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Abstract

Regular expression types have been proposed as a foundation for statically typed processing of XML
and similar forms of tree-structured data. To date, however, regular expression types have been explored
mainly in the setting of special-purpose languages (e.g., XDuce, CDuce, and XQuery) whose type systems
were designed around regular expression types \from the ground up." The goal of the Xtatic language
is to bring regular expression types to a broader audience by presenting them as a lightweight extension
of a popular object-oriented language, C#.

We develop here the formal core of the Xtatic design|a combination of the tree-structured data
model of XDuce with the classes-and-objects data model of a conventional object-oriented language.
Our tool for this investigation is a tiny language called FX, whose features are drawn from Featherweight
Java (FJ) and from the core of XDuce. Points of interest include a smooth interleaving of the two
value spaces, in which XDuce's tree structures are grafted into of FJ's class hierarchy while objects and
object types play the role of XDuce's label values and label types; a \semantic" de�nition of the subtype
relation, inherited from XDuce and extended to objects; and a natural encoding of XML documents and
their schemas using a simple form of singleton classes.

1 Introduction

The popularity of XML is due in part to the existence of a number of formalisms for specifying the structures
of XML documents. By supporting dynamic consistency checking, ensuring that information being exchanged
(e.g., between modules in an application or nodes in a distributed system) has the expected structure, these
schema languages signi�cantly increase the robustness of complex XML-based information systems.

However, the exploitation of schema languages by current XML technologies falls far short of what is
possible. In particular, schemas now play little part in the static analysis of programs that operate on XML
structures: they are not used for checking code for inconsistencies at compile time, or for optimization|in
short, they are not used as types in the usual programming-language sense of the term. Taking advantage
of this missed opportunity, and thereby improving both the robustness and the eÆciency of XML-based
information systems, is the long-range goal of the Xtatic project at the University of Pennsylvania.

The key technology for this project is regular expression types. Regular expression types are based on
well-known constructions from automata theory (they are a mild generalization of nondeterministic tree
automata). Their basic constructors (union, concatenation, repetition, etc.) are similar to those found
in existing XML schema formalisms such as DTDs [35] and XML-Schema [36]. The di�erence from these
schema languages is that, in Xtatic, XML trees are built-in values of the language, and static analysis of
the shapes of trees that may appear at run time (as values of variables, parameters to methods, results of
complex expressions, etc.) is part of the ordinary behavior of the typechecker.

Past work on regular expression types at Penn led to a language prototype called XDuce [16, 18, 15, 17].
XDuce is a statically typed language for writing recursive tree transformers|roughly, a statically typed
fragment of the popular XSLT language [37]. Beyond regular expression types, its main innovation is a
powerful form of regular expression pattern matching|a statically typed \tree grep" primitive that arises
naturally from types [15]. The XDuce implementation incorporates eÆcient algorithms for subtyping and
typechecking [18].

XDuce has had a signi�cant impact in parts of the XML world; in particular, its in
uence can be
seen in the type system of the XML Query Algebra [11], the core of the W3C standard query language for
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XML, as well as newer schema languages such as TREX [8] and Relax NG [9]. However, signi�cant work
remains before the bene�ts of regular expression types can be made available to the vast majority of XML
programmers. In particular, the simple tree-data model of XDuce must be enriched to include objects.

We have begun a new phase of the XDuce project|a redesign and re-implementation along more
ambitious lines, dubbed Xtatic, whose main focus is on inter-operability both at source level and at run
time with an established, object-oriented host language. We have chosen compatibility with C# as our
immediate target. (A similar exercise could of course be carried out for similar languages such as Java.) The
goal is to make Xtatic as lightweight an extension of C# as possible, smoothly merging the tree values and
types of XDuce with the familiar object model of C# and re-using existing C# features wherever possible
in the design, rather than introducing new, XML-speci�c mechanisms.

This paper develops the formal core of the Xtatic design|a combination of the tree-structured data
model of XDuce with the classes-and-objects model of C#. Our tool for this investigation is a tiny language
called FX, which combines Featherweight Java [19] with the core features of XDuce. The main points of
interest may be summarized as follows.

� The two original data models are tightly interwoven in FX. On one hand, the subtype hierarchy of tree
types is grafted into the class hierarchy, allowing tree values to be passed to generic library facilities
(collection classes, etc.), stored in �elds of objects, etc. Conversely, the role of labels and label types
in XDuce is played by objects and classes in FX.

� Subtyping in FX is a natural extension of both the object-oriented subclass relation and the richer
subtype relation of regular expression types. XDuce's simple \semantic" de�nition of subtyping (sans
inference rules) is extended to objects and classes.

� FX enriches XDuce's regular expression pattern matching construct with a natural form of type-based
pattern-matching on objects.

The rest of the paper is organized as follows. Section 2 gives a brief illustrative example of Xtatic
code. In Section 3, we review some details of XDuce and FJ's data models. Section 4|the heart of the
paper|combines these to produce the data model of FX. The remainder of the the FX language is informally
described in Section 5; standard soundness properties are sketched in Section 6. In Section 7, we show how
the FX data model encodes XML types and values. Section 8 overviews relevant work, and Section 9 sketches
our plans for the future development of Xtatic.

2 Example

Xtatic aims to provide a general mechanism for constructing tree- (and sequence-)structured data. This
mechanism can be used to provide an encoding (indeed, multiple possible encodings) for XML data. We give
here a sketch of the idea of a possible encoding which is suÆcient to get a feel of the language, postponing
the details till Section 7.

Assume there is a class Tag whose objects are supposed to encode XML tags. Let also classes Person,
Name, Email and Phone be descendants of Tag aimed to encode XML tags <person>, <name>, <email>,
<phone>, and let person, name, email, phone be variables that contain objects of the corresponding classes.
Then an expression

[ <person>[

<name>[<"Queen Elisabeth">[]]

<email>[<"queen@buckingham.uk">[]] ]

<person>[

<name>[<"Tony Blair">[]]

<phone>[<"+49 34 3456">[]] ]

]

can be thought of as representing an XML document of a similar structure. The type of this expression is
the sequence type
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[ <Person>[

<Name>[<String>[]]

(<Email>[<String>[]] | <Phone>[<String>[]])

]* ]

The outer parentheses [, ] in both cases delimit regular expressions and types, keeping them distinct from
expressions of the host language (C# or FJ). A tree is constructed using the form <...>[...] where <...>
contains the tree's label, and [...] contains the sequence of children trees. A sequence is built by placing
trees adjacently to each other. The type constructor \|" is type alternation (union), and \*" is repetition.
Note that native C# values, like the tag objects person, name, or strings, occur only inside tree labels.

Sequence values can be examined using type-based pattern matching. For example, assuming the variables
list and phonebook each contain a sequence of the type given above and that the variable spamlist holds
a string, the code fragment

match (list) {

case [ <Person>[<Name>[String] <Email>[String e] ]

//...

]:

spamlist = spamlist + "," + e;

//...

case [ (<Person>[String] p) //...

]:

phonebook = [ phonebook p ]

//...

case []:

//...

}

inspects the �rst tree in the string list and, if the corresponding person has an email, extracts the address
into a string variable e and uses it to extend the string spamlist; otherwise, the person must have a phone,
and the second case branch handles this case by binding the whole person's entry to the variable p and
using it to extend phonebook sequence. (Note that Java comments //... elide parts of code above.)

3 Technical Background

The data model of a language is the collection of values that programs in the language manipulate, their
types, and fundamental relations such as value typing and subtyping. The data model is the bedrock on which
the full language de�nition (the syntax, typing rules, and evaluation rules for expressions) rests. Because
the primary topic of this paper is the combination of trees and objects (and their types), the data model of
FX is where we need to concentrate our most careful attention.

As background for what follows, this section brie
y|and informally|sketches the data models found in
XDuce and FJ.

3.1 The XDuce Data Model

The data model of XDuce is parameterized on a language of labels. The details of these labels can vary (and
do vary, across the several published XDuce papers and implementations), but all the variations contain
the following common structure:

� a set L of label values, ranged over by l,

� a set of label types, ranged over by L,

� a denotation function [[ � ]] giving the set [[L]] � L of label values that are members of each label type L.
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The subtyping relation on label types, written L1 @: L2, is generated by [[ � ]]|that is L1 @: L2 i� [[L1]] � [[L2]].
For example, one simple choice of label language is to select an arbitrary set of identi�ers and designate

them to be the set L of label values; for each value l 2 L, we consider l to be a label type as well (i.e., l is
the singleton type whose denotation contains just l); we also introduce the wildcard label type ~, denoting
the whole set L. Of course, a yet simpler choice would be to omit ~, but having a maximal label type turns
out to be extremely useful in pattern matching, where it functions as a \don't care" pattern.

Having selected the language of labels, the XDuce data model can be de�ned in a uniform way. First,
a tree value t consists of a label value as its node and a sequence of children tree values:

t ::=
l[t1, : : : ,tn] where n � 0

Now, a sequence value is a sequence t1, : : :,tn of zero or more tree values combined using the comma `,`.
(We use the shorthand notation t throughout the paper for sequences, and () to denote the empty sequence.
We write s,t for the concatenation of the sequences s and t.)

XDuce types|regular expression types|are built from tree types and references to a collection of globally
de�ned type names X:

T ::=
<L>[T] tree
() empty sequence
T T concatenation
T|T union
T* repetition
X type name

The meanings of types are given with respect to a global collection of type de�nitions, each of the form X = T.
We write Typenames for the set of of type names X appearing on the left of one of these de�nitions, def for
the function that maps each X to the corresponding body type T. The global de�nitions may be recursive
or mutually recursive, but (to limit the power of the type language to just regular, rather than context-free,
sets of trees), we impose the condition that all \loops" from a variable X back to itself must pass through
the body of at least one <L>[T] construct|i.e., \top-level" recursion is not allowed.

Next, the denotation function [[ � ]] mapping types T to sets of sequence values t is de�ned as the least
solution of the following equations:

[[<L>[T]]] = f <l>[t] j l 2 [[L]] and t 2 [[T]] g
[[()]] = f()g
[[T1 T2]] = f t1 t2 j t1 2 [[T1]]; t2 2 [[T2]] g
[[T1|T2]] = [[T1]] [ [[T2]]
[[T*]] = f t1, : : :,tn j n � 0 ^ 8k 2 1 : : : n: tk 2 [[T]] g
[[X]] = [[def(X)]]

The subtyping relation for regular expression types is de�ned in the simplest imaginable way:

T1 <: T2 i� [[T1]] � [[T2]]:

The fact that subtyping can be de�ned semantically is actually quite important in XDuce. The alternative|
writing down a collection of inference rules characterizing the relation inductively|would be much heavier
and harder to understand than the subtype relations of most languages, since the regular expression type
constructors satisfy many algebraic laws arising from the associativity of comma and the associativity,
commutativity, and distributivity (over comma and <L>[...]) of the (non-disjoint!) union. An inference-
rule presentation of the subtyping relation can certainly be given|indeed, it must be: it is the basis for the
algorithm for subtype checking [18]|but it is not pretty.

3.2 The FJ Data Model

Featherweight Java, or FJ, is a tiny calculus designed to capture the essential typing mechanisms of class-
based object-oriented type systems in programming languages such as Java and C#. It was �rst used by
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Igarashi, Pierce, and Wadler [19] to formalize the GJ [5] type system, and has since formed the basis of
numerous formal studies of Java and related languages [20, 30, 2, 3, 38, 1, 28, 22, etc.]. FJ embodies the
core mechanisms of object creation, �eld access, method invocation, and inheritance (and|in the most
common presentation, though not here|casting) in exactly the same form as they are found in Java, while
omitting everything else... from re
ection and concurrency to interfaces, overloading, static members, and
even assignment.

An FJ program consists of a collection of class declarations plus a single expression to be evaluated.
The types in an FJ program are just class names C. FJ values are objects, which (since FJ is a declarative
language, so the only thing that distinguishes one object from another are its class and the arguments passed
to its constructor) are simply identi�ed with new expressions.

o ::=
new C(o1, . . .on)

The constructor arguments o1; : : : ; on (usually written just o) are required to correspond exactly to the �elds
of the class C. For example, if C has �elds a and b and its immediate subclass D has �elds e and f, then an
instance of D will always have the form new D(o1,o2,o3,o4), where o1 is the value for the a �eld of the new
object, o2 is the value of the b �eld, o3 of the c �eld, and o4 of the d �eld.

The global set of class de�nitions in an FJ program is formalized as a static context, which provides
several functions for examining di�erent aspects of the class de�nitions: the set of all de�ned classes (which
always includes the special class Object); the immediate-subclass relation, which must be tree-structured
with Object at the root; the list of �eld names and types in each class; the method names and signatures
in each class; and the method bodies for each class. This static context is used to de�ne the typing and
evaluation relations. For purposes of discussing the FJ data model, we can restrict attention to the part of
the static context comprising just the set of class names and the immediate-subclass relation, which we call
the static data context.

The subtype relation in FJ, written C1 @: C2, is the re
exive and transitive closure of the immediate-
subclass relation. LikeXDuce's, this de�nition of subtyping is pleasingly simple; however, it has a completely
di�erent|more syntactic|character. In order to combine the two data models, we need to look for a more
\semantic" presentation of this one (as we remarked above, a syntactic presentation of XDuce subtyping is
an unattractive alternative). This can be achieved as follows.

We say that a value new C(o) is an instance of the class C. That is, an object is an instance of the class
from which it was created. The denotation of a class C is then the set of all instances of this class and all its
subclasses:

[[C]] = f o j o is an instance of D, for some D @: C g

Note that this does not require that the constructor arguments o belong to the types of the �elds in class C.
This may appear overly permissive, but it has some useful implications:

1. It is obvious from the de�nition that the \semantic" subtyping relation derived from it coincides exactly
with the syntactic subclass relation:

C1 @: C2 i� [[C1]] � [[C2]]:

2. This de�nition requires no changes if we enrich the language with imperative features. A more precise
de�nition (\the values in type C are objects of the form new D(o), where D @: C and, oi 2 [[Fi]], where
Fi is the type of the i

th �eld of class D") would require a co-inductive reading (cf. [33]) to make sense
in this setting.

Intuitively, the reason we can get away with this \loose" interpretation of types is that later, e.g., in the proof
of soundness, we will never deal with arbitrary elements of [[C]], but only with elements that we also know
are well typed (according to the expression typing relation, which does ensure that constructor arguments
have the right types).
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Values Types
Full FX language

a ::= FX value
new C(a) object
[t] delimited sequence

A ::= FX type
C class type
[T] delimited RE type

Regular expression sublanguage
t ::=

<a>[t] tree value
T ::= RE type

X RE type variable
<C>[T] tree type
() empty sequence
T T concatenation
T|T alternation
T* repetition

Figure 1: FX values and types

4 The FX Data Model

The interweaving of XDuce's and FJ's data models in FX is founded on two observations.

1. We can treat sequences of trees as objects simply by \grafting" the whole collection of regular ex-
pression types into the class hierarchy, inventing a special class Seq whose subtypes are all the regular
expression types. This grafting is justi�ed by a compilation model|reminiscent of GJ's homogeneous
translation [5, 19]|in which all regular expression types in an FX program are \erased" to the single
class type Seq and all tree values are translated into objects of class Seq.

2. The data model of objects and classes quali�es as a \label language" in the sense discussed in Sec-
tion 3.1, so we can use arbitrary objects as the labels in XDuce trees and classes as label types.

Formally, the data model is de�ned in three steps. First, we give the syntax of values and types. Next,
we give the notion of a static context, which summarizes the type-related information de�ned in a program.
Finally, �xing a particular static context, we de�ne the membership relation for values in types.

Figure 1 de�nes the syntax. An FX value a can have one of two forms: it is either an object new C(a)

or a sequence [t] delimited by special brackets. Observe that, inside an object new C(a), the values of
�elds may be arbitrary FX values a; in particular, they can be sequences. The organization of FX types A is
similar, combining class types C and regular types [T]. Regular values t and regular types T are essentially
those of XDuce, where any FX value can be used as a label in a tree value and any class type C can be used
as a label in a tree type.1

A static data context is a tuple

DatCtx = hClasses;@:;Typenames; defi

where

� Classes is a set of class names, ranged over by C and containing special names Object and Seq;

� @: is a binary relation on Classes, generated as a re
exive and transitive closure from a relation
corresponding to an \immediate predecessor" function Parent : Classes n fObjectg ! Classes;

� Typenames is a set of type names, ranged over by X;

1The careful reader may note a certain discrepancy here: a sequence can be used as a label in another tree, as in <[s]>[t],
but a regular expression type cannot be similarly used as a label. This raises the question of what type can be given to a value
of the above form. As we shall see later, the type would have the form <Seq>[T] where Seq is the special class type containing
all sequences.
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Instances : C 7! P(a)

Instances(C) =

�
f [t] j t arbitrary g if C = Seq

f new C(a) j a arbitraryg otherwise

[[ ]] : A 7! P(a)
[[C]] =

S
f Instances(D) j D @: C g

[[[X]]] = [[[def(X)]]]
[[[<C>[T]]]] = f [<a>[t]] j a 2 [[C]] and [t] 2 [[[T]]] g
[[[()]]] = f[]g
[[[T1 T2]]] = f [t1 t2] j [t1] 2 [[[T1]]]; [t2] 2 [[[T2]]] g
[[[T1|T2]]] = [[[T1]]] [ [[[T2]]]
[[[T*]]] = f [t1 : : :tn] j 8k 2 1 : : : n: tk 2 [[T]]; for some n � 0 g

Figure 2: Type denotations.

� def is a function from Typenames to types, that maps each type name X to a regular expression type
expression T (its de�nition);

and such that

1. if a type name X0 appears in def(X), then X0 2 Typenames; and

2. a grammar obtained from def by considering variables from Typenames as non-terminals generates
a regular language (see [18] for a formal syntactic restriction on the grammar that guarantees this
condition).

The semantics of types is given by the denotation function [[ ]], which maps each type A to its set of
inhabitants a. This function is the least solution of the equations in Figure 2. Note the special role of the
class Seq, whose denotation does not contain objects (new Seq(a) is not in the denotation of any type), but
instead contains all sequence values.

Subtyping on FX types is de�ned semantically:

A1 <: A2 () [[A1]] � [[A2]]:

The XDuce subtyping algorithm [18] can be used to decide this relation, since it is parameterized by the
subyping relation for tree label types (called there \subtagging"), which corresponds in FX to the subclass
relation C1 @: C2.

5 The FX Language

The FX data model described in the previous section establishes a skeleton, on which a full-blown pro-
gramming language can be constructed|providing ways of interrogating and destructing values, as well as
abstraction mechanisms and all the other usual apparatus. Naturally, FX's value-destruction mechanisms are
contributed by the corresponding sublanguages: FJ provides �eld projection on objects and XDuce brings
in regular-expression pattern matching on sequences and trees. The abstraction mechanisms of FX|classes,
methods, and inheritance|are taken entirely from FJ.

Figure 3 gives the syntax of FX expressions and their constituent patterns. The behavior of most of these
constructs is standard; therefore we discuss the language semantics mostly informally, commenting in more
detail on the issues that are novel in FX. Full de�nitions can be found in Appendix A.

We do not describe concrete syntax for class and method declarations: for the present discussion it is
more convenient to think about an FX program as an abstract static context Ctx de�ned along the lines,
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e, d ::= expression
x value variable
new C(e) new object creation
e.f �eld access
e.m(e) method call
<e>[e] tree
[e] sequence
match(e){case [P]: e} pattern match

R ::= FX pattern
Q class pattern
[P] delimited RE pattern

Q ::= class pattern
C class
C x object binding

P ::= RE pattern
X RE type name
<Q>[P] tree
() empty sequence
P P concatenation
P|P alternative
T* type repetition
P x RE value binding

Figure 3: FX language syntax.

and as an extension of, the static data context DatCtx of Section 4. Namely, in addition to the items from
DatCtx, the full context Ctx associates with each class a collection of methods available for calling on the
objects of the class. For each method, Ctx provides its signature (types of the arguments and the return
type), the list of argument variables, and the expression of the body. Additionally, Ctx must obey constraints
on method types in subclasses, stemming from the C# inheritance rules.

The only signi�cant di�erence of an FX context Ctx from the information provided by an FJ program
is that the types appearing in method signatures are arbitrary FX types, i.e. they can be regular types as
well as classes. Consequently, the subtyping relation used for checking the inheritance constraints (as part
of the process of checking that a class is well formed) is the semantic subtyping relation <:. Similarly, FX
variables x (which can only originate in FX as method argument names or as binders in patterns) can hold
any FX values, either objects or sequences. As in FJ, there is a special variable this that can be used in
expressions to refer to the current object. The typing and evaluation rules treat this variable specially.

The FX data model permits only tree values to be members of sequences. That is, something like
[ [t] (new C(a)) [s] ] is not a well-formed value. The syntax of expressions, however, does allow nested
sequences. The reason is that we want an expression like

[ db.getPapers("POPL") db.getPapers("ICFP") ]

to be legal|provided the method getPapers() returns values of a sequence type|and to mean the con-
catenation of the sequences returned by the two calls. But, as long as this expression is legal, the expression
obtained by replacing the method calls by their results|which is a nested sequence|should also be legal.
Therefore, a nested sequence [ [e] [d] ] is a valid FX expression, which evaluates to the same value as
[ e d ]. Of course, for the latter to be type safe, the types of expressions [e] and [d] must both be valid
regular types. The FX typing rules ensure that this is indeed the case for nested sequence expressions.

On the other hand, an object is never legal as a member of a sequence and, symmetrically, a tree expression
<e>[d] is never allowed outside the sequence parentheses [ : : :]. Since both are permitted syntactically, this
condition is checked by the typing rules.

Deconstruction of sequence values is done by matching them against patterns using the match construct,
which syntactically resembles C# switch statement but behaves more like XDuce's match. That is, the
behavior of an expression
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match (d) {

case [P1]: e1;

case [P2]: e2;

: : :

case [Pn]: en;

}

is to evaluate d and match the result against each of the patterns in turn until the �rst one, say [Pi], matching
the value is encountered. The successful match produces an environment that maps variables declared in
[Pi] to the appropriate portions of the value computed from d. The result of the whole expression is the
result of evaluating ei, assuming variable mappings from the environment. So, the case bodies do not have
the \fall through" behavior of switch. The value of match' input d must be a sequence, and all case patterns
must be sequence patterns.

The syntax of FX sequence patterns [P] is essentially that of XDuce:2 a pattern is just a type annotated
with variable binders. This intuition is also extended to class types in FX. A class pattern has the form C x,
where C is a class name and x is a variable to be bound. At run time, an object value new D(a) matches
the pattern whenever D @: C, what agrees with the denotational relationship [[D]] � [[C]]. As it is the case for
the class Seq, the pattern Seq x is treated specially: it matches any sequence value [t]. (And, naturally,
[t] is matched by any ancestor class of Seq, including Object.)

Since classes are types of labels in tree types, it is natural to use a class pattern in the label position in
a tree pattern. This allows one to extract a label from a tree as an object for later use in the program. It is
worthwhile noticing that this is a bene�t of our goal to use, whenever possible, C# features for the needs of
regular types. To compare, in XDuce a label is an integral part of a tree and cannot be extracted from it
as a �rst-class value.

The typing of match depends on the type inference for variables bound in its patterns. In XDuce, the
type inference, formalized as the judgment T . P ) �, is precise, meaning that for each type �(x), each
value from its denotation can be possibly bound to x at run time as a result of matching some value from
T's denotation against P, and [[�(x)]] does not contain values that cannot be thus obtained. The precision
is achieved thanks to the availability of unrestricted union operation on XDuce types. In FX, however, we
cannot have union for class types, and have to use an upper bound instead, sacri�cing the precision of type
inference. For an example, suppose class D has A, B, and C as its direct subclasses, and consider matching
values of type [<D>[]] against pattern [<A x>[] | <B x)[]]. Since there is no a class whose denotation is
an exact union of the denotations of A and B, the only reasonable type assignment for x is D, which is not
precise|x can never be bound to an object of C, another D's descendant. Therefore, we decided to formalize
FX type assignment for pattern variables by a simpler relation, .R ) �, which does not take the input type
into account and assigns �(x) to be the type on which x appears as the annotation in pattern R (and, in the
case of the alternation pattern like in the above example|the join of the types of the alternatives, de�ned
as their smallest common computable upper bound).

In XDuce, precise pattern type inference extends to the whole collection of patterns of a match: the
input type for the ith pattern Pi is not the type of input to the whole match, but the input restricted to
those values that could not be matched by any of the previous patterns. Implementation of this feature
depends on availability of type di�erence. Since di�erence is not available for classes, we had to give up on
this feature as well.

We are able, however, to check for exhaustiveness of patterns|by checking if the input type is a subtype
of the join of (types of) all the patterns, and provide a restricted form of pattern redundancy checking|by
comparing, for each pre�x of the pattern list, the join of the pre�x's types and the input type.

6 Properties

We will now formulate for FX the standard results of soundness and progress. The proofs of them follow
standard induction techniques and are omitted.

2We also demand that each pattern P satisfy the same regularity constraint as for types, and that it be linear. Intuitively,
linearity means that no variable is bound in P twice, except in the alternation subpatterns, where alternative branches must
bind exactly the same variables (see [15], appendix A.2, for the formal de�nition).
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All the results are stated assuming there is a well-formed static context corresponding to an FX program.
Value environments are mappings � : x 7! a, and typing environments are mappings � : x 7! A. An

environment with the empty domain is written � (both for value and type environments).
The following three relations formalizing FX operational semantics can be obtained by adopting the

corresponding relations from FJ and XDuce, tacking into account the comments in Section 5 (we have to
omit them from the main body of the paper for the lack of space):

� � ` e 2 A, \in the typing environment �, expression e gets type A",

� � ` e + a, \in the value environment �, expression e evaluates to the value a",

� � ` e 6+ \evaluation of e gets stuck in the �nite number of steps" (this relation is speci�c to big-step
semantics, the analogous property for small-step semantics says that e gets reduced to a non-value
expression to which none of the evaluation rules is applicable).

Write a 2: A to mean that � ` a 2 A0 for some A0 <: A.
A value environment � conforms to a typing environment �, written � ` �, if dom(�) = dom(�) and

�(x) 2: �(x), for all x.

6.1 Theorem [Soundness]: For � ` �, if � ` e 2 A and � ` e + a, then a 2: A.

6.2 Theorem [Progress]: If � ` e 2 A, then not � ` e 6+.

Both of the standard theorems depend (in the parts of their proofs corresponding to the match construct)
on the following property of pattern matching, which is interesting in itself. Recall that the object-against-
pattern case in our pattern matching relation a . R ) � does not check for the well-typedness of object
�elds. The property says that, despite of this, if pattern matching is done against a well typed value a, any
binding in the resulting environment is also well-typed.

6.3 Proposition [Pattern matching preserves well-typedness]: Let a and A be such that � ` a 2 A.
If a 2 R) � and .R) �, then A <: tyof (R) and, for all x, � ` �(x) 2 B for some B <: �(x).

7 XML in FX

So far, none of the mechanisms we have described have been especially tied to XML|we have simply
established a generic foundation for representing and manipulating ordered, labeled tree structures in an
object-oriented setting. Our �nal job is to show how this foundation supports a natural encoding of (most
of) XML itself, based on a simple form of singleton types and a modicum of syntactic sugar.

We begin by explaining how the textual \leaf data" of XML documents, known as PCDATA (parsed
character data), can be treated. Our �rst step is to extend, conceptually, the C# data model by introducing
singleton classes for individual characters. We assume that the data context DatCtx provides a class Char,
corresponding to the standard C# character class, plus, for each character c, a class Charc extending Char.
All these classes have no instance variables and nullary constructors|thus, each class Charc contains only a
single object, new Charc(), which we can identify with the character c itself. Now, a C# character literal,
say 0a0, is considered as syntactic sugar for either the object new Chara(), when used in an expression, or
for the class Chara, when used in a type.

We can now de�ne a regular expression type PCDATA for representing XML character data:

def(PCDATA) = ( <Char>[] )*

That is, an XML text value is represented by a sequence of trees, where each tree has no children and has a
character object as its label. The type PCDATA contains arbitrary text strings, so we can write patterns like

<Object>[PCDATA];

which matches a tree whose body contains only character data.
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Why we did not adopt the more obvious choice of using C#'s String class to hold XML character data?
One reason is that the PCDATA representation opens the way to interesting uses of pattern matching for string
regular expression processing. Since each Chara is a subtype of Char, we can write types that restrict text
to a particular form. For example, all character sequences starting with 0a0 and ending with 0b0 belong to
the type

<0a0>[] PCDATA <0b0>[]:

This type, like any Xtatic type, can be annotated with variable binders to obtain a pattern. The general
pattern-matching facility, then, o�ers functionality somewhat similar to that of Perl's regular expression
string patterns, but with static typing support. (See [32] for a deeper exploration of this idea.)

Another reason for using PCDATA instead of String is that, in XML, two character sequences following
each other are indistinguishable from a single larger character sequence. The PCDATA type satis�es this
requirement,

[[PCDATA PCDATA]] = [[<Char>[]* <Char>[]*]] = [[<Char>[]*]] = [[PCDATA]]

but a String-based representation does not, since [[<String>[] <String>[]]] 6= [[<String>[]]].
The encoding of XML documents in Xtatic now follows naturally|all we need is an encoding for XML

tags, and this can be obtained by following exactly the same intuitions that we used for characters. We
assume that the data context DatCtx contains a special class Tag and, for each XML tag <g>, a singleton
class Tag<g> (with the object new Tag<g>() as its only inhabitant) as an immediate subclass of Tag. Then,
for an XML fragment

<basket> <apple/> <banana/> </basket>

the corresponding Xtatic value is

<new Tag<basket>()>[ <new Tag<apple>()>[] <new Tag<banana>()>[] ]

and the corresponding type is

<Tag<basket>>[ <Tag<apple>>[] <Tag<banana>>[] ]

Of course, an implementation needs special syntax that makes these values and types readable (and even
writable!). The concrete syntax in our current prototype implementation looks very close to standard XML.

Together, the encodings of character data and tags allow a good-size fragment of XML to be represented
very directly in FX. (There are still important parts missing, though. Most urgently, we still lack a good
treatment of attributes which, until very recently [14], was also lacking in XDuce.)

The only basic data type provided by the XML standard is character sequences. Some schema formalisms,
however, introduce datatypes|a set of conventions by which a schema can specify that a particular textual
fragment in an XML document is supposed to represent a non-textual value, e.g. a 
oat or a date. Some
of these datatype descriptions can be captured using subtypes of PCDATA built from regular expression
operators to mimic the string regular expressions that describe particular datatype formats. Alternatively,
the FX framework could accomodate a Schema-datatype-aware encoding of XML, when a text representing
a Schema datatype value gets translated directly into a value of an appropriate C# type (placed as a label
of a childless tree), bypassing the PCDATA representation.

8 Related Work

There is a substantial literature and many formalisms and tools for dynamic validation of XML documents
against expected schemas, either by stand-alone processors or during document construction, as has been
proposed for DOM Level 3 [10]. While Xtatic shares some formal background with these techniques, its
central goal|to support static checking of XML-manipulating code|falls completely outside their purview.

Among static approaches, there are two, not entirely distinct, kinds of work that are directly relevant
to ours: work on providing XML processing capabilities in a pre-existing programming language with static
guarantees of correctness, and work on combining object-orientation with other XML-like data models.
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A popular direction for work of the �rst kind is to provide a translation that generates type de�nitions
(and value constructors) in the original language corresponding to XML types of interest. Examples include
JAXB [31], Relaxer [27], HaXML [34], and XM� [23, 29]. One disadvantage of these translations is that
they tend to introduce \spurious structure," destroying some useful 
exibility in the subtype relation. This
point is discussed in detail in [17] and [13].

There can be varying degrees of integration of a \foreign" data model into the OO data model. One
is creating a combined data model that incorporates the features of both on the equal level. A successful
example is the ODMG data model [6], an accepted standard for object-oriented databases, which o�ers a
class-based object-oriented type system analogous to that of programming languages like C#, together with
a few other built-in type constructors: records, sets, bags, lists and arrays (all of them typed).

A greater degree of integration can be achieved by taking the object-oriented data model as primary and
the other data model as somewhat subsidiary, in the sense that its values can also be viewed as objects. This
approach has the advantage of better integration with \legacy" software written entirely under the original
object-oriented model. Examples of this approach can be found in both the programming language and
database communities.

Pizza [25] project extended Java with parametric polymorphism, higher-order functions and tagged union
types with pattern matching. (The polymorhism component was superseded by the GJ [5] proposal of
generic types for Java.) All these features where implemented by translation into pure Java in such a
way that the extended data model is used to type check Pizza source, while run time representations (if
any) of the additional features are objects of either pre-determined Java classes (for their homogeneous
translation), or of classes generated w.r.t. the Pizza source (for the heterogeneous translation). We plan to
use a scheme analogous to the homogeneous translation in the �nal implementation of Xtatic. Currently,
the programming language Scala [24] is developed to incorporate many on the same ideas in a larger context
aimed for programming Web services, including XML processing.

Even before XML became popular, the database community was actively investigating the management
of semistructural data, with Object Exchange Model (OEM) [26] being one of the formalizations. An OEM
data value is a directed graph (often just a tree) with edges labeled by tags, internal nodes containing unique
identi�ers, and leaf nodes containing atomic values (integers, strings, etc.).

As has also been argued in the programming languages world, the combination of ordinary algebraic types
and objects within the ODMG data model proved too in
exible for working with semistructural data, as it
involved encodings within the structural ODMG model, which are usually complex and diÆcult to manage
and evolve. The Ozone project [21] approached this problem by integrating the OEM data model into the
ODMG data model. Their solution is similar to ours at the level of values: �rst, the OEMmodel is generalized
to allow arbitrary ODMG values, including objects and structural values as leaves; second, a special ODMG
class, OEM, is designated to hold all OEM values. The OEM values are ultimately implemented as objects of
OEM subclasses. The OEM data model, however, is not statically typed. The motivation for Ozone was to
allow convenient manipulation of semistructural data in an object-oriented database while avoiding the overly
strict ODMG typing restrictions. The XDuce type system, on the other hand, is indicating that it might
be the right choice for typing OEM-like data (XML), without sacri�cing its 
exibility. Our contribution can
be seen as an observation that an Ozone-like integration of objects and semistructural data can be carried
out in a fully typed way, as long as the appropriate alternative to algebraic types, namely regular expression
types, is chosen.

Two ongoing language design e�orts that are very close to Xtatic in intentions and approach are CDuce
and Jwig. CDuce [4] starts from the XDuce type system and extends it in several signi�cant directions: it
provides a full set of boolean operations (including intersection and di�erence) on types, as well as higher-
order functional types and overloading in the style of �-&. Like Xtatic, CDuce extends XDuce's semantic
interpretation of subtyping to the types of the whole extended language [12]. Jwig [7] is an extension of Java
intended for programming interactive sessions between Web servers and clients. Although quite di�erent
in style from Xtatic (it uses data 
ow analysis to check well formedness of XML expressions constructed
by �lling in \templates", rather than a conventional type system and tree expression language), the basic
expressive power of Jwig's analysis is close to that of XDuce's type system (see [7] for a detailed discussion
of this point).
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9 Future Work

We currently have a prototype interpreter for a fragment of Xtatic, including the extended data model
described here. Though it still lacks most of the features of C#, the language implemented by the interpreter
goes quite a bit beyond the simple FX core|in particular, it includes imperative features; we have used it
to experiment with a number of small demos. Our short-term goals include handling a larger fragment of
C#, building more ambitious demos, and replacing the simple interpreter by a back end targeting the .NET
Common Language Runtime.

Another important near-term goal is to extend the type system to encompass a larger part of XML|most
urgently, attributes. Hosoya and Murata [14] have recently proposed a typing mechanism and corresponding
algorithms based on the attribute-element constraints of Relax NG; we hope to be able to adapt this proposal
to Xtatic. We also plan to implement translators from standard XML schema languages (in particular, the
XML-Schema standard) into Xtatic.

Our longer-term goals concentrate in two major areas: improving the eÆciency of the underlying algo-
rithms and run-time representations, and re�ning and extending the design of the core language. On the
eÆciency side, the main development currently in the works is high-performance compilation of pattern
matching. We also need to come up with better run-time representations for certain special cases, while
keeping compliance with the basic data model. One case in point is the PCDATA type. The typing and
pattern-matching properties of the PCDATA de�nition given in Section 7 are attractive, but the naive repre-
sentation that we sketched is clearly too heavy to perform well; something more clever will be needed. At
the level of the core language design, there are also numerous questions to be considered. Can objects and
trees be further uni�ed? E.g., could pattern matching be used to extract object �elds? Could attributes and
�elds be uni�ed? Can we o�er other kinds of pattern matching primitives, e.g. support for XPath? And,
last but not least, can the Xtatic design be extended to cope with parametric polymorphism (\generics"
in C# parlance)?
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D @: C

new D(a) 2 C) �
(P-ObjClass)

Seq @: C

[t] 2 C) �
(P-REClass)

a 2 C) �

a 2 C x) x:a;�
(P-BindClass)

REtype(X) = T

[t] 2 [T]) �

[t] 2 [X]) �
(P-REtype)

a 2 Q) �1

[t] 2 [T]) �2

[<a>[t]] 2 [<Q>[T]]) �1;�2

(P-Tree)

[] 2 [()]) � (P-Eps)

[t1] 2 [P1]) �1

[t2] 2 [P2]) �2

[t1 t2] 2 [P1 P2]) �1;�2

(P-Cat)

[t] 2 [P1]) �

[t] 2 [P1|P2]) �
(P-Alt1)

[t] 62 [P1]

[t] 2 [P2]) �

[t] 2 [P1|P2]) �
(P-Alt2)

8k 2 1 : : : n: [tk] 2 [T]

[t1 : : : tn] 2 [T*]) �
(P-Rep)

[t] 2 [P]) �

[t] 2 [P x]) x : [t];�
(P-BindRE)

Figure 4: Pattern-matching relation a 2 R) �.

A Appendix: Additional De�nitions

This appendix presents in full some parts of the FX language de�nition that were just sketched in the body.
These de�nitions are included only for the sake of completeness (and in case the referees may be curious) |
the main points in the body of the paper do not depend on them.

A.1 Patterns

Figure 4 de�nes the pattern-matching relation a 2 R) �, read \an FX value expression a matches a pattern
R, yielding an environment �".

The simple type inference algorithm that we use in this de�nition of Xtatic is shown in Figure 5 in the
form of the relation .R ) �. According to this de�nition, a type associated by � to a variable x is exactly
the type to which x is bound in R. The type join operation t used in the rule [PI-Alt] is given in Figure 6).

A.2 Static semantics

A static typing context conforming to a static data context DatCtx is a tuple

TypCtx = h�elds;mtypei

where, assuming DatCtx = hClasses;@:;Typenames; defi,

� �elds : C 7! F f is a function de�ned on Classes with �elds(C) being the list F1 f1; : : : ; Fn fn of �eld
types and �eld names such that

{ �elds(Object) and �elds(Seq) are empty;

{ if C @: D, then the list �elds(D) is a pre�x of the list �elds(C);

� mtype : C 7! m 7! (A!A) is a function de�ned on Classes with mtype(C) being a partial mapping from
method names m to method signatures (A!A) such that

{ if C @: D, then dom(D) � dom(C) and, for any m 2 dom(D), mtype(C)(m) = mtype(D)(m).

Figure 7 de�nes the relation � ` e 2 A, read \in the typing environment �, expression e has type A".
Auxiliary operations used in the rules are de�ned in Figure 6.
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.C) � (PI-Class)

.C) �

.C x) x:C;�
(PI-BindClass)

REtype(X) = T

.[T]) �

.[X]) �
(PI-REtype)

.Q) �1
.[T]) �2

.[<Q>[T]]) �1;�2
(PI-Tree)

.[]) � (PI-Eps)

.[P1]) �1

.[P2]) �2

wrt[P1 P2]) �1;�2
(PI-Cat)

.[P1]) �1

.[P2]) �2

.[P1|P2]) �1|�2
(PI-Alt)

.[T*]) � (PI-Rep)

.[P]) �

.[P x]) x : tyof (P);�
(PI-BindRE)

Figure 5: Declared type inference .R) �.

C t D = sup
@:fC; Dg

C t [T] = sup
@:fC; Seqg

[T] t C = sup
@:fSeq; Cg

[T1] t [T2] = [T1|T2]

�1 t �2 = �x:�1(x) t �2(x)

ClassOf(C) = C

ClassOf([T]) = Seq

Figure 6: Auxiliary typing de�nitions.
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�(x) = A

� ` x 2 A
(T-Var)

C 6= Seq �elds(C) = F f

� ` e 2 A A <: F

� ` new C(e) 2 C
(T-New)

� ` e 2 C �elds(C) = F f

� ` e.fk 2 Fk
(T-Field)

� ` e 2 C mtype(C)(m) = F!B

� ` d 2 A A <: F

� ` e.m(d) 2 B
(T-Invk)

� ` [] 2 [()] (T-Eps)

n � 2 � ` [ek] 2 [Tk]

� ` [e] 2 [T1 : : : Tn]
(T-Seq)

� ` d 2 A ClassOf(A) = C

� ` [e] 2 [T]

� ` [<d>[e]] 2 [<C>[T]]
(T-Tree)

� ` [e] 2 [T]

� ` [[e]] 2 [T]
(T-Collapse)

� ` d 2 [T] T . P ok
T . [Pk]) �k �;�k ` ek 2 Ak

� ` match(d){case [P]:e} 2 A1 t A2 t : : : t An
(T-Match)

Figure 7: Expression typing relation � ` e 2 A.
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�(x) = a

� ` x + a
(E-Var)

� ` e + a

� ` new C(e) + new C(a)
(E-New)

� ` e + new C(a) �elds(C) = F f

� ` e.fk + ak
(E-Field)

� ` e0 + new C(a) mbody(C; m) = (x; e)
� ` d + b x : b; this : new C(a) ` e + a

� ` e0.m(d) + a
(E-J-Invk)

n � 2 � ` [ek} + [tk]

� ` [e] + [t1, : : :,tn]
(E-Seq)

� ` e + a � ` [d] + [t]

� ` [<e>[d]] + [<a>[t]]
(E-Tree)

� ` [e] + [t]

� ` [[e]] + [t]
(E-Collapse)

� ` d + [t]

[t] 62 [P1] : : : [t] 62 [Pi�1] [t] 2 [Pk]) �0

�;�0 ` ek + a

� ` {match(d){case [P]: e} + a
(E-Match)

Figure 8: Expression evaluation relation � ` e + a.

A.3 Dynamic semantics

A static execution context conforming to static typing and data contexts TypCtx and DatCtx (with TypCtx
conforming to DatCtx) is a tuple

ExeCtx = hmbodyi

where, assuming DatCtx = hClasses;@:;Typenames; defi and TypCtx = h�elds;mtypei,

� mbody : C 7! m 7! (D; x; e) is a function de�ned on Classes with mbody(C) being a partial mapping that
associates a type name m with the triple (D; x; e) of class D where the method de�nition is located,
method parameters x, and method body e, such that

{ dom(mbody(C)) = dom(mtype(C)) for all C 2 Classes,

{ for any C and m, if mtype(C)(m) = A!A and mbody(C)(m) = (D; x; e), then this : D; x : A ` e 2 B

for some B <: A.

Figure 8 de�nes the evaluation relation � ` e + a, read \in environment �, expression e evaluates to the
value a".

A.4 The \stuck" relation

The notion \evaluation of e gets stuck in the �nite number of steps" is formalized by the following stuck
evaluation relation � ` e 6+:

� � ` new C(e) 6+ if � ` ei 6+ for either one of ei from e;
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� � ` d.f 6+ if either

1. � ` d 6+ or

2. � ` d + [t], or

3. � ` d + new C(b), but f is not among �elds(C);

� � ` d.m(e) 6+ if either

1. � ` d 6+ or

2. � ` d + [t], or

3. � ` d + new C(b) but mbody(C)(m) is not de�ned, or

4. � ` d + new C(b), mbody(C)(m) is de�ned, but � ` ei 6+ for either one of ei from e;

5. � ` d + new C(b), mbody(C)(m) = (x,e), � ` e + a, but this : new C(b); x : a ` e 6+

� � ` [<d>[e]] 6+ if either

1. � ` d 6+, or

2. � ` d + a, but � ` j ej 6+;

� � ` [e] 6+ if jej � 2 and � ` ei 6+ for either one of ei from e;

� � ` [[e]] 6+ if � ` [e] 6+

� � ` match(d){case [P]: e} 6+ if either

1. � ` d 6+, or

2. � ` d + new C(b), or

3. � ` d + [t], but [t] 2 [Pi] 6) for all i, or

4. � ` d + [t], and, for some i, [t] 2 [P1] 6), [t] 2 [Pi�1] 6), [t] 2 [Pi]) �0, but �;�0 ` ei 6+.


