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ABSTRACT

Property-based testing (PBT) is a testing methodology where users
write executable formal specifications of software components and
an automated harness checks these specifications against many
automatically generated inputs. From its roots in the QuickCheck
library in Haskell, PBT has made significant inroads in mainstream
languages and industrial practice at companies such as Amazon,
Volvo, and Stripe. As PBT extends its reach, it is important to un-
derstand how developers are using it in practice, where they see
its strengths and weaknesses, and what innovations are needed to
make it more effective.

We address these questions using data from 30 in-depth inter-
views with experienced users of PBT at Jane Street, a financial tech-
nology company making heavy and sophisticated use of PBT. These
interviews provide empirical evidence that PBT’s main strengths
lie in testing complex code and in increasing confidence beyond
what is available through conventional testing methodologies, and,
moreover, that most uses fall into a relatively small number of high-
leverage idioms. Its main weaknesses, on the other hand, lie in the
relative complexity of writing properties and random data genera-
tors and in the difficulty of evaluating their effectiveness. From these
observations, we identify a number of potentially high-impact areas
for future exploration, including performance improvements, dif-
ferential testing, additional high-leverage testing scenarios, better
techniques for generating random input data, test-case reduction,
and methods for evaluating the effectiveness of tests.

1 INTRODUCTION

Property-based testing (PBT) is a powerful tool for evaluating soft-
ware correctness. The process of PBT starts with a developer decid-
ing on a formal specification that they want their code to satisfy
and encoding that specification as an executable property. An au-
tomated test harness checks the property against their code using
hundreds or thousands of random inputs, produced by a generator.
If this process discovers a counterexample to the property—an input
value that causes it to fail—the developer is notified.

The research literature is full of accounts of PBT successes, e.g.,
in telecommunications software [2], replicated file [31] and key-
value [8] stores, automotive software [3], and other complex sys-
tems [30]. PBT libraries are available in most major programming
languages, and some now have significant user communities—e.g.,
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Python’s Hypothesis framework [37] had an estimated 500K users
in 2021 according to a JetBrains survey [32]. Still, there is plenty of
room for growth. Half a million Hypothesis users represent only 4%
of the total Python user base, whereas the Hypothesis maintainers
estimate [15] that the “addressable market” is at least 25%. (For
comparison, the most popular testing framework, pytest, has 50%
market share.)

To help move PBT toward wider adoption, the research commu-
nity (ourselves included) needs to better understand the practical
strengths and weaknesses of PBT and the places where further
technical advances are required. Existing work in the software engi-
neering literature has studied how other bug-finding tools are used
in practice (see §6), but PBT offers a unique set of tools and warrants
its own investigation. Accordingly, we interviewed PBT users at
Jane Street, a financial technology firm that makes significant use
of PBT, to learn how they use PBT, where they see its value, and in
what ways they think it might be improved. Concretely, we aimed
to answer two main questions:

RQ1: What are the characteristics of a successful and mature PBT
culture at a software company?

RQ2: Are there opportunities for future work in the PBT space
that are motivated by the needs of real developers?

The first question aims both to offer guidance for engineers and
managers considering whether PBT might fit well in their organi-
zations and to provide a basis for evaluating and comparing PBT
technologies. The second question aims to help shape further re-
search to maximize the impact of PBT.

Our findings contribute a wide range of observations about de-
velopers’ experiences with PBT, adding nuance to the research
community’s understanding of PBT’s real-world usage. Through
our interviews, we gleaned several new insights about the situa-
tions in which property-based tests are deployed in practice. We
found that developers use PBT mainly for testing components of
complex systems, expecting the tests to provide greater confidence
than conventional example-based unit tests yet still run quickly as
part of their normal test suite. Interestingly, we also found that de-
velopers leverage PBT for the secondary benefit of communicating
specifications: properties serve as a form of persistent documen-
tation, demonstrating the semantics of the software to readers—a
benefit less commonly discussed in the literature. Finally, we found
that at Jane Street, PBT is primarily used in “high-leverage” sce-
narios, where properties are especially easy to identify and test.
Beyond deepening our understanding of when and why developers
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reach for PBT, we also found that PBT technology can be improved
in several ways to better support developers. In particular, study
participants reported struggling to generate distributions of test
examples that they were convinced effectively exercised the prop-
erty, and sometimes viewed the process of designing random data
generators as a distraction. They also lamented the lack of visible
feedback on the effectiveness of their testing.

From these findings, we extract a list of opportunities for future
research, including understanding the nuances of PBT performance
requirements, exploring better support for differential testing, and
expanding the high-leverage scenarios in which PBT is most effec-
tive. We also highlight opportunities around improving languages
for random data generators, designing interfaces for test-case reduc-
tion (“shrinking”), evaluating testing success, and using developer
feedback to improve the testing process.

We begin with background on PBT (§2), then present our study
methodology and discuss of potential threats to validity (§3). We
present the study’s main results (§4) and detail lessons learned in
the form of observations (§5.1) and research opportunities (§5.2)
before discussing related work (§6) and concluding (§7).

2 BACKGROUND

Properties are executable specifications of programs. For example,
suppose a developer is working on a new implementation of binary
search trees (BSTs)—tree structures where each internal node is
labeled with a data value that is greater than any labels in its left
subtree and less than any in its right subtree. They know that all the
operations on BSTs (insert, delete, etc.) must preserve this validity
condition: given a valid BST, they should always produce a valid BST.
To enforce this condition, they might write the following test for
the insert function using OCaml’s Core QuickCheck library [19]:

let test_insert_maintains_bst () =
QuickCheck. test
(both int_gen (filter valid_bst tree_gen))
(fun (x, t) -> valid_bst (insert t x))

The second argument to QuickCheck. test (on the last line) is the
property: It says, given an integer x and a BST t, that insert t x
should return a BST. The first argument to QuickCheck. test is a
random data generator, which here generates a pair of both an int
and an arbitrary BST (obtained by generating an arbitrary binary
tree using tree_gen and using filter to discard trees that are not
valid BSTs). QuickCheck. test randomly generates hundreds or
thousands of pairs (x, t) and invoke the property to check each
pair. If this check ever fails, we have discovered a bug in insert.
Generators like tree_gen are usually written using an embedded
domain specific language (eDSL) provided by the PBT framework,
which includes base generators like int_gen and combinators like
both that can be used to create generators for complex data types
from generators for their parts. The generator language is embedded
in OCaml (in this case), giving generator writers access to the full
power of the host language. Generators can require some careful
tuning to find bugs effectively. This is often because properties have
preconditions that define what it means for an input to be valid. For
example, “filter valid_bst tree_gen”is a correct generator of
BSTs: it simply discards trees until tree_gen happens to generate
a valid BST. However, this means that the majority of the generated
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trees will be discarded, wasting precious generation time. A better
strategy is to hand-craft a generator that only produces valid BSTs,
but such generators can be nontrivial to write.

If the property ever fails during testing, the failing value is pre-
sented to the user. This value might be overly complex, with parts
that are irrelevant to the failure of the property, so most PBT frame-
works provide tools for test-case reduction [36], usually called
shrinking [29] in the PBT literature.

The BST example above uses OCaml’s QuickCheck library, but
the general approach—a module under test, a concise property, a
data generator, and a shrinker—is shared by all PBT tools, from
the original Haskell QuickCheck [11] to Python’s Hypothesis li-
brary [37] and beyond. The power of PBT comes from the ability
to test a huge number of system inputs with a single specification
and generator, often uncovering edge and corner cases that the
developer might not have considered. It thus hits a useful midpoint
between example-based unit tests and heavier-weight formal meth-
ods, retaining the precision of traditional formal specifications and
their ability to characterize a system’s behavior on all possible in-
puts, but offering quick, best-effort validation instead of requiring
developers to write formal proofs.

Of course, PBT is only one among many testing methodologies.
Two primary alternatives are especially relevant to our study.

Example-based unit testing [13] (as supported by pytest, JUnit,
and other frameworks) evaluates a program by testing it on indi-
vidual example inputs. For each input, the developer writes down a
short snippet of code that checks that the program’s output is cor-
rect for this input. (We call this style “example-based unit testing”
throughout the paper, rather than just “unit testing,” because PBT
is also typically used to test individual units within larger systems.)

Fuzz testing, invented by Miller [4, 39] and popularized by tools
like AFL [56], also aims to find bugs by randomly generating pro-
gram inputs. The technical foundations of fuzz testing and PBT
overlap to alarge (and increasing [34, 53]!) degree, but existing tools
from the two communities tend to be tuned for different situations:
fuzz testing is typically used in integration testing of complete sys-
tems, to detect catastrophic bugs like crash failures and memory
unsafety, while PBT is used to flush out logical errors in smaller
software modules.

3 METHODOLOGY

To address the research questions described in §1, we conducted an
interview study of developers who use PBT in their work. This study
was conducted in accordance with the ACM SIGSOFT Empirical
Standards for qualitative surveys.

3.1 Population

As the setting for our study, we chose Jane Street, a financial tech-
nology firm that uses PBT extensively. We recruited 31 participants
and carried out 30 interviews (one was a joint interview). Partici-
pants were recruited by a Jane Street developer who volunteered
to coordinate the study: they found instances of PBT in the source
tree and contacted the authors of those libraries; announced the
study on an internal blog; and carried out snowball sampling by
asking participants for others we should talk to. All participants
had some experience with PBT, and most self-reported as having



Property-Based Testing in Practice

Table 1: Participant backgrounds. Columns 3-5 reflect op-
tional questions; participants that didn’t respond to these
are listed at the bottom. *Measured in years. **Stated com-
fort with PBT on a Likert scale: 7 most comfortable, 1 least.
TParticipant indicated skepticism of PBT. *Pair interview;
coded as one participant. (At Jane Street’s request, we do not
associate individuals with their teams or company divisions.)

ID Role SE Exp.* PBTExp.* Comfort**

1 Tester 12 3 I (6)
3 Maint. 22 17 I (7)
4 Maint. 15 16 I (6)
5 Tester 5 7 I (6)
6 Tester 16 16 I (7)
9 Tester 4 4 | (5)
11 Maint. 10 7 I (6)
14  Tester 8 7 | (5)
15  Tester 2 2 I (6)
16  Tester 8 8 || 3)
18  Tester 1 1 | (5)
20" Tester 5 2 I (5)
23 Tester 6 6 | (5)
25%  Testers 26 20 [ (5)
26  Tester 2 2 I (6)
28  Tester 7 1 | (5)
29  Tester 4 5 I (6)

Other Testers: 2, 7, 8, 10, 12, 13, 17, 19T, 21, 22, 24, 27, 30

positive experiences. We also explicitly asked for participants who
reported neutral or negative feelings about PBT, but they were
difficult to find: most felt they did not have enough experience to
speak to those feelings. Two self-described PBT-critical developers
participated in the study. More details about the study participants
can be found in Table 1.

Most of those we interviewed were testers (26/30), who use PBT
tools in their day-to-day work, but we also spoke to several main-
tainers (4/30) who play a role in building and maintaining Jane
Street’s PBT infrastructure. These two groups were given different
prompts (see below), reflecting our expectation that the maintain-
ers would be able to offer a more “global” perspective, but their
responses were coded uniformly since they address the same re-
search questions.

Participants who answered an optional background question-
naire had between 1 and 26 years of professional Software Engineer-
ing experience (median 7) and between 1 and 20 years using PBT
(median 6). This wide range of experience (for PBT, almost as wide
as possible, since the first paper on PBT is only 23 years old! [11])
also means we heard from developers at many different points in
their careers and with differing levels of software development
experience. When asked to rate their comfort with PBT on a Likert
scale, these participants were overall quite comfortable with PBT
(median 6 out of 7): all but one were at least “somewhat comfortable”
(5 out of 7). Working with developers who are already relatively
fluent users of PBT allowed us to benefit from their well-informed
ideas about how to make PBT better, as well as their frustrations
and challenges.
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Jane Street’s overall financial operations are supported by a di-
verse set of software engineering efforts. We spoke to developers
working on core data structures, distributed systems, compilers,
graphical interfaces, statistical computation, and even custom hard-
ware. Study participants spanned fifteen teams in four main areas:
Trading (2/30, across 2 teams), working directly with traders to
develop technology specific to individual trading desks; Trading
Infrastructure (13/30, across 5 teams), building platforms to sup-
port Jane Street’s trading; Quantitative Research (5/30, across 2
teams), writing software to enable research on trading algorithms;
and Developer Infrastructure (11/30, across 6 teams), designing
tools and languages upon which Jane Street’s applications are built.
Jane Street developers primarily work in OCaml, a programming
language with strong typing, good mechanisms for modularity,
and a focus on performance. OCaml is thought of as a functional
language, but it has strong support for imperative programming as
well.

3.2 Protocol

We conducted a semi-structured one-hour interview with each
participant; Goldstein and Cutler led the interviews. For testers, the
prompts were:

(1) Tell us about a noteworthy time that you applied PBT.
(a) What kinds of properties did you test?
(b) How did you generate test inputs?
(c) How did you evaluate the effectiveness of your testing?
(d) What did you do to shrink your failing inputs?
(2) Which parts of the PBT process are the most difficult?
(3) What role does PBT play in your development workflow?
(4) To whom would you recommend PBT?
(5) In what contexts is PBT most useful?
(6) Is there anything that would make PBT more useful to you?

The script was designed to attain depth by encouraging reflection
on real, memorable experiences with PBT. It evolved somewhat
over the course of the study, allowing us to validate interesting or
unexpected observations from earlier interviews.

A separate script was used with maintainers:

(1) Have you seen the type of adoption that you want from your
PBT tools?

(2) How can QuickCheck be improved?

(3) What do you think it would take to get everyone at Jane
Street using PBT? Would that be a good thing?

(4) What do you hope we’ll learn from this study?

Time permitting, we also asked maintainers about their use of PBT.

We did not explicitly interview until saturation; we simply tried
to recruit a reasonably sized group that was representative of PBT
users at the company. However, as we neared the end of the study
we felt we were no longer learning about new aspects or perspec-
tives on PBT, and we saw convergence on many of our findings (as
evidenced by the numbers we report in §4). Thus, we do not expect
there are significant holes in our results.

Once the interviews were complete, they were transcribed using
an automated transcription service [42] and analyzed to extract im-
portant themes following a thematic analysis process [7]. Goldstein
and Cutler carried out an open coding pass (reading through the
transcripts and assigning thematic codes as they went). The codes
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we chose focused on participant goals, benefits of PBT, challenges
encountered, and opportunities for improvement. Once the set of
codes stabilized, they were validated by a third co-author, then clar-
ified by the whole team to obtain a final set of clean codes. Finally,
one co-author performed an axial coding pass (reading through
the transcripts and codes again to make connections and ensure
consistency) with the updated codebook. Our codebook is available
online'.

3.3 Threats to Validity

While our study covered a wide variety of software teams and tasks,
it should be noted that participants mostly described using a single
PBT toolset, in a single language and software development ecosys-
tem. Our findings may under-represent the usage patterns and
challenges experienced by those working with other PBT toolsets
in other languages. To help us develop findings that generalize
beyond the Jane Street toolset, we designed our interview protocol
to focus considerable attention on the conceptual and methodolog-
ical aspects of PBT, rather than on details of OCaml’s QuickCheck
implementation or specifics of how it is used at Jane Street. (In the
cases where we make observations that are toolset-specific, e.g.,
where we know tools outside of OCaml address some of the prob-
lems we observed, we state this explicitly.) In addition, participants
were mostly experienced developers who were comfortable with
PBT. This means that our study under-reports the experiences of
novice developers. Finally, as discussed above, we did not measure
saturation as interviews progressed, so there is a chance that more
interviews may still have uncovered new insights.

Another threat comes from the inherent limitations of inter-
view studies. For one thing, participants may not always accurately
recall the particulars of their experiences with tools. We did our
best to mitigate this threat by asking developers to tell us about
specific experiences—a standard technique for studies like ours.
Additionally, our own biases as interviewers may naturally have
skewed the results; Goldstein and Cutler, who carried out the inter-
views, and Pierce and Head, who also participated with additional
questions, are all property-based testing researchers who have a
vested interest in the outcome of the study. Outcomes that show
PBT in a positive light may have unintentionally been highlighted,
and criticisms that we have addressed in our prior work may have
received extra attention.

4 RESULTS

We now present our findings. We start by describing the benefits
that PBT delivered to developers and how it fit with the other testing
approaches they used. Then we describe in detail their experiences
writing specifications, designing generators, debugging, and evalu-
ating testing success, focusing both on challenges they experienced
and on opportunities for improving PBT tools and workflows.

4.1 Benefits of PBT

Asmight be expected, the primary reason participants used PBT was
to assess whether their code was correct. Participants often used
PBT to validate widely used or mission-critical code. For example,
one participant described using PBT for code that was “used in
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50,000 places across the code base” to establish reliable behavioral
contracts for library consumers (P13). Another participant used
PBT to check software that interacted with information they were
“sending to the [stock] exchange” (P25), which, should it contain
errors, could incur serious financial costs. An advantage of PBT
in these cases was its ability to explore edge cases (mentioned by
10/30) since, in the words of one participant, “the bugs are always
going to happen in cases you didn’t think of” (P21).

For many participants, PBT served to increase confidence that
their software was robust. They described code tested with PBT as
“solid” (P6, P28), and some (9/30) explicitly mentioned that PBT in-
creased their “confidence” that the code was correct. One described
using PBT when they “wanted peace of mind” (P11). Confidence
was accompanied by material evidence of success: a third of partic-
ipants (10/30) said their property-based tests found bugs that they
had not found via other methods.

A less obvious benefit of PBT was its ability to help participants
better understand their work. One participant described properties
as tools that “force [the developer] to think clearly” (P30) about
their code, and another pointed out that sometimes properties fail
because the specification (rather than the code) is wrong (P10).
In such cases, failing tests can highlight gaps in the developer’s
understanding of the problem space that could lead to issues later.

Outside of the testing loop, properties were useful for docu-
mentation and communication (12/30). One participant noted that
properties “are part of the interface and part of the documentation”
(P3) and emphasized that, unlike other documentation, properties
never fall out of date: whereas a textual description in a comment
might drift from the code’s actual behavior, a property is repeatedly
re-checked as the code changes. Many also talked about the value
of PBT in the code review process (18/30) as a compact way to
express what a particular program does. One remarked: “I feel like
[PBT] is very nice for review...I really dread seeing 10,000 lines of
tests where you just need to spend hours to read code and under-
stand what’s going on... And I think, if there is a QuickCheck test
and you look at the property that’s been tested, which is usually
much shorter... it gives you much more confidence that the code is
correct.” (P19)

The benefits of PBT were such that even those who were critical
of it found it to be beneficial in some situations. During the recruit-
ing process we tried to explicitly recruit participants who said they
did not like PBT; we found two (P19 and P20), but the criticism
in their interviews turned out to be constructive suggestions that
were echoed by PBT’s proponents as well, and both primarily spoke
about situations where PBT was valuable.

Moreover, some participants who liked PBT really liked it: one
said that they “use QuickCheck for everything” (P13) and another
asserted that “everyone should be aware of it” (P27). Yet another
participant argued that “[PBT] is so useful that it’s worth trying
to reorganize your code into the form that it is applicable. PBT is
so helpful that if you can reinvent things that way, you should”
(P10) Several participants (8/30) also talked about evangelizing PBT,
encouraging others to use it and increasing its adoption across the
organization.

We found that this sort of evangelism benefited all parties: PBT
becomes more useful as more people on a team or in an organization
use it. A culture of supporting PBT can save work: P24 and P27
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both noted that PBT would be easier to use if more developers in
the organization provided generators for the types exported by
their modules, making it much easier to test code in other modules
that uses those types. In addition, treating property-based tests as
documentation, as many (12/30) did, requires that others in the
organization can read and understand such documentation.

4.2 Comparisons to Other Testing Approaches

The most common approach to testing at Jane Street is not PBT,
but rather an example-based unit testing framework called “expect
tests” [40]. Expect tests are basically conventional example-based
unit tests with editor integration that helps developers create unit
tests from the outputs that the system produces. With expect tests,
developers add code to the system under test that that logs in-
teresting data to the standard output channel; the expect testing
framework then checks that the output matches the output string
that was captured from the previous run of the system—it is up
to the developer to decide which output is intended. Expect tests
are integrated into Jane Street’s editor workflow, and they are used
pervasively in much the same way as frameworks like pytest and
JUnit are used in other languages. Thus, we can use comparisons
with expect tests as a proxy for comparisons with example-based
tests in general where the specifics of expect tests are not relevant.

From a legibility perspective, PBT was sometimes seen as better,
sometimes worse than expect tests. Expect tests were described as
more transparent and “often easier to understand” (P5). P18 said
“expect tests...explain what they’re doing to a better degree. And
it’s easier for someone to come in and review my test,” and P27
made a similar point. But expect tests can sometimes go past from
“transparent” to just verbose. P17 complained that reading a whole
output string was onerous, and another participant complained
“[with expect tests] it’s easy to get into a mode where you just like
write a test, and you just print out a bunch of crap. And then it’s
really annoying to like code review that test because there’s just
too much stuff” (P7). Properties are more concise.

PBT and expect tests also present different strengths and weak-
nesses when it comes to test writing. One participant said that
writing an individual expect test is “way easier than writing invari-
ants,” but they highlighted that at the scale of a whole test suite
they “love not writing specific unit tests cases” (P13).

Ultimately there was no universal preference for properties or
expect tests—both should be available in a developer’s toolkit. We
might infer from participant responses that when code is simple
enough and examples communicate its behavior well enough, ex-
pect tests are an attractively lightweight option. In cases where
the code is particularly difficult to get right or where writing out
enough examples becomes tedious, it seems PBT may be a better
choice.

One area where properties seem to be at a clear advantage over
expect tests is in the confidence they provide developers. P25 re-
marked of Jane Street developers that “[they] go to randomized
testing when [they’re] not so confident of what [they’ve] done.”
As discussed above, around a third of participants talked directly
about PBT building confidence, and the same proportion reported
PBT finding bugs that had not been found with other methods.
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Expect tests and PBT were both used to test individual software
units during development. PBT was almost always described as
running in Jane Street’s build system, and many developers actu-
ally test their properties “locally after each edit” (P2) Participants
described strict time budgets for PBT—no more than “30 seconds”
(P27) and as low as “50 milliseconds” (P11)—to ensure it would not
slow down the build. These time budgets serve to keep PBT from
triggering the 1-minute-per-library timeout that many Jane Street
developers set for their unit test suite (P7).

Alongside these fast-turnaround unit testing tools, developers
also used fuzzing tools like AFL [56] and AFL++ [20] for integration
testing. A third of participants (10/30) mentioned fuzzing, and a few
(3/30) described using AFL alongside PBT as part of their testing
process. In contrast to the strict timeouts set for expect and property-
based tests, one participant described a fuzzer that was forgotten
and left running for a year and a half on a spare server (P9). Others
did not run fuzzing this long, but still considered it to be running
“out of band” (P28), outside of the normal continuous integration
and at time scales on the order of hours or days. The upshot is that
fuzzing tools are given much longer to run than PBT tools.

4.3 Writing Specifications

The previous sections have dealt with PBT at a high level; we now
begin a deeper dive into the specifics of the PBT process and how
developers described actually using PBT tools. The first step in this
process is defining one or more properties to test. While participants
did describe struggling with this stage, many ultimately developed
powerful strategies for finding properties.

Many participants (16/30) said the process of writing specifica-
tions slowed their progress. P4 summed it up like this: “I think the
most common failure mode is actually not knowing what properties
to test.” Challenges ranged from systems that seemed not to have
properties at all—P1 talked about “a server that serves queries...and
has some...nuanced behavior” that is not compatible with “logical
properties”—to systems whose properties were hard to articulate
in the form of QuickCheck tests: “With [example-based unit tests],
I kind of look at it, I can just make a snap judgment as to whether
this is okay or not. Trying to formalize that judgment sometimes
can be very difficult” (P2)

Challenges in articulating properties can come from the way code
is written. P7 explained that mutable state (e.g., a hidden variable
that may change between calls to the same function) gets in the way
of writing properties: “there’s... this hidden state component. .. that
kind of makes it harder for me to think about what are the right
laws” P22 also pointed out that “integrating the outside world
and...dealing with the interaction of very large and complicated
systems” makes it less clear how to “meaningfully test with PBT”
(These findings are not surprising. It is well known that code that
interacts with its environment is also a challenge for testing in
general, not just PBT: stateful code uses mutable data structures
such as hash tables, which might introduce differences between
runs of the same test if the state is not reset properly; and effectful
code might rely on external files, databases, or networks, which
may not be safe to access over and over during testing.)

Despite these difficulties, the developers we spoke to were gener-
ally enthusiastic about PBT. One might therefore wonder: Did they
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simply forge ahead regardless, or did they have specific techniques
for circumventing the difficulties of writing specifications?

What we found was that developers often succeeded in apply-
ing PBT by being opportunistic in their choice of when to apply
it. Rather than try to apply PBT to every program at all times,
participants looked for situations where it offered high leverage:
more confidence for less work. Some participants described this in
general terms as “go[ing] for the low hanging fruit” (P2) or finding
places where “the properties are sort of obvious” (P28), but many
enumerated specific situations where they would reach for PBT.

Classical Properties (11/30). Certain forms of properties are fa-
miliar from the PBT literature and from library documentation for
PBT frameworks. These include mathematical properties (e.g., the
commutativity of addition), properties drawn from CS theory (e.g.,
repeated sorting has no effect), and properties that naturally fall
out of a data structure’s invariants (e.g., the ordering condition of a
BST). These properties may be more accessible because they are
naturally top-of-mind.

Round-Trip Properties (11/30) are also common in the literature;
we heard about them so much more often than the other classical
cases that they seem worth calling out on their own. These proper-
ties check that a pair of functions are inverses of one another—for
example, parsing and pretty-printing or encoding and decoding
functions. This situation is easy to notice and easy to test since the
properties are incredibly succinct (you call one function, then its
inverse, and then check that the final result matches the original
input), so round-trip properties are a popular choice.

Catastrophic Failure Properties (7/30). Rather than write logical
specifications, some participants used PBT to try to provoke cata-
strophic failures such as assertion failures and uncaught exceptions.
In general, these kinds of properties provide less confidence in code
quality (there can still be logical errors, even if the code does not
crash), but they help to rule out worst-case scenarios and they are
easy to write. (These kinds of specifications are identical to the ones
often used for fuzzing; the line between the techniques is blurry,
but since the participants were using PBT tools—including complex
generators—and testing small units of software, we still consider
this relevant for our purposes.)

Differential Properties (17/30). A “differential property” (in sense
of differential testing [25]) compares the system under test to a
reference implementation of the same functionality that serves as
a specification; these are often also called model-based properties
(c.f. model-based testing [54]), especially when the reference imple-
mentation is designed to be an abstract model of the original code.
Differential properties were by far the most widely implemented
kind of property. Differential properties were described as a “natural
place to use property based testing” (P3)—indeed, one participant
remarked that PBT was challenging in a particular situation in part
because a good reference implementation was not available (P1).

The common theme of the high-leverage scenarios described
above is the availability of a succinct abstraction that can be used
in writing a property. These PBT scenarios were summed up by
P9 with the following mantra: “[PBT is] most useful when...you
have a really good abstraction with a complicated implementation”
We discuss how these high-leverage scenarios should be taken into
account to accelerate research in PBT in §5.
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4.4 Generating Test Data

Participants had several goals for generating inputs. First and fore-
most, many participants (17/30) talked about needing to generate
values that satisfy some precondition. This can be extremely impor-
tant for effective testing: if too few of the generated values satisfy
the property’s precondition, then testing will fail to exercise the
code in interesting ways; in the worst case, it may even report false
positives. A few of the preconditions mentioned by participants
are easy to satisfy randomly—for example non-empty strings or
lists—but most are quite hard to satisfy: valid postal addresses, well-
structured XML documents, red-black trees, and syntactically valid
S-expressions are extremely unlikely to be generated by a naive ran-
dom generator. Participants also described test data requirements
going beyond precondition validity. Some (5/30) said they wanted
their test data to be “realistic”—i.e., similar to the distributions of
data the application was likely to see in the real world. Others de-
scribed heuristics for the distribution of the input data, for example
generating lists or trees of a “reasonable size” (P9).

Participants described a few different ways that they generated
inputs. Most talked about either handwritten random generators
(19/30), which are the default approach in libraries like QuickCheck,
or derived generators (19/30), which are inferred based on the types
of the data to be generated (e.g., the type int 1ist implies a generic
generator for lists of integers).

The need for handwritten generators seemed to be a source of
friction for many participants. P6 said that writing generators for
data that satisfies property preconditions is “the biggest annoyance
with trying to use QuickCheck” and many participants thought
of writing generators as “tedious” (6/30) or “high-effort” (7/30). P2
described the task of writing generators as intruding into their de-
velopment process and contributing to a general perception of PBT
as “high cost and low value” Since PBT was usually described as an
integral part of the development process, rather than as a separate
quality-assurance task, it makes sense that requiring detours into a
lengthy generator design process might make PBT less desirable.

Besides requiring significant effort to use, available tools for writ-
ing generators by hand do not easily enable developers to produce
precondition-satisfying values that are also well distributed in the
way they would like. Writing a precondition-satisfying generator
on its own can be a large task—whole papers have been written
about generators for a single complex data type [43]—and account-
ing for distributional considerations adds even more friction. P13
said, “there’s a tension in...all these handwritten generators be-
tween ‘I want kind of coverage of everything’ and ‘T want coverage
that is realistic for most inputs.”” As a solution, P13 suggested that
one might be able to carefully combine two different handwritten
generators to achieve these competing goals, but thought “that way
lies madness”. Other participants had an idea of the kinds of values
they wanted to generate more or less frequently, but they were
not sure how to get there: “What should [the probabilities in my
generator] look like?...I'm sure if I studied probability and statis-
tics and fully understood how the QuickCheck generating system
worked, I could give better guesses. But all my guesses...they’re
not educated guesses. They’re just random... And that’s a little bit
of a mental strain.” (P20)
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In Jane Street’s ecosystem, derived generators are enabled via
the ppx_quickcheck library, which provides a preprocessor that
runs before the compiler and synthesizes generator code from type
information. Ideally, this approach is totally automatic, providing a
generator without any additional user input, and it was described
fondly by participants. Many included it in their workflows (19/30),
and one called it “f***ing amazing” (P5). P13 went so far as to suggest
that “you shouldn’t really be handwriting generators, you should
be changing the structure of your type [to improve generation].”
(For example, if a function being tested takes an int flag but the
only valid values are @, 1, and 2, then replacing int with an appro-
priate enumerated type causes ppx_quickcheck to derive a better
generator.) Others (7/30) leveraged a combination of derived and
handwritten generators, using derived generators as a foundation
on which to build more complex generator programs.

For both handwritten and derived generators, Jane Street devel-
opers recognized opportunities for tool improvements. P4 described
the process of hand-writing a generator for a mutable data structure
as “overwhelming,” and P6 suggested that libraries could do a better
job supporting that use case. As for improving PPX-derived genera-
tors, P26 wanted better support for generating values of generalized
algebraic data types (GADTs), special types in OCaml and some
other languages that can express fine-grained properties of data.

4.5 Understanding Failure

Debugging is often tricky, but participants described ways that
tracking down bugs detected by PBT can be especially so. One
participant described their debugging process: after finding a large,
unwieldy counter-example with PBT, “you have to pull that failure
into a separate sort of regression test... which runs the same infras-
tructure but does it with much more detail... Having done that, it
is still sometimes unclear—like what about this example actually
causes us to fail?” (P1) This is an instance of a broader problem:
random test generators often produce failing examples that are
too large to make sense of during debugging. To help developers
understand failing examples, PBT frameworks offer shrinkers that
transform large inputs into smaller inputs that (presumably) intro-
duce the same bug. One participant in our study deemed shrinking
“necessary” (P15), and two who implemented their own ad-hoc PBT
frameworks (P8 and P21) insisted that shrinking was one of the
most important features they implemented.

That said, participants found it difficult to use the shrinking
functionality in QuickCheck, which resembles shrinking in many
PBT frameworks. In such frameworks, shrinking is achieved by
having users manually write functions that incrementally reduce a
large value (e.g., a string, list, or other more complex data structure)
to a smaller one that triggers the same failure. Participants saw
writing shrinkers as an undesirable activity: one plainly stated, “I
hate writing shrinkers” (P4). One challenge of writing shrinkers
was writing them in a way that preserved important non-trivial
invariants: “It’s easy to write a shrinker that accidentally does not
preserve some invariant, and that makes your test fail” (P13) This
led one participant to ask for a “generic solution [for shrinking],
rather than having the user write shrinkers” (P10).

A few participants also described wanting more information
from the shrinking process—for example, the progressively smaller
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intermediate values that were found during shrinking. P1 said “the
shrinker gets it right...but [it’s] still useful to see the evolution”

4.6 Understanding Success

Property-based testing not only requires a developer to understand
test failures; it also requires developers to understand whether
passing a test actually means the software is correct. If the inputs
provided by the test harness fail to adequately exercise buggy code,
a property-based test may pass misleadingly. One participant de-
scribed this situation, recalling a bug in published code that their
property-based tests failed to catch because the generator was “not
generating the case that [they] had in mind” (P19). P14 worried
they could not trust their generators because they had “no idea
what it’s generating.” (P14)

But, while participants understood that, in principle, tests could
pass erroneously, 11 of them—more than a third—said they did not
think as hard as they should about testing effectiveness, or whether
they had adequately tested their software with their generators.
Some (3 of the 11) reported seeing their property catch a couple
of bugs and deciding that they did not have to improve their prop-
erties any further; the rest trusted that the generators provided
by OCaml!’s QuickCheck library or the ones they derived or wrote
themselves would be good enough. While this group is a minority
of our sample, even a signal of this size is striking: PBT tools such
as derived generators should make it easy for developers to get
started; they should not (but evidently sometimes do) discourage
developers from being critical of their test suite.

On the other hand, several participants described techniques for
validating their PBT tests:

Mutation Testing (7/30). Some participants intentionally added
bugs to their code and checked that their tests successfully found
those bugs. This technique is standard in the testing literature [44,
47] and used in testing benchmarks such as Magma [27] and Etna [50].

Example Inspection (8/30). An even simpler way to assess a gen-
erator’s distribution is to look at a handful of examples that the
generator produces; one participant (P26) even designed a small
utility to graphically render one example at a time, to make them
easier to understand at a glance.

Code Coverage (2/30). Participants evaluated the code coverage
achieved by their tests and used code coverage measurements as
an indication that their properties were thoroughly exploring the
space of program behaviors.

Property Coverage (1/30). Another participant measured coverage
not of the system under test, but of the property itself. This is a
weaker measurement, since it does not say anything about the
system under test, but it is much easier to make because it can be
measured without complex tooling.

A couple of participants (2/30) compensated for gaps in their
property-based tests by supplementing them with example-based
unit tests. In these cases, example-based tests were written to test
complementary functionality that could not be easily tested with
properties. As one participant put it, “it’s kind of not a good idea to
use QuickCheck in isolation” (P6), as doing so limits the breadth of
software behaviors that can be tested.

How might PBT frameworks provide better support these (and
other) techniques that give insight into how thoroughly properties
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have been tested? P15 described their ideal interaction with PBT
tools, where the tools give “insight into what [PBT] is doing...I
think a combination of knowing what it’s doing and having more
control of the space that it’s exploring would be interesting.” Partici-
pants desired greater awareness of what their tools were doing: P16
called this “visibility”, and P30 called it “inspectability” Many par-
ticipants wanted greater visibility to better understand the breadth
of inputs generated. P18, for instance, desired “visualization of the
test [inputs] being generated”. Others wished to see details such
as “the answer [of the function under test] on a smaller set of ex-
amples” (P9), “statistics on...edge cases” (P18), statistics describing
generated inputs such as “the average length of [a generated] list”
(P25), and code coverage (P9).

4.7 Tradeoffs

As the earlier sections indicate, using PBT is not without costs.
From coming up with properties to evaluating testing success, par-
ticipants found friction in many steps of PBT. Participants described
seeing themselves as employing PBT more often if its “overhead”
could be lowered (P26), or if there was less “effort necessary to
integrate [it] into [their] workflow” (P10).

Amidst these costs, PBT was often seen as worth the effort. For
some participants, development of properties was unremarkable.
For others with more involved implementation, it was still worth
the costs: in the words of P6,“[It was] a huge slog, but I was like
‘this needs to be right, and...I'm glad I did it.” P17 describes the
tradeoffs of using PBT as follows: “doing PBT is both putting in
more effort and saving oneself effort as well”

5 LESSONS LEARNED

In this section we answer our research questions, setting a course
for upcoming PBT research and tool development that is grounded
in findings from the study. Our recommendations cut across the
PBT process, and establish new goals and priorities for different
areas of PBT research. We first answer RQ1 with observations of
PBT’s practice that offer a reality check to PBT researchers and tool-
builders (§5.1), then we answer RQ2 with a technical and empirical
research agenda motivated by our study (§5.2).

5.1 The State of Practice

Recall that RQ1 asks, “What are the characteristics of a successful
and mature PBT culture at a software company?” Based on the
results of our study, we answer: A mature PBT culture considers
PBT a tool to be opportunistically applied in situations of high
leverage to gain confidence in software and document its behavior;
developers try to keep PBT “out of their way,” expecting it to work
quickly and easily. In this section, we synthesize the results from
the previous section into observations that expand on these ideas.
Some observations point forward to §5.2, where we present ideas
for future research based on our findings.

OB1: Property-based testing is being used successfully to build confi-
dence in complex systems. The broader research community some-
times situates PBT as a lower-effort, lower-reward alternative to
formal proofs of correctness, but that perspective underestimates
PBT as a practical tool for improving software quality. In §4.1, we
show that the developers at Jane Street found PBT to be a valuable
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part of their testing toolbox, using it to gain confidence when they
were unsure of code’s correctness, especially where correctness
was of critical importance. PBT gave them confidence that their
software was operating correctly, finding bugs in code that had not
been found via other methods.

OB2: Properties are used as devices for communicating specifications.
Tests are generally a valuable form of documentation, and proper-
ties are no exception. Jane Street developers use them as executable
evidence that code satisfies a specification, which has significant ad-
vantages over traditional documentation that might go stale as the
code changes. As shown in §4.1 and §4.2, properties were deemed
especially useful for communication during code review: when
properties were available, they were considered a strong signal that
the code was correct, and when unavailable reviewers sometimes
asked the submitter to write some. These auxiliary uses for proper-
ties are worth keeping in mind for PBT framework designers; for
example, some property languages try to make properties easier to

Observations

OB1 Property-based testing is being used successfully
to build confidence in complex systems.

OB2 Properties are used as devices for communicating
specifications.

OB3 Property-based tests need to be fast; they are
expected to perform as well as other unit tests.

OB4 Property-based testing is used opportunistically
in high-leverage scenarios where properties are
readily available; developers rarely go out of
their way to write subtle specifications.

OB5 Developers see writing generators as a distrac-
tion, preferring to use derived generators.

OB6 Developers may not interrogate properties that
do not find bugs, even in cases where they ac-
knowledge they should.

Research Opportunities

RO1 Understand time constraints for property-based
tests.

RO2 Improve support for differential and model-based
testing.
RO3 Make more testing scenarios high leverage.

RO4 Streamline the process of writing well-
distributed, precondition-satisfying generators.

RO5 Improve interfaces for shrinking.

RO6 Improve tools for evaluating testing effective-
ness.

RO7 Connect evaluation of testing effectiveness and
generator improvement.

Figure 1: Summary of major outcomes.
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write by providing terse syntax and expressive defaults, but those
features may cause problems if they hurt readability.

OB3: Property-based tests need to be fast; they are expected to perform
as well as other unit tests. The PBT literature is not always clear
about exactly when in the software engineering process they expect
properties to be written, but in §4.2 we observe that PBT’s niche is
testing module-level code during development. This is in contrast
with fuzz testing, which, when used by Jane Street developers, is
treated as a separate step and run outside of the standard testing
workflow. This discrepancy makes sense in view of the differing
goals that we observed for PBT and fuzzing: PBT is used for module-
level tests with often-complex logical specifications, while fuzzing
is used for integration-style tests of whole applications, to check
for relatively basic (e.g., assertion failure or uncaught exception)
errors. (Look ahead to RO1 in §5.2.)

Properties live alongside other unit tests, so they are expected
to run as quickly as other unit tests. Knowing this may change
priorities for some PBT researchers. If users are only testing their
properties for 50 milliseconds, research advances that increase input
generation or property execution speed might make the difference
between bugs being found or not. Conversely, approaches that make
generators more thorough but significantly slower may not be used
unless developers are given reason to accept longer execution times.

OB4: Property-based testing is used opportunistically in high-leverage
scenarios where properties are readily available; developers rarely go
out of their way to write subtle specifications. Conventional wisdom
in the PBT community sometimes assumes that developers decide
to use PBT and then try to think of a specification, but the study
participants generally did the opposite: they saw an obvious testable
property and then decided to use PBT. We call situations with these
readily available properties “high-leverage” testing scenarios.

The high-leverage scenarios varied—we are not confident that
we have documented all of the ones available in practice—but a few
are described in §4.3. The most popular was differential or model-
based testing, which compares the code under test to some other
available implementation. (We are not surprised our participants
found these techniques useful, after all both differential and model-
based testing have rich literatures on their own, but we did not
expect to see them so seamlessly incorporated into PBT workflows.)
Other high-leverage properties include round-trip properties that
check an inverse relationship between functions and catastrophic
failure properties that make sure a program does not fail completely.

What does this opportunistic use of PBT mean for researchers
and tool builders? Frameworks can optimize for and automate these
scenarios—tools like Hypothesis Ghostwriter [16] have already
begun incorporating common PBT scenarios into an automation
framework—improving the common case and accelerating PBT use
even further. High-leverage scenarios should also be incorporated
into PBT benchmarks like Etna [50] to make sure that the perfor-
mance of PBT algorithms is evaluated in a way that reflects their
use in real-world scenarios. (Look ahead to RO2 and RO3 in §5.2.)

OB5: Developers see writing generators as a distraction, preferring
to use derived generators. Since PBT is often done in the midst of
development, developers are reluctant to slow down and write a
generator; the task was seen as both difficult and time-consuming.
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Instead, as seen in §4.4, many participants opted to test with gener-
ators derived from the types of the data that their programs operate
on.

This has two implications. First, it means that ongoing work to-
wards improving generator automation is critical. After all, as easy
as current derived generators are to use, they are not always suffi-
cient. The well-liked ppx_quickcheck library, for example, cannot
derive generators for properties with complex preconditions. Broad-
ening applicability of derived generators lowers barriers to using
PBT. Second, it means that developers of manually written genera-
tor languages must carefully consider any added friction. Languages
that make generators more difficult to write, perhaps because do-
ing so enables desirable new features, should be cautious—these
features may be unlikely to see adoption.

Separately, languages and tools for writing generators should
provide a wealth of sensible defaults, and they should optimize the
user experience around common patterns. Participants indicated
that there was room for improvement in all of these areas, at least
in OCaml!’s QuickCheck. (Look ahead to RO4 in §5.2.)

OB6: Developers may not interrogate properties that do not find bugs,
even in cases where they acknowledge they should. A passing prop-
erty sometimes means that a program is free of bugs, but it may also
mean that the input values are not the right ones to trigger a latent
bug. Developers acknowledged this fact, and they had expectations
around the kinds of input values that they wanted when testing
their properties. (Besides satisfying property preconditions, they
wanted them to be realistic, well-distributed in the space, inter-
esting enough to cover corner and edge cases, and more.) But, as
shown in §4.6, when it came time to decide if their generators met
expectations, developers did not analyze them closely. Developers
of PBT frameworks, and especially PBT automation, should keep
this in mind: automated tools for generating test inputs risk giving
developers a false sense of security. They must ensure that their
tools test thoroughly, because testers may not. (Look ahead to RO6
in §5.2.)

5.2 Research Opportunities

Now we tackle RQ2: “What opportunities exist for future work in
the PBT space, motivated by the needs of real developers?” Based on
our results, we conclude: Exciting avenues for PBT research include
further studies into performance and usability of PBT generators,
broader and deeper support of high-leverage PBT scenarios, better
tools for shrinking, and better visibility into the testing process.
This section discusses research opportunities in software engineer-
ing, programming languages, and human-computer interaction
research that will unlock the yet-unrealized potential of PBT. Some
research opportunities point backward to §5.1, where we synthesize
observations that inform these ideas.

RO1: Understand time constraints for property-based tests. Future
studies should more thoroughly explore how long developers across
the software industry actually budget for running PBT. In this
study, we heard about numbers between 50 milliseconds and 30
seconds; that difference is massive, and tools that support PBT
cannot make optimal decisions around optimization without clearer
data. Furthermore, future research should develop a sense of how
long is “enough” for common kinds of properties and software so
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tools have the data to argue for larger time budgets where required.
Moreover, developers of tools that combine ideas from PBT and
fuzzing need to carefully examine their performance and recognize
that many PBT users set strict timeouts that may preclude the
overhead of measuring code coverage while running tests. This is
encouraging for tools like Crowbar [17] and HypoFuzz [26] that
allow developers to transition between short-running PBT and
longer-running fuzzing with the same properties. (See OB3 in §5.1.)

RO2: Improve support for differential and model-based testing. As
the most popular high-leverage scenario for PBT, differential test-
ing seems particularly interesting as a topic of further research.
Differential testing has a rich literature, as discussed in §6, but
in the context of PBT there are still advances within reach. For
example, in languages like OCaml with rich module structures,
researchers should aim to increase automation around differential
testing and produce a test harness for comparing modules without
requiring any manual setup; Hypothesis Ghostwriter has begun to
incorporate similar ideas with Python’s classes. (See OB4 in §5.1.)

RO3: Make more testing scenarios high leverage. Some testing situa-
tions are just barely outside the realm of “high-leverage” scenarios,
and improved tooling could make the difference. For example, P5
described a technique that they used to test a poorly abstracted
module with an overly complicated interface: instead of writing
normal properties, they instrumented the module with log state-
ments, wrote properties about what those logs should look like,
and then tested the module via an external interface that hides
many of its internal details. Generalizing and operationalizing this
technique—e.g., perhaps with temporal logic in the style of Quick-
strom [41]—would allow for better testing leverage in cases where
poor abstraction prevents traditional PBT.

Other testing situations might be supported better as well. Po-
tential opportunities include improving PBT support for code with
mutable state (e.g., by saving memory snapshots for repeatable
tests) and code that interacts with the environment (e.g., via robust
integration with tools for mocking [38]). Increasing the scenarios in
which PBT works out of the box will naturally make it higher-value
for developers. (See OB4 in §5.1.)

RO4: Streamline the process of writing well-distributed, precondition-
satisfying generators. This has been a research goal for the PBT
community since the beginning. Our study clarifies some promising
paths forward, including improving tools for automated tuning,
generalizing unified languages for defining generators alongside
properties, and supporting alternatives to randomness as first-class.

There are two main options for tuning generator distributions.
Actively tuned generators modify their distribution live, in re-
sponse to feedback, whereas pre-tuned generators compute dis-
tributions ahead of time. Actively tuned generators are the norm
in the fuzzing literature [20] and have been ported to PBT in many
forms [17, 23, 34, 48], but they spend precious testing time on tuning
analysis, making them less useful in time-constrained PBT scenar-
ios. Pre-tuned generators can be much faster, but they currently
require too much programmer effort. For example, reflective genera-
tors [22] (which build on example-based tuning d la the Inputs from
Hell approach [51]) automate the process of generating realistic
test inputs, but this automation is only possible if a reflective gen-
erator is already available. Moving forward, the community should
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continue to look for ways to use current active-tuning strategies
for pre-tuning (e.g., by saving inputs to be run later) and ways to
make pre-tuned generators easier to use (e.g., with interfaces that
help developers write complex generators).

When it comes to precondition-satisfying generators, many seek
to unify languages for writing generators with ones for writing
preconditions. One approach, used in the QuickChick PBT frame-
work [46], uses inductive relations as a language for both properties
and generators [35, 45]. This approach works well in the Coq proof
assistant, but complex inductive relations are not expressible in
mainstream languages or accessible to non-specialists. Researchers
should consider ways to generalize these results. Alternatively, ded-
icated languages such as ISLa [53] use a common language that
is closer to the logical connectives one might use in a standard
programming language; more research should be done to evaluate
if this approach can be applied in common PBT scenarios. Whatever
dual-purpose language is chosen, this is a compelling path forward.
(See OB5 in §5.1.)

RO5: Improve interfaces for shrinking. It is clear from the study
results that shrinkers would be far more useful if they were both
more automated and more informative. As we mention above, we
recommend that existing frameworks improve automation by in-
corporating internal test-case reduction [36, 52], which uses gener-
ators to aid in shrinking, where possible. Internal shrinking has the
added benefit of always producing valid values, which is difficult
to achieve otherwise.

Participants also asked to see more intermediate examples from
the shrinking process. Indeed, there are cases where the smallest
failing example is not the most helpful one: e.g., if the shrinker
outputs the tuple (@, ), one might conclude that any tuple of
integers triggers the bug, but it may be that the bug is only found
if the first component is actually 0. This example motivated Hy-
pothesis to begin developing a tool that will give users a variety of
tools for exploring failing tests. Debugging cases using shrinking
might mean showing many shrunk examples to the user, following
related work in the model-finding literature [14, 18], or even provid-
ing control over the shrinking process (e.g., with novel interactions
allowing the user to click on components of a value to shrink only
those components).

ROG6: Improve tools for evaluating testing effectiveness. Participants
reported ad-hoc, piecemeal approaches to understanding their test-
ing effectiveness, and they asked for better ways to visualize test-
ing feedback. As a simple first step, tools should always announce
counts of discarded test cases (i.e., ones that failed the property’s
precondition) so the developer can catch problems early. Many PBT
tools provide some way to aggregate statistics while a property is
running (see Haskell QuickCheck’s 1abel and collect functions)
but OCaml’s QuickCheck hides output when tests succeed, which
obscures that information, and more should be done around the
usability and legibility of these kinds of aggregations. Going further,
participants desired (1) better interfaces for scanning through ex-
amples of generated values, (2) better ways of visualizing generated
distributions, and (3) better integration of code and branch cov-
erage information. These could significantly improve developers’
understanding of how thoroughly their code has been tested. (See
OB6 in §5.1.)
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RO7: Connect evaluation of testing effectiveness and generator im-
provement. How might a developer clearly express their test data
goals and ensure that the generator achieves them? Future tools
could tighten the feedback loop wherein a developer evaluates and
then expresses how to improve their generator at the same time.
For instance, a future user interface might display a generator’s
distribution in some graphical form like a bar chart and allow the
developer to directly manipulate the distribution by dragging bars
up and down. Alternatively, the developer might be able to click
on those annotations to request that the distribution try harder to
cover a particular line or balance a particular branch, in the style
of AFLGo [10]. In an ideal world, an insufficient generator could be
caught and fixed in a few clicks, without allowing bugs slip by.

6 RELATED WORK

We focus, in this section, on related work exploring the usability of
testing and formal methods tools. Prior work on PBT, testing, and
formal methods usability has made important observations about
the challenges of specification and bug finding, but it has lacked the
depth and domain focus to paint a clear picture of PBT, its usage,
and opportunities for improvement.

Property-based testing. As a precursor to this study, our group did
a smaller-scale pilot study with developers using Hypothesis [21].
The full-scale study is far more in-depth, and presents more detailed
and nuanced findings, although talking to Python developers did
raise a few concerns that were less prevalent at Jane Street, espe-
cially when it comes to difficulty coming up with specifications.

A study analyzing open-source libraries using Hypothesis [12]
evaluated the kinds of properties that developers test in practice,
and found significant overlap with our “high-leverage” testing sce-
narios. In particular, they found that both round-trip and differential
or model-based testing are overrepresented in real-world tests.

An experience report from Amazon [9] described differential test-
ing as a major use-case of PBT and reported that developers used
shrinking tools for debugging and mutation testing to ensure test-
ing effectiveness. Our study confirms these patterns and explores
further PBT use-cases (§4.3), insights around shrinking (§4.5), and
concerns about testing effectiveness (§4.6).

Other studies highlight a more narrow set of specific challenges
faced by developers using PBT. One experience report describing
PBT use at DropBox [31] cited usability problems when testing
timing-dependent code. The report found that sequences of timed
operations resist shrinking, often remaining unwieldy, and that
timing dependence caused tests to be flaky. An education-focused
study using PBT [55] observed that the PBT community lacks good
motivating examples. While the former concern only appeared in
passing in our study (when discussing PBT’s handling of stateful
software), the latter—a dearth of good motivating examples—might
be ameliorated by our characterization of high-leverage testing
scenarios in §5.

Testing more generally. Beyond PBT, there is considerable work
studying usability software of testing in general. Our study sheds
light into how these common testing issues manifest in PBT specif-
ically. Two studies of developers who use IDEs [5, 6] conclude that
testing, especially Test Driven Development, is not as prevalent
as conventional wisdom would suggest. Based on these studies,
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Beller et al. coined the term “Test Guided Development” to describe
the strategy that programmers actually use. Our study agrees with
the idea that developers use testing to guide their thinking during
development (§4.1). We also corroborate challenges that another
study found around integration testing: Greiler et al. [24] found
that while unit testing is common, integration testing is difficult
and often left to the the software’s users; in our study, developers
struggled to use PBT for integration testing because it is difficult to
write specifications of entire systems’ behaviors. (§4.3).

Our study also suggests that PBT addresses testing difficulties
raised in the literature. Aniche et al. [1] observed that developers
try to write relatively “random” test cases, with the hope of acciden-
tally stumbling on bugs; this is related to developers’ goals for PBT
generators, discussed in §4.4, although PBT has the advantage of au-
tomating this process in many cases. Another study [25], focusing
on differential testing, found PBT to be a valuable tool in a devel-
oper’s toolbox, providing a coherence check for important code;
however, they also found some problems with differential testing
systems, such as naive sampling algorithms that failed to trigger
bugs and large counter-examples that were difficult to reason about.
Our study suggests new tools may address these problems.

Formal methods. PBT is sometimes described as a “lightweight
formal method.” Indeed, a recent position paper [49] argued that
testing techniques like PBT and fuzzing were important steps on
the way towards more formal verification. Formal methods as a
field have seen similar calls for usability improvements. A report
out of the Naval Research Lab [28] says, “to be useful to software
practitioners, most of whom lack advanced mathematical training
and theorem proving skills, current formal methods need a number
of additional attributes, including more user-friendly notations,
completely automatic (i.e., pushbutton) analysis, and useful, easy
to understand feedback.” This report was published in 1998, but, as
our study shows, some of their usability criteria are still not ade-
quately met by modern PBT tools. A more contemporary account
agrees that “the user experience of formal methods tools has largely
been understudied” [33] and calls for better education and tools for
writing and understanding specifications.

7 CONCLUSION

Our study reveals that, even after two decades of active exploration—
and, increasingly, exploitation—of PBT, there is still much to learn
about how it is being used and what challenges it faces in practice.
We contribute a wealth of observations about PBT’s use in an
industrial setting, along with well-founded ideas for future research
in PBT that that we, with the help of the broader community, hope
to pursue in the coming years.
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