& 1
 & 2]]) � �

�

	 � [[& 1]])
 [[& 2]]) � �

�

! � � � � � � [[& 1]])
� � implies 	

�

� � [[& 2]])
� �

�

�

�

! � � � � � � [[1]]) � � implies 	

�

� � [[2]]) � �

�

� by the induction hypothesis
�

	 � [[1
 2]]) � � �

CaseSUB-ALL : & � ! " # & 1 � & 2 � ! " # 1 � 2 6 � 1 � & 1 6 � " # 1 � & 2 � 2

	 � [[! " # & 1 � & 2]]) � �

�

	 �

�

-

� [[1]] 0

[[& 2]]
) 1 2 3

- 4

� �

�

! � � [[& 1]]) � 	 � [[& 2]]
) 1 2 3

- 4

� �

�

! � � [[1]]) � 	 � [[2]]
) 1 2 3

- 4

� � by the induction hypothesis
�

	 � [[! "
#

 1 � 2]])
� � �

CaseSUB-INTER-G: �
5

$ 1 � � ' % for all � � 6 � & � �

By the induction hypothesis, [[&]]) � [[�]]) for each � ; so [[&]]) �
� 1

#

�

#

'

[[�]]) � [[5 $ 1 � � ' %]]) .

CaseSUB-INTER-LB: & �

5

$ 1 � � ' % � �

Immediate from the de®nition of 5 .

CaseSUB-DIST-IA : & �
5

$ & +
 1 � � & +
 ' % � & +

5

$ 1 � � ' %

	 � [[5
$ &

+

 1 � � &

+

 ' %]]) � 	

+

�

	 � � 1
#

�

#

'

[[&

+

 �]]) � 	

+

�

! � � 	 � [[&
+]])
 [[�]]) � 	

+

�

! � � ! � � � � � � [[&
+
]]) � � implies 	 � � � [[�]]) � 	

+
� �

�

! � � � � � � [[& +]]) � � implies ! � � 	 � � � [[�]]) � 	 + � � �

�

! � � � � � � [[&

+]])
� � implies 	

�
� � [[5

$ 1 � �
'

%]])
� 	

+
�

�

�

	 � [[&
+

5

$ 1 � � ' %]]) � 	
+

�

5.1. UNTYPED SEMANTICS 82

CaseSUB-DIST-IQ: & � 5 $! " # & + � 1 � � ! " # & + � ' % � ! " # & + � 5 $ 1 � � ' %

[[5 $! " # & + � 1 � � ! " # & + � ' %]])

�

� 1
#

�

#

'

� - . [[

�]] 0

 �

� � - . [[

�]] 0

� 1
#

�

#

'

 �

� [[! " # & � 5 $ 1 � � ' %]]) � �

5.1.3.9. Lemma:
1. [[� 1 � 2]]) � [[� 1]])

� [[� 2]]) .

2. erase � & � " � � � � erase � � .

3. [[]]
) 1 2 3 [[]] 0

4

� [[� & � " �]]) .

4. [[�]]
) 1 � 3 [[�

�]] 0

4

� [[� � + � � � �]]) .

5. � * erase � � * � � � * erase � � * � * erase � � � � � � � * .

Proof: Straightforward. �

5.1.3.10. Lemma:If
(1 * � 6

(2 * � 6

! "
� dom 6 � � (1 " � � (2 " � � (" �

! � � dom 6 � � (1 � � � [[6 � �]]) � (2 � �

6 � � � �

then

[[�]]) 1 � [[]]) � [[�]]) 2 �

(Here (is just a convenient name for the portions of (1 and (2 dealing with type variables, which
must be identical.)

Proof: By induction on a derivation of 6 � � � .

CaseVAR: � � � � 6 � �

Immediate.

CaseARROW-I: � � � � : 1 � �
+

6 � � : 1 � �
+

� 2 � 1
 2

Choose 	 and � such that 	 � [[1]])
� � . Then 	 � [[1]])

� 	 and � � [[1]])
� � , so (1 $ � � 	 % * �

6 � � : 1 and (2 $ � � � % * � 6 � � : 1. The induction hypothesis gives
[[�

+]]
) 1 1 � 3 �

4

� [[2]]) � [[�

+]]
) 2 1 � 3 '

4

�

But
[[�]]) 1 �

	 � [[�

,

� � * erase �

+

� *]]) 1 �

	 by de®nition
� [[* erase � + � *]]

) 1 1 � 3 �

4 by Lemma 5.1.1.10
� [[�

+]]
) 1 1 � 3 �

4 by de®nition �

and similarly [[�]]) 2 � � � [[�
+]]

) 2 1 � 3 '

4 . So

[[�]]) 1 � 	 � [[2]]) � [[�]]) 2 � � �

Since this holds for all 	 and � such that 	 � [[1]]) � � , the de®nition of
 gives
[[�]]) 1 � [[1]])
 [[2]]) � [[�]]) 2 �

i.e.,
[[�]]) 1 � [[1
 2]]) � [[�]]) 2 �

5.1. UNTYPED SEMANTICS 83

CaseARROW-E: � � � 1 � 2 6 � � 1 � 1
 2 6 � � 2 � 1 � 2

By the induction hypothesis,
[[� 1]]) 1 � [[1
 2]]) � [[� 1]]) 2 �

i.e.
[[� 1]]) 1 � [[1]])
 [[2]]) � [[� 1]]) 2 �

and
[[� 2]]) 1 � [[1]]) � [[� 2]]) 2 �

So, by the de®nition of
 ,
[[� 1]]) 1 � [[� 2]]) 1 � [[2]]) � [[� 1]]) 2 � [[� 2]]) 2 �

i.e. (by Lemma 5.1.3.9(1)),
[[� 1 � 2]]) 1 � [[2]]) � [[� 1 � 2]]) 2 �

CaseALL-I: � � � " # � �
+

6 � " # 1 � �
+

�
 2 � ! " # 1 � 2

Choose an arbitrary PER � � [[1]]) . By the induction hypothesis,
[[� +]]

) 1 1 2 3

- 4

� [[2]]) 1 2 3

- 4

� [[� +]]
) 2 1 2 3

- 4

�

By Lemma 5.1.1.9,
[[�

+]]) 1 � [[2]]) 1 2 3

- 4

� [[�

+]]) 2 �

Since this holds for every � � [[1]]) , the de®nition of � yields,
[[� +]]) 1 � �

-

� [[/ 1]] 0

[[2]]) 1 2 3

- 4

� [[� +]]) 2 �

i.e.,
[[�

+]]) 1 � [[! " # 1 � 2]]) � [[�
+]]) 2 �

i.e. (by the de®nition of erase),
[[�]]) 1 � [[! " # 1 � 2]]) � [[�]]) 2 �

CaseALL-E: � � �

+

$ & % 6 � �

+

� ! "
#

 1 � 2 6 � & � 1 � 2

By the induction hypothesis,
[[�

+
]]) 1 � [[! " # 1 � 2]]) � [[�

+
]]) 2 �

i.e.,
[[�

+
]]) 1 � �

-

� [[/ 1]]
0

[[2]]) 1 2 3

- 4

� [[�
+
]]) 2 �

Since, by Lemma 5.1.3.8, [[&]]) � [[1]]) ,
[[�

+]]) 1 � [[2]]) 1 2 3 [[]] 0

4

� [[�

+]]) 2 �

i.e. (by the de®nition of erase),
[[�]]) 1 � [[2]]

) 1 2 3 [[]] 0

4

� [[�]]) 2 �

i.e. (by Lemma 5.1.3.9(3)
[[�]]) 1 � [[� & � " � 2]]) � [[�]]) 2 �

CaseFOR: � � for " in & 1 � � & ' � � � + 6 � � & � � " � � + � � � �

By the induction hypothesis,
[[� & � � " � �

+]]) 1 � [[�]]) � [[� & � � " � �
+]]) 2 �

By Lemma 5.1.3.9(2),
[[�

+]]) 1 � [[�]]) � [[�
+]]) 2 �

By the de®nition of erase,
[[�]]) 1 � [[�]]) � [[�]]) 2 �

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 84

CaseINTER-I : 6 � � � � for each � � 5 $ 1 � � ' %

By the induction hypothesis,
[[�]]) 1 � [[�]]) � [[�]]) 2

for each � ; hence,
[[�]]) 1 �

� 1
#

�

#

'

[[�]]) � [[�]]) 2 �

i.e.,
[[�]]) 1 � [[5 $ 1 � � ' %]]) � [[�]]) 2 �

CaseSUB: 6 � � � & 6 � & �

By the induction hypothesis,
[[�]]) 1 � [[&]]) � [[�]]) 2 �

hence (by Lemma 5.1.3.8)
[[�]]) 1 � [[]]) � [[�]]) 2 � �

5.1.3.11. Corollary: (Soundness of typing) If 6 � � � and (* � 6 , then [[�]])
� dom [[]])

� .

Proof: Take (1 � (2 � (. �

5.2 Nonexistence of Least Upper Bounds

One important question about the order-theoretic properti es of any calculus with subtyping is
the existence or nonexistence of least upper bounds(lubs) for ®nite sets of types. When they
are present, lubs often greatly simplify the presentations of both semantic and proof-theoretic
arguments; for example, Reynolds' model construction for F orsythe depends on the existence and
special properties of lubs. Unfortunately, like its compon ent system �

#

(though not for the same
reason),F� does not have a lub for every ®nite set of types.

To simplify the discussion, we consider only lubs of pairs of types. The fact that a calculus of
intersection types may be formulated in terms of an � -ary meet constructor, as we have done here,
or, equivalently, in terms of � and binary meets, implies that we may make this simpli®catio n
without loss of generality.

5.2.1. De®nition: Let & and be types, both closed under a context 6 . Then a least upper boundof
& and under 6 is a supertype of both & and and a subtype of every common supertype of &

and Ð that is, a type � such that:

6 � & � �

6 � � �

6 � & � � and 6 � � � imply 6 � � � � �

(Note that least upper bounds are unique only up to equivalen ce.)

In systems with intersection types, it is simplest to de®ne l east upper bounds for canonical
types (c.f. Section 4.2.1) and then transfer the de®nition to ordinary types. Here is Reynolds'
de®nition of lubs for the canonical formulation of ®rst-ord er intersection types:

5.2.2. De®nition: Assume that we are given a partial function � � that yielding a least upper
bound for every pair of primitive types with any upper bound. That is:

if � 1 � � � 2 � � then � 1 � � � 1 � � � 2 �

� 2 � � � 1 � � � 2 �

� 1 � � �
+ and � 2 � � �

+ imply � 1 � � � 2 � � � �
+

if � 1 � � � 2 � � then there is no � + such that � 1 � � � + and � 2 � � � + �

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 85

5.2.3. De®nition: Let � and � be canonical �

� types. Then the distinguished least upper bound of
� and � , written � � � , is de®ned by the following function (partial on individual canonical types
and total on composite canonical types):

�

� � � 5 $ � � � * � �

�

and � � � and � � � � � %

� 1 � � 2 � � 1 � � � 2

�

 � � � �
 � � �

� �

� �
 � � � �

�

 � � � � � �

� � �
 � � � � �

(Recall from 4.2.1.3 that
� �

� is shorthand for the intersection of all the elements of
�

and � .)

5.2.4. Fact:[Reynolds]
1. If � � � is de®ned, then it is a least upper bound of � and � . If � � � is unde®ned, then � and

� have no common upper bounds.

2.
�

� � is a least upper bound of
�

and � .

The existence of lubs for canonical types is easily shown to be equivalent to the existence of
lubs for ordinary types, using the ®rst-order analog of Theo rem 4.2.7.6.

In his Ph.D. thesis [63], Ghelli observed that �

#

possesses neither least upper bounds nor
greatest lower bounds.

5.2.5. De®nition: A pair of types & and is downward compatibleif there is some type that is a
subtype of both & and .

5.2.6. Fact: [63, p. 92] There exists a pair of downward-compatible �

#

types & and with no
greatest lower bound.

Proof: Consider the context

6 � "
Top� �

Top� "

+
#

" � �

+
#

�

and the types

& � ! �
#

"
 � � "
 �

 � ! � # "
+

 �
+

� "
+

 �
+

�

Then both

! � # "
+

 � � "
 �
+

and

! � # "

+

 � � �

are lower bounds for & and , but these two types have no common supertype that is also a
subtype of & and . �

5.2.7. Fact:[Ghelli] There is a pair of �

#

types with no least upper bound.

Proof: Consider &
 Topand
 Top. �

SinceF� , by de®nition, possesses greatest lower bounds for every pair of types, we might hope
that lubs would also be recovered in F� . Unfortunately, this is not the case.

For example, consider the individual canonical types

� � ! " #
5

$ % � ! � #
5

$ % � "

� � ! " #

5

$ % � ! � #

5

$ % � �

�

1 � ! " # 5 $ % � ! � # 5 $ " % � "

�

2 � ! "
5

$ � % � ! �
5

$ � % � � �

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 86

where � is any closed individual canonical type with the property th at " # � � � � " . (For example,
take � � ! � #

5

$ % � � .) Then it is easy to check that the following subtype relatio ns hold in the empty
context:

� �

�

1
�

2
�

�

�

�

� �

�

�

�

�

�

�

Note, however, that �

�

1 �

�

2.
Now, assume that � and � have some least upper bound; call it � . Then by the syntax-

directedness of canonical subtyping (4.2.6.3) and the factthat � is a supertype of � , � must have
the form

� � ! " # � 1 � ! � # � 2 � � 3 �

By syntax-directedness again and the fact that � � �

�

1 (since �

1 is a common upper bound of �

and �),

�
5

$ % �
� 1

i.e. � 1 �
5

$ %

"
5

$ % �
5

$ " % �
� 2

i.e. � 2 �
� 2 implies "

#

5

$ % � " � � 2

i.e. � 2 �
� 2 implies � 2 � "

i.e. � 2 � 5 $ % or � 2 � 5 $ " % (up to equivalence) �

and if � 2 �
5

$ " % then

" #
5

$ % � � #
5

$ " % � � 3 � "

i.e. � 3 � " or � 3 � � �

while if � 2 �

5

$ % , then � 3 � " .
Using the assumption that � � � � , we may eliminate the case � 3 � � . Then, using � � � � ,

we may eliminate the case � 2 �
5

$ % . In short, if � and � have any lub then it is equivalent to �

1,
which must therefore also be a lub. But �

1 is not a subtype of �

2, which is a the common upper
bound of � and � ; so �

1 is not a lub of � and � . This contradicts our assumption.

To show that composite canonical types lack lubs, we actuall y need to show something stronger
about individual canonical types: that they do not even poss ess complete ®nite sets of upper
bounds.

5.2.8. De®nition: Let & and be types, both closed under 6 . Then a complete ®nite set of upper
bounds for & and under 6 is a ®nite set � � � � 1 � � � ' � such that:

1. 6 � & � � � and 6 � � � � for each � � ;

2. if � is a type such that 6 � & � � and 6 � � � , then there is some � � such that 6 � � � � � .

5.2.9. De®nition: De®ne the following in®nite series of types:

� 0 � ! " # 5 $ % � "

� ' � 1 � ! " #
5

$ % � � ' �

5.2.10. Lemma:If 	 � �
�

� for some 	 and � , then � � �
� .

Proof: By induction on � .

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 87

Case: � � 0
Since 	 � � 0 � � , syntax-directedness (4.2.6.3) gives� � ! " # � 1 � � 2 and 	 � " # � 1 � " � � 2.
From 	 � � � � 0, syntax-directedness gives 	 � 5 $ % � � 1, hence � 1 � 5 $ % . Performing this
substitution, we have 	 � " # 5 $ % � " � � 2, hence (by syntax-directedness again) � 2 � " .

Case: � � � � 1
By syntax-directedness, 	 � � ' � 1 � � gives

� � ! " # � 1 � � 2

	 � " # � 1 � � ' � � 2 �

Using syntax-directedness on 	 � � � � ' � 1, we also have
	 � 5 $ % � �

i.e. � � 5 $ %

	 � " #

5

$ % � � 2 � � ' �

By the induction hypothesis, � 2 � �
' , so � � ! "

5
$ % � �

' , which is just �
' � 1. �

5.2.11. Lemma:There exists a pair of individual canonical types in F� with no complete ®nite set
of upper bounds.

Proof: Assume, for a contradiction, that � � � � 1 � � � ' � is a complete ®nite set of upper bounds
for the types

� � ! "
5

$ % � ! �
5

$ % � "

� � ! " #

5

$ % � ! � #

5

$ % � �

and let
�

� � ! " #
5

$ � � % � ! � #
5

$ � � % � � �

for every � . Note that each �

� is a common supertype of � and � . Also, since there are more � 's than
� 's, we can choose some�

�
� and some �

� and � � (with � �� � � such that � � �

�

� and � � �

� � .
From � � � � and � � � � , syntax-directedness gives

� � ! " #
� 1 � ! � #

� 2 � � 3

" #
� 1 � � #

� 2 � " � � 3

" #
� 1 � � #

� 2 � � � � 3 �

Since � � �

�

� , syntax-directedness again yields

�
5

$ �
�

% �
� 1

" # 5 $ � � % � 5 $ � � % �
� 2

"
5

$ � � % � �
5

$ � � % � � 3 � � � �

By canonical narrowing (4.2.3.6),

"
5

$ �
�

% � �
� 2 � " � � 3

" # 5 $ � � % � � #
� 2 � � � � 3 �

and again

"
5

$ � � % � �
5

$ � � % � " � � 3

"
5

$ �
�

% � �
5

$ �
�

% � � � � 3 �

Now by syntax-directedness,

� 3 � " or " # 5 $ � � % � � # 5 $ � � % � 5 $ � � % � 5 $ � 3 %

� 3 � � or "
5

$ � � % � �
5

$ � � % �
5

$ � � % �
5

$ � 3 % �

5.2. NONEXISTENCE OF LEAST UPPER BOUNDS 88

Since � � " and � � � cannot both be true, we have " # 5 $ � � % � � # 5 $ � � % � 5 $ � � % � 5 $ � 3 % , i.e. (by
syntax-directedness),

" # 5 $ � � % � � # 5 $ � � % � � � � � 3 �

Combining this with the type inclusion in the opposite direc tion (which we derived above), we
get

" #

5

$ � � % � � #

5

$ � � % � � �
 � 3 �

So, by Lemma 5.2.10,� 3 � � � .
But starting from � � �

� � and reasoning analogously, we can also obtain � 3 � �

� . Since
� � �� �

� , this is a contradiction. Our assumption that � is a complete ®nite set of upper bounds for
� and � must therefore be false. �

Clearly, if � and � have no complete ®nite set of upper bounds, then the composite canonical
types 5

$ � % and 5

$ � % have no lub. As in the ®rst-order case, by Theorem 4.2.7.6,F� has lubs iff its
canonical formulation does, so this counterexample for the canonical system amounts to a proof
of the nonexistence of lubs for the original formulation of F� . (Also, in ordinary F� a complete
®nite set of upper bounds can always be conjoined to form a single least upper bound, so the
nonexistence of lubs is equivalent to the nonexistence of complete ®nite sets of upper bounds for
ordinary types.)

The most immediate implication of the nonexistence of least upper bounds is that standard
techniques developed by Reynolds [123] for constructing an d analyzing models of ®rst-order
intersection types will not generalize straightforwardly to F� .

Reynolds' model construction proceeds as follows. First, t he set of canonical type expressions
is de®ned as the limit of a series formed by beginning with the primitives and, at each stage,
®rst closing under the
 constructor and then forming all ®nite meets of the resultin g set. The
semantics of types is de®ned by induction on the same series of sets of types: the interpretation of
a type at stage � � 1 is de®ned in terms of the interpretations of the components of at stage � .

The intended interpretation of an intersection & � is the limit of a diagram containing the
interpretations of & and and all their common supertypes (c.f. Section 2.4.2). But even if & and

 both exist at level � , there might be many common supertypes that will not appear u ntil some
later stage, so the limit with respect to only those supertyp es that exist at level � might be too
large. At each level, then, it appears that we would need to re calculate the interpretations of all
the intersection types from previous levels. It is not obvio us that this process would converge.

Fortunately, in �

� , every & and possess a least upper bound& � , which, furthermore, always
appears at the ®rst stage containing both & and . So & � may be interpreted as the limit of a very
tidy diagram

[[&]] [[]]

[[& �]]

�

�

�

� �

�

�

�

�

�

with no fear that this interpretation will ever need to be rev ised.
The nonexistence of least upper bounds in F� renders this important simpli®cation useless. It

is not clear whether a model could be constructed by ªincreme ntally revisingº the interpretations
of intersections at each level, as described above. This kind of construction, if it worked at all,
would almost certainly be much more complex than the known mo dels of �

� .

5.3. TRANSLATION SEMANTICS 89

5.3 Translation Semantics

Our translation semantics for F� follows the style of Breazu-Tannen, Coquand, Gunter, and Sce-
drov's translation semantics for �

#

[10], appropriately extended to deal with intersection typ es
(c.f. Section 2.4). Intuitively, we read F� typing derivations as terms of the ordinary second-order

� -calculus extended with surjective tupling (system � �) by taking explicit account of the coercions
introduced by the subtyping rules:

� Each F� type is translated to an � � type [[]]. In particular, a quanti®ed type ! " # & � is
translated as ! " � "
 [[&]] �
 [[]], which makes explicit the required coercion function int o

& from each appropriate value for " .
� Each subtyping derivation � :: 6 � & � is translated as an � � term [[�]] such that [[6]] �

[[�]] � [[&]]
 [[]].
� Each typing derivation � :: 6 � � � is translated as an � � term [[�]] such that [[6]] � [[�]] � [[]].

In particular, the translation of a type application suppli es both a type and an appropriate
coercion function as arguments.

� Intersection types are translated as Cartesian products (leaving their coherence properties
implicit in the translation). This means, in particular, th at a phrase of type � will be
interpreted as an empty tuple, effectively throwing away an y ill-typed subphrases.

5.3.1 Target Calculus

This section gives the syntax, typing rules, and equational theory of the polymorphic � -calculus,
system � , extended with surjective tuples, which we call � � (c.f. [49]). Rather than choose a
particular denotational or operational semantics for � � , we state an equational theory constraining
a later choice of semantics; this gives us enough information to study both the properties of the
translation in the following section and the equational the ory of F� given later on.

5.3.1.1. De®nition: The set of �
� types is de®ned by the following abstract grammar:

 ::= "

* 1
 2

* ! " �

*

�

$ 1 � � ' %

5.3.1.2. De®nition: The set of �
� terms is de®ned by the following abstract grammar:

� ::= �

* � � : � �

* � 1 � 2

* � " � �

* � $ %

* � � 1 � � � ' �

* proj
�

�

5.3.1.3. Convention: For the the following translations, we assume that the sets o f term and type
variables of � � include at least the following: a term variable � for each F� term variable � ; a type
variable " and a term variable � 2 for each F� type variable " ; and the term variables � , � , � , � , � ,
and � .

5.3. TRANSLATION SEMANTICS 90

5.3.1.4. De®nition: An � � contextis a ®nite sequence of distinct type variables (with no bound s)
and term variables with associated types:

6 ::= � � * 6 � " * 6 � � :

5.3.1.5. De®nition: The three-place typing relation 6 � � � of � � is the least relation closed
under the following rules:

6 � � � 6 � � (F-VAR)

6 � � : 1 � � � 2

6 � � � : 1 � � � 1
 2
(F-ARROW-I)

6 � � 1 � 1
 2 6 � � 2 � 1

6 � � 1 � 2 � 2
(F-ARROW-E)

6 � " � � �

6 � � " � � � ! " �

(F-ALL-I)

6 � � � ! " �

6 � � $ & % � � & � " �

(F-ALL-E)

for all � � 6 � � � � �

6 � � � 1 � � � ' �
�

�

$ 1 � � ' %

(F-PROD)

6 � � �

�

$ 1 � � ' %

6 � proj
�

� � �

(F-PROJ)

5.3.1.6. Convention: When necessary to prevent confusion with other calculi, tur nstiles in � �

derivations are written �

�

.

5.3.1.7. De®nition: The equality relation on � � terms is the least four-place relation closed under
the following rules:

Conversion rules:
6 � � � :& � � � �

�

6 � � � :& � � � � � � � � � � �
�

(FEQ-BETA)

6 � � " � � � $ � % �

6 � � " � � � $ � % � � � � " � � �

(FEQ-BETA2)

6 � � � :& � � �
�

 �

�

� FV � �

6 � � � :& � � � � �
�

(FEQ-ETA)

6 � � " � � $ " % � "

�

� FTV � �

6 � � " � � $ " % � �
�

(FEQ-ETA2)

6 � proj
�

� � 1 � � � ' � �

6 � proj
�

� � 1 � � � ' � � � � �

(FEQ-PI)

6 � � � � 1 � � ' �

6 � � � � proj1 � � � � proj
'

� � � �

�

$ 1 � � ' %

(FEQ-SURJ)

Congruence rules:
6 � � �

6 � � � � �

(FEQ-REFL)

5.3. TRANSLATION SEMANTICS 91

6 � � � � + �

6 � �

+

� � �

(FEQ-SYMM)

6 � � 1 � � 2 � 6 � � 2 � � 3 �

6 � � 1 � � 3 �

(FEQ-TRANS)

6 � � : & � � � �

+

�

6 � � � :& � � � � � :& � �

+

�

(FEQ-ABS)

6 � � 1 � � +1 � &
 6 � � 2 � � +2 � &

6 � � 1 � 2 � � +1 � +2 �

(FEQ-APP)

6 � " � � � �

+

�

6 � � " � � � � " � �

+

�

(FEQ-TABS)

6 � � � �
+

�
! " �

6 � � $ � % � �

+

$ � %
�

� � � " �

(FEQ-TAPP)

for all � � 6 � � � � �
+

�

�
 �

6 � � � 1 � � � ' � � � � +1 � � �

+

'

� �

�

$ 1 � � ' %

(FEQ-TUPLE)

6 � � � �

+

�

�

$ 1 � � ' %

6 � proj
�

� � proj
�

�

+

� �

(FEQ-PROJ)

5.3.2 Ordinary Derivations

It is technically convenient to give translations for both o rdinary subtyping and typing derivations
and the algorithmic forms discussed in Sections 4.2.8 and 4.3.2. We begin by translating ordinary
derivations.

5.3.2.1. De®nition:
[["]] � "

[[1
 2]] � [[1]]
 [[2]]
[[! "

#
 1 � 2]] � ! " � "
 [[1]] �
 [[2]]

[[5
$ 1 � � ' %]] �

�

$ [[1]] � � [[']] % �

5.3.2.2. Lemma: � [[&]] � " � [[]] � [[� & � " �]].

Proof: Straightforward. �

5.3.2.3. De®nition: The following abbreviations for �
� terms are used in the translation:

� 1 ; � 2
def

� � � : 1 � � 2 � 1 � �

where 6 �

�

� 1 � 1
 2 and 6 �

�

� 2 � 2
 3

dist
�

1

	 � / 1 � �

	 � / �

4

def
� � � :[[5

$ &
 1 � � &
 ' %]] �

� � :[[&]] � � proj1 � � � � � proj
'

� � � �

dist
�

1

�

2

#
	

�

/ 1 � �

�

2

#
	

�

/ �

4

def
� � � :[[5

$! "
#

& � 1 � � ! "
#

& �
'

%]] �

� " � � � 2 :"
 [[&]] � � proj1 � � $ " % � 2 � � proj
'

� � $ " % � 2 � �

5.3.2.4. De®nition:
[[� �]] � � �

[[6 � � :]] � [[6]] � � :[[]]
[[6 � "

#
]] � [[6]] � " � � 2 : "
 [[]]

5.3. TRANSLATION SEMANTICS 92

5.3.2.5. De®nition:
[[id :: 6 � �]]

� � � :[[]] � �

(T-SUB-REFL)

[[� ;
�

:: 6 � 1 � 3]]
� [[�]] ; [[

�

]]
(T-SUB-TRANS)

[[� 2 :: 6 � " � 6 " �]]
� � 2

(T-SUB-TVAR)

[[�

�

:: 6 � & 1
 & 2 � 1
 2]]
� � � :[[1
 2]] � [[�]] ; � ; [[

�

]]
(T-SUB-ARROW)

[[! " # � �

�

:: 6 � ! " # & 1 � & 2 � ! " # 1 � 2]]
� � � :[[! " # & 1 � & 2]] � � " � � � 2 : "
 [[1]] �

[[
�

]] �
 �

�
$ " %

�
 �

2 ; [[�]] � �

(T-SUB-ALL)

[[� � 1 � � � ' � :: 6 � & �
5

$ 1 � � ' %]]
� � � :[[&]] � � [[� 1]] � � � � [[� ']] � � �

(T-SUB-INTER-G)

[[proj
�

:: 6 �
5

$ 1 � � ' % � �]]
� proj

�

(T-SUB-INTER-LB)

[[dist-ia :: 6 �
5

$ &
 1 � � &

'

% � &

5

$ 1 � �
'

%]]
� dist

�

1

	 � / 1 � �

	 � /
�

4

(T-SUB-DIST-IA)

[[dist-iq :: 6 �
5

$! "
#

& � 1 � � ! "
#

& � ' % � ! "
#

& �
5

$ 1 � � ' %]]
� dist

�

1

�

2

# 	

�

/ 1 � �

�

2

# 	

�

/
�

4

(T-SUB-DIST-IQ)

5.3.2.6. Lemma:If 6 �

�

& � , then [[6]] �

�

[[6 � & �]] � [[&]]
 [[]].

Proof: By induction on the structure of the given derivation. �

5.3.2.7. De®nition:
[[� � :: 6 � � � 6 � �]]

� �

(T-VAR)

[[� � : 1 � � :: 6 � � � : 1 � � � 1
 2]]
� � � :[[1]] � [[�]]

(T-ARROW-I)

[[� 1 � 2 :: 6 � � 1 � 2 �
�

 2]]
� [[� 1]] � [[� 2]]

(T-ARROW-E)

[[� " # 1 � � :: 6 � � " # 1 � � � ! " # 1 � 2]]
� � " � � � 2 : "
 [[1]] � [[�]]

(T-ALL-I)

[[� $ � % :: 6 � � $ %
�

� � " � 2]]
� [[�]] � $ [[]] % � [[�]]

(T-ALL-E)

[[for " in & 1 � � & ' � � � :: 6 � for " in & 1 � � & ' � � � �]]
� [[�

�]]
(T-FOR)

[[� � 1 � � � ' � :: 6 � � �
5

$ 1 � � ' %]]
� � [[� 1]] � � [[� ']] �

(T-INTER-I)

[[� � � :: 6 � � �]]
� [[�]] � [[�]]

(T-SUB)

5.3.2.8. Theorem:If 6 �

�

�
�

 , then [[6]] �

�

[[6 � �
�

]] � [[]].

Proof: By induction on the structure of the given derivation, using Lemma 5.3.2.6 for the cases
involving subtyping derivations. �

5.3. TRANSLATION SEMANTICS 93

5.3.2.9. Remark: This amounts to a kind of type-soundness property for the pur e calculus:
well-formed F� typing derivations translate to well-typed Ð hence well-be haved Ð � � terms.

5.3.3 Algorithmic Derivations

We can give an analogous translation for the forms of derivat ions used by the subtyping algorithm
of Section 4.2.8 and the type synthesis algorithm of Section 4.3.2. This is essentially just the
composition of the translation functions Ð �

�

of De®nitions 4.2.8.7 and 4.3.2.5 with the translation
given in the previous section, but it is worth writing out in i ts own right because it suggests a
possible architecture for the back end of a compiler for F� .

5.3.3.1. De®nition:
dist�

� �

�

1 1

4 �

/ 1 � �

1

4 �

/ �

4

def
� � � :[[5 $ $ %

�

 1 � � $ %

�

 ' %]] � �

dist�

� �

�

1

	 � � �

�

/ 1 � � �

	 � � �

�

/ �

�

4

def
� dist

�

1

	 � � �

�

/ 1 � � �

	 � � �

�

/ �

�

4 ; dist�

� �

�

1

�

�

/ 1 � �

�

�

/ �

4

dist�

� �

�

1

�

2

#
	

�

�

�

/ 1 � �

�

2

#
	

�

�

�

/ �

4

def
� dist

�

1

�

2

# 	

�

�

�

/ 1 � �

�

2

# 	

�

�

�

/
�

4

; dist�

�

� �

2

#

	

�

�

�

1

�

�

/ 1 � �

�

�

/
�

4

�

5.3.3.2. De®nition: We also need to introduce a tuple comprehensionnotation analogous to the
®nite sequence comprehensions used earlier (c.f. 2.1.1). For example, the expression � � � � � � � � * � � �

$ � 1 � � � ' % � stands for the tuple of tuples � � � 1 � � 1 � � � � � ' � � ' � � .

5.3.3.3. Theorem: The composition of the translation Ð �

�

and the translation [[Ð]] from or-
dinary F� subtyping and typing derivations into � � terms can be characterized by the following
equations:

[[6 �

!
& � �

�

5
$ 1 � �

'
%]]

� dist�

� �

�

�

�

1

/ 1 � �

/ �

4 �

� [[6 �

!
& � �

�

 1]] � � [[6 �

!
& � �

�

 ']] �

(T-ASUBR-INTER)

[[6 �

!
5

$ & 1 � � &
'

% � �

�

"]]
� proj

�

; [[6 �

!
& � � �

�

"]]
(T-ASUBL-INTER)

[[6 �

!
& 1
 & 2 � $ 1 � � 2 %

�

"]]
� � � :[[& 1]]
 [[& 2]] � [[6 �

!
 1 � $ %

�

& 1]] ; � ; [[6 �

!
& 2 � � 2

�

"]]
(T-ASUBL-A RROW)

[[6 �

!
! � # & 1 � & 2 � $ � # 1 � � 2 %

�

"]]
� � � : ! " � "
 [[& 1]] �
 [[& 2]] � � � " � � � 2 : "
 [[1]] � �

[[6 � � # 1 � & 2 � � 2
�

"]] � � � $ " % � � 2 ; [[6 �

!
 1 � $ %

�

& 1]] � �

(T-ASUBL-A LL)

[[6 �

!
" � $ %

�

"]]
� � � :" � �

(T-ASUBL-REFL)

[[6 �

!
� � �

�

"]]
� � � ; [[6 �

!
6 � � � �

�

"]]
(T-ASUBL-TVAR)

[[6 �

!
�

�
6 � �]]

� �

(TA-VAR)

[[6 �

!
� � : 1 � � � 1
 2]]

� � � :[[1]] � [[6 � � : 1 � � � 2]]
(TA-A RROW-I)

[[6 �

!
� 1 � 2 �

5
$ 	 � * � �
 	 � � arrowbasis� & 1 � and 6 �

!
& 2 � � � %]]

� � [[6 �

!
& 1 � � �
 	 �]] � [[6 �

!
� 1 � & 1]] �

�

 [[6 �

!
& 2 � �

�]] � [[6 �

!
� 2 � & 2]] �

* � �
 	 � � arrowbasis� & 1 � and 6 �

!
& 2 � � � �

(TA-A RROW-E)

[[6 �

!
� " # 1 � �

�
! " # 1 � 2]]

� � " � � � 2 : "
 [[1]] � � [[6 � "
#

 1 � � � 2]]
(TA-A LL-I)

5.4. COHERENCE (PRELIMINARY RESULTS) 94

[[6 �

!
� $ % � 5 $ � � " � 	 � * ! " # � � � 	 � � � allbasis�

 & 1 � and 6 �

!
 � � � %]]

� � [[6 �

!
& 1 � ! " # � � � 	 �]] � [[6 �

!
� 1 � & 1]] � � $ [[]] % � [[6 �

!
 � � �]]

* ! " # � � � 	 � � allbasis�

 & 1 � and 6 �

!
 � � � �

(TA-A LL-E)

[[6 �

! for " in & 1 � � & ' � � � 5 $ 1 � � ' %]]
� � [[6 �

!
� & 1 � " � � � 1]] � � [[6 �

!
� & ' � " � � � ']] �

(TA-FOR)

Proof: By induction on algorithmic derivations. �

5.4 Coherence (Preliminary Results)

This section states an appropriate coherence property (c.f. Section 2.4) for the translation functions
on ordinary subtyping and typing derivations. Unfortunate ly, because F� does not have least
upper bounds, a proof of this property lies beyond the scope o f this thesis. Section 8.2.2 reviews
the dif®culties with extending standard methods of proving coherence and suggests some possible
approaches.

5.4.1. Conjecture: [Coherence of subtyping] If � :: 6 �

�

& � and
�

:: 6 �

�

& � , then
[[6]] �

�

[[�]] � [[
�

]] � [[&]]
 [[]].

5.4.2. Conjecture: [Coherence of typing] If � :: 6 �

�

� � and � :: 6 �

�

� � , then [[6]] �

�

[[�]] � [[�]] �

[[]].

5.4.3. Remark: For the remainder of the chapter, we assumethat the translation semantics is
coherent.

5.4.4. Lemma: If � :: 6 �

�

& � , then [[6]] �

�

[[�]] � [[�

!]] � [[&]]
 [[]], where �

! :: 6 �

!
& � is the

algorithmic derivation whose existence is guaranteed by Th eorem 4.2.8.12.

Proof: By Theorem 5.3.3.3 and the coherence of subtyping (5.4.1). �

5.4.5. Lemma: If � :: 6 �

�

� � , then [[6]] �

�

[[�]] � [[�]] � [[�

!]] � [[]], where �

! :: 6 �

!
� � and

�

! :: 6 �

!
& � are the algorithmic derivations of 6 � � � & and 6 � & � whose existence is

guaranteed by Theorem 4.3.2.7 and Lemma 5.4.4.

Proof: By Theorem 5.3.3.3 and Lemma 5.4.4. �

5.5 Equational Theory

As an alternative perspective on the meaning of F� programs, we offer a theory of provable
equality for F� terms. Like the equational theory of �

#

studied by Cardelli, Martini, Mitchell, and
Scedrov [30], this equational theory is based on a notion of ª equality at a typeº: 6 � � � �

+

� .
It includes typed analogues of the familiar � and (conversion rules for both values and types,
plus the usual collection of rules to ensure that the equalit y relation forms a congruence. The two
novel elements are:

� A rule of intersection equality, EQ-INTER, which states that whenever � and �
+ are known to be

equal at all of the types 1 � � ' separately, they may be judged equal at 5
$ 1 � � ' % . In particular,

every pair of terms is equal at type � (c.f. Curien and Ghelli's Top-equality rule [50]).
� A collection of rules for reorganizing for expressions. The main goal of these rules is to

ensure that the for marker can never block a � - or (-conversion step. For example, the
ªpotential � -redexº

 for " in & 1 � � & ' � � � :& � � � �

5.5. EQUATIONAL THEORY 95

is equal to the expression

for " in & 1 � � & ' � � � :& � � � �

with an actual � -redex.
We begin by presenting the equality rules, establishing som e basic properties, and checking that
equality is well-de®ned with respect to the typing relation , in the sense that 6 � � � � + � implies

6 � � � and 6 � �

+

� . We then establish a connection between the equational theory and
both the untyped semantics of Section 5.1 and the translation semantics given in Section 5.3 by
showing that the equational theory correctly (though incom pletely) describes the behavior of the
interpretations of terms. (A more informative equational d escription of F� 's semantics might try
to characterize exactlythe valid equivalences between F� derivations induced by the translation
semantics.)

The theory described in this section owes a great deal to conversations with QingMing Ma,
who has studied a related equational theory for an extension of F� [89].

5.5.1 De®nitions

5.5.1.1. De®nition: The pure equational theory of F� is the least four-place relation 6 � � � �

+

�

closed under the following rules:

Conversion rules:
6 � � � :& � � � � �

6 � � � :& � � � � � � � � � � � �

(EQ-BETA)

6 � � " # & � � � $ � % �

6 � � " # & � � � $ � % � � � � " � � �

(EQ-BETA2)

6 � � � :& � � � � 6 � � �

6 � � � :& � � � � � �

(EQ-ETA)

6 � � "
#

& � � $ " % � 6 � � �

6 � � "
#

& � � $ " % � � �

(EQ-ETA2)

Intersection rule:
for all � � 6 � � � � + � �

6 � � � �

+

�

5

$ 1 � � ' %

(EQ-INTER)

Reorganization rules:
6 � for " in & 1 � � & ' � � �

6 � for " in & 1 � � & ' � � � � �

(EQ-FOR/V AR)

6 � for " in & 1 � � & ' � � � : & � � � "

�

� FTV & �

6 � for " in & 1 � � &
'

� � � :& � � � � � :& � for " in & 1 � � &
'

� � �

(EQ-FOR/A BS)

6 � for " in & 1 � � & ' � � 1 � 2 �

6 � for " in & 1 � � & ' � � 1 � 2 � for " in & 1 � � & ' � � 1 � for " in & 1 � � & ' � � 2 � �

(EQ-FOR/A PP)

6 � for " in & 1 � � & ' � � � # & � �
�

 "

�

� FTV & �

6 � for " in & 1 � � & ' � � � # & � � � � � # & � for " in & 1 � � & ' � �
�

(EQ-FOR/TA BS)

6 � for " in & 1 � � &
'

� � $ & % � "

�

� FTV & �

6 � for " in & 1 � � &
'

� � $ & % � for " in & 1 � � &
'

� � � $ & % �

(EQ-FOR/TA PP)

5.5. EQUATIONAL THEORY 96

6 � for " in & 1 � � & ' � for � in 1 � � ' � � � "

�

� �

�

FTV � �

6 � for " in & 1 � � & ' � for � in 1 � � ' � � � for � in 1 � � ' � for " in & 1 � � & ' � � �

(EQ-FOR/F OR)

Congruence rules:
6 � � �

6 � � � � �

(EQ-REFL)

6 � � � �

+

�

6 � �

+

� � �

(EQ-SYMM)

6 � � 1 � � 2 � 6 � � 2 � � 3 �

6 � � 1 � � 3 �

(EQ-TRANS)

6 � � : & � � � � + �

6 � � � :& � � � � � : & � �

+

� &

(EQ-ABS)

6 � � 1 � �

+1 � &
 6 � � 2 � �

+2 � &

6 � � 1 � 2 � � +1 � +2 �

(EQ-APP)

6 � "
#

& � � � �

+

�

6 � � "
#

& � � � � "
#

& � �

+

� ! "
#

& �

(EQ-TABS)

6 � � � �

+

� ! " # & � 6 � � � &

6 � � $ � % � �

+

$ � % � � � � " �

(EQ-TAPP)

6 � � & � � " � � � � & � � " � �

+

� �

6 � for " in & 1 � � & ' � � � for " in & 1 � � & ' � �

+

� �

(EQ-FOR)

5.5.1.2. Remark:In general, the conversion, intersection, and reorganizat ion rules are formulated
so that it is obvious that the left-hand side of each equality has the appropriate type, while the type
of the right-hand side is not explicitly mentioned. We could give both types as premises, of course,
but this extra clutter is unnecessary, since it will be easy t o show that the right-hand side also has
the appropriate type (c.f. 5.5.2.10). The one exception is the rules EQ-ETA and EQ-ETA2, where the
proof that the right-hand side has the same type as the left-h and side requires a strengthening
lemma thas has not been proved for this system. We give typing premises for both sides of these
rules.

5.5.1.3. Remark:Note that the second premise in EQ-ETA implies the more familiar side condition
ª �

�

� FV � � .º A similar remark applies to E Q-ETA2.

5.5.2 Basic Properties

5.5.2.1. Convention: By Lemmas 5.4.4 and 5.4.5, the interpretation of each algorithmic derivation
is equal to the interpretation of some ordinary derivation w ith the same conclusion. Since, by
the assumption of coherence, the interpretations of all ord inary derivations are equal, and since
arbitrary subphrases of �

� equality statements may be replaced by equal subphrases without
affecting derivability, we often simplify arguments below by dropping the decorations �

! and �

�

and regarding any two derivations of the same statement in eithertyping system as identical.

5.5.2.2. Lemma: [Equality context permutation] If 6 is a permutation of 6
+ and both are closed,

then 6 � � � �

+

� iff 6

+

� � � �

+

� .

Proof: By induction on derivations. �

5.5. EQUATIONAL THEORY 97

5.5.2.3. Convention: [c.f. Convention 4.1.4] Two equality statements or derivat ions differing only
in the ordering of contexts are considered identical.

5.5.2.4. Lemma:[Equality weakening] Let 6 � � : � � and 6 � " # � � be closed contexts. Then
1. 6 � � � � + � implies 6 � � :� � � � � + � .

2. 6 � � � � + � implies 6 � " # � � � � � + � .

Proof: Straightforward. �

5.5.2.5. Lemma:[Congruence] The following rule is derivable:

6 � � � � +

� & 6 � � : & � � �

6 � � � � � � � � � �

+

� � � � �

(EQ-CONG)

Proof: By induction on a derivation of 6 � � : & � � � , using equality strengthening for the base
case � � � �� � and equality weakening for the A RROW-I and A LL-I cases. �

5.5.2.6. Lemma:[Equality subsumption] The following rule is derivable:

6 � � � �

+

� & 6 � & �

6 � � � �

+

�

(D-EQ-SUB)

Proof: Choose �

�

� dom 6 � . Then 6 � � : & � �
�

& by rule VAR. By Lemma 4.1.5, 6 � � : & � & � . By
SUB, 6 � � : & � � � . By EQ-REFL, 6 � � :& � � � � � . By EQ-ABS, 6 � � � :& � � � � � � : & � � � � &
 .
By EQ-APP and the left-hand assumption, 6 � � � :& � � � � � � � :& � � � �

+

� . By EQ-BETA (twice),
EQ-SYMM , and EQ-TRANS, 6 � � � �

+
� . �

5.5.2.7. Lemma:[for introduction] If 6 � for " in & 1 � � & ' � �
�

 is a closed statement and 6 � �
�

 ,
then 6 � � � for " in & 1 � � & ' � � � .

Proof: By induction on a derivation of 6 � �
�

 , using, in turn, rules E Q-FOR/V AR . . . EQ-FOR/F OR,
EQ-INTER, and EQ-SUB. �

The next lemma veri®es that the for construct never blocks potential � - or (reductions.

5.5.2.8. Lemma:
1. If 6 � for " in & 1 � � & ' � � � � � , then

6 � for " in & 1 � � & ' � � � � � for " in & 1 � � & ' � � � � � �

2. If 6 � for " in & 1 � � & ' � � � $ � % � , then

6 � for " in & 1 � � & ' � � � $ � %

� for " in & 1 � � & ' � � $ � % �

� �

3. If 6 � � � :& � for " in & 1 � � & ' � � � � , then

6 � � � :& � for " in & 1 � � & ' � � �

� � � :& � for " in & 1 � � & ' � � � �

� �

4. If 6 � � �
#

& � for " in & 1 � � & ' � � $ � % � , then

6 � � � # & � for " in & 1 � � & ' � � $ � %

� � � # & � for " in & 1 � � & ' � � � $ � %

� �

5.5. EQUATIONAL THEORY 98

Proof:
1. By minimal typing (4.3.2.7), there is a type � such that

6 �

!
 for " in & 1 � � & ' � � � � � �

6 � � � �

By the syntax-directedness of type synthesis (4.3.2.3),

6 �

! for " in & 1 � � & ' � � � � 1

6 �

!
� � � 2

� � 5 $ 	 � * � �
 	 � � � arrowbasis� � 1 � and 6 � � 2 � � � % �

and again,

6 �

!
� &

�

� " � � � � 1
� for each �

� 1 � 5 $ � 11 � � � 1' % �

Choose 	 � � � . By SUB, 6 � � � � � . By the de®nition of arrowbasis� (4.3.1.1), there is some� 1
�

such that � �
 	 �
� arrowbasis� � 1

�

� , i.e. (by Lemma 4.3.1.3) such that 6 � � 1
�

� � �
 	 � . By
SUB, 6 � � &

�

� " � � � � �
 	 � . By FOR, 6 � for " in & 1 � � & ' � � � � �
 	 � . Using for introduction
(5.5.2.7) to get6 � � � for " in & 1 � � &

'
� � � �

� , we then have, by EQ-REFL and EQ-APP,

6 � for " in & 1 � � & ' � � � � � for " in & 1 � � & ' � � � for " in & 1 � � & ' � � � � 	 � �

On the other hand, by A RROW-E, 6 � � &

�

� " � � � � � 	
� , i.e., 6 � � &

�

� " � � � � � 	
� . By FOR,

6 � for " in & 1 � � & ' � � � � 	 � . So by EQ-FOR/A PP,

6 � for " in & 1 � � & ' � � � for " in & 1 � � & ' � � � � for " in & 1 � � & ' � � � � � 	 � �

By EQ-TRANS,

6 � for " in & 1 � � &
'

� � � � � for " in & 1 � � &
'

� � � � � 	
�

�

By EQ-INTER,

6 � for " in & 1 � � & ' � � � � � for " in & 1 � � & ' � � � �
�

� �

and by EQ-SUB,

6 � for " in & 1 � � & ' � � � � � for " in & 1 � � & ' � � � � � �

2. By minimal typing (4.3.2.7), there is some � such that 6 �

!
 for " in & 1 � � & ' � � � $ � % � � and

6 � � � . By the syntax-directedness of type synthesis (4.3.2.3),

6 �

! for " in & 1 � � & ' � �
�

� 1

� �
5

$ � � � � � 	 � * ! � # � � � 	 � � � allbasis�

 � 1 � and 6 � � � � � %

6 �

!
� &

�

� " � � � � 1
� for each �

� 1 � 5 $ � 11 � � � 1' % �

Choose 	
+

�

� � , i.e., 	
+

�

� � 	 � � � 	 � for some � � such that ! � # � � � 	 � � � allbasis�

 � 1 � and
6 � � � � � . Then by the de®nition of allbasis(4.3.1.1), there is some� 1

�

� � 1 such that
! � # � � � 	 �

� allbasis�

 � 1
�

� . By Lemma 4.3.1.3 and SUB, 6 � � &

�

� " � �
�

! � # � � � 	 � . By
ALL-E, 6 � � &

�

� " � � � $ � % � � � � � � 	 � , i.e. 6 � � &

�

� " � � $ � % � � � � � � � 	 � . By FOR, 6 �

for " in & 1 � � &
'

� � $ � % � � � � � � 	
� . By EQ-FOR/TA PP,

6 � for " in & 1 � � & ' � � $ � % � for " in & 1 � � & ' � � � $ � % � � � � � � 	 � �

By EQ-INTER and EQ-SUB,

6 � for " in & 1 � � & ' � � $ � % � for " in & 1 � � & ' � � � $ � % � �

3. Straightforward.

5.5. EQUATIONAL THEORY 99

4. Straightforward. �

5.5.2.9. Remark: The equational theory of �

#

studied by Cardelli, Martini, Mitchell, and Sce-
drov includes a more general version of the E Q-TAPP rule, intended to capture the notion of
parametricity[119] in the model:

6 � � � � + � ! " # & � 6 � � � & 6 � � + � &

6 � � � � " � � 	 6 � � �

+

� " � � 	

6 � � $ � % � �

+

$ �

+

% � 	

(EQ-TAPP')

By analogy, it might be interesting to consider an extended E Q-FOR rule:

6 � � & � " � � � � & + � " � � + �

6 � for " in & 1 � � & � � &
�

� � � for " in &

+1 � � &

+

� � &

+

'

� �

+

�

(EQ-FOR')

For our present purposes, however, it is enough to study the s impler system with the E Q-TAPP

and EQ-FOR rules presented above.

We may verify that the equational theory of F� is ªwell typedº in the sense that equality at a
type implies membership in .

5.5.2.10. Lemma:If 6 � � � � + � , then 6 � � � and 6 � � + � .

Proof: By induction on the given derivation. In each case, the ®rst conclusion, 6 � �
�

 , follows
either immediately or by straightforward application of th e induction hypothesis. The second
conclusion is established as follows:

CaseEQ-BETA: � � � � :& � � � � �

+

� � � � � � � 6 � � �

By minimal typing (4.3.2.7), there is some type � such that 6 �

!
� � � and 6 � � � . By the

syntax-directedness of type synthesis,
6 � � : & �

!
� � � 1

6 �

!
� � :& � � � &
 � 1

6 �

!
�

�
� 2

� �
5

$ 	 � * � �
 	 � � � arrowbasis� &
 � 1 � and 6 � � 2 � � � %

�

�

5
$ � 1 % if 6 � � 2 � &

� if 6 � � 2 � & �

If 6 � � 2 � & , then 6 � � � & by rule SUB, and, by Lemma 4.1.10, SUB-INTER-LB, and SUB,
6 � �

+

�
� . If 6 � � 2 � & , then � � � and 6 � �

+

�
� directly by S UB. In either case, 6 � �

+

�
 by

SUB.

CaseEQ-BETA2: � � � " # & � � � $ � % �
+

� � � � " � � 6 � �
�

Similar, using Lemma 4.1.11 instead of 4.1.10.

CaseEQ-ETA: � � � � :& � � � �

�

� FV � � �

+

� � 6 � � � 6 � �

+

�

pImmediate.

CaseEQ-ETA2: � � � "
#

& � � $ " % "

�

� FTV � � �

+

� � 6 � � � 6 � �

+

�

Immediate.

5.5. EQUATIONAL THEORY 100

CaseEQ-FOR/V AR: � � for " in & 1 � � & ' � � � + � � 6 � � �

By minimal typing 4.3.2.7, there is some � such that 6 �

!
� � � and 6 � � � . By the

syntax-directedness of type synthesis (4.3.2.3),
6 �

!
� & � � " � � � � � for each �

� � 5 $ � 1 � � � ' % �

If � � 0, then � � � and 6 � � +

� � by SUB. Otherwise, by VAR, each � � � 6 � � , so 6 � 6 � � � �

by SUB-INTER-LB and SUB-TRANS, and 6 � � + � � by VAR and SUB. In either case, 6 � � + � by
one more application of SUB.

CaseEQ-FOR/A BS: � � for " in & 1 � � & ' � � � :& � � 6 � � � "

�

� FTV & �

�

+

� � � :& � for " in & 1 � � & ' � �

By minimal typing (4.3.2.7), there is some � such that 6 �

!
� � � and 6 � � � . By the

syntax-directedness of type synthesis (4.3.2.3),
6 �

!
� &

�

� " � � � :& � � � � � �

� �
5

$ � 1 � � �
'

%

6 � � : & �

!
� &

�

� " � � � � � 2

� � � &
 � � 2 �

By FOR, for each � ,
6 � � : & � for " in & 1 � � &

'
� � � �

� 2 �

By ARROW-I,
6 � � � : & � for " in & 1 � � &

'
� � � &
 �

� 2 �

i.e., 6 � �
+

� � � . By INTER-I, 6 � �
+

� � . By SUB, 6 � �
+

� .

CasesEQ-FOR/A PP, . . . , EQ-FOR/F OR:

Similar.

CasesEQ-INTER, EQ-REFL, . . . , EQ-FOR:

Straightforward. �

5.5.3 Soundness for the Untyped Semantics

It is a simple matter to show that the equational theory is val idated by the untyped semantics of
F� in Section 5.1.

5.5.3.1. Theorem:If
(1 * � 6

(2 * � 6

! "
� dom 6 � � (1 " � � (2 " � � (" �

! � � dom 6 � � (1 � � � [[]]) � (2 � �

6 � � 1 � � 2 � �

then

[[� 1]]) 1 � [[]]) � [[� 2]]) 2 �

Proof: By induction on a derivation of 6 � � 1 � � 2 � .

5.5. EQUATIONAL THEORY 101

CaseEQ-BETA: � 1 � � � :& � � � � � 2 � � � � � � � 6 � � 1 �

[[� 1]]) 1 � [[]]) � [[� 1]]) 2 by Lemma 5.1.3.8
� [[� � :& � � � �]]) 2

� [[� , � � * erase � � * * erase � � *]]) 2

� [[�

,

� � * erase � � *]]) 2 � [[* erase � � *]]) 2

� [[* erase � � *]]
) 2 1 � 3 [[� � � � � � � �

�

�]]
0

2
4 by Lemma 5.1.1.9

� [[� * erase � � * � � � * erase � � * �]]) 2 by Lemma 5.1.3.9(4)
� [[* erase � � � � � � � *]]) 2 by Lemma 5.1.3.9(5)
� [[� � � � � �]]) 2 �

CaseEQ-BETA2: � 1 � � " # & � � � $ � % � 2 � � � � " � � 6 � � 1 �

[[� 1]]) 1 � [[]]) � [[� 1]]) 2 by Lemma 5.1.3.8
� [[�]]) 2 by de®nition
� [[� 2]]) 2 by Lemma 5.1.3.9(2)�

CaseEQ-ETA: � 1 � � � :& � � � � 2 � � 6 � � 1 � 6 � � 2 �

[[� 1]]) 1 � [[]]) � [[� 1]]) 2 by Lemma 5.1.3.8
� [[�

,

� � * erase � � * * erase � � *]]) 2

� [[
�

* erase � � * �
,

� � � �]]) 2 since �

�

� FV � � � FV * erase � � * �

� � � [[* erase � � *]]) 2 � [[�
,

� � �]]) 2

� [[* erase � � *]]) 2

� [[�]]) 2 �

CaseEQ-ETA2: � 1 � � " # & � � $ " % � 2 � � 6 � � 1 �
 6 � � 2 �

As for EQ-BETA2.

CaseEQ-INTER: for all � � 6 � � 1 � � 2 �
�

 �
5

$ 1 � �
'

%

By the induction hypothesis, [[� 1]]) 1 � [[�]]) � [[� 2]]) 2 for each � ; hence, by the de®nition of � ,
[[� 1]]) 1 � � 1

#

�

#

'

[[
�]])

� [[� 2]]) 2, i.e., [[� 1]]) 1 � [[5
$ 1 � �

'
%]])

� [[� 2]]) 2.

CasesEQ-FOR/V AR � � EQ-FOR/F OR:

Immediate from the de®nition of eraseand Lemma 5.1.3.10.

CaseEQ-REFL: 6 � � 1 �

By Lemma 5.1.3.10.

CasesEQ-SYMM , EQ-TRANS:

By the induction hypothesis and the syummetry and transitiv ity of PERs.

CaseEQ-ABS: � 1 � � � :& � �

+1 � 2 � � � : & � �

+2 6 � � :& � �

+1 � �

+2 � &

+

Choose 	 and � such that 	 � [[&]]) � � . By the induction hypothesis,
[[�

+1]]
) 1 1 � 3 �

4

� [[&

+]]) � [[�

+2]]
) 2 1 � 3 '

4

�

By Lemmas 5.1.3.4 and 5.1.1.10
[[� � :& � �

+1]]) 1 � 	 � [[&

+]]) � [[� � :& � �

+2]]) 2 � � �

hence, by the de®nition of
 ,
[[� � :& � � +1]]) 1 � [[&
 & +]])

� [[� � :& � � +2]]) 2 �

5.5. EQUATIONAL THEORY 102

CaseEQ-APP: � 1 � � 1 � 1 � 2 � � 2 � 2 6 � � 1 � � 2 � &
 6 � � 1 � � 2 � &

By the induction hypothesis,
[[� 1]]) 1 � [[&
]]) � [[� 2]]) 2 �

i.e.,
[[� 1]]) 1 � [[&]])
 [[]]) � [[� 2]]) 2 �

and
[[� 1]]) 1 � [[&]]) � [[� 2]]) 2 �

so by the de®nition of
 ,
[[� 1]]) 1 � [[� 1]]) 1 � [[]]) � [[� 2]]) 2 � [[� 2]]) 2 �

i.e.,
[[� 1 � 1]]) 1 � [[]]) � [[� 2 � 2]]) 2 �

CaseEQ-TABS: � 1 � � " # & � �
+1 � 2 � � " # & � �

+2 6 � " # & � �
+1 � �

+2 �
&

+
 � ! " # & � &

+

Choose some � � [[&]]) . By the induction hypothesis,
[[� +1]]

) 1 1 2 3

- 4

� [[& +]]
) 1 2 3

- 4

� [[� +2]]
) 2 1 2 3

- 4

�

By Lemma 5.1.1.9,
[[�

+1]]) 1 � [[&

+]]
) 1 2 3

- 4

� [[�

+2]]) 2 �

By the de®nition of � ,
[[�

+1]]) 1 �

�

- . [[]] 0

[[&
+
]]

) 1 2 3

- 4

� [[�
+2]]) 2 �

i.e.
[[�

+1]]) 1 � [[! " # & � &

+]]) � [[�

+2]]) 2 �

CaseEQ-TAPP: � 1 � �
+1 $ � % � 2 � �

+2 $ � %

6 � � +1 � � +2 � ! "
#

& � & + 6 � � � & � � � � " � & +

By the induction hypothesis,
[[�

+1]]) 1 � [[! "
#

& � &

+]])
� [[�

+2]]) 2 �

i.e.,
[[�

+1]]) 1 �

�

- . [[]] 0

[[&
+
]]

) 1 2 3

- 4

� [[�
+2]]) 2 �

By Lemma 5.1.3.8 and the fact that �

� � �

� � � � � � for each � ,
[[�

+1]]) 1 � [[&

+]]
) 1 2 3 [[�]]

0

4

� [[�

+2]]) 2 �

hence (by Lemma 5.1.3.9(3)),
[[� +1]]) 1 � [[� � � " � & +]]) � [[� +2]]) 2 �

i.e.,
[[� 1]]) 1 � [[� � � " � &

+]]) � [[� 2]]) 2 �

CaseEQ-FOR: � 1 � for " in & 1 � � & ' � �
+1 � 2 � for " in & 1 � � & ' � �

+2
6 � � & � � " � � +1 � � & � � " � � +2 � � � �

By the induction hypothesis,
[[� &

�
� " � �

+1]]) 1 � [[
�]])

� [[� &
�

� " � �

+2]]) 2 �

i.e. (by Lemma 5.1.3.9(3)),
[[�

+1]]) 1 � [[�]]) � [[�
+2]]) 2 �

i.e. (by the de®nition of erase),
[[� 1]]) 1 � [[�]]) � [[� 2]]) 2 � �

5.5. EQUATIONAL THEORY 103

5.5.4 Soundness for the Translation Semantics

5.5.4.1. Remark:The soundness of our equational theory for the translation- style semantics given
in Section 5.3 depends in many places on the coherence of the translation. Although we lack a
proof of this property, it is instructive to write out the pro of of soundness modulo coherence.

5.5.4.2. Lemma:
1. If 6 �

�

� � � and 6 � � :� �

�

� � 	 , then

[[6 �

�

� � � � � � �]] � � [[6 �

�

� � �]] � � � [[6 � � : � �

�

� �]] �

2. If 6 � " # & � � � 	 and 6 � � � & , then

[[6 � � � � " � � � � � � " �]] � � [[6 � � � &]] � � 2 � � [[�]] � " � [[6 � " # & � � �]] �

Proof:
1. By induction on the structure of a derivation of 6 � � : � �

�

� � 	 .

2. Similar. �

5.5.4.3. Theorem:If 6 �

�

� � � + � , then [[6]] �

�

[[6 �

�

� �]] � [[6 �

�

� + �]] � [[]].

Proof: By induction on the given derivation.

CaseEQ-BETA: � � � � :& � � � � �

+

� � � � � � � 6 �

�

� �

By minimal typing (4.3.2.7), there is a type � such that 6 �

!
� � � and 6 � � � . By the

syntax-directedness of type synthesis (4.3.2.3),
6 �

!
� � :& � � � &
 � 2

6 � � : & �

!
� � � 2

6 � � � � 1

� � 5 $ 	 � * � �
 	 � �
� arrowbasis� &
 � 2 � and 6 � � 1 � � � % �

Subcase: 6 � � 1 � &

Then � �
5

$ � 2 % and
[[6 �

!
�

�
�]] � � [[6 � &
 � 2 � &
 � 2]] � [[6 �

!
 � � :& � � �

�
&
 � 2]] �

� [[6 � � 1 � &]] � [[6 � � � � 1]] � � �

By SUB-REFL, T-SUB-REFL, and FEQ-BETA,
[[6]] �

�

[[6 �

!
� � �]]

� � [[6 �

!
 � � :& � � � � &
 � 2]] �

�
 [[6 � � 1 � &]] � [[6 � � � � 1]] � �

� [[5 $ � 2 %]] �

i.e. (by T-SUB and TA-A RROW-I),
[[6]] �

�

[[6 �

!
�

�
�]]

� � � � :[[&]] � [[6 � � : & �

!
� � � 2]] � � [[6 � � � &]] � �

� [[5
$ � 2 %]] �

By FEQ-BETA, Lemma 5.5.4.2, and FEQ-TUPLE,
[[6]] �

�

� � � :[[&]] � [[6 � � : & � � � � 2]] � � [[6 � � � &]] �

� � � [[6 � � � &]] � � � [[6 � � : & �

�

� � � 2]] �

� [[5
$ � 2 %]] �

By FEQ-REFL and FEQ-APP,
[[6]] �

�

[[6 �
5

$ � 2 % �]] �

� � � :[[&]] � [[6 � � :& � � � � 2]] �

� [[6 � � � &]] �

� [[6 �
5

$ � 2 % �]] � � � [[6 � � � &]] � � � [[6 � � : & �

�

� � � 2]] �

� [[]] �

i.e.,
[[6]] �

�

[[6 � �
�

]] � [[6 � �
+

�
]] � [[]] �

5.5. EQUATIONAL THEORY 104

Subcase: 6 � � 1 � &

Then � � � and [[6 � � � �]] � � � . By INTER-I, 6 � � � � � � � � � . By T-INTER-I, [[6 � � � � � � � �

�]] � � � . By FEQ-TUPLE and FEQ-TRANS,
[[6]] �

�

[[6 � � � �]] � [[6 � �

+

� �]] � [[�]] �

By FEQ-REFL and FEQ-APP,
[[6]] �

�

[[6 � � �]] � [[6 � � � �]] � [[6 � � �]] � [[6 � � + � �]] � [[]] �

CaseEQ-BETA2: � � � " # & � � � $ � % �

+

� � � � " � � 6 � � �

Similar.

CaseEQ-ETA: � � � � :& � � � 6 � � � �

�

� FV � � � + � �

By minimal typing (4.3.2.7), there is some � such that 6 �

!
� � � and 6 � � � . By the

syntax-directedness of type synthesis,
6 � � : & � � � � � 2

� � &
 � 2 �

and again,
6 � � : & �

!
� � �

6 � � : & �

!
� � &

� 2 �
5

$ 	 � * � �
 	 � � � arrowbasis
�

� �

� :	

�

 � � and 6 � � : & � & � � � % �

By Lemma 4.3.1.3, D-ALL-SOME, SUB-ARROW, and SUB-DIST-IA,
6 � � �

5
$ arrowbasis

�

� �

� :	

�

 � � %

� 5 $ � �
 	 � * � �
 	 � �
� arrowbasis

�

� �

� :	

�

 � � and 6 � � :& � & � � � %

�
5

$ � �
 	 � * � �
 	 � � � arrowbasis
�

� �

� :	

�

 � � %

�

5

$ &
 	 � * � �
 	 � �
� arrowbasis

�

� �

� :	

�

 � � and 6 � � : & � & � � � %

� &
 � 2 �

By SUB, 6 � � :& � � � &
 � 2. By strengthening (4.1.9), 6 � � � &
 � 2. By FEQ-ETA,
[[6]] �

�

� � : & � [[6 � � : & � � � &
 � 2]] � � [[6 � � � &
 � 2]] � [[&]]
 [[� 2]] �

i.e.,
[[6]] �

�

� � :& � [[6 � � :& � � � &
 � 2]] � [[6 � � : & � � � &]]
� [[6 � �

�
&
 � 2]]

� [[&]]
 [[� 2]] �

i.e.,
[[6]] �

�

[[6 � � � : & � � � � &
 � 2]] � [[6 � � � &
 � 2]] � [[&
 � 2]] �

By FEQ-REFL and FEQ-APP,
[[6]] �

�

[[6 � &
 � 2 �]] � [[6 � � � : & � � � � &
 � 2]]
� [[6 � &
 � 2 �]] � [[6 � � � &
 � 2]]
� [[]] �

which, by T-SUB, is the desired result.

CaseEQ-ETA2: � � � "
#

& � � $ " % 6 � � � "

�

� FTV � � � + � �

Similar.

CaseEQ-FOR/V AR: � � for " in & 1 � � & ' � � �
+

� �

6 � for " in & 1 � � & ' � �
�

By minimal typing (4.3.2.7), there is some � such that 6 �

!
� � � and 6 � � � . Since

� & � � " � � � � , we have � �

5

$ 6 � � � � 6 � � % by the syntax-directedness of type synthesis
(4.3.2.3).

5.5. EQUATIONAL THEORY 105

Subcase: � � 0
Then � � � . By FEQ-TUPLE,

[[6]] �

�

[[6 �

! for " in & 1 � � & ' � � � �]]
� [[6 � � � �]]
� [[�]] �

By FEQ-APP,
[[6]] �

�

[[6 � � �]] � [[6 �

! for " in & 1 � � & ' � � � �]]
� [[6 � � �]] � [[6 � � � �]]
� [[]] �

which, by T-SUB, is the desired result.

Subcase: � � 0
By TA-FOR and TA-VAR,

[[6 � for " in & 1 � � &
'

� � �
5

$ 6 � � � � 6 � � %]]
� � [[6 � � & 1 � " � � � 6 � �]] � � [[6 � � & ' � " � � � 6 � �]] �

� � [[6 � � � 6 � �]] � � [[6 � � � 6 � �]] �

� � � � � � � �

By FEQ-REFL and coherence,
[[6]] �

�

[[6 � � �]] � � � � � � �

� proj1 ; [[6 � 6 � � �]] � � � � � � � �

� [[]] �

By FEQ-PI,
[[6]] �

�

 proj1 ; [[6 � 6 � � �]] �
�

� � � � � �

� [[6 � 6 � � �]] � �

� [[]] �

from which the desired result follows by transitivity.

CaseEQ-FOR/A BS: � � for " in & 1 � � &
'

� � � :& � � � + � � � :& � for " in & 1 � � &
'

� �

"

�

� FTV & � 6 � �
�

By minimal typing (4.3.2.7), there is some � such that 6 �

!
� � � and 6 � � � . By the

syntax-directedness of type synthesis (4.3.2.3),
6 �

!
� �

5
$ &
 1 � � &

'
% �

where, for each � ,
6 � � : � &

�
� " � & � � &

�
� " � � �

�
�

i.e.,
6 � � : & � � & � � " � � � � �

By A-A RROW-I and A-F OR,
6 �

!
�

+

� &

5

$ 1 � � ' % �

Let
�

def
� � � � :[[&]] � [[6 � � :& � � & 1 � " � � � 1]] � � � � :[[&]] � [[6 � � :& � � & ' � " � � � ']] �

�

+

def
� � � :[[&]] � � [[6 � � :& � � & 1 � " � � � 1]] � � [[6 � � :& � � & ' � " � � � ']] � �

Then by TA-FOR and TA-A RROW-I,
� � [[6 �

!
� �

5
$ &
 1 � � &

'
%]]

�
+

� [[6 �

!
�

+
� &

5
$ 1 � � ' %]] �

5.5. EQUATIONAL THEORY 106

By FEQ-BETA and FEQ-PI (� times),
[[6]] �

�

dist
�

1

	 � / 1 � �

	 � / �

4

� �

� � � :[[&]] � � proj1 � � � � � proj
'

� � � �

� � +

� [[&
 5 $ 1 � � ' %]] �

By FEQ-APP and FEQ-REFL,
[[6]] �

�

[[6 � &
 5 $ 1 � � ' % �]] � dist
�

1

	 � / 1 � �

	 � / �

4

� �

� [[6 � &

5

$ 1 � � ' % �]] �

�

+

� [[]] �

By T-SUB,
[[6]] �

�

[[6 � 5 $ &
 1 � � &
 ' % �]] � �

� [[6 � &
 5 $ 1 � � ' % �]] �

�

+

� [[]] �

as required.

CaseEQ-FOR/A PP: � � for " in & 1 � � & ' � � 1 � 2

�
+

� for " in & 1 � � & ' � � 1 � for " in & 1 � � & ' � � 2 �

6 � � �

By minimal typing (4.3.2.7), there is some � such that 6 �

!
� � � and 6 � � � . For each � , we

have (by the syntax-directedness of type synthesis (4.3.2.3)
6 �

!
� & � � " � � 1 � � � 1

6 �

!
� &

�
� " � � 2 � �

� 2

6 �

!
 � & � � " � � 1 � � & � � " � � 2 �

�
5

$ 	 �

�

* � �

�

 	 �

�

� � arrowbasis� � � 1 � and 6 � � � 2 � 	 �

�

% �

Let

� �

def
�

5
$ 	 �

�

* � �

�

 	 �

�

� � arrowbasis� � � 1 � and 6 � � � 2 � 	 �

�

% �

Then � �
5

$ � 1 � � � ' % . By T-FOR (twice), FEQ-APP, and T-FOR

[[6]] �

�

[[6 � � + � � �]]
� [[6 � � &

�
� " � � 1 � � &

�
� " � � 2 � � �

�]]
� [[6 � � � � �]]
� [[� �]] �

By FEQ-TUPLE,
[[6]] �

�

� [[6 � � + � � 1]] � � [[6 � � + � � ']] �

� � [[6 � � � � 1]] � � [[6 � � � �
']] �

�

�

$ [[� 1]] � � [[� ']] % �

i.e.,
[[6]] �

�

[[6 � �
+

�
�]] � [[6 � �

�
�]] � [[�]] �

By FEQ-APP and T-SUB,
[[6]] �

�

[[6 � �
+

�]] � [[6 � � �]] � [[]] �

CasesEQ-FOR/TA BS, EQ-FOR/TA PP, EQ-FOR/F OR:

Similar.

5.5. EQUATIONAL THEORY 107

CaseEQ-INTER: � 5 $ 1 � � ' % for all � � 6 � � � � + � �

By the induction hypothesis,
[[6]] �

�

[[6 � � � �]] � [[6 � �

+

� �]] � [[�]]
for each � . By coherence,

[[6]] �

�

proj
�

� [[6 � � � 5 $ 1 � � ' %]] � proj
�

� [[6 � � + � 5 $ 1 � � ' %]] � [[�]]
By FEQ-TUPLE,

[[6]] �

�

� proj1 � [[6 � � � 5 $ 1 � � ' %]] � � proj
'

� [[6 � � � 5 $ 1 � � ' %]] �

� � proj1 � [[6 � � �

5

$ 1 � � ' %]] � � proj
'

� [[6 � � �

5

$ 1 � � ' %]] � �

�

$ [[1]] � � [[']] % �

By FEQ-SURJ (twice) and FEQ-TRANS,
[[6]] �

�

[[6 � � � 5 $ 1 � � ' %]] � [[6 � � � 5 $ 1 � � ' %]] � [[5 $ 1 � � ' %]] �

CasesEQ-REFL, EQ-SYMM , EQ-TRANS, EQ-ABS, EQ-APP:

By straightforward application of the induction hypothesi s.

CaseEQ-TABS: � � � " # � � � � � � " # � � � � ! " # � � 	

6 � "
#

� �

�

� � � + � 	

By the induction hypothesis,
[[6 � " # �]] �

�

[[6 � " # � � �
�

]] � [[6 � " # � � �
+

�
]] � [[]] �

i.e.,
[[6]] � " � � 2 : "
 [[�]] � �

�

[[6 � " # � � � �]] � [[6 � " # � � �
+

�]] � [[]] �

By FEQ-ABSand FEQ-TABS,
[[6]] �

�

� " � � �
2 : "
 [[�]] � � [[6 � "

#
� � � �]]

� � " � � � 2 : "
 [[�]] � � [[6 � " # � � �
�

]]
� ! " � "
 [[�]] �
 	 �

i.e.,
[[6]] �

�

[[6 � � " # � � � � ! " # � �]] � [[6 � � " # � � � � ! " # � �]] � [[! " # � �]] �

CaseEQ-TAPP: � � � $ � % �
+

� �
+

$ � % � � � � " � 	

6 �

�

� � � + � ! "
#

� � 	 6 � � � �

By the induction hypothesis,
[[6]] �

�

[[6 � � � ! " # � �]]
� [[6 � �

+

� ! " # � �]]
� [[! " # � �]] �

i.e.,
[[6]] �

�

[[6 � � � ! "
#

� �]]
� [[6 � �

+
� ! " # � �]]

� ! " � "
 [[�]] �
 [[]] �

By Lemma 5.3.2.6, [[6]] �

�

[[6 � � � �]] � [[�]]
 [[�]]. So by FEQ-TAPP, Lemma 5.3.2.2, and
FEQ-APP,

[[6]] �

�

[[6 � � � ! "
#

� �]] �
$ [[�]] %

� [[6 � � � �]]
� [[6 � �

+

�
! " # � �]] � $ [[�]] % � [[6 � � � �]]

� [[� � � " �]] �

i.e.,
[[6]] �

�

[[6 � � $ � % � � 	 � " �]]
� [[6 � � + $ � % � � 	 � " �]]
� [[� � � " �]] �

5.5. EQUATIONAL THEORY 108

CaseEQ-FOR: � � for " in & 1 � � & ' � � � + � for " in & 1 � � & ' � � + � �

6 � � & � � " � � � � & � � " � �

+

� �

By the induction hypothesis and T-F OR. �

Chapter 6

Undecidability of Subtyping

In this chapter, we show that the typing relation of � � (and, as an easy corollary, that of F�) is
undecidable. The crux of the dif®culty lies in the subtype re lation, speci®cally in the subtyping
rule for quanti®ed types:

� � �

1 � � 1
� � 	

�

�

1
�

� 2 �

�

2
� �
 	

�

� 1 � � 2 �

 	

�

�

1 �

�

2
(SUB-ALL)

Though semantically appealing, this rule creates serious problems for reasoning about the subtype
relation. In a quanti®ed type

 	

�

� 1 � � 2, instances of
	

in
� 2 are naturally thought of as being

bounded by their lexically declared bound
� 1. But this connection is destroyed by the second

premise: when

 	

�

� 1 � � 2 is compared to

 	

�

�

1 �

�

2, instances of
	

in both
� 2 and

�

2 are bounded
by

�

1 in the premise
� � 	

�

�

1
�

� 2 �

�

2.
Cardelli and Wegner's original de®nition of Fun [33] used a w eaker quanti®er rule in which

 	

�

� 1 � � 2 is a subtype of

 	

�

�

1 �

�

2 only if
� 1 and

�

1 are identical; this variant can easily be shown
to be decidable. Later authors, including Cardelli, have ch osen to work with the more powerful
formulation considered in this thesis.

Curien and Ghelli used a proof-normalization argument to sh ow that � � typechecking is co-
herent (that is, that all derivations of a statement

� � � �

have the same meaning under certain
assumptions about the semantics). One corollary of their pr oof is the soundness and completeness
of a natural syntax-directed procedure for computing minim al typings of � � terms, with a sub-
routine for checking the subtype relation (algorithm � �

�

of Section 2.6); the same procedure had
been developed by the group at Penn and by Cardelli for use in h is Quest typechecker [Gunter,
personal communication, 1990]. The termination of Curien a nd Ghelli's typechecking procedure
is equivalent to the termination of the subtyping algorithm . Ghelli, in his Ph.D. thesis [63], gave
a proof of termination; unfortunately, this proof was later found to contain a subtle mistake. In
fact, Ghelli soon realized that there are inputs for which th e subtyping algorithm does not termi-
nate [personal communication, 1991]. Worse yet, these cases are not amenable to any simple form
of cycle detection: when presented with one of them, the algo rithm generates an in®nite sequence
of recursive calls with larger and larger contexts. This dis covery reopened the question of the
decidability of � � .

The undecidability result presented here began as an attempt to formulate a more re®ned
algorithm capable of detecting the kinds of divergence that could be induced in the simpler one.
A series of partial results about decidable subsystems eventually led to the discovery of a class
of input problems for which increasing the size the input by a constant factor would increase the
search depth of asucceedingexecution of the algorithm by an exponential factor. Beside s dispelling

109

6.1. A FLAWED DECIDABILITY ARGUMENT FOR F � 110

previous intuitions about why the problem ought to be decida ble, this construction suggested a
trick for encoding natural numbers, from which it was a short step to an encoding of two-counter
Turing machines.

After reviewing the ¯aw in Ghelli's earlier proof of termina tion for the subtyping algorithm
� �

�

(Section 6.1) and presenting an example where the algorithm fails to terminate (Section 6.2), we
identify a fragment of � � that forms a convenient target for the reductions to follow (Sections 6.3
and 6.4). The main result is then presented in two steps.

1. We ®rst de®ne an intermediate abstraction, calledrowing machines(Section 6.5); these bridge
the gap between � � subtyping problems and two-counter machines by retaining t he notions
of bound variables and substitution from � � while introducing a computational abstraction
with a ®nite collection of registers and an evaluation regim e based on state transformation.
An encoding of rowing machines as � � subtyping statements is given and proven correct,
in the sense that a rowing machine

�

halts iff its translation � �

� �

is a derivable statement
in � � (Section 6.6).

2. We then review the de®nition of two-counter machines (Section 6.7) and show how a two-
counter machine � may be encoded as a rowing machine � � �

�

such that � halts iff � � �

�

does (Section 6.8).
Section 6.9 shows that the undecidability of subtyping impl ies the undecidability of typechecking
for � � ; Sections 6.10 and 6.11 extend the result toF� and some related systems. Section 6.12
discusses its pragmatic import.

6.1 A Flawed Decidability Argument for F �

Ghelli's Ph.D. thesis [63, pp. 80±83] argues that the algorithm �
�

�

always terminates and is therefore
a decision procedure for � � typechecking. This section brie¯y sketches Ghelli's argum ent and
shows where it goes wrong. The problem is quite subtle: the in correct proof was read by a number
of people (including the present author) before the ¯aw was d etected, independently, by Curien
and Reynolds.

The idea, as usual, is to de®ne a well-founded complexity metric and show that if � 	 is a
subproblem of � , then complexity� �

	

�

is strictly less than complexity� �

�

.

6.1.1. De®nition: The function index

�

	 �

gives the index in
�

(counting from right to left) of the
binding of

	

.

6.1.2. De®nition: The left depthof a type variable
	

in a type
�

and a context
�

is the number of
bound type variables in both

�

and
�

at
	

's point of de®nition. To formalize this concept, it is
convenient to assume that all binding occurrences of type va riables in

�

and
�

have been renamed
so as to be distinct from each other (or better yet, that deBru ijn indices are used instead of variable
names). Now de®ne:

ld �

	 � � � � � �

1 �

len�

� �

� ld �

	 � � �

if
	

is bound in
�

index

�

	 �

otherwise

ld �

	 � � � �

the number of instances of

in whose scope the binding occurrence
of

	

(in
�

) falls.

(As Ghelli observes, ªThe de®nition is simpler in terms of De Bruijn indices, as the left-depth of any
variable is simply the difference among the indexes of that v ariable and the 'outermost variable',

6.2. NONTERMINATION OF THE F � SUBTYPING ALGORITHM 111

taken in any environment [i.e. context] where they are both d e®ned, plus one; the ªoutermost
variableº is the ®rst variable bound in the environment, or t he ®rst one bound in the term if the
environment is empty.º)
De®ne the left depth of a type

�

in a context
�

to be the maximum left depth of any type variable
in

�

:

ld �

�

� � � �

max� � 0 � � � ld �

	 �

�

� � � � 	

TV �

�

�

�

�

�

De®ne the complexity of a subtyping statement �

� �

� �

� �

to be the following pair:

complexity�

� �

� �

� � �

� ld �

�

� � �

� ld �

� � � � �

size�

�

�

� size�

� � �

�

Order the range of complexity�

� �

� �

� �

lexicographically. Note that this ordering is well founded
(contains no in®nite descending chains).

This ordering operates as desired for all the rules of �
�

�

with the exception of NV AR. For an
example of its misbehavior in this case, let

� � 	

�

�

 �

� Top
�

Top
� � 	

	

� Top
�

Then
ld �

	 � � � �

ld �

	 � 	 � � �

�

1 � index

�

	 �

�

2
�

whereas
ld � �

 �

� Top
�

Top
� � � � �

ld �

� �

�

 �

� Top
�

Top
� � � �

�

1 � len�

� �

� ld �

� �

�

 �

� Top
�

Top
� �

�

3 � ld �

� �

�

 �

� Top
�

Top
� �

�

3
�

So the instance
� �
 �

� Top
�

Top
�

Top
� � 	

�

Top

of NVAR has a premise of greater complexity than its conclusion.

6.2 Nontermination of the F � Subtyping Algorithm

Ghelli recently dispelled the widely held belief that the al gorithm �

�

�

terminates on all inputs, by
discovering the following example.

6.2.1. De®nition: In this example (and below), an additional abbreviation is u sed:

�

� def�
 	

�

�

�

	

The salient property of this notation is that it allows the ri ght- and left-hand sides of subtyping
statements to be swapped:

6.2.2. Fact:
� �

�

� �

�

�

is derivable iff
� � �

� �

is.

6.3. A DETERMINISTIC FRAGMENT OF F � 112

6.2.3. Example:Let �

�
 	

�

�

�

 �

�

	

�

�

� �

. Then executing the algorithm � �

�

on the input problem
	

0
�

�

� 	

0 �

�

 	

1
�

	

0 �

�

	

1
�

leads to the following in®nite sequence of recursive calls:
	

0
�

�

� 	

0 �

 	

1
�

	

0 �

�

	

1
	

0
�

�

�
 	

1 �

�

�

 	

2
�

	

1 �

�

	

2
�

�

 	

1
�

	

0 �

�

	

1
	

0
�

�

� 	

1
�

	

0
�

�

�

 	

2
�

	

1 �

�

	

2
�

�

�

	

1
	

0
�

�

� 	

1
�

	

0
� 	

1 �

 	

2
�

	

1 �

�

	

2
	

0
�

�

� 	

1
�

	

0
� 	

0 �

 	

2
�

	

1 �

�

	

2
	

0
�

�

� 	

1
�

	

0
�
 	

2 �

�

�

 	

3
�

	

2 �

�

	

3
�

�

 	

2
�

	

1 �

�

	

2
	

0
�

�

� 	

1
�

	

0
� 	

2
�

	

1
�

�

�

 	

3
�

	

2 �

�

	

3
�

�

�

	

2
	

0
�

�

� 	

1
�

	

0
� 	

2
�

	

1
� 	

2 �

 	

3
�

	

2 �

�

	

3
	

0
�

�

� 	

1
�

	

0
� 	

2
�

	

1
� 	

1 �

 	

3
�

	

2 �

�

	

3
	

0
�

�

� 	

1
�

	

0
� 	

2
�

	

1
� 	

0 �

 	

3
�

	

2 �

�

	

3

etc.

(The
	

-conversion steps necessary to maintain the well-formedness of the context when new
variables are added are performed tacitly here, choosing new names so as to clarify the pattern of
regress.)

6.2.4. Remark: This example is apparently the smallest subtyping statemen t that causes the �
�

�

algorithm to diverge [Ghelli, personal communication, 199 1].

6.3 A Deterministic Fragment of F �

The pattern of recursion in Ghelli's example is an instance o f a more general scheme Ð one
so general, in fact, that it can be used to encode termination problems for two-counter Turing
machines. We now turn to demonstrating this fact.

6.3.1. De®nition: The positiveand negative occurrencesin a statement
� �

� �

�

are de®ned as
follows:

� The type
�

and the bounds in
�

are negative occurrences;
�

is a positive occurrence.
� If

�

1 �

�

2 is a positive (respectively, negative) occurrence, then
�

1 is a negative (positive)
occurrence and

�

2 is a positive (negative) occurrence.
� If

 	

�

�

1 �

�

2 is a positive (negative) occurrence, then
�

1 is a negative (positive) occurrence
and

�

2 is a positive (negative) occurrence.

6.3.2. Fact:The rules de®ning � �

�

(2.6.10) preserve the signs of occurrences: wherever a metavari-
able

�

appears in a premise of one of the rules, it has the same sign asthe corresponding occurrence
of

�

in the conclusion.

In what follows, it will be convenient to work with a fragment of � �

�

with somewhat simpler
behavior:

� we drop the
�

type constructor and its subtyping rule;
� we introduce a negation operator explicitly into the syntax and include a rule for comparing

negated expressions;
� we drop the left-hand premise from the rule for comparing qua nti®ers, requiring instead

that when two quanti®ed types are compared, the bound of the o ne on the left must be Top;
� we consider only statements where no variable occurs positi vely, allowing us to drop the

NREFL rule; and

6.3. A DETERMINISTIC FRAGMENT OF F � 113

� we disallow Topin negative positions.
Since the � �

�

rules preserve positive and negative occurrences, we may rede®ne the set of
types so that positive and negative types are separate syntactic categories. At the same time, we
simplify each category appropriately.

6.3.3. De®nition: The sets ofpositive types
� �

and negative types
� �

are de®ned by the following
abstract grammar:

�

�

::= Top
�

�

�

�

�
 	

�

�

�

�

�

�

� �

::=
	 �

�

� � �
 	

�

� �

A negative context
�

�

is one whose bounds are all negative types.

6.3.4. De®nition: �

�

�

(
�

for polarized) is the least relation closed under the follow ing rules:

�

�

� �

�

�

Top (PTOP)

�
�

� �
�

�

	 �

�

�
�

�

�

� 	

�

�

�

(PVAR)

� � � 	

� �

� �

�

�

�

� �

�

�

�
 	

� �

�

�

 	

� �

�

�

�

�

(PALL)

� � � � �

� �

�

�

�

�

�

�

�

�

�

�

�

(PNEG)

�

�

�

is almost the system we need, but it still lacks one important property: �
� is not a

conservative extension of �

�

�

. For example, the non-derivable �

�

�

statement
�

� Top
�

 	

�

	

corresponds, under the abbreviations for � and

 	

�

	

, to the derivable �
� statement

�
 	

� Top
�

	

�

 	

� Top
�

	

�

To achieve conservativity, we restrict the form of �

�

�

statements even further so that negated types
can never be compared with quanti®ed types.

6.3.5. De®nition: Let � be a ®xed nonnegative number. The sets of� -positiveand � -negative types
are de®ned by the following abstract grammar:

� �

::= Top
�
 	

0
�

�

�

0 � �

	 �

�

� �

�

�

�

� �

� �

::=
	 �
 	

0 � �

	
�

�

�

� �

We stipulate, moreover, that an � -positive type

 	

0
�

�

�

0 � �

	 �

�

�

�

�

�

�

�

�

is closed only if no
	 �

appears free in any
�

�

.
An � -negative context

�

�

�

is one whose bounds are all � -negative types.

6.3.6. De®nition: An � �

�

statementhas the form
� �

�

�

�

�

�

�

� �

�

, where
� �

�

is an � -negative context,
�

�

�

is an � -negative type, and
�

�

�

is an � -positive type.

6.3.7. Convention: To reduce clutter, we drop the superscripts � and 	 and usually leave �

implicit in what follows.

6.3.8. De®nition: � �

�

(D for deterministic) is the least relation closed under the following rules:
� � �

�

Top (DTOP)

6.4. EAGER SUBSTITUTION 114

� � �

�

	 �

�

 	

0
� �

0 � �

	 �

� �

�

�

�

�

� � 	

�

 	

0
� �

0 � �

	 �

� �

�

�

�

� (DVAR)

� � 	

0
� �

0 � �

	 �

� �

� � �

� �

� �
 	

0 � �

	 �

�

�

� �

 	

0
� �

0 � �

	 �

� �

�

�

�

� (DA LLNEG)

Using the earlier abbreviations for negation, multiple qua nti®cation, and unbounded quan-
ti®cation, we may read every �

�

�

statement as an � �

�

statement. Under this interpretation, the
two subtype relations coincide for statements in their comm on domain:

6.3.9. Lemma: �

�

�

is a conservative extension of � �

�

: if � is an � �

�

statement, then � is derivable
in �

�

�

iff it is derivable in � �

�

.

Proof: The implication �

�

� �

� �

�

is straightforward. The other direction, � �

� �

�

�

�

proceeds by
induction on �

�

�

derivations, using the form of � �

�

statements to constrain the possible forms of
�

�

�

derivations whose conclusions are de-abbreviated �

�

�

statements. �

These simpli®cations justify a useful change of perspective. Since the only rule in �

�

�

with
two premises has been replaced by a rule with one premise, der ivations in this fragment are
linear (each node has at most one subderivation). Moreover, every metavariable in the premise
of each rule also appears in the conclusion, which makes the step from conclusion to premise
deterministic. The syntax-directed construction of such a derivation may be thus be viewed as
a deterministic state transformation process, where the subtyping statement being veri®ed is the
current state and the single premise that must be recursivel y veri®ed, if any, is the next state. In
other words, a subtyping statement is thought of as an instan taneous description of a kind of
automaton.

From now on we use terminology that makes the intuition of ªsu btyping as state transforma-
tionº more explicit. Analogous terminology and notation wi ll be used to describe the other calculi
introduced below.

6.3.10. De®nition: The one-step elaborationfunction � for �

�

�

-statements is the partial mapping
de®ned by:

� � �

� �

�

�

�

�

�

�
	

if � is the conclusion of an instance of DVAR or DA LLNEG and
� 	 is the corresponding premise

unde®ned if � is an instance of DTOP.

6.3.11. De®nition: �
	 is an immediate subproblemof � in � �

�

, written � 	

� �

�
	 , if �

	

�

� � �

�

.

6.3.12. De®nition: �
	 is a subproblemof � in � �

�

, written � �	

� �

�
	 , if either �

�

�
	 or � 	

� �

� 1

and � 1 �	

� �

�
	 .

6.3.13. De®nition: The elaborationof a statement � is the sequence of subproblems encountered
by the subtyping algorithm given � as input.

6.4 Eager Substitution

To make a smooth transition between the subtyping statement s of � � and the rowing machine
abstraction to be introduced in Section 6.5, we need one more variation in the de®nition of
subtyping, where, instead of maintaining a context with the bounds of free variables, the quanti®er
rule immediately substitutes the bounds into the body of the statement.

6.4.1. De®nition: The simultaneous, capture-avoiding substitution of �

0 through �

�

, respectively,
for

	

0 through
	 �

in
�

, is written �

�

0 	

	

0 � �

�

�

	

	 �

�

�

.

6.4. EAGER SUBSTITUTION 115

6.4.2. De®nition: An � �

�

statmentis an �

�

�

statement with empty context.

6.4.3. De®nition: �

�

�

(� for ¯attened) is the least relation closed under the followi ng rules:
� �

�

Top (FTOP)

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

�
 	

0 � �

	 �

�

�

� �

 	

0
� �

0 � �

	 �

� �

�

�

�

�

(FALLNEG)

6.4.4. Remark: Of course, an analogous reformulation of full � � would not be correct. For
example, in the non-derivable statement

�

�

 	

� Top
�

Top
�

�

�

 	

� Top
�

	 �

substituting Topfor
	

in the bodies of the quanti®ers yields the derivable statement
�

Top
�

Top.
But having restricted our attention to statements where var iables appear only negatively, we are
guaranteed that the only position where the elaboration of a statement can cause a variable to
appear by itself in the body of a subproblem is on the left-han d side, where it will immediately be
replaced by its bound. We are therefore safe in making the substitution eagerly.

In the remainder of this section, we show that �

�

�

is a conservative extension of �
�

�

.

6.4.5. Lemma: Let �

0 � �

�

�

be � -negative types and assume that the �

�

�

statement
	

0
� �

0 � �

	 �

� �

� � � � �

� �

is closed. Then if �

�

0 	

	

0 � �

�

�

	

	 �

�

� �

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

is derivable in �

�

�

, so is
	

0
� �

0 � �

	 �

� �

� � � � �

� � �

Proof: By induction on the size of the given derivation. (Observe th at by the stipulation in 6.3.5
that no

	
�

appears in any �

�

, the �

�

must all be closed.)

CaseDTOP: �

�

0 	

	

0 � �

�

�

	

	 �

�

�

�

Top

Since variables can only occur negatively,
�

cannot be a variable, so
�

�

Topand the result is
immediate.

CaseDVAR: �

�

0 	

	

0 � �

�

�

	

	 �

�

� � �

We may assume that
� �� 	

�

for any of the distinguished
	

�

's, since otherwise we would have
�

� � �

and the statement
	

0
� �

0 � �

	 �

� �

� � � � �

� �

would not be closed. So
�

must itself be
�

. By assumption, we have a subderivation
�

�

0 	

	

0 � �

�

�

	

	
�

�

� �

� �

�

0 	

	

0 � �

�

�

	

	
�

�

� �

�

� �

�

�

�

0 	

	

0 � �

�

�

	

	
�

�

�

�

that is,
�

�

0 	

	

0 � �

�

�

	

	 �

�

� �

�

�

0 	

	

0 � �

�

�

	

	 �

� �

�

�

� � �

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

� �

By the induction hypothesis,
	

0
� �

0 � �

	 �

� �

� � � � �

�

� �

� � �

By DVAR,
	

0
� �

0 � �

	 �

� �

� � � � �

� � �

CaseDA LLNEG: �

�

0 	

	

0 � �

�

�

	

	 �

�

� �
 �

0 � �

� �

�

�

�

	2
�

�

0 	

	

0 � �

�

�

	

	 �

�

�

�
 �

0
� �

	0 � �

� �

� �

	

�

�

�

�

	2

Since
�

cannot be a variable (else
	

0
�

�

0 � �

	 �

�
�

� � � � �

� �

would not be an �

�

�

statement),
we have

�

�
 �

0
� �

0 � �

� �

� �

�

�

�

� 2
�

	

�

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

�

�

	2
�

�

�

0 	

	

0 � �

�

�

	

	 �

�

� 2 �

For
�

, there are two cases to consider:

6.4. EAGER SUBSTITUTION 116

Subcase:
� � 	 �

Then
�

� �
 �

0 � �

� �

�

�

�

	2 �

By assumption, there is a subderivation
�

�

0 	

	

0 � �

�

�

	

	 �

�

� � �

0
�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

0 � �

� �

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

� �

�

	2 �

�

	2
�

i.e. (since we stipulated
	 � �

FTV �

�

� �

, so
	 � �

FTV �

�

	

�

�

for any �),
�

�

0 	

	

0 � �

�

�

	

	 �

�

� � �

0
�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

0 � �

� �

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

�

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

� 2 �

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

	2
�

By the induction hypothesis,
	

0
� �

0 � �

	 �

� �

� � � � �

0
� �

0 � �

� �

� �

� �

� 2 �

�

	2 �

By DA LLNEG,
	

0
�

�

0 � �

	 �

�
�

� � � �
 �

0 � �

� �

�

�

�

	2 �

 �

0
�

�

0 � �

� �

�
�

�

�

�

� 2 �

By DVAR,
	

0
�

�

0 � �

	
�

�
�

�
� � � 	

�

�

 �

0
�

�

0 � �

�
�

�
�

�

�

�

� 2

Subcase:
� �� 	 �

Then
� �
 �

0 � �

�
�

�

�

�

2
�

	2
�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

2 �

By assumption, we again have a subderivation
�

�

0 	

	

0 � �

�

�

	

	 �

�

� � �

0
�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

0 � �

� �

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

� �

�

	2 �

�

	2
�

that is,
�

�

0 	

	

0 � �

�

�

	

	 �

�

� � �

0
�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

0 � �

� �

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

�

�

�

�

0 	

	

0 � �

�

�

	

	 �

�

� 2 �

�

�

0 	

	

0 � �

�

�

	

	 �

�

�

2 �

By the induction hypothesis,
	

0
� �

0 � �

	 �

� �

� � � � �

0
� �

0 � �

� �

� �

� �

� 2 �

�

2 �

By DA LLNEG,
	

0
� �

0 � �

	 �

� �

� � � �
 �

0 � �

� �

�

�

�

2 �

 �

0 � �

� �

�

�

� 2 �

�

6.4.6. Lemma: If
�

� �

�

is derivable in � �

�

, then it is derivable in �

�

�

.

Proof: By induction on the original derivation, using Lemma 6.4.5 f or the FALLNEG case. �

6.4.7. Lemma: If
	

� �

� � �

� �

�

is derivable in �

�

�

, then �

�

	

	

�

� �

�

�

	

	

�

� �

�

�

	

	

�

�

has an
� �

�

-derivation of equal or lesser size.

Proof: By induction on the given derivation. �

6.4.8. Lemma: If
�

� �

�

is an � �

�

-statement and is derivable in �

�

�

, then it is derivable in � �

�

.

Proof: By induction on the size of the original derivation, using Le mma 6.4.7 for the DALLNEG

case. �

6.4.9. Lemma: � �

�

is a conservative extension of �

�

�

.

Proof: By Lemmas 6.4.6 and 6.4.8. �

6.5. ROWING MACHINES 117

6.5 Rowing Machines

The reduction from two-counter Turing machines to � � subtyping statements is easiest to under-
stand in terms of an intermediate abstraction called a rowin g machine, which makes more stylized
use of bound variables.

A rowing machine is a tuple of registers
� � �

1 � �

�

� � � �

where the contents of each register is a row. By convention, the ®rst register is the machine's
program counter(PC). To move to the next state, thePCis used as a template to construct the new
contents of each of the registers from the current contents of all of the registers (including the PC).

6.5.1. De®nition: The set of rows(of width �) is de®ned by the following abstract grammar:
�

::=
	 �

1
� � �

�

� � 	

1 � �

	 � �

� �

1 � �

�

� �

�

HALT

The variables
	

1 � �

	 �

on the left of
� 	

1 � �

	 � �

� �

1 � �

�

� �

are binding occurrences whose scope is the
rows

�

1 through
�

�

. We regard rows that differ only in the names of bound variabl es as identical.

6.5.2. De®nition: A rowing machine(of width �) is a tuple
� � �

1 � �

�

� � �

, where each
�

�

is a row of width
� with no free variables.

6.5.3. De®nition: The one-step elaborationfunction � for rowing machines of width � is the partial
mapping

� �

� � �

1 � �

�

� � � � �

� �

�

�

1 	

	

1 � �

�

�

	

	 �

�

�

11 � �

�

�

1 	

	

1 � �

�

�

	

	 �

�

�

1
� � �

if
�

1
� � 	

1 � �

	 � �

� �

11 � �

�

1
� �

unde®ned if
�

1
�

HALT .

(Since rowing machines consist only of closed rows, we need not de®ne the evaluation function
for the case where thePCis a variable. Also, since all the

�

�

are closed, the substitution is trivially
capture-avoiding.)

6.5.4. Notational conventions:
1. When the symbol ªÐº appears as the � th component of a compound row

� 	

1 � �

	 � �

� �

1 � �

�

� �

, it
stands for the variable

	 �

.

2. To avoid a proliferation of variable names in the examples and de®nitions below, we some-
times use numerical indices (like deBruijn indices [56]) ra ther than names for variables: the
ªvariableº # � refers to the �

th bound variable of the row in which it appears; ## � refers to
the �

th bound variable of the row enclosing the one in which it appear s; and so on.

3. When these abbreviations are used, the binding lists
� 	

1 � �

	
�

�

are omitted.
For example, the nested row

� 	

1 � �

	

3
�

�

	

1
� � �

1 � �

�

3
�

�

	

1
� �

1
� �

3
� � 	

1
�

would be abbreviated as
�

Ð
�

�

##1
�

#1
�

Ð
� �

#1
�

.

4. It is convenient to introduce names for closed rows and use these to build up descriptions
of other rows. For example, the compound row

� � �

#1
�

#1
�

#1
� �

#3
�

#2
� �

�

Ð
�

Ð
�

Ð
� �

�

#1
�

#1
�

#1
� �

might be written as
�

Z
�

Y
�

X
� �

6.5. ROWING MACHINES 118

where
X

�

�

#1
�

#1
�

#1
�

Y
�

�

Ð
�

Ð
�

Ð
�

Z
�

�

X
�

#3
�

#2
�

�

6.5.5. De®nition: A rowing machine
�

haltsif there is a machine
�

	
such that

�

�	

� �

�

	
and the

PC of
�

	 is the instruction HALT .

6.5.6. Example: The simplest rowing machine,
� �

HALT
� �

, halts immediately. The next simplest,
� � �

HALT
� � �

, takes one step and then halts. Anothersimple one,
� � �

Ð
� � �

, leads to an in®nite elaboration
with every state identical to the ®rst.

6.5.7. Example:The machine
� �

LOOP
�

A
�

B
� � �

where
LOOP

�

�

Ð
�

#3
�

#2
�

A
�

an arbitrary row
B

�

an arbitrary row

executes an in®nite loop where the contents of the second andthird register are exchanged at
successive steps:

� �

LOOP
�

A
�

B
� �

	

�
�

� �

LOOP
�

B
�

A
� �

	

�
�

� �

LOOP
�

A
�

B
� �

	

�
�

. . .

6.5.8. Example:The row

BRI
�

�

#2
�

Ð
�

encodes anindirect branchto the contents of register 2 at the moment when BRI is executed. The
machine

� �

BRI
�

�

BRI
�

�

BRI
�

HALT
� � � �

elaborates as follows:
� �

BRI
�

�

BRI
�

�

BRI
�

HALT
� � � �

	

�
�

� � �

BRI
�

�

BRI
�

HALT
� � �

�

BRI
�

�

BRI
�

HALT
� � � �

	

�
�

� �

BRI
�

�

BRI
�

HALT
� � �

	

�
�

� � �

BRI
�

HALT
� �

�

BRI
�

HALT
� � �

	

�
�

� �

BRI
�

HALT
� �

	

� �

� �

HALT
�

HALT
� �

�

6.6. ENCODING ROWING MACHINES AS SUBTYPING PROBLEMS 119

6.6 Encoding Rowing Machines as Subtyping Problems

We now show how a rowing machine
�

can be encoded as a subtyping problem � �

� �

such that
�

halts iff � �

� �

is derivable in � �

�

.
The idea of the translation is that a rowing machine

� �

� � �

1 � �

�

� � �

becomes a subtyping
statement � �

�

�

of the form
�

. . .
�

� . . . � �

�

1
�

. . .
� �

(where we use � to denote the translation of both rowing machines and rows), constructed so
that

� if
�

1
�

HALT , then the elaboration of � �

� �

halts (by reaching a subproblem where Top
appears on the right-hand side);

� if
�

1
� � 	

1 � �

	 � �

� �

11 � �

�

1
� �

, then the elaboration of � �

� �

reaches a subproblem that encodes
the rowing machine � �

� � �

1 � �

�

� � � � �

� �

�

�

1 	

	

1 � �

�

�

	

	 �

�

�

11 � �

�

�

1 	

	

1 � �

�

�

	

	 �

�

�

1
� � �

�

In more detail, if
� �

� �

� 	

1 � �

	 � �

� �

11 � �

�

1
� �

� �

�

� � �

, then � �

� �

is essentially the following:
�
 �

1 � �

� �

�

�

�

 �

	1
�

�

1 � �

�

	

�

�

� �

�

� . . .
�

�

 �

1
�

� �

�

1
�

� �

� �

�

� �

�

� �

�

�

�

 	

1 � �

	 �

�

�

�

 	

	1
�

� �

�

11
�

� �

	

	

�

�

� �

�

1
� �

�

�

� �

�

11
� � �

�

The elaboration of this statement proceeds as follows:
1. The current contents of the registers

�

1 � �

�

�

are temporarily saved by matching the quanti®ers
on the right with the ones on the left; this has the effect of su bstituting the bounds � �

�

1
�

� �

� �

�

� �

for free occurrences of the variables
�

1 � �

� �

on the left-hand side.
The right- and left-hand sides are also swapped (by the � constructor on both sides), so that
what now appears on the left is a sequence of variable binding s for the free variables

	

1 � �

	 �

of
�

1:
�
 	

1 � �

	 �

�

�

�

 	

	1
�

� �

�

11
�

� �

	

	

�

�

� �

�

1
� �

�

�

� �

�

11
� �

�

 �

	1
�

� �

�

1
�

� �

�

	

�

�

� �

�

� �

�

� . . .

2. The saved contents of the original registers now appear on the right-hand side. When these
are matched with the quanti®ers on the left, the result is tha t the old values of the registers
are substituted for the variables

	

1 � �

	 �

in the body
�

�

 	

	1
�

� �

�

11
�

� �

	

	

�

�

� �

�

1
� �

�

�

� �

�

11
� �

of the left-hand side.
Swapping right- and left-hand sides again yields a statemen t of the same form as the
original, where the appropriate instances of � �

�

11
�

� �

� �

�

1
� �

appear as the bounds of the
outer quanti®ers on the right:

�

. . .
�

�

 	

	1
�

� � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

11
�

� �

	

	

�

�

� � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

1
� �

�

�

� � �

�

1
�

	

	

1 � �

� �

�

�
�

	

	
�

� � �

�

11
�

i.e.,
�

. . .
�

�

 �

1
�

� � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

11
�

� �

� �

�

� � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

1
� �

�

�

� � �

�

1
�

	

	

1 � �

� �

�

�
�

	

	
�

� � �

�

11
�

�

To be able to get back to a statement of the same form as the original, one piece of additional
mechanism is required: besides the � variables used to store the old state of the registers, a variable

�

0 is used to hold the original value of the entire left-hand sid e of � �

� �

. This variable is used at

6.6. ENCODING ROWING MACHINES AS SUBTYPING PROBLEMS 120

the end of a cycle to set up the left hand side of the statement encoding the next state of the rowing
machine.

The formal de®nition of the translation is as follows.

6.6.1. De®nition: Let
�

be a row of width � . The �

�

�

-translationof
�

, written � �

�

�

, is the � -negative
type

� �

�

� �

�

�

�

�

�

	 �

if
�

� 	 �

 �

0
� 	

1 � �

	 �

�

�

�

 �

	0
�

�

0
� 	

	1
�

� �

�

1
�

� �

	

	

�

�

� �

�

� �

�

�

� �

�

1
� �

if
�

� � 	

1 � �

	 � �

� �

1 � �

�

� �

 �

0
� 	

1 � �

	 �

�

� Top if
�

�

HALT ,

where
�

0,
�

	0, and
	

	1 through
	

	

�

are fresh variables.

The proofs below rely on two simple observations:

6.6.2. Fact:
1. The free variables of

�

coindide with the free type variables of � �

�

�

.

2. � � �

�

1 	

	

1 � �

�

�

	

	 �

�

�

� �

� � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

�

.

6.6.3. De®nition: Let
� �

� � �

1 � �

�

�
� �

be a rowing machine. The �
�

�

-translationof
�

, written � �

� �

,
is the �

�

�

statement
�

� �

 �

0
�

�

� �

1
�

� �

�

1
�

� �

� �

�

� �

�

� �

�

�

� �

�

1
� �

where
�

�
 �

0
� �

1 � �

� �

�

�

�

 �

	0
�

�

0
� �

	1
�

�

1 � �

�

	

�

�

� �

�

�

�

0
�

and
�

0,
�

1, . . . ,
� �

are fresh type variables.
(Note that

�

occurs on both sides.)

6.6.4. Fact:This de®nition is proper Ð i.e., � �

� �

is a well-formed �

�

�

-statement for every rowing
machine

�

.

6.6.5. Lemma: If
�

	

�
�

�

	 , then � �

� �

�	

� �

� �

�

	

�

.

Proof: By the de®nition of the elaboration function for rowing mach ines,
� �

� � �

1 � �

�

� � �

, where
�

1
� � 	

1 � �

	 � �

� �

11 � �

�

1
� �

, and
�

	

�

� �

�

�

1 	

	

1 � �

�

�

	

	 �

�

�

11 � �

�

�

1 	

	

1 � �

�

�

	

	 �

�

�

1
� � �

. Let

�

�
 �

0
� �

1 � �

� �

�

�

�

 �

	0
�

�

0
� �

	1
�

�

1 � �

�

	

�

�

� �

�

�

�

0
�

�

Now calculate as follows:

� �

� �

� �

�

�

 �

0
�

�

� �

1
�

� �

�

1
�

� �

� �

�

� �

�

� �

�

�

� �

�

1
�

� �
 �

0
� �

1 � �

�
�

�

�

�

 �

	0
�

�

0
� �

	1
�

�

1 � �

�

	

�

�

�
�

�

�

�

0
�

�

 �

0
�

�

� �

1
�

� �

�

1
�

� �

� �

�

� �

�

� �

�

�

� �

�

1
�

	

� �

�

�

� 	

�

0
�

� �

�

1
�

	

�

1 � �

� �

�

� �

	

� �

� � �

�

1
�

�

�

� 	

�

0
�

� �

�

1
�

	

�

1 � �

� �

�

� �

	

� �

� �

 �

	0
�

�

0
� �

	1
�

�

1 � �

�

	

�

�

� �

�

�

�

0
�

� �

� �

�

1
�

�

 �

	0
�

�

� �

	1
�

� �

�

1
�

� �

�

	

�

�

� �

�

� �

�

�

�

� �
 �

0
� 	

1 � �

	 �

�

�

�

 �

	0
�

�

0
� 	

	1
�

� �

�

11
�

� �

	

	

�

�

� �

�

1
� �

�

�

� �

�

11
� �

�

 �

	0
�

�

� �

	1
�

� �

�

1
�

� �

�

	

�

�

� �

�

� �

�

�

�

� �
 �

0
� 	

1 � �

	 �

�

�

�

 �

	0
�

�

0
� 	

	1
�

� �

�

11
�

� �

	

	

�

�

� �

�

1
� �

�

�

� �

�

11
� �

�

 �

0
�

�

� 	

1
�

� �

�

1
�

� �

	 �

�

� �

�

� �

�

�

�

6.6. ENCODING ROWING MACHINES AS SUBTYPING PROBLEMS 121

	

� �

�

�

� 	

�

0
�

� �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

�

�

�

�

� 	

�

0
�

� �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

�

�

 �

	0
�

�

0
� 	

	1
�

� �

�

11
�

� �

	

	

�

�

� �

�

1
� �

�

�

� �

�

11
� �

� �

�

�

 �

	0 � �

�

	

	1 �

� � � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

11
� �

� �

	

	

�

�

� � � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

1
� � �

�

�

� � � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

11
� �

� �

�

�

 �

0 � �

�

�

1 �

� � � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

11
� �

� �

� �

�

� � � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

1
� � �

�

�

� � � �

�

1
�

	

	

1 � �

� �

�

� �

	

	 �

� � �

�

11
� �

�

� �

�

	

�

�

�

6.6.6. Lemma: If
� �

� �

HALT
�

�

2 � �

�

� � �

, then � �

� �

is derivable in �

�

�

.

Proof: Let

�

�
 �

0
� �

1 � �

�
�

�

�

�

 �

	0
�

�

0
� �

	1
�

�

1 � �

�

	

�

�

�
�

�

�

�

0
�

�

Then

� �

� �

� �

�

�

 �

0
�

�

� �

1
�

� � HALT
�

� �

� �

�

� �

�

� �

�

�

� � HALT
�

� �
 �

0
� �

1 � �

�
�

�

�

�

 �

	0
�

�

0
� �

	1
�

�

1 � �

�

	

�

�

�
�

�

�

�

0
�

�

 �

0
�

�

� �

1
�

� � HALT
�

� �

� �

�

� �

�

� �

�

�

� � HALT
�

	

� �

�

�

� 	

�

0
�

� � HALT
�

	

�

1 � �

� �

�

� �

	

� �

� � � HALT
�

�

�

� 	

�

0
�

� � HALT
�

	

�

1 � �

� �

�

� �

	

� �

� �

 �

	0
�

�

0
� �

	1
�

�

1 � �

�

	

�

�

� �

�

�

�

0
�

� �

� � HALT
�

�

 �

	0
�

�

� �

	1
�

� � HALT
�

� �

�

	

�

�

� �

�

� �

�

�

�

� �
 �

0
� 	

1 � �

	 �

�

� Top
�

 �

	0
�

�

� �

	1
�

� � HALT
�

� �

�

	

�

�

� �

�

�
�

�

�

�

	

� �

�

�

�

Top
�

which is an instance of FTOP. �

6.6.7. Corollary: The rowing machine
�

halts iff � �

� �

is derivable in � �

�

.

6.6.8. Remark: It is natural to ask whether Ghelli's nonterminating exampl e (6.2.3) is the image
of some rowing machine under this translation. The answer is ªalmost.º Although the style
of divergence in Ghelli's example is suggestive of the stepp ing behavior of translated rowing
machines, every rowing machine translation involves a type

�

of appropriate width, which is not
present in Ghelli's example.

6.7. TWO-COUNTER MACHINES 122

6.7 Two-counter Machines

This section reviews the de®nition of two-counter Turing ma chines; see, e.g., Hopcroft and Ull-
man [78] for more details.

6.7.1. De®nition: A two-counter machineis a tuple
� �

PC
� � � � � �

1 � �

� � � �

, where
�

and
�

are nonneg-
ative numbers and PC and

�

1 through
� �

are instructions of the following forms:

INCA
�

�

INCB
�

�

TSTA
�

� 	

�

TSTB
�

� 	

�

HALT
�

with
�

and � in the range 1 to � .

6.7.2. De®nition: The elaboration function� for two-counter machines is the partial function
mapping �

�

� �

PC
� � � � � �

1 � �

� � � �

to

� � �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� � � �

� 1
� � � �

1 � �

� � � �

if PC
�

INCA
�

�

� �

� � � � � �

� 1
� �

1 � �

� � � �

if PC
�

INCB
�

�

� �

�
�

� � � � � �

1 � �

�
�

� �

if PC
�

TSTA
�

� 	

� and
� �

0
� �

� � � �

	 1
� � � �

1 � �

� � � �

if PC
�

TSTA
�

� 	

� and
� �

0
� �

� � � � � � � �

1 � �

� � � �

if PC
�

TSTB
�

� 	

� and
� �

0
� �

� � � � � �

	 1
� �

1 � �

� � � �

if PC
�

TSTB
�

� 	

� and
� �

0
unde®ned if PC

�

HALT .

6.7.3. Convention: For the following examples, it is convenient to assign alpha betic labels to the
instructions of a program. By convention, the instruction w ith label START is used as the initial
PC, and the initial value in both registers is 0.

6.7.4. Example:This program loads register
�

with the value 5, then tests the parity of register
�

,
halting if it is even and looping forever if it is odd:

START INCA
�

I1

I1 INCA
�

I2
I2 INCA

�

I3
I3 INCA

�

I4
I4 INCA

�

E

E TSTA
�

OK
	

O

O TSTA
�

LOOP
	

E

LOOP INCA
�

LOOP

OK HALT
�

6.7.5. Example:This program loads 5 into register
�

and 3 into register
�

, then compares
�

and
�

for equality by repeatedly decrementing them until one or bo th become zero; if both do so on

6.8. ENCODING TWO-COUNTER MACHINES AS ROWING MACHINES 123

the same iteration, the program halts; otherwise it goes int o an in®nite loop.

START INCA
�

I1

I1 INCA
�

I2
I2 INCA

�

I3
I3 INCA

�

I4
I4 INCA

�

J0

J0 INCB
�

J1
J1 INCB

�

J2
J2 INCB

�

LL

LL TSTA
�

AZ
	

AS

AZ TSTB
�

AZBZ
	

AZBS

AS TSTB
�

ASBZ
	

LL

AZBZ HALT

AZBS INCA
�

AZBS

ASBZ INCA
�

ASBZ
�

6.7.6. De®nition: A two-counter machine � halts if � �	

� �

�

	

for some machine �

	

�

� �

HALT
� �

	

� �

	

� �

1 � �

� � � �

.

6.7.7. Fact:The halting problem for two-counter machines is undecidabl e.

Proof sketch: Hopcroft and Ullman [78, pp. 171±173] show that a similar for mulation of two-
counter machines is Turing-equivalent. (Their two-counte r machines have test instructions that
do not change the contents of the register being tested and separate decrement instructions. It is
easy to check that this formulation and the one used here are inter-encodable.) �

6.8 Encoding Two-counter Machines as Rowing Machines

We can now ®nish the proof of the undecidability of � � subtyping by showing that any two-
counter machine � can be encoded as a rowing machine � � �

�

such that � halts iff � � �

�

does.
The main trick of the encoding lies in the representation of n atural numbers as rows. Each

number � is encoded as aprogram(i.e., a row) that, when executed, branches indirectly thro ugh
one of two registers whose contents have been set beforehandto appropriate destinations for the
zero and nonzero cases of a test; in other words, � itself encapsulates the behavior of the test
instruction on a register containing � . The increment operation simply builds a new program of
this sort from an existing one. The new program saves a pointe r to the present contents of the
register in a local variable so that it can restore the old val ue (i.e., one less than its own value)
before executing the branch.

The encoding � � �

�

of a two-counter machine �

�

� �

PC
� � � � � �

1 � �

� � � �

comprises the following
registers:

6.8. ENCODING TWO-COUNTER MACHINES AS ROWING MACHINES 124

#1 �

�

� PC
�

#2 �

�

�

�

� �

#3 �

�

�

�

� �

#4 address register for zero branches
#5 address register for nonzero branches
#6 �

�

�

�

1
�

. . .
#6� � 	 1 �

�

�

� � �

�

We use four translation functions for the various component s:
1. � � �

�

is the encoding of a the two-counter machine � as a rowing machine of width � � 5;

2. �

�

�

� �

is the encoding of a two-counter instruction
�

as a row of width � � 5;

3. �

�

�

� �

�

is the encoding of the natural number � , when it appears as the contents of register
�

, as a row of width � � 5;

4. �

�

�

� �

�

is the encoding of the natural number � , when it appears as the contents of register
�

, as a row of width � � 5.

6.8.1. De®nition: Therow-encoding(for � instructions) of a natural number � in register
�

, written
�

�

�

� �

�

, is de®ned as follows:

�

�

�

� 0
� �

�

#4
�

Ð
�

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
� � � �

�

times

�

�

�

�

� � � 1
� �

�

#5
�

�

�

�

� �

� �

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
� � � �

�

times

�

�

The row-encoding (for � instructions) of a natural number � in register
�

, written �

�

�

� �

�

, is
de®ned as follows:

�

�

�

� 0
� �

�

#4
�

Ð
�

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
� � � �

�

times

�

�

�

�

� � � 1
� �

�

#5
�

Ð
�

�

�

�

� �

� �

HALT
�

HALT
�

Ð
� �

Ð
� � � �

�

times

�

�

6.8.2. De®nition: The row-encoding(for � instructions) of an instruction
�

, written �

�

�

� �

, is
de®ned as follows:

�

�

� INCA
�

�

� �

�

#
�

� 5
�

�

#5
�

##2
�

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
� �

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
�

�

�

� INCB
�

�

� �

�

#
�

� 5
�

Ð
�

�

#5
�

Ð
�

##3
�

HALT
�

HALT
�

Ð
� �

Ð
� �

HALT
�

HALT
�

Ð
� �

Ð
�

�

�

� TSTA
�

� 	

�

� �

�

#2
�

Ð
�

Ð
�

#
�

� 5
�

� � 5
�

Ð
� �

Ð
�

�

�

� TSTB
�

� 	

�

� �

�

#3
�

Ð
�

Ð
�

#
�

� 5
�

� � 5
�

Ð
� �

Ð
�

�

�

� HALT
� �

�

HALT
�

Ð
�

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
�

�

6.8.3. De®nition: Let �

�

� �

PC
� � � � � �

1 � �

� � � �

be a two-counter machine. The row-encodingof � ,
written � � �

�

, is the rowing machine of width � � 5 de®ned as follows:

� � �

� �

� �

�

�

� PC
� �

�

�

�

�

� � �

�

�

�

�

� � �

HALT
�

HALT
�

�

�

�

�

1
�

� �

�

�

�

� � � � �

�

6.8.4. Lemma: If � 	

� �

� 	 , then � � �

�

�	

�
�

� � � 	

�

.

Proof: Let �

�

� �

PC
� � � � � �

1 � �

� � � �

. Proceed by cases on the form ofPC.

6.8. ENCODING TWO-COUNTER MACHINES AS ROWING MACHINES 125

Case: PC
�

INCA
�

�

Then � 	

�

� �

� � � �

� 1
� � � �

1 � �

� � � �

. Calculate as follows:

� � �

�

�

� � �

#
�

� 5
�

�

#5
�

##2
�

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
� �

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
� �

�

�

�

�

� � �

�

�

�

�

� � �

HALT
�

HALT
�

�

�

�

�

1
�

� �

�

�

�

� � � � �

	

� �

� �

�

�

�

� � � �

�

#5
�

�

�

�

�

� � �

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
� �

�

�

�

�

� � �

HALT
�

HALT
�

�

�

�

�

1
�

� �

�

�

�

� � � � �

�

� � �
	

�

�

Case: PC
�

INCB
�

�

Similar.

Case: PC
�

TSTA
�

� 	

�

Calculate as follows:

� � �

�

�

� � �

#2
�

Ð
�

Ð
�

#
�

� 5
�

� � 5
�

Ð
� �

Ð
� �

�

�

�

�

� � �

�

�

�

�

� � �

HALT
�

HALT
�

�

�

�

�

1
�

� �

�

�

�

�
�

� � �

	

�
�

� �

�

�

�

�

� � �

�

�

�

�

� � �

�

�

�

�

� � �

�

�

�

� � � �

�

�

�

� � � �

�

�

�

�

1
�

� �

�

�

�

� � � � �

There are two subcases to consider:

Subcase:
� �

0

Then

�

�

�

�

� � �

�

#4
�

Ð
�

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
�

�
	

�

� �

� � � � � � � �

1 � �

� � � �

�

Continue calculating as follows:
� � �

#4
�

Ð
�

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
� �

�

�

�

�

� � �

�

�

�

�

� � �

�

�

�

� � � �

�

�

�

� � � �

�

�

�

�

1
�

� �

�

�

�

�
�

� � �

	

�
�

� �

�

�

�

� � � �

�

�

�

�

� � �

�

�

�

�

� � �

HALT
�

HALT
�

�

�

�

�

1
�

� �

�

�

�

� � � � �

6.9. UNDECIDABILITY OF F � TYPECHECKING 126

�

� � �

	

�

�

Subcase:
� �

0

Then

�

�

�

�

� � �

�

#5
�

�

�

�

�

�

	 1
� �

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
�

� 	

�

� �

� � � �

	 1
� � � �

1 � �

� � � �

�

Continue calculating as follows:
� � �

#5
�

�

�

�

�

�

	 1
� �

Ð
�

HALT
�

HALT
�

Ð
� �

Ð
� �

�

�

�

�

� � �

�

�

�

�

� � �

�

�

�

� � � �

�

�

�

� � � �

�

�

�

�

1
�

� �

�

�

�

� � � � �

	

�
�

� �

�

�

�

� � � �

�

�

�

�

�

	 1
� �

�

�

�

�

� � �

HALT
�

HALT
�

�

�

�

�

1
�

� �

�

�

�

� � � � �

�

� � �

	

�

�

Case: PC
�

TSTB
�

� 	

�

Similar.

Case: PC
�

HALT

Can't happen. �

6.8.5. Lemma: If �

�

� �

HALT
� � � � � �

1 � �

� � � �

, then � � �

�

halts.

Proof: Immediate. �

6.8.6. Corollary: � halts iff � � �

�

does.

6.8.7. Theorem: The �
� subtyping relation is undecidable.

Proof: Assume, for a contradiction, that we had a total-recursive p rocedure for testing the
derivability of subtyping statements in �

� . Then to decide whether a two-counter machine �

halts, we could use this procedure to test whether � � � � �

� �

is derivable, since
� halts

iff � � �

�

halts by Corollary 6.8.6
iff � � � � �

� �

is derivable in �

�

�

by Corollary 6.6.7
iff � � � � �

� �

is derivable in �

�

�

by Lemma 6.4.9
iff � � � � �

� �

is derivable in �

�

�

by Lemma 6.3.9
iff � � � � �

� �

is derivable in � � by Lemma 2.6.11. �

6.9 Undecidability of F � Typechecking

From the undecidability of � � subtyping, the undecidability of typechecking follows imm ediately:
we need only show how to write down a term that is well typed iff a given subtyping statement

�

� �

�

is derivable. One such term is:
� �

:
�

�

Top
�

� �

:
� �

� �

.

6.10. UNDECIDABILITY OF F � 127

6.10 Undecidability of F �

6.10.1. De®nition: Let
�

be an �

�

�

type. Then
� �

is the F� type formed by replacing instances of
Top in

�

by � . This translation is extended to � �

�

terms, contexts, and statements in the obvious
way.

6.10.2. Lemma: � Ð
� �

is an embedding of �

�

�

into F� : if �

� � �

� �

�

is an �

�

�

subtyping
statement, then �

�

is derivable in F� iff � is derivable in � �

�

.

Proof: (�

�

) Straightforward.
(

�

�

) By Theorem 4.2.8.12,
� � � !

�

�

�

� �

Ð that is,
� � � !

�

�

�

�

�

� , where
� � � �

�

� and
either �

� � �

�

1 � �

�

� �

or �

� 	

. Proceed by induction on this derivation.

CaseASUBR-INTER: �

�

�

�

�

1 � �

�

� �

By the form of � �

�

statements (6.3.6),
�

must have either the form

 	

0
�

�

0 � �

	 �

�

� �

�

�

�

	 or the
form Top. The ®rst case does not apply, since then

� �

could not have the form
�

�

�
�

�

1 � �

�

� �

.
In the second case, the result is immediate by rule DTOP.

CaseASUBL-INTER: �

� 	

�

� �
�

�

�

1 � �

�

� �

Can't happen: there is no � -negative type
�

such that
�

�
�

�
�

�

1 � �

�

�
�

.

CaseASUBL-A RROW: �

� 	

�

� �

�

1 �

�

2

Can't happen: there is no � -negative type
�

such that
�

� �

�

1 �

�

2.

CaseASUBL-A LL : �

� 	

�

� �
 	

0
� �

0 �

� �

By the form of
�

�

,

�

�
 	

0 � �

	 �

�

�

�

	

�

so

�

�
�
 	

0
�

�

� �

	
�

�

�

�

 	

	

�

�

	

�

	

	

�

Now by the form of algorithmic derivations (4.2.8.4), a deri vation of
�

�
� !
 	

0
�

�

� �

	
�

�

�

�

 	

	

�

�

	

�

	

	

�

�

�

	

must end with a chain of � instances of ASUBL-A LL with trivial instances of AS UBR-INTER

as their left-hand subderivations, preceded by an instance of ASUBL-A LL whose left-hand
subderivation has the conclusion

� � � 	

0
� �

0 � �

	 �

� �

� � !
�

	

�

� �

�

�

	

�

�

where
� �
 	

0
�

�

0 � �

	 �

�

� �

�

�

�

	

� �

�

�

�

�

�

	

�

�

�

	

�

By the induction hypothesis,
� � 	

0
�

�

0 � �

	 �

�

� � � �

	

� �

	

�

By DA LLNEG,
� �
 	

0 � �

	 �

�

�

�

	

�

 	

0
�

�

0 � �

	 �

�

� �

�

�

�

	

�

CaseASUBL-REFL: �

� 	

�

� � 	 � � � �

Can't happen: there is no � -positive type
�

such that
� � � 	

.

6.11. RELATED SYSTEMS 128

CaseASUBL-TVAR: �

� 	

�

� � � � � � ! � �

�

� �

�

� �

By the induction hypothesis,
� � �

�

� �

�

�

. By DVAR,
� � �

�

�

. �

6.10.3. Corollary: The F� subtyping relation is undecidable.

6.10.4. Theorem:The F� typing relation is undecidable.

Proof: The F� term �

	

�

� �

:
�

�

	

�

� �

:
� �

� �

has type

 	

�

�

�

�

	 �

� � �

	

iff
� �

�

� �

�

. �

6.11 Related Systems

The proof of undecidability presented here extends straigh tforwardly to the notion of � -bounded
quanti®cation proposed by Canning, Cook, Hill, Olthoff, an d Mitchell [18].

It appears likely that a similar argument can be used to show t hat Pavel Curtis's more general
system of constrained quanti®cation [53] is undecidable.

6.12 Discussion

The undecidability of � � will perhaps surprise many of those who have studied, extend ed,
and applied it since its introduction in 1985. But it may turn out that language designs and
implementations based on � � will not be greatly affected by this discovery. Here are some
reasons for optimism:

1. The algorithm has been used for several years now without a ny sign of misbehavior in
any situation arising in practice. Indeed, constructing ev en the simplest nonterminating
example requires a contortion that is dif®cult to imagine an yone performing by accident.

2. A number of useful fragments of � � are easily shown to be decidable. For example:
� The prenex fragment, where all quanti®ers appear at the outside and quanti®ers are

instantiated only at monotypes (types containing no quanti ®ers).
� A predicative fragment where types are strati®ed into unive rses and the bound of a

quanti®ed type lives in a lower universe than the quanti®ed t ype itself.
� Cardelli and Wegner's original formulation where the bound s of two quanti®ed types

must be identical in order for one to be a subtype of the other.
Though semantically unappealing, this formulation of �

� appears strong enough to
include essentially all useful programming examples. The o nly known examples that
require the more general quanti®er subtyping rule are those involving bounded exis-
tential types, which correspond to ªpartially abstract typ esº (c.f. [33]) under Mitchell
and Plotkin's correspondence between abstract types and existential types [97]. Par-
tially abstract types are a generalization of abstract type s where some of the structure
of the representation type is known but its exact identity re mains hidden. Interest-
ing subtype relations between partially abstract types can only arise from the full �

�

quanti®er subtyping rule.

3. The best known subtyping algorithms for these fragments a re essentially identical to the
algorithm �

�

�

.

4. On well-typed expressions, a type synthesis algorithm ba sed on �
�

�

is guaranteed to ter-
minate, since it will only ask questions to which the answer i s ªyes.º (Note that this is not

6.12. DISCUSSION 129

true of the type synthesis algorithm for F� , however: the algorithm given in Section 4.3.2
may need to ask both ªyesº and ªnoº subtyping questions to syn thesize a minimal type for
a given term.)

Chapter 7

Examples

This chapter develops a broad collection of examples illust rating the expressiveness and exploring
the potential practicality of type systems based on F� . We ®rst describe the notational conventions
used by the prototype implementation (Section 7.1), then pr oceed to the ®rst set of examples
(Section 7.2). These are largely based on sample programs given in Reynolds' report on the
Forsythe language [121] Ð Forsythe being the closest extant relative of F� Ð and serve both
to give the feel of programming in a Forsythe-like language a nd to show some speci®c points
where Forsythe itself could be simpli®ed and generalized us ing mechanisms studied in this
thesis. Section 7.3 makes a short digression to show how intersection types can be used to de®ne
procedures with optional arguments; Section 7.4 generaliz es this idea to suggest a mechanism for
user-de®ned coherent overloading. The next examples (Sections 7.5 and 7.6) illustrate a novel
style of programming using intersection types, where basic datatypes can be re®ned into small
abstract lattices (distinguishing, for example, the type o f empty lists from that of nonempty lists)
and functions over them given correspondingly re®ned types , encoding the kind of information
that might be obtained by conventional abstract interpreta tion or strictness analysis. In Section 7.7,
we verify that the ability to perform these re®ned static ana lyses during typechecking is inherent
in the core calculus itself (rather than arising from some sp ecial choice of primitive types and
constants) by showing how to express some of the earlier examples in pure F� using extensions of
the well-known encodings of inductive datatypes in the poly morphic

�

-calculus. In Section 7.8,
we discuss the process of programming in F� and illustrate some useful debugging techniques.
Section 7.9 applies the ªencodingº of bounded quanti®catio n as unbounded quanti®cation and
intersections (c.f. Section 3.5) to some of the earlier examples.

7.1 Conventions

The examples in the remainder of the chapter rely on a prototy pe typechecker for F� , implemented
in about 5000 lines of Standard ML [93]. Sample sessions with the typechecker have been typeset
directly from the output of the running system: text ®les con taining both the input portions of the
examples and raw TEX sources for the running commentary are passed through the t ypechecker,
which inserts its responses at the appropriate points.

The system maintains a notion of the ªcurrent pervasive cont ext,º to which new de®nitions
are cumulatively added. For example, a new type variable Real may be introduced by specifying
its bound:

> Real < T;

130

7.1. CONVENTIONS 131

Later de®nitions and expressions are understood relative to a pervasive context in which Real
is de®ned:

> idReal = \x:Real. x;
idReal : Real -> Real

> Int < Real;

> check Real->Int < Int->Real;
Yes

> check Int->Int < Real->Real;
No

> polyIdInt = \\A<Int. \a:A. a;
polyIdInt : All A<Int. A -> A

Similarly, new term variables, corresponding to primitive constants, may be added to the
pervasive context:

> zero : Int,
> plus : Int -> Int -> Int;

De®nitions are terminated by either a semicolon or a comma. The system keeps reading
comma-separated de®nitions until it reaches a terminating semicolon, at which time the whole
collection is processed and any responses printed:

> one : Int,
> two = plus one one,
> four = plus two two,
> double = \x:Int. plus x x;
two : Int
four : Int
double : Int -> Int

If a term is entered without a name, it is named ª it º by default:

> double (plus four two);
it : Int

> plus it it;
it : Int

The typechecker provides a simple facility for transparent type abbreviation. An identi®er
may be associated with a type expression introduced by the ª ==º symbol:

> BinFun == Int->Int->Int;

The abbreviation BinFun is completely equivalent to the longer expression. Instanc es of
BinFun are expanded to Int->Int->Int , as necessary, during typechecking:

> \f:BinFun. \x:Int. f x x;
it : BinFun -> Int -> Int

Conversely, when types are printed, instances of Int->Int->Int are collapsed to BinFun :

> \x:Int. \y:Int. plus x y;
it : BinFun

7.2. EXAMPLES FROM THE FORSYTHE REPORT 132

7.2 Examples from the Forsythe Report

The Forsythe language [121] is in many respects the closest relative of the F� calculus. Brie¯y,
Forsythe is a normal-order language combining functional a nd imperative features, whose exe-
cution model is based on Algol 60 [98] and whose core type system is the ®rst-order calculus of
intersection types described in Section 2.3.

Since we have not proposed a speci®c set of basic datatypes for a language based onF� , we are
not in a position to make a detailed comparison of the two syst ems as programming languages.
Instead, the examples in this section illustrate some of the possible properties of a Forsythe-like
programming language based on F� , and underscore some points where the additional expressiv e
power of second-order polymorphism might be used to general ize constructs already present in
Forsythe.

It is also worth noting that we make only minimal use of bounde d quanti®cation (as opposed to
ordinary unbounded quanti®cation) here. Practical exampl es motivating bounded quanti®cation
tend to involve language features (e.g., records) that we have not considered.

The primitive datatypes of Forsythe include the numeric typ es of integers and reals, the type of
booleans, and the type of characters, plus a primitive type Value that forms a common supertype
of all of the rest. These are modeled in F� by the following declarations:

> Value < T,
> Real < Value,
> Int < Real,
> Bool < Value,
> Char < Value;

Forsythe includes a variety of primitive operators on these types. Here we give only a few
that will be needed later in this section:

> 0 : Int,
> 1 : Int,
> plus: Int->Int->Int /\ Real->Real->Real,
> minus: Int->Int->Int /\ Real->Real->Real,
> times: Int->Int->Int /\ Real->Real->Real;

> true : Bool,
> false : Bool,
> if : All A. Bool -> A -> A -> A,
> not : Bool -> Bool;

> eq : Int->Int->Bool /\ Real->Real->Bool /\ Bool->Bool->B ool
> /\ Char->Char->Bool,
> neq : Int->Int->Bool /\ Real->Real->Bool /\ Bool->Bool-> Bool
> /\ Char->Char->Bool,
> leq : Int->Int->Bool /\ Real->Real->Bool;

We depart from Forsythe in the typing of the if primitive. Forsythe includes a ªgeneralized if º
construct as a built-in syntactic form. The if used here drops the convenience of Forsythe's if in
favor of the broader generality of a polymorphic constant.

The primitive type Commis the type of commandsÐ simple imperative programs whose exe-
cution may affect the store:

> Comm < T;

7.2. EXAMPLES FROM THE FORSYTHE REPORT 133

The related type Compl is used for ªcompletionsº: imperative programs that are gua ranteed
never to return (e.g., because they escape to a previously captured continuation). By neglecting
the fact that a Compl will never return, we can regard it as a simple Comm; this observation is
formalized as a primitive coercion from Compl to Comm:

> Compl < Comm;

The primitive constructor for commands is the sequencing op erator before (we also allow
before to apply to a command and a completion, producing a completio n in this case):

> before : Comm->Comm->Comm /\ Comm->Compl->Compl;

To make programs involving commands easier to read, we intro duce some special syntax
reminiscent of the single-semicolon syntax for sequencing in many familiar languages: the
expression begin e1 ;; e2 ;; ... ;; en end is translated by the parser into (before e1
(before e2 (... (before en-1 en)))) .

> repeat5 = \c:Comm. begin c ;; c ;; c ;; c ;; c end;
repeat5 : Comm -> Comm

The while operator provides basic iteration:

> while : Bool -> Comm -> Comm;

The skip command provides a convenient way of doing nothing:

> skip : Comm;

The primitive means of creating completions is the escape operator. The argument to escape
is a function that accepts a completion and computes a command. Operationally, the completion
passed to this function aborts execution of the function and continues immediately from the point
where escape was called:

> escape : (Compl->Comm) -> Comm;

Forsythe includes a built-in syntactic form rec for de®ning recursive values. In F� , we may
avoid dealing with recursive de®nition in the core language by introducing it as a polymorphic
constant fix . This is slightly more verbose that Forsythe's rec , but avoids the problem (still open
for Forsythe) of synthesizing minimal types for programs in volving rec .

> fix : All A. (A->A) -> A;

The while operator may also be de®ned in terms of fix :

> while =
> \b:Bool. \c:Comm.
> fix [Comm] \next:Comm.
> if [Comm] b
> begin c ;; next end
> skip;
while : Bool -> Comm -> Comm

Notice that the correct behavior of while depends crucially on the normal-order reduction strategy
of Forsythe and our hypothetical language based on F� , since it requires that the guard b be
executed repeatedly.

One of the principal innovations of Forsythe was the separat ion of the normally atomic con-
cept of ªvariableº into two yet smaller units: expressions a nd acceptors, or sources and sinks.
Intuitively, a variable should be thought of not as a cell cap able of either receiving or producing
a value, but as two separate (but normally connected) entiti es, one capable of producing values

7.2. EXAMPLES FROM THE FORSYTHE REPORT 134

when evaluated and one capable of accepting values. We retain the names Int , Real , Bool , and
Char for the primitive expression types and introduce the abbrev iation XAcc = X -> Commfor
the four acceptor types. Then an XVar is just the intersection (thought of as a product, since the
relevant coherence condition is vacuous) of an X and an XAcc:

> IntAcc == Int -> Comm,
> RealAcc == Real -> Comm,
> BoolAcc == Bool -> Comm,
> CharAcc == Char -> Comm,
> IntVar == Int /\ IntAcc,
> RealVar == Real /\ RealAcc,
> BoolVar == Bool /\ BoolAcc,
> CharVar == Char /\ CharAcc;

Again, the readability of programs is enhanced by a pinch of s yntactic sugar; we let v := e
abbreviate v e , so that assignment statements may be written in the familia r way:

> \v:IntVar. begin v := plus v 1 ;; v := plus v v end;
it : IntVar -> Comm

Variables are created by a primitive constructor newcell . Here we follow the style of Forsythe
by letting the body of a newcell expression be a function that expects to be passed the newly
created variable as its argument.

> newcell : All A<Value. All R. A -> ((A/\A->Comm)->R) -> R;

The ®rst argument to newcell is the type of the cell to be created. The second argument is the ®nal
result type of the body that uses the new variable. The third a rgument is an expression whose
result will be the initial value of the new variable, and the f ourth is the body itself. (N.b.: we
generalize Forsythe's variable declarators by allowing th e newly created cell to contain a value of
any subtype of Value , rather than explicitly mentioning the primitive types Int , Real , Bool , and
Char . We also allow the body of the newcell construct to have any type, where Forsythe restricts
it to one of six possibilities: Comm, Compl , Int , Real , Bool , and Char .)

The variable constructors of Forsythe may now be de®ned using newcell :

> newIntCell = newcell [Int],
> newRealCell = newcell [Real],
> newBoolCell = newcell [Bool],
> newCharCell = newcell [Char];
newIntCell : All R. Int -> (IntVar->R) -> R
newRealCell : All R. Real -> (RealVar->R) -> R
newBoolCell : All R. Bool -> (BoolVar->R) -> R
newCharCell : All R. Char -> (CharVar->R) -> R

> newIntVar = newIntCell [Int,Real,Bool,Char,Comm,Compl],
> newRealVar = newRealCell [Int,Real,Bool,Char,Comm,Com pl],
> newBoolVar = newBoolCell [Int,Real,Bool,Char,Comm,Com pl],
> newCharVar = newCharCell [Int,Real,Bool,Char,Comm,Com pl];
newIntVar : Int->(IntVar->Int)->Int

/\ Int->(IntVar->Real)->Real
/\ Int->(IntVar->Bool)->Bool
/\ Int->(IntVar->Char)->Char
/\ Int->(IntVar->Comm)->Comm
/\ Int->(IntVar->Compl)->Compl

newRealVar : Real->(RealVar->Int)->Int
/\ Real->(RealVar->Real)->Real

7.2. EXAMPLES FROM THE FORSYTHE REPORT 135

/\ Real->(RealVar->Bool)->Bool
/\ Real->(RealVar->Char)->Char
/\ Real->(RealVar->Comm)->Comm
/\ Real->(RealVar->Compl)->Compl

newBoolVar : Bool->(BoolVar->Int)->Int
/\ Bool->(BoolVar->Real)->Real
/\ Bool->(BoolVar->Bool)->Bool
/\ Bool->(BoolVar->Char)->Char
/\ Bool->(BoolVar->Comm)->Comm
/\ Bool->(BoolVar->Compl)->Compl

newCharVar : Char->(CharVar->Int)->Int
/\ Char->(CharVar->Real)->Real
/\ Char->(CharVar->Bool)->Bool
/\ Char->(CharVar->Char)->Char
/\ Char->(CharVar->Comm)->Comm
/\ Char->(CharVar->Compl)->Compl

The Forsythe report develops a number of programs using thes e primitives. For example, here
is a simple iterative de®nition of the factorial function (c .f. [121, p. 29]):

> fact = \n:Int. \f:IntVar.
> newIntVar 0 \k:IntVar.
> begin
> f := 1 ;;
> while (neq k n)
> begin
> k := plus k 1 ;;
> f := times k f
> end
> end;
fact : Int -> IntVar -> Comm

Using an extra newIntVar , this version of factorial may be improved so that it evaluat es its
initial argument only once. This is a common idiom in Forsyth e, since it amounts to a call-by-value
parameter passing regime:

> fact2 = \n:Int. \f:IntVar.
> newIntVar n \n:IntVar.
> newIntVar 0 \k:IntVar.
> begin
> f := 1 ;;
> while (neq k n)
> begin k := plus k 1 ;; f := times k f end
> end;
fact2 : Int -> IntVar -> Comm

Similarly, we can use newIntVar to build a version that makes only one assignment of the
®nal result to the second parameter; this is essentially a call-by-result parameter:

> fact3 = \n:Int. \f:IntAcc.
> newIntVar n \n:IntVar. newIntVar 1 \localf:IntVar.
> begin
> (newIntVar 0 \k:IntVar.
> while (neq k n)
> begin k := plus k 1 ;; localf := times k localf end) ;;
> f := localf

7.3. PROCEDURES WITH OPTIONAL ARGUMENTS 136

> end;
fact3 : Int -> IntAcc -> Comm

We may also, of course, give a traditional recursive formula tion of factorial:

> fact = fix [Int->Int] \fact:Int->Int.
> \n:Int. newIntVar n \n:IntVar.
> if [Int] (eq n 0) 1 (times n (fact (minus n 1)));
fact : Int -> Int

The default call-by-name procedure call semantics allows a variety of syntactic extensions to
be de®ned as user-level operations. Here is another kind of iteration construct:

> forup = \from:Int. \to:Int. \b:IntAcc.
> newIntVar (minus from 1) \k:IntVar.
> newIntVar to \to:IntVar.
> while (leq k to) begin k := plus k 1 ;; b k end;
forup : Int -> Int -> IntAcc -> Comm

The forup iterator provides a good opportunity for an illustration of the escape procedure.
The following function accepts an integer function of one ar gument and a range of integers in
which to search (linearly) for a particular value y of the function. If this value is found within the
speci®ed range, the function immediately returns with no fu rther search, using escape to jump
out of the body of the forup :

> linsearch = \X:Int->Int. \from:Int. \to:Int. \y:Int.
> \present:BoolAcc. \j:IntAcc.
> escape \out:Compl.
> begin
> forup from to \k:Int.
> if [Comm] (eq (X k) y)
> begin present := true ;; j := k ;; out end
> skip ;;
> present := false
> end;
linsearch : (Int->Int) -> Int -> Int -> Int -> BoolAcc -> IntAc c -> Comm

7.3 Procedures With Optional Arguments

A completely different example of the practical utility of i ntersection types (in this case, even
®rst-order intersection types) comes from their ability to express procedures with default param-
eters. For example, we can give the type String->Int->(String/\Char->String) to a built-in
function that takes a string s and an integer i and returns boththe string s padded with enough
blanks to make its length i anda function that, given a character c , returns s padded with enough
c 's to make its length i . The result of applying pad to s and i can either be used directly as a
string (by applying a print function to it, for example) or further applied to a characte r c .

To implement this scheme, we assume the following primitive s:

> pad : String -> Int -> (String/\Char->String);
> print : String -> Unit;
> blank : Char;
> dot : Char;
> mesg : String;

Now we can use pad and print as described above:

7.4. USER-DEFINED COHERENT OVERLOADING 137

> print (pad mesg 10);
it : Unit
> print (pad mesg 10 dot);
it : Unit

In fact, this notion could be supported as a general language extension by introducing a built-in
polymorphic constant that is used to build functions with de fault parameters:

> default : All A. All B. (A -> B) -> A -> (B/\A->B);

> myprimpad : String -> Int -> Char -> String;
> mypad = \s:String. \l:Int. default [Char] [String] (mypri mpad s l) blank;
mypad : String->Int->String /\ String->Int->Char->Strin g

A particularly interesting case occurs when B
�

A->C for some C. Then the value built by
default cannot ªtell,º from the context in which it is used (an applic ation to something of type
A), whether its B component or its A->B component is desired. In must essentially produce both
components, so that the application results in a new overloa ded value of type C/\B , i.e., C/\A->C ,
to which the same considerations apply.

7.4 User-de®ned Coherent Overloading

A further language extension along the lines of the previous section is to provide a primitive glue
that allows user-de®ned coherent overloading. Given two va lues a and b, of types A and B, the
expression glue a b yields a value that, in a context where a value of type A is expected, behaves
like a, and, in a context expecting a B, behaves like b.

> glue : All A. All B. A -> B -> (A/\B);

Then, for example, we can de®ne our usual plus function operating on both Int and Real
from two more specialized versions:

> plusInt : Int->Int->Int;
> plusReal : Real->Real->Real;

> plus = glue [Int->Int->Int] [Real->Real->Real] plusInt p lusReal;
plus : Int->Int->Int /\ Real->Real->Real

Of course, if glue a b is used in a context where either an A or a B is appropriate, the compiler
is free to choose eithera or b as its value. If these do not behave coherently, then any coherence
guarantees provided by the language designer for the built- in types and type constructors are
nulli®ed. Such constructs blur the distinction between the language designer and the expert
systems programmer, a facility that can be invaluable in rar e circumstances but that should be
used sparingly. It may be advisable to explicitly mark secti ons of code where glue may be used
as ªunsafe,º in the terminology of Modula-3 [28, 99].

7.5. MODELING ABSTRACT INTERPRETATION 138

7.5 Modeling Abstract Interpretation

Perhaps the most useful property of programming languages w ith intersection types is that they
allow extremely re®nedtypes to be given for expressions Ð much more re®ned than is po ssible
in conventional polymorphic languages. Rather than a singl e description, each expression may
be assigned any ®nite collection of descriptions, each capturing some aspect of its behavior. This
means that, in the limit, the behavior of a program can be exactlydescribed by the types assignable
to it. In more practical contexts, it offers both language de signer and programmer a great deal
of ¯exibility in choosing behavioral primitives that captu re salient properties of programs and
obtaining good descriptions of programs in terms of these pr imitives. Since we are working with
explicitly typed calculi, this requires effort in the form o f type assumptions or annotations; in
general, as more effort is expended, better typings are obtained.

This section and the next illustrate these general observations by showing how various forms
of program analysis can be mimicked in the type system of lang uages with intersection types.
We concentrate ®rst on performing some simple kinds of abstr act interpretation, using the type-
checker, underexplicit programmer control, to derive type s encoding thesame sorts of information
as might be obtained by a static analyzer during the code generation phase of a modern compiler.

Some of the following examples were suggested by conversations with Tim Freeman and
Frank Pfenning, whose independent work on re®nement typesfor languages in the ML class [60]
shares many motivations and technical intuitions with what appears here. Hayashi has described
related work using re®nement types in extracting programs f rom proofs [72].

It is important to note that we are switching semantic intuit ions at this point. Previous sections
relied on the intuition that values of intersection types we re represented at run time as tuples of
different (though coherent) values, as described in Sections 2.4.2 and 5.3. Here, and for the
remainder of the chapter, it makes more sense to think of expr essions as denoting single run time
values, which an intersection type simply describes in seve ral different ways. This point of view
corresponds to the untyped semantic models presented in Sections 2.4.1 and 5.1.

7.5.1 Booleans

The examples in previous sections used a primitive type Bool with two elements, true and false .
This picture can be re®ned by introducing two subtypes of Bool , called True and False ,

� � � � � � � � �

� 	 	 �

 � �

�

�

and giving more exact types for the constants true and false in terms of these re®nements:

> Bool < T,
> True < Bool,
> False < Bool;

> true : True,
> false : False;

The primitive if can also be given a more re®ned type: if we know whether the val ue of the
test lies in the type True or the type False , we can tell in advance which of the branches will be
chosen:

7.5. MODELING ABSTRACT INTERPRETATION 139

> if : All A. (True -> A -> T -> A)
> /\ (False -> T -> A -> A)
> /\ (Bool -> A -> A -> A);

(The third typing is needed here because F� 's types cannot express the idea that every element
of Bool is an element of either True or False . This shortcoming, while not serious in practice,
motivates the investigation of adual notion of union types, which we discuss brie¯y in Section 8.3.3.)

The re®nement in the types of true , false , and if can now be inherited by new functions
de®ned from these:

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> for R in True,False,Bool.
> if [R] x true y;
or : True->Bool->True

/\ False->False->False
/\ Bool->True->True
/\ Bool->Bool->Bool

This example illustrates several novel aspects of the style of programming being explored
here. For one thing, note the typechecker does notautomaticallydiscover the more re®ned type for
or : it must explicitly be instructed to consider all the necess ary sets of assumptions. Annotating
the two abstractions with only the type Bool results in a strictly less re®ned typing:

> or = \x:Bool. \y:Bool. if [Bool] x true y;
or : Bool -> Bool -> Bool

A stranger element of the example is the type variable R. The for expression introducing R
provides a kind of ªguessingº behavior that is often necessa ry to achieve the desired type for
functions like or . Without R, we would get stuck trying to decide what type to provide as th e
argument to if . None of Bool , True , or False will do the trick, since providing any one of these
would amount to asserting that this will be the result type of the if in every case:

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> if [Bool] x true y;
or : Bool -> Bool -> Bool

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> if [True] x true y;
or : True->Bool->True /\ Bool->True->True

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> if [False] x true y;
or : False -> False -> False

The actual type that should be provided as the ®rst argument t o if depends on the current set
of assumptions for the variables x and y : if both have type True , then the argument to if should
be True , if both False , then False , etc. But this sort of calculation clearly cannot be expressed
in the type system of F� . What turns out to work is simply guessingall three possibilities in turn.
Two out of three times, the result will be too large Ð it will co me out as Bool when True or False
would have been achievable, or it will simply be

�

Ð but one of the three will produce the desired
type. This type is guaranteed to be a subtype of the two ªwrong º results, and so the intersection

7.5. MODELING ABSTRACT INTERPRETATION 140

of the three is equivalent to the desired one. Here we show the internal form of the type actually
derived by the type synthesis algorithm, before it is simpli ®ed for printing:

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> for R in True,False,Bool.
> if [R] x true y;
or : True

->(True->((True/\True)/\T/\(Bool/\Bool))
/\False->(/\[True]/\T/\(Bool/\Bool))
/\Bool->(/\[True]/\T/\(Bool/\Bool)))

/\ False
->(True->((True/\True)/\T/\(Bool/\Bool))

/\False->(T/\/\[False]/\(Bool/\Bool))
/\Bool->(T/\T/\(Bool/\Bool)))

/\ Bool
->(True->(/\[True]/\T/\/\[Bool])

/\False->(T/\T/\/\[Bool])
/\Bool->(T/\T/\/\[Bool]))

i.e. True->Bool->True
/\ False->False->False
/\ Bool->True->True
/\ Bool->Bool->Bool

This idiom Ð a for whose body is a type application where the only use of the type variable
introduced by the for is as the argument to the application Ð is so common that we int roduce a
new abbreviatory form for it:

� � �

1 � �

� � �

def
� for � in �

1 � �

� �

�

� �

�

� (where � is fresh)
�

Then,

> or =
> \x:True,False,Bool. \y:True,False,Bool.
> if [True,False,Bool] x true y;
or : True->Bool->True

/\ False->False->False
/\ Bool->True->True
/\ Bool->Bool->Bool

7.5.2 Lists

More interesting kinds of abstract interpretation can be pe rformed on programs involving struc-
tured data like lists and trees.

For this example, we assume that the property of lists we are concerned with is whether they
are of even or odd length. As we did with the booleans, we assum e a type List of ®nite lists of
natural numbers

> List < T;

with two immediate subtypes, Even and Odd, and one further re®nement of Even , a special type
containing only Nil :

> Even < List,
> Odd < List,
> Nil < Even;

7.5. MODELING ABSTRACT INTERPRETATION 141

> nil : Nil;

We then state types for the primitive list operations in term s of this partial order:

> car : List->Nat;
> cdr : Even->Odd /\ Odd->Even /\ List->List,
> cons : Nat->Even->Odd /\ Nat->Odd->Even /\ Nat->List->Li st,
> null : Odd->False /\ Nil->True /\ List->Bool;

(Of course, even more re®ned types might be given for these. For example, we could
distinguish another type EvenCons of even-length, nonempty lists and give car the type
EvenCons->Nat/\Odd->Nat . However, this typing for car would prevent us from obtaining
the desired type for append below. This is a reminder that we are still in the business of t ype-
checking; the full power of arbitrary abstract interpretat ion methods should not be expected.)

As usual, we may de®ne higher-level functions so that they in herit similar typings from the
primitives:

> cddr = \l:Even,Odd,Nil,List. cdr (cdr l);
cddr : Even->Even /\ Odd->Odd /\ List->List

Finally, we can give a type to the append function showing that it maps, for example, pairs of
even-length inputs into even-length results.

Sinceappend is de®ned using the explicitly typed ®xpoint operator, we mu st begin by stating
the type we hope to obtain:

> AppType == Even->Even->Even
> /\ Even->Odd ->Odd
> /\ Odd ->Even->Odd
> /\ Odd ->Odd ->Even
> /\ List->List->List;

Now append is expressed as follows:

> append =
> fix [AppType] \app:AppType.
> \l1:Even,Odd,Nil,List. \l2:Even,Odd,Nil,List.
> if [Even,Odd,Nil,List] (null l1)
> l2
> (cons (car l1) (app (cdr l1) l2));
append : AppType

By providing more re®ned type information to the ®xed point o perator, we can obtain an even
more re®ned typing for append :

> AppType2 == Even->Even->Even
> /\ Even->Odd ->Odd
> /\ Odd ->Even->Odd
> /\ Odd ->Odd ->Even
> /\ Nil ->Nil ->Nil
> /\ List->List->List;

> append2 =
> fix [AppType2] \app:AppType2.
> \l1:Even,Odd,Nil,List. \l2:Even,Odd,Nil,List.
> if [Even,Odd,Nil,List] (null l1)
> l2
> (cons (car l1) (app (cdr l1) l2));
append2 : AppType2

7.5. MODELING ABSTRACT INTERPRETATION 142

7.5.3 Natural Numbers

Similar tricks also apply to programs involving natural num bers (which, after all, can be viewed
as lists of marks). Here we distinguish zero from the rest of t he natural numbers:

> Nat < T,
> Zero < Nat,
> Pos < Nat;

> succ : Nat -> Pos,
> pred : Nat -> Nat,
> iszero : Zero->True /\ Pos->False /\ Nat -> Bool;

Like append , the plus function can be de®ned via an explicit ®xed point. We state the type
that we hope to obtain,

> PlusType == Zero->Zero-> Zero
> /\ Nat ->Pos -> Pos
> /\ Pos ->Nat -> Pos
> /\ Nat ->Nat -> Nat;

and provide suf®cient guidance for the typechecker to infer this type for the body of the plus :

> plus =
> fix [PlusType] \plus:PlusType.
> \m:Zero,Pos,Nat. \n:Zero,Pos,Nat.
> if [Zero,Pos,Nat] (iszero m) n (succ (plus (pred m) n));
plus : PlusType

Our treatment of both append and plus suffers from the necessity of deciding, beforehand,
what type we want to obtain for them. If we program using a more restricted set of primitives Ð
for which, naturally, more exact types can be given Ð we can ma ke the typechecker do more of
the work of discovering types for functions like plus .

The plus function may be de®ned in terms of a primitive iteration construct that takes a
number, together with a single-argument function on some result typeN and a starting value of
type N, and computes the result of applying the function an appropr iate number of times to the
given starting value:

> oiternat : Nat -> All N. (N->N) -> N -> N;

> oplus =
> \m:Nat. \n:Nat.
> oiternat m [Nat] succ n;
oplus : Nat -> Nat -> Nat

A more re®ned typing for the natural number iterator can be ex pressed in terms of Zero and
Pos:

> iternat :
> (Zero-> All N, P<=N, Z<=N. (N->P) -> Z -> Z)
> /\ (Pos -> All N, P<=N, Z<=N. (N->P) -> Z -> P)
> /\ (Nat -> All N, P<=N, Z<=N. (N->P) -> Z -> N);

Using this iterator, the same type as above may be obtained for plus without declaring it in
advance:

7.6. MODELLING STRICTNESS ANALYSIS 143

> plus =
> for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> iternat m [Nat,Pos] [Pos] [N] succ n;
plus : Zero->Zero->Zero /\ Pos->Nat->Pos /\ Nat->Pos->Pos /\ Nat->Nat->Nat

We allow the types of both mand n to be any of Nat , Zero , or Pos, checking the body separately
in each case. We need to applymalternatively to both the types Nat and Pos, to be sure of having
a name for the type of n; when m has type Pos, the result type of the iteration is always Pos.
(Note that applying mto Zero does not make sense, since this would amount to asserting that the
iteration of mover succ and n can return a zero result even when mis positive.)

7.6 Modelling Strictness Analysis

Strictness analysis [16] discovers situations in which the argument to a function will always be
evaluated in the course of evaluating the function's body. T his sort of information is useful,
for example, in the optimization phases of compilers for laz y functional languages. When a
given function is known to be strict in its argument, then whe never this function is applied, its
argument may immediately be evaluated (rather than being en capsulated in a closure) without
fear of introducing spurious nontermination in the transfo rmed program. Since closures are
generally expensive to build, good strictness analysis can greatly enhance the quality of code
generated by compilers that use it. Like abstract interpret ation, a simple form of strictness analysis
may be encoded in F� as a typechecking task. (For related treatments of strictness analysis as a
typechecking problem, see [84, 86].)

The technical approach here is slightly different than in th e previous section: rather than
introducing subtypes encoding strictness information for everytype used in a program, we deal
with strictness separately from ordinary typing, carrying along the partial results of strictness
analysis ªbesideº the normal typing information derived fo r expressions.

We begin with a new type constant Btm, representing divergent computations:

> Btm < T;

The types Btm and T together form a two-point abstract lattice of strictness as sertions: Btm encodes
the information that a particular expression (typically an argument to a function) necessarily
diverges; T encodes the absence of such information.

We now add to the types of our primitive functions appropriat e annotations in terms of Btm
and T, indicating which arguments each primitive can be counted u pon to evaluate. For example,
the constant true always terminates

> true: Bool;

and the if operation maps a Bool and a pair of A's into an A (for any type A) and, furthermore,
that it always evaluates its ®rst argument and also always ev aluates either its second or its third
argument.

> if : All A. (Bool -> A -> A -> A)
> /\ (Btm -> T -> T -> Btm)
> /\ (T -> Btm -> Btm -> Btm);

This type can be read as asserting that this information can now be inherited by functions built
up from if :

> or = \a:Bool,Btm. \b:Bool,Btm. if [Bool] a true b;
or : Bool->Bool->Bool /\ Btm->Bool->Btm /\ Btm->Btm->Btm

7.6. MODELLING STRICTNESS ANALYSIS 144

Some other useful primitives can be given similar typings:

> nil : List,
> cons : Nat -> List -> List
> /\ Btm -> T -> Btm
> /\ T -> Btm -> Btm,
> car : List -> Nat
> /\ Btm -> Btm,
> cdr : List -> List
> /\ Btm -> Btm,
> null : List -> Bool
> /\ Btm -> Btm;

7.6.1. Remark: Like the examples involving type re®nement and abstract int erpretation, this
application of intersection types strongly suggests an unt yped semantic model. We do not think
of the typing information associated with strictness analy sis as giving rise to any behavior at
run time. For example, the second and third elements of the ty pe of cons are not thought of as
actual functions, but as predicates describing the behavior of a single function whose ªreal typeº
is Nat->List->List . Of course, there is no harm in keeping the typed perspective and requiring
that some kind of functions with types Btm->T->Btm and T->Btm->Btm be present at run time,
but it is less natural to do so.

Using this information, we build higher-level functions, a s before, for which the typechecker
can infer appropriate strictness information:

> AppType == List->List->List
> /\ Btm->T->Btm /\ T->Btm->Btm;

> append =
> fix [AppType] (\app:AppType.
> \l1:List,Btm,T.
> \l2:List,Btm,T.
> (if [List] (null l1) l2 (cons (car l1) (app (cdr l1) l2))));
append : AppType

Finally, we can make use of the strictness information obtai ned by this method to introduce
a behavior-preserving ªstricti®erº that can only be applie d to functions guaranteed to be strict
in their ®rst argument. (This version of strictify works on functions of between one and four
arguments that are strict:)

> strictify : All A.
> (A /\ Btm->Btm) -> A
> /\ (A /\ Btm->T->Btm) -> A
> /\ (A /\ Btm->T->T->Btm) -> A
> /\ (A /\ Btm->T->T->T->Btm) -> A;

Using strictify , we may de®ne a version of append that evaluates its left argument before
its own body:

> leftstrictappend = strictify [AppType] append;
leftstrictappend : AppType

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 145

7.7 Re®ning Pure Encodings of Inductive Types

One of the main advantages of working with impredicative pol ymorphism in foundational inves-
tigations of static type systems is that a great variety of da tatypes that ordinarily have to be given
as explicit extensions can be encoded directly in the pure calculus. These encodings allow a broad
range of issues to be investigated using very economical formal means. Later, when the time
arrives to design a full-scale language based on the resultsof these preliminary investigations, the
behavior of the encodings provides a strong guide for the pro per behavior of the corresponding
primitive datatypes.

In this section, we use variants of the familiar encodings of algebraic datatypes such as natural
numbers and booleans to verify that the ªabstract interpret ationº behavior investigated in the
previous section arises naturally in the system and is not ªr iggedº by our assumptions about
primitive values like cdr and succ .

7.7.1 Church Arithmetic

We begin by reviewing the well-known encoding of the Church n umerals in the polymorphic
�

-calculus. (Readers unfamiliar with this encoding may ®nd t he more expository presentations
in [108, 120] helpful. Also see [38, 15, 103, 63, 29, 27].) We then show how to enrich this encoding
to model the ªabstract latticeº used in Section 7.5.3, where zero is distinguished from the rest of
the numbers. Analogous extensions of the usual encodings of the arithmetic operators may now
be given types identical to those we assumedfor them in Section 7.5.3.

Recall that Church's numerals [38] are encoded in the ordina ry polymorphic
�

-calculus as
elements of the following type:

> OrigNat == All N. (N->N) -> N -> N;

Operationally, the type argument N to an element e of type OrigNat speci®es the type of the result
of the � -fold iteration of the argument s over the argument z , where � is the number coded by e.
In other words, a number is its own iterator:

> origIterNat =
> \m:OrigNat.
> \\N. \s:N->N. \z:N.
> m [N] s z;
origIterNat : OrigNat -> OrigNat

The ®rst few natural numbers are encoded as follows:

> origzero = \\N. \s:N->N. \z:N. z,
> origone = \\N. \s:N->N. \z:N. s z,
> origtwo = \\N. \s:N->N. \z:N. s (s z);
origzero : OrigNat
origone : OrigNat
origtwo : OrigNat

Since we intend to distinguish zero from all other natural nu mbers, our re®ned encoding will
take threetype arguments Ð one for the result of the � -fold iteration of s over z where � may
be either zero or positive, one for the result type of a 0-fold iteration (that is, the type of z itself)
and one for the result type of an � -fold iteration for some � � 1. Also, the function s must map
arbitrary elements of N to elements of P, and the starting point for the iteration, z , must have
type Z:

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 146

> Nat == All N. All P<N. All Z<N. (N->P) -> Z -> N,
> Zero == All N. All P<N. All Z<N. (N->P) -> Z -> Z,
> Pos == All N. All P<N. All Z<N. (N->P) -> Z -> P;

> check Zero < Nat;
Yes
> check Pos < Nat;
Yes

Aside from their types, elements of Nat are precisely the same as the corresponding elements
of OrigNat :

> zero = \\N. \\P<N. \\Z<N. \s:(N->P). \z:Z. z,
> one = \\N. \\P<N. \\Z<N. \s:(N->P). \z:Z. s z,
> two = \\N. \\P<N. \\Z<N. \s:(N->P). \z:Z. s (s z);
zero : Zero
one : Pos
two : Pos

The successor function for ordinary church numerals takes a numeral n as argument and
returns a new numeral that iterates s over z n times and then once more.

> origsucc = \n:OrigNat. \\N. \s:N->N. \z:N. s (n [N] s z);
origsucc : OrigNat -> OrigNat

Successor for our new encoding is exactly the same, except that we explicitly allow for the
argument n to be of type Zero or Pos, in addition to Nat , and check the body separately for each
case.

> succ = \n:Zero,Pos,Nat.
> \\N. \\P<N. \\Z<N. \s:(N->P). \z:Z.
> s (n [N] [P] [Z] s z);
succ : Nat -> Pos

The sum of original-style Church numerals m and n is obtained by iterating the successor
function mtimes over n:

> origplus = \m:OrigNat. \n:OrigNat. m [OrigNat] origsucc n ;
origplus : OrigNat -> OrigNat -> OrigNat

Again, addition of our numerals is exactly the same, except t hat we need to be more careful
about the types.

> plus = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> m [Nat,Pos] [Pos] [N] succ n;
plus : Zero->Zero->Zero /\ Pos->Nat->Pos /\ Nat->Pos->Pos /\ Nat->Nat->Nat

> two = plus one one;
two : Pos

Multiplication and exponentiation of our numerals can be de ®ned in the same way.

> times = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> m [Nat,Zero] [N] [Zero] (plus n) zero;
times : Zero->Nat->Zero /\ Pos->Pos->Pos /\ Nat->Zero->Ze ro /\ Nat->Nat->Nat

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 147

> exp = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> n [Nat,Pos] [M] [Pos] (times m) one;
exp : Zero->Pos->Zero /\ Pos->Nat->Pos /\ Nat->Zero->Pos / \ Nat->Nat->Nat

De®ning the predecessor function on Church's original enco ding was a signi®cant feat in the
early days of

�

-calculus. To mimic it here, we ®rst need pairing functions f or numerals:

> ZeroZeroPr == All R. (Zero->Zero->R)->R,
> ZeroPosPr == All R. (Zero->Pos->R)->R,
> ZeroNatPr == All R. (Zero->Nat->R)->R,
> PosZeroPr == All R. (Pos->Zero->R)->R,
> PosPosPr == All R. (Pos->Pos->R)->R,
> PosNatPr == All R. (Pos->Nat->R)->R,
> NatZeroPr == All R. (Nat->Zero->R)->R,
> NatPosPr == All R. (Nat->Pos->R)->R,
> NatNatPr == All R. (Nat->Nat->R)->R;

> pair = for P1 in Zero,Pos,Nat.
> for P2 in Zero,Pos,Nat.
> \p1:P1. \p2:P2.
> \\R. \f:P1->P2->R.
> f p1 p2;
pair : Zero->Zero->ZeroZeroPr

/\ Zero->Pos->ZeroPosPr
/\ Zero->Nat->ZeroNatPr
/\ Pos->Zero->PosZeroPr
/\ Pos->Pos->PosPosPr
/\ Pos->Nat->PosNatPr
/\ Nat->Zero->NatZeroPr
/\ Nat->Pos->NatPosPr
/\ Nat->Nat->NatNatPr

> fst = for P1 in Zero,Pos,Nat.
> \p: (All R. (P1->T->R)->R).
> p [P1] (\p1:P1. \p2:T. p1),
> snd = for P2 in Zero,Pos,Nat.
> \p: (All R. (T->P2->R)->R).
> p [P2] (\p1:T. \p2:P2. p2);
fst : (All R. (Zero->T->R)->R)->Zero

/\ (All R. (Pos->T->R)->R)->Pos
/\ (All R. (Nat->T->R)->R)->Nat

snd : (All R. (T->Zero->R)->R)->Zero
/\ (All R. (T->Pos->R)->R)->Pos
/\ (All R. (T->Nat->R)->R)->Nat

> pred = \n:Pos.
> snd (n [NatNatPr] [PosNatPr] [ZeroZeroPr]
> (\p:NatNatPr.
> pair (succ (fst p)) (fst p))
> (pair zero zero));
pred : Pos -> Nat

(For the sake of the example, this version of pred only takes positive numbers as arguments. Of
course, by giving more possible types for the parameter n, we could allow pred to accept arbitrary
natural numbers.)

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 148

There is another way Ð somewhat less well known Ð of encoding t he basic arithmetic
functions on Church numerals (see [120]):

> altorigplus =
> \m:OrigNat. \n:OrigNat.
> \\N. \s:N->N. \z:N.
> m [N] s (n [N] s z);
altorigplus : OrigNat -> OrigNat -> OrigNat

> altorigmult =
> \m:OrigNat. \n:OrigNat.
> \\N. \s:N->N.
> m [N] (n [N] s);
altorigmult : OrigNat -> OrigNat -> OrigNat

> altorigexp =
> \m:OrigNat. \n:OrigNat.
> \\N.
> n [N->N] (m [N]);
altorigexp : OrigNat -> OrigNat -> OrigNat

This version of the arithmetic functions is interesting to t ry to emulate on our new encoding;
the solution involves some fairly tricky use of the for construct. Also, the exponential function in
this encoding requires iteration at higher types, which pro vides another good test of the limits of
this encoding. (It may provide an even better test of the limi ts of the encoder. It took several hours
to ®nd a set of type annotations that would produce the desire d typing for this version of the
exponential function and it seems likely that this set of ann otations is not the simplest available.)

> altplus =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P<N. \\Z<N.
> \s: N->P. \z:Z.
> m [N,P] [P] [N,P,Z] s (n [N] [P] [Z] s z);
altplus : Nat->Nat->Nat

/\ Nat->Pos->Pos
/\ Zero->Zero->Zero
/\ Pos->Nat->Pos

The cases for multiplication and exponentiation are simila r, but slightly more complicated.

> altmult =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P<N. \\Z<N.
> \s: N->P.
> m [N,Z] [N,P,Z] [Z]
> (n [N,Z] [N,P,Z] [N,P,Z] s);
altmult : Nat->Nat->Nat

/\ Nat->Zero->Zero
/\ Zero->Nat->Zero
/\ Pos->Pos->Pos

> altexp =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P<N. \\Z<N.
> n [N->N,N->P,N->N/\Z->Z/\P->P]
> [N->N,N->P,N->N/\Z->Z/\P->P]

7.7. REFINING PURE ENCODINGS OF INDUCTIVE TYPES 149

> [N->P,N->N/\Z->Z/\P->P]
> (m [N,P,Z] [N,P,Z] [N,P,Z]);
altexp : Nat->Nat->(All N. All P<N. All Z<N. (N->P)->N->N)

/\ Nat->Nat->(All N. All P<N. All Z<N. (N->N/\Z->Z/\P->P)- >N->N)
/\ Nat->Nat->(All N. All P<N. All Z<N. (N->N/\Z->Z/\P->P)- >Z->Z)
/\ Nat->Nat->(All N. All P<N. All Z<N. (N->N/\Z->Z/\P->P)- >P->P)
/\ Nat->Zero->(All N. All P<N. All Z<N. (N->P)->N->P)
/\ Zero->Pos->Zero
/\ Zero->Pos->(All N. All P<N. All Z<N. (N->P)->P->P)
/\ Pos->Nat->(All N. All P<N. All Z<N. (N->P)->N->P)

The type for this version of altexp looks strange because it is actually smaller than we wanted.
By � -expanding its body, we can force it to have only the familiar typing:
> altexp =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P<N. \\Z<N.
> \s:N->P. \z:Z.
> n [N->N,N->P,N->N/\Z->Z/\P->P]
> [N->N,N->P,N->N/\Z->Z/\P->P]
> [N->P,N->N/\Z->Z/\P->P]
> (m [N,P,Z] [N,P,Z] [N,P,Z])
> s z;
altexp : Nat->Nat->Nat /\ Nat->Zero->Pos /\ Zero->Pos->Ze ro /\ Pos->Nat->Pos

The diagonalization of this exponential function is partic ularly interesting, since it involves a
polymorphic self-application.
> diag = \n:Nat,Zero,Pos. altexp n n;
diag : Nat->Nat /\ Zero->Pos /\ Pos->Pos

7.7.2 Booleans

Similarly, the usual Church-encoding of the booleans can be re®ned to distinguish between true
and false , obtaining typings similar to those of Section 7.5.

> True == All B. All TT<B. All FF<B. TT -> T -> TT,
> False == All B. All TT<B. All FF<B. T -> FF -> FF,
> Bool == All B. All TT<B. All FF<B. TT -> FF -> B;

> true = \\B. \\TT<B. \\FF<B. \x:TT. \y:T. x,
> false = \\B. \\TT<B. \\FF<B. \x:T. \y:FF. y;
true : True
false : False

> not = \m:True,False,Bool.
> m [Bool] [False] [True] false true;
not : True->False /\ False->True /\ Bool->Bool

> or = for M in True,False,Bool.
> for N in True,False,Bool.
> \m:M. \n:N.
> m [Bool] [True] [N] true n;
or : True->Bool->True

/\ False->True->True
/\ False->False->False
/\ Bool->Bool->Bool

7.8. OBSERVATIONS ON PROGRAMMING WITH F � 150

7.8 Observations on Programming with F �

There are two novel aspects of the style of programming explo red in this chapter that, together,
require new ways of thinking about the task of programming:

� The typechecker neverfails outright. Since every parseable term can validly be gi ven the
type

�

, the notion of a term being ill-typed does not make sense in th is framework. Instead,
we are forced to think in terms of a term having a minimal type t hat is larger than the one
we expect or prefer.

� We often specify multiple typing assumptions for several bo und variables or type applica-
tions. We do not usually expect that every combination of ass umptions is going to lead to
an interesting (non-

�

) typing for the term, so it would be irritating to have the typ echecker
generate a warning when the best type for some subphrase is

�

. (This would, however,
be a good idea in the case where the subphrase is in the scope ofonly one set of possible
assumptions.)

Consider the following, slightly incorrect, version of the altplus operator from Section 7.7.1:

> altplus =
> for MM in Nat,Zero,Pos. for NN in Nat,Zero,Pos.
> \m:MM. \n:NN.
> \\N. \\P<N. \\Z<N.
> \s: N->P. \z:Z.
> m [N,P] [P] [N,Z] s (n [N] [P] [Z] s z);
altplus : Nat->Nat->Nat /\ Zero->Zero->Zero /\ Pos->Nat-> Pos

This expression has some of the types we expect, but it is missing Nat->Pos->Pos . To understand
what is wrong, we need some way of gaining insight into what is happening under the speci®c
set of assumptions where MM= Nat and NN= Pos.

One helpful tool that the present prototype implementation provides for this purpose is a query
operatorthat has no effect on the typing or execution of terms, but tha t has the side effect during
typechecking of printing out the minimal type that has been s ynthesized for its body under the
current prevailing assumptions. We write query expression s as?i:e , where e is the body and
i is an identifying tag used to distinguish output from this qu ery from that generated by other
queries. For example, here is the broken version of altplus with three queries added at salient
points in its body:

> altplus =
> for MM in Nat,Zero,Pos. for NN in Nat,Zero,Pos.
> \m:MM. \n:NN.
> \\N. \\P<N. \\Z<N.
> \s: N->P. \z:Z.
> ?body:
> (?m: (m [N,P] [P] [N,Z]))
> s
> (?n: (n [N] [P] [Z] s z));

MM=Nat, NN=Nat => m: (N->P)->N->N
MM=Nat, NN=Nat => n: N
MM=Nat, NN=Nat => body: N
MM=Nat, NN=Zero => m: (N->P)->N->N
MM=Nat, NN=Zero => n: Z
MM=Nat, NN=Zero => body: N
MM=Nat, NN=Pos => m: (N->P)->N->N
MM=Nat, NN=Pos => n: P

7.8. OBSERVATIONS ON PROGRAMMING WITH F � 151

MM=Nat, NN=Pos => body: N
MM=Zero, NN=Nat => m: (N->P)->N->N/\(N->P)->Z->Z
MM=Zero, NN=Nat => n: N
MM=Zero, NN=Nat => body: N
MM=Zero, NN=Zero => m: (N->P)->N->N/\(N->P)->Z->Z
MM=Zero, NN=Zero => n: Z
MM=Zero, NN=Zero => body: Z
MM=Zero, NN=Pos => m: (N->P)->N->N/\(N->P)->Z->Z
MM=Zero, NN=Pos => n: P
MM=Zero, NN=Pos => body: N
MM=Pos, NN=Nat => m: (N->P)->N->P
MM=Pos, NN=Nat => n: N
MM=Pos, NN=Nat => body: P
MM=Pos, NN=Zero => m: (N->P)->N->P
MM=Pos, NN=Zero => n: Z
MM=Pos, NN=Zero => body: P
MM=Pos, NN=Pos => m: (N->P)->N->P
MM=Pos, NN=Pos => n: P
MM=Pos, NN=Pos => body: P

altplus : Nat->Nat->Nat /\ Zero->Zero->Zero /\ Pos->Nat-> Pos

From this trace, it is clear what the problem is: when MMis Nat and NNis Pos, the type of m's
application to the three following types yields a function m apping a successor function and an
element of P (the type of n's application to its type arguments) to N, not to P as we expected. Since
the relation between the type of the phrase marked mand the type of its ®nal argument depends
on the third type application, we are led to try adding an anno tation that will cause the case where
this argument is P to be considered separately. As we saw in Section 7.7.1, thisis enough to get
the desired typing for altplus :

> altplus =
> for MM in Nat,Zero,Pos. for NN in Nat,Zero,Pos.
> \m:MM. \n:NN.
> \\N. \\P<N. \\Z<N.
> \s: N->P. \z:Z.
> ?body:
> (?m: (m [N,P] [P] [N,Z,P]))
> s
> (?n: (n [N] [P] [Z] s z));

MM=Nat, NN=Nat => m: (N->P)->N->N/\(P->P)->P->P
MM=Nat, NN=Nat => n: N
MM=Nat, NN=Nat => body: N
MM=Nat, NN=Zero => m: (N->P)->N->N/\(P->P)->P->P
MM=Nat, NN=Zero => n: Z
MM=Nat, NN=Zero => body: N
MM=Nat, NN=Pos => m: (N->P)->N->N/\(P->P)->P->P
MM=Nat, NN=Pos => n: P
MM=Nat, NN=Pos => body: P
MM=Zero, NN=Nat => m: (N->P)->N->N/\(N->P)->Z->Z/\(P->P)->P->P
MM=Zero, NN=Nat => n: N
MM=Zero, NN=Nat => body: N
MM=Zero, NN=Zero => m: (N->P)->N->N/\(N->P)->Z->Z/\(P-> P)->P->P
MM=Zero, NN=Zero => n: Z
MM=Zero, NN=Zero => body: Z
MM=Zero, NN=Pos => m: (N->P)->N->N/\(N->P)->Z->Z/\(P->P)->P->P

7.9. AN EXPERIMENT WITH A SIMPLER FORMULATION OF F� 152

MM=Zero, NN=Pos => n: P
MM=Zero, NN=Pos => body: P
MM=Pos, NN=Nat => m: (N->P)->N->P/\(P->P)->P->P
MM=Pos, NN=Nat => n: N
MM=Pos, NN=Nat => body: P
MM=Pos, NN=Zero => m: (N->P)->N->P/\(P->P)->P->P
MM=Pos, NN=Zero => n: Z
MM=Pos, NN=Zero => body: P
MM=Pos, NN=Pos => m: (N->P)->N->P/\(P->P)->P->P
MM=Pos, NN=Pos => n: P
MM=Pos, NN=Pos => body: P

altplus : Nat->Nat->Nat
/\ Nat->Pos->Pos
/\ Zero->Zero->Zero
/\ Pos->Nat->Pos

7.9 An Experiment with a Simpler Formulation of F�

In Section 3.5 we mentioned a trick for ªencodingº bounded qu anti®cation in a system with
intersections and pure (unbounded) second-order polymorp hism:

�

� � �

�

�

def
�

�

�

�

�

� � � � � �

�

This is not an encoding in the true sense; for example, it does not validate the SUB-ALL rule.
Still, since it mimics something like bounded quanti®catio n in a signi®cantly simpler system, it is
worth exploring the limits of this technique. Here are some o f the more complex examples from
Section 7.7.1, with the translation applied by hand:

> Nat == All N. All P. All Z. (N->(P/\N)) -> (Z/\N) -> N,
> Zero == All N. All P. All Z. (N->(P/\N)) -> (Z/\N) -> (Z/\N),
> Pos == All N. All P. All Z. (N->(P/\N)) -> (Z/\N) -> (P/\N);

> check Zero < Nat;
Yes
> check Pos < Nat;
Yes

> zero = \\N. \\P. \\Z. \s:(N->(P/\N)). \z:(Z/\N). z,
> one = \\N. \\P. \\Z. \s:(N->(P/\N)). \z:(Z/\N). s z,
> two = \\N. \\P. \\Z. \s:(N->(P/\N)). \z:(Z/\N). s (s z);
zero : All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z /\ Nat
one : All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P /\ Nat
two : All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P /\ Nat

Note that these types are equivalent to zero : Zero , one : Pos , etc:

> check (All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z) /\ Nat < Zero;
Yes
> check Zero < (All N. All P. All Z. (N->P/\N->N)->(Z/\N)->Z) /\ Nat;
Yes
> check (All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P) /\ Nat < Pos;
Yes
> check Pos < (All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P) / \ Nat;
Yes

7.9. AN EXPERIMENT WITH A SIMPLER FORMULATION OF F� 153

> succ = \n:Zero,Pos,Nat.
> \\N. \\P. \\Z. \s:(N->(P/\N)). \z:(Z/\N).
> s (n [N] [(P/\N)] [(Z/\N)] s z);
succ : Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P) / \ Nat->Nat

> plus = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> m [Nat,Pos] [Pos] [N] succ n;
plus : Zero->Zero->Zero /\ Pos->Nat->Pos /\ Nat->Pos->Pos /\ Nat->Nat->Nat

> times = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> m [Nat,Zero] [N] [Zero] (plus n) zero;
times : Zero->Nat->Zero /\ Pos->Pos->Pos /\ Nat->Zero->Ze ro /\ Nat->Nat->Nat

> exp = for M in Zero,Pos,Nat. for N in Zero,Pos,Nat.
> \m:M. \n:N.
> n [Nat,Pos] [M] [Pos] (times m) one;
exp : Zero->Pos->Zero /\ Pos->Nat->Pos /\ Nat->Zero->Pos / \ Nat->Nat->Nat

> altplus =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P. \\Z.
> \s: N->(P/\N). \z:(Z/\N).
> m [N,(P/\N)] [(P/\N)] [N,(P/\N),(Z/\N)]
> s (n [N] [(P/\N)] [(Z/\N)] s z);
altplus : Nat->Nat->Nat

/\ Nat->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)
/\ Zero->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)- >Z)
/\ Pos->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)

Again, note that this type is equivalent to the expected type for altplus :

> check
> Nat->Nat->Nat
> /\ Nat->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)-> P)
> /\ Zero->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N) ->Z)
> /\ Pos->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)-> P)
> < Nat->Nat->Nat
> /\ Nat->Pos->Pos
> /\ Pos->Nat->Pos
> /\ Zero->Zero->Zero;
Yes
> check
> Nat->Nat->Nat
> /\ Nat->Pos->Pos
> /\ Pos->Nat->Pos
> /\ Zero->Zero->Zero
> < Nat->Nat->Nat
> /\ Nat->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)-> P)
> /\ Zero->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N) ->Z)
> /\ Pos->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)-> P);
Yes

> altmult =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.

7.9. AN EXPERIMENT WITH A SIMPLER FORMULATION OF F� 154

> \\N. \\P. \\Z.
> \s: N->(P/\N).
> m [N,(Z/\N)] [N,(P/\N),(Z/\N)] [(Z/\N)]
> (n [N,(Z/\N)] [N,(P/\N),(Z/\N)] [N,(P/\N),(Z/\N)] s);
altmult : Nat->Nat->Nat

/\ Nat->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)-> Z)
/\ Zero->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)-> Z)
/\ Pos->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)

> altexp =
> \m:Nat,Zero,Pos. \n:Nat,Zero,Pos.
> \\N. \\P. \\Z.
> \s:N->(P/\N). \z:(Z/\N).
> n [N->N,N->(P/\N),N->N/\(Z/\N)->(Z/\N)/\(P/\N)->(P/ \N)]
> [N->N,N->(P/\N),N->N/\(Z/\N)->(Z/\N)/\(P/\N)->(P/\ N)]
> [N->(P/\N),N->N/\(Z/\N)->(Z/\N)/\(P/\N)->(P/\N)]
> (m [N,(P/\N),(Z/\N)] [N,(P/\N),(Z/\N)] [N,(P/\N),(Z/\ N)])
> s z;
altexp : Nat->Nat->Nat

/\ Nat->Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)-> P)
/\ Zero->Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)-> Z)
/\ Pos->Nat->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)

> diag = \n:Nat,Zero,Pos. altexp n n;
diag : Nat->Nat

/\ Zero->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)
/\ Pos->(All N. All P. All Z. (N->P/\N->N)->(Z/\N)->P)

Our preliminary conclusion from these examples is that the e ncoding trick works better than
might be expected. Its main apparent defect is that it disrup ts our notion of typed semantics,
since it replaces the type

�

�
�

�

�

� , which, roughly speaking, describes a function expecting a
type and a coercion from this type into � , by the type

�

�

�

�

� � � � � �

� , which describes a function
expecting any type whatsoever, but requiring additional pr oof that whatever elements of this type
are actually used can also be coerced to type � .

Chapter 8

Evaluation and Future Work

Having presented our results in detail, we conclude by evalu ating them in terms of the goals
articulated in the introductory chapter and suggesting som e likely paths for future research.

The naturalness and formal power of the F� calculus seem well established. Is is based on
three elegant and appealing notions of typing Ð subtyping, ® nitary polymorphism, and bounded
parametric polymorphism Ð and combines them nearly orthogo nally so that the programming
idioms of all the components are fully supported. When the tw o styles of polymorphism are used
together, a fascinating new class of encodings of algebraicdatatypes arises (Section 7.7).

The thesis presents both positive and negative results about the system's tractability. On the
positive side, we have proofs of the partial correctness and of simple algorithms for checking
the subtype relation and for computing minimal types for pro grams (Chapter 4). We also have
a simple untyped semantic model (Section 5.1), a natural framework for typed models based
on a translation into system F (Section 5.3), and a preliminary equational theory (Section 5.5).
On the negative side is the discovery that the subtype relati on of F� lacks least upper bounds
(Section 5.2), which blocks some of the known methods of semantic analysis and entails signi®cant
complication for future efforts along these lines. The obse rvation that the subtype relation is, in
fact, undecidable (Chapter 6), though not overly worrysome in practical terms, is further evidence
for the underlying complexity that F� inherits from �

�

.
The dif®culty of analyzing F� , together with the possibility that some of the programming

idioms arising from pure bounded quanti®cation may have use ful analogues in languages with
intersection types and only unbounded quanti®cation (Sect ion 7.9), suggests, in fact, thatF� may
betoopowerful, and that future investigations might pro®tably f ocus on simpler fragments instead
of treating the whole calculus.

The suitability of F� as a basis for language designs is partially, but incomplete ly, demonstrated
by the work described here.

The prototype implementation used to typeset the examples t hroughout the thesis establishes
the viability of the naive algorithms described in Chapter 4 for small examples and suggests
numerous convenient syntactic sugarings, programming tec hniques, and debugging tools (Sec-
tion 7.8). Sections 7.2, 7.3, and 7.4 present some experiments with language features using
combinations of ®nitary and parametric polymorphism. Sect ions 7.5 and 7.7 explore a novel style
of programming where intersections are used to obtain typin gs similar to the results of conven-
tional abstract interpretation, and Section 7.6 hints at a similar treatment of strictness analysis.
Among these examples, however, only those in the section discussing extensions of Forsythe (7.2)
could be called ªpractical.º To fully justify F� as a core type system for programming languages,
a much larger suite of examples illustrating its applicatio n to real programming problems would

155

8.1. ALTERNATIVE FORMULATIONS 156

be required. In particular, the set of examples given here la cks convincing evidence that bounded
polymorphism is more useful than ordinary unbounded polymo rphism. (This is not surprising,
since the standard examples using bounded polymorphism rel y on the presence of recursive types
or updateable record types, or both.)

Another concern raised by the prototype implementation is t he practical ef®ciency of type-
checking for larger examples. Naive implementations of the simple algorithms in Chapter 4
exhibit exponential behavior Ð in practice Ð in both type syn thesis (because of thefor construct)
and subtyping (because of rules ASUBR-INTER and ASUBL-INTER in De®nition 4.2.8.4). Fortu-
nately, this behavior normally occurs as a result of explici t programmer directives Ð requests, in
effect, for an exponential amount of analysis of the program during typechecking. Still, a serious
typechecker implementation would need to ®nd ways to save so me of this cost by caching the
partial results of previous analysis. The exact form of the t yping derivations constructed by the
type analyzer can also have signi®cant effects on the code generation phase of an implementation
based on something like the translation semantics given in Section 5.3.3, giving rise to a whole
collection of practical issues not considered here.

A third practical consideration for any language based on se cond-order polymorphism is
the problem of verbosity. Without some means of abbreviatio n (partial type reconstruction), even
modest programs quickly become overburdened with type abst ractions and applications and long
type annotations on

�

-abstractions. We have chosen to ignore this set of issues here, since it is
not yet well understood even for pure polymorphic

�

-calculi without subtyping, but an eventual
full-scale language design based onF� would need to face it somehow.

With these remarks in mind, we now discuss some areas where fu ture research might fruitfully
extend or complement the work described in this thesis.

8.1 Alternative Formulations

As we mentioned in the Introduction and in Section 3.5, the F� calculus is just one representative
of a whole space of calculi combining some form of polymorphi sm with some presentation of
intersection types.

Intersection types allow for relatively few degrees of free dom. Besides the version given here,
which slightly generalizes the core type system of Forsythe , there are three variants that may be
worth considering in more detail:

� The calculus identical to
�

� but without the type
�

Ð i.e., where � is required to be at least 1
in every rule involving an intersection Ð seems less elegant than

�

� itself. However, it has
the possible practical advantage that it retains a conventi onal notion of typechecking failure,
since it provides no type that can be assigned to every phrase. Combined with ordinary �

�

(with �

�

's rules for the Toptype), this version of intersection types might provide muc h of
the expressiveness that we have demonstrated here, without requiring such a radical change
in the notion of well-typedness.

� The distributivity laws of
�

� could perhaps also be dropped without greatly affecting ex-
pressiveness. Our guess, however, is that this restriction would make types much more
clumsy to manipulate. For example, many of the simpli®catio ns performed by the proto-
type implementation before printing the type inferred for a n expression would be blocked
by this restriction.

8.2. FOUNDATIONS 157

� A much more severe restriction on the use of intersection typ es would be to prevent them
from appearing on the left-hand sides of arrows. This would g reatly reduce their expres-
sive power, perhaps bringing them within the reach of conven tional type reconstruction
techniques.

Polymorphism has been studied in many different forms. The o ne used in this thesis is
among the most powerful, combining full second-order quant i®cation over types with a notion of
quanti®cation over a collection of types determined by the s ubtype ordering. Many of the others,
though, are possible candidates for integration with inter section types.

� Generalizing our results about F� to systems based on F-bounded polymorphism [18, 39] or
� -order polymorphism [66, 102, 62, 108] would seem to be a straightforward process.

� Versions of �

�

with stronger subtyping rules (c.f. 3.5) can also be combined with intersec-
tion types. These combinations are of dubious value as basesfor practical programming
languages, since they have typechecking problems that seemto be of similar dif®culty to the
full type reconstruction problem for the polymorphic

�

-calculus, but they may be suitable
foundations for more theoretical investigations. (See [89], for example.)

� Replacing F� 's quanti®er subtyping rule with the weaker ªequal-boundsº rule of Cardelli
and Wegner's original Fun [33]

� �

�
� � �

� �

�

�

�

�

� �
�

�

� �

�

� �
�

�

�

(SUB-ALL-EQ)

yields a decidable system. This rule is hard to justify seman tically, however.
� Languages with prenex (ML-style) polymorphism [92, 55] hav e been investigated quite

thoroughly, but we are not aware of a formulation of prenex bo unded quanti®cation and, in
general, the work of adding subtyping to the ML type system in such a way as to retain its
crucial properties Ð especially decidable inference of pri ncipal types Ð is less developed
than the study of second-order type systems with subtyping.

� The ordinary polymorphic
�

-calculus (system �) can also be extended with a subtype
relation. When this calculus is combined with intersection types, some of the behavior of
the bounded quanti®er can be recovered using intersections (c.f. Section 7.9). Although
more investigation is needed to determine the limitations o f this trick, the proof theory and
semantics of this combination are likely to be so much simple r than those of F� that it seems
an excellent avenue to pursue.

8.2 Foundations

The most signi®cant un®nished aspect of our theoretical study of F� is the investigation of its typed
semantics. We gave, in Chapter 5, two partial approaches to this question: a translation from F�

typing derivations into the pure polymorphic
�

-calculus, and an equational characterization of
equalities between F� terms. However, we were unable to show that the translation s emantics
was coherent. Here we sketch some other approaches to the semantics of the calculus and some
possible methods by which the coherence of the translation semantics might be established.

8.2. FOUNDATIONS 158

8.2.1 Semantics

The partial equivalence relation model of F� given in Section 5.1 is a simple extension of Bruce
and Longo's PER model of �

�

[12]. Our presentation, however, was much more elementary t han
theirs, which began by giving a general de®nition of an environment modelof �

�

(extending Bruce,
Meyer, and Mitchell's familiar notion of a second-order environment model[13] for the polymorphic

�

-calculus) and then showed how an instance of this framework could be constructed in the
category of � -sets (c.f. [3]). This general construction could presumably also be extended to an
environment model for F� . PER models for F� may also arise from Bruce and Mitchell's work on
models of �

�

extended with recursive types [14].
A more general categorical semanticsfor F� along the lines of Seely's semantics for system

� [129] would have to rest on a categorical semantics for �

�

Ð currently an open problem.
A different view of F� 's semantics might come from a complete equational theory Ð a n

extension of the rules in Section 5.5 with the additional pro perty that they characterize all the
valid equivalences between terms with respect to some classof models.

8.2.2 Coherence

In Section 5.4 we stated the following conjecture for the tra nslation semantics of F� :

(5.4.2). Conjecture: [Coherence of typing] If � ::
�

�

�

� � � and
�

::
�

�

�

� � � , then [[
�

]]
�

�

[[�]] �

[[
�

]] � [[�]].

Two general methods are known for establishing conjectures of this sort. One, formalized most
cleanly by Curien and Ghelli [50] (also see [63, 10]), has been applied successfully to second-order
bounded quanti®cation. The other, due to Reynolds [123], wo rks for ®rst-order intersection types.
The extension of either to F� is problematic.

Before applying either method, the translation semantics s hould be slightly re®ned. Rather
than interpreting subtyping derivations directly as terms of � � , they should be interpreted as
combinations of a set of coercion combinators, which capture the notion of a semantic subcategory
of coercions. (See [10].) This re®nement ofF� is straightforward.

Curien and Ghelli's method is based on a derivation normaliz ation argument for typing
derivations similar to the one given for canonical subtypin g in Section 4.2. In outline, the argument
proceeds as follows:

� A set of rules is given for rewriting derivations into a stand ard normal form.
� A terminating rewriting strategy for these rules is exhibit ed.
� The set of normal forms is shown to be suf®ciently restricted that there is at most one

normal-form derivation with any given conclusion.
� Each of the rewriting rules is shown to be ªlocally coherentº with respect to the given

semantic interpretation of derivations: if � � � 1
�

then [[�]] � [[
�

]].
� Given two derivations with the same conclusion, the termina tion of the rewrite rules and the

unicity of normal forms guarantee that both can be rewritten to the same normal form. The
local con¯uence of the rewriting rules then establishes the equality of the interpretations of
the original derivations.

The main dif®culty with extending this approach to F� is that it is not clear how to write normal-
ization rules for typing derivations that rewrite any deriv ation into a unique normal form. For
example, if �

� 	 Int � Char
 �

	 Bool� Char
 and �

� Int � Bool, then the term
	 for � in Int

�

Bool
�

� �

: �

�

�

�

 �

8.2. FOUNDATIONS 159

can be given the type Charin at least two different ways Ð one using the substitution
�

Int � � � and
another using

�

Bool� � � . The ®rst derivation contains no subderivation for the term
� �

:Bool
�

�

�

,
and the second contains no subderivation for

� �

:Int
�

�

�

. So in order to rewrite both of them
into a common derivation, a whole new subderivation would ne ed to be created ªon the ¯yº by
the rewriting rules. This does not seem impossible, but it is certainly more dif®cult than the task
accomplished by Curien and Ghelli's rules, which can simply rearrange the existing structure of
derivations.

Reynolds' method for proving coherence is based on a category-theoretic presentation of the
semantics of

�

� in which intersections are interpreted as limits. The inter pretation of a derivation
�

�

� � � is a morphism [[
�

�

� � �]] � [[
�

]] � [[�]], where [[
�

1:�

1
�

. . .
�

� : � �]] � [[�

1]] � � � � � [[� �]].
Proving coherence in this presentation amounts to establishing the commutativity of all diagrams
of the following form:

[[
�

]] [[�]]�

[[� 1 ::
�

�

�
�

�]]
�

[[� 2 ::
�

�

� � �]]

The proof actually requires a stronger induction hypothesi s, the commutativity of every diagram
of the following form,

[[
�

]]

[[
�

1]]

[[
�

2]]

[[�

1]]

[[�

2]]

[[
�
]]

�

[[� 1 ::
�

1 �

� � �

1]]

�

[[� 2 ::
�

2 �

�
�

�

2]]

�

�

�

� �

[[
�

�

�

1]]

�

�

�

� �

[[
�

�

�

2]]

�

�

�

� �

[[�

1 �
�
]]

�

�

�

� �

[[�

2 �
�]]

which can be established by simultaneous induction on � 1 and � 2.
When the ®nal steps of both derivations are applications of syntax-directed rules such as

ARROW-I, the induction hypothesis is used together with properti es of the the model (such as
cartesian closure) to obtain the desired result.

For the non-syntax-directed rules SUB and INTER-I, the proof depends on two crucial properties.
When the last rule of one of the derivations is S UB, the result follows from the coherence of
subtyping (which in category-theoretic terms, can be state d more simply as ªthe function [[Ð]] from
types to objects of the semantic category and from subtyping derivations to coercion morphisms
is a functorº). A proof of this property for F� using an extension of Curien and Ghelli's method
appears to be messy but fairly straightforward. The crux of t he proof is an analog of the subtyping-
derivation-normalization argument in Section 4.2, where t ypes are left in their ordinary form
instead of being ¯attened to canonical types.

The second property needed for Reynolds' proof, unfortunat ely, is the existence of least upper
bounds in the subtype relation, which we showed fails for F� . This is used in the case where one
of the two typing derivations ends with rule I NTER-I, to ªglue togetherº the diagrams obtained by
applying the induction hypothesis to the subderivations.

It is conceivable that this proof technique could be extende d to F� by strengthening the induc-
tion hypothesis again to consider all of the supertypes of �

1 and �

2 simultaneously, rather than just
a single given � .

8.3. EXTENSIONS 160

8.3 Extensions

In addition to more tractable fragments of F� , there are several important extensions that should
be considered.

8.3.1 Records

To model more of the features of full-scale object-oriented programming languages Ð an even to
allow useful programming in more conventional idioms Ð it is critical that we consider extending
F� with a ¯exible facility for record manipulation.

In Forsythe, Reynolds introduced the following elegant tre atment of records. Let
� �

� �

1 �

�

2 �

. . .� be a set of labels. For each
� �

�

, introduce a type constructor ª
�

:º describing the
set of single-®eld records with label

�

. Next, introduce a ®eld selection operator ª
� �

º for each 	 . If

 � �

� �

: then

 � �

� � �

 . Multi-®eld records can now be built from these primitives: instead of
� �

1: 1 �

�

2 �

 2 � , we write �

�

1: 1 � �

�

�

2: 2 �

. Lastly, we need a way of building new records. Forsythe
uses the construct ª

�

with
� � �

º to denote a value with all the same ®elds as
�

, but with
�

's
�

®eld, if any, replaced with
�

�

�

. The type of with can be stated in terms of an operator ª �

�

,º which
removes any existing

�

®elds from a given type:

 � �

�

 � � �

�

�

 � �

with
� �

�

�

�

� �

�

� �

�

�

�

�

�

where
�

�

�

�

�

� � � 1
� �

 � �

�

�

�

�

� � � 1 �

�

�

� �

� � �

�

�

�

� 1 �

 2 �

�

�

�

 1 �

 2

�

�

�

:

�

�

�

�

�

�

: when
� �� �

�

�

�

:

�

�

�

� �

�

The principal dif®culty with adding this treatment of recor ds to F� is that there is no way to
de®ne the behavior of the operation �

�

applied to a type variable � : we cannot tell from the shape
of � itself whether it will later be instantiated with a type cont aining an

�

®eld, and even if we
could, the current language of types gives us no way of ªremem beringº to remove the

�

®eld when
this instantiation actually occurs. The �

�

operation must be introduced as a new constructorin the
language of types:

 ::= �

�

 1 �

 2
�

� ! 1
�

 2
�

� � 1
� �

 � �

� �

:

�

 �

�

New rules must be given for the behavior of �

�

and its interaction with the other constructors,
and a new typechecking algorithm must be given and proved cor rect.

Luckily, the �

�

constructor has been extensively studied in recent years Ð a lbeit for languages
without intersection types [112, 135, 82, 83, 113, 114, 32, 31, 71, 70, 115]. We hope that existing
intuitions and techniques can be extended to F� straightforwardly.

8.4. IMPLEMENTATION 161

8.3.2 Recursive Types

Another extension of particular importance for F� 's role in modeling object-oriented languages is
recursive types. Again, a great deal has been learned recently about calculi with recursive types
and subtyping [2]. But previous work has focused on systems w ith substantially simpler subtype
relations; there is little reason to believe that extending existing techniques will be straightforward.

8.3.3 Union Types

Having studied the properties of a type system whose subtype relation is closed under ®nite
meets, it is natural to consider introducing ®nite joins as w ell. In practical terms, the main effect of
this extension is that we gain the ability to express, say, th at the type Boolis completely partitioned
by Trueand False(as opposed to knowing only that True and Falseare both contained in Bool).

Calculi incorporating various formulations of this notion have been proposed by the present
author [107] and a number of other researchers [4, 60, 122, 36, 59, 73, 72], but their practicality and
tractability remain unclear.

A related extension of F� arises from ªdualizingº the upper bound of the bounded quant i®er
so that each variable is introduced with both an upper and a lo wer bound:

 �

1 !
�

!

�

2
�

 . A
fragment of this calculus with double-bounded variables bu t no quanti®cation (the bounds on
variables are given in advance and no mechanism is provided f or extending the context) is shown
to be decidable in [104].

8.3.4 Type Reconstruction

In order for languages based on second-order polymorphism t o be usable on a large scale, some
form of partial type reconstruction is a critical requireme nt. Though satisfactory algorithms exist
for the pure system

�

and its higher-order variants [102, 9, 109], there has been little progress to
date on extending these ideas to calculi with subtyping (see , however, [27]).

Less critical in practical terms, but intriguing, is the pos sibility of integrating polymorphic
type reconstruction with a known semi-algorithm for inters ection type inference [125].

8.4 Implementation

Our prototype implementation of F� uses some slight extensions of the algorithms we analyzed in
Chapter 4. We perform the type substitutions introduced by t he FOR rule lazily by storing them in
the context rather than inserting them in the term. This mech anism also provides for transparent
type abbreviations that are somewhat more ef®cient than their most naive implementation (simple
replacement by the parser) would suggest. Our data structur e for types, which is based on
DeBruijn indexing [56], is also implemented lazily; instea d of renumbering the indices of the
free variables in a type when it is extracted from a context, t he extracted type is reindexed,
incrementally, as needed. (Related schemes for lazy implementations of the data structures used
in typechecking have been studied by Abadi, Cardelli, Curie n, and LÂevy [1].)

These re®nements substantially improve the speed of the implementation, compared to a
naive transcription of the typechecking algorithms. But so me much more serious ef®ciency
issues remain to be addressed. These have to do primarily wit h the exponential behavior of the
typechecker in situations where the programmer has request ed that some part of a program be
checked under many different sets of assumptions. To some degree, this exponential behavior is

8.4. IMPLEMENTATION 162

justi®ed, since the programmer has asked for it and since it can be shown [Reynolds, personal
communication, 1990] that there are F� programs for which an exponential amount of work must
be expended to discover their minimal types. Still, the comp iler implementor must try to make
common cases as inexpensive as possible.

The most promising technique for accomplishing this is some form of memoizationor caching
of previous partial results of subtyping and typechecking. For example, if � does not appear free
in

�

1, then the type of
�

1 should only be analyzed once during the analysis of for � in
�

1
� � �

�

�

�

1
�

2.
Of course, determining that � is not free in

�

1 may itself require some work; if we are not careful,
we will spend more time discovering that we've already compu ted and cached a type for

�

1 than
we would spend computing it over again from scratch. Both car eful tuning of the data structures
used for caching and careful performance measurements will be crucial to the success of this sort
of improvement.

Another class of issues that we have dealt with only super®ci ally concerns the structure of
ef®cient code generators based on our typed semantics ofF� . (Compilation based on the untyped
semantics is less problematic.) One of the largest of these is the sensitivity of the generated code to
the speci®c shapes of typing derivations. It will be importa nt to consider alternative formulations
of the typing and (especially) the subtyping rules that give rise to ef®cient translations. Some
compile-time proof normalization to eliminate useless coe rcions also seems necessary.

It may also become important, in practical terms, to try to di stinguish the ªrealº overloading of
values like � from the ªtypechecking onlyº overloading associated with o ur examples of abstract
interpretation, strictness analysis, and so on. This would amount to taking a hybrid view of
semantics, allowing some intersections to be interpreted as intersections in the semantics while
others were interpreted as coherent tuples. It might be inte resting to try to re¯ect this distinction
in the syntax of the language by introducing two different ki nds of intersection types (with a
coercion from the untyped to the typed variety).

Appendix A

Summary of Major De®nitions

A.1 F�

A.1.1 Subtyping

 �

 � (SUB-REFL)

 �

 1 � 2

 �

 2 � 3

 �

 1 � 3
(SUB-TRANS)

 �

� �

� �

�

(SUB-TVAR)

 �

 1 �

�

1

 �

�

2 � 2

 �

�

1 �

�

2 � 1 �

 2
(SUB-ARROW)

 �

 1 �

�

1

�

�
!

 1
�

�

2 � 2

 �

�
!

�

1
� �

2 �

�
!

 1
�

 2
(SUB-ALL)

for all 	

�

 �

�

� �

 �

�

�
�

� 1
� �

 � �

(SUB-INTER-G)

 �

� � 1
� �

 � � � � (SUB-INTER-LB)

 �

�

�

�

�

 1
� � �

�

 � � �

�

�

�

� 1
� �

 � � (SUB-DIST-IA)

 �

� �

� !

� �

 1
� �

� !

� �

 � � �

� !

� �

� � 1
� �

 � � (SUB-DIST-IQ)

A.1.2 Typing

 � �

�

�

�

�

(VAR)

�

�

: 1
� �

�

 2

 � � �

: 1
�

�

�

 1 �

 2
(ARROW-I)

 � �

1
�

 1 �

 2

 � �

2
�

 1

 � �

1
�

2
�

 2
(ARROW-E)

�

�
!

 1
� �

�

 2

 � �

�
!

 1
�

�

�

�
!

 1
�

 2
(ALL-I)

 � �

�

�
!

 1
�

 2

 �

 � 1

 � �

� �

� �

 � � � 2
(ALL-E)

163

A.1. F� 164

 �

� �

� � � �

�

�

 �

 �

for � in
�

1
� � �

�

�

�

�

 �

(FOR)

for all 	

�

 � �

�

 �

 � �

�

� � 1
� �

 � �

(INTER-I)

 � �

�

 1

 �

 1 � 2

 � �

�

 2
(SUB)

A.1.3 Syntax-Directed Subtyping

for all 	

�

 �

�

� � � �

 �

�

� � � � � 1
� �

 � �

(ASUBR-INTER)

for some 	

�

 �

�

� � � � �

 �

� �

�

1
� � �

� � � � � �

(ASUBL-INTER)

 �

 1 � � � �

�

1

 �

�

2 � � 2 � �

 �

�

1 �

�

2 � � 1 �

� 2 � � �

(ASUBL-A RROW)

 �

 1 � � � �

�

1

� �

! 1
�

�

2 � � 2 � �

 �

�

!

�

1
� �

2 � �

�

! 1 �

� 2 � � �

(ASUBL-A LL)

 �

� � � � � � (ASUBL-REFL)

 �

�

�
�

� � � �

 �

�

� � � �

(ASUBL-TVAR)

A.1.4 Type Synthesis

 � �

�

�

�

�

(A-VAR)

�

�

: 1
� �

�

 2

 � � �

: 1
�

�

�

 1 �

 2
(A-A RROW-I)

 � �

1
� �

1

 � �

2
� �

2

 � �

1
�

2
�

� � � �

�

� � �

�

� �

�

�

arrowbasis� �

�

1 �

and

 �

�

2 � � � �

(A-A RROW-E)

�

�
!

 1
� �

�

 2

 � �

�
!

 1
�

�

�

�
!

 1
�

 2
(A-A LL-I)

 � �

� �

1

 � �

� �

�

� �

�

 � � � �
�

�

�

� ! �
�

�

�
�

�

�

allbasis�
�

�

1 �

and

 �

 � �
�

�

(A-A LL-E)

for all 	

�

 �

� �

� � � �

�

�

 �

 �

for � in
�

1
� � �

�

�

�

�

�
� 1

� �

 � �

(A-FOR)

A.2. F � 165

A.2 F �

A.2.1 Subtyping

 �

�

� Top (SUB-TOP)

 �

 � (SUB-REFL)

 �

 1 � 2

 �

 2 � 3

 �

 1 � 3
(SUB-TRANS)

 �

� �

� �

�

(SUB-TVAR)

 �

 1 �

�

1

 �

�

2 � 2

 �

�

1 �

�

2 � 1 �

 2
(SUB-ARROW)

 �

 1 �

�

1

�

� ! 1
�

�

2 � 2

 �

�
!

�

1
� �

2 �

�
!

 1
�

 2
(SUB-ALL)

A.2.2 Typing

 � �

�

�

�

�

(VAR)

�

�

: 1
� �

�

 2

 � � �

: 1
�

�

�

 1 �

 2
(ARROW-I)

 � �

1
�

 1 �

 2

 � �

2
�

 1

 � �

1
�

2
�

 2
(ARROW-E)

�

�
!

 1
� �

�

 2

 � �

�
!

 1
�

�

�

�
!

 1
�

 2
(ALL-I)

 � �

�

� ! 1
�

 2

 �

 � 1

 � �

� �

� �

 � � � 2
(ALL-E)

 � �

�

 1

 �

 1 � 2

 � �

�

 2
(SUB)

A.3
�

�

A.3.1 Subtyping

 �

�

1 � �

�

2

 �

�

1 �

�

2
(SUB-PRIM)

 �

 � (SUB-REFL)

 �

 1 � 2

 �

 2 � 3

 �

 1 � 3
(SUB-TRANS)

 �

 1 �

�

1

 �

�

2 � 2

 �

�

1 �

�

2 � 1 �

 2
(SUB-ARROW)

for all 	

�

 �

�

�
�

 �

�

� � � 1
� �

�

�

(SUB-INTER-G)

 �

�
� 1

� �

 � � � � (SUB-INTER-LB)

 �

� �

�

�

 1
� � �

�

�

� �

�

�

� � 1
� �

�

� (SUB-DIST-IA)

A.3.
�

� 166

A.3.2 Typing

 � �

�

�

�

�

(VAR)

�

�

:
�

�

� �

�

 �

 � � �

:
�

1
� � �

�

�

�

� �

�

�

 �

(ARROW-I')

 � �

1
�

 1 �

 2

 � �

2
�

 1

 � �

1
�

2
�

 2
(ARROW-E)

for all 	

�

 � �

�

 �

 � �

�

� � 1
� �

 � �

(INTER-I)

 � �

�

 1

 �

 1 � 2

 � �

�

 2
(SUB)

Appendix B

Glossary of Notation

�

� � � �

type variables p. 14
�

�

�

�

�

�

�

�

� �

types p. 14
�

� � � � � � � � � �

®nite sequences of types p. 14
�

� 	

term variables p. 14
�

�
 �

�

� �

terms p. 14

contexts p. 14
�

subtyping and typing statements p. 15

� �

subtyping derivations p. 15
�

� �

typing derivations p. 15
� primitive types p. 16

 �

the pervasive context p. 18
�

�

�

composite canonical types p. 50
�

�

�

individual canonical types p. 50
�

�

	 all canonical types p. 50
�

�

canonical derivations p. 51
�

� �

canonical subtyping derivations p. 51
�

� �

individual canonical subtyping derivations p. 51

� �

both canonical and individual canonical subtyping derivat ions p. 51

167

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. LÂevy. Explicit substitutions. In Proceedings of
the Seventeenth ACM Symposium on Principles of ProgrammingLanguages, pages 31±46, San
Francisco, CA, January 1990.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursiv e types. In Proceedings of the
Eighteenth ACM Symposium on Principles of Programming Languages, pages 104±118, Orlando,
FL, January 1991.

[3] Andrea Asperti and Giuseppe Longo. Categories, Types, and Structures: An Introduction to
Category Theory for the Working Computer Scientist. The MIT Press, 1991.

[4] Franco Barbanera and Mariangiola Dezani-Ciancaglini. Intersection and union types. In Ito
and Meyer [80], pages 651±674.

[5] H. P. Barendregt. The Lambda Calculus. North Holland, revised edition, 1984.

[6] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A ®l ter lambda model and the
completeness of type assignment. Journal of Symbolic Logic, 48(4):931±940, 1983.

[7] Michael Barr and Charles Wells. Category Theory for Computing Science. Prentice Hall, 1990.

[8] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, a nd Kristen Nygaard. Simula
Begin. Studentlitteratur (Lund, Sweden), Bratt Institute Fuer N eues Lerned (Goch, FRG),
Chartwell-Bratt Ltd (Kent, England), 1979.

[9] Hans-J. Boehm. Type inference in the presence of type abstraction. In Proceedings of the
SIGPLAN '89 Conference on Programming Language Design and Implementation, pages 192±206,
Portland, OR, June 1989.

[10] Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and A ndre Scedrov. Inheritance as
implicit coercion. Information and Computation, 93:172±221, 1991.

[11] Kim B. Bruce. The equivalence of two semantic de®nitions for inheritance in object-oriented
languages. In Proceedings of Mathematical Foundations of Programming Semantics, Pittsburgh,
PA, March 1991. To appear.

[12] Kim B. Bruce and Giuseppe Longo. A modest model of record s, inheritance, and bounded
quanti®cation. Information and Computation, 87:196±240, 1990. An earlier version appeared
in the proceedings of the IEEE Symposium on Logic in Computer Science, 1988.

[13] Kim B. Bruce, Albert R. Meyer, and John C. Mitchell. The semantics of second-order lambda
calculus. In Huet [79], pages 213±272. Also appeared in Information and Computation 84,
1 (January 1990).

[14] Kim Bruce and John Mitchell. PER models of subtyping, re cursive types and higher-order
polymorphism. In Proceedings of the Nineteenth ACM Symposium on Principles of Programming
Languages, Albequerque, NM, January 1992. To appear.

168

BIBLIOGRAPHY 169

[15] Corrado BÈohm and Alessandro Berarducci. Automatic synthesis of typed
�

-programs on
term algebras. Theoretical Computer Science, 39:135±154, 1985.

[16] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory and p ractice of strictness analysis.
Science of Programming, 7:249±278, 1986.

[17] Peter Canning, William Cook, Walt Hill, and Walter Olth off. Interfaces for strongly-typed
object-oriented programming. In Object Oriented Programing: Systems, Languages, and Appli-
cations (Conference Proceedings), pages 457±467, 1989.

[18] Peter Canning, William Cook, Walter Hill, Walter Oltho ff, and John Mitchell. F-bounded
quanti®cation for object-oriented programming. In Fourth International Conference on Func-
tional Programming Languages and Computer Architecture, pages 273±280, September 1989.

[19] Peter Canning, Walt Hill, and Walter Olthoff. A kernel l anguage for object-oriented pro-
gramming. Technical Report STL-88-21, Hewlett-Packard Labs, 1988.

[20] LucaCardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, andG. Plotkin,
editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages 51±67.
Springer-Verlag, 1984.

[21] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis C urien, and Bernard Robinet, editors,
Combinators and Functional Programming Languages. Springer-Verlag, 1986. Lecture Notes in
Computer Science No. 242.

[22] Luca Cardelli. Typechecking dependent types and subty pes. In Proc. of the Workshop on
Foundations of Logic and Functional Programming, Trento, Italy, December 1987.

[23] Luca Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138±164,
1988.

[24] Luca Cardelli. Structural subtyping and the notion of p ower type. In Proceedings of the
15th ACM Symposium on Principles of Programming Languages, pages 70±79, San Diego, CA,
January 1988.

[25] Luca Cardelli. Typeful programming. Research Report 4 5, Digital Equipment Corporation,
Systems Research Center, Palo Alto, California, February 1989.

[26] Luca Cardelli. Extensible records in a pure calculus of subtyping. To appear, 1991.

[27] Luca Cardelli. F-sub, the system. Unpublished manuscr ipt, July 1991.

[28] Luca Cardelli, James Donahue, Mick Jordan, Bill Kalsow, and Greg Nelson. The Modula-3
type system. In Proceedings of the Sixteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 202±212, January 1989.

[29] Luca Cardelli and Giuseppe Longo. A semantic basis for Q uest: (Extended abstract). In
ACM Conference on Lisp and Functional Programming, pages 30±43, Nice, France, June 1990.
Extended version available as DEC SRC Research Report 55, Feb. 1990.

[30] Luca Cardelli, Simone Martini, John C. Mitchell, and An dre Scedrov. An extension of system
F with subtyping. In Ito and Meyer [80], pages 750±770.

[31] Luca Cardelli and John C. Mitchell. Operations on recor ds. Research Report 48, Digital
Equipment Corporation, Systems Research Center, August 1989.

[32] Luca Cardelli and John Mitchell. Operations on records (summary). In M. Main, A. Melton,
M. Mislove, and D. Schmidt, editors, Proceedings of Fifth International Conference on Mathemat-
ical Foundations of Programming Language Semantics, volume 442 of Lecture Notes in Computer

BIBLIOGRAPHY 170

Science, pages 22±52, Tulane University, New Orleans, March 1989. Springer Verlag. To
appear in Mathematical Structures in Computer Science; also available as DEC Systems
Research Center Research Report #48, August, 1989.

[33] Luca Cardelli and Peter Wegner. On understanding types , data abstraction, and polymor-
phism. Computing Surveys, 17(4), December 1985.

[34] Felice Cardone. Relational semantics for recursive types and bounded quanti®cation. In
Proceedings of the Sixteenth International Colloquium on Automata, Languages, and Programming,
volume 372 of Lecture Notes in Computer Science, pages 164±178, Stresa, Italy, July 1989.
Springer-Verlag.

[35] Felice Cardone and Mario Coppo. Two extensions of Curry 's type inference system. In
Odifreddi [100], pages 19±76.

[36] Robert Cartwright and Mike Fagan. Soft typing. Submitt ed to PLDI '91, November 1990.

[37] Alonzo Church. A formulation of the simple theory of typ es. Journal of Symbolic Logic,
5:56±68, 1940.

[38] Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.

[39] William R. Cook, Walter L. Hill, and Peter S. Canning. In heritance is not subtyping. In
Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages 125±135,
San Francisco, CA, January 1990.

[40] M. Coppo and M. Dezani-Ciancaglini. A new type-assignm ent for
�

-terms. Archiv. Math.
Logik, 19:139±156, 1978.

[41] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the
�

-calculus. Notre-Dame Journal of Formal Logic, 21(4):685±693, October 1980.

[42] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Lon go. Extended type structures and
®lter lambda models. In G. Lolli, G. Longo, and A. Marja, edit ors, Logic Colloquium 82, pages
241±262, Amsterdam, 1983. North-Holland.

[43] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Princ ipal type schemes and lambda
calculus semantics. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism, pages 535±560, New York, 1980. Academic Press.

[44] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Funct ional characters of solvable terms.
Zeitschrift fÈur Mathematische Logik und Grundlagen der Mathematik, 27:45±58, 1981.

[45] M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Type th eories, normal forms and D � -
lambda-models. Information and Computation, 72:85±116, 1987.

[46] M. Coppo, M. Dezani, and P. SallÂe. Functional characterization of some semantic equali-
ties inside

�

-calculus. Number 81 in Lecture Notes in Computer Science, pages 133±146.
Springer-Verlag, 1979.

[47] Thierry Coquand. Une ThÂeorie des Constructions. PhD thesis, University Paris VII, January
1985.

[48] Thierry Coquand and GÂerard Huet. The Calculus of Constructions. Information and Compu-
tation, 76(2/3):95±120, February/March 1988.

[49] Pierre-Louis Curien and Roberto Di Cosmo. A con¯uent re duction for the
�

-calculus with
surjective pairing and terminal object. In ICALP '91, 1991.

BIBLIOGRAPHY 171

[50] Pierre-Louis Curien and Giorgio Ghelli. Coherence of s ubsumption. Mathematical Structures
in Computer Science, 1991. To appear.

[51] Pierre-Louis Curien and Giorgio Ghelli. Subtyping + ex tensionality: Con¯uence of
�

� -
reductions in

�

!

. In Ito and Meyer [80], pages 731±749.

[52] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland, 1958.

[53] Pavel Curtis. Constrained quanti®cation in polymorph ic type analysis. Technical Report
CSL-90-1, Xerox Palo Alto Research Center, February 1990.

[54] O. J. Dahl and K. Nygaard. SIMULA±An ALGOL-based simula tion language. Communica-
tions of the ACM, 9(9):671±678, September 1966.

[55] Luis Damas and Robin Milner. Principal type schemes for functional programs. In Pro-
ceedings of the 9th ACM Symposium on Principles of Programming Languages, pages 207±212,
1982.

[56] Nicolas G. de Bruijn. Lambda-calculus notation with na meless dummies: a tool for auto-
matic formula manipulation with application to the Church- Rosser theorem. Indag. Math.,
34(5):381±392, 1972.

[57] M. Dezani-Ciancaglini and I. Margaria. F-semantics fo r intersection type discipline. In
G. Kahn, D. B. MacQueen, and G. Plotkin, editors, Semantics of Data Types, volume 173 of
Lecture Notes in Computer Science, pages 279±300. Springer-Verlag, 1984.

[58] Mariangiola Dezani-Ciancaglini and Ines Margaria. A c haracterisation of
�

-complete type
assignments. Theoretical Computer Science, 45:121±157, 1986.

[59] Mike Fagan. Soft Typing: An Approach to Type Checking for Dynamically Typed Languages. PhD
thesis, Rice University, December 1990.

[60] Tim Freeman and Frank Pfenning. Re®nement types for ML. In Proceedings of the SIGPLAN
'91 Symposium on Language Design and Implementation, Toronto, Ontario. ACM Press, June
1991.

[61] P. Freyd, P. Mulry, G. Rosolini, and D. Scott. Extensional PERs. InFifth Annual Symposium
on Logic in Computer Science (Philadelphia, PA), pages 346±354. IEEE Computer Society Press,
June 1990.

[62] Jean H. Gallier. On Girard's ªcandidats de reductibili tÂeº. In Odifreddi [100], pages 123±203.

[63] Giorgio Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating Inclusion and
Parametric Polymorphism. PhD thesis, UniversitÁa di Pisa, March 1990. Technical report
TD±6/90, Dipartimento di Informatica, UniversitÁa di Pisa .

[64] Giorgio Ghelli. A static type system for message passing. In Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 129±143, Phoenix, Arizona, October
1991. Distributed as Sigplan Notices, Volume 26, Number 11, November 1991.

[65] Paola Giannini and Simona Ronchi Della Rocca. Characterization of typings in polymorphic
type discipline. In IEEE Symposium on Logic in Computer Science, pages 61±70, 1988.

[66] Jean-Yves Girard. InterprÂetation fonctionelle etÂelimination des coupures de l'arithmÂetique d'ordre
supÂerieur. PhD thesis, UniversitÂe Paris VII, 1972.

[67] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, 1983.

BIBLIOGRAPHY 172

[68] Michael J. Gordon, Robin Milner, and Christopher P. Wad sworth. Edinburgh LCF. Springer-
Verlag LNCS 78, 1979.

[69] Robert Harper and John Mitchell. On the type structure o f Standard ML. ACM Transactions
on Programming Languages and Systems, 1992. To appear. An earlier version titled ªThe
Essence of MLº (Mitchell and Harper), appeared in the Procee dings of the Fifteenth ACM
Symposium on Principles of Programming Languages, San Diego, CA, January 1988.

[70] Robert W. Harper and Benjamin C. Pierce. Extensible records without subsumption. Tech-
nical Report CMU-CS-90-102, School of Computer Science, Carnegie Mellon University,
Feburary 1990.

[71] Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In
Proceedings of the Eighteenth Annual ACM Symposium on Principles of Programming Languages,
Orlando FL, pages 131±142. ACM, January 1991. Extended version available as Carnegie
Mellon Technical Report CMU-CS-90-157.

[72] Susumu Hayashi. Singleton, union and intersection typ es for program extraction. In Ito
and Meyer [80], pages 701±730.

[73] Susumu Hayashi and Yukihide Takayama. Extended projec tion method with Kreisel-
Troelstra realizability. Submitted to Information and Com putation, 1990.

[74] Fritz Henglein and Harry G. Mairson. The complexity of t ype inference for higher-order
typed lambda-calculi. In Proceedings of the Eighteenth ACM Symposium on Principles of Pro-
gramming Languages, pages 119±130, Orlando, FL, January 1991.

[75] J. R. Hindley. The simple semantics for Coppo-Dezani-SallÂe types. In Dezani-Ciancaglini
and Montanari, editors, Proceedings of the International Symposium on Programming, pages
212±226. Springer-Verlag, 1982. Lecture Notes in ComputerScience No. 137.

[76] J. Roger Hindley. Coppo-Dezani-SallÂe types in lambda-calculus, an introduction. Draft
manuscript, February 1989.

[77] J. Roger Hindley and Jonathan P. Seldin.Introduction to Combinators and
�

-Calculus, volume 1
of London Mathematical Society Student Texts. Cambridge University Press, 1986.

[78] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[79] GÂerard Huet, editor. Logical Foundations of Functional Programming. University of Texas at
Austin Year of Programming Series. Addison-Wesley, 1990.

[80] T. Ito and A. R. Meyer, editors. Theoretical Aspectsof Computer Software (Sendai, Japan), number
526 in Lecture Notes in Computer Science. Springer-Verlag, September 1991.

[81] Bart Jacobs, Ines Margaria, and Maddalena Zacchi. Expansion and conversion models in
the lambda calculus from ®lters with polymorphic types. Man uscript, March 1989.

[82] Lalita A. Jategaonkar. ML with extended pattern matchi ng and subtypes. Master's thesis,
MIT, August 1989.

[83] Lalita A. Jategaonkar and John C. Mitchell. ML with exte nded pattern matching and
subtypes (preliminary version). In Proceedings of the ACM Conference on Lisp and Functional
Programming, pages 198±211, Snowbird, Utah, July 1988.

[84] Thomas P. Jensen. Strictness analysis in logical form.Unpublished manuscript, 1991.

BIBLIOGRAPHY 173

[85] A.J. Kfoury and J. Tiuryn. Type reconstruction in ®nite -rank fragments of the polymor-
phic

�

-calculus. In Fifth Annual IEEE Symposium on Logic in Computer Science, pages 2±11,
Philadelphia, PA, June 1990.

[86] Tsung-Min Kuo and Prateek Mishra. Strictness analysis: A new perspective based on type
inference. In Proceedings of the fourth International Conference on Functional Programming and
Computer Architecture, pages 260±272, September 1989.

[87] Daniel Leivant. Typing and computational properties o f lambda expressions. Theoretical
Computer Science, 44:51±68, 1986.

[88] Daniel Leivant. Discrete polymorphism (summary). In Proceedings of the 1990 ACM Confer-
ence on Lisp and Functional Programming, pages 288±297, 1990.

[89] QingMing Ma. Parametricity as subtyping. In Proceedings of the Nineteenth ACM Symposium
on Principles of Programming Languages, Albequerque, NM, January 1992. To appear.

[90] Saunders Mac Lane.Categories for the Working Mathematician. Springer-Verlag, 1971.

[91] Simone Martini. Bounded quanti®ers have interval mode ls. In Proceedings of the ACM
Conference on Lisp and Functional Programming, pages 174±183, Snowbird, Utah, July 1988.
ACM.

[92] Robin Milner. A theory of type polymorphism in programm ing. Journal of Computer and
System Sciences, 17:348±375, August 1978.

[93] Robin Milner, Mads Tofte, and Robert Harper. The De®nition of Standard ML. The MIT Press,
1990.

[94] John C. Mitchell. Polymorphic type inference and conta inment. Information and Computation,
76:211±249, 1988.

[95] John C. Mitchell. A type-inference approach to reducti on properties and semantics of
polymorphic expressions. In Huet [79], pages 195±212.

[96] John Mitchell, Sigurd Meldal, and Neel Madhav. An exten sion of Standard ML modules
with subtyping and inheritance. In Proceedings of the Eighteenth ACM Symposium on Principles
of Programming Languages, pages 270±278, Orlando, FL, January 1991.

[97] John Mitchell and Gordon Plotkin. Abstract types have e xistential type. ACM Transactions
on Programming Languages and Systems, 10(3), July 1988.

[98] P. Naur et al. Revised report on the algorithmic languag e algol 60. Communications of the
ACM, 6:1±17, January 1963.

[99] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[100] Piergiorgio Odifreddi, editor. Logic and Computer Science. Number 31 in APIC Studies in
Data Processing. Academic Press, 1990.

[101] Atsushi Ohori and Peter Buneman. Static type inference for parametric classes. InOOPSLA
'89: Object-Oriented Programming Systems, Languages, andApplications, Conference Proceedings,
pages 445±456, October 1989.

[102] Frank Pfenning. Partial polymorphic type inference a nd higher-order uni®cation. In Pro-
ceedingsof the 1988 ACM Conference on Lisp and Functional Programming, Snowbird, Utah, pages
153±163. ACM Press, July 1988. Also available as Ergo Report88±048, School of Computer
Science, Carnegie Mellon University, Pittsburgh.

BIBLIOGRAPHY 174

[103] Frank Pfenning and Christine Paulin-Mohring. Induct ively de®ned types in the Calculus
of Constructions. In M. Main, A. Melton, M. Mislove, and D. Sc hmidt, editors, Proceedings
of the Fifth Conference on the Mathematical Foundations of Programming Semantics, Tulane Uni-
versity, New Orleans, Louisiana, pages 209±228. Springer-Verlag LNCS 442, March 1989. Also
available as Ergo Report 88±069, School of Computer Science, Carnegie Mellon University.

[104] Benjamin Pierce. A decision procedure for the subtype relation on intersection types
with bounded variables. Technical Report CMU-CS-89-169, School of Computer Science,
Carnegie Mellon University, September 1989.

[105] Benjamin C. Pierce. Preliminary investigation of a calculus with intersection and union
types. Unpublished manuscript, June 1990.

[106] Benjamin C. Pierce.Basic Category Theory for Computer Scientists. The MIT Press, 1991.

[107] Benjamin C. Pierce. Programming with intersection ty pes, union types, and polymorphism.
Technical Report CMU-CS-91-106, Carnegie Mellon University, February 1991.

[108] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in higher-order typed
lambda-calculi. Technical Report CMU-CS-89-111, Carnegie Mellon University, March 1989.

[109] Randy Pollack. Implicit syntax. In G. Huet and G. Plotk in, editors, Proceedings of the First
Workshop on Logical Frameworks, Antibes, pages 421±434. Preliminary Version, May 1990.

[110] Garrell Pottinger. A type assignment for the strongly normalizable
�

-terms. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages 561±577. Academic Press,
New York, 1980.

[111] Uday S. Reddy. Objects as closures: Abstract semantics of object oriented languages. In
Proceedings of the 1988 ACM Symposium on Lisp and FunctionalProgramming, pages 289±297,
Snowbird, Utah, July 1988.

[112] Didier RÂemy. Typechecking records and variants in a natural extension of ML. In Proceedings
of the Sixteenth Annual ACM Symposium on Principlesof Programming Languages, Austin, pages
242±249. ACM, January 1989.

[113] Didier RÂemy. AlgÁebres Touffues. Application au Typage Polymorphe des Objets Enregistrements
dans les Langages Fonctionnels. PhD thesis, UniversitÂe Paris VII, 1990.

[114] Didier RÂemy. Typechecking records in a natural extension of ML. Submitted to TOPLAS,
June 1990.

[115] Didier RÁemy. Typing record concatenation for free. In Proceedings of the Nineteenth ACM
Symposium on Principles of Programming Languages, Albequerque, NM, January 1992. To
appear.

[116] John Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Programmation,
pages 408±425, New York, 1974. Springer-Verlag LNCS 19.

[117] John Reynolds. Using category theory to design implic it conversions and generic operators.
In N. D. Jones, editor, Proceedings of the Aarhus Workshop on Semantics-Directed Compiler
Generation, number 94 in Lecture Notes in Computer Science. Springer-Verlag, January
1980.

[118] J. C. Reynolds. The essence of algol. In J. W. de Bakker and J. C. van Vliet, editors, Algorithmic
Languages, pages 345±372, Amsterdam, 1981. North-Holland.

BIBLIOGRAPHY 175

[119] J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor,
Information Processing 83, pages 513±523, Amsterdam, 1983. Elsevier Science Publishers B.
V. (North-Holland).

[120] John Reynolds. Three approaches to type structure. InMathematical Foundations of Software
Development. Springer-Verlag, 1985. Lecture Notes in Computer ScienceNo. 185.

[121] John C. Reynolds. Preliminary design of the programmi ng language Forsythe. Technical
Report CMU-CS-88-159, Carnegie Mellon University, June 1988.

[122] John C. Reynolds. Preliminary design of the programmi ng language Forsythe. Technical
Report CMU-CS-88-159, Carnegie Mellon University, June 1988.

[123] John C. Reynolds. The coherence of languages with intersection types. In Ito and Meyer
[80], pages 675±700.

[124] Edmund Robinson and Robert Tennent. Bounded quanti®cation and record-update prob-
lems. Message toTypes electronic mail list, October 1988.

[125] Simona Ronchi della Rocca. Principal type scheme and uni®cation for intersection type
discipline. Theoretical Computer Science, 59:181±209, 1988.

[126] S. Ronchi della Rocca and B. Venneri. Principal type schemes for an extended type theory.
Theoretical Computer Science, 28:151±169, 1984.

[127] P. SallÂe. Une extension de la theorie des types en
�

-calcul. pages 398±410. Springer-Verlag,
1982. Lecture Notes in Computer Science No. 62.

[128] Dana Scott. Data types as lattices.SIAM Journal on Computing, 5(3):522±587, 1976.

[129] R. A. G. Seely. Categorical semantics for higher orderpolymorphic lambda calculus. Journal
of Symbolic Logic, 52(4):969±988, December 1987.

[130] Ryan Stansifer. Type inference with subtypes. In Proceedings of the Fifteenth ACM Symposium
on Principles of Programming Languages, pages 88±97, San Diego, CA, January 1988.

[131] Steffen van Bakel. Principal type schemes for the strict type assignment system. Technical
report 91-6, University of Nijmegen, 1991.

[132] Steffen van Bakel. Complete restrictions of the intersection type discipline. Theoretical
Computer Science, 99, 1992. To appear.

[133] Mitchell Wand. Complete type inference for simple obj ects. In Proceedings of the IEEE
Symposium on Logic in Computer Science, Ithaca, NY, June 1987.

[134] Mitchell Wand. Corrigendum: Complete type inference for simple objects. In Proceedings of
the IEEE Symposium on Logic in Computer Science, 1988.

[135] Mitchell Wand. Type inference for record concatenati on and multiple inheritance. In Fourth
Annual IEEE Symposium on Logic in Computer Science, pages 92±97, Paci®c Grove, CA, June
1989.

[136] Hirofumi Yokouchi. Relationship between polymorphi c types and intersection types (ex-
tended abstract). Unpublished manuscript, December 1990.

