
Benjamin C. Pierce
Computer Science Department

Indiana University
Lindley Hall 215

Bloomington, IN 47405, USA
pierce@cs.indiana.edu

Abstract .

We study two partial type inference methods for a lan-
guage combining subtyping and impredicative poIymor-
phism. Both methods are local in the sense that missing
annotations are recovered using only information from
adjacent nodes in the syntax tree, without long-distance
constraints such as unification variables. One method
infers type arguments in polymorphic applications us-
ing a local constraint solver. The other infers anno-
tations on bound variables in function. abstractions by
propagating type constraints downward from enclosing
application nodes. We motivate our design choices by
a statistical analysis of the uses of type inference in a
sizable body of existing ML code.

I Introduction

Most staticaNy typed programming Ianguages offer
some form of type inference, allowing programmers to
omit type annotations that can be recovered from con-
text. Such a facility can eliminate a great deal of need-
less verbosity, making programs easier both to read
and to write. Unfortunately, type inference technol-
ogy has not kept pace with developments in type sys-
tems. In particular, the combination of subtyping and
parametric polymbrphism has been intensively stud-
ied for more than a decade in calculi such a~ System
Fs [CW85, CG92, CMMS94, etc.], but these features
have not yet been satisfactoriIy integrated with practi-
cal type inference methods. Part of the reason for this
gap is that most work on type inference for this class of
languages has concentrated on the difficult probiem of
developing conapIete methods, which are guaranteed to
infer types, whenever possible, for entirely unannotated
programs. In thii paper, we pursue a much simpler al-
ternative, refining the idea of pardial type inference with
the additional simplifying principle that missing anno-
tations should be recovered using only types propagated
locally, from adjacent nodes in the syntax tree.

Permission to make digitiuhard copies ofnil or part ofthis matiaj for
Personal or chssroom use is mted without fee provided that fie cOPi=
sc not made of distributed for profit or commercial advantage, the copy-
%lt notice, the title ofthe publication and its date appear, rutd u&ice is
t&m tht copyright is by permission of&e ACM, hlc. To copy oUle&,
to EPtlblish, to pOSt on servers OF to redistribute to lists, requires specific
permission ndor fee.
POPL 38 Sau Diego CA USA
bpy@t 1998 ACM O-89791-979-3/98/ 01..$3.50

David N. Turner
An Teallach Limited

Technology Transfer Center
King’s Buildings

Edinburgh, EH9 33L, UK
dntQan-teallach. corn

Our goal is to develop simple, well-behaved type in-
ference techniques for new language designs in the style
of Quest [CarQl], Pizza [OW97], or ML2000-designs
supporting both object-oriented programming idioms
and the characteristic coding styles of languages such
as ML and HaskelI. It has recently become fashion-
able to refer to these languages as HOT (“‘higher-order,
typed”). 3y extension, we can speak of a HOT pro-
gramming style-a style in which (1) the use of higher-
order functions and anonymous abstractions is encour-
aged; (2) polymorphic definitions are used freely and
at a fairly f?ne grain (for individual function definitions
rather than whole modules); and (3) “pure” data struc-
tures are used instead of mutable state, whenever pos-
sible.

In particular, we are concerned with languages
whose type-theoretic core combines subtyping and
impredicative polymorphism in the style of System
F [Gir72, Rey74]. This combination of features places
us in the realm of partial type inference methods, since
complete type inference for impredicative polymor-
phism alone is already known to be undecidable [we194],
and the addition of subtyping does not seem to make the
problem any easier. (For the combination of subtyping
with Hindley/Milner-style polymorphic type inference,
promising resuIts have recently been reported jAW93,
EST95, JW95, TS96, SOW97, FF97, Pot97, etc.], but
practical checkers based on these results have yet to see
wide-spread use.)

How Much Inference Is Enough?

The job of a partial type inference algorit& should be
to eliminate especially those type annotations that ara
both common and silly--i.e., those that can be neither
justified on the basis of their value as checked documen-
tation nor ignored because they are rare.

Unfortunately, each of the characteristic features of
the HOT programming style (polymorphic instantia-
tion, anonymous function abstractions, and local vari-
able bindings) does give rise to a certain riumber of silly
annotations that would not be required if the same pro-
gram were expressed in a first-order, imperative style.
To get a rough idea of the actual numbers, we made
some simple measurements of a sizable body of existing
HOT code-about 160,000 lines of ML, written by scv-
eral different programming teams. The results of theso
measurements can be summarized as foIlows (they are

252 . .

reported in detail in Appendix A):

0 Polymorphic instantiation (i.e., type application)
is ubiquitous, occurring in every third line of code,
on average.

l Anonymous function definitions occur anywhere
from once per 10 lines to once per 100 lines of code,
depending on style.

l Local variable bindings occur once every 12 lines,
but, in all but one of the programs we measured,
local definitions of functions only occur once every
66 lines.

These observations give a fairly clear indication of the
properties that a type inference scheme should have
in order to support a HOT programming style conve-
niently:

1. To make fine-grained polymorphism tolerable, type
arguments in applications of polymorphic func-
tions must, usually be inferred. However, it is ac-
ceptable to require annotations on the bound vari-
ables of top-Ievel function definitions (since these
usually provide useful documentation) and local
function definitions (since these are relatively rare).

2. To make higher-order programming convenient, it
is helpful, though not absolutely necessary, to in-
fer the types of parameters to anonymous function
definitions.

3. To support a mostly functional style (where the
manipulation of pure data structures leads to many
local variable bindings), local bindings should not
normally require explicit annotations.

Note that, even though we have motivated our design
choices by an analysis of ML programming styles, it is
not our intention to provide the same degree of type
inference as is possible in languages based on Hindley-
Milner polymorphism. Rather, we want to exchange
complete type inference for simpler methods that work
well in the presence of more powerful type-theoretic
features such as subtyping and impredicative polymor-
phism.

Local Type Inference

In this paper, we propose two specific partial type in-
ference techniques that, together, satisfy all three of the
requirements listed above.

1. An algorithm for local synthesis of type argu-
ments that infers the “locally best possible” values
for types omitted from polymorphic applications
whenever such best values exist. The expected and
actual types of the term arguments are compared
to yield a set of subtyping constraints on the miss-
ing type arguments; their values are then selected
so as to satisfy these constraints while making the
result, type of the whole application as informative
(small) as possible.

253

2. Bidirectional propagation of type information al-
lows the types of parameters of anonymous func-
tions to be inferred. When an anonymous func-
tion appears as an argument to another &n&ion,
the expected domain type is used as the expected
type for the anonymous abstraction, allowing the
type annotations on its parameters to be omitted.
A similar, but even simpler, technique infers type
annotations on local variable bindings.

Both of these methods are ZocaZ, in the sense that type
information is propagated only between adjacent nodes
in the syntax tree. Indeed, their simplicity-and, in
the csse of type argument synthesis, its completeness
relative to a simple declarative specification-rests on
this property-

The remainder of the paper is organized as follows.
In the next section, we define a fidly typed internal lan-
guage. Sections 3 and 4 develop the techniques of local
synthesis of type arguments and bidirectional checking
in detail. Section 5 sketches some possible extensions.
Section 6 surveys related work. Section 7 offers evalu-
ation and concluding remarks. Details of our measure
ments of ML programs appear in Appendix A. Proofs
are omitted in this extended abstract; they can be found
in an accompanying technical report [PT97b].

2 InternaI Form

When discussing type inference, it is useful to think of
a statically typed language in three parts:

1. Syntax, typing rules, and semantics for a fully
typed internal form.

2. An txtemal form in which some type annotations
are made optional or omitted entirely. This is
the language that the programmer actually uses.
(In some languages, the internal and external lan-
guage may d&r in more than just type annota-
tions, and type inference may perform nontrivial
transformations on program structure. For exam-
ple, under certain assumptions ML’s generic let-
definition mechanism can be viewed in this way.)

3. Some specif?cation of a type inference relation be-
tween the external form and the internal one. (The
terms type inference, type reconstruction, and type
synthesis have all been used for this relation, with
slightly different meanings. We choose “inference”
as the most generic.),

In explicitly typed languages, the external and internal
forms are essentially the same and the type reconstruc-
tion relation is the identity. In implicitly typed lan-
guages, the external form allows all type annotations to
be omitted and type reconstruction promises to fill in
all missing type information. On the other hand, we
can describe a language as partially typed if the internal
and external forms are not the same, but the speciica-
tion of type inference does not guarantee that omitted
annotations can always be inferred.’

*Another possible sense of the phrase partial type inference
occurs when the specification of type reconstruction is only par-
tially impleme.ntabIe: the language definition promises to infer
more than the compiler can actually do. We reject this defini-
tion, since it leads to unportable programs.

Our internal language-the target for the type infer-
ence methods described in Sections 3 and 4-is based
on System Fs, Cardelli and Wegner’s core calcuhrs of
subtyping and impredicative polymorphism. We con-
sider here a simplified fragment of the full system, in
which variables are all unbounded (i.e., all quantifiers
are of the form All (XI T, not All (XC S) T). The treat-
ment here here can be extended to deal with bounded
quantifiers (see Section 5 and [PT97a]), but the simple
language presented here is enough to show allof the es-
sential ideas and the technical development is easier to
follow.

2.1 Syntax

Besides the restriction to unbounded quantifiers, we
modify the usual definition of System F< fCW85) in
two significant ways. First, we add a minimal type Bot.
As we shall see in Section 3, our type inference algo-
rithm keeps track of various type constraints by calcu-
lating the least upper bound and greatest Iower bound
of pairs of types. The Bot type plays a crucial role in
these calculations, since without it we could not guarau-
tee that least upper-bounds and greatest lower-bounds
always exist. Second, we extend abstraction and appli-
cation so that several arguments (including both types
and terms) may be passed at the same time. In other
words, we favor a ‘Yirlly nncurried” style of function def-
inition and application (though currying is, of course,
still available). This bias will play an important role in
our scheme for inferring type arguments in Section 3.
The syntax of types, terms, and typing contexts in the
internal language is as follows:

T ..- ..- X type variable
TOP maximal type
Bat minimal type
All (El ff+T function type

e -*- x 1 *.- variabIe
fuzt[Zl (iT:T)e abstraction
e CT1 (8) application

r ..- . ..- empty context
r,x:T variable binding
r, x type variable binding

We use the meta-variables R, S, T, U, and V to range over
types; e and f range over terms. We use the notation Ti
to denote the sequence X1 ,...,X,,,andsimilarlyJI:Tto
denote xi :Tr , . . . ,xn :T,. We write I’(x) for the type of
x in P.

We write %T as an abbreviation for the monomor-
phic function type A3.1()%T. Similarly, we write
fun(H:T))e as an abbreviation for the monomorphic
function f uu n E:b e.

Types, terms, contexts, and judgements that differ
only in the names of bound variabIes are regarded as
identical. Binders in contexts are assumed to have dis-
tinct names; when a new binding is added to a context,
we assume that it has been renamed so as to maintain
this invariant. The rules for scoping of bound variables
are as usual (in All (Ti)hT, the variables 51 are in scope
in 3 and T). FV(T), the set of type variables free in T,
is defined is the usual way.

254

2.2 Subtyping

Our subtyping relation is quite simple because of tha
restriction to unbounded quantification. In particular,
the addition of the bottom type Bot in this context is
straightforward. We write 5 <: T to mean “Isi= 19 and
Si .C Ti for all 1 5 i _< ISI.”

x c x (S-REFL)

T<: Top (S-TOP)

Bot C T (S-BDT)

TcI SCU

All(x)i)+S (: All~~~~+U
(S-FUN)

For simplicity, we use an algorithmic presentation of
subtyping, in which the rules of transitivity and general
reflexivity are omitted and recovered as properties of
the definition (cf. [F’T97bj). We use the notation S V T
to denote the least upper bound of S and T, and S A T
for the greatest lower bound of S and T. The definitions
of these relations can be found in [PT97b].

2.3 Explicit Typing Rules

The typing relation I’ b e E T is essentially the stan-
dard one, except that, as in the definition of subtyp-
ing, we use an algorithmic presentation, omitting the
usual rule of subsumption (‘[if e E S and S <: T, then
e E T”); instead, the rules below calculate for each ty-
pable term a single manifest type, corresponding to its
minimal type in the system with subsumption. For sub-
typing, the choice of algorithmic presentation was made
for the sake of simplicity. IIere, it is actually crucial:
our’ type inference methods depend on the fact that a
typable term has a unique type, and that this type cau
easily be predicted by the programmer. (Note that this
stylistic choice does not change the set of typable terms.)

The typing ruIe for variables is standard.

r I- x E T‘(x) (VAR)

The ruie for {multi-)abstractions combines the usual
rules for term and type abstractions.

Similarly, the rule for applications combines the usual
application and polymorphic application rules, We cal-
culate the type of the function and check that the pro-
vided term and type arguments are consistent with the
function type. The result type of the application is
found by substituting the actual type arguments into
the function’s result type.

I?r-fEAll(Ti)%R I? I- E c ~/xJS
I’ I- f CT1 (8 E [T/qR

(App)

(I’ l- e c T here is an abbreviation for T I- e E S and
S C T.“)

i
.._.. , .--, ,_, - ,i . . ,; ,, -. ,;- -7-----

To finish the definition of the typing relation, an-
other rule is required. To see why; note that Bot c’
All@))siT for any X, 5, and ‘I. This means that any
expression of type Bot should be applicable to any set
of well-formed type and expression arguments (if we
did not allow for thii behavior, we would lose the type
soundness property):

I’ I- f E Bot rl-BES
l?l-f[:T1(E) EBot (BOT)

Note that the above rule gives the expression f [TlG9
result type Bot, the most informative result type for the
expression.

2.3.1 Theorem pniqueness of manifest types]:
Ifrl-eESandl’l-efT,thenS=T.

The definitions of operational and denotational se-
mantics for the internal language are standard, as are
proof5 of properties such as subject reduction and ab-
sence of runtime errors. Evaluation order may be cho-
sen either call-by-name or call-by-value; function spaces
may be interpreted as either total or partial. The only
slightly unusual csse is the type Bot, which can be inter-
preted as an empty type (in a total-function semantics)
or a type containing only divergent terms (in a partial
function semantics).

3 Local Type Argument Synthesis

III the introduction, we identified three categories of
type annotations that are worth iuferring automatically:
type arguments in applications of polymorphic func-
tions, annotations on bound variables in anonymous
function abstractions, and annotations on local variable
bindings. Iu this section, we address the first of these,
leaving the second and third for Section 4.

Our measurements of ML programs (presented in
Appendix A) showed that type arguments to polymor-
phic functions are inferred by the ML typechecker on
at least one line in every three, in typical programs.
Moreover, explicit type arguments rarely have auy use
ful documentation value. We therefore believe that it
is essential to have some form of type argument synthe-
sis in any language intended to support HOT program-
ming. As an example, consider the polymorphic iden-
tity function id with type All(X)X+X. Our god is to
allow the programmer to apply the id function without
explicitly supplying any type arguments: idC3) rather
than idlInt] (3).

When considering the general problem of type sr-
gument synthesis, the first question we have to answer
is: How do we decide where type arguments have been
omitted (and therefore need to be synthesized)? In the
variant of Fs we presented in Section 2, the answer is
simple: we look for application nodes where the func-
tion is polymorphic but there are no explicit type ar-
guments. For example, the fact that id is polymorphic
makes it clear that a type argument is missing in the
application idl3) .(An alternative approach is to require
an explicit marker at each point where a type argument
is missing. We did not pursue this scheme, since msrk-
ing all the positions where a type argument is required

-

cau be quite cumbersome. However, some of the partial
type inference schemes proposed by Pfenning have used
this scheme, with additional refinements which allow the
type argument markers themselves to be elided.)

The second problem we have to address is the fact
that, in general, there may be a number of different type
arguments that we can pick for a particular applica-
tion. For example, both id[Int‘J (1~) and idlReaI] (x)
are valid completions of the term id(x), where x E Int
aud Int is a subtype of Real. Fortunately, there is
usually a good way to choose between all the alterna-
tives: we pick the type arguments that yield the best
(smallest) type for the result. In the case of id(x), we
choose idLInt (x) since this has result type Int, which
is more informative type than the result type Real of
idmeal] (x1.

Sadly, there are cases where there is no best re-
sult type. Suppose, for example, that f has type
All(X) 0 + (X+X) (a function which takes a single type
argument X aud returns a function from X to X). Two
possible completions of the term f 0 are f CIntl()
and f [Real] 0, which have result types Int+Int and
ReaI+Real.. These two result types are incomparable in
the subtyping relation, so there is no ‘best” result type
available. In this case type argument synthesis will fail,
since it is not possible to locally determine the missing
type arguments for f (ii Section 4 we show how propa-
gating additional contextual information sometimes al-
lows us to avoid this situation).

3.1 Specification

The syntax of the external language is identical to that
of the internal language, since external-language appli-
cations can already be written without type arguments.
All we need to do is to define a three-place type inference
relation:

l?l-eET*e’
Intuitively, this relation can be read ‘In context I’, type
annotations can be added to the external language term
e to yield the internal language term e’, which has type
T.”

The specification of the type inference relation is
quite simple. For each typing rule in the internal lan-
guage with conclusion I’ !- e E T, the type infer-
ence relation contains an analogous rule with conclu-
sion I’ I- e E T + e’, where e’ is derived in the obvious
way Corn the fully typed subexpressions yielded by sub-
derivations. To these rules is added one additional rule,
handling the case where type arguments are omitted:

The condition Ixl> 0 says that type argument synthe-
sis is only required in the case where the function f is
polymorphic but there are no explicit type arguments.
(For simplicity, we don’t synthesize type arguments in
the case where an application node provides some, but
not all, of its required type arguments explicitly. This
would be easy to do, but does not seem very useful in
practice.)

255

The type arguments 0 that we pick in the conclusion
of our synthesis rule must satisfy a number of condi-
tions. Firstly, the types of the value parameters 3 must
be subtypes of the function’s parameter types p/q%
Secondly, the arguments u must be chosen in such a
way that any other choice of arguments 7 satisfying the
previous condition will yield a less informative result
type, i.e., a supertype of FmR.

To state the formal properties of this technique, we
need to relate ternis in the internal language to terms in
the external language. We say that a term e is a portiai
erasure of e’ if e can be obtained from e’ by erasing some
type annotations (i.e., deleting type arguments from one
or more applications).

3.1.1 Theorem [Soundness]:
IfPi-e~T+e’,thene’isapartialerasureofe’and
rl-e’ET.

Since we are dealing with a partial type inference
technique, we cannot expect a completeness property
at this point. However, we can show that the type iu-
ference relation is uIo~IIy complete” in the sense that
its specification guarantees that it will find the best val-
ues for missing type arguments in a singIe application,
whenever these exist.

It should be emphasized that the ruIe given above
{together with the rest of the rules for 4he typing re-
lation of the internal language), constitutes a complete
specification of the type inference relation: it is all that
a programmer needs to understand in order to use the
ianguage. Only the compiler writer needs to go further
into the development in the rest of the section, whose
job is to show how the rule we have given can be impie-
mented.

3.2 Variable Elimination

In the constraint-generation algorithm that we present
in the next section, it will sometimes be necessary to
eliminate all occurrences of a certain set of variables
from a given type by promoting the type until we reach
a supertype in which these variables do not occur. For-
mally, we write S ev T for the relation “T is the least
supertype of S such that FV(T) n V = 0.” Fortunately,
such a type can always be found. For example, suppose
V = {X); then (X,Int)+Xfiv (Bot,Int)+Top.

The variable-elimination relation can be computed
as follows:

Top n-” Top (VU-TOP)

Bot fiv Sot (VU-BOT)

XEV
X fi” Top

(VU-VAR-1)

xev
xlyx (VU-VA&P)

BJ,LVil T$VV
All (if))s+T &v All (BE+4

(VU-FUN)

The relation S .ljv T in the last clause is defined analo-
gously:

Top u-” Top (VD-TOP)

Bot Gy Bat (VD-30~)

XEV
Fij5z

(VD-Vnn-1)

(VD-VAR-2)

BfyU TJJ’V
All (xj%T lj” All (F;)ihV

(VD-FUN)

It is easy to check that A” and JJv are total functions,
for any given set V. These functions are similar to the
ones used in [GP971, but somewhat simpler because of
the presence of Bat in our type system.

3.3 Constraint Generation

Next, we introduce the constraint sets that will be ma-
nipulated by our algorithm. Each constraint has the
form Si <: Xi c Ti, recording a lower and upper bound
for Xi. An x,/V-co+~kznt set C has the form

{Si C Xi <: Ti 1 (FV{S<) U FV(Ti)) 13%’ = 0).

The empty ~/V-constraint set, written 8, contains the
trivial constraint Bot <: X; <: Top for each variable Xi.
The singleton x/V-constraint set {S (: Xi (: T} includes
the constraint S <: Xi C T for Xi and trivial constraints
for every other Xj. The meet of two x/V-constraints C
‘And D, written C A D, is defined as fohows:

S C Xi (: T E C and
SVUQXiCTAVI U~X+VED

We write AC to abbreviate Cr A . . . A C’,.
Our constraint generation rules have the form

VI-i-,-SC T*C

and define a partial function that, given a set of typo
variables V, a set of unknowns Ti, and two types S and T,
calcuIates the minimal x/V-constraint set C that guar-
antees S C T.

The set V allows us to avoid generating nonsensi-
cal constraint sets in which bound variables arc men-
tioned outside their scopes (this part of the constraint
generation problem is similar to r&e&prejix unijca-
tion [Mi192]). For example, if we are interested in con-
straining X so that All(Y)o+fY+Y) is a subtype of
All(Y) 0+X, we should not return the constraint set
(Y+Y <: X Q Top), since Y would be out of scope. In-
stead, we should return the constraint set {Bot+Top Q
X C Top}, which is in fact the weakest constraint on
X guaranteeing that All(Y) O+ (Y+Y) is a subtype of
All(Y) 0 +X.

256

-- .----5 c _ , . . _. I .- -7 --

Our constraint generation algorithm is defined by
the following collection of rules. - In the definition, we
suppose that TO V = 0. More importantly, we assume
(and recursively maintain) the invariant that only one of
S and T mentions the variables g (i.e. either PV(S) 17Ti =
0 or W(T) Ox = 0). This is crucial to the completeness
of the algorithm, since it ensures we only have to solve
a matching problem (modulo subtyping) rather than a
unification problem.

VI-iT<:Top+@

VhBotCT+@

YEX SU"T
VkiYtS+{BotCYCT)

YEX Sfi"T
VhScYJ{T<:YCTop}

VkiY<: Y*0

vu{Fp+=cfi=sC VUmt-iSCU+D
V l-rA1l(?)%-+S <: All(y)T+Uj /jc/iD

Note that the C returned by the above algorithm is
always an ~/V-constraint set. Also, if V b S C T + C
and the variables x do not appear in S or T, then the
constraint set C is always the empty constraint. The
constraint generator in this case is effectively just the
subtyping relation.

3.4 Soundness and Completeness of Constraint
Generation

Each constraint set returned by the constraint gener-
ator characterizes a collection of substitutions associ-
ating concrete types with the names of the missmg
type parameters. An ~/V-substitution u is a finite map
from type variables to types whose domain is x with
FV(UX;) ll V = 0 for all Xi.

Suppose u is an x/V-substitution and ?[nV = 0. We
say that c satisfies an x/V-constraint set C, written P E
C, iff Si Q c(Xi) c: Ti for each (Si C Xi <: Ti) E C. A
constraint set is satisfiable if there is some substitution
that satisfies it. Note that this condition can be checked
very easily, by verifying that Si <: Ti for each (Si <: Xi Q
Ti) E C-

If C and D are two ~/V-constraint sets such that
u E C implies u E D for all o, we say that C is more
demanding than D. Note that the meet of constraint
sets defined previously yields a greatest lower bound
in thii ordering and that the empty constraint set is
maximal (i-e., least demanding).

3.4.1 Proposition [Soundness]: Suppose that either
FV(s)nn=00rFV(T)nX=0. IfVl-rscT*C
and u E C, then US C UT.

3.4.2 Proposition [Completeness]: Let u be an
ji/V-substitution with Tin V = 0, and let S and T be
types such that either FV(S) n x= 0 or PV(T) tl F = 0.
If US C UT, then V l-r S <: T + C for some C such that
u E c.

3.5 Calculating Type Arguments

Having generated a set of constraints for the missing
type parameters x, the final job of the local constraint
solver is to choose values for i that make the result
type of the whole application as informative as possible.
Depending on where the variables x occur in R, this
may involve choosing the smallest possible values for
some variables. and the largest for others. For example,
if R is X-3Y and we have generated the constraint set
{S C X <: T, U <: Y Q V}, then the smallest possible
value for R is found by maximizing X and miniiizing
Y-i-e., by taking the substitution [X I-) T, Y H u].

It may also be the case that no substitution for the
variables yields a minimal result type; for example, if R
is X+X and we have the constraint set (Int <: X C Top),
then both Int+Int and Top+Top are solutions but nei-
ther is a subtype of the other. Local type argument syn-
thesis fails in this case (as required by the specification
in Section 3.1).

We begin by formalizing the ways in which maximiz-
ing or minimizing X affects the final result type.

1. We say that R is covariant in X if I‘ l- [S/X]R C
[T/X]R whenever I'l-S <: T.

2. We say that R is contravariant in X if I’ I- [T/X]R <:
[S/X]R whenever r l- S C T.

3. We say that R is inuatiarat in X if I' I- [S/X]R c
[T/X]R only when s =T.

It is easy to check whether R is coveriant, contravariant,
or invariant in a given variable X by examining where X
ouxs in R (to the right or left of arrows, etc.).

We can now show how to choose values for the vari-
ables x that will minimize R (or determine that this is
not possible). Let C be a satisfiable ~/V-constraint set.
The minimal substitution ua can be defined as follows:

For each (S C Xi (: T) E C:
if R is covariant in Xi
then aa = S

else if R is contravariant in Xi
then aa = T

elseifRisinvariantinXi andS=T
then Oa(Xi) = S

else aa is undefined.

It remains only to verify that the substitution uca
chosen in this way is indeed the best possible. Let C be
an x/V-constraint set, and u be a x/V-substitution. We
say that u is minimal for C and R, written u E C Jj R,
if u E C and, for all Z/V-substitutions a’ such that
d E C, we have uR <: u’R.

3.5.1 Proposition:
1. If the substitution ua exists, then it is a minimal

substitution for C and R.

2. If ua is undefined, then C and R have no minimal
substitution.

3.5:2 Corollary: The algorithmic rule

FI-fEAll(m+R rtzicS Ix]>0
Il-i-Scf+-E uEl\C#R
ri-rm EuR+fCum(E)

is equivalent to the declarative rule given in Section 3.1.

.

,

257

4 Bidirectional Checking

Our second type inference technique deals with the
other kids of undesirable type annotations identified
in the introduction: annotations on bound variables in
anonymous function abstractions and annotations on Io-
cd variable bindings. We introduce a straightforward
refinement of the internal langnage typing relation in
which the typechecker operates two distinct modes: syra-
thesis mode, where typing information is propagated
upward from subexpressions, and checking mode, where
information is propagated downward from enclosing ex-
pressions. Synthesis mode corresponds to the original
typing rules of the internal language, and is used when
we do not know anything about the expected type of
an expression (for top-level phrases, function parts of
application nodes, etc.). Checking mode is used when
the surrounding context determines the type of the ex-
pression and we only need to check that it does have
that type; for example, in an application node, the type
of the function being applied determines the expected
types of all the arguments.

For example, suppose f has type (Int+Int)+Int
and consider the application f (fu.n(x: Intlx) . Because
we know the type of f, we also know that the argument
fun(x:Int)x must have type Int+Int, which deter-
mines the type annotation on the bound variable x-the
type Int is the most specific (with respect to the sub-
type relation) that can validly be given to x. We there-
fore allow the annotation to be omitted, writing the
whole application as f (fun (x)x>. During typechecking,
f's type is synthesized (by looking it up in the context)
and then fun{x)x is processed in checking mode, with
expected type Int+Int.

The basic idea of bidirectional checking is well known
as folklore. Similar ideas have been used, for ex-
ample, in ML compilers and typecheckers based on
attribute-grammars. However, this technique has usu-
ally been combined with ML-style type inference (see,
e.g., IAN91J); it is surprisingly powerful when used by
itself as a local type inference method. Specific techni-
cai contributions of this paper are the formalization of
bidirectional checking in a setting with both subtyping
and impredicative poIymorphism and the combination
of this idea with the technique for local synthesis of type
arguments presented in the previous section.

4.1 External Language Syntax

The external language for the system with bidirectional
checking is identical to the one in the previous section,
except that we allow an edclltional form of abstraction
in which all value type annotations are omitted:

f ml CT1 (fl e bare abstraction
Note that we do not allow the type variable binders
[rtl to be inferred. Also, for simplicity, abstractions
have either full annotations or none (we could go further
and allow some annotations to be included and others
omitted on the same abstraction).

4.2 Type Inference

The bidirectional checking algorithm is formalized by
splitting the type inference relation l? I- e E T + e’ into

two separate forms:

??I-eZT=Se’ synthesis
WefET*C! checking

The first form is read in the same way as the type infer-
ence relation in Section 3.1: ?n context r, type anno-
tations can be added to the external language term o to
yield the internal language term e’, which has type T.”
The second can be read ‘?n context I’, type annotations
can be added to e to yield e’, which has a type smaller
than ‘f.”

In the rules that follow, we elide the “+ 0”’ part
of both judgements, since it is ahvays obvious how to
calculate e’. The rules themselves are mostly straiglit-
forward refinements of the typing rules for the inter-
nal Ianguage: the only real subtlety lies in determining
when it is possible to switch from synthesis to check-
ing mode. Each of the original typing ruIes is split into
separate cases for synthesis and checking modes. For
example, the synthesis rule for variables is identical to
the rule in the internal language,

I? I- x 2 l-(x)

while the checking rule must perform an additional sub-
type check.

rt- qx) c T

ri-xZT

The synthesis rule for fully annotated abstractions is
again identical to the internal language: we add the (ex-
plicitIy given) annotations to the context and proceed
in synthesis mode.

There is no synthesis rule for unannotated function ab-
stractions, since we cannot determine the missing type .
annotations from the local type information available
However, in a checking context, we can determine the
appropriate annotations:

If we encounter a fully annotated abstraction in a check-
ing context, we check that the provided annotations are
consistent with the type we are checking against:

The synthesis and checking rules for application nodes
are again nearly identical: we synthesize the typo of
the function and then switch to checking mode for fhe
arguments:

258

In checking mode, we perform a final check that the
actual result type is a subtype of the expected type.

I’ l- f 2 All(x)%R
rl-~IT/jilFt<; U I-t-s(T/qs

rl-fnl<~~ zu

Note that the above rules for function application
embody a simple heuristic: always synthesize the type
of the function, and then use the resulting information
to switch to checking mode for the argument expres-
sions. The reason this heuristic works well is that the
head of an application expression is almost always a
variable or another application expression, and we can
easily synthesize the types of both kinds of expression.
It is possible, of course, to come up with examples where
it would be beneficial to synthesize the argument types
first and then use the resulting information to avoid
type annotations in the function part of an application
expression. For example, we could infer that x has type
Int in the expression (fun(x) e) (31, since the argument
3 has type Int. Unfortunately, this refinement does not
help infer the types of polymorphic functions. For ex-
ample, we cannot uniquely determine the type of x in
the expression (funCX1 (x)e) CIntl(3). (Note also that
adding a second typing rule for application expressions
would introduce some non-determinism in the typing of
expressions and require some backtracking in the type
checker implementation.)

To combine bidirectional checking and type argu-
ment synthesis, we also need synthesis and checking ver-
sions of the “bare application” rule born Section 3.1.

r I- f 2 All(~)TiR
r-i-sZS pq > 0 rk-8cpfiT

Vv. (r l- Z* r/q;i; implies r I- p/FjRc p/QR)

n-f(z) 2 FflR

ri-fmEv
Note that the checking version this rule is significantly
more permissive than the synthesis version, since it al-
lows any type arguments u which satisfy the appropri-
ate constraints: there is no need to try to minimize the
result type. This means that the checking rule will per-
form significantly better on polymorphic function types
such as All (Xl O+ (X+X), where the result type men-
tions a polymorphic variable in both positive and neg-
ative positions.

The expected type Top does not give any useful in-
formation in a checking context: when it appears, we
simply revert to synthesis mode:

r!-ST

rf-e 'E Top

Finally, we need checking and synthesis rules corre-
sponding to the typing rule for Bot:

Pl-f ;Bot rt-izZS

Its worth remarking that application expressions in-
volving both type argument synthesis and anonymous
function arguments (specifically, anonymous function
arguments that are not thunks) are not handled well
by our type inference rules, since we force the argu-
ment expressions to be synthesized. (Fortunately, our
measurements of ML code in Appendix A show that ap-
plication expressions of thii form only occur about once
per 100 lines of code.)

Appropriate refinements of the soundness and par-
tial completeness theorems of Section 3.1 can be shown
to hold when bidirectional checking is added. _

5 Extensions

Iu @?T97a], we show how to extend the local type argu-
ment synthesis technique described in Section 3 to an
internal language where bounded quantification is al-
lowed (specifically, we treat Cardelli and Wegners Ker-
nel Fun [CW85] extended with Bot). All the properties
presented here continue to hold for the extended sys-
tem (including the combination with the bidirectional
propagation technique), but the algorithms involved in
generating constraint sets become somewhat more sub-
tle, due principally to some surprising interactions be-
tween bounded quantifiers and the Bot type pie97]. (In
particular, the intuitive property that ua type variable
has no subtypes except itself and Bat” fails to hold;
for example, if the context contains X<:Bot, then we
have X <: Y for any variable Y.) Moreover, we impose a
slight restriction on the types of polymorphic functions
for which argument types can be inferred, disallowing
dependencies between type arguments in a single appli-
cation. It appears that this restriction could be relaxed
if a more clever constraint solver were employed, but we
do not see how to remove it completely.

,

We have experimented with these and similar type
inference techniques in our compiler for the Pitt lan-
guage [PT97c]. Although these experiments do not yet
cover the full language, they give some confidence that
the methods do actually infer enough type annotations
to be helpful. (Indeed, we converted around 10,000
lines of library code fkom a version of Pitt incorporating
Cardelli’s greedy algorithm to one using a variant of the
techniques presented here in a few hours.) Moreover,
they provide an indication of how well these techniques
scale to languages with more features than the tiny core
calculus presented here. In general, our experience has
been quite encouraging: it has usually been quite easy
to see how to extend the definitions here to the larger
syntax and richer type system found in Pi&

However, one important set of issues remains in-
completely resolved. A significant difference between
Pitt’s type system and the variants of Fs studied here
and in [pT97a] is that Pitt includes type operators-
formally, it is based on the higher-order extension FT.
Our type argument synthesis technique depends on the
fact that type operators like List are covariant in the
subtype relation; in the case of Fr, we must also recog-
nize when user-defined type operators are co- or contra-
variant. The necessary extension of F<” with polarized

259

i
,: i

type operators is significantly more complex than the
form in which F<” is usually studied [PS94, Com94],
and its meta-theoretic properties are a matter of cur-
rent investigation [Ste97]. We are experimenting with
strategies for simplifying the system and have achieved
some promising preliminary results.

Another important avenue for further ‘investigation
is the possibility of combining these type inference tech-
niques with overloading. There is reason to hope that
the integration can be accomplished smoothly, since
we have insisted that each typable term should have
a unique manifest type.

6 Related Work ’

There have been a number of proposals for partial type
inference schemes treating just impcedicative polymor-
phism (without subtyping). One lime of work has been
explored by Pfenning JPfe88, Pfe93], following earlier
work of Boehm [Boe85, Boe89J.. Interestingly, the key
algorithm here comes &om a proof of tmdecidability
of a certain style of partial type inference, where oc-
currences of type application must be marked but the
type argument itself need not be supplied, and where
all other type annotations may .be omitted. Boehm
showed that this form of type inference was just as hard
as higher-order unification, hence undecidable. Con-
versely, &et’s earlier work on efficient semi-algorithms
for higher-order unification pue75] led directly to a
useful semi-algorithm for partial type inference [PfeSS].
Later improvements in this line of development have in-
cluded using a more refined algorithm for higher-order
constraint solving [DHISP96], eliminating the trouble-
some possibilities of nontermination or generation of
non-unique solutions. Experience with related algo-
rithms in languages such as LEAP [PL91], Elf [Pfe89],
and FX [JG89] has shown them to be quite well behaved
in practice.

A different approach to partial type inference {still
without subtyping) was initiated by L5ufer and Oder-
sky]LO94], sparked by Perry’s observation that first-
class existential types can be added to ML by inte-
grating them with the datatype mechanism pergo]. In
essence, datatype constructors and destructors can be
regarded as explicit type annotations, marking where
values must be injected into and projected from dis-
joint union types, where recursive types must be folded
and unfolded, and (when existentials are added) where
packing and unpacking must occur. This idea was ex-
tended to include first-cIass (impredicative)’ universal
quantifiers by Remy wm94]. Other, more recent, pro-
posals by Odersky and LZufer fOL96] and R&y and
Garrigue [GR97] conservatively extend ML-style ,type
inference by allowing programmers to explicitly anno-
tate function arguments with types, which may (unlike
the annotations that can be inferred automatically) con-
tain embedded universal quantifiers, thus partly bridg-
ing the gap between ML and System F. This family of
approaches to type inference has the advantage of rel-
ative simplicity and clean integration with the existing
HindIey/Milner polymorphism of ML.

We know of only one partial type inference scheme
that works in the presence of both impredicative poly-
morphism and subtyping: Cardelli’s “greedy type in-

ference algorithm” for Fs [Car93]. The idea here is
that any type annotation may be omitted by the pro-
grammer: a fresh unification variable Q will be gencr-
ated for each one by the parser. During typechecking,
the subtype-checking algorithm may be asked to check
whether some type S is a subtype T, where both S and
T may contain unification variables. Subtype-checking
proceeds as usual until a subgoal of the form o <: T
or T <: Q is encountered, at which point a is instanti-
ated to T, thus satisfying the immediate constraint in
the simplest possible way. Of course, setting cy to T
may not be the best possible choice, and this may cause
later subtype-checks for types involving cr to fail when
a dierent choice would have allowed them to succeed;
but, again, practical experience with this algorithm in
Cardelli’s implementation and in an early version of
the Pitt language [PT97c] shows that the algorithm’s
greedy choice is correct in nearly all cases.

Unfortunately, there are some situations in which the
greedy algorithm is almost guaranteed to guess wrong,
For example, if f has type IS,T)+Int and T <: S then
the expression fun (x1 f (x,x) will fail to typecheck: the
greedy algorithm first assigns x the indeterminate type
cu; after checking the first argument to f it concludes
that CY must equal S. But then the second argument
check fails, since we should have given x type T. In such
cases, the algorithm’s behavior can be quite puzzling to
the programmer, yielding mysterious errors far from the
point where a suboptimal instantiation is made.

Also, we should note that Cardelli’s greedy algo-
rithm la&s monotonicity: it is not the case that adding
some type annotations will always improve the chances
that the algorithm will be able to find the rest. For- I
mally, there is a fully typed term e, a partial erasure e’
of e, and a further erasure err of e’, such that e and a”
pass the type inference algorithm but e’ does not. (For
the greedy algorithm, this failure was first noticed by
Dilip Sequeira.) While this kind of behavior has never
been observed in practice, we would be happier to see it
excluded in principle. It is currently an open question
whether our proposed type inference algorithm behaves
any better in this respect.

The difficulties with the greedy algorithm can be
traced to the fact that there is no way of giving a ro-
bust explanation of its behavior without describing the
typing, subtyping, and unification algorithms in com-
plete detail, since the instantiations that they perform
are highly sensitive to the precise order in which con-
straints are encountered during checking. This means
that the language definition, to be complete, must de-
scribe the internal structure of the compiler in quite a
bit of detail. Our goal in this paper has been to develop
partial type inference methods that share the good be-
havior in common cases of the greedy algorithm, but
that are much more straightforward to explain to pro-
grammers.

Although we focus here 0; the combination of sub-
typing and polymorphism, it is worth remarking that
there are other ways of achieving a synthesis of object-
oriented and HOT programming styles. The most sue=
cessful design to date is Objective Caml, an object-
oriented dialect of ML now in use in a number of soft-
ware projects worldwide [RV97]. A crucial design choice
in Objective Cam1 is the use of row-variable polymor-

phism wa.1187, Wan88, -89, Wan941 instead of sub-
sumption for the typing of objects and classes. In Ob-
jective Caml, an object with a large interface cannot
simply be regarded as an object with a smaller inter-
face; however, it is straightforward to write functions
that manipulate both kinds of objects by “quantifying
over the difference” between their interfaces. The type
inference algorithm aids the programmer by performing
thii kind of generalization wherever possible.

7 Conclusions

We have identified a promising class of local type infer-
ence methods and studied two representatives in detail.
Restricting attention to local methods imposes several
design constraints both the internal language and on
possible type inference algorithms:

l Unification or matching can be used only dur-
ing the processing of single nodes in the syntax
tree: types invoIving unification variables are never
added to the context, passed down as checking con-
straints, or returned as the results of type synthe
Sk

l Polymorphic applications must be fully uncurried
in order to obtain the benefits of type inference.
Curried applications can still be used, but they are
second-class in thii respect. (This point is a corol-
lary of the first.)

l Expressions in the internal language must have
unique manifest types that can easily be calculated
by the programmer, in order for the behavior of
partial type inference to be predictable.

l The type system of the internal language must be
sufficiently complete and regular to permit ‘best
annotations” to be inferred. In the system stud-
ied here, this means in particular that the minimal
type Bot must be provided, with some attendant
increase in the complexity of the internal language
(particularly when the system is extended to in-
clude bounded quantification). Similarly, type op-
erators like List must be made covariant in the
subtype relation in order to allow inference of type
arguments to nil and cons.

One weakness of our proposal is the relative com-
plexity of extending local type argument synthesis to
handle bounded quantification. On the positive side,
the strengths of our inference techniques include their
simple descriptions, their predictability, their robust-
ness in the face of extensions to the internal language,
and their tendency to report errors close to the point
where more type annotations are required (or where an
actual error is present in the program).

Acknowledgements

This paper synthesizes insights from conversatious with
more people than we can lit-probably almost everyone
we know-but a few contributions were particularly di-
rect: John Reynolds first acquainted us [BCP] with the
idea of bidirectional typechecking, around 1988, while

early discussions with Luca Cardelli helped plant the
ideas about type argument synthesis that eventually de-
veloped into the proposal in Section 3 in thii paper.
Work with Dip Sequeira on refinements of Cardelli’s
greedy inference algorithm greatly improved our under-
standing of its good and bad properties. Scott Smith,
Rank Pfenning, Konstantin Lliufer, and Didier Remy
gave us useful background on related work. Discussions
with Robert Harper and comments from the POPL ref-
erees helped us tighten the presentation.

The paper was mostly written while Turner was vis-
iting Indiana University in Summer ‘97. Pierce was par-
tially supported by NSF grant CCR-9701826, Principled
Foundations for Programming with Objects.

References

[AN911

[AW93]

[Boe85]

fBoe89]

[f&91]

[Car931

[CG92]

Shall Aditya and Rishiyur S. Nikhil. Incremen-
tal polymorphism. In finctional Pmgmmming
Languages and Computer Architecture, num-
ber 523 in Lecture Notes in Computer Science.
Springer-Verlag, August 1991. Also available as
MIT” CSG Memo 329, June 1991.
Alexander Aiken and Edward L. Wimmers. Qpe
inclusion constraints and type inference. In Con-
ference on Functional Pmgmmming Languages
and Computer Architecture, pages 3141. ACM
press, 1993.
Hans-J. Boehm. Partial polymorphic type in-
ference is undecidable. In 26th Annual Sym-
posium on Foundations of. Computer Science,
pages 339-345. IEEE, October 1985.
Hens-J. Boehm. Type inference in the presence
of type abstraction. In Pmcccdings of the SIG-
PLAN ‘89 Conference on Proommmino Lan-
guage Design and Implementation, pag& 192-
206, Portland, OR, June 1989.
Luca Cardelli. Typeful programming. In E. J.
Neuhold and M. Paul, editors, Formal Descrip-
tion of Pmgmmming Concepts. Springer-Verlag,
1991. Au earlier version appeared as DEC Sys-
tems Research Center Research Report #45,
February 1989.
Luca Cardelli. An implementation of F<: . Re-
search report 97, DEC Systems Research Center,
February 1993.
Pierre-Louis Curieu and Giorgio Ghelli. Co-
herence of subsumption: Minimum typing and
type-checking in Fe. Mathematical Structures in
Computer Science, 255-91, 1992. Also in Carl
A. Guuter and John C. Mitchell, editors, Theo-
retical Aspects of Object-On’ented Prvgmmming:
Qpes, Semantics, and Language Design (MIT
Press, 1994).

[CMMS94] Luca Cardelli, SimoneMartini, John C. Mitchell,
and Andre Scedrov- Au extension of system F
with subtyping. Information and Computation,
109(1-2):4-56, 1994. A preliminary version ap-
peared-in TACS ‘91 (Sendal, Japan, pp. 759-
770).

(Com94] Adriaua B. Compaguoni. Decidability of higher-
order subtyping with intersection types. In Com-
puter Science tigic, September 1994. Kazimierz,
Poland. Springer Lecture Notes in Computer

261

Science 933, June 1995. Also available es Uuiver-
sity of Edinburgh, LFCS technical report ECS-
LFCS-94281, titled “Subtyping in FE is decid-
able”.

[GW85] Luca Cardelli and Peter Wegner. On under-
standing types, data abstraction, and polymor-
phism. Computing S’urrreys, 17(4), December
1985.

(DHKP96J Gil@ Dowek, Th&l?se Hardin, Claude Kirchner,
and Ftank Pfenning. Unification via explicit sub-
stitutions: The case of higher-order patterns. In
M. Maher, editor, Proceedings of the Joint Inter-
notional Conference and Symposium on Logic
Programming, pages 259-273, Bonn, Germany,
September 1996. MIT Press.

[EST951

fFF97J

IGir72)

[GP97]

[GR.97]

(Hue751

[JG89]

[JWQCi]

(LO941

[Mi192]

Jonathan Eifrig, Scott Smith, and Valery Tri-
fonov. Type inference for recursively constrained
types and its application to OOP. In Proceed-
ings of the 1995 Mathematical Foundations of
Programming Semantic8 Conference, volume 1
of Electronic Notes in Z’heoreticd Computer Sci-
ence. Elsevier, 1995.

Cormec Flanagan end Matthias Felleisen. Com-
ponential set-based analysis. ‘ACM SiGPLAN
Notices, 32(5):235-248, May 1997.

Jean-Yves Girard. Interpr&ation fonclionelle
et &mination dcs wupures de I’arithm&ique
d’ordre sup&+eur. PhD thesis, Universite Paris
VII, 1972.

Giorgio Ghelli and Benjamin Pierce. Bounded
existentials and minimal typing. TllW&iCUl

Computer Science, 1997. To appear.

Jaques Garrigue and Didier R&y. Extending
ML with semi;explicit polymorphism. Iu Martin
Abadi and Takayasu Ito, editors, international
Symposium on Theoreticat Aspects of Computer
Software (TACS), Sendai, Japan, pages 20-46.
Springer-Verlag, September 1997.

Gerard Huet. A unification algorithm for typed
X-cakulus. Theoretical Computer Science, 1:27-
5?,1975.

James W. O’Toole Jr. and David K. Gifford.
Type reconstruction with first-class polymorphic
values. In Proceedings of the SIGPLAN’89 Con-
ference on Progmmming Language Design and
fmplementation, Portfand, Oregon, pages 29?-
217. ACM Press, June 1989.

Suresh Jagannathan and Andrew Wright. Effec-
tive flow analysis for avoiding run-time checks. In
Proceedings of the Second International Stntic
Analysis Symposium, volume 983 of LNCS,
pages 297-224. Springer-Verlag, 1995.

Koustantin Liiufer and Martin Odersky. Poly-
morphic type inference and abstract data
types. ACM lkrnsactions on Progmmming
Languages and Systems (TOPLAS), 16(5):1411-
1430, September 1994. An earlier version ap-
peared in the Proceedings of the ACM SIGPLAN
Workshop on ML and its Applications, 1992, un-
der the title ‘An Extension of ML with First-
Class Abstract Types”.

Dale Miller. Unification under a mixed prelix.
Journal of Symbolic Computation, 14(4):321-
358, October 1992.

[OL96]

[OW97]

WJOI

[Pfe88]

[Pfe89]

fPfe93j

[Pie9 71

PW

[Pot971

fPS941

fPT97a]

{PT97b]

pT97c]

262

Martin Odersky and Konstantin Lsufer. Putting
type annotations to work. In Conference
Record of POPL 96: the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles oj Progrum-
ming Languages, pages 54-67, St. Petersburg,
Florida, January 21-24, 1996. ACM Press.

Martin Odersky and Philip Wadler. Pizza into
Javaz Translating theory into practice. In
Principles of Programming Languages (POPL],
1997. A preliminary version appeared as Tcchnl-
cal Report, 26196, University of Karlsruhe, July
1996.

Nigel Perry. The Implemenlalion of Pmclical
Functional Progmmming Languages. PhD the-
sis, Imperial College, 1990.

Frank Pfenning. Partial polymorphic typo in-
ference and higher-order unification. In Pro-
ceedings of the 1988 ACM Conference on Lisp
and Functional Progmmming, Snowbird, Utah,
pages 153-163. ACM Press, July 1988. Also
available as Ergo Report 88-048, School of Com-
puter Science, Carnegie Melion University, Pitts-
burgh.

Frank Pfenning. Elf: A language for logic dofinl-
tion and verified meta-programming. In Fourth
Annual Symposium on Logic in Computer 5%
encc, pages 313-322, Pacific Grove, California,
June 1989. IEEE Computer Society Press.

Frank Pfenning. On the undecidability of par-
tial polymorphic type reconstruction. finda-
menta Informatiwe, 19(1,2):185-199, 1993. Pre-
limlnary version available as Technical Report
CMU-GS-92-105, School of Computer Science,
Carnegie Mellon University, January 1992.

Benjamin C. Pierce. Bounded quantification
with bottom. Technical Report 492, Computer
Science Department, Indiana University, 1997,

Frank Pfenning and Peter Lee. Metacircularity
in the polymorphic X-calculus. Theoretical Com-
puter Science, 89(1):137-159, 21 October 1991.
A preiiminary version appeared in T!PSOFT
‘89, Proceedings of the International Joint Con-
ference on Theory and Practice in Soflware De-
velopment, Barcelona, Spain, pages 345-369,
Springer-Verlag LNCS 352, March 1989.

Francois Pottler.
straints.

Simplifying subtyplng con-
In Proceedings of the Inlema-

tional Conference on Punclional Programming
(ICFP), 1997.

Benjamin Pierce and Martin Steffen. Hlghord
order subtyping. In IFIP Working Conjerencc
on Programming Concepts, Methods and Calcnri
CPBOCOMET), 1994. Full version in Theoreli-
wI Computer Science, vol. 176, no. 1-2, pp. 235-
282,199?.

Benjamin C. Pierce and David N. Turner. Loyal
type argument synthesis with bounded quantlll-
cation. Technical Report 495, Computer Science
Department, Indiana University, 1997.

Benjamin C. Pierce and David N. mrner. Local
type inference. Technical Report 493, Computer
Science Department, Indiana University, 1997.

Benjamin G. Pierce and Davld N. Turner. Pitt:
A programming language based on the pl-
calculus. Technical Report CSCI 476, Corn-
puter Science Department, Indiana University,

[lZem89]

[R4m94]

WY741

[RV97]

[SOW971

[Ste97]

[TS96]

[Wan871

[Wan881

w-941

[We1941

1997. To appear in Proof, Language and In-
teraction: Essays in Honour of Robin MiIner,
Gordon Plotkin, Colin Stirling, and Made Tofte,
editors, MIT Press.
Didier R4my. Typechecking records and variants
in a natural extension of ML. In Proceedings of
the Sixteenth Annual ACM Symposium on Prin-
ciples of Pmgmmming Languages, Austin, pages
242-249. ACM, January 1689: Also in CarA.
Gunter and John C. Mitchell. editors. Thwret-
id Aspects of Object-Oriented Pmimmming:
Types, Semantics, and Language Design (MIT
Press, 1994).
Didier R&ny. Programming objects with
ML-ART: An extension to ML with abstract
and record types. In Masami Hag&a and
John C. Mitchell, editors, InternationaI Sympo-
sium on Theoretical Aspects of Computer Soft-
wum (TAB), pages 321-346, Sendai, Japan,
April 1994. Springer-Verlag.
John Reynolds. Towards a theory of type struc-
ture. In Proc. Colloque sur la Progmmmation,
pages 408-425, New York, 1974. Springer-Verlag
LNCS 19.
Didier R4my and J&me Vouillon. Objective
ML: A simple object-oriented extension of ML.
In Conference Rewni of POPL ‘97z the 24th
ACM ~GPLAN-SIGACT Symposium on Prk-
ciples of Progmmming Languages, pages 49-53,
Paris, France, January 15-17, 1997. ACM Press.
fill version to appear in Theory and Pmctice of
Object Systems, 1998.

Martin Sulzmarm, Martin Odersky, and Martin
Wehr. Type inference with constrained types.
In Fourth International Worhshop on Founda-
tions of Object-Oriented Pmgmmming (FOOL
41, January 1997. l.Qll version to appear in The-
ory end Pm&ice of Object Systems, 1998.

Martin Steffen. PhD thesis, Universitiit
Erlangen-Niimberg, 1997. Forthcoming Ph.D.
thesis.
Valery ‘Hifonov and Scott Smith. Subtyping con-
strained types. In Psvctzdings of the Third In-
ternational Static Analysis Symposium, volume
1145 of LNCS, pages 349-365. Springer Verlag,
September 1996.
Mitchell Wand. Complete type inference for sim-
ple objects. In Proceedings of the IEEE Sympo-
sium on Logic in Computer Science, Ithaca, NY,
June 1987.
Mitchell Wand. Corrigendum: Complete type
inference for simple objects. In Proceedings of
the IEEE Symposium on Logic in Computer Sci-
ence, 1988.
Mitchell Wand. Type inference for objects with
instance variables and inheritance. In Carl A.
Gunter and John C. Mitchell, editors, Thwret-
icol Aspects of Object-Oriented Progmmming:
!Qpes, Semantics, and Language Design, pages
97-120. The MIT Press, 1994.
J. B. Wells. Typability and type checking in the
second-order Xcalculus are equivalent and un-
decidable. In Proceedings of the Ninth Annual
IEEE Symposium on Logic in Computer Science
(LICS), pages 176-185, 1994.

A Measurements

This appendix presents in more detail our measnre-
me&s of the uses of type inference in ML programs, as
a rough guide to the frequency of undesirable type an-
notations of various sorts that would arise if we adopted
a HOT progr amming style in a language with no type
inference at all.

It is helpful to distinguish between two kinds of type
annotations. One kind we call reasonable, the other
silly-the difference being that reasonable type annota-
tlons have some value as documentation, while silly an-
notations do not. Obviously, opinions will vary on pre-
cisely which annotations belong in each category, but
many cases are fairly clear. For example, type anno-
tations on parameters to top-level function definitions
are arguably reasonable, since (except for very short
functions) they are not normally obvious and writing
them explicitly helps make code more readable (more-
over, they are checked documentation and can never be
out of date). On the other hand, it is hard to imagine
why anyone would want to write or read either of the
occurrences of Int in cons EIntl(3,nilEIntl). They
are both silly.

We are interested in the kinds and frequencies of
type annotations that will typically arise if we adopt a
HOT programmin g style (the style encouraged by ML)
in an explkit$ typed language. The three character-
istic features of this styI*fine-grained polymorphism,
higher-order progr amming, and heavy use of data con-
structors and destructors instead of mutable state-
each lead to an increase in the number of type anno-
tations; moreover, many of these annotations are silly.

The use of fine-groined polymorphism, in which in-
dividual functions (rather than whole modules, as in
C++ or Pizza) are parameterized on type arguments,
leads to type annotations whenever polymorphic func-
tions are defined or used-e.g., the three occurrences of
[Xl in:

let cons-twice =
fnn[Xl (v:X, l:List(X))

cons[Xl (v. cons[Xl (v. nil[Xl)>

The abstraction on X is arguably reasonable (indeed, in
many languages, it actually has behavioral significance),
but the [Xl arguments to nil and cons are silly.

A higher-order programming style, in which small
anonymous functions are passed as arguments to other
functions, leads to an increase in the total num-
ber of functions. Moreover (unlike top-level func-
tion definitions), the types of the parameters to these
functions are mostly obvious from context. For ex-
ample, suppose fold-range is a function of type
(((Int,tit)+Int) ,Int,Int,Int)+Int; we might use
it in an expression like

fold-range(
fun(x:Int, y:Int) x+y,
0, 1. 10)

to calculate the sum of the numbers from 1 to IO. The
two occurrences of Int are silly annotations, since they
act only to lengthen the expression and obscure its be-
havior; it would be clearer to write:

263

fold-range(
fun(X,Y) x+y,
0, 1, 10)

A mostly finctionaI (or, in the extreme, purely fine-
timal) style, which favors the construction of new data
values rather than in-p&e mutation of existing once,
leads to an increase in the number of local variable bind-
ings compared to au imperative style. An imperative
program with one local declaration

let x : Int = 0;
x := x + 1;
x := x * 2;
x := x - 3;
return Xi

can become a functional program with four:

let x : Int = 0 in
let y : Int = x + 1 in
let 2 : Int = y * 2 in
let r : It = z - 3 in
r

Again, the type annotations on these binders are all
silly.

We chose the Objective Caml’compiler as our ex-
perimental tool, because the front end is quite easy to
understand and modify’ We gathered raw data by in-
strumenting the compiler to produce a trace showing
where the generalization and iustautiation operations
were being used during typechecking, where function
definitions were encountered, and so on for each of the
quantities we were interested in measuring. Each pro-
gram was then compiled in the usual way and a small
script was used to tabulate and summarize the resulting
traces.3

We measured several publically available Objective
Cam1 programs, amounting to about 160,000 lines of
code plus about 30,000 lines in interface files.

Camltk, written at Inria-Roqnenconrt, is a collection OF
mainly stub functions providing an interface to the Tk
toolkit. Coq, the largest single program we measured,
is a theorem prover, also from INDIA. Ensemble is a
toolkit for group communication in distributed systems,
buitt at Cornell. MMM is a web browser, from INDIA.
Findly, we included the Objective Cam1 system itself,
dividing it into libraries (the stdlib and otherlibs sub-
directories of the distribution) and the compiler itself
(plus debugger, etc.). We included comments in the
line counts, since we are interested in the impact of the

2Although Objective CamI supports object-oriented idioms
in addition to a “pure HOT style,” this facility is relatively new
and is not used heavily in the code we measured.

3Tbe raw traces from which the tables in this
section were generated are available on-line through
http://uuv.cs.indisna.edu/hyierce/lti-stats.

presence or absence of type annotations on the full text
that programmers actually read and write.

The discussion above identified three ways in which
silly type annotations arise from features of the HOT
programming style promoted by ML. The first was fine-
grained polymorphism, which encourages the use of
large numbers of polymorphic functions. To estimate
the impact of this feature in practice, we counted tha
frequency of instautiations of polymorphic variables and
constructors4 performed during typechecking: each in-
stantiation would correspond to one or more type ar-
gnments in an explicitly typed language. We counted
separately the instantiations arising from comparison
functions (=, <, etc.), which are polymorphic in Ob-
jective Cam1 but could well be monomorphic in other
languages.

var. inst. constr. inst. camp.
CamlTk 13.1 28.9 1.2
coq 38.8 32.1 2*1
Ensemble 19.1 16.0 2.4
MMM 14.8 20.4 1.4
OCamI. Libs 13.7 9.5 5.2
OCaml Progs 16.9 9.8 1.9

To highlight the impact of including or eliding type an-
notations associated with various language features, we
express our results (here and in the tables that follow)
as numbers of occurrences per hundred lines of code.
For example, in CamlTk, an instantiation occurs, on
average, every 8 lines (i.e., ‘in 13.1% of the lines), As-
suming 50 lines per screenful of text, this means that
we might expect, on average, to see six or seven per
dispIayed page.

The frequencies of constructor instances in this ta-
ble should be taken with a gram of salt, since they
include instantiations occurring during typechecking of
patterns, which can probably be avoided in many C;ISCS.
The high frequency of instantiation in Coq is a consc-
quence of its extensive use of Objective Caml’s built-in
stream syntax.

Another source of silly type annotations is type an-
notations on bound variables of anonymous functions.
To gauge the importance of this effect, we counted the
frequency of anonymous function definitions in each of
the sample programs. (For simplicity, we did not count
the number of arguments to each function definition or
the sizes of the type annotations that would have been
required if they had been written explicitly.)

anonymous functions
CamlTk I 2.9
coq 12.4
Ensemble 2.4
MMM 2.8
OCaml Libs 0.7
OCaml Progs 3.1

We see that the usage of anonymous functions varies
according to programming style: the Objective Cam1 li-
braries use dmost’none, preferring direct recursive def-
initions, while application programs tend to make rca-
sonably frequent use of higher-order functions like map

4The constructor instance count also includes instances nris-
ing from polymorphic record labels.

264

_I. _ - .---
~. _.“.. -. . ,,., ‘. I_-

and fold. Coq uses a relatively high number of anony-
mous functions-a consequence, again, of its extensive
use of Objective Caml’s stream syntax, which is trans-
lated internally into calls to the lazy stream library in-
volving large numbers of thunks.

Two final sources of silly type annotations are vari-
able bindings and local function definitions. Since all
definitions, including function definitions, are translated
internally into let-bindings, we divide this count into
three: local function definitions (probably silly), top-
level function definitions (probably reasonable), and
let-bindings of other kinds (probably silly).

CamlTk
1 local fns toplevel fns other lets
I 0.5 7.5 8.7

coq 7.0 10.5
Ensemble 4:; 4.2 9.6
MMM 1.0 3.8 8.8
O&ml Libs 0.6 8.7 7.9
OCaml Progs 0.5 3.9 6.9

Let-bindings are fairly frequent, as might be expected.
Local functions sre much less frequent than top-level
definitions-but, especially in Ensemble, not as rare as
we might have had hoped (given that we do not in-
fer these). It is also interesting to note, in passing,
that library code-CamlTk and the Objective Cam1
libraries-tends to define smaller functions than most
of the application code.

As we noted for anonymous functions, these nmbers
give only a rough measure of the ‘%ost” of adding type
annotations, since more than one type annotation may
be required for each let-binding. Also, small changes
in programming style can make a large difference in the
number and size of required annotations. For example,
changing a Cam1 function definition from the form

lot f = function <pat> + <exp> 1 . . .

to the form

let f x:T = match x with <pat> + <exp> I . . .

eliminates the need for explicit annotations in all of the
patterns.

We also gathered some measurements to help evalu-
ate the limitations of our proposed inference techniques.
In particular, there are some situations where either,
but not both, can be used. This occurs when a polymor-
phic function or constructor is applied to an argument
list that includes an anonymous abstraction. We break
the measurements of these “hard applications” into two
categories-one where some function argument is really
hard and the easier cese where the function argument
is actually a thunk (whose parameter is either _ or 0,
and which can therefore easily be synthesized).

CamlTk
1 “hard” fn. args “hard” thunk args
I 1.7 0.0

coq 1.9 9.7
Ensemble ii:: 0.1
MMM 0.0
O&ml Libs 0.4 0.0
OCaml Progs 1.1 0.0

265

Finally, we found it interesting to measure how of-
ten the generalization operation was used during type-
checking: these would each correspond to one or more
type abstractions in an explicitly typed language. As
above, we distinguish between polymorphic top-level
definitions and local definitions of polymorphic func-
tions.

CamlTk
coq
Ensemble

, MMM
O&ml Libs
OCaml Progs

top-level local
0.4 0.1.
2.9 0.5
2.2 0.8
0.4 0.1
2.0 0.1
0.6 0.0

There is actually considerable variation in the frequency
of type generalization in the different styles of code rep-
resented in the table-much more than the variation
in numbers of instantiations. Also, the frequency of
generalization seems to have little correlation with the
distinction between library and application code.

.

.

I

.

.

I

i

,

L

