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Abstract . 

We study two partial type inference methods for a lan- 
guage combining subtyping and impredicative poIymor- 
phism. Both methods are local in the sense that missing 
annotations are recovered using only information from 
adjacent nodes in the syntax tree, without long-distance 
constraints such as unification variables. One method 
infers type arguments in polymorphic applications us- 
ing a local constraint solver. The other infers anno- 
tations on bound variables in function. abstractions by 
propagating type constraints downward from enclosing 
application nodes. We motivate our design choices by 
a statistical analysis of the uses of type inference in a 
sizable body of existing ML code. 

I Introduction 

Most staticaNy typed programming Ianguages offer 
some form of type inference, allowing programmers to 
omit type annotations that can be recovered from con- 
text. Such a facility can eliminate a great deal of need- 
less verbosity, making programs easier both to read 
and to write. Unfortunately, type inference technol- 
ogy has not kept pace with developments in type sys- 
tems. In particular, the combination of subtyping and 
parametric polymbrphism has been intensively stud- 
ied for more than a decade in calculi such a~ System 
Fs [CW85, CG92, CMMS94, etc.], but these features 
have not yet been satisfactoriIy integrated with practi- 
cal type inference methods. Part of the reason for this 
gap is that most work on type inference for this class of 
languages has concentrated on the difficult probiem of 
developing conapIete methods, which are guaranteed to 
infer types, whenever possible, for entirely unannotated 
programs. In thii paper, we pursue a much simpler al- 
ternative, refining the idea of pardial type inference with 
the additional simplifying principle that missing anno- 
tations should be recovered using only types propagated 
locally, from adjacent nodes in the syntax tree. 
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Our goal is to develop simple, well-behaved type in- 
ference techniques for new language designs in the style 
of Quest [CarQl], Pizza [OW97], or ML2000-designs 
supporting both object-oriented programming idioms 
and the characteristic coding styles of languages such 
as ML and HaskelI. It has recently become fashion- 
able to refer to these languages as HOT (“‘higher-order, 
typed”). 3y extension, we can speak of a HOT pro- 
gramming style-a style in which (1) the use of higher- 
order functions and anonymous abstractions is encour- 
aged; (2) polymorphic definitions are used freely and 
at a fairly f?ne grain (for individual function definitions 
rather than whole modules); and (3) “pure” data struc- 
tures are used instead of mutable state, whenever pos- 
sible. 

In particular, we are concerned with languages 
whose type-theoretic core combines subtyping and 
impredicative polymorphism in the style of System 
F [Gir72, Rey74]. This combination of features places 
us in the realm of partial type inference methods, since 
complete type inference for impredicative polymor- 
phism alone is already known to be undecidable [we194], 
and the addition of subtyping does not seem to make the 
problem any easier. (For the combination of subtyping 
with Hindley/Milner-style polymorphic type inference, 
promising resuIts have recently been reported jAW93, 
EST95, JW95, TS96, SOW97, FF97, Pot97, etc.], but 
practical checkers based on these results have yet to see 
wide-spread use.) 

How Much Inference Is Enough? 

The job of a partial type inference algorit& should be 
to eliminate especially those type annotations that ara 
both common and silly--i.e., those that can be neither 
justified on the basis of their value as checked documen- 
tation nor ignored because they are rare. 

Unfortunately, each of the characteristic features of 
the HOT programming style (polymorphic instantia- 
tion, anonymous function abstractions, and local vari- 
able bindings) does give rise to a certain riumber of silly 
annotations that would not be required if the same pro- 
gram were expressed in a first-order, imperative style. 
To get a rough idea of the actual numbers, we made 
some simple measurements of a sizable body of existing 
HOT code-about 160,000 lines of ML, written by scv- 
eral different programming teams. The results of theso 
measurements can be summarized as foIlows (they are 
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reported in detail in Appendix A): 

0 Polymorphic instantiation (i.e., type application) 
is ubiquitous, occurring in every third line of code, 
on average. 

l Anonymous function definitions occur anywhere 
from once per 10 lines to once per 100 lines of code, 
depending on style. 

l Local variable bindings occur once every 12 lines, 
but, in all but one of the programs we measured, 
local definitions of functions only occur once every 
66 lines. 

These observations give a fairly clear indication of the 
properties that a type inference scheme should have 
in order to support a HOT programming style conve- 
niently: 

1. To make fine-grained polymorphism tolerable, type 
arguments in applications of polymorphic func- 
tions must, usually be inferred. However, it is ac- 
ceptable to require annotations on the bound vari- 
ables of top-Ievel function definitions (since these 
usually provide useful documentation) and local 
function definitions (since these are relatively rare). 

2. To make higher-order programming convenient, it 
is helpful, though not absolutely necessary, to in- 
fer the types of parameters to anonymous function 
definitions. 

3. To support a mostly functional style (where the 
manipulation of pure data structures leads to many 
local variable bindings), local bindings should not 
normally require explicit annotations. 

Note that, even though we have motivated our design 
choices by an analysis of ML programming styles, it is 
not our intention to provide the same degree of type 
inference as is possible in languages based on Hindley- 
Milner polymorphism. Rather, we want to exchange 
complete type inference for simpler methods that work 
well in the presence of more powerful type-theoretic 
features such as subtyping and impredicative polymor- 
phism. 

Local Type Inference 

In this paper, we propose two specific partial type in- 
ference techniques that, together, satisfy all three of the 
requirements listed above. 

1. An algorithm for local synthesis of type argu- 
ments that infers the “locally best possible” values 
for types omitted from polymorphic applications 
whenever such best values exist. The expected and 
actual types of the term arguments are compared 
to yield a set of subtyping constraints on the miss- 
ing type arguments; their values are then selected 
so as to satisfy these constraints while making the 
result, type of the whole application as informative 
(small) as possible. 
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2. Bidirectional propagation of type information al- 
lows the types of parameters of anonymous func- 
tions to be inferred. When an anonymous func- 
tion appears as an argument to another &n&ion, 
the expected domain type is used as the expected 
type for the anonymous abstraction, allowing the 
type annotations on its parameters to be omitted. 
A similar, but even simpler, technique infers type 
annotations on local variable bindings. 

Both of these methods are ZocaZ, in the sense that type 
information is propagated only between adjacent nodes 
in the syntax tree. Indeed, their simplicity-and, in 
the csse of type argument synthesis, its completeness 
relative to a simple declarative specification-rests on 
this property- 

The remainder of the paper is organized as follows. 
In the next section, we define a fidly typed internal lan- 
guage. Sections 3 and 4 develop the techniques of local 
synthesis of type arguments and bidirectional checking 
in detail. Section 5 sketches some possible extensions. 
Section 6 surveys related work. Section 7 offers evalu- 
ation and concluding remarks. Details of our measure 
ments of ML programs appear in Appendix A. Proofs 
are omitted in this extended abstract; they can be found 
in an accompanying technical report [PT97b]. 

2 InternaI Form 

When discussing type inference, it is useful to think of 
a statically typed language in three parts: 

1. Syntax, typing rules, and semantics for a fully 
typed internal form. 

2. An txtemal form in which some type annotations 
are made optional or omitted entirely. This is 
the language that the programmer actually uses. 
(In some languages, the internal and external lan- 
guage may d&r in more than just type annota- 
tions, and type inference may perform nontrivial 
transformations on program structure. For exam- 
ple, under certain assumptions ML’s generic let- 
definition mechanism can be viewed in this way.) 

3. Some specif?cation of a type inference relation be- 
tween the external form and the internal one. (The 
terms type inference, type reconstruction, and type 
synthesis have all been used for this relation, with 
slightly different meanings. We choose “inference” 
as the most generic.), 

In explicitly typed languages, the external and internal 
forms are essentially the same and the type reconstruc- 
tion relation is the identity. In implicitly typed lan- 
guages, the external form allows all type annotations to 
be omitted and type reconstruction promises to fill in 
all missing type information. On the other hand, we 
can describe a language as partially typed if the internal 
and external forms are not the same, but the speciica- 
tion of type inference does not guarantee that omitted 
annotations can always be inferred.’ 

*Another possible sense of the phrase partial type inference 
occurs when the specification of type reconstruction is only par- 
tially impleme.ntabIe: the language definition promises to infer 
more than the compiler can actually do. We reject this defini- 
tion, since it leads to unportable programs. 



Our internal language-the target for the type infer- 
ence methods described in Sections 3 and 4-is based 
on System Fs, Cardelli and Wegner’s core calcuhrs of 
subtyping and impredicative polymorphism. We con- 
sider here a simplified fragment of the full system, in 
which variables are all unbounded (i.e., all quantifiers 
are of the form All (XI T, not All (XC S) T). The treat- 
ment here here can be extended to deal with bounded 
quantifiers (see Section 5 and [PT97a]), but the simple 
language presented here is enough to show allof the es- 
sential ideas and the technical development is easier to 
follow. 

2.1 Syntax 

Besides the restriction to unbounded quantifiers, we 
modify the usual definition of System F< fCW85) in 
two significant ways. First, we add a minimal type Bot. 
As we shall see in Section 3, our type inference algo- 
rithm keeps track of various type constraints by calcu- 
lating the least upper bound and greatest Iower bound 
of pairs of types. The Bot type plays a crucial role in 
these calculations, since without it we could not guarau- 
tee that least upper-bounds and greatest lower-bounds 
always exist. Second, we extend abstraction and appli- 
cation so that several arguments (including both types 
and terms) may be passed at the same time. In other 
words, we favor a ‘Yirlly nncurried” style of function def- 
inition and application (though currying is, of course, 
still available). This bias will play an important role in 
our scheme for inferring type arguments in Section 3. 
The syntax of types, terms, and typing contexts in the 
internal language is as follows: 

T ..- ..- X type variable 
TOP maximal type 
Bat minimal type 
All (El ff+T function type 

e -*- x 1 *.- variabIe 
fuzt[Zl (iT:T)e abstraction 
e CT1 (8) application 

r ..- . ..- empty context 
r,x:T variable binding 
r, x type variable binding 

We use the meta-variables R, S, T, U, and V to range over 
types; e and f range over terms. We use the notation Ti 
to denote the sequence X1 ,...,X,,,andsimilarlyJI:Tto 
denote xi :Tr , . . . ,xn :T,. We write I’(x) for the type of 
x in P. 

We write %T as an abbreviation for the monomor- 
phic function type A3.1()%T. Similarly, we write 
fun(H:T))e as an abbreviation for the monomorphic 
function f uu n E:b e. 

Types, terms, contexts, and judgements that differ 
only in the names of bound variabIes are regarded as 
identical. Binders in contexts are assumed to have dis- 
tinct names; when a new binding is added to a context, 
we assume that it has been renamed so as to maintain 
this invariant. The rules for scoping of bound variables 
are as usual (in All (Ti)hT, the variables 51 are in scope 
in 3 and T). FV(T), the set of type variables free in T, 
is defined is the usual way. 
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2.2 Subtyping 

Our subtyping relation is quite simple because of tha 
restriction to unbounded quantification. In particular, 
the addition of the bottom type Bot in this context is 
straightforward. We write 5 <: T to mean “Isi= 19 and 
Si .C Ti for all 1 5 i _< ISI.” 

x c x (S-REFL) 

T<: Top (S-TOP) 

Bot C T (S-BDT) 

TcI SCU 

All(x)i)+S (: All~~~~+U 
(S-FUN) 

For simplicity, we use an algorithmic presentation of 
subtyping, in which the rules of transitivity and general 
reflexivity are omitted and recovered as properties of 
the definition (cf. [F’T97bj). We use the notation S V T 
to denote the least upper bound of S and T, and S A T 
for the greatest lower bound of S and T. The definitions 
of these relations can be found in [PT97b]. 

2.3 Explicit Typing Rules 

The typing relation I’ b e E T is essentially the stan- 
dard one, except that, as in the definition of subtyp- 
ing, we use an algorithmic presentation, omitting the 
usual rule of subsumption (‘[if e E S and S <: T, then 
e E T”); instead, the rules below calculate for each ty- 
pable term a single manifest type, corresponding to its 
minimal type in the system with subsumption. For sub- 
typing, the choice of algorithmic presentation was made 
for the sake of simplicity. IIere, it is actually crucial: 
our’ type inference methods depend on the fact that a 
typable term has a unique type, and that this type cau 
easily be predicted by the programmer. (Note that this 
stylistic choice does not change the set of typable terms.) 

The typing ruIe for variables is standard. 

r I- x E T‘(x) (VAR) 

The ruie for {multi-)abstractions combines the usual 
rules for term and type abstractions. 

Similarly, the rule for applications combines the usual 
application and polymorphic application rules, We cal- 
culate the type of the function and check that the pro- 
vided term and type arguments are consistent with the 
function type. The result type of the application is 
found by substituting the actual type arguments into 
the function’s result type. 

I?r-fEAll(Ti)%R I? I- E c ~/xJS 
I’ I- f CT1 (8 E [T/qR 

(App) 

(I’ l- e c T here is an abbreviation for T I- e E S and 
S C T.“) 

i 
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To finish the definition of the typing relation, an- 
other rule is required. To see why; note that Bot c’ 
All@))siT for any X, 5, and ‘I. This means that any 
expression of type Bot should be applicable to any set 
of well-formed type and expression arguments (if we 
did not allow for thii behavior, we would lose the type 
soundness property): 

I’ I- f E Bot rl-BES 
l?l-f[:T1(E) EBot (BOT) 

Note that the above rule gives the expression f [TlG9 
result type Bot, the most informative result type for the 
expression. 

2.3.1 Theorem pniqueness of manifest types]: 
Ifrl-eESandl’l-efT,thenS=T. 

The definitions of operational and denotational se- 
mantics for the internal language are standard, as are 
proof5 of properties such as subject reduction and ab- 
sence of runtime errors. Evaluation order may be cho- 
sen either call-by-name or call-by-value; function spaces 
may be interpreted as either total or partial. The only 
slightly unusual csse is the type Bot, which can be inter- 
preted as an empty type (in a total-function semantics) 
or a type containing only divergent terms (in a partial 
function semantics). 

3 Local Type Argument Synthesis 

III the introduction, we identified three categories of 
type annotations that are worth iuferring automatically: 
type arguments in applications of polymorphic func- 
tions, annotations on bound variables in anonymous 
function abstractions, and annotations on local variable 
bindings. Iu this section, we address the first of these, 
leaving the second and third for Section 4. 

Our measurements of ML programs (presented in 
Appendix A) showed that type arguments to polymor- 
phic functions are inferred by the ML typechecker on 
at least one line in every three, in typical programs. 
Moreover, explicit type arguments rarely have auy use 
ful documentation value. We therefore believe that it 
is essential to have some form of type argument synthe- 
sis in any language intended to support HOT program- 
ming. As an example, consider the polymorphic iden- 
tity function id with type All(X)X+X. Our god is to 
allow the programmer to apply the id function without 
explicitly supplying any type arguments: idC3) rather 
than idlInt] (3). 

When considering the general problem of type sr- 
gument synthesis, the first question we have to answer 
is: How do we decide where type arguments have been 
omitted (and therefore need to be synthesized)? In the 
variant of Fs we presented in Section 2, the answer is 
simple: we look for application nodes where the func- 
tion is polymorphic but there are no explicit type ar- 
guments. For example, the fact that id is polymorphic 
makes it clear that a type argument is missing in the 
application idl3) .(An alternative approach is to require 
an explicit marker at each point where a type argument 
is missing. We did not pursue this scheme, since msrk- 
ing all the positions where a type argument is required 
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cau be quite cumbersome. However, some of the partial 
type inference schemes proposed by Pfenning have used 
this scheme, with additional refinements which allow the 
type argument markers themselves to be elided.) 

The second problem we have to address is the fact 
that, in general, there may be a number of different type 
arguments that we can pick for a particular applica- 
tion. For example, both id[Int‘J (1~) and idlReaI] (x) 
are valid completions of the term id(x), where x E Int 
aud Int is a subtype of Real. Fortunately, there is 
usually a good way to choose between all the alterna- 
tives: we pick the type arguments that yield the best 
(smallest) type for the result. In the case of id(x), we 
choose idLInt (x) since this has result type Int, which 
is more informative type than the result type Real of 
idmeal] (x1. 

Sadly, there are cases where there is no best re- 
sult type. Suppose, for example, that f has type 
All(X) 0 + (X+X) (a function which takes a single type 
argument X aud returns a function from X to X). Two 
possible completions of the term f 0 are f CIntl() 
and f [Real] 0, which have result types Int+Int and 
ReaI+Real.. These two result types are incomparable in 
the subtyping relation, so there is no ‘best” result type 
available. In this case type argument synthesis will fail, 
since it is not possible to locally determine the missing 
type arguments for f (ii Section 4 we show how propa- 
gating additional contextual information sometimes al- 
lows us to avoid this situation). 

3.1 Specification 

The syntax of the external language is identical to that 
of the internal language, since external-language appli- 
cations can already be written without type arguments. 
All we need to do is to define a three-place type inference 
relation: 

l?l-eET*e’ 
Intuitively, this relation can be read ‘In context I’, type 
annotations can be added to the external language term 
e to yield the internal language term e’, which has type 
T.” 

The specification of the type inference relation is 
quite simple. For each typing rule in the internal lan- 
guage with conclusion I’ !- e E T, the type infer- 
ence relation contains an analogous rule with conclu- 
sion I’ I- e E T + e’, where e’ is derived in the obvious 
way Corn the fully typed subexpressions yielded by sub- 
derivations. To these rules is added one additional rule, 
handling the case where type arguments are omitted: 

The condition Ixl> 0 says that type argument synthe- 
sis is only required in the case where the function f is 
polymorphic but there are no explicit type arguments. 
(For simplicity, we don’t synthesize type arguments in 
the case where an application node provides some, but 
not all, of its required type arguments explicitly. This 
would be easy to do, but does not seem very useful in 
practice.) 
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The type arguments 0 that we pick in the conclusion 
of our synthesis rule must satisfy a number of condi- 
tions. Firstly, the types of the value parameters 3 must 
be subtypes of the function’s parameter types p/q% 
Secondly, the arguments u must be chosen in such a 
way that any other choice of arguments 7 satisfying the 
previous condition will yield a less informative result 
type, i.e., a supertype of FmR. 

To state the formal properties of this technique, we 
need to relate ternis in the internal language to terms in 
the external language. We say that a term e is a portiai 
erasure of e’ if e can be obtained from e’ by erasing some 
type annotations (i.e., deleting type arguments from one 
or more applications). 

3.1.1 Theorem [Soundness]: 
IfPi-e~T+e’,thene’isapartialerasureofe’and 
rl-e’ET. 

Since we are dealing with a partial type inference 
technique, we cannot expect a completeness property 
at this point. However, we can show that the type iu- 
ference relation is uIo~IIy complete” in the sense that 
its specification guarantees that it will find the best val- 
ues for missing type arguments in a singIe application, 
whenever these exist. 

It should be emphasized that the ruIe given above 
{together with the rest of the rules for 4he typing re- 
lation of the internal language), constitutes a complete 
specification of the type inference relation: it is all that 
a programmer needs to understand in order to use the 
ianguage. Only the compiler writer needs to go further 
into the development in the rest of the section, whose 
job is to show how the rule we have given can be impie- 
mented. 

3.2 Variable Elimination 

In the constraint-generation algorithm that we present 
in the next section, it will sometimes be necessary to 
eliminate all occurrences of a certain set of variables 
from a given type by promoting the type until we reach 
a supertype in which these variables do not occur. For- 
mally, we write S ev T for the relation “T is the least 
supertype of S such that FV(T) n V = 0.” Fortunately, 
such a type can always be found. For example, suppose 
V = {X); then (X,Int)+Xfiv (Bot,Int)+Top. 

The variable-elimination relation can be computed 
as follows: 

Top n-” Top (VU-TOP) 

Bot fiv Sot (VU-BOT) 

XEV 
X fi” Top 

(VU-VAR-1) 

xev 
xlyx (VU-VA&P) 

BJ,LVil T$VV 
All (if))s+T &v All (BE+4 

(VU-FUN) 

The relation S .ljv T in the last clause is defined analo- 
gously: 

Top u-” Top ( VD-TOP) 

Bot Gy Bat (VD-30~) 

XEV 
Fij5z 

(VD-Vnn-1) 

(VD-VAR-2) 

BfyU TJJ’V 
All (xj%T lj” All (F;)ihV 

(VD-FUN) 

It is easy to check that A” and JJv are total functions, 
for any given set V. These functions are similar to the 
ones used in [GP971, but somewhat simpler because of 
the presence of Bat in our type system. 

3.3 Constraint Generation 

Next, we introduce the constraint sets that will be ma- 
nipulated by our algorithm. Each constraint has the 
form Si <: Xi c Ti, recording a lower and upper bound 
for Xi. An x,/V-co+~kznt set C has the form 

{Si C Xi <: Ti 1 (FV{S<) U FV(Ti)) 13%’ = 0). 

The empty ~/V-constraint set, written 8, contains the 
trivial constraint Bot <: X; <: Top for each variable Xi. 
The singleton x/V-constraint set {S (: Xi (: T} includes 
the constraint S <: Xi C T for Xi and trivial constraints 
for every other Xj. The meet of two x/V-constraints C 
‘And D, written C A D, is defined as fohows: 

S C Xi (: T E C and 
SVUQXiCTAVI U~X+VED 

We write AC to abbreviate Cr A . . . A C’,. 
Our constraint generation rules have the form 

VI-i-,-SC T*C 

and define a partial function that, given a set of typo 
variables V, a set of unknowns Ti, and two types S and T, 
calcuIates the minimal x/V-constraint set C that guar- 
antees S C T. 

The set V allows us to avoid generating nonsensi- 
cal constraint sets in which bound variables arc men- 
tioned outside their scopes (this part of the constraint 
generation problem is similar to r&e&prejix unijca- 
tion [Mi192]). For example, if we are interested in con- 
straining X so that All(Y)o+fY+Y) is a subtype of 
All(Y) 0+X, we should not return the constraint set 
(Y+Y <: X Q Top), since Y would be out of scope. In- 
stead, we should return the constraint set {Bot+Top Q 
X C Top}, which is in fact the weakest constraint on 
X guaranteeing that All(Y) O+ (Y+Y) is a subtype of 
All(Y) 0 +X. 
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Our constraint generation algorithm is defined by 
the following collection of rules. - In the definition, we 
suppose that TO V = 0. More importantly, we assume 
(and recursively maintain) the invariant that only one of 
S and T mentions the variables g (i.e. either PV(S) 17Ti = 
0 or W(T) Ox = 0). This is crucial to the completeness 
of the algorithm, since it ensures we only have to solve 
a matching problem (modulo subtyping) rather than a 
unification problem. 

VI-iT<:Top+@ 

VhBotCT+@ 

YEX SU"T 
VkiYtS+{BotCYCT) 

YEX Sfi"T 
VhScYJ{T<:YCTop} 

VkiY<: Y*0 

vu{Fp+=cfi=sC VUmt-iSCU+D 
V l-rA1l(?)%-+S <: All(y)T+Uj /jc/iD 

Note that the C returned by the above algorithm is 
always an ~/V-constraint set. Also, if V b S C T + C 
and the variables x do not appear in S or T, then the 
constraint set C is always the empty constraint. The 
constraint generator in this case is effectively just the 
subtyping relation. 

3.4 Soundness and Completeness of Constraint 
Generation 

Each constraint set returned by the constraint gener- 
ator characterizes a collection of substitutions associ- 
ating concrete types with the names of the missmg 
type parameters. An ~/V-substitution u is a finite map 
from type variables to types whose domain is x with 
FV(UX;) ll V = 0 for all Xi. 

Suppose u is an x/V-substitution and ?[nV = 0. We 
say that c satisfies an x/V-constraint set C, written P E 
C, iff Si Q c(Xi) c: Ti for each (Si C Xi <: Ti) E C. A 
constraint set is satisfiable if there is some substitution 
that satisfies it. Note that this condition can be checked 
very easily, by verifying that Si <: Ti for each (Si <: Xi Q 
Ti) E C- 

If C and D are two ~/V-constraint sets such that 
u E C implies u E D for all o, we say that C is more 
demanding than D. Note that the meet of constraint 
sets defined previously yields a greatest lower bound 
in thii ordering and that the empty constraint set is 
maximal (i-e., least demanding). 

3.4.1 Proposition [Soundness]: Suppose that either 
FV(s)nn=00rFV(T)nX=0. IfVl-rscT*C 
and u E C, then US C UT. 

3.4.2 Proposition [Completeness]: Let u be an 
ji/V-substitution with Tin V = 0, and let S and T be 
types such that either FV(S) n x= 0 or PV(T) tl F = 0. 
If US C UT, then V l-r S <: T + C for some C such that 
u E c. 

3.5 Calculating Type Arguments 

Having generated a set of constraints for the missing 
type parameters x, the final job of the local constraint 
solver is to choose values for i that make the result 
type of the whole application as informative as possible. 
Depending on where the variables x occur in R, this 
may involve choosing the smallest possible values for 
some variables. and the largest for others. For example, 
if R is X-3Y and we have generated the constraint set 
{S C X <: T, U <: Y Q V}, then the smallest possible 
value for R is found by maximizing X and miniiizing 
Y-i-e., by taking the substitution [X I-) T, Y H u]. 

It may also be the case that no substitution for the 
variables yields a minimal result type; for example, if R 
is X+X and we have the constraint set (Int <: X C Top), 
then both Int+Int and Top+Top are solutions but nei- 
ther is a subtype of the other. Local type argument syn- 
thesis fails in this case (as required by the specification 
in Section 3.1). 

We begin by formalizing the ways in which maximiz- 
ing or minimizing X affects the final result type. 

1. We say that R is covariant in X if I‘ l- [S/X]R C 
[T/X]R whenever I'l-S <: T. 

2. We say that R is contravariant in X if I’ I- [T/X]R <: 
[S/X]R whenever r l- S C T. 

3. We say that R is inuatiarat in X if I' I- [S/X]R c 
[T/X]R only when s =T. 

It is easy to check whether R is coveriant, contravariant, 
or invariant in a given variable X by examining where X 
ouxs in R (to the right or left of arrows, etc.). 

We can now show how to choose values for the vari- 
ables x that will minimize R (or determine that this is 
not possible). Let C be a satisfiable ~/V-constraint set. 
The minimal substitution ua can be defined as follows: 

For each (S C Xi (: T) E C: 
if R is covariant in Xi 
then aa = S 

else if R is contravariant in Xi 
then aa = T 

elseifRisinvariantinXi andS=T 
then Oa(Xi) = S 

else aa is undefined. 

It remains only to verify that the substitution uca 
chosen in this way is indeed the best possible. Let C be 
an x/V-constraint set, and u be a x/V-substitution. We 
say that u is minimal for C and R, written u E C Jj R, 
if u E C and, for all Z/V-substitutions a’ such that 
d E C, we have uR <: u’R. 

3.5.1 Proposition: 
1. If the substitution ua exists, then it is a minimal 

substitution for C and R. 

2. If ua is undefined, then C and R have no minimal 
substitution. 

3.5:2 Corollary: The algorithmic rule 

FI-fEAll(m+R rtzicS Ix]>0 
Il-i-Scf+-E uEl\C#R 
ri-rm EuR+fCum(E) 

is equivalent to the declarative rule given in Section 3.1. 

. 

, 
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4 Bidirectional Checking 

Our second type inference technique deals with the 
other kids of undesirable type annotations identified 
in the introduction: annotations on bound variables in 
anonymous function abstractions and annotations on Io- 
cd variable bindings. We introduce a straightforward 
refinement of the internal langnage typing relation in 
which the typechecker operates two distinct modes: syra- 
thesis mode, where typing information is propagated 
upward from subexpressions, and checking mode, where 
information is propagated downward from enclosing ex- 
pressions. Synthesis mode corresponds to the original 
typing rules of the internal language, and is used when 
we do not know anything about the expected type of 
an expression (for top-level phrases, function parts of 
application nodes, etc.). Checking mode is used when 
the surrounding context determines the type of the ex- 
pression and we only need to check that it does have 
that type; for example, in an application node, the type 
of the function being applied determines the expected 
types of all the arguments. 

For example, suppose f has type (Int+Int)+Int 
and consider the application f (fu.n(x: Intlx) . Because 
we know the type of f, we also know that the argument 
fun(x:Int)x must have type Int+Int, which deter- 
mines the type annotation on the bound variable x-the 
type Int is the most specific (with respect to the sub- 
type relation) that can validly be given to x. We there- 
fore allow the annotation to be omitted, writing the 
whole application as f (fun (x)x>. During typechecking, 
f's type is synthesized (by looking it up in the context) 
and then fun{x)x is processed in checking mode, with 
expected type Int+Int. 

The basic idea of bidirectional checking is well known 
as folklore. Similar ideas have been used, for ex- 
ample, in ML compilers and typecheckers based on 
attribute-grammars. However, this technique has usu- 
ally been combined with ML-style type inference (see, 
e.g., IAN91J); it is surprisingly powerful when used by 
itself as a local type inference method. Specific techni- 
cai contributions of this paper are the formalization of 
bidirectional checking in a setting with both subtyping 
and impredicative poIymorphism and the combination 
of this idea with the technique for local synthesis of type 
arguments presented in the previous section. 

4.1 External Language Syntax 

The external language for the system with bidirectional 
checking is identical to the one in the previous section, 
except that we allow an edclltional form of abstraction 
in which all value type annotations are omitted: 

f ml CT1 (fl e bare abstraction 
Note that we do not allow the type variable binders 
[rtl to be inferred. Also, for simplicity, abstractions 
have either full annotations or none (we could go further 
and allow some annotations to be included and others 
omitted on the same abstraction). 

4.2 Type Inference 

The bidirectional checking algorithm is formalized by 
splitting the type inference relation l? I- e E T + e’ into 

two separate forms: 

??I-eZT=Se’ synthesis 
WefET*C! checking 

The first form is read in the same way as the type infer- 
ence relation in Section 3.1: ?n context r, type anno- 
tations can be added to the external language term o to 
yield the internal language term e’, which has type T.” 
The second can be read ‘?n context I’, type annotations 
can be added to e to yield e’, which has a type smaller 
than ‘f.” 

In the rules that follow, we elide the “+ 0”’ part 
of both judgements, since it is ahvays obvious how to 
calculate e’. The rules themselves are mostly straiglit- 
forward refinements of the typing rules for the inter- 
nal Ianguage: the only real subtlety lies in determining 
when it is possible to switch from synthesis to check- 
ing mode. Each of the original typing ruIes is split into 
separate cases for synthesis and checking modes. For 
example, the synthesis rule for variables is identical to 
the rule in the internal language, 

I? I- x 2 l-(x) 

while the checking rule must perform an additional sub- 
type check. 

rt- qx) c T 

ri-xZT 

The synthesis rule for fully annotated abstractions is 
again identical to the internal language: we add the (ex- 
plicitIy given) annotations to the context and proceed 
in synthesis mode. 

There is no synthesis rule for unannotated function ab- 
stractions, since we cannot determine the missing type . 
annotations from the local type information available 
However, in a checking context, we can determine the 
appropriate annotations: 

If we encounter a fully annotated abstraction in a check- 
ing context, we check that the provided annotations are 
consistent with the type we are checking against: 

The synthesis and checking rules for application nodes 
are again nearly identical: we synthesize the typo of 
the function and then switch to checking mode for fhe 
arguments: 
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In checking mode, we perform a final check that the 
actual result type is a subtype of the expected type. 

I’ l- f 2 All(x)%R 
rl-~IT/jilFt<; U I-t-s(T/qs 

rl-fnl<~~ zu 

Note that the above rules for function application 
embody a simple heuristic: always synthesize the type 
of the function, and then use the resulting information 
to switch to checking mode for the argument expres- 
sions. The reason this heuristic works well is that the 
head of an application expression is almost always a 
variable or another application expression, and we can 
easily synthesize the types of both kinds of expression. 
It is possible, of course, to come up with examples where 
it would be beneficial to synthesize the argument types 
first and then use the resulting information to avoid 
type annotations in the function part of an application 
expression. For example, we could infer that x has type 
Int in the expression (fun(x) e) (31, since the argument 
3 has type Int. Unfortunately, this refinement does not 
help infer the types of polymorphic functions. For ex- 
ample, we cannot uniquely determine the type of x in 
the expression (funCX1 (x)e) CIntl(3). (Note also that 
adding a second typing rule for application expressions 
would introduce some non-determinism in the typing of 
expressions and require some backtracking in the type 
checker implementation.) 

To combine bidirectional checking and type argu- 
ment synthesis, we also need synthesis and checking ver- 
sions of the “bare application” rule born Section 3.1. 

r I- f 2 All(~)TiR 
r-i-sZS pq > 0 rk-8cpfiT 

Vv. (r l- Z* r/q;i; implies r I- p/FjRc p/QR) 

n-f(z) 2 FflR 

ri-fmEv 
Note that the checking version this rule is significantly 
more permissive than the synthesis version, since it al- 
lows any type arguments u which satisfy the appropri- 
ate constraints: there is no need to try to minimize the 
result type. This means that the checking rule will per- 
form significantly better on polymorphic function types 
such as All (Xl O+ (X+X), where the result type men- 
tions a polymorphic variable in both positive and neg- 
ative positions. 

The expected type Top does not give any useful in- 
formation in a checking context: when it appears, we 
simply revert to synthesis mode: 

r!-ST 

rf-e 'E Top 

Finally, we need checking and synthesis rules corre- 
sponding to the typing rule for Bot: 

Pl-f ;Bot rt-izZS 

Its worth remarking that application expressions in- 
volving both type argument synthesis and anonymous 
function arguments (specifically, anonymous function 
arguments that are not thunks) are not handled well 
by our type inference rules, since we force the argu- 
ment expressions to be synthesized. (Fortunately, our 
measurements of ML code in Appendix A show that ap- 
plication expressions of thii form only occur about once 
per 100 lines of code.) 

Appropriate refinements of the soundness and par- 
tial completeness theorems of Section 3.1 can be shown 
to hold when bidirectional checking is added. _ 

5 Extensions 

Iu @?T97a], we show how to extend the local type argu- 
ment synthesis technique described in Section 3 to an 
internal language where bounded quantification is al- 
lowed (specifically, we treat Cardelli and Wegners Ker- 
nel Fun [CW85] extended with Bot). All the properties 
presented here continue to hold for the extended sys- 
tem (including the combination with the bidirectional 
propagation technique), but the algorithms involved in 
generating constraint sets become somewhat more sub- 
tle, due principally to some surprising interactions be- 
tween bounded quantifiers and the Bot type pie97]. (In 
particular, the intuitive property that ua type variable 
has no subtypes except itself and Bat” fails to hold; 
for example, if the context contains X<:Bot, then we 
have X <: Y for any variable Y.) Moreover, we impose a 
slight restriction on the types of polymorphic functions 
for which argument types can be inferred, disallowing 
dependencies between type arguments in a single appli- 
cation. It appears that this restriction could be relaxed 
if a more clever constraint solver were employed, but we 
do not see how to remove it completely. 

, 

We have experimented with these and similar type 
inference techniques in our compiler for the Pitt lan- 
guage [PT97c]. Although these experiments do not yet 
cover the full language, they give some confidence that 
the methods do actually infer enough type annotations 
to be helpful. (Indeed, we converted around 10,000 
lines of library code fkom a version of Pitt incorporating 
Cardelli’s greedy algorithm to one using a variant of the 
techniques presented here in a few hours.) Moreover, 
they provide an indication of how well these techniques 
scale to languages with more features than the tiny core 
calculus presented here. In general, our experience has 
been quite encouraging: it has usually been quite easy 
to see how to extend the definitions here to the larger 
syntax and richer type system found in Pi& 

However, one important set of issues remains in- 
completely resolved. A significant difference between 
Pitt’s type system and the variants of Fs studied here 
and in [pT97a] is that Pitt includes type operators- 
formally, it is based on the higher-order extension FT. 
Our type argument synthesis technique depends on the 
fact that type operators like List are covariant in the 
subtype relation; in the case of Fr, we must also recog- 
nize when user-defined type operators are co- or contra- 
variant. The necessary extension of F<” with polarized 
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type operators is significantly more complex than the 
form in which F<” is usually studied [PS94, Com94], 
and its meta-theoretic properties are a matter of cur- 
rent investigation [Ste97]. We are experimenting with 
strategies for simplifying the system and have achieved 
some promising preliminary results. 

Another important avenue for further ‘investigation 
is the possibility of combining these type inference tech- 
niques with overloading. There is reason to hope that 
the integration can be accomplished smoothly, since 
we have insisted that each typable term should have 
a unique manifest type. 

6 Related Work ’ 

There have been a number of proposals for partial type 
inference schemes treating just impcedicative polymor- 
phism (without subtyping). One lime of work has been 
explored by Pfenning JPfe88, Pfe93], following earlier 
work of Boehm [Boe85, Boe89J.. Interestingly, the key 
algorithm here comes &om a proof of tmdecidability 
of a certain style of partial type inference, where oc- 
currences of type application must be marked but the 
type argument itself need not be supplied, and where 
all other type annotations may .be omitted. Boehm 
showed that this form of type inference was just as hard 
as higher-order unification, hence undecidable. Con- 
versely, &et’s earlier work on efficient semi-algorithms 
for higher-order unification pue75] led directly to a 
useful semi-algorithm for partial type inference [PfeSS]. 
Later improvements in this line of development have in- 
cluded using a more refined algorithm for higher-order 
constraint solving [DHISP96], eliminating the trouble- 
some possibilities of nontermination or generation of 
non-unique solutions. Experience with related algo- 
rithms in languages such as LEAP [PL91], Elf [Pfe89], 
and FX [JG89] has shown them to be quite well behaved 
in practice. 

A different approach to partial type inference {still 
without subtyping) was initiated by L5ufer and Oder- 
sky ]LO94], sparked by Perry’s observation that first- 
class existential types can be added to ML by inte- 
grating them with the datatype mechanism pergo]. In 
essence, datatype constructors and destructors can be 
regarded as explicit type annotations, marking where 
values must be injected into and projected from dis- 
joint union types, where recursive types must be folded 
and unfolded, and (when existentials are added) where 
packing and unpacking must occur. This idea was ex- 
tended to include first-cIass (impredicative)’ universal 
quantifiers by Remy wm94]. Other, more recent, pro- 
posals by Odersky and LZufer fOL96] and R&y and 
Garrigue [GR97] conservatively extend ML-style ,type 
inference by allowing programmers to explicitly anno- 
tate function arguments with types, which may (unlike 
the annotations that can be inferred automatically) con- 
tain embedded universal quantifiers, thus partly bridg- 
ing the gap between ML and System F. This family of 
approaches to type inference has the advantage of rel- 
ative simplicity and clean integration with the existing 
HindIey/Milner polymorphism of ML. 

We know of only one partial type inference scheme 
that works in the presence of both impredicative poly- 
morphism and subtyping: Cardelli’s “greedy type in- 

ference algorithm” for Fs [Car93]. The idea here is 
that any type annotation may be omitted by the pro- 
grammer: a fresh unification variable Q will be gencr- 
ated for each one by the parser. During typechecking, 
the subtype-checking algorithm may be asked to check 
whether some type S is a subtype T, where both S and 
T may contain unification variables. Subtype-checking 
proceeds as usual until a subgoal of the form o <: T 
or T <: Q is encountered, at which point a is instanti- 
ated to T, thus satisfying the immediate constraint in 
the simplest possible way. Of course, setting cy to T 
may not be the best possible choice, and this may cause 
later subtype-checks for types involving cr to fail when 
a dierent choice would have allowed them to succeed; 
but, again, practical experience with this algorithm in 
Cardelli’s implementation and in an early version of 
the Pitt language [PT97c] shows that the algorithm’s 
greedy choice is correct in nearly all cases. 

Unfortunately, there are some situations in which the 
greedy algorithm is almost guaranteed to guess wrong, 
For example, if f has type IS,T)+Int and T <: S then 
the expression fun (x1 f (x,x) will fail to typecheck: the 
greedy algorithm first assigns x the indeterminate type 
cu; after checking the first argument to f it concludes 
that CY must equal S. But then the second argument 
check fails, since we should have given x type T. In such 
cases, the algorithm’s behavior can be quite puzzling to 
the programmer, yielding mysterious errors far from the 
point where a suboptimal instantiation is made. 

Also, we should note that Cardelli’s greedy algo- 
rithm la&s monotonicity: it is not the case that adding 
some type annotations will always improve the chances 
that the algorithm will be able to find the rest. For- I 
mally, there is a fully typed term e, a partial erasure e’ 
of e, and a further erasure err of e’, such that e and a” 
pass the type inference algorithm but e’ does not. (For 
the greedy algorithm, this failure was first noticed by 
Dilip Sequeira.) While this kind of behavior has never 
been observed in practice, we would be happier to see it 
excluded in principle. It is currently an open question 
whether our proposed type inference algorithm behaves 
any better in this respect. 

The difficulties with the greedy algorithm can be 
traced to the fact that there is no way of giving a ro- 
bust explanation of its behavior without describing the 
typing, subtyping, and unification algorithms in com- 
plete detail, since the instantiations that they perform 
are highly sensitive to the precise order in which con- 
straints are encountered during checking. This means 
that the language definition, to be complete, must de- 
scribe the internal structure of the compiler in quite a 
bit of detail. Our goal in this paper has been to develop 
partial type inference methods that share the good be- 
havior in common cases of the greedy algorithm, but 
that are much more straightforward to explain to pro- 
grammers. 

Although we focus here 0; the combination of sub- 
typing and polymorphism, it is worth remarking that 
there are other ways of achieving a synthesis of object- 
oriented and HOT programming styles. The most sue= 
cessful design to date is Objective Caml, an object- 
oriented dialect of ML now in use in a number of soft- 
ware projects worldwide [RV97]. A crucial design choice 
in Objective Cam1 is the use of row-variable polymor- 



phism wa.1187, Wan88, -89, Wan941 instead of sub- 
sumption for the typing of objects and classes. In Ob- 
jective Caml, an object with a large interface cannot 
simply be regarded as an object with a smaller inter- 
face; however, it is straightforward to write functions 
that manipulate both kinds of objects by “quantifying 
over the difference” between their interfaces. The type 
inference algorithm aids the programmer by performing 
thii kind of generalization wherever possible. 

7 Conclusions 

We have identified a promising class of local type infer- 
ence methods and studied two representatives in detail. 
Restricting attention to local methods imposes several 
design constraints both the internal language and on 
possible type inference algorithms: 

l Unification or matching can be used only dur- 
ing the processing of single nodes in the syntax 
tree: types invoIving unification variables are never 
added to the context, passed down as checking con- 
straints, or returned as the results of type synthe 
Sk 

l Polymorphic applications must be fully uncurried 
in order to obtain the benefits of type inference. 
Curried applications can still be used, but they are 
second-class in thii respect. (This point is a corol- 
lary of the first.) 

l Expressions in the internal language must have 
unique manifest types that can easily be calculated 
by the programmer, in order for the behavior of 
partial type inference to be predictable. 

l The type system of the internal language must be 
sufficiently complete and regular to permit ‘best 
annotations” to be inferred. In the system stud- 
ied here, this means in particular that the minimal 
type Bot must be provided, with some attendant 
increase in the complexity of the internal language 
(particularly when the system is extended to in- 
clude bounded quantification). Similarly, type op- 
erators like List must be made covariant in the 
subtype relation in order to allow inference of type 
arguments to nil and cons. 

One weakness of our proposal is the relative com- 
plexity of extending local type argument synthesis to 
handle bounded quantification. On the positive side, 
the strengths of our inference techniques include their 
simple descriptions, their predictability, their robust- 
ness in the face of extensions to the internal language, 
and their tendency to report errors close to the point 
where more type annotations are required (or where an 
actual error is present in the program). 
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A Measurements 

This appendix presents in more detail our measnre- 
me&s of the uses of type inference in ML programs, as 
a rough guide to the frequency of undesirable type an- 
notations of various sorts that would arise if we adopted 
a HOT progr amming style in a language with no type 
inference at all. 

It is helpful to distinguish between two kinds of type 
annotations. One kind we call reasonable, the other 
silly-the difference being that reasonable type annota- 
tlons have some value as documentation, while silly an- 
notations do not. Obviously, opinions will vary on pre- 
cisely which annotations belong in each category, but 
many cases are fairly clear. For example, type anno- 
tations on parameters to top-level function definitions 
are arguably reasonable, since (except for very short 
functions) they are not normally obvious and writing 
them explicitly helps make code more readable (more- 
over, they are checked documentation and can never be 
out of date). On the other hand, it is hard to imagine 
why anyone would want to write or read either of the 
occurrences of Int in cons EIntl(3,nilEIntl). They 
are both silly. 

We are interested in the kinds and frequencies of 
type annotations that will typically arise if we adopt a 
HOT programmin g style (the style encouraged by ML) 
in an explkit$ typed language. The three character- 
istic features of this styI*fine-grained polymorphism, 
higher-order progr amming, and heavy use of data con- 
structors and destructors instead of mutable state- 
each lead to an increase in the number of type anno- 
tations; moreover, many of these annotations are silly. 

The use of fine-groined polymorphism, in which in- 
dividual functions (rather than whole modules, as in 
C++ or Pizza) are parameterized on type arguments, 
leads to type annotations whenever polymorphic func- 
tions are defined or used-e.g., the three occurrences of 
[Xl in: 

let cons-twice = 
fnn[Xl (v:X, l:List(X)) 

cons[Xl (v. cons[Xl (v. nil[Xl)> 

The abstraction on X is arguably reasonable (indeed, in 
many languages, it actually has behavioral significance), 
but the [Xl arguments to nil and cons are silly. 

A higher-order programming style, in which small 
anonymous functions are passed as arguments to other 
functions, leads to an increase in the total num- 
ber of functions. Moreover (unlike top-level func- 
tion definitions), the types of the parameters to these 
functions are mostly obvious from context. For ex- 
ample, suppose fold-range is a function of type 
(( (Int,tit)+Int) ,Int,Int,Int)+Int; we might use 
it in an expression like 

fold-range( 
fun(x:Int, y:Int) x+y, 
0, 1. 10) 

to calculate the sum of the numbers from 1 to IO. The 
two occurrences of Int are silly annotations, since they 
act only to lengthen the expression and obscure its be- 
havior; it would be clearer to write: 
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fold-range( 
fun(X,Y) x+y, 
0, 1, 10) 

A mostly finctionaI (or, in the extreme, purely fine- 
timal) style, which favors the construction of new data 
values rather than in-p&e mutation of existing once, 
leads to an increase in the number of local variable bind- 
ings compared to au imperative style. An imperative 
program with one local declaration 

let x : Int = 0; 
x := x + 1; 
x := x * 2; 
x := x - 3; 
return Xi 

can become a functional program with four: 

let x : Int = 0 in 
let y : Int = x + 1 in 
let 2 : Int = y * 2 in 
let r : It = z - 3 in 
r 

Again, the type annotations on these binders are all 
silly. 

We chose the Objective Caml’compiler as our ex- 
perimental tool, because the front end is quite easy to 
understand and modify’ We gathered raw data by in- 
strumenting the compiler to produce a trace showing 
where the generalization and iustautiation operations 
were being used during typechecking, where function 
definitions were encountered, and so on for each of the 
quantities we were interested in measuring. Each pro- 
gram was then compiled in the usual way and a small 
script was used to tabulate and summarize the resulting 
traces.3 

We measured several publically available Objective 
Cam1 programs, amounting to about 160,000 lines of 
code plus about 30,000 lines in interface files. 

Camltk, written at Inria-Roqnenconrt, is a collection OF 
mainly stub functions providing an interface to the Tk 
toolkit. Coq, the largest single program we measured, 
is a theorem prover, also from INDIA. Ensemble is a 
toolkit for group communication in distributed systems, 
buitt at Cornell. MMM is a web browser, from INDIA. 
Findly, we included the Objective Cam1 system itself, 
dividing it into libraries (the stdlib and otherlibs sub- 
directories of the distribution) and the compiler itself 
(plus debugger, etc.). We included comments in the 
line counts, since we are interested in the impact of the 

2Although Objective CamI supports object-oriented idioms 
in addition to a “pure HOT style,” this facility is relatively new 
and is not used heavily in the code we measured. 

3Tbe raw traces from which the tables in this 
section were generated are available on-line through 
http://uuv.cs.indisna.edu/hyierce/lti-stats. 

presence or absence of type annotations on the full text 
that programmers actually read and write. 

The discussion above identified three ways in which 
silly type annotations arise from features of the HOT 
programming style promoted by ML. The first was fine- 
grained polymorphism, which encourages the use of 
large numbers of polymorphic functions. To estimate 
the impact of this feature in practice, we counted tha 
frequency of instautiations of polymorphic variables and 
constructors4 performed during typechecking: each in- 
stantiation would correspond to one or more type ar- 
gnments in an explicitly typed language. We counted 
separately the instantiations arising from comparison 
functions (=, <, etc.), which are polymorphic in Ob- 
jective Cam1 but could well be monomorphic in other 
languages. 

var. inst. constr. inst. camp. 
CamlTk 13.1 28.9 1.2 
coq 38.8 32.1 2*1 
Ensemble 19.1 16.0 2.4 
MMM 14.8 20.4 1.4 
OCamI. Libs 13.7 9.5 5.2 
OCaml Progs 16.9 9.8 1.9 

To highlight the impact of including or eliding type an- 
notations associated with various language features, we 
express our results (here and in the tables that follow) 
as numbers of occurrences per hundred lines of code. 
For example, in CamlTk, an instantiation occurs, on 
average, every 8 lines (i.e., ‘in 13.1% of the lines), As- 
suming 50 lines per screenful of text, this means that 
we might expect, on average, to see six or seven per 
dispIayed page. 

The frequencies of constructor instances in this ta- 
ble should be taken with a gram of salt, since they 
include instantiations occurring during typechecking of 
patterns, which can probably be avoided in many C;ISCS. 
The high frequency of instantiation in Coq is a consc- 
quence of its extensive use of Objective Caml’s built-in 
stream syntax. 

Another source of silly type annotations is type an- 
notations on bound variables of anonymous functions. 
To gauge the importance of this effect, we counted the 
frequency of anonymous function definitions in each of 
the sample programs. (For simplicity, we did not count 
the number of arguments to each function definition or 
the sizes of the type annotations that would have been 
required if they had been written explicitly.) 

anonymous functions 
CamlTk I 2.9 
coq 12.4 
Ensemble 2.4 
MMM 2.8 
OCaml Libs 0.7 
OCaml Progs 3.1 

We see that the usage of anonymous functions varies 
according to programming style: the Objective Cam1 li- 
braries use dmost’none, preferring direct recursive def- 
initions, while application programs tend to make rca- 
sonably frequent use of higher-order functions like map 

4The constructor instance count also includes instances nris- 
ing from polymorphic record labels. 
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and fold. Coq uses a relatively high number of anony- 
mous functions-a consequence, again, of its extensive 
use of Objective Caml’s stream syntax, which is trans- 
lated internally into calls to the lazy stream library in- 
volving large numbers of thunks. 

Two final sources of silly type annotations are vari- 
able bindings and local function definitions. Since all 
definitions, including function definitions, are translated 
internally into let-bindings, we divide this count into 
three: local function definitions (probably silly), top- 
level function definitions (probably reasonable), and 
let-bindings of other kinds (probably silly). 

CamlTk 
1 local fns toplevel fns other lets 
I 0.5 7.5 8.7 

coq 7.0 10.5 
Ensemble 4:; 4.2 9.6 
MMM 1.0 3.8 8.8 
O&ml Libs 0.6 8.7 7.9 
OCaml Progs 0.5 3.9 6.9 

Let-bindings are fairly frequent, as might be expected. 
Local functions sre much less frequent than top-level 
definitions-but, especially in Ensemble, not as rare as 
we might have had hoped (given that we do not in- 
fer these). It is also interesting to note, in passing, 
that library code-CamlTk and the Objective Cam1 
libraries-tends to define smaller functions than most 
of the application code. 

As we noted for anonymous functions, these nmbers 
give only a rough measure of the ‘%ost” of adding type 
annotations, since more than one type annotation may 
be required for each let-binding. Also, small changes 
in programming style can make a large difference in the 
number and size of required annotations. For example, 
changing a Cam1 function definition from the form 

lot f = function <pat> + <exp> 1 . . . 

to the form 

let f x:T = match x with <pat> + <exp> I . . . 

eliminates the need for explicit annotations in all of the 
patterns. 

We also gathered some measurements to help evalu- 
ate the limitations of our proposed inference techniques. 
In particular, there are some situations where either, 
but not both, can be used. This occurs when a polymor- 
phic function or constructor is applied to an argument 
list that includes an anonymous abstraction. We break 
the measurements of these “hard applications” into two 
categories-one where some function argument is really 
hard and the easier cese where the function argument 
is actually a thunk (whose parameter is either _ or 0, 
and which can therefore easily be synthesized). 

CamlTk 
1 “hard” fn. args “hard” thunk args 
I 1.7 0.0 

coq 1.9 9.7 
Ensemble ii:: 0.1 
MMM 0.0 
O&ml Libs 0.4 0.0 
OCaml Progs 1.1 0.0 
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Finally, we found it interesting to measure how of- 
ten the generalization operation was used during type- 
checking: these would each correspond to one or more 
type abstractions in an explicitly typed language. As 
above, we distinguish between polymorphic top-level 
definitions and local definitions of polymorphic func- 
tions. 

CamlTk 
coq 
Ensemble 

, MMM 
O&ml Libs 
OCaml Progs 

top-level local 
0.4 0.1. 
2.9 0.5 
2.2 0.8 
0.4 0.1 
2.0 0.1 
0.6 0.0 

There is actually considerable variation in the frequency 
of type generalization in the different styles of code rep- 
resented in the table-much more than the variation 
in numbers of instantiations. Also, the frequency of 
generalization seems to have little correlation with the 
distinction between library and application code. 
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