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We propose a novel approach to the view update problem for tree-structured data: a domain-
specific programming language in which all expressions denote bi-directional transformations on

trees. In one direction, these transformations—dubbed lenses—map a “concrete” tree into a
simplified “abstract view”; in the other, they map a modified abstract view, together with the

original concrete tree, to a correspondingly modified concrete tree. Our design emphasizes both
robustness and ease of use, guaranteeing strong well-behavedness and totality properties for well-

typed lenses.

We identify a natural mathematical space of well-behaved bi-directional transformations over
arbitrary structures, study definedness and continuity in this setting, and state a precise connection

with the classical theory of “update translation under a constant complement” from databases. We
then instantiate this semantic framework in the form of a collection of lens combinators that can

be assembled to describe transformations on trees. These combinators include familiar constructs
from functional programming (composition, mapping, projection, conditionals, recursion) together

with some novel primitives for manipulating trees (splitting, pruning, copying, merging, etc.). We
illustrate the expressiveness of these combinators by developing a number of bi-directional list-

processing transformations as derived forms. An extended example shows how our combinators

can be used to define a lens that translates between a native HTML representation of browser
bookmarks and a generic abstract bookmark format.
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1. INTRODUCTION

Computing is full of situations where some structure must be converted to a different
form—a view—in such a way that changes made to the view can be reflected back
as updates to the original structure. This view update problem is a classical topic in
the database literature, but has so far been little studied by programming language
researchers.

This paper addresses a specific instance of the view update problem that arises
in a larger project called Harmony [Foster et al. 2006]. Harmony is a generic
framework for synchronizing tree-structured data—a tool for propagating updates
between different copies of tree-shaped data structures, possibly stored in different
formats. For example, Harmony can be used to synchronize the bookmark files
of several different web browsers, allowing bookmarks and bookmark folders to be
added, deleted, edited, and reorganized in any browser and propagated to the oth-
ers. The ultimate aim of the project is to provide a platform on which a Harmony
programmer can quickly assemble a high-quality synchronizer for a new type of
tree-structured data stored in a standard low-level format such as XML. Other
Harmony instances currently in daily use or under development include synchro-
nizers for calendars (Palm DateBook, ical, and iCalendar formats), address books,
slide presentations, structured documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize structures that may be stored
in disparate concrete formats, we define one common abstract view and a collection
of lenses that transform each concrete format into this abstract view. For example,
we can synchronize a Mozilla bookmark file with an Internet Explorer bookmark file
by transforming each into an abstract bookmark structure and propagating changed
information between these. Afterwards, we need to take the updated abstract
structures and reflect the corresponding updates in the original concrete structures.
Thus, each lens must include not one but two functions—one for extracting an
abstract view from a concrete one and another for putting an updated abstract
view back into the original concrete view to yield an updated concrete view. We
call these the get and putback components, respectively. The intuition is that the
mapping from concrete to abstract is commonly some sort of projection, so the get

direction involves getting the abstract part out of a larger concrete structure, while
the putback direction amounts to putting a new abstract part into an old concrete
structure. We show a concrete example of this process in Section 2.

The difficulty of the view update problem springs from a fundamental tension
between expressiveness and robustness. The richer we make the set of possible
transformations in the get direction, the more difficult it becomes to define corre-
sponding functions in the putback direction in such as way that each lens is both
well behaved—its get and putback behaviors fit together in a sensible way—and
total—its get and putback functions are defined on all the inputs to which they may
be applied.

To reconcile this tension, a successful approach to the view update problem must
be carefully designed with a particular application domain in mind. The approach
described here is tuned to the kinds of projection-and-rearrangement transforma-
tions on trees and lists that we have found useful for implementing Harmony in-
stances. It does not directly address some well-known difficulties with view update
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in the classical setting of relational databases—such as the difficulty of “inverting”
queries involving joins—though we hope that our work may suggest new attacks
on these problems.

A second difficulty concerns ease of use. In general, there are many ways to
equip a given get function with a putback function to form a well-behaved and total
lens; we need some means of specifying which putback is intended in a way that is
natural for the application domain and that does not involve onerous proof obliga-
tions or checking of side conditions. We adopt a linguistic approach to this issue,
proposing a set of lens combinators—a small domain-specific language—in which
every expression simultaneously specifies both a get function and the corresponding
putback. Moreover, each combinator is accompanied by a type declaration, designed
so that the well-behavedness and (for non-recursive lenses) totality of composite
lens expressions can be verified by straightforward, compositional checks. (Prov-
ing totality of recursive lenses, like ordinary recursive programs, requires global
reasoning that goes beyond types.)

The first step in our formal development (in Section 3) is identifying a natural
mathematical space of well-behaved lenses over arbitrary data structures. There is
a good deal of territory to be explored at this semantic level. First, we must phrase
our basic definitions to allow the underlying functions in lenses to be partial, since
there will in general be structures to which a given lens cannot sensibly be applied.
The sets of structures to which we do intend to apply a given lens are specified
by associating it with a type of the form C ⇋ A, where C is a set of concrete
“source structures” and A is a set of abstract “target structures.” Second, we
define a notion of well-behavedness that captures our intuitions about how the get

and putback parts of a lens should behave in concert. (For example, if we use the
get part of a lens to extract an abstract view a from a concrete view c and then use
the putback part to push the very same a back into c, we should get c back.) Third,
we use standard tools from domain theory to define monotonicity and continuity
for lens combinators parameterized on other lenses, establishing a foundation for
defining lenses by recursion (needed because the trees that our lenses manipulate
may in general have arbitrarily deep nested structure—e.g., when they represent
directory hierarchies, bookmark folders, etc.). Finally, to allow lenses to be used to
create new concrete structures rather than just updating existing ones (needed, for
example, when new records are added to a database in the abstract view), we adjoin
a special “missing” element to the structures manipulated by lenses and establish
suitable conventions for how it is treated.

With these semantic foundations in place, we proceed to syntax. We first (in
Section 4) present a group of generic lens combinators (identities, composition, and
constants), which can work with any kind of data. Next (in Section 5), we focus at-
tention on tree-structured data and present several more combinators that perform
various manipulations on trees (hoisting, splitting, mapping, etc.); we also show
how to assemble these primitives, along with the generic combinators from before,
to yield some useful derived forms. Section 6 introduces another set of generic
combinators implementing various sorts of bi-directional conditionals. Section 7
gives a more ambitious illustration of the expressiveness of these combinators by
implementing a number of bi-directional list-processing transformations as derived
formsincluding lenses for projecting the head and tail of a list, mapping over a list,
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grouping the elements of a list, concatenating two lists, and our most complex exam-
ple: a bi-directional filtering lens whose putback function performs a rather intricate
“weaving” operation to recombine an updated abstract list with the concrete list
elements that were filtered away by the get. In this section we also demonstrate the
use of the reasoning techniques developed in Section 3. Section 8 further illustrates
the use of our combinators in real-world lens programming by walking through a
substantial example derived from the Harmony bookmark synchronizer.

Section 9 presents some first steps into a somewhat different region of the lens
design space: lenses for dealing with relational data encoded as trees. We define
three more primitives—a “flattening” combinator that transforms a list of (keyed)
records into a bush, a “pivoting” combinator that can be used to promote a key
field to a higher position in the tree, and a “transposing” combinator related to the
outer join operation on databases. The first two combinators play an important
role in Harmony instances for relational data such as address books encoded as
XML trees.

Section 10 surveys a variety of related work and states a precise correspondence
between our well-behaved lenses and the closely related idea of “update translation
under a constant complement” from databases. Section 11 sketches directions for
future research.

To keep things moving, we defer all the proofs to Appendix A.

2. A SMALL EXAMPLE

Suppose our concrete tree c is a simple address book:

c =















∣

∣

∣

∣

∣

∣

∣

∣

Pat 7→

{∣

∣

∣

∣

Phone 7→ 333-4444

URL 7→ http://pat.com

∣

∣

∣

∣

}

Chris 7→

{∣

∣

∣

∣

Phone 7→ 888-9999

URL 7→ http://chris.org

∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣















We draw trees sideways to save space. Each set of hollow curly braces corresponds
to a tree node, and each “X 7→ ...” denotes a child labeled with the string X. The
children of a node are unordered. To avoid clutter, when an edge leads to an empty
tree, we usually omit the braces, the 7→ symbol, and the final childless node—
e.g., “333-4444” above actually stands for “

{∣

∣333-4444 7→ {||}
∣

∣

}

.” When trees are
linearized in running text, we separate children with commas for easier reading.

Now, suppose that we want to edit the data from this concrete tree in an even
simpler format where each name is associated directly with a phone number.

a =

{∣

∣

∣

∣

Pat 7→ 333-4444

Chris 7→ 888-9999

∣

∣

∣

∣

}

Why would we want this? Perhaps because the edits are going to be performed
by synchronizing this abstract tree with another replica of the same address book
in which no URL information is recorded. Or perhaps there is no synchronizer
involved and the edits are going to be performed by a human who is only interested
in phone information and doesn’t want to see URLs. Whatever the reason, we are
going to make our changes to the abstract tree a, yielding a new abstract tree a′ of
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the same form but with modified content.1 For example, let us change Pat’s phone
number, drop Chris, and add a new friend, Jo.

a′ =

{∣

∣

∣

∣

Pat 7→ 333-4321

Jo 7→ 555-6666

∣

∣

∣

∣

}

Lastly, we want to compute a new concrete tree c′ reflecting the new abstract
tree a′. That is, we want the parts of c′ that were kept when calculating a (e.g.,
Pat’s phone number) to be overwritten with the corresponding information from
a′, while the parts of c that were filtered out (e.g., Pat’s URL) have their values
carried over from c.

c′ =


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∣

∣

}

Jo 7→
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∣

∣

Phone 7→ 555-6666

URL 7→ http://google.com

∣
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∣

}
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We also need to “fill in” appropriate values for the parts of c′ (in particular, Jo’s
URL) that were created in a′ and for which c therefore contains no information.
Here, we simply set the URL to a constant default, but in general we might want to
compute it from other information.

Together, the transformations from c to a and from a′ plus c to c′ form a lens.
Our goal is to find a set of combinators that can be assembled to describe a wide
variety of lenses in a concise, natural, and mathematically coherent manner. (To
whet the reader’s appetite, the lens expression that implements the transformations
above is map (focus Phone

{∣

∣URL 7→ http://google.com
∣

∣

}

).)

3. SEMANTIC FOUNDATIONS

Although many of our combinators work on trees, their semantic underpinnings can
be presented in an abstract setting parameterized by the data structures (which we
call “views”) manipulated by lenses.2 In this section—and in Section 4, where we
discuss generic combinators—we simply assume some fixed set V of views; from
Section 5 on, we will choose V to be the set of trees.

Basic Structures

When f is a partial function, we write f(a) ↓ if f is defined on argument a and
f(a) = ⊥ otherwise. We write f(a) ⊑ b for f(a) = ⊥ ∨ f(a) = b. We write dom(f)
for {s | f(s) ↓}, the set of arguments on which f is defined. When S ⊆ V, we write

1Note that we are interested here in the final tree a′, not the particular sequence of edit operations

that was used to transform a into a′. This is important in the context of Harmony, which is
designed to support synchronization of off-the-shelf applications, where in general we only have

access to the current states of the replicas, rather than a trace of modifications; the tradeoffs
between state-based and trace-based synchronizers are discussed in detail elsewhere [Pierce and

Vouillon 2004; Foster et al. 2005].
2We use the word “view” here in a slightly different sense than some of the database papers that

we cite, where a view is a query that maps concrete to abstract states—i.e., it is a function that,

for each concrete database state, picks out a view in our sense. Also, note that we use “view” to
refer uniformly to both concrete and abstract structures—when we come to programming with

lenses, the distinction will be merely a matter of perspective anyway, since the output of one lens
is often the input to another.
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f(S) for {r | s ∈ S ∧ f(s) ↓ ∧ f(s) = r} and ran(f) for f(V). We take function
application to be strict, i.e., f(g(x)) ↓ implies g(x) ↓.

3.1 Definition [Lenses]: A lens l comprises a partial function lր from V to V,
called the get function of l, and a partial function lց from V × V to V, called the
putback function.

The intuition behind the notations lր and lց is that the get part of a lens “lifts”
an abstract view out of a concrete one, while the putback part “pushes down” a new
abstract view into an existing concrete view. We often say “put a into c (using l)”
instead of “apply the putback function (of l) to (a, c).”

3.2 Definition [Well-behaved lenses]: Let l be a lens and let C and A be sub-
sets of V. We say that l is a well behaved lens from C to A, written l ∈ C ⇋ A, iff
it maps arguments in C to results in A and vice versa

lր(C) ⊆ A (Get)
lց(A × C) ⊆ C (Put)

and its get and putback functions obey the following laws:

lց (lր c, c) ⊑ c for all c ∈ C (GetPut)
lր (lց (a, c)) ⊑ a for all (a, c) ∈ A × C (PutGet)

We call C the source and A the target in C ⇋ A. Note that a given l may be a
well-behaved lens from C to A for many different Cs and As; in particular, every
l is trivially a well-behaved lens from ∅ to ∅, and the everywhere-undefined lens
belongs to C ⇋ A for every C and A.

Intuitively, the GetPut law states that, if we get some abstract view a from a
concrete view c and immediately putback a (with no modifications) into c, we must
get back exactly c (if both operations are defined). PutGet, on the other hand,
demands that the putback function must capture all of the information contained
in the abstract view: if putting a view a into a concrete view c yields a view c′,
then the abstract view obtained from c′ is exactly a.

An example of a lens satisfying PutGet but not GetPut is the following.
Suppose C = string× int and A = string, and define l by:

lր (s, n) = s lց (s′, (s, n)) = (s′, 0)

Then lց (lր (s, 1), (s, 1)) = (s, 0) 6⊑ (s, 1). Intuitively, the law fails because the
putback function has “side effects”: it modifies information in the concrete view
that is not reflected in the abstract view.

An example of a lens satisfying GetPut but not PutGet is the following. Let
C = string and A = string× int, and define l by :

lր s = (s, 0) lց ((s′, n), s) = s′

PutGet fails here because some information contained in the abstract view does
not get propagated to the new concrete view. For example, lր (lց ((s′, 1), s)) =
lր s′ = (s′, 0) 6⊑ (s′, 1).

The GetPut and PutGet laws reflect fundamental expectations about the be-
havior of lenses; removing either law significantly weakens the semantic foundation.
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We may also consider an optional third law, called PutPut:

lց (a′, lց (a, c)) ⊑ lց (a′, c) for all a, a′ ∈ A and c ∈ C.

This law states that the effect of a sequence of two putbacks is (modulo definedness)
just the effect of the second: the first gets completely overwritten. Alternatively,
a series of changes to an abstract view may be applied either incrementally or all
at once, resulting in the same final concrete view. We say that a well-behaved lens
that also satisfies PutPut is very well behaved. Both well-behaved and very well
behaved lenses correspond to well-known classes of “update translators” from the
classical database literature; see Section 10.

The foundational development in this section is valid for both well-behaved and
very well behaved lenses. However, when we come to defining our lens combinators
for tree transformations, we will not require PutPut because some of our lens
combinators—map and flatten—fail to satisfy it for reasons that seem pragmati-
cally unavoidable (see Sections 5 and 9).

For now, a simple example of a lens that is well behaved but not very well
behaved can be constructed as follows. Consider the following lens, where C =
string × int and A = string. The second component of each concrete view
intuitively represents a version number.

lր (s, n) = s lց (s, (s′, n)) =

{

(s, n) if s = s′

(s, n+1) if s 6= s′

The get function of l projects away the version number and yields just the “data
part.” The putback function overwrites the data part, checks whether the new
data part is the same as the old one, and, if not, increments the version num-
ber. This lens satisfies both GetPut and PutGet but not PutPut, as we have
lց (s, lց (s′, (c, n))) = (s, n + 2) 6⊑ (s, n + 1) = lց (s, (c, n)).

Another critical property of lenses is totality (with respect to a given source and
target).

3.3 Definition [Totality]: A lens l ∈ C ⇋ A is said to be total, written l ∈
C ⇐⇒ A, if C ⊆ dom(lր) and A × C ⊆ dom(lց).

The reasons for considering both partial and total lenses instead of building total-
ity into the definition of well-behavedness are much the same as in conventional
functional languages. In practice, we always want lenses to be total:3 to guaran-
tee that Harmony synchronizers will work predictably, lenses must be defined on
the whole of the domains where they are used; the get direction should be defined
for any structure in the concrete set, and the putback direction should be capable
of putting back any possible updated version from the abstract set.4 All of our
primitive lenses are designed to be total, and all of our lens combinators map total

3Indeed, well-behavedness is somewhat trivial in the absence of totality: for any function lր from
C to A, we can obtain a well-behaved lens by taking lց to be undefined on all inputs —or, very

slightly less trivially, to be defined only on inputs of the form (lր c, c).
4Since we intend to use lenses to build synchronizers, the updated structures here will be results of
synchronization. But a fundamental property of the core synchronization algorithm in Harmony is

that, if all of the updates between synchronizations occur in just one of the replicas, then the effect
of synchronization will be to propagate all these changes to the other replica. This implies that
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lenses to total lenses—with the sole, but important, exception of lenses defined by
recursion; as usual, recursive lenses must be constructed in the semantics as limits
of chains of increasingly defined partial lenses. The soundness of the type annota-
tions we give for our syntactic lens combinators guarantees that every well-typed
lens expression is well-behaved, but only recursion-free expressions can be shown
total by completely compositional reasoning with types; for recursive lenses, more
global arguments are required.

Basic Properties

We now explore some simple but useful consequences of the lens laws.

3.4 Definition: Let f be a partial function from A × C to C and P ⊆ A × C.
We say that f is injective on P if it is injective (in the standard sense) in the
first component of arguments drawn from P—i.e., if, for all views a, a′, c, and c′

with (a, c) ∈ P and (a′, c′) ∈ P , if f(a, c) ↓ and f(a′, c′) ↓, then a 6= a′ implies
f(a, c) 6= f(a′, c′).

3.5 Lemma: If l ∈ C ⇋ A, then lց is injective on {(a, c) | (a, c) ∈ A × C ∧
lր (lց (a, c)) ↓}.

The main application of this lemma is the following corollary, which provides an
easy way to show that a lens is not well behaved. We used it many times, while
designing our combinators, to quickly generate and test candidates.

3.6 Corollary: If l ∈ C ⇐⇒ A, then lց is injective on A × C.

An important special case arises when the putback function of a lens is completely
insensitive to its concrete argument.

3.7 Definition: A lens l is said to be oblivious if lց (a, c) = lց (a, c′) for all
a, c, c′ ∈ V.

Oblivious lenses have some special properties that make them simpler to reason
about than lenses in general. For example:

3.8 Lemma: If l is oblivious and l ∈ C1 ⇋ A1 and l ∈ C2 ⇋ A2, then l ∈
(C1 ∪ C2) ⇋ (A1 ∪ A2).

3.9 Lemma: If l ∈ C ⇐⇒ A is oblivious, then lր is a bijection from C to A.

Conversely, every bijection between C and A induces a total oblivious lens from
C to A—that is, the set of bijections between subsets of V forms a subcategory of
the category of total lenses. Many of the combinators defined below actually live in
this simpler subcategory, as does much of the related work surveyed in Section 10.

the putback function in the lens associated with the other replica must be prepared to accept any

value from the abstract domain. In other settings, different notions of totality may be appropriate.
For example, Hu, Mu, and Takeichi [Hu et al. 2004] have argued that, in the context of interactive

editors, a reasonable definition of totality is that lց (a, c) should be defined whenever a differs
by at most one edit operation from lրc.
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Recursion

Since we will be interested in lenses over trees, and since trees in many interesting
application domains may have unbounded depth (e.g., a bookmark can be either a
link or a folder containing a list of bookmarks), we will often want to define lenses
by recursion. Our next task is to set up the necessary structure for interpreting
such definitions.

The development follows familiar lines. We introduce an information ordering
on lenses and show that the set of lenses equipped with this ordering is a complete
partial order (cpo). We then apply standard tools from domain theory to interpret
a variety of common syntactic forms from programming languages—in particular,
functional abstraction and application (“higher-order lenses”) and lenses defined
by single or mutual recursion.

We say that a lens l′ is more informative than a lens l, written l ≺ l′, if both the
get and putback functions of l′ have domains that are at least as large as those of l
and their results agree on their common domains:

3.10 Definition: l ≺ l′ iff dom(lր) ⊆ dom(l′ր), dom(lց) ⊆ dom(l′ց), lր c =
l′ր c for all c ∈ dom(lր), and lց (a, c) = l′ ց (a, c) for all (a, c) ∈ dom(lց).

3.11 Lemma: ≺ is a partial order on lenses.

A cpo is a partially ordered set in which every increasing chain of elements has
a least upper bound in the set. If l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . is an increasing chain,
we write

⊔

n∈ω ln (often shortened to
⊔

n ln) for its least upper bound. A cpo with

bottom is a cpo with an element ⊥ that is smaller than every other element. In our
setting, ⊥ is the lens whose get and putback functions are everywhere undefined.

3.12 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. The
lens l defined by

lց (a, c) = li ց (a, c) if li ց (a, c) ↓ for some i

lր c = liր c if liր c ↓ for some i

and undefined elsewhere is a least upper bound for the chain.

3.13 Corollary: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. For
every a, c ∈ V, we have:

(1) (
⊔

n ln)ր c = v iff ∃i. liր c = v.

(2) (
⊔

n ln)ց (a, c) = v iff ∃i. li ց (a, c) = v.

3.14 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses, and
let C0 ⊆ C1 ⊆ . . . and A0 ⊆ A1 ⊆ . . . be increasing chains of subsets of V. Then:

(1) Well-behavedness commutes with limits:
(∀i ∈ ω. li ∈ Ci ⇋ Ai) implies (

⊔

n ln) ∈ (
⋃

i Ci) ⇋ (
⋃

i Ai).

(2) Totality commutes with limits:
(∀i ∈ ω. li ∈ Ci ⇐⇒ Ai) implies (

⊔

n ln) ∈ (
⋃

i Ci) ⇐⇒ (
⋃

i Ai).

3.15 Theorem: Let L be the set of well-behaved lenses from C to A. Then (L, ≺)
is a cpo with bottom.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



10 · J. N. Foster et. al.

When defining lenses, we will make heavy use of the following standard theorem
from domain theory (e.g., [Winskel 1993]). Recall that a function f between two
cpos is continuous if it is monotonic and if, for all increasing chains l0 ≺ l1 ≺ . . . ≺
ln ≺ . . . , we have f(

⊔

n ln) =
⊔

n f(ln). A fixed point of f is a function fix (f)
satisfying fix (f) = f(fix (f)).

3.16 Theorem [Fixed-Point Theorem]: Let f be a continuous function from
D to D, where D is a cpo with bottom. Define

fix (f) =
⊔

n

fn(⊥)

Then fix (f) is a fixed point, in fact the least fixed point, of f .

Theorem 3.15 tells us that we can apply Theorem 3.16 to continuous functions
from lenses to lenses—i.e., it justifies defining lenses by recursion. The following
corollary packages up this argument in a convenient form; we will appeal to it many
times in later sections to show that recursive derived forms are well behaved and
total.

3.17 Corollary: Suppose f is a continuous function from lenses to lenses.

(1) If l ∈ C ⇋ A implies f(l) ∈ C ⇋ A for all l, then fix (f) ∈ C ⇋ A.

(2) Suppose ∅ = C0 ⊆ C1 ⊆ . . . and ∅ = A0 ⊆ A1 ⊆ . . . are increasing chains of
subsets of V. If l ∈ Ci ⇐⇒ Ai implies f(l) ∈ Ci+1 ⇐⇒ Ai+1 for all i and l,
then fix (f) ∈ (

⋃

i Ci) ⇐⇒ (
⋃

i Ai).

We can now apply standard domain theory to interpret a variety of constructs
for defining continuous lens combinators. We say that an expression e is continuous
in the variable x if the function λx.e is continuous. An expression is said to be con-
tinuous in its variables, or simply continuous, if it is continuous in every variable
separately. Examples of continuous expressions are variables, constants, tuples (of
continuous expressions), projections (from continuous expressions), applications of
continuous functions to continuous arguments, lambda abstractions (whose bod-
ies are continuous), let bindings (of continuous expressions in continuous bodies),
case constructions (of continuous expressions), and the fixed point operator itself.
Tupling and projection let us define mutually recursive functions: if we want to
define f as F (f, g) and g as G(f, g), where both F and G are continuous, we define
(f, g) = fix (λ(x, y).(F (x, y), G(x, y))).

When proving the totality of recursive lenses, we sometimes need to use a more
powerful induction scheme in which a lens is proved, simultaneously, to be total
on a whole collection of different types (any of which can be used in the induction
step). This is supported by a generalization of the proof technique in 3.17(2).

We specify a total type by a pair (C, A) of subsets of V, and say that a lens l has
this type, written l ∈ (C, A) iff l ∈ C ⇐⇒ A. We use the variable τ for total types
and T for sets of total types. We write (C, A) ⊆ (C ′, A′) iff C ⊆ C ′ and A ⊆ A′

and write (C, A) ∪ (C ′, A′) for (C ∪ C ′, A ∪ A′).

3.18 Definition: The increasing chain τ0 ⊆ τ1 ⊆ . . . is an increasing instance of
the sequence T0, T1, . . . iff for all i we have τi ∈ Ti.
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Note that T0, T1, . . . is an arbitrary sequence of sets of total types, here—the
sequence need not be increasing. This is the trick that makes this proof technique
work: we start with a sequence of sets of total types T0, T1, . . . that, a priori, have
nothing to do with each other; we then show that some continuous function f on
lenses gets us from each Ti to Ti+1, in the sense that f takes any lens l that belongs
to all of the total types in Ti to a lens f(l) that belongs to all of the total types in
Ti+1. Finally, we identify an increasing chain of particular total types τ0 ⊆ τ1 ⊆ . . .
whose limit is the total type that we desire to show for the fixed point of f and
such that each τi belongs to Ti, and hence is a type for f i(⊥l).

Here is the generalization of Corollary 3.17(2) to increasing instances of sequences
of sets of total types.

3.19 Lemma: Suppose f is a continuous function from lenses to lenses and
T0, T1, . . . is a sequence of sets of total types with T0 = {(∅, ∅)}. If for all l and i
we have (∀τ ∈ Ti. l ∈ τ) implies (∀τ ∈ Ti+1. f(l) ∈ τ), then for every increasing
instance τ0 ⊆ τ1 ⊆ . . . of T0, T1, . . . we have fix (f) ∈

⋃

i τi.

Dealing with Creation

In practice, there will be cases where we need to apply a putback function, but
where no old concrete view is available, as we saw with Jo’s URL in Section 2. We
deal with these cases by enriching the universe V of views with a special placeholder
Ω, pronounced “missing,” which we assume is not already in V. When S ⊆ V, we
write SΩ for S ∪ {Ω}.

Intuitively, lց (a, Ω) means “create a new concrete view from the information
in the abstract view a.” By convention, Ω is only used in an interesting way when
it is the second argument to the putback function: in all of the lenses defined below,
we maintain the invariants that (1) lրΩ ⊑ Ω, (2) lց (Ω, c) ⊑ Ω for any c, (3)
lր c 6= Ω for any c 6= Ω, and (4) lց (a, c) 6= Ω for any a 6= Ω and any c (including
Ω). We write C ⇋

Ω

A for the set of well-behaved lenses from CΩ to AΩ obeying these
conventions and C ⇐⇒Ω A for the set of total lenses obeying these conventions. For
brevity in the lens definitions below, we always assume that c 6= Ω when defining
lր c and that a 6= Ω when defining lց (a, c), since the results in these cases are
uniquely determined by these conventions. (There are other, formally equivalent,
ways of handling missing concrete views. The advantages of this one are discussed
in Section 5.) A useful consequence of these conventions is that a lens l ∈ C ⇋

Ω

A
also has type C ⇋ A.

3.20 Lemma: For any lens l and sets of views C and A: l ∈ C ⇋
Ω

A implies
l ∈ C ⇋ A and (2) l ∈ C ⇐⇒Ω A impliesl ∈ C ⇐⇒ A.

4. GENERIC LENSES

With these semantic foundations in hand, we are ready to move on to syntax. We
begin in this section with several generic lens combinators (we will usually say just
lenses from now on), whose definitions are independent of the particular choice of
universe V. Each definition is accompanied by a type declaration asserting its well-
behavedness under certain conditions (e.g., “the identity lens belongs to C ⇋

Ω

C
for any C”).
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Many of the lens definitions are parameterized on one or more arguments. These
may be of various types: views (e.g., const), other lenses (e.g., composition), pred-
icates on views (e.g., the conditional lenses in Section 6), or—in some of the lenses
for trees in Section 5—edge labels, predicates on labels, etc.

Appendix A contains representative proofs that the lenses we define are well
behaved (i.e., that the type declaration accompanying its definition is a theorem)
and total, and that lenses that take other lenses as parameters are continuous in
these parameters and map total lenses to total lenses. Indeed, nearly all of the
lenses are very well behaved (if their lens arguments are), the only exceptions being
map and flatten; we do not prove very well behavedness, however, since we are
mainly interested just in the well-behaved case.

Identity

The simplest lens is the identity. It copies the concrete view in the get direction
and the abstract view in the putback direction.

idր c = c
idց (a, c) = a

∀C⊆V. id ∈ C ⇐⇒Ω C

Having defined id, we must prove that it is well behaved and total—i.e., that its
type declaration is a theorem. We state the properties explicitly here, postponing
the proofs to Appendix A. Henceforth, we only give the statements of these prop-
erties and proofs for a few representative lenses. For every other lens, we elide both
the statements of the properties (these can be read off from each lens’s definition)
and the proofs (which are largely calculational in nature).

4.1 Lemma [Well-behavedness]: ∀C⊆V. id ∈ C ⇋
Ω

C

4.2 Lemma [Totality]: ∀C⊆V. id ∈ C ⇐⇒Ω C

For each lens definition, the statements of the totality lemma and well-
behavedness lemmas are almost identical, just replacing ⇋

Ω

by ⇐⇒Ω . In the case
of id, we could just as well combine the two into a single lemma, because every
lens with a total type is also well-behaved at that type. However, for lens defi-
nitions that are parameterized on other lenses (like composition, just below), the
totality of the compound lens depends on the totality (not just well-behavedness)
of its argument lenses. We can still establish the well-behavedness of the ccom-
posite, however, even if the arguments are only well-behaved and not necessarily
total. However, in this scenario, the lemma that combines well-behavedness and
totality, does not help because it only mentions total lenses. Since we expect this
situation will be common in practice—programmers will always want to check that
their lenses are well-behaved, since the reasoning involved is simple and local, but
may not want to go to the trouble of setting up the more intricate global reasoning
needed to prove that their recursive lens definitions are total—we often state the
two lemmas (i.e., typings) separately.

Composition

The lens composition combinator l; k places l and k in sequence.
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(l; k)ր c = kր (lր c)
(l; k)ց (a, c) = lց (kց (a, lր c), c)

∀A, B, C⊆V. ∀l ∈ C ⇋
Ω

B. ∀k ∈ B ⇋
Ω

A. l; k ∈ C ⇋
Ω

A

∀A, B, C⊆V. ∀l ∈ C ⇐⇒Ω B. ∀k ∈ B ⇐⇒Ω A. l; k ∈ C ⇐⇒Ω A

The get direction applies the get function of l to yield a first abstract view, on which
the get function of k is applied. In the other direction, the two putback functions
are applied in turn: first, the putback function of k is used to put a into the concrete
view that the get of k was applied to, i.e., lր c; the result is then put into c using
the putback function of l. (If the concrete view c is Ω, then, lր c will also be Ω
by our conventions on the treatment of Ω, so the effect of (l; k)ց (a, Ω) is to use
k to put a into Ω and then l to put the result into Ω.) Note that we record two
different type declarations for composition: one for the case where the parameter
lenses l and k are only known to be well behaved, and another for the case where
they are also known to be total.

Once again, proofs that the composition operator has the types mentioned above
are given in Appendix A.

4.3 Lemma [Well-behavedness]:
∀A, B, C⊆V. ∀l ∈ C ⇋

Ω

B. ∀k ∈ B ⇋
Ω

A. l; k ∈ C ⇋
Ω

A

4.4 Lemma [Totality]:
∀A, B, C⊆V. ∀l ∈ C ⇐⇒Ω B. ∀k ∈ B ⇐⇒Ω A. l; k ∈ C ⇐⇒Ω A

Besides well-behavedness and totality, we must also show that lens composition
is continuous in its arguments. This will justify using composition in recursive lens
definitions: in order for a recursive lens defined as fix (λl. l1; l2) (where l1 and l2
may both mention l) to be well formed, we need to apply Theorem 3.16, which
requires that λl. l1; l2 be continuous in l. The following lemma shows that this will
be the case whenever l1 and l2 are continuous in l. We have proved an analogous
lemma for each of our lens combinators that takes other lenses as parameters, so
that the continuity of every lens expression will follow from the continuity of its
immediate constituents. For the sake of brevity, we only give the full argument this
once and omit the statements and proofs of the other continuity lemmas.

4.5 Lemma [Continuity]: Let F and G be continuous functions from lenses to
lenses. Then the function λl. (F (l); G(l)) is continuous.

Constant

Another simple combinator is const v d, which transforms any view into the
constant view v in the get direction. In the putback direction, const simply restores
the old concrete view if one is available; if the concrete view is Ω, it returns a default
view d.

(const v d)ր c = v
(const v d)ց (a, c) = c if c 6= Ω

d if c = Ω

∀C⊆V. ∀v∈V. ∀d∈C. const v d ∈ C ⇐⇒Ω {v}
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Note that the type declaration demands that the putback direction only be applied
to the abstract argument v.

We will define a few more generic lenses in Section 6; for now, though, let us
turn to some lens combinators that work on tree-structured data, so that we can
ground our definitions in specific examples.

5. LENSES FOR TREES

To keep the definitions of our lens primitives as straightforward as possible, we
work with an extremely simple form of trees: unordered, edge-labeled trees with
no repeated labels. This model is a natural fit for applications where the data is
unordered, such as the keyed address books described in Section 2. Unfortunately,
unordered trees do not have all the structure we need for other applications; in
particular, we will need to deal with ordered data such as lists and XML documents
via an encoding (shown in Section 8). Experience has shown that the reduction
in the complexity of the definitions of lens primitives far outweighs the increase in
complexity of lens programs due to manipulating ordered data in encoded form.

Notation

From this point on, we choose the universe V to be the set T of finite, unordered,
edge-labeled trees with labels drawn from some infinite set N of names—e.g., char-
acter strings—and with the children of a given node all labeled with distinct names.
Trees of this form (often extended with labels on internal nodes as well as on chil-
dren) are sometimes called feature trees (e.g., [Niehren and Podelski 1993]). The
variables a, c, d, and t range over T ; by convention, we use a for trees that are
thought of as abstract and c or d for concrete trees.

A tree is essentially a finite partial function from names to other trees. It will be
more convenient, though, to adopt a slightly different perspective: we will consider
a tree t ∈ T to be a total function from N to TΩ that yields Ω on all but a finite
number of names. We write dom(t) for the domain of t—i.e., the set of the names
for which it returns something other than Ω—and t(n) for the subtree associated
to name n in t, or Ω if n 6∈ dom(t).

Tree values are written using hollow curly braces. The empty tree is written {||}.
(Note that {||}, a node with no children, is different from Ω.) We often describe trees
by comprehension, writing

{∣

∣n 7→ F (n) | n ∈ N
∣

∣

}

, where F is some function from N
to TΩ and N ⊆ N is some set of names. When t and t′ have disjoint domains,
we write t · t′ or

{∣

∣t t′
∣

∣

}

(the latter especially in multi-line displays) for the tree
mapping n to t(n) for n ∈ dom(t), to t′(n) for n ∈ dom(t′), and to Ω otherwise.

When p ⊆ N is a set of names, we write p for N\p, the complement of p.
We write t|p for the restriction of t to children with names from p—i.e., the tree
{∣

∣n 7→ t(n) | n ∈ p ∩ dom(t)
∣

∣

}

—and t\p for
{∣

∣n 7→ t(n) | n ∈ dom(t)\p
∣

∣

}

. When p is
just a singleton set {n}, we drop the set braces and write just t|n and t\n instead of
t|{n} and t\{n}. To shorten some of the lens definitions, we adopt the conventions
that dom(Ω) = ∅, and that Ω|p = Ω for any p.

For writing down types,5 we extend these tree notations to sets of trees. If T ⊆ T

5Note that, although we are defining a syntax for lens expressions, the types used to classify these
expressions are semantic—they are just sets of lenses or views. We are not (yet!—see Section 11)
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and n ∈ N , then
{∣

∣n 7→ T
∣

∣

}

denotes the set of singleton trees {
{∣

∣n 7→ t
∣

∣

}

| t ∈ T}.

If T ⊆ T and N ⊆ N , then
{∣

∣N 7→ T
∣

∣

}

denotes the set of trees {t | dom(t) =

N and ∀n ∈ N. t(n) ∈ T} and
{∣

∣

∣N
?
7→ T

∣

∣

∣

}

denotes the set of trees {t | dom(t) ⊆

N and ∀n ∈ N. t(n) ∈ TΩ}. We write T1 · T2 for {t1 · t2 | t1 ∈ T1, t2 ∈ T2} and
T (n) for {t(n) | t ∈ T} \ {Ω}. If T ⊆ T , then doms(T ) = {dom(t) | t ∈ T}. Note
that doms(T ) is a set of sets of names, while dom(t) is a set of names.

A value is a tree of the special form
{∣

∣k 7→ {||}
∣

∣

}

, often written just k. For instance,

the phone number
{∣

∣333-4444 7→ {||}
∣

∣

}

in the example of Section 2 is a value. We
write Val for the type whose denotation is the set of all values.

Hoisting and Plunging

Let’s warm up with some combinators that perform simple structural transforma-
tions on trees. The lens hoist n is used to shorten a tree by removing an edge at
the top. In the get direction, it expects a tree that has exactly one child, named n.
It returns this child, removing the edge n. In the putback direction, the value of the
old concrete tree is ignored and a new one is created, with a single edge n pointing
to the given abstract tree. (Later we will meet a derived form, hoist nonunique,
that works on bushier trees.)

(hoist n)ր c = t if c =
{∣

∣n 7→ t
∣

∣

}

(hoist n)ց (a, c) =
{∣

∣n 7→ a
∣

∣

}

∀C⊆T . ∀n∈N . hoist n ∈
{∣

∣n 7→ C
∣

∣

}

⇐⇒Ω C

Conversely, the plunge lens is used to deepen a tree by adding an edge at the
top. In the get direction, a new tree is created, with a single edge n pointing to
the given concrete tree. In the putback direction, the value of the old concrete tree
is ignored and the abstract tree is required to have exactly one subtree, labeled n,
which becomes the result of the plunge.

(plunge n)ր c =
{∣

∣n 7→ c
∣

∣

}

(plunge n)ց (a, c) = t if a =
{∣

∣n 7→ t
∣

∣

}

∀C⊆T . ∀n∈N . plunge n ∈ C ⇐⇒Ω
{∣

∣n 7→ C
∣

∣

}

Forking

The lens combinator xfork applies different lenses to different parts of a tree:
it splits the tree into two parts according to the names of its immediate children,
applies a different lens to each, and concatenates the results. Formally, xfork takes
as arguments two sets of names and two lenses. The get direction of xfork pc
pa l1 l2 can be visualized as in Figure 1 (the concrete tree is at the bottom). The
triangles labeled pc denote trees whose immediate children have labels in pc; dotted
arrows represent splitting or concatenating trees. The result of applying l1ր to c|pc

(the tree formed by dropping the immediate children of c whose names are not in
pc) must be a tree whose top-level labels are in the set pa; similarly, the result of

proposing an algebra of types or an algorithm for mechanically checking membership of lens
expressions in type expressions.
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Fig. 1. The get direction of xfork

applying l2ր to c\pc must be in pa. That is, the lens l1 may change the names
of immediate children of the tree it is given, but it must map the part of the tree
with immediate children belonging to pc to a tree with children belonging to pa.
Likewise, l2 must map the part of the tree with immediate children belonging to
pc to a tree with children in pa. Conversely, in the putback direction, l1 must map
from pa to pc and l2 from pa to pc. Here is the full definition:

( xfork pc pa l1 l2 )ր c = (l1ր c|pc) · (l2ր c\pc)
( xfork pc pa l1 l2 )ց (a, c) = (l1 ց (a|pa, c|pc)) · (l2 ց (a\pa, c\pc))

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa. ∀C2⊆T \pc. ∀A2⊆T \pa.
∀l1 ∈ C1 ⇋

Ω

A1. ∀l2 ∈ C2 ⇋
Ω

A2.
xfork pc pa l1 l2 ∈ (C1 · C2) ⇋

Ω

(A1 · A2)

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa. ∀C2⊆T \pc. ∀A2⊆T \pa.
∀l1 ∈ C1 ⇐⇒Ω A1. ∀l2 ∈ C2 ⇐⇒Ω A2.

xfork pc pa l1 l2 ∈ (C1 · C2) ⇐⇒Ω (A1 · A2)

We rely here on our convention that Ω|p = Ω to avoid explicitly splitting out the
Ω case in the putback direction.

We have now defined enough basic lenses to implement several useful derived
forms for manipulating trees. In many uses of xfork, the sets of names specifying
where to split the concrete tree and where to split the abstract tree are identical.
We can define a simpler fork as:

fork p l1 l2 = xfork p p l1 l2

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p.
∀l1 ∈ C1 ⇋

Ω

A1. ∀l2 ∈ C2 ⇋
Ω

A2.
fork p l1 l2 ∈ (C1 · C2) ⇋

Ω

(A1 · A2)

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p.
∀l1 ∈ C1 ⇐⇒Ω A1. ∀l2 ∈ C2 ⇐⇒Ω A2.

fork p l1 l2 ∈ (C1 · C2) ⇐⇒Ω (A1 · A2)
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We can use fork to define a lens that discards all of the children of a tree whose
names do not belong to some set p:

filter p d = fork p id (const {||} d)

∀C⊆T . ∀p⊆N . ∀d ∈ C\p.
filter p d ∈ (C|p · C\p) ⇐⇒Ω C|p

In the get direction, this lens takes a concrete tree, keeps the children with names
in p (using id), and throws away the rest (using const {||} d). The tree d is
used when putting an abstract tree back into a missing concrete tree, providing a
default for information that does not appear in the abstract tree but is required in
the concrete tree. The type of filter follows directly from the types of the three
primitive lenses used to define it: const {||} d, with type C\p ⇐⇒Ω {{||}}, the lens
id, with type C|p ⇐⇒Ω C|p, and fork (with the observation that C|p = C|p · {||}).

Let us see how filter behaves in an example. Let the concrete tree c =
{∣

∣name 7→ Pat, phone 7→ 333-4444
∣

∣

}

, and lens l = filter {name} {||}. We calcu-
late lր c, underlining the next term to be simplifed at each step.

lր c = (fork {name} id (const{||} d))ր
{∣

∣name 7→ Pat, phone 7→ 333-444
∣

∣

}

by the definition of l

= idր
{∣

∣name 7→ Pat
∣

∣

}

· (const {||} d)ր
{∣

∣phone 7→ 333-4444
∣

∣

}

by the definition of fork and splitting c using {name}

=
{∣

∣name 7→ Pat
∣

∣

}

· {||} =
{∣

∣name 7→ Pat
∣

∣

}

= a

by the definitions of id and const

Now suppose that we update this tree, a, to
{∣

∣name 7→ Patty
∣

∣

}

. Let us calculate
the result of putting back a into c. To save space, we write k for (const {||} {||}).

lց (a, c)

= (fork {name} id k)ց
({∣

∣name 7→ Pat
∣

∣

}

,
{∣

∣name 7→ Pat, phone 7→ 333-4444
∣

∣

})

by the definition of l

= idց
({∣

∣name 7→ Patty
∣

∣

}

,
{∣

∣name 7→ Pat
∣

∣

})

· kց
(

{||},
{∣

∣phone 7→ 333-4444
∣

∣

})

by the definition of fork and splitting a and c using {name}

=
{∣

∣name 7→ Patty, phone 7→ 333-4444
∣

∣

}

by the definition of id and const

Note that the putback function restores the filtered part of the concrete tree and
propagates the change made to the abstract tree. In the case of creation—i.e., if
we put back an abstract tree using Ω— then the default argument to const is
concatenated to the abstract tree to form the result, since there is no filtered part
of the concrete tree to restore.

Another way to thin a tree is to explicitly specify a child that should be removed
if it exists:

prune n d = fork {n}
(

const {||}
{∣

∣n 7→ d
∣

∣

})

id

∀C⊆T . ∀n∈N . ∀d∈C(n).
prune n d ∈ (C|n · C\n) ⇐⇒Ω C\n
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This lens is similar to filter, except that (1) the name given is the child to be
removed rather than a set of children to keep, and (2) the default tree is the one to
go under n if the concrete tree is Ω.

Conversely, we can grow a tree in the get direction by explicitly adding a child.
The type annotation disallows changes in the newly added tree, so it can be dropped
in the putback.

add n t = xfork {} {n} (const t {||}; plunge n) id

∀n∈N . ∀C⊆T \n. ∀t ∈ T .
add n t ∈ C ⇐⇒Ω

{∣

∣n 7→ {t}
∣

∣

}

· C

Let us explore the behavior of add through an example. Let c =
{∣

∣a 7→ {||}
∣

∣

}

and

l = add b
{∣

∣x 7→ {||}
∣

∣

}

. To save space, write k for const
{∣

∣x 7→ {||}
∣

∣

}

and p for plunge b.
We calculate lր c directly, underlining the term to be simplifed at each step.

lր c = (xfork {} {b} k; p) id)ր c

by the definition of l

= (k; p)ր{||} · idր
{∣

∣a 7→ {||}
∣

∣

}

by the definition of xfork and splitting c using {}

= pր (kր{||}) ·
{∣

∣a 7→ {||}
∣

∣

}

by the definitions of the composition and id

=
(

pր
{∣

∣x 7→ {||}
∣

∣

}

)

·
{∣

∣a 7→ {||}
∣

∣

}

by the definition of k

=
{∣

∣

∣a 7→ {||}, b 7→
{∣

∣x 7→ {||}
∣

∣

}

∣

∣

∣

}

by the definition of p

Now suppose we modify this tree by renaming the child a to c, obtaining a =
{∣

∣c 7→ {||}, b 7→
{∣

∣x 7→ {||}
∣

∣

}∣

∣

}

. The result of the putback function, lց (a, c), is calcu-
lated as follows:

lց (a, c) = (xfork {} {b} (k; p) id)ց (a, c)

by the definition of l

=
(

(k; p)ց
({∣

∣

∣b 7→
{∣

∣x 7→ {||}
∣

∣

}

∣

∣

∣

}

, {||}
))

·
(

idց
({∣

∣c 7→ {||}
∣

∣

}

,
{∣

∣a 7→ {||}
∣

∣

})

)

by the definition of xfork, splitting a using {b}, and splitting c using {}

=

(

(k; p)ց
({∣

∣

∣b 7→
{∣

∣x 7→ {||}
∣

∣

}

∣

∣

∣

}

, {||}
)

)

·
{∣

∣c 7→ {||}
∣

∣

}

by the definition of id

=

(

kց

(

pց
({∣

∣

∣b 7→
{∣

∣x 7→ {||}
∣

∣

}

∣

∣

∣

}

, kր{||}
)

, {||}

))

·
{∣

∣c 7→ {||}
∣

∣

}

by the definition of composition

=
(

kց ({||}, {||})
)

·
{∣

∣c 7→ {||}
∣

∣

}

by the definition of p

= {||} ·
{∣

∣c 7→ {||}
∣

∣

}

=
{∣

∣c 7→ {||}
∣

∣

}

by the definition of k
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Another lens focuses attention on a single child n:

focus n d = (filter {n} d); (hoist n)

t∀n∈N . ∀C⊆T \n.∀d∈C. ∀D⊆T .
focus n d ∈ (C ·

{∣

∣n 7→ D
∣

∣

}

) ⇐⇒Ω D

In the get direction, focus filters away all other children, then removes the edge
n and yields n’s subtree. As usual, the default tree is only used in the case of
creation, where it is the default for children that have been filtered away. The type
of focus follows from the types of the lenses from which it is defined, observing
that filter {n} d ∈ (C · {|n 7→ D|}) ⇐⇒Ω {|n 7→ D|} and that hoist n ∈ {|n 7→
D|} ⇐⇒Ω D.

The hoist primitive defined earlier requires that the name being hoisted be the
unique child of the concrete tree. It is often useful to relax this requirement, hoisting
one child out of many. This generalized version of hoist is annotated with the set
p of possible names of the grandchildren that will become children after the hoist,
which must be disjoint from the names of the existing children.

hoist nonunique n p = xfork {n} p (hoist n) id

∀n∈N . ∀p⊆N . ∀D⊆T \{n}∪p. ∀C⊆T |p.
hoist nonunique n p ∈ (

{∣

∣n 7→ C
∣

∣

}

· D) ⇐⇒Ω (C · D)

A last derived lens renames a single child.

rename m n = xfork {m} {n} (hoist m; plunge n) id

∀m, n∈N . ∀C⊆T . ∀D⊆T \{m,n}.
rename m n ∈ (

{∣

∣m 7→ C
∣

∣

}

· D) ⇐⇒Ω (
{∣

∣n 7→ C
∣

∣

}

· D)

In the get direction, rename splits the concrete tree in two. The first tree has a
single child m (which is guaranteed to exist by the type annotation) and is hoisted
up, removing the edge named m, and then plunged under n. The rest of the
original tree is passed through the id lens. Similarly, the putback direction splits
the abstract view into a tree with a single child n, and the rest of the tree. The
tree under n is put back using the lens (hoist m; plunge n), which first removes
the edge named n and then plunges the resulting tree under m. Note that the type
annotation on rename demands that the concrete view have a child named m and
that the abstract view have a child named n. In Section 6 we will see how to wrap
this lens in a conditional to obtain a lens with a more flexible type.

Mapping

So far, all of our lens combinators do things near the root of the trees they are given.
Of course, we also want to be able to perform transformations in the interior of
trees. The map combinator is our fundamental means of doing this. When combined
with recursion, it also allows us to iterate over structures of arbitrary depth.

The map combinator is parameterized on a single lens l. In the get direction, map
applies lր to each subtree of the root and combines the results together into a
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new tree. (Later in the section, we will define a more general combinator, called
wmap, that can apply a different lens to each subtree. Defining map first lightens
the notational burden in the explanations of several fine points about the behavior
and typing of both combinators.) For example, the lens map l has the following
behavior in the get direction when applied to a tree with three children:







∣

∣

∣

∣

∣

∣

n1 7→ t1
n2 7→ t2
n3 7→ t3

∣

∣

∣

∣

∣

∣







becomes







∣

∣

∣

∣

∣

∣

n1 7→ lր t1
n2 7→ lր t2
n3 7→ lր t3

∣

∣

∣

∣

∣

∣







The putback direction of map is more interesting. In the simple case where a
and c have equal domains, its behavior is straightforward: it uses lց to combine
concrete and abstract subtrees with identical names and assembles the results into
a new concrete tree, c′:

(map l)ց











∣

∣

∣

∣

∣

∣

n1 7→ t1
n2 7→ t2
n3 7→ t3

∣

∣

∣

∣

∣

∣







,







∣

∣

∣

∣

∣

∣

n1 7→ t′1
n2 7→ t′2
n3 7→ t′3

∣

∣

∣

∣

∣

∣









 =







∣

∣

∣

∣

∣

∣

n1 7→ lց (t1, t′1)
n2 7→ lց (t2, t′2)
n3 7→ lց (t3, t′3)

∣

∣

∣

∣

∣

∣







In general, however, the abstract tree a in the putback direction need not have the
same domain as c (i.e., the edits that produced the new abstract view may have
involved adding and deleting children); the behavior of map in this case is a little
more involved. Observe, first, that the domain of c′ is determined by the domain
of the abstract argument to putback. Since we aim at building total lenses, we may
suppose that (map l)ր ((map l)ց (a, c)) is defined, in which case it must be equal
to a by rule PutGet. Thus dom((map l)ր ((map l)ց (a, c))) = dom(a), hence
dom((map l)ց (a, c)) = dom(a) as the get of map does not change the domain of
the tree. This means we can simply drop children that occur in dom(c) but not in
dom(a). Children bearing names that occur both in dom(a) and dom(c) are dealt
with as described above. This leaves the children that only appear in dom(a), which
need to be passed through l so that they can be included in c′; to do this, we need
some concrete argument to pass to lց. There is no corresponding child in c, so
instead these abstract trees are put into the missing tree Ω—indeed, this case is
precisely why we introduced Ω. Formally, the behavior of map is defined as follows.
(It relies on the convention that c(n) = Ω if n 6∈ dom(c); the type declaration also
involves some new notation, explained below.)

(map l)ր c =
{∣

∣n 7→ lր c(n) | n ∈ dom(c)
∣

∣

}

(map l)ց (a, c) =
{∣

∣n 7→ lց (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

∀C, A⊆T with C = C	, A = A	, doms(C) = doms(A).
∀l ∈ (

⋂

n∈N . C(n) ⇋
Ω

A(n)).
map l ∈ C ⇋

Ω

A

∀C, A⊆T with C = C	, A = A	, doms(C) = doms(A).
∀l ∈ (

⋂

n∈N . C(n) ⇐⇒Ω A(n)).
map l ∈ C ⇐⇒Ω A

Because of the way that it takes the tree apart, transforms the pieces, and reassem-
bles them, the typing of map is a little subtle. For example, in the get direction, map
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does not modify the names of the immediate children of the concrete tree and in
the putback direction, the names of the abstract tree are left unchanged; we might
therefore expect a simple typing rule stating that, if l ∈ (

⋂

n∈N C(n) ⇋
Ω

A(n))—
i.e., if l is a well-behaved lens from the concrete subtree type C(n) to the abstract
subtree type A(n) for each child n—then map l ∈ C ⇋

Ω

A. Unfortunately, for arbi-
trary C and A, the map lens is not guaranteed to be well-behaved at this type. In
particular, if doms(C), the set of domains of trees in C, is not equal to doms(A),
then the putback function can produce a tree that is not in C, as the following
example shows. Consider the sets of trees

C =
{{∣

∣x 7→ m
∣

∣

}

,
{∣

∣y 7→ n
∣

∣

}}

A = C ∪
{{∣

∣x 7→ m, y 7→ n
∣

∣

}}

and observe that with trees

a =
{∣

∣x 7→ m, y 7→ n
∣

∣

}

c =
{∣

∣x 7→ m
∣

∣

}

we have map idց (a, c) = a, a tree that is not in C. This shows that the type of
map must include the requirement that doms(C) = doms(A). (Recall that for any
type T the set doms(T ) is a set of sets of names.)

A related problem arises when the sets of trees A and C have dependencies
between the names of children and the trees that may appear under those names.
Again, one might naively expect that, if l has type C(m) ⇋

Ω

A(m) for each name
m, then map l would have type C ⇋

Ω

A. Consider, however, the set

A = {{|x 7→ m, y 7→ p|}, {|x 7→ n, y 7→ q|}} ,

in which the value m only appears under x when p appears under y, and the set

C = {{|x 7→ m, y 7→ p|}, {|x 7→ m, y 7→ q|}, {|x 7→ n, y 7→ p|}, {|x 7→ n, y 7→ q|}} ,

where both m and n appear with both p and q. When we consider just the
projections of C and A at specific names, we obtain the same sets of subtrees:
C(x) = A(x) = {{|m|}, {|n|}} and C(y) = A(y) = {{|p|}, {|q|}}. The lens id has type
C(x) ⇋

Ω

A(x) and C(y) ⇋
Ω

A(y) (and C(z) = ∅ ⇋
Ω ∅ = A(z) for all other names z).

But it is clearly not the case that map id ∈ C ⇋
Ω

A.
To avoid this error (but still give a type for map that is precise enough to derive

interesting types for lenses defined in terms of map), we require that the source
and target sets in the type of map be closed under the “shuffling” of their children.
Formally, if T is a set of trees, then the set of shufflings of T , denoted T	, is

T	 =
⋃

D∈doms(T )

{|n 7→ T (n) | n ∈ D|}

where {|n 7→ T (n) | n ∈ D|} is the set of trees with domain D whose children under
n are taken from the set T (n). We say that T is shuffle closed iff T = T	. In the
example above, A	 = C	 = C—i.e., C is shuffle closed, but A is not.

Alternatively, every shuffle closed set T can be identified with a set of set of names
D and a function f from names to types, such t ∈ T if and only if dom(t) ∈ D
and t(n) = f(n) for every name n ∈ dom(t). Formally, the shuffle closed set T is
defined as follows:

T =
⋃

d∈D

{|n 7→ f(n) | n ∈ d|}
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In the situations where map is used, shuffle closure is typically easy to check. For
example, the restriction on tree grammars embodied by W3C Schema implies shuffle
closure (informally, the restriction on W3C Schema is analagous to imposing shuffle
closure on the schemas along every path, not just at the root). Additionally, any
set of trees whose elements each have singleton domains is shuffle closed. Also, for
every set of trees T , the encoding introduced in Section 7 of lists with elements in T
is shuffle closed, which justifies using map (with recursion) to implement operations
on lists. Furthermore, types of the form {|n 7→ T | n ∈ N|} with infinite domain
but with the same structure under each edge, which are heavily used in database
examples (where the top-level names are keys and the structures under them are
records) are shuffle closed.

Another point to note about map is that it does not obey the PutPut law.
Consider a lens l and (a, c) ∈ dom(lց) such that lց (a, c) 6= lց (a, Ω). We have

(map l)ց
({∣

∣n 7→ a
∣

∣

}

, ((map l)ց
(

{||},
{∣

∣n 7→ c
∣

∣

})

)
)

= (map l)ց
({∣

∣n 7→ a
∣

∣

}

, {||}
)

=
{∣

∣n 7→ lց (a, Ω)
∣

∣

}

whereas
{∣

∣n 7→ lց (a, c)
∣

∣

}

= (map l)ց
({∣

∣n 7→ a
∣

∣

}

,
{∣

∣n 7→ c
∣

∣

})

.

Intuitively, there is a difference between, on the one hand, modifying a child n and,
on the other, removing it and then adding it back: in the first case, any information
in the concrete view that is “projected away” in the abstract view will be carried
along to the new concrete view; in the second, such information will be replaced
with default values. This difference seems pragmatically reasonable, so we prefer
to keep map and lose PutPut.6

A final point of interest is the relation between map and the missing tree Ω. The
putback function of every other lens combinator only results in a putback into the
missing tree if the combinator itself is called on Ω. In the case of map l, calling
its putback function on some a and c where c is not the missing tree may result
in the application of the putback of l to Ω if a has some children that are not
in c. In an earlier variant of map, we dealt with missing children by providing
a default concrete child tree, which would be used when no actual concrete tree
was available. However, we discovered that, in practice, it is often difficult to
find a single default concrete tree that fits all possible abstract trees, particularly
because of xfork (where different lenses are applied to different parts of the tree)
and recursion (where the depth of a tree is unknown). We tried parameterizing
this default concrete tree by the abstract tree and the lens, but noticed that most
primitive lenses ignore the concrete tree when defining the putback function, as
enough information is available in the abstract tree. The natural choice for a
concrete tree parameterized by a and l was thus lց (a, Ω), for some special tree
Ω. The only lens for which the putback function needs to be defined on Ω is const,

6Alternatively, we could use a refinement of the type system to track when PutPut does hold,
annotating some of the lens combinators with extra type information recording the fact that they

are oblivious, and then give map two types: the one we gave here plus another saying “when map

is applied to an oblivious lens, the result is very well behaved.”
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as it is the only lens that discards information. This led us to the present design,
where only the const lens (and other lenses defined from it, such as focus) expects
a default tree d. This approach is much more local than the others we tried, since
one only provides defaults at the exact point where information is discarded.

We now define a more general form of map that is parameterized on a total
function from names to lenses rather than on a single lens.

(wmap m)ր c =
{∣

∣n 7→ m(n)ր c(n) | n ∈ dom(c)
∣

∣

}

(wmap m)ց (a, c) =
{∣

∣n 7→ m(n)ց (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

∀C, A⊆T with C = C	, A = A	, doms(C) = doms(A).
∀m ∈ (Πn∈N . C(n) ⇋

Ω

A(n)).
wmap m ∈ C ⇋

Ω

A

∀C, A⊆T with C = C	, A = A	, doms(C) = doms(A).
∀m ∈ (Πn∈N . C(n) ⇐⇒Ω A(n)).

wmap m ∈ C ⇐⇒Ω A

In the type annotation, we use the dependent type notation m ∈ Πn. C(n) ⇋
Ω A(n)

to mean that m is a total function mapping each name n to a well-behaved lens
from C(n) to A(n). Although m is a total function, we will often describe it by
giving its behavior on a finite set of names and adopting the convention that it
maps every other name to id. For example, the lens wmap {x 7→ plunge a} maps
plunge a over trees under x and id over the subtrees of every other child. We can
also easily define map as a derived form: map = wmap (λn ∈ N .l).

Since the typing of wmap is so subtle, we state and prove its well-behavedness
lemma explicitly.

5.1 Lemma [Well-behavedness]:
∀C, A⊆T with C = C	, A = A	, doms(C) = doms(A).
∀m ∈ (Πn∈N . C(n) ⇋

Ω

A(n)).
wmap m ∈ C ⇋

Ω

A

Copying and Merging

We next consider two lenses that duplicate information in one direction and re-
integrate (by performing equality checks) in the other.

A view of some underlying data structure may sometimes require that two distinct
subtrees maintain a relationship, such as equality. For example, under the subtree
representing a manager, Alice, an employee-manager database may list the name
and ID number of every employee in Alice’s group. If Bob is managed by Alice,
then Bob’s employee record will also list his name and ID number (as well as other
information including a pointer to Alice, as his manager). If Bob’s name changes
at a later date, then we expect that it will be updated (identically) under both his
record and under Alice’s record. If the concrete representation contains his name
in only a single location, we need to duplicate the information in the get direction.
To do this we need a lens that copies a subtree, and then allows us to transform
the copy into the shape that we want.
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In the get direction, (copy m n) takes a tree, c, that has no child labeled n. If
c(m) exists, then (copy m n) duplicates c(m) by setting both a(m) and a(n) equal
to c(m). In the putback direction, copy simply discards a(n). The type of copy
ensures that no information is lost, because a(m) = a(n).

(copy m n)ր c = c ·
{∣

∣n 7→ c(m)
∣

∣

}

(copy m n)ց (a, c) = a\n

∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T .
copy m n ∈ (C ·

{∣

∣m 7→ DΩ

∣

∣

}

) ⇐⇒Ω (C · {
{∣

∣m 7→ d, n 7→ d
∣

∣

}

| d ∈ DΩ})

Because we want copy to be a total lens, the equality constraint in the abstract
type of copy is essential to ensure well-behavedness. To see why, consider what
would happen if the putback function were defined even when a(m) and a(n) were
not equal and copyց removed either a(m) or a(n). Then there would be no way
for a subequent application of the get function to restore the discarded information.
Consequently, PutGet would be violated.

Unfortunately, because of this constraint, the set of lenses that can be validly
composed to the right of a copy is also restricted—the composed lenses must respect
the equality. As an example of what can go wrong, consider (copy a b; prune a {||})
and suppose that we want to assign it a lens typing with concrete component
{∣

∣a 7→ D
∣

∣

}

. A simple calculation shows that get function behaves like id: the lens
first copies a to b and then prunes away b. We run into problems, however, if
we evaluate (copy a b; prune b {||})ց

({∣

∣a 7→ d1

∣

∣

}

,
{∣

∣a 7→ d2

∣

∣

})

with d1 6= d2. Un-
winding the composition, we evaluate (copy a b)ց with an abstract argument
{∣

∣a 7→ d1, b 7→ d2

∣

∣

}

. As argued above, the copy lens cannot be both defined and
well-behaved on such an abstract argument because the copied data is not identical.
As the example demonstrates, the lenses composed after a copy must preserve the
equality of the copied data. Otherwise we cannot ensure that the type requirement
a(m) = a(n) will be satisfied.

In our intended application, using lenses to build synchronizers for tree-structured
data, we have not found a need for copy. This is not surprising, because if a con-
crete representation demands that some invariant hold within the data structure,
we assume that (1) each application will locally maintain the invariants in its own
representation, and (2) the function of a synchronizer is to simply propagate changes
from one well-formed replica to another. Moreover, if one field in a concrete rep-
resentation is derivable from another (or a set of other fields), then we need not
expose both fields in the abstract view. Instead, we can merge the fields (see below).
Any change to the merged field will be pushed back down to all the derived fields
in the concrete view. Thus, merge, the inverse of copy makes more sense for the
views manipulated by a data synchronizer.

By contrast, some have argued for the need for more powerful forms of copy in
settings such as editing a user-friendly view of a structured document [Hu et al.
2004; Mu et al. 2004a]. Consider a situation where a user edits a view (i.e., abstract
view) of a document in which a table of contents is automatically generated from
the section headings appearing in the source text (i.e., concrete structure). One
might feel that adding a new section should add an entry to the table of contents,
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and similarly that adding an entry to the table of contents should create an empty
section in the text. Such functionality is not consistent with our PutGet law: both
adding a section heading and adding an entry in the table of contents will result in
the same concrete document after a putback; such a putback function is not injective
and cannot participate in a lens in our sense. In contexts where such functionality is
a primary goal, system designers may be willing to weaken the promises they make
to programmers by guaranteeing weaker properties than PutGet. For example,
Mu et al [Mu et al. 2004a] only require their bidirectional transformations to obey a
PutGetPut law. PutGetPut is weaker than PutGet in two ways. First, they
do not require lր(lց(a, c)) to equal a. Rather, they require that if c′ = lց(a, c),
and a′ = lր(c′), then a′ should “contain the same information as a,” in the sense
that lց(a′, c′) = c′. Second, they allow get to be undefined over parts of the
range of putback — PutGetPut is only required to hold when it is defined, but
no requirements are made on how broadly get must be defined. (Given that their
setting is interactive, it is reasonable to say, as they do, that if get of a putback is
undefined, then the system can signal the user that the modification to a was illegal
and must be withdrawn). Hu et al [Hu et al. 2004] go a step further and weaken
both PutGet and GetPut by only requiring PutGet to hold when a is lր(c),
and by only requiring GetPut to hold when c is lց(a, c′) for some a and c′.

Sometimes a concrete representation requires equality between two distinct sub-
trees within a view. A merge lens is one way to preserve this invariant when the
abstract view is updated. In the get direction, merge takes a tree with two (equal)
branches and deletes one of them. In the putback direction, merge copies the up-
dated value of the remaining branch to both branches in the concrete view.

(merge m n)ր c = c\n

(merge m n)ց (a, c) =

{

a ·
{∣

∣n 7→ a(m)
∣

∣

}

if c(m) = c(n)
a ·

{∣

∣n 7→ c(n)
∣

∣

}

if c(m) 6= c(n)

∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T .
merge m n ∈ (C ·

{∣

∣m 7→ DΩ, n 7→ DΩ

∣

∣

}

) ⇐⇒Ω (C ·
{∣

∣m 7→ DΩ

∣

∣

}

)

There is some freedom in the type of merge. On one hand, we can give it a
precise type that expresses the intended equality constraint in the concrete view;
the lens is well-behaved and total at that type. Alternatively, we can give it a
more permissive type (as we do) by ignoring the equality constraint—even if the
two original branches are unequal, merge is still defined and well-behavedness is
preserved. This is possible because the old concrete view is an argument to the
putback function, and can be tested to see whether the two branches were equal or
not in c. If not, then the value in a does not overwrite the value in the deleted
branch, allowing merge to obey PutGet.

Unlike copy, merge is quite useful in our synchronization framework. For ex-
ample, in our bookmark synchronizer, the XML representation of Apple Safari
bookmark files includes the URL data for every link twice. By merging the appro-
priate children, we record this dependency and ensure that updates to the URL
fields are consistently propagated to both locations.
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6. CONDITIONALS

Conditional lens combinators, which can be used to selectively apply one lens or an-
other to a view, are necessary for writing many interesting derived lenses. Whereas
xfork and its variants split their input trees into two parts, send each part through
a separate lens, and recombine the results, a conditional lens performs some test
and sends the whole trees through one or the other of its sub-lenses.

The requirement that makes conditionals tricky is totality: we want to be able
to take a concrete view, put it through a conditional lens to obtain some abstract
view, and then take any other abstract view of suitable type and push it back down.
But this will only work if either (1) we somehow ensure that the abstract view is
guaranteed to be sent to the same sub-lens on the way down as we took on the
way up, or else (2) the two sub-lenses are constrained to behave coherently. Since
we want reasoning about well-behavedness and totality to be compositional in the
absence of recursion (i.e., we want the well-behavedness and totality of composite
lenses to follow just from the well-behavedness and totality of their sub-lenses, not
from special facts about the behavior of the sub-lenses), the second is unacceptable.

Interestingly, once we adopt the first approach, we can give a complete charac-
terization of all possible conditional lenses: we argue that every binary conditional
operator that yields well-behaved and total lenses is an instance of the general cond
combinator presented below. Since this general cond is a little complex, however,
we start by discussing two particularly useful special cases.

Concrete Conditional

Our first conditional, ccond, is parameterized on a predicate C1 on views and two
lenses, l1 and l2. In the get direction, it tests the concrete view c and applies the
get of l1 if c satisfies the predicate and l2 otherwise. In the putback direction, ccond
again examines the concrete view, and applies the putback of l1 if it satisfies the
predicate and l2 otherwise. This is arguably the simplest possible way to define a
conditional: it fixes all of its decisions in the get direction, so the only constraint
on l1 and l2 is that they have the same target. (However, if we are interested in
using ccond to define total lenses, this is actually a rather strong condition.)

(ccond C1 l1 l2)ր c =

{

l1ր c if c ∈ C1

l2ր c if c 6∈ C1

(ccond C1 l1 l2)ց (a, c) =

{

l1 ց (a, c) if c ∈ C1

l2 ց (a, c) if c 6∈ C1

∀C, C1, A⊆V. ∀l1 ∈ C∩C1 ⇋
Ω

A. ∀l2 ∈ C\C1 ⇋
Ω

A.
ccond C1 l1 l2 ∈ C ⇋

Ω

A

∀C, C1, A⊆V. ∀l1 ∈ C∩C1 ⇐⇒Ω A. ∀l2 ∈ C\C1 ⇐⇒Ω A.
ccond C1 l1 l2 ∈ C ⇐⇒Ω A

One subtlety in the definition is worth noting: we arbitrarily choose to putback Ω
using l2 (because Ω 6∈ C1 for any C1 ⊆ V). We could equally well arrange the
definition so as to send Ω through l1. In fact, l1 need not be well-behaved (or
even defined) on Ω; we can construct a well-behaved, total lens using ccond when
l1 ∈ C ∩ C1 ⇐⇒ A and l2 ∈ C \ C1 ⇐⇒Ω A.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Combinators for Bi-Directional Tree Transformations · 27

Abstract Conditional

A quite different way of defining a conditional lens is to make it ignore its con-

crete argument in the putback direction, basing its decision whether to use l1ց
or l2ց entirely on its abstract argument. This obliviousness to the concrete ar-
gument removes the need for any side conditions relating the behavior of l1 and
l2—everything works fine if we putback using the opposite lens from the one that
we used to get—as long as, when we immediately put the result of get, we use the
same lens that we used for the get. Requiring that the sources and targets of l1 and
l2 be disjoint guarantees this.

(acond C1 A1 l1 l2)ր c =

{

l1ր c if c ∈ C1

l2ր c if c 6∈ C1

(acond C1 A1 l1 l2)ց (a, c) =















l1 ց (a, c) if a ∈ A1 ∧ c ∈ C1

l1 ց (a, Ω) if a ∈ A1 ∧ c 6∈ C1

l2 ց (a, c) if a 6∈ A1 ∧ c 6∈ C1

l2 ց (a, Ω) if a 6∈ A1 ∧ c ∈ C1

∀C, A, C1, A1⊆V. ∀l1 ∈ C∩C1 ⇋
Ω

A∩A1. ∀l2 ∈ (C\C1) ⇋
Ω

(A\A1).
acond C1 A1 l1 l2 ∈ C ⇋

Ω

A

∀C, A, C1, A1⊆V. ∀l1 ∈ C∩C1 ⇐⇒Ω A∩A1. ∀l2 ∈ (C\C1) ⇐⇒Ω (A\A1).
acond C1 A1 l1 l2 ∈ C ⇐⇒Ω A

In Section 5, we defined the lens rename m n, whose type demands that each
concrete tree have a child named m and that every abstract tree have a child named
n. Using this conditional, we can write a more permissive lens that renames a child
if it is present and otherwise behaves like the identity.

rename if present m n = acond ({|m 7→ T |} · T \{m,n}) ({|n 7→ T |} · T \{m,n})
(rename m n)
id

∀n, m ∈ N . ∀C⊆T . ∀D, E⊆(T \{m,n}).
rename if present m n ∈ (

{∣

∣m 7→ C
∣

∣

}

· D) ∪ E ⇐⇒Ω (
{∣

∣n 7→ C
∣

∣

}

· D) ∪ E

General Conditional

The general conditional, cond, is essentially obtained by combining the behaviors
of ccond and acond. The concrete conditional requires that the targets of the two
lenses be identical, while the abstract conditional requires that they be disjoint.
More generally, we can let them overlap arbitrarily, behaving like ccond in the
region where they do overlap (i.e., for arguments (a, c) to putback where a is in
the intersection of the targets) and like acond in the regions where the abstract
argument to putback belongs to just one of the targets. To this we can add one
additional observation: that the use of Ω in the definition of acond is actually
arbitrary. All that is required is that, when we use the putback of l1, the concrete
argument should come from (C1)Ω, so that l1 is guaranteed to do something good
with it. These considerations lead us to the following definition.
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(cond C1 A1 A2 f21 f12 l1 l2)ր c =

{

l1ր c if c ∈ C1

l2ր c if c 6∈ C1

(cond C1 A1 A2 f21 f12 l1 l2)ց (a, c) =






























l1 ց (a, c) if a ∈ A1∩A2 ∧ c ∈ C1

l2 ց (a, c) if a ∈ A1∩A2 ∧ c 6∈ C1

l1 ց (a, c) if a ∈ A1\A2 ∧ c ∈ (C1)Ω
l1ց(a, f21(c)) if a ∈ A1\A2 ∧ c 6∈ (C1)Ω
l2 ց (a, c) if a ∈ A2\A1 ∧ c 6∈ C1

l2ց(a, f12(c)) if a ∈ A2\A1 ∧ c ∈ C1

∀C, C1, A1, A2 ⊆ V. ∀l1 ∈ (C∩C1) ⇋
Ω A1. ∀l2 ∈ (C\C1) ⇋

Ω A2.
∀f21 ∈ (C\C1) → (C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇋
Ω

(A1∪A2)

∀C, C1, A1, A2 ⊆ V. ∀l1 ∈ (C∩C1) ⇐⇒Ω A1. ∀l2 ∈ (C\C1) ⇐⇒Ω A2.
∀f21 ∈ (C\C1) → (C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇐⇒Ω (A1∪A2)

When a is in the targets of both l1 and l2, condց chooses between them based
solely on c (as does ccond, whose targets always overlap). If a lies in the range
of only l1 or l2, then cond’s choice of lens for putback is predetermined (as with
acond, whose targets are disjoint). Once lց is chosen to be either l1ց or l2ց, if
the old value of c is not in ran(lց)Ω, then we apply a “fixup function,” f21 or f12,
to c to choose a new value from ran(lց)Ω. Ω is one possible result of the fixup
functions, but in general we can compute a more interesting value, as we will see
in the list filter lens, defined in Section 7.

Before we introduced cond, we argued that it captured all the power of ccond

and acond, and (because of the fixup functions f12 and f21), more besides. We now
argue that this is the maximum generality possible—i.e., that any well-behaved and
total lens combinator that behaves like a binary conditional can be obtained as a
special case of cond. Of course, the argument hinges on what we mean when we
say “l behaves like a conditional.” We would like to capture the intuition that l
should, in each direction, “test its input(s) and decide whether to behave like l1 or
l2.” In the get direction, there is little choice about how to say this: since there is
just one argument, the test just amounts to testing membership in a set (predicate)
C1. In the putback direction, there is some apparent flexibility, since the test might
investigate both arguments. However, the requirements of well-behavedness (and
the feeling that a conditional lens should be “parametric” in l1 and l2, in the
sense that the choice between l1 and l2 should not be made by investigating their
behavior) actually eliminate most of this flexibility. If, for example, the abstract
input a falls in if a ∈ A1∩A2, then the choice of whether to apply l1ց or l2ց is
fully determined by c: if c ∈ C1, then it may be that a = l1ր c; in this case, using
l1ց guarantees that lց (a, c) = c, as required by GetPut, whereas l2ց gives us
no such guarantee; conversely, if c ∈ C\C1, we must use l2.

Similarly if a ∈ A1\A2, then we have no choice but to use l1, since l2’s type does
not promise that applying it to an argument of this type will yield a result in C1.
Similarly, if a ∈ A2\A1, then we must use l2. However, here we do have a little
genuine freedom: if a ∈ A1\A2 while c ∈ C\C1, then, by the type of l2, there is
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no danger that a = l2ր c. In order to apply l1, we need some element of (C1)Ω
to use as the concrete argument, but it does not matter which one we pick; and
conversely for l2. The fixup functions f21 and f12 cover all possible (deterministic)
ways of making this choice based on the given c. (It is possible to be slightly more
general by making f21 and f12 take both a and c as arguments, but pragmatically
there seems little point in doing this, since either l1ց or l2ց is going to be called
on their result, and these functions can just as well take a into account.)

7. DERIVED LENSES FOR LISTS

XML and many other concrete data formats make heavy use of ordered lists. We
describe in this section how we can represent lists as trees, using a standard cons cell
encoding, and introduce some derived lenses to manipulate them. We begin with
very simple lenses for projecting the head and tail of a list encoded as a cons cell.
We then define recursive lenses implementing some more complex operations on
lists: mapping, reversal, grouping, concatenating, and filtering. We give the proofs
of the well-behavedness and totality lemmas (in Appendix A) for these recursive
lenses to demonstrate how the reasoning principles developed in Section 3 can be
applied to some practical examples.

Encoding

7.1 Definition: A tree t is said to be a list iff either it is empty or it has exactly
two children, one named *h and another named *t, and t(*t) is also a list. In the
following, we use the lighter notation [t1 . . . tn] for the tree:















∣

∣

∣

∣

∣

∣

∣

∣

*h 7→ t1

*t 7→







∣

∣

∣

∣

∣

∣

*h 7→ t2

*t 7→

{∣

∣

∣

∣

. . . 7→

{∣

∣

∣

∣

*h 7→ tn

*t 7→ {||}

∣

∣

∣

∣

}∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣







∣

∣

∣

∣

∣

∣

∣

∣















In types, we write [] for the set {{||}} containing only the empty list, C ::D for the
set

{∣

∣*h 7→ C, *t 7→ D
∣

∣

}

of “cons cell trees” whose head belongs to C and whose
tail belongs to D, and [C] for the set of lists with elements in C—i.e., the smallest
set of trees satisfying [C] = [] ∪ (C :: [C]). We sometimes refine this notation
to describe lists of specific lengths, writing [Di..j] for the set of lists of Ds whose
length is at least i and at most j, and writing [Di] for the set of lists whose length
is exactly i (i.e., [Di..i]). Given two list values, l1 and l2, the set of lists denoted
by l1&l2 contains all the lists formed by taking all the elements of l1 and combining
them with all the elements of l2 in an arbitrary fashion, but maintaining the relative
order of each. For example, [a, b]&[c] is the set {[a, b, c], [a, c, b], [c, a, b]}.
We lift the interleaving operator to list types in the obvious way: the interleaving of
two list types, [B] and [C], is the union of all the interleavings of lists belonging
to [B] with lists belonging to [C]. Similarly, we lift the usual append operator,
written ++, to list types: [C]++[D] denotes the set of lists obtained by appending
any element of [C] to any element of [D].

Head and Tail Projections

Our first list lenses extract the head or tail of a cons cell.
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hd d = focus *h
{∣

∣*t 7→ d
∣

∣

}

∀C, D⊆T . ∀d∈D. hd d ∈ (C ::D) ⇐⇒Ω C

tl d = focus *t
{∣

∣*h 7→ d
∣

∣

}

∀C, D⊆T . ∀d∈C. tl d ∈ (C ::D) ⇐⇒Ω D

The lens hd expects a default tree, which it uses in the putback direction as the
tail of the created tree when the concrete tree is missing; in the get direction,
it returns the tree under *h. The lens tl works analogously. Note that the
types of these lenses apply to both homogeneous lists (the type of hd implies
∀C⊆T . ∀d∈[C]. hd d ∈ [C] ⇐⇒Ω C) as well as cons cells whose head and tail have
unrelated types; both possibilities are used in the type of the bookmark lens in Sec-
tion 8. The types of hd and tl follow from the type of focus.

List Map

The list map lens applies a lens l to each element of a list:

list map l = wmap {*h 7→ l, *t 7→ list map l}

∀C, A⊆T . ∀l ∈ C ⇋
Ω

A. list map l ∈ [C] ⇋
Ω

[A]

∀C, A⊆T . ∀l ∈ C ⇐⇒Ω A. list map l ∈ [C] ⇐⇒Ω [A]

The get direction applies l to the subtree under *h and recurses on the subtree
under *t. The putback direction uses lց on corresponding pairs of elements from
the abstract and concrete lists. The result has the same length as the abstract list;
if the concrete list is longer, the extra tail is thrown away. If it is shorter, each
extra element of the abstract list is putback into Ω.

Since list map is our first recursive lens, it is worth noting how recursive calls
are made in each direction. The get function of the wmap lens simply applies l to the
head and list map l to the tail until it reaches a tree with no children. Similarly,
in the putback direction, wmap applies l to the head of the abstract tree and either
the head of the concrete tree (if it is present) or Ω, and it applies list map l to the
tail of the abstract tree and the tail of the concrete tree (if it is present) or Ω. In
both directions, the recursive calls continue until the entire tree—concrete (for the
get) or abstract (for the putback)—has been traversed.

Because list map is defined recursively, proving it is well behaved requires (just)
a little more work than than for non-recursive derived lenses: we need to show that
it has a particular type assuming that the recursive use of list map has the same
type. This is nothing very surprising: exactly the same reasoning process is used
in typing recursive functional programs.

Recall that the type of wmap requires that both sets of trees in its type be shuffle
closed. To prove that list map is well-behaved and total, we will need a lemma
showing that cons cell and list types are shuffle closed.

7.2 Lemma: Let S, T⊆T . Then

(1) (S ::T ) = (S ::T )	

(2) [T] = [T]	.
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With these pieces in hand, the well-behavedness lemma follows by a straightfor-
ward calculation using the type of wmap.

7.3 Lemma [Well-behavedness]:
∀C, A⊆T . ∀l ∈ C ⇋

Ω A. list map l ∈ [C] ⇋
Ω

[A]

The proof of totality for list map is more interesting. We use Corollary 3.17(2).
The corollary requires that we: (1) identify two chains of types, ∅ = C0 ⊆ C1 ⊆ . . .
and ∅ = A0 ⊆ A1 ⊆ . . . , and (2) from k ∈ Ci ⇐⇒Ω Ai, prove that f(k) ∈ Ci+1 ⇐⇒Ω

Ai+1 for all i. We can then conclude that fix (f) ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai. For list map

we choose increasing chains of types as follows:

Ci = ∅ ⊆ [] ⊆ C ::[] ⊆ C ::C ::[] ⊆ . . .
Ai = ∅ ⊆ [] ⊆ A ::[] ⊆ A ::A ::[] ⊆ . . .

The full argument is given in the proof of Lemma 7.4.

7.4 Lemma [Totality]: ∀C, A⊆T . ∀l ∈ C ⇐⇒Ω A. list map l ∈ [C] ⇐⇒Ω [A]

Reverse

Our next lens reverses the elements of a list. The algorithm we use to implement
list reversal is a quadratic-time algorithm—we reverse the tail of the list and then
use an auxiliary lens to rotate the head to the end of the reversed tail. Before
presenting the list reverse lens, we describe this auxiliary lens, called rotate.

rotate = acond ([] ∪ (D ::[])) ([] ∪ (D ::[]))
id

(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*h} id (rename tmp *h; rotate; plunge *t))

∀D⊆T . rotate ∈ [D] ⇐⇒Ω [D]

In the get direction, rotate has two cases. If the list is empty or a singleton,
then applies the id, which returns the original empty or singleton list unmodified.
Otherwise, it (1) renames the head to tmp; (2) hoists up the tail, which yields
children *h and *t since the list is neither empty nor a singleton; and (3) splits the
tree in two using fork, applying the id lens to the part of the tree consisting of the
single child *h (i.e., the second element in the original list), and to the rest of the
tree renaming tmp back to *h, recursively rotating this list, which now contains the
head and the tail of the tail of the original list, and plunging the result under *t.

The putback direction also has two cases, corresponding to the two arms of the
acond lens. It first checks whether the abstract view is the empty list or a singleton
list. If so, then it applies the id lens, which returns the abstract list unchanged.
Otherwise, it applies the three steps given above in reverse order: (1) splitting the
abstract and concrete lists as in the get direction, passing the head through the
id lens, and to the tail, hoisting up the tail tag, recursively applying rotate, and
renaming the child now named *h (i.e., the last element of the original abstract list)
to tmp; (2) plunging the now-rotated tail and the original head of the list under
*t; and (3) renaming tmp to *h. This has the effect of bringing the last element of
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the abstract list to the head of the result, and shifting the position of every other
element by one.

The well-behavedness proof is a simple calculation, using Corollary 3.17(1) and
the types of the lenses that it is composed from.

7.5 Lemma [Well-behavedness]: ∀D⊆T . rotate ∈ [D] ⇋
Ω

[D]

The totality lemma is proved using Corollary 3.17(2), after establishing, by in-
duction on i, that rotate ∈ [Di] ⇐⇒Ω [Di].

7.6 Lemma [Totality]: ∀D⊆T . rotate ∈ [D] ⇐⇒Ω [D]

Using rotate, the definition of list reverse is straightforward:

list reverse = wmap {*t 7→ list reverse}; rotate

∀D⊆T . list reverse ∈ [D] ⇐⇒Ω [D]

In the get direction, we simply reverse the tail and rotate the head element to the
end of the list. In the putback direction, we perform these steps in reverse order:
first rotating the last element of the list to the head, and then reversing the tail.
Note also that list reverse behaves like the identity when it is applied to the
empty list, i.e., {||}, since the get and putback components of wmap and rotate each
map {||} to {||}.

The algorithm for computing the reversal of a list shown here runs in quadratic
time. Interestingly, we have not been able to code the familiar, linear-time algorithm
as a derived lens (of course, we could introduce a primitive lens for reversing lists
that uses the efficient implementation internally, but it is more interesting to try
to write the efficient version using our combinators). One difficulty arises if we use
an accumulator to store the result: the putback function of such a transformation
would be non-injective and so could not satisfy PutGet. To see this, consider
putting the tree containing [c] under the accumulator child and [b a] as the rest
of the list. This will yield the same result, [a b c], as putting back a tree containing
[] under the accumulator child and [a b c] as the rest of the list.

The well-behavedness lemma follows straightforwardly from the types of wmap
and rotate, using Corollary 3.17(1).

7.7 Lemma [Well-behavedness]: ∀D⊆T . list reverse ∈ [D] ⇋
Ω

[D]

For the totality lemma, we use Corollary 3.17(2), after proving, by induction on
i, that list reverse ∈ [Di] ⇐⇒Ω [Di] for all i.

7.8 Lemma [Totality]: ∀D⊆T . list reverse ∈ [D] ⇐⇒Ω [D]

Grouping

Next we give the definition of a “grouping” lens that, in the get direction, takes a
list of Ds and produces a list of list of Ds where the elements have been grouped
in pairs. It is used in our bookmark synchronizer as part of a transformation that
takes dictionaries of user preferences stored in the particular XML format used by
Apple’s Safari browser and yields trees in a simplified abstract format. When the
concrete list has an even number of elements, the behavior group lens is simple–
e.g., it maps [d1, d2, d3, d4, d5, d6] to [[d1, d2], [d3, d4], [d5, d6]]. When
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there are an odd number of elements in the list, group places the final odd element
in a singleton list–e.g., it maps [d1, d2, d3] to [[d1, d2], [d3]]. The typing for
group, given below, describes both the odd and even case.

Because it explicitly destroys and builds up cons cells, the definition of group is
a little bit longer than the lenses we have seen so far. We explain the behavior of
each part of the lens in detail below.

group =
acond [][]

id

(acond (D ::[]) ((D ::[]) ::[])
(plunge *h; add *t [])
(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*t}

(map group)
(xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h);
plunge *h)))

∀D⊆T group ∈ [D] ⇐⇒Ω [D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

The get component of group has two three cases, one for each branch of the two
acond conditionals. If the concrete list is empty, then group behaves like the first
branch, which is the identity. Otherwise, if the concrete list is a singleton, then
group behaves like the second branch, which plunges the singleton list under *h

and adds a child *t leading to the empty list. That is, it maps singleton lists c to
the singleton list containing c,

{∣

∣*h 7→ c, *t 7→ {||}
∣

∣

}

. Otherwise, if neither of the two
previous cases apply, then group behaves like the third branch. There are three
steps. First, it renames the head element, storing it away under a child named tmp.
Next, it hoists up the tail of the list, yielding a tree with children tmp, *h, and *t

(since the list is neither empty nor a singleton). In the third step, it recursively
groups the tail, massages the other tree into a list of length two and yields the cons
cell made up of these trees as the result.

More specifically, in the third step of the final case, group splits the tree into a
tree with a single child *t and a tree containing the *h and tmp children. It then
recursively groups the tail using (map group). The other tree is split yet again, into
*h and tmp. The tree with *h is made into a singleton list by adding a child *t

leading to the empty view, and then plunged it under *t. The tree containing tmp

is turned into the head of a cons cell by renaming tmp back to *h. After the xfork,
these two trees are plunged under *h. Thus,

{∣

∣tmp 7→ di, *h 7→ dj

∣

∣

}

is transformed

into the tree
{∣

∣*h 7→ [di, dj]
∣

∣

}

. The final result is obtained by merging the grouped
tail with this head element.

Since each lens used in group is oblivious,7 the putback function is symmetric,
with three cases corresponding to the branches of the acond. Its behavior can be

7Although group uses the const lens indirectly, via add, it is semantically oblivous. Recall that
(add n {||}) expands into (xfork {}{n} (const {||} {||}; plunge n) id). The type annotation on add

ensures that the putback function is only ever applied to abstract trees that have a child n leading
to {||}. From this, a simple argument shows that both arguments to constց are always {||}. As a
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calculated by evaluating the compositions in reverse order.
The well-behavedness of group follows from Corollary 3.17(1) and a simple, com-

positional argument using the types of each lens appearing in its definition.

7.9 Lemma [Well-behavedness]:
∀D⊆T group ∈ [D] ⇋

Ω

[D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

We prove the totality lemma using Corollary 3.17(2), using the increasing chains
of types:

Ci = ∅ ⊆ [] ⊆ D ::[] ⊆ D :: (D ::[]) ⊆ . . .
Ai = ∅ ⊆ [] ⊆ (D ::[]) ::[] ⊆ (D ::D ::[]) ::[] ⊆ . . .

whose limit is the total type we want to show for group.

7.10 Lemma [Totality]:
∀D⊆T group ∈ [D] ⇐⇒Ω [D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

Concatenation

The concat lens takes a tree t as an argument. It maps lists containing two sublists
of Ds and concatenates them into a single list using a single element t to track the
position where the first list ends and the second begins. For example, given the tree
[[C, h, r, i, s], [S, m, i, t, h]], the get component of (concat

{∣

∣" " 7→ {||}
∣

∣

}

)
produces the single list [C, h, r, i, s, " ", S, m, i, t, h]. Conversely, the putback

function takes a list containing exactly one t and splits the list in two, producing
lists containing the elements to the left and right of t respectively. The definition
is as follows.

concat t = acond ([] ::[D] ::[]) (t ::[D])
(wmap {*h 7→ const t [], *t 7→ hd []})
(fork {*t} id (hoist *h; rename *t tmp);
fork {*h} id (rename tmp *h; concat t; plunge *t))

∀D⊆T , t ∈ T . with t 6∈ D. concat ∈ [D] ::[D] ::[] ⇐⇒Ω [D]++(t ::[D])

In the get direction, there are two cases, one for each branch of the acond. If
the concrete list is of the form ([] :: l ::[]), where l ∈ [D], then concat produces
the result (t++l) by applying (const t []) to the head and (hd []) to extract l
from the tail. Otherwise, the first element of the concrete list is non-empty and
the acond selects the second branch. The first fork splits the outermost cons cell
according to {*t}. The id lens is applied to the tail component, which has the
form

{∣

∣*t 7→ l2
∣

∣

}

. The other component has the form
{∣

∣*h 7→
{∣

∣*h 7→ d, *t 7→ l1
∣

∣

}∣

∣

}

.
The edge labeled *h is clipped out using hoist, yielding children *h and *t (i.e.,
the head and tail of the first sublist) and the *t child is renamed to tmp. These two
steps yield a tree

{∣

∣*h 7→ d, tmp 7→ l1
∣

∣

}

. The second fork splits the tree according

to {*h}. The id lens is applied to the tree
{∣

∣*h 7→ d
∣

∣

}

. The other part of the tree

is
{∣

∣tmp 7→ l1, *t 7→ l2
∣

∣

}

. By renaming tmp to *h, recursively concatenating, and

plunging the result under *t, we obtain the tree
{∣

∣*t 7→ (l1++(t :: l2))
∣

∣

}

. Combining
these two results into a single tree, we obtain the list (d :: l1)++(t :: l2).

result, in this case, the behavior of constց does not depend on its concrete argument–the lens is
oblivious.
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The putback function is oblivious; its behavior is symmetric to the get function.
Once again, the well-behavedness lemma for concat follows by a simple, compo-

sitional calculation, using Corollary 3.17(1).

7.11 Lemma [Well-behavedness]:
∀D⊆T , t ∈ T . with t 6∈ D. concat ∈ [D] ::[D] ::[] ⇋

Ω

[D]++(t ::[D])

The totality lemma follows from Corollary 3.17(2), using the increasing chains of
types:

Ci = ∅ ⊆ [] ::[D] ::[] ⊆ (D ::[]) ::[D] ::[] ⊆ (D ::D ::[]) ::[D] ::[] ⊆ . . .
Ai = ∅ ⊆ []++(t ::[D]) ⊆ (D ::[])++(t ::[D]) ⊆ (D ::D ::[])++(t ::[D]) ⊆ . . .

whose limit is the total type we want to show for concat.

7.12 Lemma [Totality]:
∀D⊆T , t ∈ T . with t 6∈ D. concat ∈ [D] ::[D] ::[] ⇐⇒Ω [D]++(t ::[D])

Filter

Our most interesting derived list processing lens, list filter, is parameterized
on two sets of views, D and E, which we assume to be disjoint and non-empty.
In the get direction, it takes a list whose elements belong to either D or E and
projects away those that belong to E, leaving an abstract list containing only Ds;
in the putback direction, it restores the projected-away Es from the concrete list.
Its definition utilizes our most complex lens combinators—wmap and two forms of
conditionals—and recursion, yielding a lens that is well-behaved and total on lists
of arbitrary length.

In the get direction, the desired behavior of list filter D E (for brevity, let us
call it l) is clear. In the putback direction, things are more interesting because there
are many ways that we could restore projected elements from the concrete list. The
lens laws impose some constraints on the behavior of lց. The GetPut law forces
the putback function to restore each of the filtered elements when the abstract list
is put into the original concrete list. For example (letting d and e be elements
of D and E) we must have lց ([d], [e d]) = [e d]. The PutGet law forces
the putback function to include every element of the abstract list in the resulting
concrete list, and these elements must be the only Ds in the result (there is however
no restriction on the Es when the abstract tree is not the filtered concrete tree).

In the general case, where the abstract list a is different from the filtered concrete
list lր c, there is some freedom in how lց behaves. First, it may selectively restore
only some of the elements of E from the concrete list (or indeed, even less intuitively,
it might add some new elements of E that it somehow makes up). Second, it may
interleave the restored Es with the Ds from the abstract list in any order, as long
as the order of the Ds is preserved from a. From these possibilities, the behavior
that seems most natural to us is to overwrite elements of D in c with elements of
D from a, element-wise, until either c or a runs out of elements of D. If c runs
out first, then lց appends the rest of the elements of a at the end of c. If a runs
out first, then lց restores the remaining Es from the end of c and discards any
remaining Ds in c (as it must to satisfy PutGet).

These choices lead us to the following specification for a single step of the putback

part of a recursively defined lens implementing l. If the abstract list a is empty,
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then we restore all the Es from c. If c is empty and a is not empty, then we return
a. If a and c are both cons cells whose heads are in D, then we return a cons cell
whose head is the head of a and whose tail is the result obtained by recursing on
the tails of both a and c. Otherwise (i.e., c has type E :: ([D]&[E])) we restore the
head of c and recurse on a and the tail of c. Translating this into lens combinators
leads to the definition below of a recursive lens inner filter, which filters lists
containing at least one D, and a top-level lens list filter that handles arbitrary
lists of Ds and Es.

inner filter D E =
ccond (E :: ([D1..ω]&[E]))

(tl anyE ; inner filter D E)
(wmap {*h 7→ id,

*t 7→ (cond [E] [] [D1..ω] fltrE (λc. c@[anyD])
(const [] [])
(inner filter D E))})

list filter D E =
cond [E] [] [D1..ω] fltrE (λc. c@[anyD])

(const [] [])
(inner filter D E)}

∀D, E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅.
inner filter D E ∈ [D1..ω]&[E] ⇐⇒Ω [D1..ω]

list filter D E ∈ [D]&[E] ⇐⇒Ω [D]

The “choice operator” anyD denotes an arbitrary element of the (non-empty) set
D.8 The function fltrE is the usual list-filtering function, which for present purposes
we simply assume has been defined as a primitive. (In our implementation, we ac-
tually use list filterր; but for expository purposes, and to simplify the totality
proofs, we avoid this extra bit of recursiveness.) Finally, the function λc. c@[anyD]

appends some arbitrary element of D to the right-hand end of a list c. These “fixup
functions” are applied in the putback direction by the cond lens.

The behavior of the get function of list filter can be described as follows. If
c ∈ [E], then the outermost cond selects the const [] [] lens, which produces
[]. Otherwise the cond selects inner filter, which uses a ccond instance to test
if the head of the list is in E. If this test succeeds, it strips away the head using tl

and recurses; if not, it retains the head and filters the tail using wmap.
In the putback direction, if a = [] then the outermost cond lens selects the

const[] [] lens, with c as the concrete argument if c ∈ [E] and (fltrE c) otherwise.
This has the effect of restoring all of the Es from c. Otherwise, if a 6= [] then the
cond instance selects the putback of the inner filter lens, using c as the concrete
argument if c contains at least one D, and (λc. c@[anyD]) c, which appends a
dummy value of type D to the tail of c, if not. The dummy value, anyD, is required

8We are dealing with countable sets of finite trees here, so this construct poses no metaphysical
conundrums; alternatively, but less readably, we can pass list filter an extra argument d ∈ D.
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because inner filter expects a concrete argument that contains at least one D.
Intuitively, the dummy value marks the point where the head of a should be placed.

To illustrate how all this works, let us step through some examples in detail. In
each example, the concrete type is [D]&[E] and the abstract type is [D]. We
will write di and ej to stand for elements of D and E respectively. To shorten the
presentation, we will write l for list filter D E (i.e., for the cond lens that it is
defined as) and i for inner filter D E. In the first example, the abstract tree a
is [d1], and the concrete tree c is [e1 d2 e2]. At each step, we underline the term
that is simplified in the next step.

lց (a, c) = iց (a, c)

by the definition of cond, as a ∈ [D1..ω] and c ∈ ([D]&[E]) \ [E]

= (tl anyE ; i)ց (a, c)

by the definition of ccond, as c ∈ E :: ([D1..ω]&[E])

= (tl anyE)ց
(

iց
(

a, (tl anyE)ր c
)

, c
)

by the definition of composition

= (tl anyE)ց
(

iց (a, [d2 e2]), c
)

reducing (tl anyE)ր c

= (tl anyE)ց
(

wmap {*h 7→ id, *t 7→ l}ց (a, [d2 e2]), c
)

by the definition of ccond, as [d2 e2] 6∈ E :: ([D1..ω]&[E])

= (tl anyE)ց
(

d1 :: (lց ([], [e2])), c
)

by the definition of wmap with idց (d1, d2) = d1

= (tl anyE)ց
(

d1 :: ((const [] [])ց ([], [e2])), c
)

by the definition of cond, as [] ∈ [] and [e2] ∈ [E]

= (tl anyE)ց (d1 ::[e2], c)

by the definition of const

= [e1 d1 e2] by the definition of tl.

Our next two examples illustrate how the “fixup functions” supplied to the cond

lens are used. The first function, fltrE , is used when the abstract list is empty and
the concrete list is not in [E]. Let a = [] and c = [d1 e1].

lց (a, c) = (const [] [])ց
(

[], fltrE[d1 e1]
)

by the definition of cond, as a = [] but c 6∈ [E]

= (const [] [])ց ([], [e1])

by the definition of fltrE
= [e1] by definition of const.

The other fixup function, (λc. c@[anyD]), inserts a dummy D element when
list filter is called with a non-empty abstract list and a concrete list whose
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elements are all in E. Let a = [d1] and c = [e1] and assume that anyD = d0.

lց (a, c) = iց
(

a, (λc. c@[anyD]) c
)

by the definition of cond, as a ∈ [D1..ω] and c ∈ [E]

= iց (a, [e1 d0])

by the definition of (λc. c@[anyD])

= (tl anyE ; i)ց (a, [e1 d0])

by the definition of ccond, as [e1 d0] ∈ E :: ([D1..ω]D&[E])

= (tl anyE)ց
(

iց
(

a, (tl anyE)ր [e1 d0]
)

, [e1 d0]
)

by the definition of composition

= (tl anyE)ց
(

iց (a, [d0]), [e1 d0]
)

reducing (tl anyE)ր [e1 d0]

= (tl anyE)

ց
(

wmap {*h 7→ id, *t 7→ l}ց (a, [d0]), [e1 d0]
)

by the definition of ccond, as [d0] 6∈ E :: ([D1..ω]&[E])

= (tl anyE)ց
(

d1 :: (lց ([], [])), [e1 d0]
)

by the definition of wmap with idց (d1, d0) = d1

= (tl anyE)ց
(

d1 :: ((const [] [])ց ([], [])), [e1 d0]
)

by the definition of cond, as [] ∈ [] and [] ∈ [E]

= (tl anyE)ց (d1 ::[], [e1 d0])

by the definition of const

= [e1 d1] by the definition of tl.

The well-behavedness proof for inner filter is straightforward: we simply de-
cide on a type for the recursive use of inner filter and then show that, under this
assumption, the bodies of the lenses has this type. Since list filter is not recur-
sive, both its well-behavedness and totality lemmas both follow straightforwardly
from the types of the lenses that are used in its definition.

7.13 Lemma [Well-behavedness]:
∀D, E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅.

inner filter D E ∈ [D1..ω]&[E] ⇋
Ω

[D1..ω]

list filter D E ∈ [D]&[E] ⇋
Ω

[D]

The totality proof for inner filter, on the other hand, is somewhat challeng-
ing, involving detailed reasoning about the behavior of particular subterms under
particular conditions. This is not too surprising, given the well-known difficulties
of reasoning about totality of ordinary recursive functional programs. We do not
imagine that, in practice, detailed proofs of totality will be undertaken for very
many lenses—most lens programmers will probably be satisfied with the assurance
of (easier) proofs of well-behavedness plus informal reasoning about totality, just
as most working functional programmers are reasonably happy with typechecking
plus informal totality arguments for their functions. Still, it is interesting to work
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through a few non-trivial totality proofs in detail, to see what sorts of reasoning
techniques are required.

7.14 Lemma [Totality]:
∀D, E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅.

inner filter D E ∈ [D1..ω]&[E] ⇐⇒Ω [D1..ω]

list filter D E ∈ [D]&[E] ⇐⇒Ω [D]

8. EXTENDED EXAMPLE: A BOOKMARK LENS

In this section, we develop a larger and more realistic example of programming
with our lens combinators. The example comes from a demo application of our data
synchronization framework, Harmony, in which bookmark information from diverse
browsers, including Internet Explorer, Mozilla, Safari, Camino, and OmniWeb, is
synchronized by transforming each format from its concrete native representation
into a common abstract form. We show here a slightly simplified form of the Mozilla
lens, which handles the HTML-based bookmark format used by Netscape and its
descendants.

The overall path taken by the bookmark data through the Harmony system can
be pictured as follows.

HTML html
reader

concrete

view
HTML

put
bookmarkhtml

writer
viewview abstractconcrete newnew

HTML
new

view
abstract

abstract
view

other

bookmark
get

sync

We first use a generic HTML reader to transform the HTML bookmark file into
an isomorphic concrete tree. This concrete tree is then transformed, using the get

direction of the bookmark lens, into an abstract “generic bookmark tree.” The
abstract tree is synchronized with the abstract bookmark tree obtained from some
other bookmark file, yielding a new abstract tree, which is transformed into a new
concrete tree by passing it back through the putback direction of the bookmark

lens (supplying the original concrete tree as the second argument). Finally, the
new concrete tree is written back out to the filesystem as an HTML file. We now
discuss these transformations in detail.

Abstractly, the type of bookmark data is a name pointing to a value and a
contents, which is a list of items. An item is either a link, with a name and a
url, or a folder, which has the same type as bookmark data. Figure 2 formalizes
these types.

Concretely, in HTML (see Figure 3), a bookmark item is represented by a <dt>

element containing an <a> element whose href attribute gives the link’s url and
whose content defines the name. The <a> element also includes an add_date at-
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ALink1 = {|name 7→ Val url 7→ Val |}
ALink = {|link 7→ ALink1 |}
AFolder1 = {|name 7→ Val contents 7→ AContents|}
AFolder = {|folder 7→ AFolder1 |}
AContents = [AItem]

AItem = ALink ∪ AFolder

Fig. 2. Abstract Bookmark Types

<html>

<head> <title>Bookmarks</title> </head>

<body>

<h3>Bookmarks Folder</h3>

<dl>

<dt> <a href="www.google.com"

add_date="1032458036">Google</a> </dt>

<dd>

<h3>Conferences Folder</h3>

<dl>

<dt> <a href="www.cs.luc.edu/icfp"

add_date="1032528670">ICFP</a> </dt>

</dl>

</dd>

</dl>

</body>

</html>

Fig. 3. Sample Bookmarks (HTML)

tribute, which we have chosen not to reflect in the abstract form because it is not
supported by all browsers. A bookmark folder is represented by a <dd> element
containing an <h3> header (giving the folder’s name) followed by a <dl> list con-
taining the sequence of items in the folder. The whole HTML bookmark file follows
the standard <head>/<body> form, where the contents of the <body> have the for-
mat of a bookmark folder, without the enclosing <dd> tag. (HTML experts will
note that the use of the <dl>, <dt>, and <dd> tags here is not actually legal HTML.
This is unfortunate, but the conventions established by early versions of Netscape
have become a de-facto standard.)

The generic HTML reader and writer know nothing about the specifics of the
bookmark format; they simply transform between HTML syntax and trees in a
mechanical way, mapping an HTML element named tag, with attributes attr1 to
attrm and sub-elements subelt1 to subeltn,

<tag attr1="val1" ... attrm="valm">

subelt1 ... subeltn

</tag>
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{html -> {* ->

[{head -> {* -> [{title -> {* ->

[{PCDATA -> Bookmarks}]}}]}}

{body -> {* ->

[{h3 -> {* -> [{PCDATA -> Bookmarks Folder}]}}

{dl -> {* ->

[{dt -> {* ->

[{a -> {* -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> www.google.com}}]}}

{dd -> {* ->

[{h3 -> {* -> [{PCDATA ->

Conferences Folder}]}}

{dl -> {* ->

[{dt -> {* ->

[{a ->

{* -> [{PCDATA -> ICFP}]

add_date -> 1032528670

href -> www.cs.luc.edu/icfp

}}]}}]}}]}}]}}]}}]}}

Fig. 4. Sample Bookmarks (concrete tree)

Val = {|N |}
PCDATA = {|PCDATA 7→ Val |}

CLink = <dt> CLink1 ::[] </dt>

CLink1 = <a add date href> PCDATA ::[] </a>

CFolder = <dd> CContents </dd>

CContents = CContents1 ::CContents2 ::[]

CContents1 = <h3> PCDATA ::[] </h3>

CContents2 = <dl> [CItem] </dl>

CItem = CLink ∪ CFolder

CBookmarks = <html> CBookmarks1 ::CBookmarks2 ::[] </html>

CBookmarks1 = <head> (<title> PCDATA </title> ::[]) </head>

CBookmarks2 = <body> CContents </body>

Fig. 5. Concrete Bookmark Types
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attrm 7→ valm

* 7→







subelt1
...

subeltn







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







































Note that the sub-elements are placed in a list under a distinguished child named
*. This preserves their ordering from the original HTML file. (The ordering of
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{name -> Bookmarks Folder

contents ->

[{link -> {name -> Google

url -> www.google.com}}

{folder ->

{name -> Conferences Folder

contents ->

[{link ->

{name -> ICFP

url -> www.cs.luc.edu/icfp}}]}}]}

Fig. 6. Sample Bookmarks (abstract tree)

sub-elements is sometimes important—e.g., in the present example, it is important
to maintain the ordering of the items within a bookmark folder. Since the HTML
reader and writer are generic, they always record the ordering from the the original
HTML in the tree, leaving it up to whatever lens is applied to the tree to throw away
ordering information where it is not needed.) A leaf of the HTML document—i.e.,
a “parsed character data” element containing a text string str—is converted to
a tree of the form {PCDATA -> str}. Passing the HTML bookmark file shown in
Figure 3 through the generic reader yields the tree in Figure 4.

Figure 5 shows the type (CBookmarks) of concrete bookmark structures. For
readability, the type relies on a notational shorthand that reflects the structure of
the encoding of HTML as trees. We write <tag attr1 . . . attrn> C </tag> for
{tag 7→ {attr1 7→ Val . . . attrn 7→ Val * 7→ C}}. Recall that Val is the set of
all values (trees with a single childless child). For elements with no attributes, this
degenerates to simply <tag> C </tag> = {tag 7→ {* 7→ C}}.

The transformation between this concrete tree and the abstract bookmark tree
shown in Figure 6 is implemented by means of the collection of lenses shown in
Figure 7. Most of the work of these lenses (in the get direction) involves stripping
out various extraneous structure and then renaming certain branches to have the
desired “field names.” Conversely, the putback direction restores the original names
and rebuilds the necessary structure.

To aid in checking well-behavedness, we annotate each lens with its source and
target type, writing ∈ C l ⇋

Ω

A. (This infix notation—where l is written between its
source and target types, instead of the more conventional l ∈ C ⇋

Ω

A—looks strange
in-line, but it works well for multi-line displays such as Figure 7.) Additionally, we
annotate each composition with a suitable “cut type,” writing l ; : B k instead of
just l; k. We maintain the invariant that, whenever we are interested in checking
the well-behavedness of a composite lens l ; : B k, the source and target types C
and A are determined by the context; the annotation B allows us to propagate this
invariant to l and k.

It is then straightforward to check, using the type annotations supplied, that
bookmarks ∈ CBookmarks ⇋

Ω

AFolder1. (We omit the proof of totality, since we
have already seen more intricate totality arguments in Section 7).

In practice, composite lenses are developed incrementally, gradually massaging
the trees into the correct shape. Figure 8 shows the process of developing the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Combinators for Bi-Directional Tree Transformations · 43

link = ∈ {|* 7→Clink1 ::[]|}
hoist *; : CLink1 ::[]
hd []; : CLink1
hoist a; : {|* 7→PCDATA ::[], add_date 7→Val ,

href 7→Val |}
rename * name; : {|name 7→PCDATA ::[], add_date 7→Val ,

href 7→Val |}
rename href url; : {|name 7→PCDATA ::[], add_date 7→Val ,

url 7→Val |}
prune add date {$today}; : {|name 7→PCDATA ::[], url 7→Val |}
wmap {name -> (hd []; : PCDATA

hoist PCDATA)} ⇋
Ω

{|name 7→Val , url 7→Val |} = ALink1

folder = ∈ {|* 7→CContents|}
hoist *; : CContents

xfork {*h} {name}

(hoist *h; : {|h3 7→{|* 7→PCDATA ::[]|}|}
rename h3 name)

(hoist *t; : CContents2 ::[]
hd []; : {|dl 7→{|* 7→[CItem]|}|}
rename dl contents) : {|name 7→{|* 7→PCDATA ::[]|},

contents 7→{|* 7→[CItem]|}|}
wmap {name -> (hoist *; : PCDATA ::[]

hd []; : PCDATA

hoist PCDATA)

contents -> (hoist *; : [CItem]

list_map item)}

⇋
Ω

{|name 7→Val ,

contents 7→[AItem]|} = AFolder1

item = ∈ CItem
wmap {dd -> folder, dt -> link }; : {|dd 7→AFolder1 |} ∪ {|dt 7→ALink1 |}
rename_if_present dd folder; : {|folder 7→AFolder1 |} ∪ {|dt 7→ALink1 |}

rename_if_present dt link : ⇋
Ω

AFolder ∪ ALink = AItem

bookmarks = ∈ CBookmarks
hoist html; : {|* 7→CBookmarks1 ::CBookmarks2 ::[]|}
hoist *; : CBookmarks1 ::CBookmarks2 ::[]
tl {|head 7→ {|* 7→ [{|title 7→ {|* 7→

[{|PCDATA 7→ Bookmarks|}]|}|}]|}|}; : CBookmarks2 ::[]
hd []; : CBookmarks2
hoist body; : {|* 7→CContents|}

folder ⇋
Ω

AFolder1

Fig. 7. Bookmark lenses

link lens by transforming the representation of the HTML under a <dt> element
containing a link into the desired abstract form. At each level, tree branches are
relabeled with rename, undesired structure is removed with prune, hoist, and/or
hd, and then work is continued deeper in the tree via wmap.

The putback direction of the link lens restores original names and structure
automatically, by composing the putback directions of the constituent lenses of
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Step Lens expression Resulting abstract tree (from ’get’)
i: id {* ->

[{a -> {* -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> www.google.com}}]}}
ii: hoist * [{a -> {* -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> www.google.com}}]
iii: hoist *;

hd []

{a -> {* -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> www.google.com}}
iv: hoist *;

hd [];

hoist a;

{* -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> www.google.com}
v: hoist *;

hd [];

hoist a;

rename * name;

rename href url

{name -> [{PCDATA -> Google}]

add_date -> 1032458036

url -> www.google.com}

vi: hoist *;

hd [];

hoist a;

rename * name;

rename href url;

prune add_date {$today}

{name -> [{PCDATA -> Google}]

url -> www.google.com}

vii: hoist *;

hd [];

hoist a;

rename * name;

rename href url;

prune add_date {$today};

wmap { name -> (hd {}) }

{name -> {PCDATA -> Google}

url -> www.google.com}

viii: hoist *;

hd [];

hoist a;

rename * name;

rename href url;

prune add_date {$today};

wmap { name -> (hd {}; hoist PCDATA) }

{name -> Google

url -> www.google.com}

Fig. 8. Building up a link lens incrementally.
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{link -> {name -> Google

url -> www.google.com}}
updated to...

{link -> {name -> Search-Engine

url -> www.google.com}}

yields (after putback)...

{dt -> {* ->

[{a -> {* -> [{PCDATA -> Search-Engine}]

add_date -> 1032458036

href -> www.google.com}}]}}

Fig. 9. Update of abstract tree, and resulting concrete tree

link in turn. For example, Figure 9 shows an update to the abstract tree of
the link in Figure 8. The concrete tree beneath the update shows the result of
applying putback to the updated abstract tree. The putback direction of the hoist

PCDATA lens, corresponding to moving from step viii to step vii in Figure 8, puts
the updated string in the abstract tree back into a more concrete tree by replacing
Search-Engine with {|PCDATA -> Search-Engine|}. In the transition from step vi

to step v, the putback direction of prune add date {|$today|} utilizes the concrete
tree to restore the value, add date -> 1032458036, projected away in the abstract
tree. If the concrete tree had been Ω—i.e., in the case of a new bookmark added
in the new abstract tree—then the default argument {|$today|} would have been
used to fill in today’s date. (Formally, the whole set of lenses is parameterized on
the variable $today, which ranges over names.)

The get direction of the folder lens separates out the folder name and its con-
tents, stripping out undesired structure where necessary. Finally, we use wmap to
iterate over the contents.

The item lens processes one element of a folder’s contents; this element might
be a link or another folder, so we want to either apply the link lens or the folder

lens. Fortunately, we can distinguish them by whether they are contained within a
<dd> element or a <dt> element; we use the wmap operator to wrap the call to the
correct sublens. Finally, we rename dd to folder and dt to link.

The main lens is bookmarks, which (in the get direction) takes a whole concrete
bookmark tree, strips off the boilerplate header information using a combination of
hoist, hd, and tl, and then invokes folder to deal with the rest. The huge default
tree supplied to the tl lens corresponds to the head tag of the HTML document,
which is filtered away in the abstract bookmark format. This default tree would
be used to recreate a well-formed head tag if it was missing in the original concrete
tree.

9. LENSES FOR RELATIONAL DATA

We close our technical development by presenting a few additional lenses that we
use in Harmony to deal with preparing relational data—trees (or portions of trees)
consisting of “lists of records”—for synchronization. These lenses do not constitute
a full treatment of view update for relational data, but may be regarded as a small
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step in that direction. In particular, the join lens performs a transformation related
to the outer join operation in database query languages.

Flatten

The most critical (and complex) of these lenses is flatten, which takes an ordered
list of “keyed records” and flattens it into a bush, as in the following example:

flattenր








{∣

∣

∣

∣

Pat 7→

{∣

∣

∣

∣

Phone 7→333-4444

URL 7→http://pat.com

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Chris 7→

{∣

∣

∣

∣

Phone 7→888-9999

URL 7→http://x.org

∣

∣

∣

∣

}∣

∣

∣

∣

}









=















∣

∣

∣

∣

∣

∣

∣

∣

Pat 7→

[{∣

∣

∣

∣

Phone 7→333-4444

URL 7→http://pat.com

∣

∣

∣

∣

}]

Chris 7→

[{∣

∣

∣

∣

Phone 7→888-9999

URL 7→http://x.org

∣

∣

∣

∣

}]

∣

∣

∣

∣

∣

∣

∣

∣















The importance of this transformation is that it makes the “intended alignment”
of the data structurally obvious. This frees the synchronization algorithm from
needing to understand that, although the data is presented in an ordered fashion,
order is actually not significant here. Synchronization simply proceeds child-wise—
i.e., the record under Pat is synchronized with the corresponding record under Pat
from the other replica, and similarly for Chris. If one of the replicas happens
to place Chris before Pat in its concrete, ordered form, exactly the same thing
happens.

More generally, flatten handles concrete lists in which the same key appears
more than once by placing all the records with the same key (in the same order as
they appear in the concrete view) in the list under that key in the abstract view:

flattenր


















{∣

∣

∣

∣

Pat7→

{∣

∣

∣

∣

Phone7→333-4444

URL7→http://pat.com

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Chris7→

{∣

∣

∣

∣

Phone7→888-9999

URL7→http://x.org

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Pat7→

{∣

∣

∣

∣

Phone7→123-4321

URL7→http://p2.com

∣

∣

∣

∣

}∣

∣

∣

∣

}



















=



































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pat7→









{∣

∣

∣

∣

Phone7→333-4444

URL7→http://pat.com

∣

∣

∣

∣

}

{∣

∣

∣

∣

Phone7→123-4321

URL7→http://p2.com

∣

∣

∣

∣

}









Chris7→

[{∣

∣

∣

∣

Phone7→888-9999

URL7→http://x.org

∣

∣

∣

∣

}]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



































In the putback direction, flatten distributes elements of each list from the abstract
bush into the concrete list, maintaining their original concrete positions. If there
are more abstract elements than concrete ones, the extras are simply appended at
the end of the resulting concrete list in some arbitrary order, using the auxiliary
function listify:

listify({||}) = []

listify(t) =
{∣

∣k 7→ tk1

∣

∣

}

:: · · · ::
{∣

∣k 7→ tkn

∣

∣

}

:: listify(t\k)
where k = anydom(t) and t(k) = [tk1, . . . , tkn]

In the type of flatten, we write AListK(D) for the set of lists of “singleton
views” of the form

{∣

∣k 7→ d
∣

∣

}

, where k ∈ K is a key and d ∈ D is the value of
that key—i.e., AListK(D) is the smallest set of trees satisfying AListK(D) =
[] ∪ ({

{∣

∣k 7→ D
∣

∣

}

| k ∈ K} ::AListK(D)).
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flattenր c =






















{||} if c = []

a′ +
{∣

∣k 7→ d :: []
∣

∣

}

if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

and flattenր c′ = a′ with k 6∈ dom(a′)
a′ +

{∣

∣k 7→ d :: s
∣

∣

}

if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

and flattenր c′ = a′ +
{∣

∣k 7→ s
∣

∣

}

flattenց (a, c) =






























































listify(a) if c = [] or c = Ω
{∣

∣k 7→ d′
∣

∣

}

:: r if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

and a(k) = d′ :: []
and r = flattenց (a\k, c′)

{∣

∣k 7→ d′
∣

∣

}

:: r if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

and a(k) = d′ :: s with s 6= []

and r = flattenց
(

a\k +
{∣

∣k 7→ s
∣

∣

}

, c′
)

r if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

and k 6∈ dom(a)
and r = flattenց (a, c′)

∀K⊆N . ∀D⊆T .

flatten ∈ AListK(D) ⇐⇒Ω
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

This definition can be simplified if we assume that all the ks in the concrete list
are pairwise different—i.e., that they are truly keys. In this case, the abstract
view need not be a bush of lists: each k can simply point directly to its associated
subtree from the concrete list. In practice, this assumption is often reasonable: the
concrete view is a (linearized) database and the ks are taken from a key field in
each record. However, the type of this “disjoint flatten” becomes more complicated
to write down, since it must express the constraint that, in the concrete list, each
k occurs at most once. Since we eventually intend to implement a mechanical
typechecker for our combinators, we prefer to use the more complex definition with
the more elementary type.

An obvious question is whether either variant of flatten can be expressed in
terms of more primitive combinators plus recursion, as we did for the list mapping,
reversing, and filtering derived forms in Section 7. We feel that this ought to be
possible, but we have not yet succeeded in doing it.

One final point about flatten is that it does not obey PutPut. Let

a1 =
{∣

∣a 7→ [{||}], b 7→ [{||}]
∣

∣

}

a2 =
{∣

∣a 7→ [{||}]
∣

∣

}

c =
[

{∣

∣a, b
∣

∣

}

]

.

If flatten were very well behaved then we would have

flattenց (a1, flattenց (a2, c)) = flattenց (a1, c).

However, the left hand side of the equality is [{|a|}] but the right hand side is
[{|a, b|}].

Pivot

The lens pivot n rearranges the structure at the top of a tree, transforming
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{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

to
{∣

∣k 7→ t
∣

∣

}

. Intuitively, the value k (i.e.,
{∣

∣k 7→ {||}
∣

∣

}

) under n represents

a key k for the rest of the tree t. The get function of pivot returns a tree where
k points directly to t. The putback function performs the reverse transformation,
ignoring the old concrete tree.

We use pivot heavily in Harmony instances where the data being synchronized
is relational (sets of records) but its concrete format is ordered (e.g., XML). We
first apply pivot within each record to bring the key field to the outside. Then we
apply flatten to smash the list of keyed records into a bush indexed by the keys.
As an example, consider the following transformation on a concrete piece of data
where l = list map (pivot Name):

lր





































∣

∣

∣

∣

∣

∣

Name 7→Pat

Phone 7→333-4444

URL 7→http://pat.com

∣

∣

∣

∣

∣

∣













∣

∣

∣

∣

∣

∣

Name 7→Chris

Phone 7→888-9999

URL 7→http://x.org

∣

∣

∣

∣

∣

∣













∣

∣

∣

∣

∣

∣

Name 7→Pat

Phone 7→123-4321

URL 7→http://p2.com

∣

∣

∣

∣

∣

∣





































=



















{∣

∣

∣

∣

Pat 7→

{∣

∣

∣

∣

Phone 7→333-4444

URL 7→http://pat.com

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Chris 7→

{∣

∣

∣

∣

Phone 7→888-9999

URL 7→http://x.org

∣

∣

∣

∣

}∣

∣

∣

∣

}

{∣

∣

∣

∣

Pat 7→

{∣

∣

∣

∣

Phone 7→123-4321

URL 7→http://p2.com

∣

∣

∣

∣

}∣

∣

∣

∣

}



















which, as we saw above, can then be flattened into:


































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pat 7→









{∣

∣

∣

∣

Phone 7→333-4444

URL 7→http://pat.com

∣

∣

∣

∣

}

{∣

∣

∣

∣

Phone 7→123-4321

URL 7→http://p2.com

∣

∣

∣

∣

}









Chris 7→

[{∣

∣

∣

∣

Phone 7→888-9999

URL 7→http://x.org

∣

∣

∣

∣

}]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



































In the type of pivot, we extend our conventions about values (i.e., the fact that we
write k instead of

{∣

∣k 7→ {||}
∣

∣

}

) to types. If K ⊆ N is a set of names, then
{∣

∣n 7→ K
∣

∣

}

means {
{∣

∣n 7→ k
∣

∣

}

| k ∈ K}—i.e., {
{∣

∣n 7→
{∣

∣k 7→ {||}
∣

∣

}∣

∣

}

| k ∈ K}.

(pivot n)ր c =
{∣

∣k 7→ t
∣

∣

}

if c =

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

(pivot n)ց (a, c) =

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

if a =
{∣

∣k 7→ t
∣

∣

}

∀n∈N . ∀K⊆N . ∀C⊆(T \n).
pivot n ∈ (

{∣

∣n 7→ K
∣

∣

}

· C) ⇐⇒Ω {
{∣

∣k 7→ C
∣

∣

}

| k ∈ K}

Join

Our final lens combinator, based on an idea by Daniel Spoonhower [Spoonhower
2004], is inspired by the full outer join operator from databases. For example,
applying the get component of l = (join addr phone)ր to a tree containing a
collection of addresses and a collection of phone numbers (both keyed by names)
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yields a tree where the address and phone information is collected under each
name.

lր































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

addr 7→







∣

∣

∣

∣

∣

∣

Chris 7→Paris

Kim 7→Palo Alto

Pat 7→Philadelphia

∣

∣

∣

∣

∣

∣







phone 7→







∣

∣

∣

∣

∣

∣

Chris 7→111-1111

Pat 7→222-2222

Lou 7→333-3333

∣

∣

∣

∣

∣

∣







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣































=



































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Chris 7→

{∣

∣

∣

∣

addr 7→Paris

phone 7→111-2222

∣

∣

∣

∣

}

Kim 7→
{∣

∣addr 7→Palo Alto
∣

∣

}

Pat 7→

{∣

∣

∣

∣

addr 7→Philadelphia

phone 7→222-2222

∣

∣

∣

∣

}

Lou 7→
{∣

∣phone 7→333-3333
∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



































.

Note that no information is lost in this transformation: names that are missing
from either the addr or phone collection are mapped to views with just a phone

or addr child. In the putback direction, join performs the reverse transformation,
splitting the addr and phone information associated with each name into separate
collections. (The transformation is bijective—since no information is lost by get,
the putback function can ignore its concrete argument.)

(join m n)ր c =

{∣

∣

∣

∣

k 7→

{∣

∣

∣

∣

m 7→ c(m)(k)
n 7→ c(n)(k)

∣

∣

∣

∣

}

| k ∈ dom(c(m)) ∪ dom(c(n))

∣

∣

∣

∣

}

(join m n)ց (a, c) =

{∣

∣

∣

∣

m 7→
{∣

∣k 7→ a(k)(m) | k ∈ dom(a)
∣

∣

}

n 7→
{∣

∣k 7→ a(k)(n) | k ∈ dom(a)
∣

∣

}

∣

∣

∣

∣

}

∀K⊆N . ∀T⊆T .

join m n ∈







∣

∣

∣

∣

∣

∣

m 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}

n 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}

∣

∣

∣

∣

∣

∣







⇐⇒Ω
{∣

∣

∣

∣

∣

K
?
7→

{∣

∣

∣

∣

∣

m 7→ T

n
?
7→ T

∣

∣

∣

∣

∣

}

∪

{∣

∣

∣

∣

∣

m
?
7→ T

n 7→ T

∣

∣

∣

∣

∣

}∣

∣

∣

∣

∣

}

10. RELATED WORK

Our lens combinators evolved in the setting of the Harmony data synchronizer. The
overall architecture of Harmony and the role of lenses in building synchronizers for
various forms of data are described in [Foster et al. 2005; Pierce et al. 2003], along
with a detailed discussion of related work on synchronization.

Our foundational structures—lenses and their laws—are not new: closely related
structures have been studied for decades in the database community. However,
our treatment of these structures is arguably simpler (transforming states rather
than “update functions”) and more refined (treating well-behavedness as a form of
type assertion). Our formulation is also novel in addressing the issues of totality,
offering programmers a static guarantee that lenses cannot fail at run time, and
of continuity, supporting a rich variety of surface language structures including
definition by recursion.

The idea of defining programming languages for constructing bi-directional trans-
formations of various sorts has also been explored previously in diverse communities.
We appear to be the first to take totality as a primary goal (while connecting the
language with a formal semantic foundation, choosing primitives that can be com-
bined into composite lenses whose totality is guaranteed by construction), and the
first to emphasize types—i.e., compositional reasoning about well-behavedness and
totality—as an organizing design principle.
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Foundations of View Update

The foundations of view update translation were studied intensively by database
researchers in the late ’70s and ’80s. This thread of work is closely related to our
semantics of lenses in Section 3. We discuss here the main similarities and differ-
ences between our work and these classical approaches to view update—in particu-
lar Dayal and Bernstein’s notion [1982] of “correct update translation,” Bancilhon
and Spyratos’s [1981] notion of “update translation under a constant complement,”
Gottlob, Paolini, and Zicari’s “dynamic views” [1988], and the basic view update
and “relational triggers” mechanisms offered by commercial database systems such
as Oracle [Fogel and Lane 2005; Lorentz 2005]

The view update problem concerns translating updates on a view into “reason-
able” updates on the underlying database. It is helpful to structure the discussion
by breaking this broad problem statement down into more specific questions. First,
how is a “reasonable” translation of an update defined? Second, what should we
do about the possibility that, for some update, there may be no reasonable way of
translating its effect to the underlying database? And third, how do we deal with
the possibility that there are many reasonable translations from which we must
choose? We consider these questions in order.

One can imagine many possible ways of assigning a precise meaning to “reason-
able update translation,” but in fact there is a remarkable degree of agreement
in the literature, with most approaches adopting one of two basic positions. The
stricter of these is enunciated in Bancilhon and Spyratos’s [1981] notion of comple-

ment of a view, which must include at least all information missing from the view.
When a complement is fixed, there exists at most one update of the database that
reflects a given update on the view while leaving the complement unmodified—i.e.,
that “translates updates under a constant complement.” The constant complement
approach has influenced numerous later works in the area, including recent papers
by Lechtenbörger [2003] and Hegner [2004].

The other, more permissive, definition of “reasonable” is elegantly formulated by
Gottlob, Paolini, and Zicari, who call it “dynamic views” [1988]. They present a
general framework and identify two special cases, one being formally equivalent to
Bancilhon and Spyratos’s constant complement translators and the other—which
they advocate on pragmatic grounds—being their own dynamic views.

Our notion of lenses adopts the same, more permissive, attitude towards rea-
sonable behavior of update translation. Indeed, modulo some small technical re-
finements, the correspondence is exact [Pierce and Schmitt 2003]: the set of all
well-behaved lenses is isomorphic to the set of dynamic views in the sense of Gott-
lob, Paolini, and Zicari. Moreover, the set of very well-behaved lenses is isomorphic
to the set of translators under constant complement in the sense of Bancilhon and
Spyratos.9

9To be precise, we need an additional condition regarding partiality. The frameworks of Bacilhon

and Spyratos and of Gottlob, Paolini, and Zicari are both formulated in terms of translating update

functions on A into update functions on C, i.e., their putback functions have type (A −→ A) −→
(C −→ C), while our lenses translate abstract states into update functions on C, i.e., our putback

functions have type (isomorphic to) A −→ (C −→ C). Moreover, in both of these frameworks,
“update translators” (the analog of our putback functions) are defined only over some particular
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Dayal and Bernstein’s [1982] seminal theory of “correct update translation” also
adopts the more permissive position on “reasonableness.” Their notion of “exactly
performing an update” corresponds, intuitively, to our PutGet law.

The pragmatic tradeoffs between these two perspectives on reasonable update
translations are discussed by Hegner [1990; 2004], who introduces the term closed

view for the stricter constant complement approach and open view for the looser
approach adopted by dynamic views and in the present work. Hegner himself
works in a closed-world framework, but notes that both choices may have pragmatic
advantages in different situations, open-world being useful when the users are aware
that they are “really” using a view as a convenient way to edit an underlying
database, while closed-world is preferable when users should be isolated from the
existence of the underlying database, even at the cost of offering them a more
restricted set of possible updates.

Hegner [2004] also formalizes an additional condition on reasonableness (which
has also been noted by others—e.g., [Dayal and Bernstein 1982]): monotonicity of
update translations, in the sense that an update that only adds records from the
view should be translated just into additions to the database, and that an update
that adds more records to the view should be translated to a larger update to the
database (and similarly for deletions).

Commercial databases such as Oracle [Fogel and Lane 2005; Lorentz 2005], SQL
Server [Microsoft ], and DB2 [International Business Machines Corporation 2004]
typically provide two quite different mechanisms for updating through views. First,
some very simple views—defined using select, project, and a very restricted form of
join (where the key attributes in one relation are a subset of those in the other)—are
considered inherently updatable. For these, the notion of reasonableness is essen-
tially the constant complement position. Alternatively, programmers can support
updates to arbitrary views by adding relational triggers that are invoked whenever
an update is attempted on the view and that can execute arbitrary code to update
the underlying database. In this case, the notion of reasonableness is left entirely
to the programmer.

The second question posed at the beginning of the section was how to deal with
the possibility that there are no reasonable translations for some update. The
simplest response is just to let the translation of an update fail, if it sees that
its effect is going to be unreasonable; this is Dayal and Bernstein’s approach, for
example. Its advantage is that we can determine reasonableness on a case-by-case
basis, allowing translations that usually give reasonable results but that might fail
under rare conditions. The disadvantage is that we lose the ability to perform

chosen set U of abstract update functions, not over all functions from A to A. These update

translators return total functions from C to C. Our putback functions, on the other hand, are
slightly more general as they are defined over all abstract states and return partial functions from

C to C. Finally, the get functions of lenses are allowed to be partial, whereas the corresponding
functions (called views) in the other two frameworks are assumed to be total. In order to make the

correspondences tight, our sets of well-behaved and very well behaved lenses need to be restricted

to subsets that are also total in a suitable sense.
A related observation is that, if we restrict both get and putback to be total functions (i.e.,

putback must be total with respect to all abstract update functions), then our lens laws (including
PutPut) characterize the set C as isomorphic to A × B for some B.
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updates to the view offline—we need the concrete database in order to tell whether
an update is going to be allowed.

Another possibility is to restrict the set of operations to just the ones that can
be guaranteed to correspond to reasonable translations; this is the position taken
by most papers in the area.

A different approach—the one we have taken in this work—is to restrict the
view schema so that arbitrary (schema-respecting) updates are guaranteed to make
sense.

The third question posed above was how to deal with the possibility that there
may be multiple reasonable translations for a given update.

One attractive idea is to somehow restrict the set of reasonable translations so
that this possibility does not arise—i.e., so that every translatable update has a
unique translation. For example, under the constant complement approach, for
a particular choice of complement, there will be at most one translation. Heg-
ner’s additional condition of monotonicity [2004] ensures that (at least for updates
consisting of only inserts or only deletes), the translation of an update is unique,
independent of the choice of complement.

Another possibility is to place an ordering on possible translations of a given up-
date and choose one that is minimal in this ordering. This idea plays a central role,
for example, in Johnson, Rosebrugh, and Dampney’s account of view update in the
Sketch Data Model [Johnson et al. 2001]. Buneman, Khanna, and Tan [2002] have
established a variety of intractability results for the problem of inferring minimal
view updates in the relational setting for query languages that include both join
and either project or union.

The key idea in the present work is to allow the programmer to describe the
update policy at the same time as the view definition, by enriching the relational
primitives with enough annotations to select among a variety of reasonable update
policies.

In the literature on programming languages, laws similar to our lens laws (but
somewhat simpler, dealing only with total get and putback functions) appear in
Oles’ category of “state shapes” [Oles 1985] and in Hofmann and Pierce’s work on
“positive subtyping” [1995].

Languages for Bi-Directional Transformations

At the level of syntax, different forms of bi-directional programming have been
explored across a surprisingly diverse range of communities, including program-
ming languages, databases, program transformation, constraint-based user inter-
faces, and quantum computing. One useful way of classifying these languages is by
the “shape” of the semantic space in which their transformations live. We identify
three major classes:

—Bi-directional languages, including ours, form lenses by pairing a get function of
type C → A with a putback function of type A × C → C. In general, the get

function can project away some information from the concrete view, which must
then be restored by the putback function.

—In bijective languages, the putback function has the simpler type A → C—it is
given no concrete argument to refer to. To avoid loss of information, the get and
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putback functions must form a (perhaps partial) bijection between C and A.

—Reversible languages go a step further, demanding only that the work performed
by any function to produce a given output can be undone by applying the function
“in reverse” working backwards from this output to produce the original input.
Here, there is no separate putback function at all: instead, the get function itself
is constructed so that each step can be run in reverse.

In the first class, the work that is fundamentally most similar to ours is
Meertens’s formal treatment of constraint maintainers for constraint-based user
interfaces [1998]. Meertens’s semantic setting is actually even more general: he
takes get and putback to be relations, not just functions, and his constraint main-
tainers are symmetric: get relates pairs from C × A to elements of A and putback

relates pairs in A × C to elements of C; the idea is that a constraint maintainer
forms a connection between two graphical objects on the screen so that, whenever
one of the objects is changed by the user, the change can be propagated by the
maintainer to the other object such that some desired relationship between the ob-
jects is always maintained. Taking the special case where the get relation is actually
a function (which is important for Meertens because this is the case where composi-
tion [in the sense of our ; combinator] is guaranteed to preserve well-behavedness),
yields essentially our very well behaved lenses. Meertens proposes a variety of com-
binators for building constraint maintainers, most of which have analogs among
our lenses, but does not directly deal with definition by recursion; also, some of his
combinators do not support compositional reasoning about well-behavedness. He
considers constraint maintainers for structured data such as lists, as we do for trees,
but here adopts a rather different point of view from ours, focusing on constraint
maintainers that work with structures not directly but in terms of the “edit scripts”
that might have produced them. In the terminology of synchronization, he switches
from a state-based to an operation-based treatment at this point.

Recent work of Mu, Hu, and Takeichi on “injective languages” for view-update-
based structure editors [2004a] adopts a similar perspective. Although their trans-
formations obey our GetPut law, their notion of well-behaved transformations is
informed by different goals than ours, leading to a weaker form of the PutGet

law. A primary concern is using the view-to-view transformations to simultane-
ously restore invariants within the source view as well as update the concrete view.
For example, an abstract view may maintain two lists where the name field of each
element in one list must match the name field in the corresponding element in the
other list. If an element is added to the first list, then not only must the change
be propagated to the concrete view, it must also add a new element to the second
list in the abstract view. It is easy to see that PutGet cannot hold if the abstract
view, itself, is—in this sense—modified by the putback. Similarly, they assume that
edits to the abstract view mark all modified fields as “updated.” These marks are
removed when the putback lens computes the modifications to the concrete view—
another change to the abstract view that must violate PutGet. Consequently, to
support invariant preservation within the abstract view, and to support edit lists,
their transformations only obey a much weaker variant of PutGet (described above
in Section 5).
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Another paper by Hu, Mu, and Takeichi [2004] applies a bi-directional program-
ming language quite closely related to ours to the design of “programmable editors”
for structured documents. As in [Mu et al. 2004a], they support preservation of
local invariants in the putback direction. Here, instead of annotating the abstract
view with modification marks, they assume that a putback or a get occurs after every

modification to either view. They use this “only one update” assumption to choose
the correct inverse for the lens that copied data in the get direction — because
only one branch can have been modified at any given time. Consequently, they can
putback the data from the modified branch and overwrite the unmodified branch.
Here, too, the notion of well-behavedness needs to be weakened, as described in
Section 5.

The TRIP2 system (e.g., [Matsuoka et al. 1992]) uses bidirectional transforma-
tions specified as collections of Prolog rules as a means of implementing direct-
manipulation interfaces for application data structures. The get and putback com-
ponents of these mappings are written separately by the user.

Languages for Bijective Transformations

An active thread of work in the program transformation community concerns pro-

gram inversion and inverse computation—see, for example, [Abramov and Glück
2000; 2002] and many other papers cited there. Program inversion [Dijkstra 1979]
derives the inverse program from the forward program. Inverse computation [Mc-
Carthy 1956] computes a possible input of a program from a particular output. One
approach to inverse computation is to design languages that produce easily invert-
ible expressions—for example, languages that can only express injective functions,
where every program is trivially invertible.

In the database community, Abiteboul, Cluet, and Milo [1997] defined a declar-
ative language of correspondences between parts of trees in a data forest. In turn,
these correspondence rules can be used to translate one tree format into another
through non-deterministic Prolog-like computation. This process assumes an iso-
morphism between the two data formats. The same authors [1998] later defined a
system for bi-directional transformations based around the concept of structuring

schemas (parse grammars annotated with semantic information). Thus their get

functions involved parsing, whereas their putbacks consisted of unparsing. Again, to
avoid ambiguous abstract updates, they restricted themselves to lossless grammars
that define an isomorphism between concrete and abstract views.

Ohori and Tajima [1994] developed a statically-typed polymorphic record calculus
for defining views on object-oriented databases. They specifically restricted which
fields of a view are updatable, allowing only those with a ground (simple) type to
be updated, whereas our lenses can accommodate structural updates as well.

A related idea from the functional programming community, called views [Wadler
1987], extends algebraic pattern matching to abstract data types using programmer-
supplied in and out operators.

Languages for Reversible Transformations

Our work is the first (of which we are aware) in which totality and compositional
reasoning about totality are taken as primary design goals. Nevertheless, in all
of the languages discussed above there is an expectation that programmers will

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Combinators for Bi-Directional Tree Transformations · 55

want their transformations to be “total enough”—i.e., that the sets of inputs for
which the get and putback functions are defined should be large enough for some
given purpose. In particular, we expect that putback functions should accept a
suitably large set of abstract inputs for each given concrete input, since the whole
point of these languages is to allow editing through a view. A quite different
class of languages have been designed to support reversible computation, in which
the putback functions are only ever applied to the results of the corresponding get

functions. While the goals of these languages are quite different from ours—they
have nothing to do with view update—there are intriguing similarities in the basic
approach.

Landauer [1961] observed that non-injective functions were logically irreversible,
and that this irreversibility requires the generation and dissipation of some heat
per machine cycle. Bennet [1973] demonstrated that this irreversibility was not in-
evitable by constructing a reversible Turing machine, showing that thermodynam-
ically reversible computers were plausible. Baker [1992] argued that irreversible
primitives were only part of the problem; irreversibility at the “highest levels” of
computer usage cause the most difficulty due to information loss. Consequently, he
advocated the design of programs that “conserve information.” Because deciding
reversibility of large programs is unsolvable, he proposed designing languages that
guaranteed that all well-formed programs are reversible, i.e. designing languages
whose primitives were reversible, and whose combinators preserved reversibility.
A considerable body of work has developed around these ideas (e.g. [Mu et al.
2004b]).

Update Translation for Tree Views

There have been many proposals for query languages for trees (e.g., XQuery
[XQuery 2005] and its forerunners, UnQL, StruQL, and Lorel), but these either
do not consider the view update problem at all or else handle update only in situ-
ations where the abstract and concrete views are isomorphic.

For example, Braganholo, Heuser, and Vittori [2001], and Braganholo, Davidson,
and Heuser [2003] studied the problem of updating relational databases “presented
as XML.” Their solution requires a 1:1 mapping between XML view elements and
objects in the database, to make updates unambiguous.

Tatarinov, Ives, Halevy, and Weld [2001] described a mechanism for translating
updates on XML structures that are stored in an underlying relational database. In
this setting there is again an isomorphism between the concrete relational database
and the abstract XML view, so updates are unambiguous—rather, the problem is
choosing the most efficient way of translating a given XML update into a sequence
of relational operations.

The view update problem has also been studied in the context of object-oriented
databases. School, Laasch, and Tresch [1991] restrict the notion of views to queries
that preserve object identity. The view update problem is greatly simplified in this
setting, as the objects contained in the view are the objects of the database, and
an update on the view is directly an update on objects of the database.
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Update Translation for Relational Views

Research on view update translation in the database literature has tended to focus
on taking an existing language for defining get functions (e.g., relational algebra)
and then considering how to infer corresponding putback functions, either automat-
ically or with some user assistance. By contrast, we have designed a new language
in which the definitions of get and putback go hand-in-hand. Our approach also
goes beyond classical work in the relational setting by directly transforming and
updating tree-structured data, rather than flat relations. (Of course, trees can be
encoded as relations, but it is not clear how our tree-manipulation primitives could
be expressed using the recursion-free relational languages considered in previous
work in this area.)

Recent work by Bohannon, Pierce, and Vaughan extend the framework presented
in this paper to obtain lenses that operate natively on relational data [Bohannon
et al. 2006]. The syntax of their lenses is based on classical relational algebra, but
is annotated with additional syntax that specifies the “update policy”–i.e., syntax
which that identifies a single putback function from the many well-behaved putback

functions corresponding to a given get function. They also develop a semantic type
system, using functional dependencies, to aid reasoning about well-behavedness.

We briefly review the most relevant research from the relational setting.
Masunaga [1984] described an automated algorithm for translating updates on

views defined by relational algebra. The core idea was to annotate where the “se-
mantic ambiguities” arise, indicating they must be resolved either with knowledge
of underlying database semantic constraints or by interactions with the user.

Keller [1985] catalogued all possible strategies for handling updates to a select-
project-join view and showed that these are exactly the set of translations that
satisfy a small set of intuitive criteria. These criteria are:

(1) No database side effects: only update tuples in the underlying database that
appear somehow in the view.

(2) Only one-step changes: each underlying tuple is updated at most once.

(3) No unnecessary changes: there is no operationally equivalent translation that
performs a proper subset of the translated actions.

(4) Replacements cannot be simplified (e.g., to avoid changing the key, or to avoid
changing as many attributes).

(5) No delete-insert pairs: for any relation, you have deletions or insertions, but
not both (use replacements instead).

These criteria apply to update translations on relational databases, whereas our
state-based approach means only criteria (1), (3), and (4) might apply to us. Keller
later [1986] proposed allowing users to choose an update translator at view defi-
nition time by engaging in an interactive dialog with the system and answering
questions about potential sources of ambiguity in update translation. Building on
this foundation, Barsalou, Siambela, Keller, and Wiederhold [1991] described a
scheme for interactively constructing update translators for object-based views of
relational databases.

Medeiros and Tompa [Medeiros and Tompa 1985] presented a design tool for ex-
ploring the effects of choosing a view update policy. This tool shows the update
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translation for update requests supplied by the user; by considering all possible
valid concrete states, the tool predicts whether the desired update would in fact be
reflected back into the view after applying the translated update to the concrete
database. Miller et al. [Miller et al. 2001] describe Clio, a system for managing
heterogeneous transformation and integration. Clio provides a tool for visualizing
two schemas, specifying correspondences between fields, defining a mapping be-
tween the schemas, and viewing sample query results. They only consider the get

direction of our lenses, but their system is somewhat mapping-agnostic, so it might
eventually be possible to use a framework like Clio as a user interface supporting
incremental lens programming like that in Figure 8.

Atzeni and Torlone [Atzeni and Torlone 1997; 1996] described a tool for trans-
lating views and observed that if one can translate any concrete view to and from
a meta-model (shared abstract view), one then gets bi-directional transformations
between any pair of concrete views. They limited themselves to mappings where
the concrete and abstract views are isomorphic.

Complexity bounds have also been studied for various versions of the view update
inference problem. In one of the earliest, Cosmadakis and Papadimitriou [Cos-
madakis 1983; Cosmadakis and Papadimitriou 1984] considered the view update
problem for a single relation, where the view is a projection of the underlying rela-
tion, and showed that there are polynomial time algorithms for determining whether
insertions, deletions, and tuple replacements to a projection view are translatable
into concrete updates. More recently, Buneman, Khanna, and Tan [Buneman et al.
2002] established a variety of intractability results for the problem of inferring “min-
imal” view updates in the relational setting for query languages that include both
join and either project or union.

The designers of the RIGEL language [Rowe and Schoens 1979] argued that
programmers should specify the translations of abstract updates. However, they
did not provide a way to ensure consistency between the get and putback directions
of their translations.

Another problem that is sometimes mentioned in connection with view update
translation is that of incremental view maintenance (e.g., [Abiteboul et al. 1998])—
efficiently recalculating an abstract view after a small update to the underlying
concrete view. Although the phrase “view update problem” is sometimes (con-
fusingly) used for work in this domain, there is little technical connection with the
problem of translating view updates to updates on an underlying concrete structure.

11. CONCLUSIONS AND ONGOING WORK

We have worked to design a collection of combinators that fit together in a sensible
way and that are easy to program with and reason about. Starting with lens laws
that define “reasonable behavior,” adding type annotations, and proving that each
of our lenses is total, has imposed strong constraints on our design of new lenses—
constraints that, paradoxically, make the design process easier. In the early stages
of the Harmony project, working in an under-constrained design space, we found
it extremely difficult to converge on a useful set of primitive lenses. Later, when
we understood how to impose the framework of type declarations and the demand
for compositional reasoning, we experienced a huge increase in manageability. The
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Fig. 10. Web demo of Safari Bookmark lens

types helped not just in finding programming errors in derived lenses, but in ex-
posing design mistakes in the primitives at an early stage.

Our interest in bi-directional tree transformations arose in the context of the
Harmony data synchronization framework. Besides the bookmark synchronizer
described in Section 8, we have developed prototype synchronizers for calendars,
address books, and structured text, as well as a growing library of lens programs.
Building implementations continues to provide valuable stress-testing for both our
combinators and their formal foundations. It also gives us confidence that our
lenses are practically useful.

The source code for each of these protypes, along with our lens compiler and
synchronization engine, can be found on the Harmony web page [Harmony ]. We
have also made the system available as an online web demo (a screenshot from the
Safari component of our bookmarks portion of this demo is shown in Figure 10).

Naturally, the progress we have made on lens combinators raises a host of further
challenges.

Static Analysis

The most urgent of these is automated typechecking. At present, it is the lens
programmers’ responsibility to check the well-behavedness of the lenses that they
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write. Our compiler has the ability to perform simple run-time checking and some
debugging using probe points and to track stack frames. These simple dynamic
techniques have proven helpful in developing and debugging small-to-medium sized
lens programs, but we would like to be able to reason statically that a given pro-
gram is type correct. Fortunately, the types of the primitive combinators have been
designed so that these checks are both local and essentially mechanical. The obvi-
ous next step is to reformulate the type declarations as a type algebra and find a
mechanical procedure for statically checking (or, more ambitiously, inferring) types.

In the semantic framework of lens types we have developed, the key properties
tracked by the types are well-behavedness and totality. However, there are other
properties of lenses that one might want to track in a type system including very well
behavedness, obliviousness, adherence to the conventions about Ω, etc. Moreover,
there is a natural subsumption relation between these different lens types: e.g.,
every oblivious lens is very well behaved. Once basic mechanized type checking for
lenses is in place, the natural next step is to stratify the type system to facilitate
reasoning about these more refined properties of lenses.

A number of other interesting questions are related to static analysis of lenses.
For instance, can we characterize the complexity of programs built from these
combinators? Is there an algebraic theory of lens combinators that would underpin
optimization of lens expressions in the same way that the relational algebra and its
algebraic theory are used to optimize relational database queries? (For example,
the combinators we have described here have the property that map l1; map l2 =
map (l1; l2) for all l1 and l2, but the latter should run substantially faster.)

Optimization

This algebraic theory will play a crucial role in a more serious implementation
effort. Our current prototype performs a straightforward translation from a con-
crete syntax similar to the one used in this paper to a combinator library written
in OCaml. This is fast enough for experimenting with lens programming (Malo
Denielou has built an interactive programming environment that recompiles and
re-applies lenses on every keystroke) and for small demos (our calendar lenses can
process a few thousands of appointments in under a minute), but we would like
to apply the Harmony system to applications such as synchronization of biological
databases that will require much higher throughput.

Additional Combinators

Another area for further investigation is the design of additional combinators. While
we have found the ones we have described here to be expressive enough to code a
large number of examples—both intricate structural manipulations such as the list
transformations in Section 7 and more prosaic application transformations such as
the ones needed by the bookmark synchronizer in Section 8 —there are some areas
where we would like more general forms of the lenses we have (e.g., a more flexible
form of xfork, where the splitting and recombining of trees is not based on top-level
names, but involves deeper structure), lenses expressing more global transforma-
tions on trees (including analogs of database operations such as join), or lenses ad-
dressing completely different sorts of transformations (e.g., none of our combinators
do any significant processing on edge labels, which might include string processing,
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arithmetic, etc.). Higher-level combinators embodying more global transforma-
tions on trees—perhaps modeled on a familiar tree transformation notation such
as XSLT—are another interesting possibility.

Finally, we would also like to investigate recursion combinators that are less
powerful than fix , but that come equipped with simpler principles for reasoning
about totality. We already have one such combinator: map iterates over the width

of the tree. However, we think it should be possible to go further; e.g., one could
define lenses by structural recursion on trees.

Expressiveness

More generally, what are the limits of bi-directional programming? How expressive
are the combinators we have defined here? Do they cover any known or succinctly
characterizable classes of computations (in the sense that the set of get parts of
the total lenses built from these combinators coincide with this class)? We have
put considerable energy into these questions, but at the moment we can only report
that they are challenging! One reason for this is that questions about expressiveness
tend to have trivial answers when phrased semantically. For example, it is not hard
to show that any surjective get function can be equipped with a putback function—
indeed, typically many—to form a total lens. Indeed, if the concrete domain C is
recursively enumerable, then this putback function is even computable. The real
problems are thus syntactic—how to conveniently pick out a putback function that
does what is wanted for a given situation.

Lens Inference

In restricted cases, it may be possible to build lenses in simpler ways than by explicit
programming—e.g., by generating them automatically from schemas for concrete
and abstract views, or by inference from a set of pairs of inputs and desired outputs
(“programming by example”). Such a facility might be used to do part of the work
for a programmer wanting to add synchronization support for a new application
(where the abstract schema is already known, for example), leaving just a few spots
to fill in.

Beyond Trees

Finally, we intend to continue investigating instantiations of our semantic frame-
work with other structures besides trees—in particular, with relations, to establish
closer links with existing research on the view update problem in databases.
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A. WELL-BEHAVEDNESS, TOTALITY, AND CONTINUITY PROOFS

This appendix contains the proofs for each of the results in our development of
the foundations of lenses as well as representative well-behavedness, totality, and
continuity proofs for several primitive and derived lenses.

3.5 Lemma: If l ∈ C ⇋ A, then lց is injective on {(a, c) | (a, c) ∈ A × C ∧
lր (lց (a, c)) ↓}.

Proof. Let P = {(a, c) | (a, c) ∈ A × C ∧ lր (lց (a, c)) ↓}, and choose
(a, c) ∈ P and (a′, c′) ∈ P with a′ 6= a. Suppose, for a contradiction, that
lց (a, c) = lց (a′, c′). Then, by the definition of P and rule PutGet, we have
a = lր lց (a, c) = lր lց (a′, c′) = a′; hence a = a′, a contradiction.

3.8 Lemma: If l is oblivious and l ∈ C1 ⇋ A1 and l ∈ C2 ⇋ A2, then l ∈
(C1 ∪ C2) ⇋ (A1 ∪ A2).

Proof. Straightforward.

3.9 Lemma: If l ∈ C ⇐⇒ A is oblivious, then lր is a bijection from C to A.

Proof. If C = ∅, then, because l is total, A is also empty and lր is trivially
bijective. If C is non-empty, then we can choose an arbitrary c ∈ C and define the
inverse of lր as f = λa. lց (a, c). The fact that (lր)◦f = id follows directly from
PutGet. The fact that f ◦ (lր) = id follows because f(lր c′) = lց (lր c′, c) =
lց (lր c′, c′) (by obliviousness) = c′ (by GetPut).

3.11 Lemma: ≺ is a partial order on lenses.

Proof. We show that ≺ is reflexive, transitive, and antisymmetric.

Reflexivity:. Immediate.

Transitivity:. Let l, l′, and l′′ be such that l ≺ l′ and l′ ≺ l′′. We have dom(lր) ⊆
dom(l′ր) ⊆ dom(l′′ր) and dom(lց) ⊆ dom(l′ց) ⊆ dom(l′′ց). Moreover, for all
c ∈ dom(lր), we have lր c = l′ր c = l′′ր c. Finally, for all (a, c) ∈ dom(lց),
lց (a, c) = l′ ց (a, c) = l′′ ց (a, c). Hence l ≺ l′′.

Antisymmetry:. Suppose l ≺ l′ and l′ ≺ l. Then dom(lր) = dom(l′ր),
dom(lց) = dom(l′ց), for every c ∈ dom(lր) = dom(l′ր) we have lր c = l′ր c,
and for every (a, c) ∈ dom(lց) = dom(l′ց) we have lց (a, c) = l′ ց (a, c). Hence
lր = l′ր, lց = l′ց, thus l = l′.

3.12 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. The
lens l defined by

lց (a, c) = li ց (a, c) if li ց (a, c) ↓ for some i

lր c = liր c if liր c ↓ for some i

and undefined elsewhere is a least upper bound for the chain.

Proof. Straightforward.

3.14 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses, and
let C0 ⊆ C1 ⊆ . . . and A0 ⊆ A1 ⊆ . . . be increasing chains of subsets of V. Then:
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(1) Well-behavedness commutes with limits:
(∀i ∈ ω. li ∈ Ci ⇋ Ai) implies (

⊔

n ln) ∈ (
⋃

i Ci) ⇋ (
⋃

i Ai).

(2) Totality commutes with limits:
(∀i ∈ ω. li ∈ Ci ⇐⇒ Ai) implies (

⊔

n ln) ∈ (
⋃

i Ci) ⇐⇒ (
⋃

i Ai).

Proof. Let l =
⊔

n ln, let C =
⋃

i Ci, and let A =
⋃

i Ai.
We rely on the following property (which we call ⋆g): if lր c is defined for some

c ∈ C, then there is some i such that c ∈ Ci and lր c = liր c. To see this, let
c ∈ C; then there is some j such that ∀k ≥ j. c ∈ Ck. Moreover, by Corollary 3.13,
there exist some j′ such that lր c = lj′ր c. Let i be the max of j and j′; then we
have (by definition of ≺) liր c = lj′ր c = lր c and c ∈ Ci.

Similarly, we have the property ⋆p: if lց (a, c) is defined for some a ∈ A and
c ∈ C, then there is some i such that a ∈ Ai, c ∈ Ci, and lց (a, c) = li ց (a, c). To
see this, let a ∈ A and c ∈ C; then there are some j and j′ such that ∀k ≥ j. a ∈ Ak

and ∀k ≥ j′. c ∈ Ck. Moreover, by Corollary 3.13, there exists some j′′ such that
lց (a, c) = lj′′ ց (a, c). Let i be the max of j, j′, and j′′; then we have (by
definition of ≺) li ց (a, c) = lj′′ ց (a, c) = lց (a, c), with a ∈ Ai and c ∈ Ci.

We can now show that l satisfies the typing conditions (Get and Put) of well-
behaved lenses. Choose c ∈ C. If lր c is defined, then by ⋆g there is some i such
that c ∈ Ci and lր c = liր c. As li is in Ai ⇋ Ci, we have liր c ∈ Ai ⊆ A.
Conversely, let (a, c) ∈ A×C; then if lց (a, c) is defined, then by ⋆p there is some
i such that (a, c) ∈ Ai × Ci and lց (a, c) = li ց (a, c). As li ∈ Ai ⇋ Ci, we have
li ց (a, c) ∈ Ci ⊆ C.

We next show that l satisfies GetPut and PutGet. Using ⋆g and ⋆p, we
calculate as follows:

GetPut:. Suppose c ∈ C. If lց (lր c, c) = ⊥, then we are done. Otherwise
there is some i such that c ∈ Ci and liր c = lր c = a ∈ Ai ⊆ A. Hence there is
some j such that a ∈ Aj and lj ց (a, c) = c′. Let k be the max of i and j, so we
have a ∈ Ak and c ∈ Ck. By definition of ≺, we have lkր c = a and lk ց (a, c) = c′.
As GetPut holds for lk, we have c′ = c, hence GetPut holds for l.

PutGet:. Suppose a ∈ A and c ∈ C. If lր lց (a, c) = ⊥, then we are done.
Otherwise there is some i such that a ∈ Ai, c ∈ Ci, and li ց (a, c) = lց (a, c) =
c′ ∈ Ci ⊆ C. Hence there is some j such that c′ ∈ Cj and ljր c′ = a′. Let k be
the max of i and j, so we have a ∈ Ak and c ∈ Ck. By definition of ≺, we have
lk ց (a, c) = c′ and lkր c′ = a′. As PutGet holds for lk, we have a′ = a, hence
PutGet holds for l.

Finally, we show that l is total if all the li are. If c ∈ C, then there is some i
such that c ∈ Ci, hence liր c is defined, hence lր c is defined. If a ∈ A and c ∈ C,
then there is some i such that a ∈ Ai and c ∈ Ci, hence li ց (a, c) is defined, thus
lց (a, c) is defined.

3.15 Theorem: Let L be the set of well-behaved lenses from C to A. Then (L, ≺)
is a cpo with bottom.

Proof. First, the lens that is undefined everywhere is well behaved (it trivially
satisfies all equations) and is obviously the smallest lens. We write this lens ⊥l.
Second, if l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . is an increasing chain of well-behaved lenses,
then by Lemma 3.14, it has a least upper bound that is well behaved.
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3.17 Corollary: Suppose f is a continuous function from lenses to lenses.

(1) If l ∈ C ⇋ A implies f(l) ∈ C ⇋ A for all l, then fix (f) ∈ C ⇋ A.

(2) Suppose ∅ = C0 ⊆ C1 ⊆ . . . and ∅ = A0 ⊆ A1 ⊆ . . . are increasing chains of
subsets of V. If l ∈ Ci ⇐⇒ Ai implies f(l) ∈ Ci+1 ⇐⇒ Ai+1 for all i and l,
then fix (f) ∈ (

⋃

i Ci) ⇐⇒ (
⋃

i Ai).

Proof. (1) First recall that f0(⊥l) = ⊥l ∈ C ⇋ A for any C and A. From this, a
simple induction on i (using the given implication at each step and the fact that
f is monotonic) yields f i(⊥l) ∈ C ⇋ A and f i(⊥l) ≺ f i+1(⊥l). By 3.14(1),
(
⊔

i f i(⊥l)) ∈ C ⇋ A. By 3.16, fix (f) ∈ C ⇋ A.

(2) First note that, since C0 = A0 = ∅, we have f0(⊥l) = ⊥l ∈ C0 ⇐⇒ A0.
From this, a simple induction on i (using the given implication at each step)
yields f i(⊥l) ∈ Ci ⇐⇒ Ai and f i(⊥l) ≺ f i+1(⊥l). By 3.14(2), (

⊔

i f i(⊥l)) ∈
(
⋃

i Ci) ⇐⇒ (
⋃

i Ai). By 3.16, fix (f) ∈ (
⋃

i Ci) ⇐⇒ (
⋃

i Ai).

3.19 Lemma: Suppose f is a continuous function from lenses to lenses and
T0, T1, . . . is a sequence of sets of total types with T0 = {(∅, ∅)}. If for all l and i
we have (∀τ ∈ Ti. l ∈ τ) implies (∀τ ∈ Ti+1. f(l) ∈ τ), then for every increasing
instance τ0 ⊆ τ1 ⊆ . . . of T0, T1, . . . we have fix (f) ∈

⋃

i τi.

Proof. Let τ0 ⊆ τ1 ⊆ . . . be an increasing instance of T0, T1, . . . . Since T0 =
{(∅, ∅)}, we have f0(⊥l) = ⊥l ∈ τ for all τ ∈ T0. From this, a simple induction on
i (using the given implication at each step) yields f i(⊥l) ∈ τ for all τ ∈ Ti. Thus,
we have f i(⊥l) ∈ τi for all τi. Hence by Lemma 3.14 we have

⊔

n fn
n ∈

⋃

i τi. Using
Theorem 3.16, we conclude that fix (f) ∈

⋃

i τi.

3.20 Lemma: For any lens l and sets of views C and A: l ∈ C ⇋
Ω

A implies
l ∈ C ⇋ A and (2) l ∈ C ⇐⇒Ω A impliesl ∈ C ⇐⇒ A.

Proof. Let l ∈ C ⇋
Ω

A.

(1) We must prove that for all c ∈ C, lր c ∈ A. As lր c ∈ AΩ, and since c 6= Ω, by
convention we have lր c 6= Ω. Similarly, let a, c in A × C, then lց (a, c) ∈ C.

(2) By convention, CΩ ⊆ dom(lր) implies C ⊆ dom(lր), and A × CΩ ⊆ dom(lց)
implies A × C ⊆ dom(lց), as required.

4.1 Lemma [Well-behavedness]: ∀C⊆V. id ∈ C ⇋
Ω

C

Proof.

Get: (id)ր c = c ∈ C.

Put: (id)ց (a, c) = a ∈ C.

GetPut: (id)ց ((id)ր c, c) = (id)ց (c, c) = c.

PutGet: (id)ր (id)ց (a, c) = (id)ր a = a.

4.2 Lemma [Totality]: ∀C⊆V. id ∈ C ⇐⇒Ω C

Proof. Immediate: both the get and putback directions of (id) are total func-
tions.

4.3 Lemma [Well-behavedness]:
∀A, B, C⊆V. ∀l ∈ C ⇋

Ω

B. ∀k ∈ B ⇋
Ω

A. l; k ∈ C ⇋
Ω

A
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Proof.

Get: If kր lր c = (l; k)ր c is defined, then lր c ∈ B by Get for l, so (l; k)ր c ∈
A by Get for k.

Put: If lց (kց (a, lր c), c) = (l; k)ց (a, c) is defined, then lր c ∈ BΩ by Get

for l and our convention on treatment of Ω by get functions, so kց (a, lր c) ∈ B
by Put for k, so lց (kց (a, lր c), c) ∈ C by Put for l.

GetPut: Assume that (l; k)ր c is defined. Then:

(l; k)ց
(

(l; k)ր c, c
)

= (l; k)ց (kր lր c, c) by definition (of the underlined expression)

= lց
(

kց (kր lր c, lր c), c
)

by definition

⊑ lց (lր c, c) GetPut for k

⊑ c GetPut for l

PutGet: Assume that (l; k)ց (a, c) is defined. Then:

(l; k)ր (l; k)ց (a, c)

= (l; k)ր lց (kց (a, lր c), c) by definition

= kր lր lց (kց (a, lր c), c) by definition

⊑ kր kց (a, lր c) PutGet for l

⊑ a PutGet for k

4.4 Lemma [Totality]:
∀A, B, C⊆V. ∀l ∈ C ⇐⇒Ω B. ∀k ∈ B ⇐⇒Ω A. l; k ∈ C ⇐⇒Ω A

Proof. Let c ∈ C; then lր c is defined (by totality of l) and is in B, hence
kր lր c = (l; k)ր c is defined (by totality of k). Conversely, let a ∈ A and c ∈ CΩ;
then lր c is defined and is in BΩ. Thus, kց (a, lր c) is defined and is in B, and
so lց (kց (a, lր c), c) = (l; k)ց (a, c) is defined.

4.5 Lemma [Continuity]: Let F and G be continuous functions from lenses to
lenses. Then the function λl. (F (l); G(l)) is continuous.

Proof. We first argue that λl. (F (l); G(l)) is monotone. Let l and l′ be two lenses
with l ≺ l′. We must show that F (l); G(l) ≺ F (l′); G(l′). For the get direction, let
c ∈ V, and assume that (F (l); G(l))ր c is defined. We have:

(F (l); G(l))ր c
= G(l)րF (l)ր c
= G(l)րF (l′)ր c by F (l) ≺ F (l′), since F (l)ր c is defined
= G(l′)րF (l′)ր c by G(l) ≺ G(l′)
= (F (l′); G(l′))ր c.
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For the putback direction, let (a, c) ∈ V × VΩ, assume that (F (l); G(l))ց (a, c) is
defined, and calculate as follows:

(F (l); G(l))ց (a, c)
= F (l)ց (G(l)ց (a, F (l)ր c), c)
= F (l)ց (G(l)ց (a, F (l′)ր c), c) by F (l) ≺ F (l′)
= F (l)ց (G(l′)ց (a, F (l′)ր c), c) by G(l) ≺ G(l′)
= F (l′)ց (G(l′)ց (a, F (l′)ր c), c) by F (l) ≺ F (l′)
= (F (l′); G(l′))ց (a, c).

Thus λl. (F (l); G(l)) is monotone. We must now prove that it is continuous.
Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of well-behaved lenses. Let

l =
⊔

i li. We have, for c ∈ V,

(F (l); G(l))ր c = v
⇐⇒ G(l)րF (l)ր c = v by definition of ;
⇐⇒ G(l)րF (

⊔

i li)ր c = v by definition of l
⇐⇒ G(l)ր (

⊔

i F (li))ր c = v by continuity of F
⇐⇒ ∃i1.G(l)րF (li1)ր c = v by Corollary 3.13 (Get)
⇐⇒ ∃i1.G(

⊔

i li)րF (li1)ր c = v by definition of l
⇐⇒ ∃i1.(

⊔

i G(li))րF (li1)ր c = v by continuity of G
⇐⇒ ∃i2, i1.G(li2)րF (li1)ր c = v by Corollary 3.13 (Get)

⇐⇒ ∃i.G(li)րF (li)ր c = v by

{

i = max(i1, i2)
and monotonicity of
F and G

⇐⇒ ∃i.(F (li); G(li))ր c = v by definition of ;
⇐⇒ (

⊔

i(F (li); G(li)))ր c = v by Corollary 3.13 (Get)

and

(F (l); G(l))ց (a, c) = v
⇐⇒ F (l)ց (G(l)ց (a, F (l)ր c), c) = v by definition of ;
⇐⇒ F (l)ց (G(l)ց (a, F (

⊔

i li)ր c), c) = v by definition of l
⇐⇒ F (l)ց (G(l)ց (a, (

⊔

i F (li))ր c), c) = v by continuity of F
⇐⇒ ∃i1.F (l)ց (G(l)ց (a, F (li1)ր c), c) = v by Corollary 3.13 (Get)
⇐⇒ ∃i1.F (l)ց (G(

⊔

i li)ց (a, F (li1)ր c), c) = v by definition of l
⇐⇒ ∃i1.F (l)ց ((

⊔

i G(li))ց (a, F (li1)ր c), c) = v by continuity of G
⇐⇒ ∃i2, i1.F (l)ց (G(li2)ց (a, F (li1)ր c), c) = v by Corollary 3.13 (Put)
⇐⇒ ∃i2, i1.F (

⊔

i li)
ց (G(li2)ց (a, F (li1)ր c), c) = v by definition of l

⇐⇒ ∃i2, i1.(
⊔

i F (li))
ց (G(li2)ց (a, F (li1)ր c), c) = v by continuity of F

⇐⇒ ∃i3, i2, i1.F (li3)
ց (G(li2)ց (a, F (li1)ր c), c) = v by Corollary 3.13 (Put)

⇐⇒ ∃i.F (li)ց (G(li)ց (a, F (li)ր c), c) = v by

{ i = max(i1, i2, i3)
monotonicity of
F and G

⇐⇒ ∃i.(F (li); G(li))ց (a, c) = v by definition of ;
⇐⇒ (

⊔

i(F (li); G(li)))ց (a, c) = v by Corollary 3.13 (Put).
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Hence the lenses
⊔

i(F (li); G(li)) and F (l); G(l) are equal.

5.1 Lemma [Well-behavedness]:
∀C, A⊆T with C = C	, A = A	, doms(C) = doms(A).
∀m ∈ (Πn∈N . C(n) ⇋

Ω

A(n)).
wmap m ∈ C ⇋

Ω

A

Proof.

Get: Suppose c ∈ C and m(n)ր c(n) is defined for each n ∈ dom(c). Then,
by the (dependent) type of m, we have m(n)ր c(n) ∈ A(n) for each n. Since
dom(A) = dom(C), there exists a non-empty subset of A whose elements all have
domain D = dom(c). Also, the tree

{∣

∣n 7→ m(n)ր c(n) | n ∈ dom(c)
∣

∣

}

is an element

of the set
{∣

∣n 7→ A(n) | n ∈ D
∣

∣

}

, which is itself a subset of A since A is shuffle closed.
Hence, (wmap m)ր c ∈ A.

Put: Let a ∈ A and c ∈ C. For all n ∈ dom(a), we have m(n)ց (a(n), c(n)) ∈
C(n) (with c(n) possibly being Ω). Hence, by a similar argument as above, since
dom(A) = dom(C) and C = C	, we have (wmap m)ց (a, c) ∈ C.

GetPut: Assume that (wmap m)ր c is defined. Then

(wmap m)ց ((wmap m)ր c, c)
= (wmap m)ց

({∣

∣n 7→ m(n)ր c(n) | n ∈ dom(c)
∣

∣

}

, c
)

=
{∣

∣n 7→ m(n)ց (m(n)ր c(n), c(n)) | n ∈ dom(c)
∣

∣

}

⊑
{∣

∣n 7→ c(n) | n ∈ dom(c)
∣

∣

}

by GetPut for each m(n)
= c.

PutGet: Assume that (wmap m)ց (a, c) is defined. Then

(wmap m)ր((wmap m)ց (a, c))
= (wmap m)ր

{∣

∣n 7→ m(n)ց (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

=
{∣

∣n 7→ m(n)ր(lց (a(n), c(n))) | n ∈ dom(a)
∣

∣

}

⊑
{∣

∣n 7→ a(n) | n ∈ dom(a)
∣

∣

}

by PutGet for each m(n)
= a.

7.2 Lemma: Let S, T⊆T . Then

(1) (S ::T ) = (S ::T )	

(2) [T] = [T]	.

Proof. We prove each part of the lemma directly.

(1) We calculate (S ::T )	. From the definition of cons cells, the set doms(S ::T ) of
possible domains of trees in (S ::T ) is {{*h, *t}}. We then calculate (S ::T )	

as:

(S ::T )	 =
⋃

D∈doms(S::T )

{∣

∣n 7→ (S ::T )(n) | n ∈ D
∣

∣

}

=
{∣

∣*h 7→ S, *t 7→ T
∣

∣

}

which is equal to S ::T .

(2) We calculate [T]	. From the definition of lists, the set doms([T]) of domains
of trees in [T] is {∅, {*h, *t}}. We then calculate [T]	 as:

[T]	 =
⋃

D∈doms([T])

{∣

∣n 7→ [T](n) | n ∈ D
∣

∣

}

= {||} ∪
{∣

∣*h 7→ T, *t 7→ [T]
∣

∣

}
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which is equal to [T].

7.3 Lemma [Well-behavedness]:
∀C, A⊆T . ∀l ∈ C ⇋

Ω

A. list map l ∈ [C] ⇋
Ω

[A]

Proof. Note that list map l is the fixed point of the function:

f = λk. wmap {*h 7→ l, *t 7→ k}

We use Corollary 3.17(1), which states that if, assuming that k ∈ [C] ⇋
Ω

[A], we
can prove f(k) ∈ [C] ⇋

Ω

[A], then fix (f) ∈ [C] ⇋
Ω

[A].
We assume that k ∈ [C] ⇋

Ω

[A] and show that f(k) has type [C] ⇋
Ω

[A]

directly, using the type of wmap. We write m for the total function from names to
lenses described by {*h 7→ l, *h 7→ k}; i.e., m maps *h to l, *t to k, and every
other name to id. We first show that m ∈ Πn∈N . C(n) ⇋

Ω

A(n):

m(*h) = l ∈ [C](*h) ⇋
Ω

[A](*h)
i.e., C ⇋

Ω A
by the type of l;

m(*t) = k ∈ [C](*t) ⇋
Ω

[A](*t)
i.e., [C] ⇋

Ω

[A]

by assumption;

m(n) = id ∈ [C](n) ⇋
Ω

[A](n) ∀n 6∈ {*h, *t}
i.e., ∅ ⇋

Ω ∅
vacuously.

Hence, m has the correct type. The type of wmap also requires that both [C]

and [A] be shuffle closed and that doms([C]) = doms([A]). The first condition
follows from Lemma 7.2(2); the second condition is immediate as both doms([C])
and doms([A]) are the set {{*h, *t}, ∅}.

Using the type of wmap, we conclude that f(k) ∈ [C] ⇋
Ω

[A] and by Corol-
lary 3.17, that fix (f) = list map l ∈ [C] ⇋

Ω

[A].

7.4 Lemma [Totality]: ∀C, A⊆T . ∀l ∈ C ⇐⇒Ω A. list map l ∈ [C] ⇐⇒Ω [A]

Proof. We pick these two chains of types:

C0 = A0 = ∅
Ci+1 = [Ci]

Ai+1 = [Ai]

Next, we show by induction on i that l ∈ Ci ⇐⇒Ω Ai imples f(l) ∈ Ci+1 ⇐⇒Ω Ai+1

for all i.
We calculate the type of f(l) directly from the type of wmap. As above, we write

m for the function that maps *h to l, *t to k and every other n to id. We analyze
two subcases.

For the base case, i = 0, we have

m(n) ∈ C1(n) ⇐⇒Ω A1(n)
i.e., [](n) ⇐⇒Ω [](n)
i.e., ∅ ⇐⇒Ω ∅

vacuously.
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Also, we trivially have that ∅ is shuffle closed and doms(∅) = doms(∅). Using the
type of wmap we conclude that f(k) ∈ C1 ⇐⇒Ω A1.

For the induction step, we assume that i > 0 and k ∈ Ci ⇐⇒Ω Ai. From these
facts we have

m(*h) = l ∈ [Ci](*h) ⇐⇒Ω [Ai](*h)
i.e., C ⇐⇒Ω A

by i > 0 and the type of l;

m(*t) = k ∈ [Ci](*t) ⇐⇒Ω [Ai](*t)
i.e., [Ci−1] ⇐⇒Ω [Ai−1]

by i > 0;
i.e., Ci ⇐⇒Ω Ai

by induction hypothesis;

m(n) = id ∈ [Ci+1](n) ⇐⇒Ω [Ai+1](n) ∀n 6∈ {*h, *t}
i.e., ∅ ⇐⇒Ω ∅

vacuously.

As above, both [Ci] and [Ai] are shuffle closed and have equal domains. Using
the type of wmap, we conclude that f(k) ∈ Ci+1 ⇐⇒Ω Ai+1 which finishes the case
and the inductive proof.

By Corollary 3.17(2) we have that

list map l ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., (∅ ∪
⋃

i [C
i]) ⇐⇒Ω (∅ ∪

⋃

i [A
i])

i.e., [C] ⇐⇒Ω [A],

which finishes the proof.

7.5 Lemma [Well-behavedness]: ∀D⊆T . rotate ∈ [D] ⇋
Ω

[D]

Proof. First, note that rotate is the fixed point of the function:

f = λl. acond ([] ∪ (D ::[])) ([] ∪ (D ::[]))
id

(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*h} id (rename tmp *h; l; plunge *t))

Let C = A = [D]. We assume that l ∈ C ⇋
Ω

A and prove that f(l) ∈ C ⇋
Ω

A.
Using Corollary 3.17(1), we conclude that fix (f) = rotate m ∈ C ⇋

Ω

A.
We calculate the type of f(l), working top down. The outermost lens is an acond

instance. Using the type of acond, we must prove that the first branch has this
type:

id ∈ C ∩ ([] ∪ (D ::[]))) ⇋
Ω A ∩ ([] ∪ (D ::[])))

i.e., [D] ∩ ([] ∪ (D ::[]))) ⇋
Ω

[D] ∩ ([] ∪ (D ::[])))
i.e., [] ∪ (D ::[]) ⇋

Ω

[] ∪ (D ::[])
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which is immediate from the type of id. Similarly, we must show that the second
branch has this type:

rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*h}id (rename tmp *h; l; plunge *t)
∈ C \ ([] ∪ (D ::[])) ⇋

Ω A \ ([] ∪ (D ::[]))
i.e., [D] \ ([] ∪ (D ::[])) ⇋

Ω

[D] \ ([] ∪ (D ::[]))
i.e., D ::D ::[D] ⇋

Ω

D ::D ::[D]

From the type of rename, we have

rename *h tmp ∈ D ::D ::[D] ⇋
Ω

{∣

∣tmp 7→ D, *t 7→ D ::[D]
∣

∣

}

Moreover, using the type of hoist nonunique, we have

hoist nonunique *t {*h, *t}
∈

{∣

∣tmp 7→ D, *t 7→ D ::[D]
∣

∣

}

⇋
Ω

{∣

∣*h 7→ D, tmp 7→ D, *t 7→ [D]
∣

∣

}

Next we show that the fork lens has type

fork {*h} id (rename tmp *h; l; plunge *t)
∈

{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [D]
∣

∣

}

⇋
Ω

D ::D ::[D]

We prove that the first arm has type:

id ∈
{∣

∣*h 7→ D
∣

∣

}

⇋
Ω

{∣

∣*h 7→ D
∣

∣

}

and that the second arm has type:

rename tmp *h; l; plunge *t ∈
{∣

∣tmp 7→ D, *t 7→ [D]
∣

∣

}

⇋
Ω

{∣

∣*t 7→ [D]
∣

∣

}

The first typing follows from the type of id and the second using the types of
rename, plunge, and the composition operator, as well as the type of l we have by
hypothesis. Hence, the entire fork has the type calculated above. By the type of
the composition operator we conclude that the second branch has the correct type.

We conclude that the acond lens has type C ⇋
Ω

A, and so, by Corollary 3.17(1),
that fix (f) = rotate has the same type.

7.6 Lemma [Totality]: ∀D⊆T . rotate ∈ [D] ⇐⇒Ω [D]

Proof. To prove that rotate is total, we use Corollary 3.17(2). Let

C0 = A0 = ∅
Ci+1 = Ai+1 = [Di]

be two chains of types. Again, note that rotate is the fixed point of the function
f described in the well-behavedness proof. We prove, by induction on i, that if
l ∈ Ci ⇐⇒Ω Ai then f(l) ∈ Ci+1 ⇐⇒Ω Ai+1.
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For the base case, i = 0, we must show that the f(l) has type C1 ⇐⇒Ω A1. The
outermost lens in f(l) is an acond. We prove that each branch has the correct type:

id ∈ C1 ∩ ([] ∪ D ::[]) ⇐⇒Ω A1 ∩ ([] ∪ D ::[])
i.e., [] ∩ ([] ∪ D ::[]) ⇐⇒Ω [] ∩ ([] ∪ D ::[])
i.e., [] ⇐⇒Ω []

rename *h tmp;
hoist nonunique *t {*h *t};
fork {*h} id (rename tmp *h; l; plunge *t)

∈ C1 ∩ ([] ∪ D ::[]) ⇐⇒Ω A1 ∩ ([] ∪ D ::[])
i.e., [] \ ([] ∪ D ::[]) ⇐⇒Ω [] \ ([] ∪ D ::[])
i.e., ∅ ⇐⇒Ω ∅

The first fact is immediate by the type of id; the second holds vacuously. By the
type of acond, we have f(l) ∈ C1 ⇐⇒Ω A1, which finishes the case.

For the induction step, we assume that i > 0 and that l ∈ Ai ⇐⇒Ω Ci. Again,
we unwind the definition of f(l), revealing an acond lens and prove that the each
branch has the correct type. For the first branch, we calculate the type as follows:

id ∈ Ci+1 ∩ ([] ∪ D ::[]) ⇐⇒Ω Ai+1 ∩ ([] ∪ D ::[])
i.e., [Di] ∩ ([] ∪ D ::[]) ⇐⇒Ω [Di] ∩ ([] ∪ D ::[])
i.e., D ::[] ⇐⇒Ω D ::[] if i = 1

∅ ⇐⇒Ω ∅ otherwise

which follows from the type of id in either case.
For the second branch we must prove that:

rename *h tmp;
hoist nonunique *t {*h *t};
fork {*h} id (rename tmp *h; l; plunge *t)
∈ Ci+1 \ ([] ∪ D ::[]) ⇐⇒Ω Ai+1 ∩ ([] \ D ::[])

i.e., [Di] \ ([] ∪ D ::[]) ⇐⇒Ω [Di] ∩ ([Di] \ D ::[])
i.e., D ::D ::[Di−2] ⇐⇒Ω D ::D ::[Di−2]

We analyze two subcases.
Case i = 1 Since [Di−2] = ∅, the type D ::D ::[Di−2] is also empty. Hence, the

second branch has the required lens type ∅ ⇐⇒Ω ∅ vacuously.
Case i > 1: From the type of rename, we have that

rename *h tmp ∈ D ::D ::[Di−2] ⇐⇒Ω
{∣

∣tmp 7→ D, *t 7→ D ::[Di−2]
∣

∣

}

Using the type of hoist nonunique, we have

hoist nonunique *t {*h, *t}
∈

{∣

∣tmp 7→ D, *t 7→ D ::[Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ D, tmp 7→ D, *t 7→ [Di−2]
∣

∣

}

To show that the composite lens formed from these lenses has the desired type, we
must show that

fork {*h} id (rename tmp *h; l; plunge *t)
∈

{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [Di−2]
∣

∣

}

⇐⇒Ω D ::D ::[Di−2]
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To show this fact using the type of fork, we must show that the first branch has
type

id ∈
{∣

∣*h 7→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ D
∣

∣

}

and that the second branch has type

rename tmp *h; l; plunge *t ∈
{∣

∣tmp 7→ D, *t 7→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*t 7→ [Di−2]
∣

∣

}

The first typing follows from the type of id and the second using the types of
rename, plunge, and the composition operator, together with the type of l we have
by induction hypothesis. Hence, the entire fork has the total type stated above.
By the type of the composition operator, the entire second branch has the correct
type calculated above.

Thus, from the type of acond, we have f(l) ∈ Ci+1 ⇋
Ω

Ai+1, which finishes the
case and the inductive proof.

By Corollary 3.17(2), we conclude that

fix (f) = rotate ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., ∅ ∪
⋃

i [D
i] ⇐⇒Ω ∅ ∪

⋃

i [D
i]

i.e., [D] ⇐⇒Ω [D]

which finishes the proof.

7.7 Lemma [Well-behavedness]: ∀D⊆T . list reverse ∈ [D] ⇋
Ω

[D]

Proof. First, note that list reverse is the fixed point of the function:

f = λl. wmap {*t 7→ l}; rotate

Let C = A = [D]. In outline, the proof proceeds as follows. We assume that
l ∈ C ⇋

Ω A and prove that f(l) ∈ C ⇋
Ω A. Using Corollary 3.17(1), we conclude

that fix (f) = list reverse ∈ C ⇋
Ω A.

The outermost lens combinator is the composition operator. Thus, we must show
that the wmap instance has type C ⇋

Ω

B and that rotate ∈ B ⇋
Ω

A for some type
B. We will prove these facts for B = [D]. Let m be the total function from
names to lenses that maps *t to l and every other name to id. We first show that
m ∈ Πn ∈ N . C(n) ⇋

Ω

B(n):

m(*h) = id ∈ C(*h) ⇋
Ω B(*h)

i.e., [D](*h) ⇋
Ω

[D](*h)
i.e., D ⇋

Ω

D
by the type of id;

m(*t) = l ∈ C(*t) ⇋
Ω B(*t)

i.e., [D](*t) ⇋
Ω

[D](*t)
i.e., [D] ⇋

Ω

[D]

by assumption;

m(n) = id ∈ C(n) ⇋
Ω B(n) ∀n 6∈ {*h, *t}

i.e., [D](n) ⇋
Ω

[D](n)
i.e., ∅ ⇋

Ω ∅
vacuously.
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Hence m has the correct type. The type of wmap also requires that C and B be
shuffle closed and that doms(C) = doms(B). The first follows from Lemma 7.2(2)
and since C = B = [D].

Next, using the type we just proved for rotate we have that

rotate ∈ B ⇋
Ω

A
i.e., [D] ⇋

Ω

[D]

Finally, by the type of the composition operator, we conclude that f(l) ∈ C ⇋
Ω

A.
By Corollary 3.17(1), list reverse has the same type, C ⇋

Ω

A.

7.8 Lemma [Totality]: ∀D⊆T . list reverse ∈ [D] ⇐⇒Ω [D]

Proof. The proof, in outline, is as follows. Let C = A = [D]. We first note
that list reverse is the fixed point of the function f , defined above in the well-
behavedness proof. We then identify two increasing chains of types, Ci and Ai such
that C =

⋃

i Ci and A =
⋃

i Ai. We then prove, for all i, that f(l) ∈ Ci+1 ⇐⇒Ω Ai+1

assuming that l ∈ Ci ⇐⇒Ω Ai. By Corollary 3.17(2), we conclude that fix (()f) ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai; i.e., that list reverse ∈ C ⇐⇒Ω A.
Let Ci and Ai be increasing chains of types:

C0 = A0 = ∅
Ci+1 = Ai+1 = [Di].

We prove l ∈ Ci ⇐⇒Ω Ai implies f(l) ∈ Ci+1 ⇐⇒Ω Ai+1 by induction on i.
For the base case, i = 0, we have C1 = A1 = []. The outermost lens in f(l)

is the composition operator. Thus, we must show that the wmap instance has type
C1 ⇐⇒Ω B and that rotate ∈ B ⇐⇒Ω A1 for some type B. Let B = []. We first
prove that m ∈ Πn ∈ N . C1(n) ⇐⇒Ω B(n):

m(n) = id ∈ C1(n) ⇐⇒Ω B(n) ∀n ∈ N
i.e., [](n) ⇐⇒Ω [](n)
i.e., ∅ ⇐⇒Ω ∅

vacuously.

Hence m has the correct type. The type of wmap also requires that C1 and B
be shuffle closed and that doms(C1) = doms(B). Both facts are immediate as
[] = {{||}}.

Next, using the total type we proved for rotate we have

rotate ∈ B ⇐⇒Ω A1

i.e., [] ⇐⇒Ω []

By the type of the composition operator, we conclude that f(l) ∈ C1 ⇐⇒Ω A1.
For the induction step, assume i > 0 and that l ∈ Ci ⇐⇒Ω Ai. Again, outermost

lens in f(l) is the composition operator. Let B = [Di]. We first prove that the wmap
lens has type Ci+1 ⇐⇒Ω B. To show that that m ∈ Πn ∈ N . Ci+1(n) ⇐⇒Ω B(n) we

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



76 · J. N. Foster et. al.

argue as follows:

m(*h) = id ∈ Ci+1(*h) ⇐⇒Ω B(*h)
i.e., [Di](*h) ⇐⇒Ω [Di](*h)
i.e., D ⇐⇒Ω D

as i > 0 and by the type of id;

m(*t) = l ∈ Ci+1(*t) ⇐⇒Ω B(*t)
i.e., [Di](*t) ⇐⇒Ω [Di](*t)
i.e., [Di] ⇐⇒Ω [Di]

as i > 0;
i.e., Ci ⇐⇒Ω Ai

by induction hypothesis;

m(n) = id ∈ Ci+1(n) ⇐⇒Ω B(n) ∀n 6∈ {*h, *t}
i.e., [Di](n) ⇐⇒Ω [Di](n)
i.e., ∅ ⇐⇒Ω ∅

vacuously.

Hence m has the correct type. The type of wmap also requires that Ci+1 and
B be shuffle closed and that doms(Ci+1) = doms(B). These facts follow from
Lemma 7.2(2) and since Ci+1 = B = [Di].

Next, using the total type we proved for rotate we have

rotate ∈ B ⇐⇒Ω Ai+1

i.e., [Di] ⇐⇒Ω [Di]

By the type of the composition operator, we conclude that f(l) ∈ Ci+1 ⇐⇒Ω Ai+1.
Finally, by Corollary 3.17(2), we conclude that

fix (f) = list reverse ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., ∅ ∪
⋃

i [D
i] ⇐⇒Ω ∅ ∪

⋃

i [D
i]

i.e., [D] ⇐⇒Ω [D]

as required.

7.9 Lemma [Well-behavedness]:
∀D⊆T group ∈ [D] ⇋

Ω

[D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

Proof. First, note that group is the fixed point of the function:

f = λl. acond [][]

id

(acond (D ::[]) ((D ::[]) ::[])
(plunge *h; add *t {||})
(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*t}

(map l)
(xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h);
plunge *h)))
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To shorten the proof, we will use the following abbreviations:

S = (D ::[]) ::[] P = D ::D ::[]
C = [D] A = [P]++([] ∪ S)

In outline, the proof proceeds as follows. We assume that l ∈ C ⇋
Ω

A and prove that
f(l) ∈ C ⇋

Ω

A. Using Corollary 3.17(1), we conclude that fix (f) = group ∈ C ⇋
Ω

A.
The outermost combinator is an acond. Thus, we must show that each branch

has the correct type. For the first, we have

id ∈ C ∩ [] ⇋
Ω

A ∩ []

i.e., [D] ∩ [] ⇋
Ω

([P]++([] ∪ S)) ∩ []

i.e., [] ⇋
Ω

[]

using the type of id. For the second we must show that the nested acond has lens
type

C \ [] ⇋
Ω

A \ []
i.e., [D] \ [] ⇋

Ω

([P]++([] ∪ S)) \ []
i.e., D ::[D] ⇋

Ω

((P ::[P])++([] ∪ S)) ∪ S

Again, using the type of acond, we must show that each branch of the nested
conditional has the correct type. For the first branch, we must show:

(plunge *h; add *t {||})
∈ (D ::[D]) ∩ (D ::[]) ⇋

Ω (((P ::[P])++([] ∪ S)) ∪ S) ∩ ((D ::[]) ::[])
i.e., D ::[] ⇋

Ω

(D ::[]) ::[]

which follows from the types of plunge, add and the composition operator. For the
second branch we must prove

rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*t}

(map l)
(xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h);
plunge *h)

∈ (D ::[D]) \ (D ::[]) ⇋
Ω

(((P ::[P])++([] ∪ S)) ∪ S) \ ((D ::[]) ::[])
i.e., D ::D ::[D] ⇋

Ω

(P ::[P])++([] ∪ S)

From the type of rename we have

rename *h tmp ∈ D ::D ::[D] ⇋
Ω

{∣

∣tmp 7→ D, *t 7→ D ::[D]
∣

∣

}

Moreover, using the type of hoist nonunqique we have

hoist nonunique *t {*h, *t}
∈

{∣

∣tmp 7→ D, *t 7→ D ::[D]
∣

∣

}

⇋
Ω

{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [D]
∣

∣

}

To calculate the type of the fork lens, we check the types of each arm. The first
arm is (map l). We prove that

map l ∈
{∣

∣*t 7→ [D]
∣

∣

}

⇋
Ω

{∣

∣*t 7→ [P]++([] ∪ S)
∣

∣

}
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by checking that l has the correct type:

l ∈
⋂

n∈N

{∣

∣*t 7→ [D]
∣

∣

}

(n) ⇋
Ω

{∣

∣*t 7→ [P]++([] ∪ S)
∣

∣

}

(n)

as follows:

l ∈
{∣

∣*t 7→ [D]
∣

∣

}

(*t) ⇋
Ω

{∣

∣*t 7→ [P]++([] ∪ S)
∣

∣

}

(*t)
i.e., [D] ⇋

Ω

[P]++([] ∪ S)
by assumption;

l ∈
{∣

∣*t 7→ [D]
∣

∣

}

(n) ⇋
Ω

{∣

∣*t 7→ [P]++([] ∪ S)
∣

∣

}

(n) ∀ ∀n 6= *t

i.e., ∅ ⇋
Ω ∅

vacuously.

Moreover, the types
{∣

∣*t 7→ [D]
∣

∣

}

and
{∣

∣*t 7→ [P]++([] ∪ S)
∣

∣

}

are both shuffle
closed and have equal domain sets, since every tree in both types has a single-
ton domain {*t}. Hence, by the type of map, the first arm of the fork has the
correct type.

For the second arm of the fork, we first show that

xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h)
∈

{∣

∣*tmp 7→ D, *h 7→ D
∣

∣

}

⇋
Ω

{∣

∣*h 7→ D, *t 7→
{∣

∣*h 7→ D, *t 7→ {||}
∣

∣

}∣

∣

}

i.e.,
{∣

∣*tmp 7→ D, *h 7→ D
∣

∣

}

⇋
Ω

P

and that

plunge *h ∈ P ⇋
Ω

{∣

∣*h 7→ P
∣

∣

}

With the type of the composition operator we have that the composition of the
xfork and plunge lenses has type

{∣

∣*tmp 7→ D, *h 7→ D
∣

∣

}

⇋
Ω

{∣

∣*h 7→ P
∣

∣

}

Putting these pieces together we have that the fork lens has type
{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [D]
∣

∣

}

⇋
Ω

{∣

∣*h 7→ P, *t 7→ [P]++([] ∪ S)
∣

∣

}

i.e.,
{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [D]
∣

∣

}

⇋
Ω

(P ::[P])++([] ∪ S)

Thus, using the types calculated previously for the rename and hoist nonunique

lenses, together with the type of the composition operator, we have that the second
branch of the nested acond has type

D ::D ::[D] ⇋
Ω

(P ::[P])++([] ∪ S)

as required.
Hence, using the type for the outer acond, we conclude that f(l) ∈ C ⇋

Ω A and
by Corollary 3.17(1), that fix (f) = group has the same type, C ⇋

Ω A.

7.10 Lemma [Totality]:
∀D⊆T group ∈ [D] ⇐⇒Ω [D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

Proof. The proof, in outline, is as follows. We first note that group is the fixed
point of the function f , defined in the well-behavedness proof above. We then
identify two increasing chains of types, Ci and Ai and prove for all i, that f(l) ∈
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Ci+1 ⇐⇒Ω Ai+1 assuming that l ∈ Ci ⇐⇒Ω Ai. By Corollary 3.17(2), we conclude
that fix (f) ∈

⋃

i Ci ⇐⇒Ω
⋃

i Ai.
We use the same abbreviations for S and P as in the well-behavedness proof.

Define two chains of types:

C0 = A0 = ∅
Ci+1 = [Di]

Ai+1 =

{

[P i/2] if i is even
([P ⌊i/2⌋])++S otherwise

We prove l ∈ Ci ⇐⇒Ω Ai implies f(l) ∈ Ci+1 ⇐⇒Ω Ai+1 by induction on i.
For the base case i = 0 we must show that the acond lens has type C1 ⇐⇒Ω A1.

The required type for the first branch is

id ∈ C1 ∩ [] ⇐⇒Ω A1 ∩ []

i.e., [] ∩ [] ⇐⇒Ω [] ∩ []

i.e., [] ⇐⇒Ω []

which is immediate by the type of id. For the second branch we must show that
the nested acond lens has type

C1 \ [] ⇐⇒Ω A1 \ []
i.e., [] \ [] ⇐⇒Ω [] \ []
i.e., ∅ ⇐⇒Ω ∅

which holds vacuously. Thus, by the type of acond we have f(l) ∈ C1 ⇐⇒Ω A1,
which finishes the case.

For the induction step, we assume i > 0 and analyze the type of the outermost
acond lens. We must show that each branch has the correct type. For the first
branch, we calculate the required type as

id ∈ Ci+1 ∩ [] ⇐⇒Ω Ai+1 ∩ []

i.e., [Di] ∩ [] ⇐⇒Ω [P i/2] ∩ [] if i even
i.e., [Di] ∩ [] ⇐⇒Ω [P i/2]++S ∩ [] if i is odd
i.e., ∅ ⇐⇒Ω ∅ in either case, since i > 0

which holds vacuously.
Similarly, we calculate the required type for the second branch (i.e., the acond

lens) as follows

Ci+1 \ [] ⇐⇒Ω Ai+1 \ []

i.e., [Di] \ [] ⇐⇒Ω [P i/2] \ [] if i even
i.e., D ::[Di−1] ⇐⇒Ω P ::[P (i/2)−1]

i.e., [Di] \ [] ⇐⇒Ω [P ⌊i/2⌋]++S \ [] otherwise
i.e., D ::[Di−1] ⇐⇒Ω [P ⌊i/2⌋−1]++S
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Since this lens is also an acond, we must analyze the type of its branches. For the
first branch, (plunge *h; add *t {||}), we calculate the required type as

(D ::[Di−1]) ∩ (D ::[]) ⇐⇒Ω (P ::[P (i/2)−1]) ∩ ((D ::[]) ::[]) if i even
i.e., ∅ ⇐⇒Ω ∅

(D ::[Di−1]) ∩ (D ::[]) ⇐⇒Ω ((P ::[P ⌊i/2⌋−1])++S) ∩ ((D ::[]) ::[]) otherwise
i.e., D ::[] ⇐⇒Ω (D ::[]) ::[]

The case where i is even is immediate, since every lens has that type vacuously;
the other case follows from the types of plunge, add and the composition operator.
For the second branch we must show that

rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*t}

(map l)
(xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h);
plunge *h)

∈ (D ::[Di−1]) \ (D ::[]) ⇐⇒Ω (P ::[P (i/2)−1]) \ ((D ::[]) ::[]) if i even
i.e., D ::D ::[Di−2] ⇐⇒Ω P ::[P (i/2)−1]

(D ::[Di−1]) \ (D ::[]) ⇐⇒Ω ((P ::[P ⌊i/2⌋−1])++S) \ ((D ::[]) ::[]) otherwise
i.e., D ::D ::[Di−2] ⇐⇒Ω (P ::[P ⌊i/2⌋−1])++S

There are several cases. If i = 1 then we have the lens typing vacuously. Otherwise,
i > 1 and we calculate the types for each lens in the composition. From the type
of rename we have

rename *h tmp ∈ D ::D ::[Di−2] ⇐⇒Ω
{∣

∣tmp 7→ D, *t 7→ D ::[Di−2]
∣

∣

}

and, moreover, using the type of hoist nonunqique we have

hoist nonunique *t {*h, *t}
∈

{∣

∣tmp 7→ D, *t 7→ D ::[Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [Di−2]
∣

∣

}

Using the type of fork, we then verify the types of each arm. The first arm is
(map l). We prove that

map l ∈
{∣

∣*t 7→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*t 7→ [P (i−2)/2]
∣

∣

}

if i even

{∣

∣*t 7→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*t 7→ [P ⌊i−2⌋/2]++S
∣

∣

}

otherwise

by checking that l has the correct type:

l ∈
⋂

n∈N

{∣

∣*t 7→ [D]
∣

∣

}

(n) ⇐⇒Ω
{∣

∣*t 7→ [P (i−2)/2]
∣

∣

}

(n) if i even

⋂

n∈N

{∣

∣*t 7→ [D]
∣

∣

}

(n) ⇐⇒Ω
{∣

∣*t 7→ [P ⌊i−2⌋/2]++S
∣

∣

}

(n) otherwise
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For every n not equal to *t, this reduces to l ∈ ∅ ⇐⇒Ω ∅, which vacuously holds.
Otherwise we calculate as follows:

l ∈
{∣

∣*t 7→ [Di−2]
∣

∣

}

(*t) ⇐⇒Ω
{∣

∣*t 7→ [P (i−2)/2]
∣

∣

}

(*t) if i is even

i.e., [Di−2] ⇐⇒Ω [P (i−2)/2]

i.e., Ci−1 ⇐⇒Ω Ai−1

{∣

∣*t 7→ [Di−2]
∣

∣

}

(*t) ⇐⇒Ω
{∣

∣*t 7→ ([P ⌊(i−2)/2⌋])++S
∣

∣

}

(*t) otherwise

i.e., [Di−2] ⇐⇒Ω ([P ⌊(i−2)/2⌋])++S
i.e., Ci−1 ⇐⇒Ω Ai−1

both facts follow by induction hypothesis. Then, since the domain of every tree in
source and target component of the lens type we want to show for the map is {*t},
we have that the types are shuffle closed and have equal domain. Thus, by the type
of map, the first arm has the correct type.

For the second arm we first prove that

xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h)
∈

{∣

∣*tmp 7→ D, *h 7→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ D, *t 7→
{∣

∣*h 7→ D, *t 7→ {||}
∣

∣

}∣

∣

}

i.e.,
{∣

∣*tmp 7→ D, *h 7→ D
∣

∣

}

⇐⇒Ω P

and that

plunge *h ∈ P ⇐⇒Ω
{∣

∣*h 7→ P
∣

∣

}

using the type of plunge. With the type of the composition operator, we have that
the composition of the xfork and plunge lenses has type

{∣

∣*tmp 7→ D, *h 7→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ P
∣

∣

}

Putting these pieces together we have that the fork lens has type
{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ P, *t 7→ [P (i/2)−1]
∣

∣

}

if i is even

i.e.,
{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [Di−2]
∣

∣

}

⇐⇒Ω P ::[P (i/2)−1]

{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ P, *t 7→ [P ⌊i/2⌋−1]++S
∣

∣

}

otherwise
{∣

∣tmp 7→ D, *h 7→ D, *t 7→ [Di−2]
∣

∣

}

⇐⇒Ω P ::[P ⌊i/2⌋−1]++S

Thus, using the type of the composition operator along with the types we proved
for rename, hoist nonunique, and fork, we have that the second branch of the
inner acond belongs to

D ::[Di−1] ⇐⇒Ω P ::[P (i/2)−1] if i even
D ::[Di−1] ⇐⇒Ω [P ⌊i/2⌋−1]++S otherwise

as required.
By the type of the composition operator, we have f(l) ∈ Ci+1 ⇐⇒Ω Ai+1, which

finishes the case and the inductive proof.
By Corollary 3.17(2), we conclude that

fix(f) = group ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., ∅ ∪
⋃

i [D
i] ⇐⇒Ω ∅ ∪

⋃

i [D
i]

i.e., [D] ⇐⇒Ω [P]++([] ∪ S)

which completes the proof.
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7.11 Lemma [Well-behavedness]:
∀D⊆T , t ∈ T . with t 6∈ D. concat ∈ [D] ::[D] ::[] ⇋

Ω

[D]++(t ::[D])

Proof. First, note that concat is the fixed point of the function:

f = λl. acond ([] ::[D] ::[]) (t ::[D])
(wmap {*h 7→ const t [], *t 7→ hd []})
(fork {*t} id (hoist *h; rename *t tmp);
fork {*h} id (rename tmp *h; concat; plunge *t))

Let C = [D] :: [D] :: [] and A = [D]++(t :: [D]). We assume that l ∈ C ⇋
Ω

A
and prove that f(l) ∈ C ⇋

Ω

A. Using Corollary 3.17(1), we conclude that fix (f) =
concat ∈ C ⇋

Ω

A.
The outermost lens is an acond. Thus, we must show that each branch has the

correct type. For the first, we have

wmap {*h 7→ const t [], *t 7→ hd []}
∈ C ∩ ([] ::[D] ::[]) ⇋

Ω A ∩ (t ::[D])
i.e., ([D] ::[D] ::[]) ∩ ([] ::[D] ::[]) ⇋

Ω ([D]++(t ::[D])) ∩ (t ::[D])
i.e., [] ::[D] ::[] ⇋

Ω t ::[D]

Let m be the total function from names to lenses that maps *h to (const t []) and
*t to (hd []) and every other name to id. We prove that m has the correct type,
Πn ∈ N .[] ::[D] ::[](n) ⇋

Ω

t ::[D](n), as follows

m(*h) = const t [] ∈ [] ::[D] ::[](*h) ⇋
Ω

t ::[D](*h)
i.e., [] ⇋

Ω

t
by the type of const;

m(*t) = hd [] ∈ [] ::[D] ::[](*t) ⇋
Ω

t ::[D](*t)
i.e., [D] ::[] ⇋

Ω

[D]

by the type of hd;

m(n) = id ∈ [] ::[D] ::[](n) ⇋
Ω

t ::[D](n) ∀n 6∈ {*h, *t}
i.e., ∅ ⇋

Ω ∅
vacuously.

Additionally, since both the source and targets types are cons cells, they have equal
domains and are shuffle closed by Lemma 7.2. Putting all these facts together, we
have that wmap has the type calculated above.

For the second branch, we must prove that

fork {*t} id (hoist *h; rename *t tmp);
fork {*h} id (rename tmp *h; l; plunge *t)
∈ C \ ([] ::[D] ::[]) ⇋

Ω A \ (t ::[D])
i.e., ([D] ::[D] ::[]) \ ([] ::[D] ::[]) ⇋

Ω ([D]++(t ::[D])) \ (t ::[D])
i.e., (D ::[D]) ::[D] ::[] ⇋

Ω

(D ::[D])++(t ::[D])

We calculate the type of the first fork. The first arm has type

id ∈
{∣

∣*t 7→ [D] ::[]
∣

∣

}

⇋
Ω

{∣

∣*t 7→ [D] ::[]
∣

∣

}
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and the second arm has type

(hoist *h; rename *t tmp) ∈
{∣

∣*h 7→ D ::[D]
∣

∣

}

⇋
Ω

{∣

∣*h 7→ D, tmp 7→ [D]
∣

∣

}

using the types of id, hoist, rename and the composition operator. With these
facts and the type of fork we have

fork {*t} id (hoist *h; rename *t tmp)
∈ (D ::[D]) ::[D] ::[] ⇋

Ω
{∣

∣*h 7→ D, tmp 7→ [D], *t 7→ [D] ::[]
∣

∣

}

For the first arm of the next fork we have

id ∈
{∣

∣*h 7→ D
∣

∣

}

⇋
Ω

{∣

∣*h 7→ D
∣

∣

}

and moreover, for the second arm, we have

(rename tmp *h; l; plunge *t)
∈

{∣

∣tmp 7→ [D], *t 7→ [D] ::[]
∣

∣

}

⇋
Ω

{∣

∣*t 7→
{∣

∣[D]++(t ::[D])
∣

∣

}∣

∣

}

using the types of rename, plunge, and the type of l we have by induction hypoth-
esis. Thus, using the type of fork we have

fork {*h} id (rename tmp *h; l; plunge *t)
∈

{∣

∣*h 7→ D, tmp 7→ [D], *t 7→ [D] ::[]
∣

∣

}

⇋
Ω

{∣

∣*h 7→ D, *t 7→
{∣

∣[D]++(t ::[D])
∣

∣

}∣

∣

}

i.e.,
{∣

∣*h 7→ D, tmp 7→ [D], *t 7→ [D] ::[]
∣

∣

}

⇋
Ω

D :: ([D]++(t ::[D]))

as required. Hence, using the typing of the composition operator, we have that the
second branch of the acond–the composition of both forks–has the type specified
above.

With the type of acond, we conclude that f(l) ∈ C ⇋
Ω

A and by Corollary 3.17(1),
that fix (f) = concat has the same type, C ⇋

Ω

A.

7.12 Lemma [Totality]:
∀D⊆T , t ∈ T . with t 6∈ D. concat ∈ [D] ::[D] ::[] ⇐⇒Ω [D]++(t ::[D])

Proof. The proof, in outline, is as follows. We first note that concat is the
fixed point of the function f , defined in the well-behavedness proof above. We
then identify two increasing chains of types, Ci and Ai and prove for all i, that
f(l) ∈ Ci+1 ⇐⇒Ω Ai+1 assuming that l ∈ Ci ⇐⇒Ω Ai. By Corollary 3.17(2), we
conclude that fix (f) ∈

⋃

i Ci ⇐⇒Ω
⋃

i Ai.
Define two chains of types:

C0 = A0 = ∅
Ci+1 = [Di] ::[D] ::[]
Ai+1 = [Di]++(t ::[D])

We prove l ∈ Ci ⇐⇒Ω Ai implies f(l) ∈ Ci+1 ⇐⇒Ω Ai+1 by induction on i.
For the base case, i = 0, we show that the outermost lens, acond has type

C1 ⇐⇒Ω A1 by proving that each branch has the correct type. For the first branch,
we calculate the required type as follows:

wmap {*h 7→ const t [], *t 7→ hd []}
∈ C1 ∩ ([] ::[D] ::[]) ⇐⇒Ω A1 ∩ (t ::[D])

([] ::[D] ::[]) ∩ ([] ::[D] ::[]) ⇐⇒Ω ([]++(t ::[D])) ∩ (t ::[D])
i.e., [] ::[D] ::[] ⇐⇒Ω t ::[D]
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As above, let m be the total function from names to lenses that maps *h to
(const t []) and *t to (hd []) and every other name to id. We prove that m
has the correct type, Πn ∈ N .[] ::[D] ::[](n) ⇐⇒Ω t ::[D](n), as follows

m(*h) = const t [] ∈ [] ::[D] ::[](*h) ⇐⇒Ω t ::[D](*h)
i.e., [] ⇐⇒Ω t

by the type of const;

m(*t) = hd [] ∈ [] ::[D] ::[](*t) ⇐⇒Ω t ::[D](*t)
i.e., [D] ::[] ⇐⇒Ω [D]

by the type of hd;

m(n) = id ∈ [] ::[D] ::[](n) ⇐⇒Ω t ::[D](n) ∀n 6∈ {*h, *t}
i.e., ∅ ⇐⇒Ω ∅

vacuously.

Additionally, since both the source and targets types are cons cells, they have equal
sets of domains and are shuffle closed by Lemma 7.2. Putting these facts together,
we obtain the correct type for wmap calculated above.

For the second branch, we must prove

fork {*t} id (hoist *h; rename *t tmp);
fork {*h} id (rename tmp *h; l; plunge *t)
∈ C1 \ ([] ::[D] ::[]) ⇐⇒Ω A1 \ (t ::[D])

i.e., ([] ::[D] ::[]) \ ([] ::[D] ::[]) ⇋
Ω

([]++(t ::[D])) \ (t ::[D])
i.e., ∅ ⇋

Ω ∅

which holds, vacuously. Thus, by the type of acond we have f(l) ∈ C1 ⇐⇒Ω A1,
which finishes the case.

For the induction step, we assume i > 0 and l ∈ Ci ⇐⇒Ω Ai and show that f(l) ∈
Ci+1 ⇐⇒Ω Ai+1. We prove that the outermost lens, acond has type C1 ⇐⇒Ω A1 by
proving that each branch has the correct type. For the first branch, we calculate
the required type as follows:

wmap {*h 7→ const t [], *t 7→ hd []}
∈ Ci+1 ∩ ([] ::[D] ::[]) ⇐⇒Ω Ai+1 ∩ (t ::[D])

i.e., ([Di] ::[D] ::[]) ∩ ([] ::[D] ::[]) ⇐⇒Ω ([Di]++(t ::[D])) ∩ (t ::[D])
i.e., ∅ ⇐⇒Ω ∅

This empty typing vacuously holds for any lens. For the second branch we must
prove that

fork {*t} id (hoist *h; rename *t tmp);
fork {*t} id (rename tmp *h; l; plunge *t)
∈ Ci+1 \ ([] ::[D] ::[]) ⇐⇒Ω Ai+1 \ (t ::[D])

i.e., ([Di] ::[D] ::[]) \ ([] ::[D] ::[]) ⇐⇒Ω ([Di]++(t ::[D])) \ (t ::[D])
i.e., (D ::[Di−1]) ::[D] ::[] ⇐⇒Ω (D ::[Di−1])++(t ::[D])

We calculate the type of the first fork directly. The first arm has type

id ∈
{∣

∣*t 7→ [D] ::[]
∣

∣

}

⇐⇒Ω
{∣

∣*t 7→ [D] ::[]
∣

∣

}
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and the second arm has type

(hoist *h; rename *t tmp)
∈

{∣

∣*h 7→ D ::[Di−1]
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ D, tmp 7→ [Di−1]
∣

∣

}

using the types of id, hoist, rename and the composition operator. With these
facts and the type of fork we have

fork {*t} id (hoist *h; rename *t tmp)
∈ (D ::[Di−1]) ::[D] ::[] ⇐⇒Ω

{∣

∣*h 7→ D, tmp 7→ [Di−1], *t 7→ [D] ::[]
∣

∣

}

For the first arm of the next fork we have

id ∈
{∣

∣*h 7→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ D
∣

∣

}

and moreover, for the second arm, we have

(rename tmp *h; l; plunge *t)
∈

{∣

∣tmp 7→ [Di−1], *t 7→ [D] ::[]
∣

∣

}

⇐⇒Ω
{∣

∣*t 7→
{∣

∣[Di−1]++(t ::[D])
∣

∣

}∣

∣

}

using the types of rename, plunge, and the type of l we have by induction hypoth-
esis. Thus, using the type of fork we have

fork {*h} id (rename tmp *h; l; plunge *t)
∈

{∣

∣*h 7→ D, tmp 7→ [Di−1], *t 7→ [D] ::[]
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ D, *t 7→ [Di−1]++(t ::[D])
∣

∣

}

i.e.,
{∣

∣*h 7→ D, tmp 7→ [Di−1], *t 7→ [D] ::[]
∣

∣

}

⇐⇒Ω D :: ([Di−1]++(t ::[D]))

as required. Hence, using the typing of the composition operator, we have that
the second branch of the acond–the composition of both forks–has the total type
specified above. Hence, f(l) ∈ Ci+1 ⇐⇒Ω Ai+1, which finishes the case and the
inductive proof.

Using Corollary 3.17(2), we conclude that

fix (f) = concat ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., ∅ ∪
⋃

i [D
i] ⇐⇒Ω ∅ ∪

⋃

i [D
i]

i.e., [D] ::[D] ::[] ⇐⇒Ω [D]++(t ::[D])

which finishes the proof.

Special Types for Conditional Lenses

In this section, we record some additional types that our conditional lenses inhabit,
which we need for our proof that list filter, defined in Section 7, is total. This
material can be skimmed on a first reading.

The first lemma presents an alternate total type for cond where the target sets in
the types of l1, l2 and the entire cond lens are intersected with an arbitrary set, A.
Recall that the standard type for ccond takes two lenses with type C ∩C1 ⇐⇒Ω A1

and C\C1 ⇐⇒Ω A2 (as well as conversion functions f21 and f12) and produces a lens
with type C ⇐⇒Ω A1 ∪A2. This type is usually the type that we want. However, in
some situations (when reasoning about totality), we need to show a fixed instance
of cond has many different types. The abstract components of some of these types
may be smaller than (A1 ∪ A2), where A1 and A2 appear literally in the syntax

of the ccond instance. The new type presented here allows us to simplify some of
these cases by only considering the lens type that is intersected with the abstract
type we want, reducing the proof burden.
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A.28 Lemma: The cond lens has the following type:
∀C, C1, A, A1, A2 ⊆ V.
∀l1 ∈ (C∩C1) ⇐⇒Ω (A∩A1). ∀l2 ∈ (C\C1) ⇐⇒Ω (A∩A2).
∀f21 ∈ (C\C1) → (C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇐⇒Ω (A∩(A1∪A2)).

Proof. We prove (1) by showing that the cond lens is well-behaved at C ⇋
Ω

(A ∩ (A1 ∪ A2)), and then prove (2) by showing that that the lens is also total if
both l1 and l2 are total. We abbreviate cond C1 A1 f21 f12 l1 l2 as l.
Get: Suppose c ∈ C and lր c is defined. (Again, for brevity, we write l for
(cond C1 A1 A2 f21 f12 l1 l2)). If c ∈ C1, then lր c = l1ր c ∈ (A ∩ A1) ⊆ (A ∩
(A1∪A2)) by the type of l1. Otherwise, lր c = l2ր c ∈ (A∩A2) ⊆ (A∩ (A1 ∪A2))
by the type of l2.

Put: Suppose (a, c) ∈ (A∩ (A1∪A2))×CΩ and lց (a, c) is defined. There are six
cases to consider, one for each clause in the definition, and the result in each case
is immediate from the typing of l1 or l2, as the case may be. Note, in particular,
that the range of f21 falls within the source of l1 in the fourth clause, and similarly
for f12 and l2 in the sixth clause.

GetPut: Suppose c ∈ C and lց (lր c, c) is defined. If c ∈ C1, then lր c = l1ր c,
which, by the type of l1, belongs to (A∩A1). So lց (l1ր c, c) = l1 ց (l1ր c, c) by
either the first or the third clause in the definition of lց. This, in turn, is equal to
c by GetPut for l1. On the other hand, if c 6∈ C1, then lր c = l2ր c, which, by
the type of l2, belongs to (A∩A2). So lց (l2ր c, c) = l2 ց (l2ր c, c) by either the
second or the fourth clause in the definition of lց. This is equal to c by GetPut

for l2.

PutGet Suppose (a, c) ∈ (A∩(A1∪A2))×CΩ and lր (lց (a, c)) is defined. There
are again six cases to consider:

(1) If a ∈ (A ∩ (A1∩A2)) and c ∈ C1, then lր (lց (a, c)) = lր (l1 ց (a, c)). But
l1 ց (a, c) ∈ C1 by the type of l1, so lր (l1 ց (a, c)) = l1ր (l1 ց (a, c)) = a
by PutGet for l1.

(2) If a ∈ (A ∩ (A1∩A2)) and c 6∈ C1, then lր (lց (a, c)) = lր (l2 ց (a, c)). But
l2 ց (a, c) ∈ C2 by the type of l2, so lր (l2 ց (a, c)) = l2ր (l2 ց (a, c)) = a
by PutGet for l2.

(3) If a ∈ (A∩(A1\A2)) and c ∈ (C1)Ω, then lր (lց (a, c)) = lր (l1 ց (a, c)). But
l1 ց (a, c) ∈ C1 by the type of l1, so lր (l1 ց (a, c)) = l1ր (l1 ց (a, c)) = a
by PutGet for l1.

(4) If a ∈ (A ∩ (A1\A2)) and c 6∈ (C1)Ω, then lր (lց (a, c)) =
lր (l1 ց (a, f21(a, c))). But l1 ց (a, f21(a, c)) ∈ C1 by the types of f21 and
l1, so lր (l1 ց (a, f21(a, c))) = l1ր (l1 ց (a, f21(a, c))) = a by PutGet for l1.

(5) If a ∈ (A ∩ (A2\A1)) and c 6∈ C1, then lր (lց (a, c)) = lր (l2 ց (a, c)). But
l2 ց (a, c) ∈ C2 by the type of l2, so lր (l2 ց (a, c)) = l2ր (l2 ց (a, c)) = a
by PutGet for l2.

(6) If a ∈ (A ∩ (A2\A1)) and c ∈ C1, then lր (lց (a, c)) =
lր (l2 ց (a, f12(a, c))). But l2 ց (a, f12(a, c)) ∈ C2 by the types of f12 and
l2, so lր (l2 ց (a, f12(a, c))) = l2ր (l2 ց (a, f12(a, c))) = a by PutGet for l2.
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Hence, l ∈ C ⇋
Ω

A ∩ (A1 ∪ A2). Next we prove that l is total at that type if l1 and
l2 are total, by showing that its get and putback functions are totally defined on
their domains.

We first show that the get function is totally defined on C. Pick c ∈ C. If c ∈ C1

then lր c = l1ր c. As l1 ∈ C ∩ C1 ⇐⇒Ω A ∩ A1, it follows that l1ր c is defined.
Similarly, if c ∈ (C \C1), then lր c = l2ր c. As l2 ∈ C \C1 ⇐⇒Ω A∩A2, it follows
that l2ր c is defined. Hence, lր is a total function.

Second, we prove that the putback function is totally defined on (A∩(A1∪A2))×
CΩ. There are six cases, corresponding to the six cases in the definition of the
putback function:

(1) If a ∈ (A∩ (A1∩A2)) and c ∈ C1, then lց (a, c) = l1 ց (a, c) is defined as l1ց
is total on (A ∩ A1) × (C ∩ C1)Ω.

(2) If a ∈ (A∩ (A1∩A2)) and c 6∈ C1, then lց (a, c) = l2 ց (a, c) is defined as l2ց
is total on (A ∩ A2) × (C \ C1)Ω.

(3) If a ∈ (A ∩ (A1\A2)) and c ∈ (C1)Ω, then lց (a, c) = l1 ց (a, c) is defined as
l1ց is total on (A ∩ A1) × (C ∩ C1)Ω.

(4) If a ∈ (A∩ (A1\A2)) and c 6∈ (C1)Ω, then lց (a, c) = l1 ց (a, f21(c)) is defined
as f21 is a totally defined function with type: (C \ C1) → (C ∩ C1)Ω and l1ց
is total on (A ∩ A1) × (C ∩ C1)Ω.

(5) If a ∈ (A ∩ (A2\A1)) and c 6∈ C1, then then lց (a, c) = l2 ց (a, c) is defined
as l2ց is total on (A ∩ A2) × (C \ C1)Ω.

(6) If a ∈ (A ∩ (A2\A1)) and c ∈ C1, then lց (a, c) = l2 ց (a, f12(c)) is defined
as f12 is a totally defined function with type: (C ∩ C1) → (C \ C1)Ω and l2ց
is total on (A ∩ A2) × (C \ C1)Ω.

Hence, lց is a total function.
We conclude that (cond C1 A1 A2 f21 f12 l1 l2) ∈ C ⇐⇒Ω (A ∩ (A1 ∪ A2)).

The next lemma record types for conditional lenses in special cases where the
conditional always selects one lens or the other (in both directions). In these situa-
tions, we can use a more flexible typing rule that makes no assumptions about the
branch that is never used. The first describes ccond instances where the second
branch is always taken.

A.29 Lemma [Always-False ccond]:
∀C, C1, A⊆V. with C ∩ C1 = ∅.∀l2 ∈ C\C1 ⇐⇒Ω A. ccond C1 l1 l2 ∈ C ⇐⇒Ω A.

Proof. First we argue that (ccond C1 l1 l2) = l2 by showing that their respective
get and putback functions are identical. For any c ∈ C, we must have c 6∈ (C1 ∩ C)
(because it is empty) and so c ∈ (C \ C1). Hence, (ccond C1 l1 l2)ր c = l2ր c.
Similarly, for any (a, c) in A × CΩ, we must have c 6∈ (C ∩ C1). By definition,
(ccond C1 l1 l2)ց (a, c) = l2 ց (a, c).

Since (ccond C1 l1 l2) = l2, the well-behavedness and totality of the ccond lens
follow from the well-behavedness and totality of l2. In particular, since l1 is never
used, we do not need any assumptions about it.

Note that there is no corresponding always-true rule for ccond. Even if C\C1 = ∅,
in the putback direction, the Ω tree still gets sent through l2.
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7.13 Lemma [Well-behavedness]:
∀D, E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅.

inner filter D E ∈ [D1..ω]&[E] ⇋
Ω

[D1..ω]

list filter D E ∈ [D]&[E] ⇋
Ω

[D]

Proof. To start, note that (inner filter D E) is the fixed point of the following
function f from lenses to lenses:

f = λl. ccond E :: ([D1..ω]&[E])
(tl anyE ; l)
(wmap {*h 7→ id,

*t 7→ (cond [E] [] [D1..ω] fltrE (λc. c@[anyD])
(const [] [])
l)})

To shorten the proof, we sometimes abbreviate the entire cond instance as k.
We prove the type for inner filter using Corollary 3.17(1). We assume that

l ∈ ([D1..ω]&[E]) ⇋
Ω

[D1..ω] and show that f(l) also has type ([D1..ω]&[E]) ⇋
Ω

[D1..ω].
The outermost lens is a ccond combinator. We must show that each branch has

the correct type.

(tl anyE ; l)
∈ ([D1..ω]&[E]) ∩ (E :: ([D1..ω]&[E])) ⇋

Ω

[D1..ω]

i.e., E :: ([D1..ω]&[E]) ⇋
Ω

[D1..ω]

wmap {*h 7→ id, *t 7→ k}
∈ ([D1..ω]&[E]) \ (E :: ([D1..ω]&[E])) ⇋

Ω

[D1..ω]

i.e., D :: ([D]&[E]) ⇋
Ω

D ::[D]

The first fact follows from the type of tl with anyE ∈ E, the composition operator,
and the hypothesis about the type of l. To prove the second, we use the type of
wmap. Let m be the total function from names to lenses that maps *h to id, *t to
k, and every other name to id. We show that m ∈ Πn ∈ N .D :: ([D]&[E])(n) ⇋

Ω

D ::[D](n) as follows:

m(*h) = id ∈ D :: ([D]&[E])(*h) ⇋
Ω

D ::[D](*h)
i.e., D ⇋

Ω

D
by the type of id;

m(*t) = k ∈ D :: ([D]&[E])(*t) ⇋
Ω

D ::[D](*t)
i.e., [D]&[E] ⇋

Ω

[D]

by the argument below;

m(n) = id ∈ D :: ([D]&[E])(n) ⇋
Ω

D ::[D](n)
i.e., ∅ ⇋

Ω ∅
vacuously.

For the tail tag, we must show that k, the cond lens, has the lens type [D]&[E] ⇋
Ω

[D]. The concrete predicate and abstract predicates for the conditional are C1 =
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[E], A1 = [], and A2 = [D1..ω]. For the first branch, we have that

const [] [] ∈ [D]&[E] ∩ C1 ⇋
Ω A1

i.e., ([D]&[E]) ∩ [E] ⇋
Ω

[]

i.e., [E] ⇋
Ω

[]

from the type of const. For the second, we have that

l ∈ [D]&[E] \ C1 ⇋
Ω

A2

i.e., ([D]&[E]) \ [E] ⇋
Ω

[D1..ω]

i.e., [D1..ω]&[E] ⇋
Ω

[D1..ω]

by hypothesis. Next we check that the functions fltrE and (λc. c@[anyD]) have the
correct types:

fltrE ∈ ([D1..ω]&[E]) → ([E])Ω
λc. c@[anyD] ∈ ([E]) → ([D1..ω]&[E])Ω

Both facts are immediate. Thus, by the type of cond we have m(*t) = k ∈
[D]&[E] ⇋

Ω

[D]. Additionally since doms(D :: ([D]&[E])) = {{*h, *t}} =
doms([D1..ω]), with Lemma 7.2(1) we have that both types are shuffle closed and
have equal sets of domains. Putting all these facts together, we have that the wmap

instance has type D :: ([D]&[E]) ⇋
Ω

D ::[D] as required. Finally, using the type
of ccond, we conclude that f(l) ∈ ([D1..ω]&[E]) ⇋

Ω

[D1..ω]. By Corollary 3.17(1)
we have fix (f) = inner filter D E has the same type.

The proof that list filter D E ∈ [D]&[E] ⇋
Ω

[D] is identical to the proof
above, that k ∈ [D]&[E] ⇋

Ω

[D], except that we use the type of inner filter

directly rather than our hypothesis about the type of l.

7.14 Lemma [Totality]:
∀D, E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅.

inner filter D E ∈ [D1..ω]&[E] ⇐⇒Ω [D1..ω]

list filter D E ∈ [D]&[E] ⇐⇒Ω [D]

Proof. Note that inner filter D E is the fixed point of the same function f
defined in the well-behavedness proof.

In outline, the proof goes as follows. We start by choosing a sequence of total
type sets T0, T1, . . . . (Recall that each Ti is a set of total types and a total type
is itself a pair (C, A).) Next, we prove a key property of f : that, when we apply
it to a lens possessing all the types in some Ti, the result is a lens possessing all
the types in Ti+1. Next we choose an increasing instance of the sequence—i.e., a
chain τ0 ⊆ τ1 ⊆ . . . where each τi ∈ Ti. We argue that the limit of this increasing
instance,

⋃

i τi, is the total type we want—i.e.,

([D1..ω]&[E], [D1..ω]).

We conclude by Lemma 3.19 that the fixed point of f—i.e., the lens
inner filter D E—has this type, finishing the proof. We now proceed to the
details.

We first define the sequence of pairs of total type sets:

T0 = {(∅, ∅)}
Ti+1 = {([D1..x]&[E0..y], [D1..x]) | x + y = i}
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Let us calculate the first few elements of this sequence explicitly:

T1 = {(∅, ∅)}
T2 = {([D1..1], [D1..1])}
T3 = {([D1..2], [D1..2]), ([D1..1]&[E0..1], [D1..1])}

In the proof, we use some abbreviations to lighten the presentation. We abbre-
viate the type argument to the ccond lens as: C1 = E :: ([D1..ω]&[E]) and the
type arguments to k, the cond lens as: C ′

1 = [E], A′
1 = [], and A′

2 = [D1..ω]. In
each case of the inductive proof below, we introduce local definitions of the source
and target type for the typing we are trying to establish as C and A.

We now prove, by induction on i the fact about f needed to apply Lemma 3.19:
that if l has every total type in Ti, then f(l) has every total type in Ti+1.

For the base case (i = 0), we must first show that f(l) has every total type in the
singleton set T1 = {(∅, ∅)}. This is immediate, since every lens has type ∅ ⇐⇒Ω ∅.

For the induction step (i > 0), we prove that f(l) has every total type in Ti+1,
assuming that l has every total type in Ti. Pick an arbitrary total type τ from
Ti+1. We analyze three cases.

Case x = 0: Recall that the set Ti+1 is {([D1..x]&[E0..y], [D1..x]) | x + y = i}.
The only element τ in this set with x = 0 is the empty total type:

([D1..0]&[E0..y], [D1..0]) = (∅&[E0..y], ∅) = (∅, ∅).

Immediately, the lens f(l) has type ∅ ⇐⇒Ω ∅, finishing the case.
Case x > 0 and y = 0: By construction, τ is of the form (C, A) with C = [D1..x]

and A = [D1..x]. To verify the type of the ccond, we first observe that C ∩ C1 =
[D1..x]∩E :: ([D1..ω]&[E]) = ∅. As a result, the ccond always selects the second
branch in both the get and putback directions. By then always-false typing for
ccond, given in Lemma A.29, it suffices to show that the second branch has type
C ⇐⇒Ω A:

wmap {*h 7→ id, *t 7→ k} ∈ C ⇐⇒Ω A
i.e., [D1..x] ⇐⇒Ω [D1..x]

i.e., D ::[D0..x−1] ⇐⇒Ω D ::[D0..x−1]

Let m be the total function from names to lenses that maps *h to id, *t to k, and
every other name to id. We show that m ∈ Πn ∈ N .D :: ([D]&[E])(n) ⇐⇒Ω D ::
[D](n) as follows:

m(*h) = id ∈ D :: ([D0..x−1])(*h) ⇐⇒Ω D ::[D0..x−1](*h)
i.e., D ⇐⇒Ω D

by the type of id;

m(*t) = k ∈ D :: ([D0..x−1])(*t) ⇐⇒Ω D ::[D0..x−1](*t)
i.e., [D0..x−1] ⇐⇒Ω [D0..x−1]

by the argument below;

m(n) = id ∈ D :: ([D0..x−1])(n) ⇐⇒Ω D ::[D0..x−1](n) ∀n 6∈ {*h, *t}
i.e., ∅ ⇐⇒Ω ∅

vacuously.
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For the tail tag, we must show that the conditional lens, k ∈ [D0..x−1] ⇐⇒Ω

[D0..x−1].
We use the extended typing for cond given by Lemma A.28. The standard type

for cond requires a typing for the branches where the abstract component of each
lens type is the corresponding abstract predicate supplied to cond. For example,
using the standard typing, we would have to show that the second branch, l, has
type [D1..x−1] ⇐⇒Ω [D1..ω]. Unfortunately our induction hypothesis only gives
lens types for l where the length of the abstract list is bounded by x − 1. Notice
however, that since we only want to show that the whole cond instance has a lens
type where the length of the abstract list is at most x − 1, the lens type that
standard type for cond requires for l is certainly stronger than we actually need.
We avoid this problem using Lemma A.28, which only requires a typing for each
branch where the abstract component is calculated from the intersection of the
abstract predicates supplied to cond and the abstract type we wish to show for the
whole lens. In this instance, since the cond lens has concrete predicate C ′

1 = [E]

and abstract predicates A′
1 = [] and A′

2 = [D1..ω], we must prove

const [] [] ∈ [D0..x−1] ∩ C ′
1 ⇐⇒Ω A′

1 ∩ [D0..x−1]

i.e., [D0..x−1] ∩ [E] ⇐⇒Ω [] ∩ [D0..x−1]

i.e., [] ⇐⇒Ω []

and

l ∈ [D0..x−1] \ C ′
1 ⇐⇒Ω A′

2 ∩ [D0..x−1]

i.e., [D0..x−1] \ [E] ⇐⇒Ω [D1..ω] ∩ [D0..x−1]

i.e., [D1..x−1] ⇐⇒Ω [D1..x−1].

The first fact follows from the type of const; the second is immediate by induction
hypothesis. We must also show that the functions fltrE and (λc. c@[anyD]) have
the correct types:

fltrE ∈ ([D1..x−1]) → ([])Ω
λc. c@[anyD] ∈ ([]) → ([D1..x−1])Ω

Thus, k ∈ [D0..x−1] ⇐⇒Ω [D0..x−1].
By the type of wmap, together x > 0 and Lemma 7.2(1), which states that

D ::[D0..x−1] is shuffle closed, we have

wmap {*h 7→ id, *t 7→ k} ∈ D ::[D0..x−1] ⇐⇒Ω D ::[D0..x−1].

Finally, using the always-false type of ccond, we conclude that f(l) ∈ C ⇐⇒Ω A,
finishing the case.

Case x > 0 and y > 0: Here τ has the form (C, A) with C = ([D1..x]&[E0..y])
and A = [D1..x]. The outermost lens in f(l) is a ccond lens. The typing rule for
ccond requires that we prove that the branches have the following types:

(tl anyE ; l) ∈ C ∩ C1 ⇐⇒Ω A
i.e., ([D1..x]&[E0..y]) ∩ (E :: ([D1..ω]&[E])) ⇐⇒Ω [D1..x]

i.e., E :: ([D1..x]&[E0..y−1]) ⇐⇒Ω [D1..x]

which follows from y > 0 using the type of tl and the induction hypothesis.
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For the second branch we must show

wmap {*h 7→ id, *t 7→ k}
∈ C \ C1 ⇐⇒Ω A

i.e., ([D1..x]&[E0..y]) \ E :: ([D1..ω]&[E]) ⇐⇒Ω [D1..x]

i.e., D :: ([D0..x−1]&[E0..y]) ⇐⇒Ω D ::[D0..x−1].

We use the type of wmap, together with the facts that x > 0, Lemma 7.2, which
implies that D :: ([D0..x−1]&[E0..y]) and D :: [D0..x−1], are shuffle closed, and
that the set of domains of trees in two cons cell types are identical.

Let m be the same total function from names to lenses as in the previous case.
We prove that m ∈ Πn ∈ N .D :: ([D0..x−1]&[E0..y])(n) ⇐⇒Ω D ::[D0..x−1](n) as
follows:

m(*h) = id ∈ D :: ([D0..x−1]&[E0..y])(*h) ⇐⇒Ω D ::[D0..x−1](*h)
i.e., D ⇐⇒Ω D

by the type of id;

m(*t) = k ∈ D :: ([D0..x−1]&[E0..y])(*t) ⇐⇒Ω D ::[D0..x−1](*t)
i.e., [D0..x−1]&[E0..y] ⇐⇒Ω [D0..x−1]

by the argument below;

m(n) = id ∈ D :: ([D0..x−1]&[E0..y])(n) ⇐⇒Ω D ::[D0..x−1](n) ∀n 6∈ {*h, *t}
i.e., ∅ ⇐⇒Ω ∅

vacuously.

For the tail tag, we must show that the conditional lens, k has type
[D0..x−1]&[E0..y] ⇐⇒Ω [D0..x−1]. Again we use the extended typing for cond

given by Lemma A.28. We must prove

const [] [] ∈ ([D0..x−1]&[E0..y]) ∩ C ′
1 ⇐⇒Ω A′

1 ∩ ([D0..x−1])
i.e., ([D0..x−1]&[E0..y]) ∩ [E] ⇐⇒Ω [] ∩ ([D0..x−1])
i.e., [E0..y] ⇐⇒Ω []

and

l ∈ ([D0..x−1]&[E0..y]) \ C ′
1 ⇐⇒Ω A′

2 ∩ [D0..x−1]

i.e., ([D0..x−1]&[E0..y]) \ [E] ⇐⇒Ω [D1..ω] ∩ [D0..x−1]

i.e., ([D1..x−1]&[E0..y]) ⇐⇒Ω [D1..ω].

The first fact follows from the type of const; the second is immediate by induction
hypothesis. We must also show that the functions fltrE and (λc. c@[anyD]) have
the correct types:

fltrE ∈ ([D1..x−1]&[E0..y]) → ([E0..y])Ω
λc. c@[anyD] ∈ ([E0..y]) → ([D1..x−1]&[E0..y])Ω

Both typings are immediate. Putting all these facts together, we have

wmap {*h 7→ id, *t 7→ k} ∈ D :: ([D0..x−1]&[E0..y]) ⇐⇒Ω D ::[D0..x−1].

Finally, using the type of ccond, we conclude that f(l) ∈ C ⇐⇒Ω A, finishing the
case and the inductive proof.

To conclude using Lemma 3.19, we must show that the ([D1..ω]&[E], [D1..ω])
is the limit of an increasing instance of elements of T. Let τ0 ⊆ τ1 ⊆ . . . be defined
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as

τ0 = (∅, ∅) ∈ T0

...
τi+1 = ([D1..((i+1)/2)]&[E0..(i/2)], [D1..((i+1)/2)]) ∈ Ti+1

where i/n is integer division of i by n. To show that the limit is the pair of total
types we want, we prove that each set is contained in the other. First, observe that,
for any c ∈ ([D1..ω]&[E]) and a ∈ [D1..ω], we can find an i such that (c, a) ∈ τi

(lifting ∈ to pairs of sets in the obvious way) by choosing i so that i/2 is greater
than the maximum number of elements of D in c, the number of elements of E
in c, and the number of elements in a. The other inclusion is immediate: every
τi is a subset of ([D1..ω]&[E], [D1..ω]) (lifting ⊆ to pairs of pairs of sets twice,
pointwise).

The proof that list filter D E ∈ [D]&[E] ⇐⇒Ω [D] is identical to its proof
of well-behavedness, except that we use the total type of inner filter.
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